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Zusammenfassung

In vielen angewandten wissenschaftlichen Disziplinen spielt die Prognose unbekannter
Werte eine bedeutende Rolle. Da in der Praxis nur einige wenige Stichproben gemacht wer-
den koénnen, miissen die restlichen Werte an Stellen aulerhalb der Stichprobenpunkte von
den gemessenen Beobachtungen geschétzt werden. Dafiir gibt es verschiedene Ansatzmog-
lichkeiten um geeignete Prognosewerte zu erhalten. In dieser Bachelorarbeit werden wir
uns mit "best linear unbiased prediction (BLUP)”, also mit optimaler, linearer und er-
wartungstreuer Schétzung befassen, welches in der Geostatistik auch Kriging genannt
wird.

Grundsétzlich besteht das Ziel von Kriging aus der Prognose bestimmter Werte eines
zugrundeliegenden raumlichen Zufallsprozesses Z = Z(x) mit einem linearen Schitzer,
also einem gewichteten Mittel der gemessenen Beobachtungen. Dabei stellt Z(x) fiir
jedes x in einem geographischen Gebiet eine Zufallsvariable dar. Wir werden uns zum
einen mit der Prognose des Mittelwertes von Z(x) iiber einem Raum und zum anderen
mit der Schitzung des Wertes von Z(x) an einem beliebigen Punkt x, befassen.

Die generelle Idee hinter Kriging ist dabei, dass die Stichprobenpunkte nahe x; eine
groflere Gewichtung in der Prognose bekommen sollten, um den Schétzwert zu verbessern.
Aus diesem Grund stiitzt sich Kriging auf eine gewisse rdumliche Struktur bzw. Ab-
héngigkeit, welche meistens iiber die Eigenschaften der zweiten Momente der zugrun-
deliegenden Zufallsfunktion Z(x) modelliert wird, das heifit Variogramm oder Kovarianz.
Das Ziel ist es nun, die Gewichte im linearen Schétzer unter Beriicksichtigung der Ab-
héangigkeitsstruktur derart zu bestimmen, dass der endgiiltige Schétzwert unverzerrt ist,
und des Weiteren unter allen erwartungstreuen linearen Schitzern minimale Varianz hat.
Daraus ergibt sich ein restringiertes Minimierungsproblem, dessen Losung die "optimalen”
Gewichte des linearen Schétzers und damit den Kriging Schétzwert und die minimierte
Kriging Varianz eindeutig festlegt.

Wir stellen die genannten Verfahren vor und beweisen deren Eigenschaften. Zum Ab-
schluss werden diese Verfahren zur Vorhersage von Tagestemperaturen in Deutschland
illustriert.
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1 Introduction

The problem of obtaining values which are unknown appears and plays a big role in many
scientific disciplines. For reasons of economy, there will always be only a limited number
of sample points located, where observations are measured. Hence, one has to predict the
unknown values at unsampled places of interest from the observed data to obtain their
values, or respectively estimates, as well. For this sake, there exist several prediction
methods for deriving accurate predictions from the measured observations.

In this thesis we introduce optimal or best linear unbiased prediction (BLUP). The French
mathematician Georges Matheron (1963) named this method kriging, after the South
African mining engineer D. G. Krige (1951), as it is still known in spatial statistics to-
day. There, kriging served to improve the precision of predicting the concentration of
gold in ore bodies. However, the object "optimal linear prediction” even appeared ear-
lier in literature, as for instance in Wold (1938) or Kolmogorov (1941a). But very much
of the credit goes to Matheron for formalizing this technique and for extending the theory.

The general aim of kriging is to predict the value of an underlying random function
Z = Z(x) at any arbitrary location of interest xg, i.e. the value Z(xg), from the mea-
sured observations z(x;) of Z(x) at the n € N sample points x;. For this, let D be some
geographical region in R%, d € N, which contains all considered points.

The main idea of kriging is that near sample points should get more weight in the predic-
tion to improve the estimate. Thus, kriging relies on the knowledge of some kind of spatial
structure, which is modeled via the second-order properties, i.e. variogram or covariance,
of the underlying random function Z(x). Further, kriging uses a weighted average of the
observations z(x;) at the sample points x; as estimate. At this point the question arises
how to define the "best” or "optimal” weights corresponding to the observed values in the
linear predictor. The expressions "best” and "optimal” in our context of prediction with
kriging are meant in the sense that the final estimate should be unbiased and then should
have minimal error variance among all unbiased linear predictors. These resulting weights
will depend on the assumptions on the mean value p(x) as well as on the variogram or co-
variance function of Z(x). Note that we use the term "prediction” instead of "estimation”
to clear that we want to predict values of some random quantities, whereas estimation is
refered to estimate unknown, but fixed parameters.

The main part of this thesis will be the presentation of four geostatistical kriging meth-
ods. First, we introduce kriging the mean, which serves to predict the mean value of Z(x)
over the spatial domain D. Secondly, we perform simple kriging for predicting Z(x) at
any arbitrary point xg, which represents the simplest case of kriging prediction. Then
we consider the most frequently used kriging method in practice, ordinary kriging. And
finally, we present universal kriging, which will be our most general considered model in
this thesis compared with the previous ones. Hereby a drift in the mean p(x) of Z(x) can
be taken in the prediction into account to improve the estimate.

Since all above kriging types rely on the same idea, i.e. to derive the best linear unbiased
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predictor, the organization of each section treating one method will be similar. First, we
state the model assumptions on the mean u(x) and on the second-order properties of the
underlying random function Z(x). Subsequently, we define the general linear predictor for
each kriging method and give the necessary conditions for uniform, i.e. general unbiased-
ness. These constraints are called universality conditions by Matheron (1971). Further
we compute the prediction variance. It is defined as the variance of the difference of the
linear predictor and the predictand. As mentioned above, our aim is then to minimize
this prediction variance subject to the conditions for uniform unbiasedness, since kriging
is synonymous for best linear unbiased spatial prediction. In other words, we want to
maximize the accuracy of our predictor.

The solution of this resulting constraint minimization problem yields the so-called kriging
equations for each of the following kriging types. Matheron (1971) called these conditions
for achieving minimal prediction variance under unbiasedness constraints optimality con-
ditions. Solving these equations will lead us to the "optimal” weights such that we can
finally compute the kriging estimate and its corresponding minimized kriging variance at
the end.

An closing application paragraph illustrates the performance of every described kriging
method. Therefore we will use the R package gstat (Pebesma 2001) on daily temperature
data in Germany.

Last but not least, we give a brief overview and summary of this thesis and say some
words about spatio-temporal prediction in the end, see the last part "Summary and Out-
look” (p. 85).



2 Mathematical basics

Before beginning with the main topic of this thesis, kriging, we present some mathematical
background material. In particular, we need to define random variables, random vectors
and their distributions. Afterwards we prepare some properties of definite matrices and of
matrices of a block nature. Furthermore, we recall best linear unbiased prediction, which
is called kriging in geostatistical literature (Stein 1999) in the last part.

2.1 Probability Theory

Most definitions of this section are taken from Durrett (2010, Chapter 1), the rest can be
found for instance in Nguyen and Rogers (1989).

Let (Q, F,IP) be a probability space with sample space Q # 0, o-field F and probabil-
ity measure IP. Further let (R, B(R)) denote the measurable space with sample set R and
Borel-o-algebra B (R).

Definition 2.1 (Random variable)
A function X : Q - R, w — X(w), is called a (real-valued) random wvariable if X is
F-B(R) measurable, i.e.

(XeAdl=X"1"A)={weQ: X(w)eA}erF
for all A € B(R).
Definition 2.2 (Distribution)
For A € B(R), set

v(A) =T (X '(4)) =P (X € 4),

where v is a probability measure on (R, B(R)) (image measure) and is called the distri-
bution of the random variable X.
Definition 2.3 (Random vector)
A function X : (2, F) — (R", B(R™)), n > 2, is called a random vector if X is F-B (R")
measurable, i.e.

XeA=X'1A)={weQ: X(w)eA}erF
for all A € B(R").

Remark 2.4 (Alternative definition of a random vector)
An alternative definition of a random vector can be found in Nguyen and Rogers (1989,
Chapter 3), using random variables:

Let X1,...,X,, n € N, be random variables on the same probability space (2, F,P).
Then X := (X1,...,X,)" as a mapping from (€, F) to (R, B(R")) is a random vector,
since it satisfies
(XeA={(Xy,.... X)) eA}={X1€4,,....X, € A,}
={XieA}n..n{X, €A} eF

forall A= A; x...x A, € B(R"). Here, the sets of the form A; x ... x A,, for Borel sets
A; € B(R) generate the Borel-o-algebra B(R").



4 2 MATHEMATICAL BASICS

Furthermore, we define the multivariate distribution of a random vector following the
definition of the distribution of a random variable in one dimension:

Definition 2.5 (Multivariate distribution)
For A € B(R"), set
v(A) :=TP(X'(A)) =P(X € A),

where v is a probability measure on (R", B (R"™)) (image measure) and is called the mul-
tiwariate distribution of the random vector X.

After defining the distribution of a random vector, we want to define its expectation
and its covariance. Hence, to guarantee that all expectations and covariances of the
variables in the upcoming definitions exist, we consider the space £? = {X : Q —
R random variable: IE[X?] < oo}. In the following, we refer particularly to the book by
Fahrmeir et al. (1996, Chapter 2), but also to Georgii (2013, Chapter 4).

Definition 2.6 (Expectation vector)
Let X1,..., X, be random variables in £2. The expectation (vector) of the random vector
X = (Xy,...,X,)7 is defined by

E[X] = (E[X}],...,E[X,])" € R",
i.e. the expectation is taken componentwise, such that IE[X]; = E[X;],i=1,...,n.

Definition 2.7 (Covariance matrix)
Let Xi,...,X, € £2. The symmetric covariance matriz of the random vector X =
(X1,...,X,)7T is defined by

2= Cov(X) == |(X — B[X]) (X ~ X))’

Var(X:) Cov(X1,Xs) -+ Cov(Xy, X,)
Cov(Xo, X7)  Var(Xy) -+ Cov(Xy, X,)
Cov(X,,X1) Cov(X,,Xs) -+ Var(X,)

ie. ¥;;:= Cov(X;, X;) with
o Cov(X;,X;) =E[X; -EX)] X, -EX,]) =EXX,] - E[X]E[X;] and
o Var(X;) :=Cov (X;, X5).

Proposition 2.8 (Properties of the covariance)
Let X, Y, X;, ;e L?and let a;, b, cER,i=1,...,n.
The covariance satisfies the following properties:

(i) Symmetry: Cov(X,Y) = Cov(Y, X)

(i) Bilinearity: > 71" | a;X; € L2 and )7, b;Y; € L£? with Cov (Z?Zl aiXi, D5y ij}> =
D i1 21 aibjCov(X;,Y))
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(iii) Constants: Cov(X,Y 4 ¢) = Cov(X,Y), Cov(X,c) =0

(iv) The covariance matrix ¥ € R of X = (X1,..., X,,)" is positive semidefinite, i.e.
Vv = (’Uh e ,Un)T e R™

VTEV = Zn: Zn:UiEi’j'Uj > 0.

i=1 j=1

Proof:
The statements (i)-(iii) in Proposition 2.8 simply follow by inserting the definition of the
covariance.

Hence, we give only the proof of the last property, the positive semidefiniteness of the
symmetric covariance matrix X, since this will occur later in this thesis. For this, let
v = (v1,...,v,)7 € R" be given and define the random variable Z := " v X;. It

follows:
VTZV = Z Z viEi,jvj

i=1 j=1

n n

= Z Zviij'ov(Xi,Xj) = Cov <i 0; X, inXj)
=1 =1

i=1 j=1

=Cov(Z,2)=E[(Z - E[Z])*] >0

In this thesis we will always assume the variance of a linear combination of random
variables to be strictly positive, i.e. Var(> " v;X;) > 0, and not only nonnegative (cf.
Proposition 2.8 (iv)). This assumption makes sense as in the case that the variance
equals zero, the sum > v;X; would be almost surely equal to a constant, i.e. to its own

expectation. This follows from 0 = Var(Z) = IE | (Z — E[Z])*| and hence Z = IE[Z]

————
>0

almost surely for any random variable Z. This fact leads us to the following intuitive
assumption:

Assumption 2.9 (Nondegenerate covariance matrix)
We assume the covariance matrix Y to be nondegenerate, i.e. to be strictly positive
definite, such that

viYv >0

Vv eR" v #0.
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2.2 Definite and block matrices

For our later calculations, we will need some properties of the covariance matrix 3, which
we supposed to be positive definite. Hence, we state some useful equivalences about
positive definite matrices in the following proposition. And afterwards we give a formula
how the determinant of a block matrix can be computed (see Fahrmeir et al. 1996, pp.
807-808, 815-819).

Proposition 2.10 (Characterization positive definite matrices)
Let M € R", n € N, be a symmetric and positive semidefinite matrix.
Then, the following statements are equivalent:

(i) M is positive definite.

(i)
(iii) M is invertible, i.e. det(M) # 0.
v) M

(i

Hence we conclude that the covariance matrix X of some random vector is invertible and
its inverse X! is also positive definite.

All eigenvalues of M are strictly positive.

~' is symmetric and positive definite.

Proposition 2.11 (Determinant of block matrix)
Let A € R B e R (C € R™"™ and D € R™™ for m,n € N. Further let the
matrix A be invertible.

Then, the determinant of the block matrix < é IB; > can be written as

det ( é ZB; > = det(A) det (D — CA™'B).

Proof:
This fact simply follows from the invertibility of the matrix A and the decomposition of

the block matrix:
A B A0 1 A'B
C D C 1 0 D—CA'B )"

Hence, the formula in Proposition 2.11 holds due to the multiplicativity property of the
determinant:

A B A0 1 A'B
det(C D)zdet<0 1>det<0 D—C'A_lB>

B AT CT 1 Ale
—det( 0 1 )det<o D—CA—lB>

= det(A") det (D — CA™'B) = det(A) det (D — CA™'B).
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2.3 Linear prediction

The last point which we want to consider, is linear prediction, following Stein (1999) in
Chapter 1. Since kriging is used as a synonym for best linear unbiased prediction in spa-
tial statistics, we want to define what is actually meant by this expression.

For this reason, suppose a random field Z = Z(x) with x € D C R? for some d € N,
where Z(x) is a random variable for each x € D. We observe this random function at
the n € N distinct sample points X1, ..., X,. Further, let Z := (Z(x1),...,Z(x,))" € R"
denote the random vector providing the random function Z(x) evaluated at the sample
locations, i.e. the random variables Z(x;). We wish to predict the value of the random
variable Z(x) at any arbitrary point xo € D.

Stein (1999) defined the linear predictor of this value as the linear combination of some
constant and of the random function Z(x) evaluated at the samples x, ..., x,, weighted
with some unknown coefficients:

Definition 2.12 (Linear predictor)
The linear predictor Z*(xq) of the value of Z(x) at x¢ is defined by

Z*(Xo) = )\0 + wTZ = /\0 + ZwiZ(xi),

i=1
with constant Ay € R and weight vector w = (wy,...,w,)" € R™

Definition 2.13 (Unbiased predictor)
The predictor Z*(xg) of Z(xg) is called unbiased if its expected error is zero:

]E[Z(Xo) — 7" (Xo)] =0.

Note that to ensure this unbiasedness for any choice of w, we infer that the constant \g
has to be chosen such that A\ = IE[Z(x0)] — W E[Z] = po — w ' = po — Y1y witki,
where p denotes the expected value of Z(xg), p := IE[Z] and p; := E[Z(x;)] the ith
component of the mean vector p.

Definition 2.14 (Best linear unbiased predictor (BLUP))
The linear predictor Z*(xg) of Z(xo) is called best linear unbiased predictor (BLUP), if it
is unbiased and has minimal prediction variance among all linear unbiased predictors.

Notice that minimizing the prediction variance Var (Z(xg) — Z*(xp)) of an unbiased pre-
dictor is identical with minimizing the mean squared error

mse (Z*(xo)) := IE [(Z(x0) — Z*(XO))Q]

of the predictor Z*(xy), since the squared bias | IE[(Z(x0) — Z*(%0))] | = 0.

- >

~
bias=0

Finally, since finding the best linear unbiased predictor, i.e. finding the "best” weights
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Wi, ...,wn, is equal with finding the minimum of the prediction variance subject to the
unbiasedness condition of the linear predictor, we want to present a theorem by Rao (1973,
p. 60). We will apply this theorem later in the kriging methods, where minimizing the
prediction variance turns out to be finding the minimum of a quadratic form subject to
some linear constraints.

Theorem 2.15 (Minimum of definite quadratic form with constraints)
Let A be a positive definite m x m matrix, B a m x k matrix, and U be a k-vector. Denote
by S~ any generalized inverse of BT A= B. Then

inf XTAX =UTS"U,
BTX=U

where X is a column vector and the infimum is attained at X, = A~'BS~U.

Since Theorem 2.15 makes use of the object generalized inverse of a matrix, we do not
want to omit its definition, given by Rao (1973, p. 24):

Definition 2.16 (Generalized inverse)

Consider an m X n matrix A of any rank. A generalized inverse (or a g-inverse) of A is a
n X m matrix, denoted by A~ such that X = A~Y is a solution of the equation AX =Y
for any Y € M(A).

Here, M(A) stands for the space spanned by A, i.e. the smallest subspace containing A.

Remark 2.17 (Characterization of generalized inverse)
Rao (1973, pp. 24-25) observed that

A” is a generalized inverse of A & AA™ A = A.

Note that for an invertible matrix A, a possible generalized inverse is simply given by its
own inverse matrix, i.e. A~ = A7!, since AA7'A = A.

Rao (1973) also mentioned that this generalized inverse A~ always exists, but is not
necessarily unique.

Arriving at this point, we can finish with our preparation of the needed mathematical
basics. But just one step before beginning with the main part of this thesis, we want to
give some basic notation. We will use them in most of the following sections whenever
the expressions make sense, i.e. if they are well-defined. For their definitions and some
description see Table 2.1 below. We will always consider an underlying random function
Z(x) for x in a spatial domain D C R? for some d € N. We observe this function on the
n € N sample points xi,...,X, and obtain their values z(x;),..., 2(x,). Our object of
interest is to predict the value of Z(x) at any arbitrary and mostly unsampled location
of interest, denoted by xq.



2.3 Linear prediction

Symbol Dimension Definition Description

Z R™ Z; = Z(x;) Random vector at samples

z R z; = z(X;) Observation vector

X R Y, =Cov(Z(x;),Z(x;)) Covariance matrix of Z

Co R™ (co)i := Cov(Z(x;), Z(x9)) Covariances between samples
and location of interest

1 R" 1:=(1,...,1)T Vector containing only ones

Table 2.1: Basic notation
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3 Data set

At the end of each following section, we want to apply our theoretical results to some real
data. We will investigate how the different kriging methods perform and how they are
implemented in the statistical software R.

Therefore, we will always take exemplarily the two dates 2010/11/28 and 2012/06/09
during this thesis. Our complete data set contains 78 weather stations in Germany, where
the mean temperature is measured in °C. To perform our prediction, we will use the first
54 stations for model fitting and the last 24 stations as test data, i.e. for comparison
of the prediction estimates with their corresponding measured temperature values. The
coordinates of each station are given by its latitude, longitude and elevation, i.e. its height
given in meters above sea level. For an overview see Table 3.1, where the first ten stations
and their corresponding values are printed.

Station Abbreviation Latitude Longitude Elevation
1 Angermiinde ange 53.03 13.99 54.00
2 Aue auee 50.59 12.72 387.00
3 Berleburg, Bad-Stiinzel brle 50.98 8.37 610.00
4 Berlin-Buch brln 52.63 13.50 60.00
5 Bonn-Roleber bonn 50.74 7.19 159.00
6 Braunschweig brau 52.29 10.45 81.20
7 Bremen brem 53.05 8.80 4.00
8 Cottbus cott 51.78 14.32 69.00
9 Cuxhaven cuxh 53.87 8.71 5.00
10 Dresden-Hosterwitz dres 51.02 13.85 114.00

Table 3.1: First 10 weather stations included in our data

set

In the following sections, we will always compare our predicted temperature estimates for
the last 24 weather stations with the "true”, i.e. measured ones, where the prediction is
based on the fitted models of the first 54 basic stations.

Additionally, we will perform a grid of latitude and longitude of Germany. Then, for
graphical representation, we will plot our predicted results and their corresponding pre-
diction variances in the map of Germany, as it is drawn in Figure 3.1. For comparison,
Figure 3.2 shows the additional weather stations, where our 54 basic stations are labeled
as 77+?7.
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4 The Variogram

The variogram as a geostatistical method is a convenient tool for the analysis of spatial
data and builds the basis for kriging (Webster and Oliver 2007, p. 65), which we will
discuss in the following sections and is the main topic of this thesis.

The idea of the variogram relies on the assumption that the spatial relation of two sample
points does not depend on their absolute geographical location itself, but only on their
relative location (Wackernagel 2003). Thus, our problem of interest is to find a measure
for the spatial dependence, given n distinct sample points (x;);=1,., in a spatial domain
D, where the observed values z(x;) are modeled as realizations of real-valued random
variables Z(x;) of a random function Z = Z(x), x € D. This measure we will later call
variogram function according to Matheron (1962) and Cressie (1993). Most common in
practice are the cases, where d = 1,2 or 3.

Hence, the aim of this section is to derive, i.e. estimate, a suitable variogram function
from the underlying observed data, which we can use in our kriging methods afterwards.
For this reason we have to go forward according to the following steps, as for instance
presented in Wackernagel (2003, pp. 45-61) or Cressie (1993, pp. 29-104):

i) Draw the so-called variogram clou plotting the dissimilarities of two location
i) D th lled 0g loud by plotting the dissimilarities of two locati
points against their lag distance h.

(ii) Construct the experimental variogram by grouping similar lags h.

(iii) Fit the experimental variogram with a parametric variogram model function by
choosing a suitable variogram model and estimating the corresponding parameters,
e.g. by a least squares fit.

At the end we can use the estimated variogram function in our prediction of temperature
values at unsampled locations, since kriging requires the knowledge of a variogram or
covariance function.

Details on the three steps above are given in the following, but first we want to introduce
the theory behind, the theoretical variogram. It will restrict the set of all valid variogram
functions in the estimation in point (iii), due to the consequence of some of its properties.

Note that there are plenty of scientific books which cover the subject variogram and
among them, Georges Matheron (1962, 1963, 1971) was one of the first who introduced it.
Other popular examples are the books by Cressie (1993), Journel and Huijbregts (1978),
Wackernagel (2003), Webster and Oliver (2007) and Kitanidis (1997), who based their
theory on the work of Matheron.

4.1 The theoretical variogram

Our first aim is to find a function to measure the spatial relation of the random function
Z(x), i.e. how two different random variables of Z(x) influence each other. In theory,
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this is usually done by introducing a quantity as defined in Definition 4.2 in the following,
which uses the variance of the increments Z(x+h)—Z(x) for x, x+h € D and separating
vector h. The increments display the variation in space of Z(x) at x and the variance acts
as a measure for the average spread of the values. Matheron (1962) named this quantity
theoretical variogram, although it has even appeared earlier, e.g. in Kolmogorov (1941b)
or Matérn (1960).

Now, to guarantee that our future definition of the variogram function is well-defined,
we assume the underlying random function Z(x) to be intrinsically stationary, or Z(x) is
to satisfy the intrinsic hypothesis respectively, as defined by Matheron (1971, p. 53) and
Wackernagel (2003, pp. 50-51):

Definition 4.1 (Intrinsic stationarity)
Z(x) is intrinsically stationary of order two if for the increments Z(x+h) — Z(x) it holds:

(i) The mean p(h) of the increments is translation invariant in D and equals zero, no
matter where h is located in D, i.e. E[Z(x+h) - Z(x)] = p(h) =0Vx,x+h € D.
In other words, Z(x) has a constant mean.

(ii) The variance of the increments is finite and its value only depends on the separating
vector h in the domain, but not on its position in D, i.e.

Var(Z(x+h) — Z(x)) < oo Vx,x +h € D

and is only a function of h.

Definition 4.2 (Theoretical variogram)
Matheron (1962) and Cressie (1993, p. 58) defined the theoretical variogram 2v(h) as the
function

2y(h) :=Var (Z(x+h) — Z(x))
for x, x +h € D and lagh = (x+h) — x.

In the literature, for instance in Wackernagel (2003) or Webster and Oliver (2007), v(h) is
called semivariogram, semivariance or even synonymously variogram, too. For notational
convenience, we will use these terms simultaneously for «(h) from now on.

Furthermore, notice that by assuming intrinsic stationarity of Z(x), the variogram is
indeed well-defined due to the previous stationarity conditions in Definition 4.1 (i) and
(i), i.e. it is finite and does not depend on the explicit location of x in the spatial domain
D, but only on h. For any intrinsically random function Z(x) we also infer that

2v(h) :=Var (Z(x+h) — Z(x)) = E [(Z(x + h) — Z(x))’]

But according to Cressie (1993, p. 69), we should keep in mind that in fact, the variogram
function, whenever it makes sense for other more general random processes (except intrin-
sically stationary), should be defined as the variance of the increments Var(Z(x + h) —
Z(x)) and not as the expectation of the squared increments IE [(Z(x + h) — Z(X))Z} of
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Z(x), since for a general, nonconstant first moment function p(x) of Z(x), i.e. IE[Z(x)] =
p(x), it follows

27(h) :=Var(Z(x+h) - Z(x)) =E [(Z(x+h) — Z(x))ﬂ — (E[Z(x+h) — Z(x)])°

—E [(Z(x+h) - Z(x))*] - (u(x +h) - p(x))> # E [(Z(x + h) - Z(x))*].

J/

>

In the following, after defining the theoretical variogram, we want to present some useful,
important and characterizing properties of the variogram ~(h). First of all, one very
practical feature is represented in the equivalence with a covariance function C'(h) of
Z(x). But just one step before, we need to strengthen the stationarity assumption on
Z(x) to guarantee the existence of the covariance, since intrinsic stationarity does only
imply the existence of the variogram, but not a finite covariance in general. Therefore,
in accordance with Matheron (1971, p. 52) and Wackernagel (2003, p. 52), we assume
second-order stationarity of the random function Z(x), x € D, which is also called weak
stationarity or even hypothesis of stationarity of the first two moments, i.e. mean p and
covariance C'(h):

Definition 4.3 (Second-order stationarity)
Z(x) is second-order stationary with mean p and covariance function C'(h) if

(i) the mean pu € R of Z(x) is constant, i.e. [E[Z(x)] = pu(x) = p Vx € D and

(ii) the covariance function C'(h) only depends on the separating vector h of the two
inserted locations, i.e. Vx,x +h € D :

C(h):=Cov(Z(x),Z(x+h))=E[Z(x)Z(x+h)] - E[Z(x)]E[Z(x + h)]

=E[Z(x)Z(x+h)] — p*.

This implies that the covariance function C'(h) is bounded (Matheron 1971, p. 53) with
|C(h)| < C(0) =Var(Z(x)) Vx € D,

since 0 < Var(Z(x+h)+Z(x)) = Var(Z(x+h))£2Cov(Z(x+h), Z(x))+Var(Z(x)) =
2C'(0) £ 2C(h) (see Cressie 1993, p. 67).

Remark 4.4
(i) In many textbooks, e.g. in Cressie (1993, p. 53), C'(h) is often called covariogram.
Webster and Oliver (2007, p. 53) even called it autocovariance function because it
displays the covariance of Z(x) with itself and hence describes the relation between
the values of Z(x) for changing lag h.

(ii) Further note that the intrinsic stationarity of Z(x) in Definition 4.1 is more general
than the second-order stationarity in Definition 4.3, since any second-order sta-
tionary random process is automatically intrinsically stationary, i.e. the set of all
second-order stationary random functions is a subset of the set of all intrinsically
stationary functions. But in general, the reversal is not true. Hence, a variogram
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function, which requires e.g. only intrinsic stationarity, could exist even if there is
no covariance function, wich requires e.g. the stronger assumption of second-order
stationarity (cf. Wackernagel 2003, p. 52; Cressie 1993, p. 67). An example of a
random process being intrinsically, but not second-order stationary can be found in
Haskard (2007, pp. 8-9), where a "discrete Brownian motion”, a symmetric random
walk on Z starting at 0, is presented.

Journel and Huijbregts (1978, p. 12) also noticed that the intrinsic hypothesis of
Z(x) is just the second-order stationarity of its increments Z(x + h) — Z(x).

We want to go further and present an important proposition, which can be found in
nearly all books about variogram functions, for instance in Matheron (1971, p. 53) and
Wackernagel (2003, p. 52), where it is often called equivalence of variogram and covariance
function:

Proposition 4.5 (Equivalence of variogram and covariance function)
(i) If Z(x) is second-order stationary, i.e. there exists a covariance function C(h) of
Z(x), then a variogram function y(h) can be deduced from C'(h) according to the
formula

(i) If Z(x) is intrinsically stationary with a bounded variogram ~y(h), i.e. there is a
finite value y(00) := limjp|00 7(h) < 00, which denotes the lowest upper bound of
an increasing variogram function, then a covariance function C'(h) can be specified
as

C(h) = y(00) = y(h).

(iii) For second-order stationary processes Z(x), both properties (i) and (ii) hold, and
the variogram and the covariogram are said to be equivalent.

Proof:
Kitanidis (1997, p. 52) stated the proof of this proposition:

(i) Since the second moment IE[Z(x)?] = C(0) + p? of Z(x) is constant and hence
independent of x for all x in D, it follows for all x,x +h € D:

3(h) = LB [(Z(x +h) — Z(x))’] = LB [Z(x + )] ~BlZ(xth) Z(0)] + 5 B [Z(x)]

=E [Z(x)’] - E[Z(x+h)Z(x)] = (E [Z(x)*] — 1) — (E[Z(x + h)Z(x)] — 1*)
=(C(0) — C(h) < 0.
(i) If the variogram is bounded, then similar to (i), we can write the covariance function

C(h) = C(0) = y(h) = 7(c0) = 7(h) < cc.

(iii) The last part simply follows from (i) and (ii), since second-order stationarity of Z(x)
infers intrinsic stationarity and the existence of a bounded variogram.
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Remark 4.6

(i)

(iii)

The proposition shows the equivalence of the variogram with its corresponding co-
variogram function in the case of a bounded variogram, e.g. if the underlying random
function Z(x) is second-order stationary. In general, the reverse statement (ii) in
Proposition 4.5 is not true because unbounded variogram functions do not have cor-
responding covariance functions in general (see Wackernagel 2003, p. 52; Remark

4.4 (ii)).

The proposition also implies that a graph of the semivariogram ~(h) plotted versus
the absolute value, i.e. the Euclidean norm |h|, of the lag h, is simply the mirror
image of the corresponding covariance function C'(h) about a line parallel to the
|h|-coordinate (Webster and Oliver 2007, p. 55).

Cressie (1993, p. 67) also stated that if Z(x) is second-order stationary and if
C'(h) — 0 as |h| — oo, then y(h) converges to C'(0), i.e. v(h) — C(0) as |h| — oo
due to the stationarity criterion. The value C(0), which is equal to the variance of
Z(x), is called the sill (see Definition 4.9).

Afterwards we want to show some more basic properties of the theoretical variogram,
which are provided in the next proposition and are stated by Matheron (1971, pp. 54—
56), but can also be found exemplarily in Wackernagel (2003, pp. 51-55). These properties
will restrict the choice of the underlying variogram in the estimation later:

Proposition 4.7 (Properties of the variogram function)
Let Z(x) be intrinsically stationary. The variogram function «(h) satisfies the following
five conditions:

(i)
(i)
(iif)

)

(iv

(v)

7(0) =
~(h) >
7(=h) = ~(h)

The variogram grows slower than |h|* as |h| — oo, i.e.

h
— 2) _
=y

The variogram is a conditionally negative semidefinite function, i.e. for any finite
sequence of points (x;);—1.., and for any finite sequence of real numbers (w;)i—=1__»
such that > | w; = 0, it holds

Z Z wiw;v(x; —x;) < 0.

i=1 j=1

Proof:
The parts of the proof of this proposition are presented in most books dealing with var-

iogram functions, for instance in Wackernagel (2003, pp. 51-55) or Matheron (1971, pp.
54-56).
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(i) The value at the origin of the variogram is zero by definition, since the variance of
a constant equals zero

1
~7(0) = §Va7“ (Z(x+0)—Z(x))=0.
(ii) The variogram is nonnegative, since the variance of some random variables cannot
take negative values.

(iii) Additionally, the theoretical variogram is also an even function, i.e.
1 1
~v(=h) = §Var (Z(x—h)—-Z(x)) = §Va,r (Z(x) — Z(x+h)) = y(h),

due to the invariance for any translation of h in the domain D.

(iv) Further, we proof the behavior of v(h) at infinity by contradiction. Therefore we
assume
7(h)

5 70,

lim
Ih|—co ||

i.e. the variogram grows at least as fast as the square of the lag, and it follows:

yh) o 1E[(Z(x+h) - Z(x))’]
07 |hl|lgl<>o Ih|*  [hloeo 2 h|?
o1 Z(x+h) - Z(x)\’ - Z(x+h)—Zx)1\’
“ ™ ( by )]zk}Hw(E{ by D =0

which follows by applying Jensen‘s inequality for the convex function ¢ : R — R,
y — o(y) := y2, or simply by the formula IE [X?] > (IE[X])” for any random variable

X.
= Jim (]E [Z(X i I|ll)1|_ Z<X>D2 > 0.

Hence, we obtain
Z(x+h) - Z(x)
|h|

lim IE{

|h|—o00

| #o.

which implies
lim p(h)= lim E[Z(x+h)— Z(x)] #0.

|h|—o00 |h|—o00

This is a contradiction to the assumption that the drift u(h) equals zero.

(v) Finally, in most books, this last part of the proposition is proved assuming second-
order stationarity of Z(x), i.e. the existence of a covariance function C'(h) (e.g. see
Matheron 1971). But Cressie (1993, pp. 86-87) gives a much nicer proof assuming
only intrinsic stationarity, i.e. weaker assumptions. For this reason, we present the
proof by Cressie (1993) at this point:
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Let w := (wy,...,w,)" € R" be given, such that > 1  w; = 0. Since

_% [Z Zwiwj (Z(x;) — Z(Xj))2]

i=1 j=1

= —% Zwi (Z(Xi))2 ij -2 Z ZM%Z(X@')Z<XJ‘> + ij <Z(Xj)>2 Zwi

i=1 j=1

—— =
= ZZW@'WJ'Z(XZ')Z<XJ> = (Z Wz'Z(Xz')> :

it follows by taking expectations:

n n

Z Z wiwjy(xi — Xj) = Z Z WZ‘CUj]E

i=1 i=1 i=1 j=1

<Z@»—Z@»ﬁ]

“E %(Z Sy (Z(x1) — Z(Xj))Q)] __E (Z wiZ(xi)> <.

i=1 j=1

(. s
~\~

>0

4.2 Variogram cloud

After the theoretical part about the variogram, we want to show the way how an un-
derlying variogram function can be deduced from our data points x; in the geographical
region D with observations z(x;), i = 1,...,n, to get a measure for the dependence in
the spatial space. As in practice, unfortunately, the "real”; "truth” underlying variogram
behind is not known, we have to estimate it.

As a first step, Wackernagel (2003, p. 45) as well as Webster and Oliver (2007, p. 65)
introduced a measure for dissimilarity 77, of two sample points x; and x;, which can be
computed by the half of the squared difference between the observed values z(x;) and
z(x;) at these points, i.e.
(2(:) = 2(xy))”

5 )
Further, Wackernagel (2003) supposed the dissimilarity v* to depend only on the sepa-
rating vector h of the sample points x; and x; + h, then

* Lyp—
Yij =

(=% + h) — 2(x))*

7 (h) = 5
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Obviously, this dissimilarity is symmetric with respect to h as a squared function, i.e.
7*(h) =~*(~h).

For graphical representation, the resulting dissimilarities 7*(h) are plotted against the
Euclidean distances |h| of the spatial separation vectors h. This plot, or scatter dia-
gram, of the dissimilarities against the lag distances, which takes any of the @ pairs
of samples into account, is called the variogram cloud by Wackernagel (2003, p. 46). It
contains the information about the spatial structure of the sample and gives a first idea
of the relationship between two points in D. Therefore, Wackernagel (2003) described the
variogram cloud itself as a "powerful tool” for the analysis of spatial data and also Cressie

(1993, pp. 40-41) characterized it as a "useful diagnostic tool”.

Note that in most cases, the dissimilarity function 7*(h) is increasing as near sample
points tend to have more similar values (Wackernagel 2003, p. 46). Below, we show ex-
amplarily the first lines of the values of the variogram cloud given the mean temperature
data of 2010/11/28 and 2012/06/09, as it occurs using the function wvariogram() in the
R package gstat. An illustrative example of the plotted variogram cloud of the data of
2010/11/28 is given on Figure 4.1a), while Figure 4.1b) illustrates the variogram cloud of
2012,/06,/09.

> #(Create gstat objects:
> gil<-gstat (g=NULL,id="templ",formula=templ~1,locations="longkm+latkm,
+ data=datal)

data:
templ : formula = templ™l ; data dim = 54 x 1
“longkm + latkm

> g2<-gstat (g=NULL,id="temp2",formula=temp2~1,locations="longkm+latkm,
+ data=data2)

data:
temp2 : formula = temp2”1 ; data dim = 54 x 1
“longkm + latkm

> #Variogram cloud:
> vcloudi<-variogram(object=gl,cutoff=Inf,cloud=TRUE)
> vcloud2<-variogram(object=g2, cutoff=Inf,cloud=TRUE)

> head(vcloudl) #2010/11/28

dist gamma dir.hor dir.ver id left right

1 285.96629 0.605 0 0 templ 2 1
2 453.94377 3.380 0 0 templ 3 1
3 306.54582 1.125 0 0 templ 3 2
4 56.11389 0.005 0 0 templ 4 1
5 233.74657 0.500 0 0 templ 4 2
6 402.62469 3.125 0 0 templ 4 3
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> head(vcloud2) #2012/06/09

dist gamma dir.hor dir.ver id left right

1 285.96629 1.125 0 0 temp2 2 1

2 453.94377 22.445 0 0 temp2 3 1

3 306.54582 13.520 0 0 temp2 3 2

4 56.11389 0.125 0 0 temp2 4 1

5 233.74657 0.500 0 0 temp2 4 2

6 402.62469 19.220 0 0 temp2 4 3
25 = 25 . ° -
20 - 20 ’ O° R o r

2 g

2 . - 2

Distance lag h in km Distance lag h in km

(a) 2010/11/28 (b) 2012/06/09

Figure 4.1: Variogram clouds of the temperature data of 2010/11/28 and 2012/06/09 in
Germany

4.3 The experimental variogram

Subsequently, since there could exist more than only one dissimilarity value for some
distance lags h, and since we will always have only finitely many sample points in practice
and hence most lags h will be without any observation and thus still without dissimilarity
values 7v*(h), we must go on and find a solution to these two problems (Webster and
Oliver 2007, pp. 77-79). Following Matheron (1962), we define the classical estimator, or
also known as method-of-moment estimator, as

() = m 37 (a(x:) — 2(x7))%,

N(h)

with N(h) = {(x;,x;) : x; —x; =hfori,j =1,...,n} the set of all pairs of points with
lag h and |N(h)| the number of pairs in N(h).
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Cressie (1993) noticed that the symmetry property remains, since v*(h) = ~v*(—h), al-
though N(h) # N(—h). Further advantages of this estimator are its unbiasedness and
that it is not necessary to estimate the mean p of Z(x). But unfortunately, it is also
sensitive to outliers due to the square of the differences (Webster and Oliver 2007, p. 113;
Cressie 1993, pp. 40, 69). However, the problem of most distances being without a value
still remains.

For this reason, Wackernagel (2003, p. 47) grouped the separation vectors into K vector
classes H, k=1,..., K with K € N, i.e. lag intervals, such that the union UkK:1 H,, cov-
ers all linking vectors h up to the maximum distance max; j_1,_, |X; — X;| in the sample.

Therefore, following Wackernagel (2003), we can determine the average dissimilarity
~v*(Hy) corresponding to the vector class Hy, and hence we get an estimate of the dissim-
ilarity value for all lags, by computing the average of dissimilarities v*(h) for all point
pairs with linking vector h belonging to vector class Hy, such that

V() = Ty 3 (20 = () ke

where N(Hy) = {(xi,%x;) : x; —x; € H, fori,j =1,...,n} denotes the set of all pairs of
points with separation vector in Hy, and | N (H})| the number of distinct elements in N (Hy,).

These average dissimilarities v*(Hy) of the vector classes Hy form the ezperimental vari-
ogram (Wackernagel 2003, p. 47), which is in literature often called empirical, estimated,
sample variogram or even semivariance, too (Webster and Oliver 2007, p. 60).

Note that the resulting empirical variogram strongly depends on the choice of the vector
classes Hy and that this explicit choice also depends on the underlying problem. In litera-

ture, there exist two common ways to define these classes, which are presented in Cressie
(1993, pp. 60-64) and Haskard (2007, pp. 9-10, 16):

(i) The vector sets Hy only depend on the Euclidean distance |h| = |x — y| between
the points x and y in D. Hence, the empirical variogram is also a function only of
the Euclidean norm |h| of h, i.e. v*(h) = 75(|h|), and is called isotropic.

(ii) The second way is to take the direction of the lag h in addition to the distance into
account, e.g. by dividing the interval of angle [0, 7) into m € N intervals, e.g. for
m=4:[0,%), [£,%2), [£,2) and [27, 7) in the situation of a two-dimensional domain
D. In this case the sample variogram is also a function of both, the distance and
the direction, i.e. angle between the two inserted points, and is called anisotropic or
even directional variogram. Anisotropies appear for instance when the underlying
process Z(x) in the vertical direction is different from its behavior in the horizontal

direction (cf. Webster and Oliver 2007, p. 59).

Remark 4.8
(i) Since the final variogram estimator is still sensitive to outliers (Webster and Oliver
2007, p. 113), Cressie (1993) presented a robust estimator together with Hawkins;
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for more details see the original literature Cressie and Hawkins (1980) or Cressie
(1993, p. 40, 74-76).

(ii) In practice, disjoint and equidistant vector classes are prefered and usually the
experimental variogram is computed using lag vectors h of length up to a distance
of half the diameter of the region, since for larger distances, the empirical variogram
becomes more and more unreliable (Wackernagel 2003, p. 47; Haskard 2007, p. 19).

A concrete example for our data set of mean temperatures in Germany is given on Figure
4.2, where the isotropic experimental variogram is obtained from the variogram cloud by
subdividing the distance vectors into the classes Hy := {h € R* : (k — 1) - 10km <
|h| < k- 10km} with K = 79 the maximum distance in the sample divided by the width
of each vector class, which is set to 10km, i.e. H; = {h € R? : 0km < |h| < 10km},
Hy; ={h € R?: 10km < |h| < 20km} and so on. For instance, assuming a linear distance
of 56 kilometers between x =Munich and y =Augsburg, their lag h = x —y would be an
element of Hg.

Analogously to the variogram cloud, we show the first lines of the empirical variogram
obtained from the function variogram() in the R package gstat. In the plot, the value of
the empirical variogram for each Hj, is printed as a blue dot at the averaged distance.

#Empirical variogram:
#Cutoff=half of maximum distance in variogram cloud
#Vector classes have width of 10km

vempl<-variogram(object=gl,cutoff=max(vcloud1$dist)/2,width=10)

>
>
>
>
>
> vemp2<-variogram(object=g2, cutoff=max(vcloud2$dist)/2,width=10)

> head(vempl) #2010/11/28

np dist gamma dir.hor dir.ver id
1 4 46.54447 1.5187500 0 0 templ
2 8 55.71406 0.2237500 0 0 templ
3 7 66.15195 0.7100000 0 0 templ
4 18 74.15924 0.9950000 0 0 templ
5 19 85.08439 0.5331579 0 0 templ
6 20 94.36247 1.4920000 0 0 templ
> head(vemp2) #2012/06/09

np dist gamma dir.hor dir.ver id
1 4 46.54447 1.717500 0 0 temp2
2 8 55.71406 0.510000 0 0 temp2
3 7 66.15195 1.645000 0 0 temp2
4 18 74.15924 1.458611 0 0 temp2
5 19 85.08439 1.249474 0 0 temp2
6 20 94.36247 0.852750 0 0 temp2
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Figure 4.2: Empirical variograms of the temperature data of 2010/11/28 and 2012/06,/09
in Germany

4.4 Fitting the experimental variogram

The experimental variogram ~*(h) provides a first estimate of the assumed underlying
theoretical variogram ~(h), which can be used to characterize the spatial structure and
is needed for our future kriging methods. But at this point, Cressie (1993, pp. 89-90)
argued that we cannot use this estimator directly, since we have to take care about sev-
eral limitations on the variogram function, which are summarized in Proposition 4.7. In
particular, Cressie (1993, p. 90) infered that the conditionally definiteness cannot be re-
moved, since otherwise it can happen that the prediction variances in kriging will turn
negative.

This implies that we have to fit a variogram function to the empirical variogram, i.e.
replace it by a theoretical variogram. But unfortunately, by the same argument, not ev-

ery arbitrary function is authorized to be a variogram function; a suitable, valid function
is needed.

For instance, a first approach could be fitting a more or less arbitrary function to the
empirical variogram by a least squares fit. But given the resulting function, checking
all important conditions of the variogram would be not really efficient, since it can be
very difficult to verify e.g. the conditionally definiteness or the growth condition of the
variogram function. Therefore, to avoid this disadvantage and to save time, there exist a
few valid parametric variogram models - parametric, since they depend on parameters -
satisfying these conditions and which are often used in applied geostatistics (Webster and
Oliver 2007, p. 82).
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Hence, our idea is to search for a suitable variogram function within all of these valid
parametric variogram models, i.e. we automatically guarantee that all important condi-
tions of the variogram are satisfied, which provides the best fit to our data (see Cressie
1993, p. 90; Webster and Oliver 2007, p. 290).

In summary, for fitting a valid variogram function to the empirical variogram, we con-
clude that first the parameters of the parametric variogram model functions have to be
estimated and then we can select the best fitting model (cf. Webster and Oliver 2007, pp.
101-102, 290).

For estimating these parameters, there exist a few methods. Cressie (1993, pp. 91—
96) introduced estimation by ordinary or weighted least squares, which we will focus on,
but alternatively also discussed maximum likelihood and restricted maximum likelihood
(REML) estimation, minimum norm quadratic (MINQ) estimation and generalized-least-
squares (GLS) fitting. In the case of a least squares fit, the function with the least sum
of squares is chosen, since it seems to be the closest to our data.

Webster and Oliver (2007) also mentioned that the behavior of the fitted variogram at
the origin is important, i.e. for very small distances, where the variogram can be differen-
tiable, continuous but not differentiable or even discontinuous, and the behavior for large
distances (beyond the range), where one has to decide whether the variogram is bounded
or not. Further details and interpretation are presented in the books by Matheron (1971,
1989) and Wackernagel (2003, pp. 48-49, 115-117).

4.5 Parametric variogram models

As mentioned above, so-called parametric variogram models are used to fit the experi-
mental variogram, since they provide the required properties. Therefore, before giving
some examples of valid variogram model families, we want to introduce the three most
common parameters nugget, sill and range, defined in accordance with Matheron (1962)
and Cressie (1993, pp. 59, 6768, 130-131):

Definition 4.9 (Variogram parameters)
(i) Nugget:
If the empirical variogram is discontinous at the origin, i.e. y(h) — ¢ > 0 as
|lh| — 0, then the height of the jump ¢y is called the nugget, or nugget effect
respectively, representing the value which could be caused by measurement error or
some microscale variation.

(i) Sill:
The value 7(00) = limjp|—0o y(h) is called the sill.
(iii) Range:

The distance at which the semivariogram ~(h) exceeds the sill value for the first
time is called the range.

An illustrative example for the parameters is given on Figure 4.3.
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Figure 4.3: Variogram parameters nugget, sill and range

Remark 4.10
e Note that in practice, sometimes the range is defined as the distance at which the
semivariogram achieves about 95% of its sill value, called practical or effective range
(Wackernagel 2003, p. 57). This makes sense, since for some variogram functions,
the sill can only be reached asymptotically and never in a finite distance. For
instance see the Exponential or Gaussian model in Definition 4.11.

e For distances beyond the range, the corresponding random variables are said to be
uncorrelated because its associated covariogram equals zero (in case of a bounded
variogram) (Journel and Huijbregts 1978, p. 13).

Since in the experience, bounded variation is more common than unbounded variation
(Webster and Oliver 2007, p. 84), we introduce the most common and most frequently
used bounded, or also called stationary or transitional, isotropic and valid variogram
model families, which can be found for instance in Webster and Oliver (2007, pp. 82-95)
and Wackernagel (2003, pp. 57-61, 334-336).

These are the Nugget-effect model, the Bounded linear model, the Spherical model, the
FExponential model, the Gaussian model and the Matérn class, defined in the sense of
Webster and Oliver (2007, p. 94), which is a more general class containing variogram
functions.

Definition 4.11 (Parametric variogram models)

Let 7,(h) denote the variogram function, C, ;(h) the corresponding covariance function
with lag h and a,b > 0 the parameters of each model, where a represents the range pa-
rameter and b the sill value.
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(i) Nugget-effect model:
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it b = 0

otherwise,
if |h] = 0

otherwise.

b(&>,ﬁoguq§a

b, otherwise,

0,

) =
b,
b,

Criem) =
0,

(ii) Bounded linear model:
Yap(h) =
b(1- 1
Cap(h) ==

),ﬁoguﬂga

0, otherwise.

(iii) Spherical model:

yor(h) =

b, otherwise,

h
) b<1—§+§
C’jﬁ, (h) :=

0, otherwise.

(iv) Exponential model:

Yop (h) =10 (1 — exp

3
_%<%)),ﬁoguﬂga

G%yj,if0§|Mj§a

h
Coy (h) == bexp (—%) for |h| > 0.

(v) Gaussian model:
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(vi) Matérn model class:

1 'h|\” |h|
M h)y i =h |l - —r | — | K, | — for |h| >
7a,b,u< ) |: 2”71F(l/) ( a ) ( a or | | = Oa

ma 1 h[\"” h
Ca,b,ltj(h> =b {m (|T@|> Ku <%)1 for ‘h‘ > O,

with smoothness parameter v varying from 0 to oo, gamma function I'(-) and mod-
ified Bessel function K, (-).

The equivalence of the variogram and the covariance function simply follows from Propo-
sition 4.5 (Equivalence of variogram and covariance function) and the boundedness of the
variogram of all models (Webster and Oliver 2007, pp. 84-95).

Wackernagel (2003, pp. 57-58) noted that in contrast to the Linear and the Spheri-

cal model, which reach the specified sill value b exactly at the finite range a, i.e. vé"fg(a) =

fy;f},h(a) = b, the Exponential and the Gaussian model approach the sill asymptotically
for |h| — oo, which has a non zero covariance as consequence. In this case, the practical
range equals approximately 3a for the Exponential and v/3a for the Gaussian variogram
model, i.e. 773(3a) &~ 0.95b and 73%“(\/3@) ~ 0.95b (cf. Webster and Oliver 2007, pp.

88-93; Pebesma 2001, p. 38).

Figure 4.4 shows the variogram and the corresponding covariogram functions of the mod-
els (i)-(v) in Definition 4.11 for parameters a = b = 1. The range parameter a determines
how fast the sill value, the variance of the process, is achieved; the smaller the value of
a, the faster the sill b is reached, assuming b to be constant. Hence, the corresponding
variogram function will increase faster. The sill b also decides about the shape of the
variogram, since a higher value of b, with constant range parameter a, also infers a more
increasing variogram function. Analogously to these considerations, the same applies to
the corresponding covariance functions, which will decrease faster for increasing sill or
decreasing range parameter. The influence of varying values of a and b on the variogram
is shown on Figure 4.5.

Figure 4.6 shows the variogram and covariogram functions of the Matérn class for dif-
ferent values of v. The changing behavior of the variogram and covariance functions from
rough (v = 0.1) to smooth (v = 5.0) for varying v is a characterizing feature of the Matérn
class. More details on the interpretation of v are presented in Remark 4.12 below.

Remark 4.12
e Definition 4.11 (i)-(v) agrees with the definition of the parametric variogram models
Nug, Lin, Sph, Ezp and Gau in the R package gstat (Pebesma 2001, pp. 36-39).

e The definition of the Matérn model class, which is named after the work of Bertil
Matérn by Stein (1999), see for instance Matérn (1960), coincides with the variogram
model Matin R. But there also exists another parameterization of this model, given
by Stein (1999, pp. 48-51), which is also implemented in R via the model Ste.
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Semivariance y(h)

Figure 4.4: Variogram and covariance functions with range parameter a = 1 and sill b
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Figure 4.5: Variogram functions for varying range parameter a and sill b

The Matérn class is a generalization of several other variogram model functions,
e.g. it includes the Exponential model for v = 0.5 and a variogram model called
Whittle ‘s model for v = 1. The parameter v is called smoothness parameter, since it
is the crucial value which decides about the smoothness of the variogram function.
v =~ ( is related to a very rough and the value v = oo to a very smooth behavior
of the corresponding variogram function (Webster and Oliver 2007, p. 94). In the
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Figure 4.6: Variogram and covariance functions of the Matérn class with range parameter
a =1, sill b =1 and varying v

cases where v equals m + % for a nonnegative integer m, i.e. if v is half-integer, the
Matérn variogram and covariogram functions can be expressed in a simpler form:
an exponential times a polynomial of order m. The interested reader may look at
Rasmussen and Williams (2006, pp. 84-85) for further details and examples.

In practice, in the case of many data, the variogram appears more complex. Webster and
Oliver (2007, p. 95) argued that it is common to combine some "simple” variogram models
from Definition 4.11 for achieving a better fit. We profit from the fact that the combina-
tion of some conditionally negative semidefinite functions is again a conditionally negative
semidefinite function. The most common combination is a nugget component added to
another model, e.g. Webster and Oliver (2007) stated the exponential variogram 7, (h)
including a nugget cy, i.e. 754, (h) = co + 7,3 (h). In this situation of the existence of
a nugget component ¢y, the sill becomes the sum of b and ¢y, b + ¢g, and the value b is
called partial sill (Cressie 1988).

There are variations of the models and their variogram and covariance functions as
definded above, too. For instance, as shown in Bohling (2005, pp. 15-16), in some cases
there exist shifted models. E.g. the Exponential and the Gaussian model are shifted at
h with a factor such that they have the effective range a.

In literature, there exist various other bounded isotropic models as the circular or Whit-
tle‘s model, or even unbounded isotropic models as the logarithmic model or the models
in |h)” for 0 < # < 2, too. These and other models can be found in Journel and Hui-
jbregts (1978, pp. 161-170) or Webster and Oliver (2007, pp. 82-95), just to name a
few references. Journel and Huijbregts (1978, pp. 175-183) also talked about models for
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anisotropy.

For interpretation of each model in practical application, we refer to the books by Wack-
ernagel (2003) in Chapter 8, Webster and Oliver (2007, pp. 84-95) and to Bohling (2005,
pp. 15-17).

Finally, we conclude that for choosing the most suitable variogram model, given the
empirical variogram, the parameters a and b of each model have to be estimated first, e.g.
by an ordinary or by a weighted least squares method, and then the best fitting model
with the lowest sum of squares is chosen.

In R this could be done by using the function fit.variogram() in the package gstat, which
provides a least squares fit. It contains nonweighted as well as weighted least squares,
which can be selected by the argument fit.method. For instance, fit.method=6 gives non-
weighted and fit.method=1 weighted least squares with weights N(H}) (see Pebesma 2001,
p. 42). For comparison one could apply the R function nls() for nonlinear least squares,
which is part of the standard package stats, and uses a Gauss-Newton algorithm as default
algorithm. In most cases, this ends in nearly the same estimated values a for the range
and b for the sill. It also contains an argument weight, where the weights for weighted
least squares can be set.

Note that the gstat function wvariogram() also includes a command cressie. If this at-
tribute is set to cressie=TRUEF, then Cressie‘s robust variogram estimator in Remark 4.8
(i) is used instead of the classical method-of-moments estimator.

Further note that fit.method=6 infers nonweighted least squares, i.e. all vector classes
get the same weight 1 independent of their number of elements. fit.method=1 implies
weighted least squares with weights np from the experimental variogram, which counts
the number of sample pairs in each vector class.

For our data set we infer that in both cases, the Matérn model fitted with nonweighted
least squares (fit.method=6) provides the "best” fit, since their residuals are the lowest.
Below one can find an overview of the parametric variogram models with fitted param-
eters and their sum of squares, where Table 4.1 and Table 4.2 refer to 2010/11/28 and
Table 4.3 and Table 4.4 to 2010,/06/09.

Linear Spherical Exponential Gaussian Matérn
Range 270.02 405.44 190.74 180.15  215.44
Nugget 0.55 0.50 0.08 0.72 0.00
Partial Sill 1.74 1.94 2.73 1.67 2.87
Sum of squares 7.35 7.12 7.12 7.16 7.12
v 0.00 0.00 0.00 0.00 0.44

Table 4.1: Parameters from weighted least squares (fit.method=1) of the temperature
data of 2010/11/28 in Germany
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Linear Spherical Exponential Gaussian Matérn
Range 273.05 419.79 260.59 194.28  102.62
Nugget 0.51 0.48 0.29 0.75 0.65
Partial Sill 1.80 2.00 2.85 1.68 2.03
Sum of squares 7.32 7.11 7.08 7.11 7.05
v 0.00 0.00 0.00 0.00 1.49

Table 4.2: Parameters from ordinary least squares (fit.method=6) of the temperature
data of 2010/11/28 in Germany

Linear Spherical Exponential Gaussian Matérn
Range 264.76 537.18 445.73 237.07 2013.70
Nugget 0.53 0.69 0.52 1.11 0.01
Partial Sill 2.48 3.03 4.96 2.36 10.22
Sum of squares | 11.46 10.81 10.85 10.73 10.92
v 0.00 0.00 0.00 0.00 0.31

Table 4.3: Parameters from weighted least squares (fit.method=1) of the temperature
data of 2012/06/09 in Germany

Linear Spherical Exponential Gaussian Matérn
Range 278.59 434.63 345.76 216.07 72.23
Nugget 0.71 0.66 0.54 1.08 1.03
Partial Sill 2.30 2.61 4.07 2.20 2.44
Sum of squares | 11.36 10.68 10.74 10.66 10.63
v 0.00 0.00 0.00 0.00 2.98

Table 4.4: Parameters from ordinary least squares (fit.method=6) of the temperature
data of 2012/06/09 in Germany
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Hence, by taking the models with the lowest sum of squares, we obtain our valid variogram
functions, which are indeed Matérn model functions in both cases:

> #Best fitting variogram model for 2010/11/28:

> vfitl<-fit.variogram(object=vempl, model=vgm(psill=1, model="Mat",
+ range=100, nugget=1, kappa=1.49), fit.sills=TRUE, fit.ranges=TRUE,
+ fit.method=6)

model psill range kappa
1 Nug 0.6464684 0.0000 0.00
Mat 2.0341866 102.6184 1.49

> attributes(vfit1)$SSErr #sum of squares
[1] 7.054155

> #Best fitting variogram model for 2012/06/09:

> vfit2<-fit.variogram(object=vemp2, model=vgm(psill=1, model="Mat",
+ range=100, nugget=1, kappa=2.98), fit.sills=TRUE, fit.ranges=TRUE,
+ fit.method=6)

model psill range kappa
1 Nug 1.025047 0.00000 0.00
Mat 2.442959 72.23161 2.98

> attributes(vfit2)$SSErr #sum of squares
[1] 10.62915

Both estimated parametric variogram model functions are fitted to the empirical vari-
ogram, which can be seen on Figure 4.7.

The other fitted variogram functions are printed below, for 2010/11/28 see Figure 4.8
and for 2012/06/09 see Figure 4.9. The left pictures contain the variogram functions
corresponding to the estimation from weighted least squares (fit.method=1) and the right
pictures to the estimation from nonweighted least squares (fit. method=6).

Finally, we can finish with our preparation for kriging, since we now have valid variogram
functions, namely vfit! and vfit2, of our data set at hand.
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Figure 4.7: Matérn variogram functions with lowest sum of squares fitted to the empirical
variogram
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Figure 4.9: Fitted variogram models of 2012/06/09
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5 Kriging the Mean

The aim of this section about our first method of kriging prediction is to predict the
value of the mean p € R of the underlying random function Z(x) from the sample points
X;, i = 1,...,n, where x is in the spatial domain D C R? for d € N. The corresponding
observed values z(x;) are modeled again as realizations of the random variables Z(x;)
(Wackernagel 2003, p. 28).

This mean value can be computed with a weighted average of the observations, as for
instance, Wackernagel (2003) explained a first intuitive approach using the arithmetic
mean, where the weight of each point is the same and they all sum up to one. This ap-
proach can be used in the setting of uncorrelated samples. But since the data points are
irregularly located in D, more general weights allow to take the knowledge of the spatial
correlation of the samples into account, as usually closer points are more correlated than
those, which are more distant (Wackernagel 2003, p. 28).

For this reason we want to introduce kriging the mean, which was originally stated by
Georges Matheron. In the whole section we will follow closely the book by Wackernagel
(2003, Chapter 4). The main results can also be found in Matheron (1971, pp. 118-119,
125-126) and Webster and Oliver (2007, pp. 181-183).

5.1 Model for Kriging the Mean

Kriging the mean as a geostatistical method for predicting the global mean p of a geo-
graphical region D relies on the following model assumptions (see Wackernagel 2003, pp.
28-30):

Assumption 5.1 (Model for Kriging the Mean)
(i) The unknown mean pu € R exists at all points of the spatial domain D and is
constant, i.e. IE[Z(x)] = p Vx € D.

(ii) Additionally, the underlying random function Z(x) is second-order stationary (cf.
Definition 4.3, p. 14) with known covariance function C'(h) := Cov (Z(x), Z(x + h))
— E[Z(x)Z(x+ h)] — .

Under these assumptions, Matheron (1971, p. 126) and Wackernagel (2003, p. 28) defined

the linear predictor for kriging the mean as follows:

Definition 5.2 (Predictor for Kriging the Mean)
The predictor of kriging the mean M, of 11 is the linear combination of the random function
Z(x) evaluated at each sample point x;

M = Z%’Z(Xi) =w'Z
i=1

with unknown weights w; € R for i = 1,...,n and w = (wy, ... ,wn)T € R" the vector
containing all weights.
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5.2 Unbiasedness condition

In the first step, we want to avoid systematic bias in the prediction, i.e. the prediction
error M — p has to be zero on average. Hence, according to Wackernagel (2003, p. 29),
we have to force the weights w; to sum to one, i.e.

dw=1eo1=1 (5.1)
i=1
In fact, this yields the unbiasedness

IE[M:;—N]:E[Z%Z(XD—M]:ZwiE[Z(Xz‘)]—M:N sz‘—l =0.

= ~——
=1

5.3 Variance of the prediction error

Further, we want to compute the variance of the prediction error %, since it provides in-
formation about the accuracy of our linear predictor M. In accordance with Assumption
5.1 and following Wackernagel (2003, p. 30), we obtain for 0%

2

0% = Var(M, —p) = E [(M; — )] — | E[MZ, — 4]

. / A

~\~ Vv
=mse(Mz) bias=0

2 E [(M)*] - 2 E[M] +4 = E (; WiZ(Xi)) -

=u

=D w BZ(x) 2 ()] — i Y_wi Y

i=1 j=1

A
= Z Zwi%’ \(IE[Z(Xi)Z(Xj)] —p?) = Z Zwiwj(}’(xi —X;).

=C(xi—x;)
Hence, we get the prediction variance

o2 = i iwiwj(;’(xi — X;)

i=1 j=1

= wl'Sw >0,

which is nonnegative, since Y is positive definite as the covariance matrix of the random
vector Z.
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5.4 Minimal prediction variance

Our next aim is to derive the "optimal” weights w;, ¢« = 1, ..., n, which minimize the predic-
tion variance 0% under the unbiasedness condition (5.1) of the predictor M} (Wackernagel
2003, pp. 30-31). This leads us to the minimization problem

minimum of w’ Yw subject to w’1 = 1,

which is identical with minimizing a quadratic form subject to a linear constraint. We

obtain the "best” weights wxy = (WM, ... wiM )T and thus achieve minimal prediction
variance 0%, := = Var(M;, ,, —p) for kriging the mean, the so-called kriging variance, by

the next theorem:

Theorem 5.3 (Solution for Kriging the Mean)
The kriging weights wg, and the minimal kriging variance 0%, are given by

DI
WKM = =
KM = J7y iy

1
KM = Ty1q

Proof:

Since we assumed ¥ to be positive definite (see Assumption 2.9, p. 5), we can apply
Theorem 2.15 (p. 8). Its setting coincides with our current setting for A = ¥, X = w,
B =1 and U = 1, where a generalized inverse S~ of BTA™!B = 17X711 > 0 is simply
given by the remprocal ILTE 7 > 0, which is well-defined by virtue of Proposition 2.10 (p.
6), since X! is again posmve definite.

Hence, we derive the minimal kriging variance

1
2 . T _ T T -
OxM .—l%gilw Ew—BTlgl(fUX AX=U'SU=S ]ITE TR

which is attained at
2_1]1
1 —1q a—

|

Wackernagel (2003) also stated these results about the “optimal” weights w/* and the
minimal kriging variance 0% ,,, but with solving the above optimization problem with the
method of Lagrange multipliers. We prefer to present this solution using Theorem 2.15,
since we can conclude that the resulting variance is automatically minimal.

Remark 5.4

However, in applications inverting an n X n matrix with n large should be avoided and
numerical more stable methods as e.g. a Q)R decomposition should be used for determin-
ing the kriging weights and the kriging variance. Hereby the target matrix ¥ € R™*" is
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decomposed into the product of an orthogonal matrix Q € R™*", i.e. QT = Q~!, and an
upper triangular matrix R € R™", such that ¥ = QR.

In R, we can derive the QR decomposition of 3 using the commands ¢r(), ¢r.Q() and
gr.R() in the standard package base, i.e.

> QRdecomposition<-qr (Sigma)
> Q<-qr.Q(QRdecomposition)
> R<-qr.R(QRdecomposition)

> all(Q7*%R==Sigma)
[1] TRUE

The inverse of 3 can also be directly computed by an ()R decomposition with the command
qr.solve(), which we will use in our prediction later:

> all(qr.solve(Sigma)/*/Sigma==Id)

[1] TRUE

5.5 Prediction for Kriging the Mean

In summary, after these calculations, we can write the best linear unbiased predictor
(BLUP) M, .= of the mean p for kriging the mean by applying Theorem 5.3, i.e. by
inserting w g, such that

" v \" 17917
* _ 2 : KM _ T _ _

*

with kriging variance given in Theorem 5.3 and estimate m},

of u

. 2 \T 17% g
* KM T
Mlpas = 2wl M2x0) = wiow = (m) SRR Gy

Remark 5.5

Kriging the mean relies on the existence of a known covariance function C'(h) of Z(x).
Hence, for practical application one can either estimate the covariance function C'(h)
itself (see Cressie 1993, Chapter 2), or the variogram function y(h) of Z(x), which is
often done in practice. In the case that the estimated variogram is bounded, one can
obtain the corresponding covariance function according to Proposition 4.5 (Equivalence
of variogram and covariance function, p. 15), but all equations and formulas in this section
can also be transformed into terms of the variogram by replacing the covariance with the
variogram terms.
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5.6 Kriging the Mean in R

Finally, after the theoretical part about kriging the mean, we want to predict the mean
value p of our data set exemplarily for both dates 2010/11/28 and 2012/06/09 in R.
Unfortunately, the procedure of kriging the mean is not directly implemented in the R
package gstat. Hence, we first estimate the underlying variogram and fit it with a valid
parametric variogram function by using gstat (see last section "The Variogram”). After-
wards, we apply Theorem 5.3 to determine the corresponding kriging weights, the kriging
variance and finally the kriging estimate for u.

Note that we have already fitted a variogram model function to the empirical variogram
of our data in the last section. Thus we can use our previous results and can begin with
our calculations in R.

#Kriging the Mean:

#1) Derive distance matrix from variogram cloud:
#Gamma_dist(i,j) = [x_i-x_jl

#Note that distances are always the same, only different values
#for gamma (dissimilarities)

Gamma_dist<-matrix(rep(0,1%*1) ,nrow=1,ncol=1)
k<-1

for (i in 1:1){

for (j in 1:i){

if (i==j){
Gamma_dist[i,j]<-0
}

else{

Gamma_dist[i, j]<-vcloud1$dist [k]
Gamma_dist [j,i]<-vcloud1$dist [k]
k<-k+1

}

}

}

+ ++ + + + + + + + +VVVVVVVVVYV

#2.) Variogram matrix Gamma:
#From last section "The Variogram'": vfitl, vfit2

Gammal<-Gamma_dist

Gamma2<-Gamma_dist

for (i in 1:1)1

for (j in 1:1){

Gammal[i, j]<-matern(Gamma_dist[i,j],sum(vfiti$range),
sum(vfit1$psill),sum(vfiti$kappa))

+ + + VvV Vv VvVyVvVyVvyVv
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+ Gamma2[i, j]<-matern(Gamma_dist[i,j],sum(vfit2$range),
+ sum(vfit2%psill) ,sum(vfit28kappa))

+ }

+ }

#3.) Covariance matrix Sigma:

>

>

> CO1<-sum(vfit1$psill)

> C02<-sum(vfit2$psill)

> Sigmal<-COl*matrix(rep(1,length=1*1),nrow=1,ncol=1)-Gammal
> Sigma2<-C02*matrix(rep(1,length=1%1) ,nrow=1,ncol=1)-Gamma2
> ones<-rep(1,1)

#4.) Invert Sigma by a QR decomposition:

>
>
> Sigmalinv<-qr.solve(Sigmal)
> Sigma2inv<-qr.solve(Sigma2)

#5.) Derive "optimal" weights:

weights1<-(Sigmalinvy,*jones)/
((ones/*/Sigmalinvy,*jones) [1,1])
weights2<-(Sigma2invy,*jones)/
((onesy*7Sigma2invy*jones) [1,1])

+ VvV + Vv vV

#6.) Derive minimal kriging variance:

vari<-1/((ones/*}Sigmalinv}*jones) [1,1])
var2<-1/((ones/*/Sigma2invy*jones) [1,1])

vV V Vv Vv

#7.) Predicted mean values:

meani<-t(weights1)j*/,templ
mean2<-t (weights2)J;*/,temp2

vV VvV Vv Vv

Hence, we obtain our final results presented in Table 5.1, where the values for 2010/11/28
are printed in the first and for 2012/06/09 in the second row.

Arithmetic mean Predicted mean value Kriging variance
2010/11/28 -2.78 -2.99 0.53
2012/06/09 14.97 14.51 0.66

Table 5.1: Results of prediction with kriging the mean applied to the temperature data
in Germany
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6 Simple Kriging

After predicting the mean value p over a region (see last section "Kriging the Mean”),
we want to predict the value of our underlying random function Z(x) at any arbitrary
point in our geographical region D. In other words, we want to predict the value of Z(x)
at some unsampled point xg, called the prediction or estimation point in literature (e.g.
Wackernagel 2003).

Sometimes the mean p of a random function Z(x) for x in D is known or can be as-
sumed from the underlying problem. In this case, the knowledge of the mean should be
integrated in the model to improve the estimate of Z(x) at xo (Webster and Oliver 2007,
p. 183). One way how we can achieve this, is to use simple kriging, which represents the
simplest case of geostatistical prediction with kriging and which we will present in this
section.

The most important references to which we will refer, are the books of Wackernagel
(2003, pp. 24-26) and Cressie (1993, pp. 109-110, 359). But there exist a lot of other
books as Webster and Oliver (2007, pp. 183-184) and Journel and Huijbregts (1978, pp.
561-562), just to name some. Notice that this kind of kriging was also originally stated
by Georges Matheron (1962), see for instance Matheron (1971) in Chapter 3. But some
similar versions have even appeared earlier, e.g. in Wold (1938).

6.1 Model for Simple Kriging

Wackernagel (2003, p. 24) and Cressie (1993, p. 359) summarized the model assumptions
on the random function Z(x) for simple kriging:

Assumption 6.1 (Model for Simple Kriging)
(i) The mean p € R of Z(x) for x € D is known and constant, i.e. u:=IE[Z(x)] Vx €
D.

(ii) Further, Z(x) is supposed to be second-order stationary (cf. Definition 4.3, p. 14)
with known covariance function C'(h) := Cov(Z(x), Z(x+h)) = E[Z(x)Z(x+h)]| —
p? for all x, x + h in the spatial domain D.

Due to the assumption of the knowledge of the constant mean p, Wackernagel (2003, p.
25) also called simple kriging kriging with known mean.

The simple kriging predictor of Z(x() at the prediction point x, uses the information
at each sample x;, ¢ = 1,...,n, and the knowledge of the mean y and the covariance
C'(h). We define it as the following linear predictor in the sense of Wackernagel (2003, p.
25):

Definition 6.2 (Predictor for Simple Kriging)
The simple kriging predictor Z¥(Xq) of Z(x) at the prediction point xq is defined as the
sum of the mean p and the weighted average of the differences of the random function
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Z(x) evaluated at each sample point x; and the mean p, i.e.

Z5(X0) == p + sz‘ (Z(xi) —p) = Z%Z(Xi) + p (1 - sz)

= p+w'(Z - pl),

with w; € R being the weight of the corresponding residual Z(x;)—p and w := (wy, . . . ,w,)7?
€ R” the vector containing all weights of these residuals.

6.2 Unbiasedness condition

Fortunately, the unbiasedness of Z7(x) is automatically satisfied by its own definition,
since

E[Z;(x0) = Z(%0)] = p + Zwi E[Z(x;) — p] = E[Z(x0)] = p — = 0.

=0 =

Hence, we need no constraints on the weights w;, i = 1,...,n (see Wackernagel 2003, p.
25). At first glance, this property seems to hold by chance, but this is just the way how
the predictor is defined, with known g integrated in the predictor (Webster and Oliver
2007, p. 184).

6.3 Variance of the prediction error

Furthermore, due to the unbiasedness of Z7(xg), the prediction variance o%, which dis-
plays the quality of the linear predictor Z%(xg), is given by its mean squared error
mse(Z}(x0)). Consequently, it follows by Wackernagel (2003, p. 25):

2

7k = Var (Zfxo) = 200) = B [(Z o) = 2000)7] — | E1Z50x0) = Z0)]
=mse(Z} (x0)) bias=0

— (Z wi(Z(x;) — ) + (p — Z(Xo))>

n n

= 3D e E(Z(x) — n)(Z(x) — )] — 23 wiBI(Z (%) ~ 0)(Z(x0) — )]

i=1 j=1

+IE[(Z(x0) — 1)°]

= 33w (EIZ(x)Z(x)] - 1) — 23 wi(BIZ(x) Z(x0)] - 1) + Var(Z(x))

g

=1 =1 —Cov(Z(x:),2(x;)) ' —Cov(Z(x:),Z(x0))

= Z Zwiij’ov(Z(xi), Z(x5)) — 2 ZwiC’ov(Z(xZ-), Z(x0)) + Cov(Z(x0), Z(x0)),

i=1 j=1
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and hence we obtain

g% = C(O) + Z ZwinC(Xi — Xj) -2 Zwic(xi - XO)
i=1 j=1 i=1
=C(0)+ w'Yw — 2ch0 > 0.

The nonnegativity of the prediction variance follows from the representation
0%3 =x'Yox >0,

where x = (wT,—l)T and Yy denotes the covariance matrix of the random vector

(Z(x1), ..., Z(xn), Z(x0))". For further details see the Appendix (p. 93), where the non-
negativity of the prediction variances of both following kriging methods is shown more
precisely and analogously to our current setting.

6.4 Minimal prediction variance

In the next step, we want to minimize the prediction variance o% of our linear predictor
and hence want to maximize its accuracy. We observe that % is minimal, where its first

2
derivative is zero, i.e. Egr—f = 0, and if the sufficient, but not necessary condition of positive
definiteness of the Hessian matrix is fulfilled.

From the computation of ¢% in 6.3 and since ¥ is symmetric, we conclude in accordance
with Wackernagel (2003, pp. 25-26):

Do 0
% =% (C’(O) + wlYw — 2chg) = (E + ET) w — 2¢c) = 2Xw — 2¢y 20
& Yw = .
The second derivative of 0% with respect to w is
0?02, 0

= — (22w — 2 =20
Ow? aw( w = 2¢) ’

which is actually positive definite due to Assumption 2.9 (p. 5).

Since this sufficient condition on the Hessian matrix hold, the computations above yield
that we indeed achieve minimal prediction variance o if Yw = cq.

6.5 Equations for Simple Kriging

The last fact gives the conditions on the weights w; for Z¥(xq) being the best linear
unbiased predictor (BLUP) of the value at xy. Hence, we can express the equation system
for simple kriging (Wackernagel 2003, p. 26):

D WO —x)) = Clxi —xg), i =1,...,n
7j=1
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with “optimal” simple kriging weights w?® € R or analogously

EwSK = Cop, (61)
where wgr = (WX, ... wd)T
weights.

€ R™ denotes the vector providing the simple kriging

With these observations, we can compute the weights w?® either by solving the linear
system (6.1) of n equations step by step e.g. by the Gaussian elimination algorithm, or
by Theorem 6.3 given by Cressie (1993, p. 110), which just inverts the covariance matrix
DI%

Theorem 6.3 (Solution of the simple kriging system)
The unique solution for wgk of the simple kriging equation system (6.1) is

WK = . = Z_1C0. (62)

Proof:
This follows immediately from the simple kriging system (6.1) and by the invertibility of
¥ in Assumption 2.9 and Proposition 2.10 (pp. 5, 6) (Cressie 1993, p. 110).

|

6.6 Simple Kriging Variance

Furthermore, from the kriging system (6.1) and Theorem 6.3, we can directly obtain for
the minimal simple kriging variance o%; , which is defined as the variance of the prediction
error Z5  (Xo) — Z(xo), according to Cressie (1993, pp. 110, 359):

agK = Var(Z:,SK (x0) — Z(%x0)) = C(0) + ngZwSK — 2w£Kc0
6.1
D C(0) + whco — 2wlpcy = C(0) — whieco

2 C0) — S e = C(0) - Y wFO(x: — xo), (©.3)
=1

where C'(0) equals the variance of the process Z(x), since C'(0) = C(x —x) = Var(Z(x))
holds for each point x in D.

6.7 Simple Kriging Prediction

Overall after these considerations, we can specify the simple kriging predictor, which is
given by Cressie (1990, 1993), as

Zo(X0) = 4 Y Wi (Z(xi) = p) = p+ wi(Z — pl) = p+ ¢S (Z — pl)
=1
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=ciS'Z +u(l - cfxt),

with kriging variance in (6.3) and kriging estimate 2, (Xo) at the prediction point xg
o (%0) = ot D (ax) = ) = ot whiclz — pl) = p o+ £ (z — pl)
i=1

=iz +pu(l -tz ).

Remark 6.4 (Exact interpolator)

Finally, consistent with Cressie (1993, p. 359), the simple kriging predictor Z_ (%)
is called an exact interpolator because in the case that the prediction point xg = x; is
identical with one of the data location points for i € {1,...,n}, then Z% _ (x¢) = Z(x:),

WS K
ie. wZ-SKzlandwazoforjE{l,...,n}, j# i

This holds, since the vector (w{, ... W& .. W) = (0,...,0,1,0,...,0)7 is a so-
lution of
Clx; —x1) - Clxy—x;) - Cx1—%p) wik C(x1 — x;)
O(Xi — Xl) cee C(Xl — Xi) e C(Xz — Xn) wa = C(XZ — Xz‘) N
Clx,—x1) -+ COxp—%;) -+ C(x,—Xp) wiK C(x, — x;)
;rz =WsSK ;Cro

and cg equals the 7th column of the left-hand side matrix . Additionally, by virtue of
Theorem 6.3, the vector (WX, ... w?® .. w3 =(0,...,0,1,0,...,0)T represents the
unique solution of the simple kriging equations for xg = x; with i € {1,...,n}.

Hence, Z}, (%) = Z(x;) and 0%y € C(0) — C(x; —x;) = 0.
Remark 6.5

Similar to kriging the mean, simple kriging requires the existence of a known covariance
function C'(h) of Z(x). But since it is not known in practice, we have to estimate again
either the covariance itself, or the corresponding underlying variogram. We can do that
because the existence of a covariance function C(h) of a second-order stationary process
implies the existence of an equivalent (bounded) variogram function according to Propo-
sition 4.5 (p. 15) in theory. But Webster and Oliver (2007, p. 183-184) commented that
the estimated final variogram function has to be bounded. Afterwards, one has the choice
if one would like to deduce the covariogram C'(h) from the estimated variogram or to
rewrite all results in terms of the variogram function.

At this point, also notice that the property of the simple kriging predictor to be an exact
interpolator only holds as long as we assume a theoretical variogram function ~(h). This
means that in practice, we will loose this property if we use a fitted variogram function,
where a nugget component is added. This feature also holds for both following kriging
methods.
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6.8 Simple Kriging in R

At the end of this section about the theory of simple kriging, we want to present a way
how simple kriging could be done in practical application in gstat. Therefore, as in the
previous sections about the variogram and kriging the mean, we take the mean tempera-
ture data set in Germany of the two dates 2010/11/28 and 2012/06/09. At the end, we
achieve a map of Germany including on the one hand the predicted temperature values
of simple kriging and on the other hand their corresponding kriging variances.

We assume the arithmetic mean as the known mean value, since we do not have the
“real” mean at hand. Fortunately, we can use the fitted Matérn variogram models vfit1
and vfit2 from section "The Variogram” and just have to update the gstat objects includ-
ing the mean value. For a better understanding, the important and crucial R codes are
printed below.

In the following sections we will not go into such detail as at this point, since the different
kriging methods only vary in a few arguments.

#Simple Kriging:

#With known mean beta=arithmetic mean!
g_ski<-gstat(gl,model=vfitl,id="templ",formula=templ~1,

>

>

> #Update gstat object:

>

>

+ locations="longkm+latkm,data=datal,beta=mean (temp1))

data:
templ : formula = templ™l ; data dim = 54 x 1 beta = -2.781481
variograms:

model psill range kappa
templ [1] Nug 0.6464684 0.0000 0.00
templ [2] Mat 2.0341866 102.6184 1.49
“longkm + latkm

> g_sk2<-gstat(g2,model=vfit2,id="temp2",formula=temp2~1,
+ locations="longkm+latkm,data=data2,beta=mean (temp2))

data:
temp2 : formula = temp2”1 ; data dim = 54 x 1 beta = 14.97407
variograms:

model psill range kappa
temp2[1] Nug 1.025047 0.00000 0.00
temp2 [2] Mat 2.442959 72.23161 2.98
“longkm + latkm

> #Additional 24 stations have latnewkm as latitude
> #and longnewkm as longitude

> newdat<-data.frame (longnewkm,latnewkm)

> coordinates (newdat)<-"longnewkm+latnewkm
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> #Simple Kriging Prediction for additional 24 weather stations:
> p_skl<-predict (g_skl1,newdata=newdat)

[using simple kriging]
> p_sk2<-predict (g_sk2,newdata=newdat)
[using simple kriging]

We print the first lines obtained from simple kriging prediction. The first column displays
the coordinates of the prediction points, the second column the simple kriging estimates
and the last column the kriging variances.

> p_sk1[1:5,] #2010/11/28

coordinates templ.pred templ.var

1 (8.979, 48.216) -1.052472 0.9595025
2 (9.8044, 51.9672) -4.404861 0.9077604
3 (13.4367, 54.6817) -1.695010 1.6049809
4 (7.979, 51.465) -3.116559 0.8861442
5 (10.9431, 48.4261) -2.235687 0.8815832
> p_sk2[1:5,] #2012/06/09

coordinates temp2.pred temp2.var
1 (8.979, 48.216) 15.94579 1.332583
2 (9.8044, 51.9672) 14.58337 1.270921
3 (13.4367, 54.6817) 15.69993 2.052531
4 (7.979, 51.465) 13.20399 1.256293
5 (10.9431, 48.4261) 14.60842 1.267006

We want to comment that there exists another alternative function in gstat for univariate
kriging prediction, implemented through the command krige().

> krige_skl<-krige(formula=templ~1, locations="longkm+latkm,
+ data=datal, newdata=newdat, model=vfitl, beta=mean(templ))

[using simple kriging]

> #Kriging prediction estimates and variances coincide:
> all(p_skl$templ.pred==krige_skl$varl.pred)

(1] TRUE
> all(p_skil$templ.var==krige_skl$varl.var)
[1] TRUE

Furthermore, we generate a grid of longitude and latitude for our plot:
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A\

grid<-expand.grid(x=seq(from=long.range[1],
to=long.range[2], by=step), y=seq(from=lat.rangel[1],
to=lat.range[2], by=step))

+ +

v

coordinates(grid)<-"x+y
gridded (grid) <-TRUE

\

Next, we apply simple kriging prediction to the coordinates of our grid and then plot the
resulting estimates and variances:

> #Simple Kriging Prediction for grid:
> prediction_skl<-predict (object=g_skl, newdata=grid)

[using simple kriging]
> prediction_sk2<-predict(object=g_sk2, newdata=grid)

[using simple kriging]

> #Plot Simple Kriging Estimates:

> #prediction_skl_plot same values as prediction_skl1,

> #but right coordinates for plotting, no conversion into km as unit
>

> image.plot(prediction_skl_plot, 1, legend.only=FALSE,

+ zlim=temp.lim_sk1, breaks=breakstemp, col=coltemp, nlevel=20,
+ legend.width=3, asp=asp)

> contour(prediction_skl_plot, 1, drawlabels=TRUE, col="brown",
+ add=TRUE)

> #Plot Simple Kriging Variances:

>

> image.plot(prediction_skl_plot, 2, legend.only=FALSE,

+ zlim=var.lim_skl, breaks=breaksvar, col=colvar, nlevel=20,

+ legend.width=3, asp=asp)

> contour(prediction_skl_plot, 2, drawlabels=TRUE, col="brown",
+ add=TRUE)

We put our results together and obtain the residuals of our additional 24 weather stations
of 2010/11/28 and 2012/06/09 in Table 6.1. We print the differences of the observed,
measured values and the predicted temperatures. In the last row we calculate the sum of
squares, i.e. the sum of the squared residuals, to indicate whether the prediction is "good”
or not. We observe that the estimates for the date 2010/11/28 seem to be closer to the
observed data as it is for 2012/06/09, since their residual sum of squares are obviously
lower. But one has to take care, since the "outlier” with a residual of —7.05 for 2012/06,/09
has a strong impact on the amount of the sum of squares.
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Longitude Latitude | Residuals 2010/11/28 Residuals 2012/06/09
8.98 48.22 -3.05 -2.25
9.8 51.97 -1.10 0.32
13.44 54.68 1.50 -1.90
7.98 51.47 0.32 0.10
10.94 48.43 -0.46 0.09
7.31 50.04 -1.50 -2.37
6.7 53.6 1.68 -0.74
9.14 53.45 -1.13 -0.30
9.32 49.52 -0.74 -1.57
14.73 52.02 -0.08 -0.32
10.5 49.85 -0.33 -0.94
10.13 48.99 -1.23 -1.02
12.73 48.48 -0.29 -1.00
10.68 53.58 -0.13 0.03
13.14 49.11 -3.15 -7.05
13.94 53.32 -0.51 -0.34
9.22 50.51 -2.77 -4.03
11.14 52.97 0.73 -0.17
11.27 47.48 -0.86 -3.13
7.64 47.81 -0.06 0.36
11.14 50.5 -2.51 -4.33
10.88 51.67 -3.81 -3.13
8.57 52.45 0.48 0.27
12.46 52.12 -0.53 -1.07
Sum of Squares 62.17 126.34

Table 6.1: Residuals from simple kriging prediction of
the additional 24 weather stations in Germany, where
each residual equals the difference of the observed value
and the prediction estimate obtained from simple kriging;
sum of squares is the sum of all squared residuals
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Finally, we obtain a plot, i.e. the map of Germany, where the predicted temperature val-
ues from simple kriging are printed on the left, and their corresponding kriging variances

on the right, see Figure 6.1 for the date 2010/11/28 and Figure 6.2 for 2012/06/009.

Note that the prediction variances of 2012/06/09 within the map, and especially at the
sample points, are higher than those variances of 2010/11/28. This results from the higher
nugget component in the corresponding fitted model, 1.03 instead of 0.65.
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7 Ordinary Kriging

In practice, in most cases the mean p and the covariance function C'(h) of the underlying
random function Z(x) are unknown. Thus, unfortunately, simple kriging prediction is
not really applicable, since it requires information about p and C'(h) (see Cressie 1993, p.
359). Therefore we want to introduce prediction with the geostatistical method ordinary
kriging, which - unlike to simple kriging - does not assume the knowledge of the mean
and the covariance. For this reason, ordinary kriging represents the most common krig-
ing method in practice and its aim is to predict the value of the random variable Z(x) at
an unsampled point x, of a geographical region as well (Webster and Oliver 2007, p. 155).

In literature, there are a lot of books covering the subject ordinary kriging. In this
section we will especially focus on Wackernagel (2003) in Chapter 11 and Cressie (1993,
pp. 119-123, 360-361), for other references see Webster and Oliver (2007, pp. 155-159),
Journel and Huijbregts (1978, pp. 304-313, 563-564) and Kitanidis (1997, pp. 65-74).
Their theory relies on the work of Georges Matheron (1962), for instance see Matheron
(1971) in Chapter 3, where kriging, and in particular ordinary kriging, was presented.

7.1 Model for Ordinary Kriging

Ordinary kriging refers to spatial prediction under the following two assumptions, specified
by Cressie (1993, pp. 120-121, 360) and Wackernagel (2003, p. 80). It requires only
weaker assumptions compared to simple kriging:

Assumption 7.1 (Model for Ordinary Kriging)
(i) The global, constant mean p € R of the random function Z(x) is unknown.

(ii) The data come from an intrinsically stationary random function Z(x) with known
variogram function y(h) (see Definition 4.1, p. 13), i.e.

1(h) = SVar(Z(x+h) - 2(x)) = 5B [(Z(x + h) ~ Z(x))*].

On the basis of these model assumptions, we define the predictor for ordinary kriging in
consistence with Wackernagel (2003, p. 79) as follows:

Definition 7.2 (Predictor for Ordinary Kriging)
The ordinary kriging predictor Z*(xo) of the value at xq is the linear combination of Z(x)
evaluated at each sample x;, 1 =1,...,n

Zh(x0) =Y wiZ(x;) = w'Z,
=1

where w := (w1, ...,w,)T € R" provides the unknown weights w; € R corresponding with
the influence of the variable Z(x;) in the computation of Z7 (xo).
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7.2 Unbiasedness condition

To ensure the unbiasedness of the linear predictor Z7 (x¢), Wackernagel (2003, p. 80) set
the sum of the weights to one, i.e.

dw=1ewl=1 (7.1)
=1

Thus, the expected error vanishes

E[Z}(x0) — Z(x0)] = IE ZwiZ(x,-) — Z(x0) Zw = Zw E[Z(x;) = Z(x)] = 0,

~~

=0

=1

since the expected value of the increments is zero due to Assumption 7.1 (ii), where we
supposed Z(x) to be intrinsically stationary.

7.3 Variance of the prediction error

Further, in order to achieve an indicator of our estimate accuracy, we want to calculate
the error variance 0% of Z*(xg). We can express this quantity by inserting the variogram
function v(h) of Z(x) according to the identity v(h) = 1IE [(Z(x + h) — Z(x))Q]. This
yields in accordance with Cressie (1993, p. 121):

(7.1

o2 = Var (Z:(x0) — Z(x0)) g [(Z%(x0) — Z(XO))2] =1 (Z wiZ(x;) — Z(X0)>

= Z szwle[Z(Xi)Z(xj)] - 2ZwﬂE[Z(X¢)Z(Xo)] +IE [(Z(x0))’]
R E[(Z(x;) — Z(x;))? O E[(Z(x:) - Z(x0))?
(Z)—ZZwiwj\ [(Z( . ) ]1+2;wi\ [(Z( )2 (x0))"]

-

=y(xi—x;) =7(xi—xo0)

Hence, we obtain for the prediction variance

O'% = — ZZW@Wj’Y(Xi — Xj) —+ 221&)@’}/()(1 — XQ)
i=

i=1 j=1

= —w!Tw + 2why, = w’ (29, — Tw) >0,

with semivariances y(x; — x;) of Z(x) between the data points, v(x; — X¢) between each
data point and the unsampled point X,, symmetric variogram matrix I'; ; := vy(x; — x;),
i,j=1,...,n and v, := (y(x1 — Xq), - .., V7(Xn — Xg))T € R™ (Webster and Oliver 2007,
p. 156).
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The nonnegativity of the prediction variance follows from the representation

op = —x'"Toyx >0,

F’)’o

0
(Z(x1),...,Z(xn), Z(x0))". This representation can easily be seen by

where x := <f1> and [y := denotes the variogram matrix of

T T w T Tw—~ T T 2
—x'Tox = — (w', 1) Iy <_1> =—(w ,—1)( T 0) = —w'Tw + 2wy, = 0%.

Since x71,.; = w1l — 1 = 0, the prediction variance is nonnegative due to the condi-
tionally negative semidefiniteness of the variogram.

Furthermore, notice that Equation (%) only holds, since Z?lej = 1, which is identi-
cal with (7.1). Following Cressie (1993, p. 121), we can verify this fact:

U Z(x;) — Z(x5)) Xp 2
_Zzwiwj( ( —i-ZZwZ Z(x0))

i=1 j=1

= D0 D e Z(x)Z(x) = 2 ) wiZ(x) Z(x0) + (Z(x0)”

i=1 j=1

Equation (x) simply follows by taking expectations.

7.4 Minimal prediction variance

Similar to kriging the mean and simple kriging, our next goal is to achieve minimal
prediction variance 0% under the unbiasedness condition (7.1) and further to find the
“optimal” weights w;. Therefore, we look for a solution of the minimization problem

minimum of w’ (2, — I'w) subject to w1 = 1.

For this purpose, we define the function ¢ to solve the problem with the method of
Lagrange multipliers, such that
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p:R"xR—-R

(W, \) = p(w, ) == —wTw + 2wh~y, — 2\ (w1 - 1).

Here, the Lagrange multiplier A € R is involved to guarantee the unbiasedness condition
(7.1) (Cressie 1993, p. 121).

Therefore, for solving this optimization problem, we have to set the first order partial

derivatives of ¢ with respect to w and A to zero. This give the necessary conditions on w
and .

First, we obtain the derivative of ¢ with respect to the weight vector w

92X ol 4 2y, — 201 L0,
Ow

which yields
w4+ A1 = ~,.

Secondly, by differentiating ¢ with respect to the Lagrange parameter A\, we derive

dp(w, \)
O\

if and only if the unbiasedness equation (7.1) is fulfilled (see Cressie 1993, pp. 121-122).

= 2wf1-1)=0

This way we indeed achieve the minimum of the prediction variance % subject to the
constraints on the weights. This means that the necessary conditions are also sufficient.
For the complete proof of this minimality, we refer to the Appendix (p. 93). There, we
give another representation of the variance and apply Theorem 2.15 by Rao (1973), which
yields the minimality and the nonnegativity of the variance. Note that we follow the
Lagrange approach at this point, since it will give a nicer and more efficient solution for
the parameters.

7.5 Equations for Ordinary Kriging

The last formulas show the way how we can achieve minimal error variance of our pre-
diction, namely by applying weights w; satisfying these conditions (Wackernagel 2003, p.
81). Hence, we can write the ordinary kriging system, which was presented by Matheron
for the first time. For instance see Matheron (1971, pp. 123-130), where he called it
kriging equations for stationary random function with unknown expectation:

Z%OK’Y(XZ- —X;) + Aok =7v(xi — %) fori=1,...,n
j=1

n

OK _
E wy " = 1
=1
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We can also express this system in matrix formulation (Webster and Oliver 2007, pp.
158-159), such that

TFwor + Aorl =, (7.2)
worl =1
=

Y(xi—x1) y(x—x2) - y(x—x,) 1 wp ™ v(x1 — Xo)

Yx2—x1) Y(x2—%2) 0 (e —x) 1| | W (%2 — Xo)

V(Xn - Xl) V(X'n - X2) T W(Xn - Xn) 1 ng ’V(Xn - XO)

1 1 e 1 0 AOK 1
e —

where wog = (WK ... wIF)T € R denotes the vector providing the optimal weights

WP € R, Aok € R the Lagrange multiplier of ordinary kriging, 4, := (v, 1)T € R**!
1

and block matrix I := F 5 € R+D)x(n+1)

1 - 1]0

Afterwards, we can compute the ordinary kriging weights wP% again either by solving
the linear system of n + 1 equations in (7.1) and (7.2) by the Gaussian elimination algo-
rithm. Or in the case that the matrix I is nonsingular, we can derive the ordinary kriging
weights w?% and the Lagrange multiplier A\px according to Webster and Oliver (2007, p.
159) as

K

WoK . M1
<)\OK> oK Yo

Another alternative way for solving the ordinary kriging equations is provided in the next
theorem, which can be found in Cressie (1993, p. 122):

Theorem 7.3 (Solution of the ordinary kriging system)
Under the assumption of invertibility of the variogram matrix I', the unique solution for
wok and Aok of the ordinary kriging system (7.1) and (7.2) can be specified as

17T 1y, — 1
_ 11 0
wog =T {’70 -1 (W)] ; (7.3)
17T 1y, — 1
o = b Tl (7.4)

17T-11



26 7 ORDINARY KRIGING

Proof:

First notice that wox and A\px in Theorem 7.3 are well-defined, since I'"! exists. Further,
we want to show that the theorem actually provides a solution of the ordinary kriging
equations (7.1) and (7.2). In fact, this is really the case, since it holds

(i) Twor + Aokl =7, -1 (%) +1 (%) =, and

111 1Tr-11

=T — (17T 1y — 1) =1,

_ T _
(i) whicl = |70 = 1 (S )| T = dr ot - afr ()

due to the symmetry of the matrices I' and I'"'. And finally, the given solution of the
ordinary kriging system is in fact unique due to the assumption of nonsingularity of I'.

|

7.6 Ordinary Kriging Variance

Now at this point, we are able to specify the minimized prediction variance, the ordinary

kriging variance, which is defined as 03y := Var(Z,_ (x¢) — Z(x)). In accordance with

Cressie (1993, p. 122), we can derive it from o% (see 7.3) by inserting the ordinary kriging
equations (7.1) and (7.2) and the last Theorem 7.3:

U20K = VaT(Z:;OK(XO) — Z(x9)) = ng(Q'YO —Twok) = _ng(FwOK —Y) + ng'Yo

(7.2) (7.1
=" Aok ol +whro &) Aok + WhHrYo = (""(T)m /\OK) (ZO)

374y 17D 1y, — 1 17T 1y, — 1\ 17
(73),(7.4) o1 [F_l (70 q Yo )} -
17711 17011

(F71>T:F71 ]lTFfl,.), -1 B ILTF*H/ -1 B
- g Tl v Tre ) VT
_ 2
(17T 1y, — 1)
17T-11

17T 1y, — 1 3 B
]lTF—?]l (1= 1T y) =70 o =

Hence, we obtain for the minimal kriging variance

=50y +

(17T 1y, — 1)°
17711

B ) D LTCEES S C.
=1

i=1 j=1

oK = Mok + WorYo =YL 0 —

i=1
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7.7 Ordinary Kriging Prediction

Overall, we can write the ordinary kriging predictor Z; | (xo) at xo by applying Theorem
7.3 (Cressie 1990, 1993), such that

* ~ oK T 17Ty —1\" |
Zho o (X0) = > wPNZ(x;) = whiZ = (7o — =g ) U2
=1

with corresponding kriging variance in (7.5) and kriging estimate 27, (xo) at xo

~ 0K T 1Ty —1 ! 1
Z(:OK(XO) = sz Z(Xz) = wOKZ = (")/0 — ﬂw> P_ Z.

Remark 7.4 (Exact interpolator)

Wackernagel (2003, p. 81) concluded that, in absence of a nugget component, the ordi-
nary kriging predictor ZJ_ (xo) is also an exact interpolator similar to simple kriging.
This is meant in the sense that if the prediction point xy equals a sample point x; for
i € {1,...,n}, then the predicted value coincides with the data value at that point, i.e.
Zho(X0) = Z(x;) if xo = x;, as well as 2, (%q) = 2(x).

This holds, since 4, = (v§,1)" = (y(x1—x%s), ..., 7(Xp—x%;), 1)7 is equal to the ith column
of the matrix I'. Consequently, it follows that the vector (WP, ... wPK .. . wI% \or)T
=(0,...,1,...,0,0)" with w?® =1 and w?* = Aox =0 for j € {1,...,n}, j#1i,isa

solution of the ordinary kriging system and, by virtue of Theorem 7.3, also unique.

Hence, we observe Z;,  (xo) = >, w9 Z(x;) = Z(x;) with ordinary kriging variance
(7.5) n
ol = Aok + Zj:l ijKv(Xj —x;) =v(x; — x;) = 0.

7.8 Ordinary Kriging in terms of a known covariance

Our next aim is to present all important results of ordinary kriging prediction in terms
of the covariance function C'(h) of Z(x) for completeness, in particular following Cressie
(1993, p. 123).

We will go on rather quickly without giving detailed explanations, since all computa-
tions are very similar to the calculations in ordinary kriging in the variogram case be-
fore. More details are presented in the books by Cressie (1993, p. 123) and Journel
and Huijbregts (1978, pp. 304-307), which rely on Matheron (1971). Consistent with
Cressie (1993), we strengthen the stationarity assumption on Z(x) in Assumption 7.1
from instrinsic to second-order stationarity to ensure the existence of the covariance func-
tion. This means that we additionally suppose our underlying random function Z(x)
to be second-order stationary with known covariance C'(h) := Cov(Z(x),Z(x + h)) =
E[Z(x)Z(x+h)] — 2 Vx,x +h € D.

With the same definition of the predictor Z7(x¢) in Definition 7.2 and the same un-
biasedness condition on the weights (7.1), we can rewrite the ordinary kriging equation
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system and the other results. They simply follow by replacing the variogram terms in the
computations according to the relation y(h) = C'(0) — C'(h), given in Proposition 4.5 (p.
15). Hence, Cressie (1993, p. 123) concluded:

S WK C(x; — %)) — Aox = Clxi —xo) for i = 1,....n
j=1

n

OK __
E w;yt =1,
Jj=1

or equally in matrix notation

EwOK — /\OK]l = Cp (76)
wol =1
=
1
Z : wok Y _ [Co
1 —)\o[( 1
I 1[0 skt

~~
::ieR(n+1)X(7L+l)

This kriging system is identical with the kriging system in the variogram case after re-
placing I' by X, v, by ¢y and by multiplying Aox with —1.

Notice that as long as X is assumed to be nonsingular (cf. Assumption 2.9, p. 5),
the matrix ¥ is also nonsingular. This follows by virtue of the Propositions 2.10 and 2.11
(p- 6):

det(2) = det(Z) det (0 — 172711) = det() (-1727'1) < 0.

—— —— —
>0 <0

Hence, <(';OK> — %1&, represents a solution of (7.1) and (7.6).
OK

Additionally, similar to ordinary kriging with a variogram, (Cressie, 1993, p. 123) stated
the theoretical solution for the "best” weights and the corresponding Lagrange multiplier
as follows:

Theorem 7.5 (Solution for ordinary kriging with a known covariance)
The unique solution for wox and Aok of the ordinary kriging system (7.1) and (7.6) is

_ 1-17%"1c
wor =X {Co‘f‘ﬂ ( 179-11 0)} )

1-— ]sz_l(Io

) P
OK 17%-11
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Proof:
At this point we omit the proof, since it follows strictly the line of the proof of Theorem
7.3.

|

Afterwards we can compute the ordinary kriging variance o3, which is again defined as
the variance of the prediction error, by inserting wox and Apx from Theorem 7.5 in the
prediction variance. In accordance with Cressie (1993, p. 123), we observe

O’%K =Var(Z!, (x0) — Z(x0)) =C(0)+ Aok — ngco

WOK

c B 1—17%"1¢,)”
= 010) ~ (Wi —do) () = C10) — 5 eo + Ut2a) g
as well as
O'éK = C(O) + Z ZWZOKCUJOKC(XZ - Xj) - ZZW?KC’(Xi - X())
i=1 j=1 i=1
:C(O)—{—)\OK—ZOJZ-OKC(Xi—XO). (7.8)

=1

After all, in summary, we can state the ordinary kriging predictor Z__(xo) (see Cressie
1990) as

* ~ oK T 1-1"%"¢y ! -1
Zor (X0) = Zwi Z(x;) =word = |co+ 1 Ty Y7,
=1

with kriging variance in (7.7) and (7.8) and predicted value

% . OK T 1—17%" ¢y g -1
ZWOK (Xo) = sz Z(XZ) = WogZ = [Cy +1 W Yz,
=1

7.9 Ordinary Kriging in R

Finally, we want to show how ordinary kriging can be performed in R. Therefore we pro-
ceed very similar to simple kriging in the last section. But the main difference is that we
do not have to know the "real” mean value p of the mean temperature in Germany at
the prespecified dates 2010/11/28 and 2012/06/09. Hence, we update the gstat objects
without the argument beta first, and then we go forward exactly as in simple kriging.
Thus, we omit most of the R code, since it is the same as in simple kriging except for
updating the gstat objects.

At the end we obtain again the map of Germany colored once according to the prediction
estimates of ordinary kriging, and once according to the minimal kriging variances.
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#O0rdinary Kriging:

>

>

> #Update gstat objects without beta:

> g_okl<-gstat(gl,model=vfitl,id="templ",formula=templ~1,
+ locations="longkm+latkm,data=datal)

> g_ok2<-gstat(g2,model=vfit2,id="temp2",formula=temp2~1,
+ locations="longkm+latkm,data=data2)

A\

#0rdinary Kriging Prediction for additional 24 weather stations:

VvV Vv

p_okl<-predict(g_okl,newdata=newdat)
[using ordinary kriging]
> p_ok2<-predict (g_ok2,newdata=newdat)

[using ordinary kriging]

\

#First lines of prediction:

> p_ok1[1:5,] #2010/11/28

coordinates templ.pred templ.var
1 (8.979, 48.216) -1.052415 0.9595225
2 (9.8044, 51.9672) -4.404775 0.9078066
3 (13.4367, 54.6817) -1.692527 1.6435510
4 (7.979, 51.465) -3.116538 0.8861469
5 (10.9431, 48.4261) -2.235702 0.8815847
> p_ok2[1:5,] #2012/06/09

coordinates temp2.pred temp2.var
1 (8.979, 48.216) 15.93937 1.332763
2 (9.8044, 51.9672) 14.57881 1.271012
3 (13.4367, 54.6817) 15.59252 2.103155
4 (7.979, 51.465) 13.20192 1.256312
5 (10.9431, 48.4261) 14.60961 1.267012

Note that in this case, the prediction estimates of ordinary kriging as well as the variances
are very similar to those of simple kriging. This can be seen in their small differences
especially for 2010/11/28. For their minimal and maximal deviations, see Table 7.1.
Further, we present all residuals of our prediction estimates of the 24 additional stations.
We print the differences between the measured temperatures and the prediction estimates
for both dates 2010/11/28 and 2012/06/09 in Table 7.2, where the last line provides again
the computed sum of the squared residuals, which are quite similar to those obtained from
simple kriging.
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2010/11/28 | 2012/06/09
Maximal difference estimates 0.00 0.11
Minimal difference estimates 0.00 0.00
Maximal difference variances 0.04 0.05
Minimal difference variances 0.00 0.00

Table 7.1: Absolute differences of the ordinary kriging and corresponding simple krig-
ing estimates and variances of the additional 24 weather stations of 2010/11/28 and

2012/06/09 in Germany

Longitude Latitude | Residuals 2010/11/28 Residuals 2012/06/09
8.98 48.22 -3.05 -2.24
9.8 51.97 -1.10 0.32
13.44 54.68 1.49 -1.79
7.98 51.47 0.32 0.10
10.94 48.43 -0.46 0.09
7.31 50.04 -1.50 -2.37
6.7 53.6 1.68 -0.66
9.14 53.45 -1.13 -0.30
9.32 49.52 -0.74 -1.57
14.73 52.02 -0.08 -0.28
10.5 49.85 -0.33 -0.94
10.13 48.99 -1.23 -1.02
12.73 48.48 -0.29 -0.99
10.68 53.58 -0.13 0.03
13.14 49.11 -3.15 -7.03
13.94 53.32 -0.51 -0.32
9.22 50.51 -2.77 -4.03
11.14 52.97 0.73 -0.17
11.27 47.48 -0.86 -3.08
7.64 47.81 -0.06 0.43
11.14 50.5 -2.51 -4.32
10.88 51.67 -3.81 -3.12
8.57 52.45 0.48 0.26
12.46 52.12 -0.53 -1.07
Sum of Squares 62.16 124.95

Table 7.2: Residuals from ordinary kriging prediction of
the additional 24 weather stations in Germany, where
each residual equals the difference of the observed value
and the prediction estimate obtained from ordinary krig-
ing; sum of squares is the sum of all squared residuals
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And lastly, by using the same grid as in the section about simple kriging, we obtain our
final result in form of a plot into the map of Germany of both dates, see Figure 7.1 for
2010/11/28 and Figure 7.2 for 2012/06/09, where the predicted temperature values are
printed on the left and the corresponding prediction variances on the right. Notice that
the plots of ordinary and simple kriging seem to be nearly the same, which is caused by
very similar prediction estimates and variances for the coordinates of our grid.
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Figure 7.1: Ordinary Kriging applied to the temperature data of 2010/11/28 in Germany
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Figure 7.2: Ordinary Kriging applied to the temperature data of 2012/06/09 in Germany



63

8 Universal Kriging

Simple and ordinary kriging assume a stationary, i.e. constant mean p of the underlying
real-valued random function Z(x). But in reality, the mean value of some spatial data
cannot be assumed constant in general, it varies, since it also depends on the absolute
location of the sample. For instance, the average temperature in Germany and Spain will
probably differ.

For this sake, we want to introduce the spatial prediction method universal kriging, whose
aim is to predict Z(x) at unsampled places as well. It splits the random function into
a linear combination of deterministic functions, the smoothly varying and nonstationary
trend, or also called drift ;(x) € R, and a random component Y (x) := Z(x) — p(x) repre-
senting the residual random function (Wackernagel 2003, p. 300). Thus, using universal
kriging, we can take a trend in the mean over the spatial region D in our prediction into
account, such that the variation in Z(x) contains a systematic component in addition to
the random one. For this reason universal kriging is also called kriging in the presence
of a drift or even kriging with a trend and represents a generalization of ordinary kriging
(Cressie 1993, p. 151).

We introduce this kriging method with a trend model in the upcoming section, follow-
ing closely the books by Cressie (1993, pp. 151-156, 361-362) and Webster and Oliver
(2007, pp. 195-200). The key results can also be found for instance in Wackernagel (2003,
Chapter 38), Journel and Huijbregts (1978, pp. 313-320, 564-565) and Kitanidis (1997,
Chapter 6). We also recommend Matheron (1971) in Chapter 4, where he even called it
universal kriging.

8.1 Model for Universal Kriging

As mentioned above, there are a few model assumptions on the underlying random func-
tion Z(x) for universal kriging varying from the assumptions of simple and ordinary
kriging. These are presented in Cressie (1993, pp. 151, 361) and Webster and Oliver
(2007, pp. 195-196) and we summarize them in the following assumption:

Assumption 8.1 (Model for Universal Kriging)
(i) Assume that Z(x) can be decomposed into a deterministic, i.e. nonrandom trend
function p(x), and a real-valued residual random function Y (x), such that

Z(x) = u(x) + Y (x).

(ii) Y(x) is supposed to be intrinsically stationary with zero mean and variogram func-
tion 7y (h), called residual variogram function of Z(x), i.e. Vx, x +h € D:
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(iii) Finally let fo, f1,..., fr be deterministic functions of the geographical coordinates
x € D with L € N the number of known and selectable basic functions f; : D —
R, 1 =0,...,L. We assume p(x) to be a linear combination of these functions

evaluated at x 5

n(x) = afi(x)

=0

with unknown coefficients @; € R\{0} for all [ = 0,..., L and suppose fy(x) = 1
constant by convention.

Denote the drift coefficient vector by a := (ag, a1, ...,ar)’ € RETL and let

L fi(x1) -+ fo(xa)

Fo— 1 f1(?<2) fL(:XQ)

e R4 e Fiy1 = filxi), i = 1,...,n and
L filxn) - fo(xq)
1=0,1,....L

In accordance with the assumptions above, Cressie (1993, p. 151) observed

Z(xi) = p(x:) +Y(x:) = Y _arfilxi) +Y(x;) = (Fa+Y);, i =1,...,n.

=0

Hence, we obtain for the random vector Z:

Z(x1) Jo(x1) - fr(xa) ao Y (x1)
z=| : |=| : ... |+ | =Fa+Y.
Z(%n) Jo(xn) -+ fr(xn) ar, Y (x,)
h ;;“ . =a =Y

Remark 8.2 (Special case)
If L =0, the drift component u(x) reduces to the single term ay and consequently

Z(x) = u(x) +Y(x) = ap + Y(x)

with unknown but constant mean ay. Note that this is identical with the setting of
ordinary kriging (Webster and Oliver 2007, p. 196).

Furthermore, we define the linear predictor for universal kriging as it is done in Cressie
(1993, p. 152) and the same way as in ordinary kriging:

Definition 8.3 (Predictor for Universal Kriging)
The universal kriging predictor Z7(xo) of the value of Z(x) at the target point xq is the
linear sum

Zh(x0) =Y wiZ(x) =w'Z
=1

with weights w; € R, ¢ = 1,...,n, corresponding to each evaluation of the random function
Z(x) at the sample point x; and w 1= (wy, ..., w,)’ € R™.
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Consistent with this definition and Z = Fa+ Y, we obtain

7% (X0) Zwl Zazfz x;) +Y (x;) | = w?(Fa+Y).

:M(Xi)

8.2 Unbiasedness condition

In the next step, we have to consider several conditions on the weights w; to ensure uniform
unbiasedness of our linear predictor Z(xp). This means we want to avoid systematic bias
in any situation. It follows by Cressie (1993, p. 152) and Wackernagel (2003, p. 301):

B[Z,(x0) — sz )+ EY (x)] | — | Elu(xo)] + E[Y (x0)]
=0 -0

u(x) deterministic u !
= > win(xi) — p(x0) = 0
i=1

Z (szfz x;) — fi Xo)) =0.

Together with a; # 0 in Assumption 8.1 (iii) and fy := (1, f1(x0), - .., fr(x0))?T € REFTL
the general unbiasedness of Z (xy) is satisfied if and only if (Kitanidis 1997, pp. 125-126)

Zwlflxl filxg) for 1=0,...,L & Flw=*1, (8.1)

which Matheron (1971) named universality conditions.

The above equivalence simply follows by Cressie (1993, p. 152), since IE[Z(x0)] = p(x¢) =
S afi(xo) = fla and E[Z%(xo)] = E[w’Z] = wTE[Z] = w” Fa, where the expecta-
tion of Z is taken componentwise. Hence, if IE[Zf (x¢)] = IE[Z(X)] should hold in general,
it follows

w'Fa=fla VacR'! ¢, £A0VI=0,1,...,L
s Ww'F=1f].

Remark:

For the constant function fy(x) = 1 for [ = 0 in (8.1), we observe the usual, previous
condition on the weights, > 1" | w; = 1, as in ordinary kriging or even in kriging the mean
(Wackernagel 2003, p. 301).
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8.3 Variance of the prediction error

In the following we want to compute the variance of the prediction error Z%(x¢) — Z(xo),
which "acts” again as a measure of the accuracy of our linear predictor. It can be calculated
by inserting the residual variogram function vy (h). Following Cressie (1993, pp. 152-153),
we derive:

0% = Var(Z(xo) — Z(xo)) & E[(Z5(x0) — Z(x0))]

(Z wiZ(X;) — Z(Xo)> =IE Zin(Xz’) = Y(xo) + Zwm(xz') — 11(x0)

-
=0

=Y ) wiwBlY (x)Y (x;)] — 2 Z WilE[Y (x0)Y (x:)] + E[(Y (x0))]

i=1 j=1

sk — — Y (xo
(e ZZ%% ) +2Zwl ( ) ]

=1 j=1 ~~ ~~ d
=7y (X —X;) =7y (x;—X0)
= - Z Z wiw; Yy (X — X5) + 2 Z wiYy (X — Xo).
i=1 j=1

Hence, the prediction variance o is

T D) e +2Zwm X; — Xo)
i=1 j=1
= —w'Tyw+ 2w vy, >0
with symmetric residual variogram matrix I'y € R™™, (T'y), ; = w(xi — x;), i,j =

1,...,nand vy == (v (X1 — X0), - .., 1y (X, — Xg))" € R™.

The nonnegativity of the prediction variance is due to the similar representation of 0% as
in ordinary kriging in the last section, simply by replacing the variogram terms «y(h) with
the terms of the residual variogram function vy (h).

Note that similar to ordinary kriging, identity (s*) only holds as long as >, w; = 1,
which displays the unbiasedness condition for [ = 0 in (8.1). Since (*x) is the same
equation as () applied to Y (x) instead of Z(x) (cf. ordinary kriging, p. 53), we have
nothing to show. Remember that in (%) the random function Z(x) was supposed to be
intrinsically stationary with constant mean p and variogram function ~(h). In our current
setting, Y'(x) has constant mean 0 and is intrinsically stationary with variogram ~y (h).
This justifies the application of () in this situation.
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8.4 Minimal prediction variance

Afterwards, in order to minimize the prediction error variance o%, i.e. to maximize
the precision of our linear predictor Z(xg), we have to solve the following constrained
optimization problem given by Cressie (1993, pp. 152-153):

minimum of — w’Tyw + QwT'yKO subject to w' F = f7 .

We can derive a solution of this kind of problem again by using the method of Lagrange
multipliers similarly to the last sections. Therefore, we define the function ¢ as 0% plus an
additional term involving the Lagrange parameters to guarantee the uniform unbiasedness,
le.

@ :R" x RFFE 5 R

(W, A) = p(w,A) == —w Tyw + 2w’ vy — 2(w"F — £ )A,

with Lagrange parameter vector XA := (A, A1, ..., Ar)T € REFL providing the L + 1 La-
grange multipliers for each single condition in (8.1) (see Cressie 1993, p. 152).

In the first step, we set the first order partial derivatives of ¢ with respect to w and
A to zero, which yield the "critical points”, i.e. the necessary conditions on the parame-
ters of our optimization problem to give a minimum.

First, we obtain by differentiating ¢ with respect to the weight vector w

)
%(u, A) = —2Tyw + 2y — 2FA £ 0

And second, the partial derivative with respect to the Lagrange parameter A yields

g—f\(w,)\) = 2wTF—£7) =0

e Flw =1 < (81).

At this point, as in ordinary kriging in the last section, we omit the proof that these nec-
essary conditions indeed yield the minimum. The interested reader may also find a proof
in the Appendix (p. 94) in the case of the existence of the covariance. The proof will use
again Theorem 2.15 by Rao (1973). But we prefer to follow this Lagrange approach for
further computations. The reasons are the same as for ordinary kriging and are mentioned
later in the Appendix.

Hence, we conclude that the prediction variance % is minimal if the necessary equa-
tions above hold, which are called optimality conditions by Matheron (1971).
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8.5 Equations for Universal Kriging

After taken the constraints on the weights w; to ensure the uniform unbiasedness and
to achieve minimal observation variance of our prediction into account, we can write the
system for universal kriging as it is stated by Cressie (1993, pp. 153-154) and Webster
and Oliver (2007, p. 197-198):

n L
> V(s = %))+ SO AE filx) = (% — x0) for i = 1,....n
j=1 1=0

> WK fi(x;) = filxo) for 1=0,1,...,L
j=1

with "optimal” kriging weights w/% € R, ¢ = 1,...,n and Lagrange parameters \/X &
R, [ =0,1,..., L. This is as well as in matrix notation
FYwUK + FAUK = ’YY,O (82)

Flopr =1

<~
FY F WUk ) _ (Yo
FT 0 AUk fo
with universal kriging weight vector wy := (WVE, ... wUE)T € R" Lagrange parameter
vector Apg = (AYE,NVE O NTET ¢ REFL 0 ¢ REHDXEHD) and symmetric block ma-
trix
W —xi) e oy —x) |1 filxa) e fo(xa)

V(X2 —x1) 0 wxe—%,) |1 fi(x2) -+ fr(x2)

(5 ) G —31) Ayt |1 i) - fulo)

FT o )~ 1 1 0o 0 - 0
fl(Xl) fl(Xn) 0 0 0
fL(;q) . fL(%n) O 0 .- 0

c R(n-ﬁ-L-H) X (n+L+1) )

It follows immediately that the matrix F' needs a full column rank if the system should
have an unique solution. This gives a condition on the choice of the deterministic func-
tions f;, as for instance it implies that fy is the single constant function among all f; (see
Wackernagel 2003, p. 301).

I F
FT 0

if the number of observations is larger than or equal to the number of basic functions, i.e.

In the case where the whole block matrix ( is invertible, which is only possible
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n > L + 1, we can compute the universal kriging weights and the Lagrange parameter
according to Webster and Oliver (2007, pp. 197-198) by

WUuK\ FY F - 7Y,0
Mox)  \FT 0 f, )

Additionally, one can solve this linear system of n+ L+ 1 equations with n+ L+ 1 unknown
variables w!% and A\'K canceling out the variables step by step. But there exists another
common way how this solution is stated in literature, too. We provide this solution in the
next theorem below, whose results can be found for instance in Cressie (1993, p. 153):

Theorem 8.4 (Solution of the universal kriging system)
Under the assumption of invertibility of I'y and F TF;IF , the solution for wy gk and Ayk
of the universal kriging system (8.1) and (8.2) is uniquely determined by

wur =Ty [ve = F (FTT3 F) ™ (FT T 0 — 6)] (8.3)

Ao = (FTTFF) " (FT5 yyg — o) (8.4)

Proof:

First of all note that wyx and Ay in Theorem 8.4 are well-defined due to the assumption
of nonsingularity of I'y and F' TP;lF . Further, they actually represent a solution of the
universal kriging system (8.1) and (8.2), which we can simply verify by

(i) 'ywuk + FAuk
= |vvo = F(FIT3'F) ™ (FTTy yy — o) | + F [ (FIT5F) ™ (FTTy vy — fo) |
= Yy — F (FTTy'F) ™ (FTTy v — fo — FTTy Yy + £5) = 7y, and

[ J/
-~

=0

(ll) FTwUK
= FTTy! [y = F (FTTF) " (FTT oy — o)
= FTTy Yy — FITHF (FTTYF) T (FT Ty — fo) = fo.

~
=Idp4+1

Since I'y and F TF;,lF are assumed to be invertible, the solution for wy ik and Apk is
unique.

a

8.6 Universal Kriging Variance

After these steps, we are able to specify the minimal prediction variance, the universal
kriging variance 0% . It is defined as the variance of the “optimal” linear predictor minus
the random variable to be predicted, Z, (xo) — Z(xo). We achieve o, by inserting the

kriging equations (8.1), (8.2) and Theorem 8.4 in the terms of o% (see 8.3). Hence, we
conclude following Cressie (1993, p. 154):
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opi = Var(Zs, (x0) — Z(x0)) = —wix Dywuk +2wi Yy

(8.2)
= wh(FAuk — Yyo) + 2“’51{’71/,0 = wiF Avk + ng'VY,O

(8.1)
fT/\UK + WUK'YYO (‘-"5}(7 )‘51() <’Yf§;’0>

S [T )T (T g — )]
+ ['Yy,o - F(FTF;IF)_I(FTF;I'YY,O - fO)]T Fx_/l’)’y,o
= (FTTy vy — )" (FTTY'F) ™ o + ATy vy
— (F'T5 vy — ) (F'TY'F) " FIT vy

This holds, since I'y and FTT'F, and thus their inverse matrices, are symmetric. Hence,
we obtain for the minimized kriging variance according to Cressie (1993, p. 154):

Y
ot = (whe L) (F)
= ’7}T/,0F}71’7Y,0 - (FTF;/l’YY,o - fO)T(FTF§1F>71(FTF1717Y,0 )

:_ZZ‘*’UK iy —Xj)+2zn:WfKW(Xi—X0)

=1 j=1 =1

n L
=3 Wy (i — x0) + Y Mifilx). (8.5)
i=1 =0

8.7 Universal Kriging Prediction

In total, we observe the "optimal”, that is to say the best linear unbiased predictor (BLUP)
Zr  (xo) of universal kriging by inserting the above results of Cressie (1993):

WUK

* 1 _ T\
Z 1 (¥0) ZWUKZ X;) = wixZ = [Vyo — F(F'TV'F) 1(FTFyl’YY,o —fy)] ITY'Z

WU K
=1

with corresponding kriging variance computed in (8.5) and finally with kriging estimate
2% (X0) at the location of interest xq

« - 1 _ T
Zioy i (X0) = Z%‘UKZ(Xi) = WiKZ = [’YY,O - F<FTFY1F) 1<FTFY1’7’Y,0 - fO)] Iy'z.

WYUK
i=1
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Remark 8.5 (Exact interpolator)

As in simple and ordinary kriging, the universal kriging predictor is also an exact inter-
polator in theory (see Cressie 1993, p. 360), as in the case that the prediction point xg
equals a data point x; for i € {1,...,n}, it follows that Z,  (x¢) = Z(x;). This holds,

I'y F

FT 0 )
Hence, we obtain the unique solution of the universal kriging system defined by w/* =
1, W% =0 for j # i and all Lagrange parameters \/* =0, 1 =0,1,...,L. It follows

that Z} (x0) = wixZ = Z(x;) with kriging variance o (%2 S wV By (x — xo) +

Zleo ME f1(x0) = 9y (x; — x;) = 0 as long as there is no nugget component.

since the vector (42, f1)7 is identical with the ith column of the matrix (

8.8 Universal Kriging in terms of a known covariance

For completeness, we want to express our results in terms of a known covariance function
Cy(h) of the random function Y (x) similar to the section about ordinary kriging. We
proceed in particular according to Cressie (1993, p. 154-155) and Wackernagel (2003, pp.
300-307), but we also recommend Chauvet and Galli (1982) in Chapter 2.

Consistent with Cressie (1993) and in addition to Assumption 8.1, we have to strengthen
the stationarity assumption on Y (x) to second-order instead of intrinsic stationarity. This
implies additionally the existence of a known covariance function Cy (h) of Y (x), such that
Cy(h) :=Cov(Y(x),Y(x+h)) = E[Y(x)Y(x+ h)| for all x,x+h € D, since Y (x) is of
Zero mean.

After these considerations, we can rewrite the universal kriging system and all other
statements into terms of the covariance Cy (h) by replacing the corresponding variogram
terms 7y (h). This works due to the equivalence of the covariance function and a bounded
variogram by virtue of Proposition 4.5 (p. 15), which is applicable since Y (x) is assumed
to be second-order stationary.

Following Wackernagel (2003, pp. 300-301), we assume further that the predictor Z7 (xo)
is defined the same way as previously in Definition 8.3. This implies the same unbiased-
ness conditions (8.1) of the linear predictor and we obtain the universal kriging equations
(see Cressie 1993, pp. 153-154)

" L
> WOy (i —x5) = Y N filxi) = Cy(xi = x0), i =1,...,n
j=1 =0

> WK fix)) = filxo), 1=0,1,...,L,
j=1

as well as in matrix formulation
Yywuk — FAuk = cyp (8.6)

FTWUK = fy
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=

ZY F Wurk \ _ [Cypo
FT 0 -Avk)  \ B

with symmetric covariance matrix ¥y € R™*" of the random vector Y :=

(Y(x1),...,Y(x,)", ie. (Xy);; = Cv(xi —x;) fori,j =1,...,n, cyg :=
> F

(Cy (X1 — Xo), - .., Cy (%, — %X0))" and symmetric block matrix ( J >

c R(n+L+1)><(n+L+1).

Notice that the only thing which is different from the variogram case is that I'y is replaced
by Xy, ¥y, by cy,p and the changing sign of the Lagrange parameter vector Ay

If the system above is to be solved uniquely, it is again necessary that the matrix F
is of full column rank, i.e. that the L + 1 basic function fy, fi,..., fr must be linearly
independent on the samples x, ..., x, (cf. Wackernagel 2003, p. 301).

Furthermore, if the inverse of the whole block matrix exists, then we can simply obtain
the universal kriging weights and the Lagrange multiplier from

-1
WUk |\ _ Z]Y F Cy,0
—AUK FT 0 fo )
Another theoretical representation of the solution is again additionally presented by
Cressie (1993, p. 154) in the next theorem. Hereby the target parameters wyy and

Avuk are computed directly from F', ¥y, cyo and f, without using the large block matrix
above:

Theorem 8.6 (Solution for universal kriging with a known covariance)
Under the assumption of invertibility of F7¥y F, the unique solution for wyx and Ayx
of the universal kriging system (8.1) and (8.6) is given by

wuk =y [evo + F(FTSY F) 7 (E — F'S5 evo)]

Avk = (FTSPF)HE — FTE eyy).

Proof:
We skip the proof since Theorem 8.6 could be proved by following the same steps as in
the proof of Theorem 8.4.

a

Subsequently, we can express the minimized universal kriging variance o . It is again
defined as the variance of the difference of the optimal linear predictor Z7 (xo) and the
to predicted variable Z(xg). With help of Theorem 8.6 and the kriging equations (8.1)
and (8.6), we obtain the kriging variance in accordance with Cressie (1993, p. 155) as
follows:



8.8 Universal Kriging in terms of a known covariance 73

aéK = Var(ZZ:UK (x0) — Z(x0))
= Cy(O) + ngEwaK — 2w5KcY70
C
= Oy (0) — (Wl AT ) ( %;o>

= Cy(0) — c?oz;lcm + (fo — FI2 ey o) T (FTS F) L — FTS5 eyy), (8.7)

as well as

O'UK =Cy(0 —i—ZZwUK UKC' X; — X;j) —ZZWZUKCY(Xi_XO)
i=1

i=1 j=1

)+ Z A f1(x0) Z W/ Cy (x; — Xo). (8.8)

In summary, by virtue of Theorem 8.6 and the last calculations, we obtain the "optimal”
universal kriging predictor Z7 = (xo) such that

zZr  (xo) ZwUKZ (x;) = Wi Z

WUK
=1

— [eyo + F(FTSy F) M (f — FTSy ey)]” 572

The kriging variance is observed in (8.7) and (8.8) and finally the corresponding kriging
estimate 27, (%) at Xo can be written as

n

2o (X0) = )M 2(x) = Wiz

i=1

— [eyo + F(FTSy F) M (fy — FTSy eyy)]” 57z

For a better understanding of universal kriging prediction, especially with the new subject
"drift function”, we want to present an easy example given by Kitanidis (1997, pp. 126—
127). The differing signs of the Lagrange parameters compared with Kitanidis (1997)
come from their different definition in the corresponding minimization problem.

Example 8.7 (Linear drift p(x))

Typically, the spatial trend p(x) can be, and is modeled as a polynomial function in the
spatial coordinates x € D (Journel and Huijbregts 1978, pp. 314-315). For instance,
in the simple case of a "linear drift”, i.e. that a linear model is assumed over a two-
dimensional spatial domain with coordinates of location (x,y) € D C R?, one would set
L =2 and get fo(z,y) =1, fi(z,y) =z and fo(z,y) = y as drift functions.

Hence, the linear drift
Wz, y) = ap + a1 + agy
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and
Z(x,y) = ap + a1z + agy + Y (2, ).

This implies that the universal kriging system with prediction point (zg, o) includes three
unbiasedness conditions, for [ = 0,1 and 2, such that it can be written as

(20w Oy (i, yi) — (25, 95)) — AT = AR = ARy,
- CY ((wzayz) - (x())yO))’ L= 17"'an

The universal kriging variance turns out to be

ok = Cy(0) + )\oUK + )\[1]K5U0 + A%’Kyo - Z%UKCY (i, yi) — (20, Y0)) -
i=1

Remark 8.8 (Estimation of drift coefficients and residual variogram)
Finally, for the procedure of prediction with universal kriging in practice, we have to pay
attention to two further issues:

(i) First of all, we have to estimate the drift function p(x), since we do not have it at
hand. For instance, this could be done using the "generalized-least-squares estima-
tor” a = (FTE;lF)_l FTYJ'Z of the coefficient vector a, which determines y(x)
completely (cf. Cressie 1993, p. 156). For further details, we refer the interested
reader to the book of Wackernagel (2003, pp. 302-303) and to section 4.2 "Optimal
Estimation of the Drift” in Matheron (1971).

(ii) Furthermore, in our theoretical considerations we assumed the underlying resid-
ual variogram function vy (h) of Y (x) to be known. But in practice, we need to
estimate it from our data. This turns out to be more problematic, since the non-
stationary random function Z(x) is decomposed into the unknown trend p(x) and
the unknown residual random function Y (x). Hence, both components need to be
estimated first and then, based on these estimates ji(x) and Y (x), the variogram
function vy (h) of Y (x) can be estimated. But at this point the problem arises that
the nonstationary drift u(x) does not allow the direct estimation of the variogram
(and covariogram Cy (h)) neither from the empirical variogram, nor from the es-
timated residual (Webster and Oliver 2007, p. 195). Matheron (1971) called this
the problem of "identification of the underlying variogram”. More information and
details can be found in the books by Wackernagel (2003, pp. 303-306) and Cressie
(1993, pp. 165-170). We also recommend Chauvet and Galli (1982) in Chapter 4
and section 4.6 "Indeterminability of the Underlying Variogram” in Matheron (1971).

Note that in R the residual variogram is automatically estimated if formula in var-
iogram() contains at least one argument different from 1, e.g. formula = temp ~
z+y+zy+x®+y? in the case of a quadratic trend and coordinates x and v.
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8.9 Universal Kriging in R

As universal kriging prediction represents the last kriging method in this thesis, and also
our most general model, we want to consider four different linear drifts. We suppose the
mean value of the temperatures in Germany of our two dates as a linear trend of

(i) longitude,
(ii) latitude,
(iii) longitude and latitude and
(iv) longitude, latitude and elevation

evaluated at our given 54 sample points.

In gstat, universal kriging prediction can be performed similarly to simple and ordinary
kriging. But in contrast, we have to insert our considered trend functions in the estima-
tion of the variogram. Unfortunately, we cannot use our estimated variogram functions

from the section "The Variogram”, since we need the residual variogram functions (see
Remark 8.8).

After estimating and fitting the residual variogram, we can proceed analogously to the
last two sections. For this reason, we omit most of the R code and only print these codes
varying from simple and ordinary kriging.

In the last case where we include the height of each weather station into our prediction, we
will perform ordinary kriging for predicting the elevation values at the unsampled places
of our grid in the first step. And afterwards we go on with universal kriging as in the
other cases.

Hence, we begin with the preparation for kriging prediction and estimate the residual
variogram functions of all four trend models, printing the R code exemplarily for the
third trend function.

#Universal Kriging:

>

>

> #1: linear trend in longitude

> #2: linear trend in latitude

> #3: linear trend in long- and latitude

> #4: linear trend in long-, latitude and elevation

#1.) Gstat objects:

g_ukl_3<-gstat(id="templ", formula=templ~longkm+latkm,
locations="longkm+latkm,data=datal)

g_uk2_3<-gstat (id="temp2", formula=temp2~longkm+latkm,
locations="longkm+latkm,data=data2)

+ VvV + v Vv



76 8 UNIVERSAL KRIGING

> #2.) Variogram cloud:

> vcloud_ukl_3<-variogram(object=g_ukl_3, formula=templ~longkm+latkm,
+ cutoff=Inf,cloud=TRUE)

> vcloud_uk2_3<-variogram(object=g_uk2_3, formula=temp2~longkm+latkm,
+ cutoff=Inf,cloud=TRUE)

> #3.) Empirical variogram:

> vemp_ukl_3<-variogram(object=g_ukl_3, formula=templ~longkm+latkm,
+ cutoff=max(vcloud_ukl_3$dist)/2,width=10)

> vemp_uk2_3<-variogram(object=g_uk2_3, formula=temp2~longkm+latkm,
+ cutoff=max(vcloud_uk2_3$dist)/2,width=10)

> #4.) Fitting the empirical variogram:

> #Same procedure as in "The Variogram", the final results are:

>

> #2010/11/28: sum of squares = 5.87

> vfitukl_3<-fit.variogram(object=vemp_uk1_3,

+ model=vgm(psill=1,model="Mat",range=100,nugget=1,kappa=1.61),

+ fit.sills=TRUE,fit.ranges=TRUE,fit.method=6)

> #2012/06/09: sum of squares = 10.55

> vfituk2_3<-fit.variogram(object=vemp_uk2_3,

+ model=vgm(psill=1,model="Mat",range=100,nugget=1,kappa=99.91),

+ fit.sills=TRUE,fit.ranges=TRUE,fit.method=6)

> #5.) Update gstat objects:

> g_ukl_3up<-gstat(g_ukl_3,model=vfitukl_3, id="templ",
+ formula=templ~longkm+latkm,locations="longkm+latkm,data=datal)

data:
templ : formula = templ”longkm + latkm ; data dim = 54 x 1
variograms:

model psill range kappa
templ[1] Nug 0.5682006 0.00000 0.00
templ[2] Mat 1.5313091 72.44415 1.61
“longkm + latkm

> g_uk2_3up<-gstat(g_uk2_3,model=vfituk2_3, id="temp2",
+ formula=temp2~longkm+latkm,locations="1ongkm+latkm,data=data2)

data:
temp2 : formula = temp2~longkm + latkm ; data dim = 54 x 1
variograms:

model psill range kappa
temp2[1] Nug 0.9909754 0.000000 0.00
temp2 [2] Mat 1.2947727 7.527346 99.91
“longkm + latkm
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We finish with our preparation of the variogram and can begin with universal kriging
prediction:

> #Universal Kriging Prediction for additional 24 weather stations:
>

> p_ukl_3<-predict(g_ukl_3up,newdata=newdat)
[using universal kriging]
> p_uk2_3<-predict(g_uk2_3up,newdata=newdat)
[using universal kriging]

> #First lines of prediction:
> p_uk1_3[1:5,] #2010/11/28

coordinates templ.pred templ.var
(8.979, 48.216) -1.058979 0.9264181
(9.8044, 51.9672) -4.358222 0.8672984
(13.4367, 54.6817) -2.231965 1.7439544
(7.979, 51.465) -3.077680 0.8372743
(10.9431, 48.4261) -2.305909 0.8259260

g W=

\

p_uk2_3[1:5,] #2012/06/09

coordinates temp2.pred temp2.var
1 (8.979, 48.216) 15.85785 1.319660
2 (9.8044, 51.9672) 14.67715 1.260069
3 (13.4367, 54.6817) 15.80469 2.130284
4 (7.979, 51.465) 13.16339 1.241139
5 (10.9431, 48.4261) 14.55123 1.247551

For the fourth trend function, we perform a grid of longitude, latitude and additionally of
the elevation values, which we gained from ordinary kriging. This means that we inserted
the kriging estimates for the elevation data in our grid.

> prediction_ukl_4<-predict(object=g_ukl_4up, newdata=griduk4)
[using universal kriging]
> prediction_uk2_4<-predict(object=g_uk2_4up, newdata=griduk4)
[using universal kriging]

In order to compare how close the resulting kriging estimates are, related to the measured
values, we print the corresponding residuals of all four linear trend models in Table 8.1
for 2010/11/28 and Table 8.2 for 2012/06/09. We observe that the last linear trend in
longitude, latitude and elevation seems to provide the best fit to our data in both cases,
especially for 2012/06/09, where the amount of the sum of squares is only one-tenth
compared with the other trend functions and compared with simple and ordinary kriging.
This makes sense, since we included the most information in our prediction compared
with the other ones, namely the longitude, latitude and elevation.
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Longitude Latitude | long (1) lat (2) long and lat (3) long, lat and elev (4)
8.98 48.22 -3.04 -3.06 -3.04 -0.76
9.8 51.97 -1.10 -1.13 -1.14 -0.53
13.44 54.68 1.70 1.79 2.03 2.04
7.98 51.47 0.31 0.26 0.28 -0.49
10.94 48.43 -0.47 -0.39 -0.39 -0.35
7.31 50.04 -1.51 -1.51 -1.51 -0.16
6.7 53.6 1.48 1.85 1.60 2.70
9.14 53.45 -1.13 -1.25 -1.23 -1.56
9.32 49.52 -0.72 -0.86 -0.85 -0.22
14.73 52.02 0.00 -0.07 0.08 -0.15
10.5 49.85 -0.33 -0.33 -0.33 -0.29
10.13 48.99 -1.21 -1.18 -1.19 -0.09
12.73 48.48 -0.29 -0.29 -0.29 -0.21
10.68 53.58 -0.13  -0.03 -0.06 0.21
13.14 49.11 -3.10 -3.19 -3.14 3.17
13.94 53.32 -0.46 -0.47 -0.43 -0.38
9.22 50.51 -2.77 -2.78 -2.76 0.30
11.14 52.97 0.72 0.79 0.78 1.31
11.27 47.48 -0.86 -0.94 -0.92 1.26
7.64 47.81 -0.18 0.05 -0.08 0.84
11.14 50.5 -2.52 -2.47 -2.47 1.00
10.88 51.67 -3.83 -3.89 -3.88 -2.04
8.57 52.45 0.50 0.45 0.44 1.32
12.46 52.12 -0.54 -0.54 -0.54 0.14
Sum of Squares 61.95 65.06 64.35 36.60

Table 8.1: Residuals from universal kriging prediction
of the additional 24 weather stations in Germany of
2010/11/28, where the last line provides the sum of the
squared residuals and the columns are sorted by the dif-
ferent trend functions: linear trend in longitude (1), lat-
itude (2), longitude and latitude (3), longitude, latitude
and elevation (4)
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Longitude Latitude | long (1) lat (2) long and lat (3) long, lat and elev (4)
8.98 48.22 -1.80 -2.24 -2.16 1.14
9.8 51.97 0.27 0.32 0.22 0.46
13.44 54.68 -2.05 -1.78 -2.00 -1.48
7.98 51.47 0.11 0.10 0.14 -0.25
10.94 48.43 0.20 0.09 0.15 -0.13
7.31 50.04 -2.09 -2.37 -2.35 -0.39
6.7 53.6 -0.51 -0.65 -0.45 -0.02
9.14 53.45 -0.21 -0.30 -0.34 -0.31
9.32 49.52 -1.57 -1.56 -1.80 -0.86
14.73 52.02 -0.25 -0.28 -0.22 -0.86
10.5 49.85 -1.51 -0.94 -0.97 -0.69
10.13 48.99 -1.30 -1.01 -1.13 -0.15
12.73 48.48 -1.29 -0.99 -1.17 -0.72
10.68 53.58 0.12 0.03 0.07 0.08
13.14 49.11 -7.17 -7.03 -7.19 2.25
13.94 53.32 -0.44 -0.31 -0.35 -0.32
9.22 50.51 -3.95 -4.03 -3.87 0.19
11.14 52.97 0.01 -0.17 -0.08 -0.34
11.27 47.48 -3.12 -3.09 -3.34 0.34
7.64 47.81 0.63 0.42 0.72 0.11
11.14 50.5 -4.11 -4.33 -4.22 0.55
10.88 51.67 -3.22 -3.12 -3.17 0.04
8.57 52.45 0.08 0.27 0.04 0.03
12.46 52.12 -1.01 -1.07 -0.96 0.11
Sum of Squares 125.97  125.00 128.62 12.30

Table 8.2: Residuals from universal kriging prediction
of the additional 24 weather stations in Germany of
2010/11/28, where the last line provides the sum of the
squared residuals and the columns are sorted by the dif-
ferent trend functions: linear trend in longitude (1), lat-
itude (2), longitude and latitude (3), longitude, latitude
and elevation (4)

Finally, we obtain the plots of the universal kriging prediction estimates and variances for
each of the first three linear trends once for 2010/11/28, see Figures 8.1-8.3, and once for
2012/06/09, see Figures 8.4-8.6.

For the fourth kind of drift function which we consider, a linear trend in longitude, latitude
and elevation, we obtain the ordinary kriging estimates and variances of the elevation data
for the later universal kriging prediction first, see Figure 8.7. Afterwards we can use these
predicted elevation values for universal kriging prediction and we get the corresponding
plots shown below on Figure 8.8 for 2010/11/28 and on Figure 8.9 for 2012/06/009.
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Note that the elevation estimates are the same for both dates and we do not have to

estimate them twice.
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2010/11/28, linear trend in long

54
|

52

50

48

0 100 200800 km

(a) Universal Kriging Estimates

Universal Kriging Variances
2010/11/28, linear trend in long

3.0

25

2.0

15

1.0
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Figure 8.1: Universal Kriging with a linear trend in longitude applied to the temperature

data of 2010/11/28 in Germany
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Figure 8.2: Universal Kriging with a linear trend in latitude applied to the temperature

data of 2010/11/28 in Germany
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Figure 8.3: Universal Kriging with a linear trend in longitude and latitude applied to the
temperature data of 2010/11/28 in Germany
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Figure 8.4: Universal Kriging with a linear trend in longitude applied to the temperature
data of 2012/06/09 in Germany
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Universal Kriging Estimates
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Figure 8.5: Universal Kriging with a linear trend in latitude applied to the temperature

data of 2012/06/09 in Germany
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Figure 8.6: Universal Kriging with a linear trend in longitude and latitude applied to the

temperature data of 2012/06/09 in Germany
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Ordinary Kriging Estimates
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Figure 8.7: Ordinary Kriging applied to

stations in Germany
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Figure 8.8: Universal Kriging with a linear trend in longitude, latitude and elevation
applied to the temperature data of 2010/11/28 in Germany
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Universal Kriging Estimates Universal Kriging Variances
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Figure 8.9: Universal Kriging with a linear trend in longitude, latitude and elevation
applied to the temperature data of 2012/06/09 in Germany
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9 Summary and Outlook

We started this thesis by introducing the quantity variogram ~y(h). It relies on an intrinsic
stationarity assumption on the underlying random function Z(x) for x in a geographical
space D. Its object of interest is to measure the spatial dependence of Z(x) between
two points in D. At the beginning we defined the variogram function theoretically and
presented some important properties. This limits the choice of a valid variogram function
in its estimation later. Afterwards we estimated a variogram function from our underlying
samples X1, ..., X, and corresponding observations z(x1), ..., z(X,).

For this reason we calculated and plotted the variogram cloud, which gives a first impres-
sion of the spatial structure. Then we grouped "similar” lags h and formed the empirical
variogram, which provides a first estimate of the underlying variogram for all lags. Unfor-
tunately, this obtained experimental variogram cannot be used for prediction, since it does
not satisfy some conditions for validity in general (see Proposition 4.7, p. 16). Therefore,
we fitted a valid parametric variogram model function to the empirical variogram. We did
this fit using least squares, but there exist several other methods such as the restricted
maximum likelihood (REML). At the end of our preparation, we obtained a fitted, valid
variogram model function. We used this for our prediction, since kriging relies on the
knowledge of some kind of spatial structure of Z(x), i.e. variogram or covariance.

In the main part of this thesis, we introduced spatial prediction with the four geosta-
tistical methods kriging the mean, simple, ordinary and universal kriging. Kriging the
mean is used to predict the mean value of an underlying random function Z(x) over a
domain D, while the last three types serve to predict the value of Z(x) at any arbitrary
unsampled point of interest xg, called the prediction point. For this reason simple, ordi-
nary and universal kriging are also called punctual kriging methods.

In most cases, the mean value of some object of interest is estimated by calculating
the arithmetic mean of the observed data, since this is an intuitive approach. This makes
sense if the data are distributed on an uniform grid or if Z(x) and Z(y) are uncorrelated
Vx # y € D. But as in practice, the samples are irregularly placed in space (e.g. the
54 weather stations in our data set), this approach could be very missleading. Consider
the extreme case, where most sample points are located really close to each other (e.g. if
there were 30 of the 54 weather stations near Munich). Their observed values will proba-
bly be very similar and hence should get less weight in the prediction. Otherwise it may
happen that we obtain a nonreasonable estimate for the mean value, for instance if the
measured values close to Munich are very different from the rest (e.g. 6°C higher). Hence,
we introduced kriging the mean, which takes the spatial dependence of the sample points
into account and is therefore a good alternative for prediction with irregularly spaced data.

Finally, we presented three punctual kriging methods. All of them rely on spatial struc-
ture as well. That is to say that the weights of each random variable Z(x;) in the linear
predictor vary and depend on the underlying variogram or covariance. The main idea
behind is that sample points x; near to the prediction point xy should get more weight
in the calculation of the estimate, since they are to influence the value at xy more than
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those which are quite far away. Exemplary for our data set, Neuburg in Bavaria should
get more weight than Berlin in the prediction with Munich as prediction point. Note that
far away samples from x, can even get negative weights in the computation.

The hierarchical presentation of the kriging methods is due to their nested construc-
tion, i.e. simple kriging is nested in ordinary kriging and ordinary kriging in the universal
version. First of all, simple kriging assumes a known and constant mean p. Since this is
not really applicable, we weakened our assumptions on the mean by introducing ordinary
kriging, i.e. we supposed p to be still constant, but unknown. This is a more realistic
model, since in most cases we will not know the mean a priori. Finally, since a stationary
mean value over a very large region is often not reasonable, e.g. for a region like Germany
or even larger, we presented the theory of universal kriging. Hereby pu(x) is no longer as-
sumed to be constant, but an unknown linear combination of some known deterministic,
i.e. nonrandom basic functions. Hence, we integrated a trend in the mean in our model
to improve our estimates.

As a summary, we want to present a brief overview of the considered kriging methods.
Here we can only compare simple, ordinary and universal kriging, since they have - unlike
to kriging the mean - the same objective. Table 9.1 gives a short overview providing the
most important assumptions and results of simple, ordinary and universal kriging, where
Table 9.2 summarizes kriging the mean.

] H Simple Kriging  Ordinary Kriging Universal Kriging

Assumptions on p(x): || known, unknown, unknown,
constant constant wu(x) = Zszo a fi(x)
Assumptions on Z(x): || Second-order Intrinsically Z(x) = p(x) + Y(x),
stationary stationary Y (x) intrinsically stat.,
E[Y(x)] =0
Linear predictor: p+w' (Z—pl) w'Z w'Z
Kriging Equations: Yw = ¢y w4+ A1 =7, Iyw+ FA =7y,
wll=1 FTw =f,
Kriging Variance: C(0) — w'cg wlyy + Aok w'yyy + g A

Table 9.1: Overview punctual kriging methods simple,
ordinary and universal kriging
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| | Kriging the Mean

Assumptions on p(x): unknown, constant mean g
Assumptions on Z(x): Second-order stationary
Linear predictor Z,(x¢): | w!Z

Kriging estimate for p %

Kriging Variance: m

Table 9.2: Summary of Kriging the Mean for predicting
the mean value over a region

Afterwards, to get a good overview of the gstat functions in R for performing kriging
prediction, we summarize the most important functions, their crucial arguments and give
a short description, which can be seen on Table 9.3 on the next page.

Additionally, we want to point out that there exist several other kinds of kriging be-
sides our four introduced ones, for instance Factorial, Indicator, Disjunctive or Bayesian
Kriging. We recommend Cressie (1993) and Webster and Oliver (2007) for further details.

Last but not least, since we only considered random processes Z(x) for a fixed point
in time, i.e. for a fixed date, we can also extend our model by taking the time into ac-
count. Then, the random function Z(x,t) is a function of both, the location x and the
time t. Hence, the aim is to predict the value of Z(x,t) at any tuple (xg,to), which re-
quires spatio-temporal data and brings us into the context of spatio-temporal prediction.
Cressie and Wikle (2011) present some spatio-temporal statistical models in Chapter 6,
for instance spatio-temporal kriging in form of simple and ordinary kriging. Fortunately,
the package gstat provides additionally some functions such as variogramST(), vgmST(),
fit.StVariogram() or krigeST() for spatio-temporal kriging in R. For performing, the in-
terested reader may have a look at the corresponding gstat manual ”"Spatio-temporal
geostatistics using gstat” by Pebesma (2013).

We finish this thesis by printing all resulting plots from the last sections right at the
end, for comparison of the different methods and their effects on the estimates and vari-
ances of our data set of mean temperatures by eye. We begin with the date 2010/11/28
and plot all estimates first and then all variances, see Figures 9.1 and 9.2. The same ap-
plies to 2012/06/09 afterwards, see Figures 9.3 and 9.4. We conclude that in both cases,
universal kriging with a linear trend in longitude, latitude and elevation seems to be the
most suitable method, since its prediction variances are the lowest and the estimates of
our additional 24 weather stations provides the closest fit to the measured data.
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| Function | Arguments | Description
gstat() Creates gstat object for data preparation
(compare to sections 4.2, 6.8 and 8.9)
g for creating (=NULL) or updating a gstat object
id identifier of new variable (temp)
formula temp~trend
locations ~long+lat; set coordinates
data data frame containing all variables and coordinates
model variogram model for updating object,
output of fit.variogram()
beta known constant mean; only in simple kriging
variogram() Creates variogram cloud and empirical
variogram (compare to sections 4.2, 4.3 and 8.9)
object gstat object (not updated)
cutoff maximum distance to take into account
width width of each vector classes (equidistant)
cloud =TRUE for deriving variogram cloud,
default=FALSE
vgm() Provides theoretical parametric variogram
models (compare to section 4.5)
psill (start) value of partial sill
model parametric variogram model, e.g. Lin or Gau
range (start) value of range
nugget (start) value of nugget
kappa value of kappa (for Matérn model)
fit.variogram() Fits all parameters to the empirical
variogram with least squares (compare to
sections 4.5 and 8.9)
object empirical variogram to be fitted,
output of variogram()
model variogram model, output of vgm()
(includes starting values for estimation)
fit.method | set weights for least squares
predict() Derives the prediction of inserted new data
locations (compare to sections 6.8, 7.9 and 8.9)
object updated gstat object
newdata data frame with new prediction coordinates
and variables (for trend)

Table 9.3: Overview of the most important R functions
of the package gstat
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Figure 9.1: Kriging Estimates of all considered kriging methods applied to the temperature

data of 2010/11/28 in Germany
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Figure 9.2: Kriging Variances of all considered kriging methods applied to the temperature
data of 2010/11/28 in Germany
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2012/06/09 2012/06/09
ﬁ -
g -
8 .
o _|
<
0 100 200800 km 0 100 20800 km
T T T T T T T T T T T T
6 8 10 12 14 16 6 8 10 12 14 16
(a) Simple Kriging Estimates (b) Ordinary Kriging Estimates
Universal Kriging Estimates Universal Kriging Estimates
2012/06/09, linear trend in long 2012/06/09, linear trend in lat
< | <
n wn
B 8
8 B 1
o _| o _|
< <
T T T T T T T T T T T T
6 8 10 12 14 16 6 8 10 12 14 16

(c) Universal Kriging Estimates with a (d) Universal Kriging Estimates with a

linear trend in longitude linear trend in latitude
Universal Kriging Estimates Universal Kriging Estimates
2012/06/09, linear trend in long and lat 2012/06/09, linear trend in long, lat and elev

52
1

50
1

48
L

(e) Universal Kriging Estimates with a (f) Universal Kriging Estimates with a
linear trend in longitude and latitude  linear trend in longitude, latitude and el-
evation

Figure 9.3: Kriging Estimates of all considered kriging methods applied to the temperature
data of 2012/06/09 in Germany
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Figure 9.4: Kriging Variances of all considered kriging methods applied to the temperature
data of 2012/06/09 in Germany
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A Appendix

It remains to show that the kriging equations indeed yield the minimum for the prediction
variances in ordinary and universal kriging, since we omitted both proofs ealier in this
thesis. We prove these facts only for the covariance case, i.e. where Z(x) or respectively
Y (x) are assumed to be second-order stationary with covariance function C'(h), respec-
tively Cy (h). The corresponding prediction variances can be obtained by similar calcu-
lations compared with the variogram case, or easily by employing v(h) = C(0) — C(h).
Note that in ordinary and universal kriging, these variances only differ in the sense that
we insert once the covariance matrix 3 of Z (ordinary kriging), and once the covariance
matrix Yy of the random vector Y of the residual process (universal kriging).

Our aim is to apply Theorem 2.15 (p. 8) given by Rao (1973) to show that our for-
mer obtained necessary conditions on the weights yield the minimum. We begin with
the proof of the minimality of the prediction variance in ordinary kriging and finish with
universal kriging.

A.1 Minimality of the prediction variance in ordinary kriging

Recall the minimization problem in section 7.4 (p. 53) translated into the covariance
context:

minimum of 0% = C(0) + w’ Lw — 2w’ ¢y subject to w1 =1

Cx1—x1) -+ Cx,—x%1) C(xo—x1)
Let ¥ := - Z Co
0 Cx1—%xp) -+ Cx,—%,) C(xo—x%p)
C(x1—x%o) -+ Clxn—x0) C(x0— o) cg \ C(0)

€ RO+Dx(+D) “which is symmetric and positive definite, since it is the covariance matrix
of the random vector (Z(x1), ..., Z(x,), Z(x0))" € R*,

Then consider the following, alternative representation of the prediction variance o%:

0?3 = (wT, —1) >0 (fl) =x'Yyx >0,

where x := (wT, —1)T and the positive definiteness of ¥y ensures the nonnegativity of the
prediction variance o%. This really holds, since

Mw —
(w”, —1) <fl> = (w”,-1) (ngw_ CS(OO)> = w'Yw —wley — cfw + C(0)

=C(0) +w'Yw — 2wlcy = 3.

Hence, we can rewrite the above minimization problem into the equivalent and more
compact system
minimum of x” $yx subject to BYx = U,
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where x € R" ! B = (e, 41, 1,41) € ROTDX2 with unit vector e,;; € R™™' and
U:=(-1,0T € R%

This way we wrote our optimization problem in the setting of Theorem 2.15 (p. 8),
since Y is positive definite:

Set A = ¥y and let B and U be given as defined above. Further let S~ be a gener-
alized inverse of BTA™'B, e.g. S~ = (BTAle)_l, since BT A~'B is invertible.

Hence, we minimize the equivalent system x? Ax subject to BTx = U. Theorem 2.15
yields that we in fact achieve the minimum for the variance, which is given by

inf x"Sox= inf xTAx=U"TS"U=U" (B"S;'B)"' U
BTx=U BTx=U
and is attained at

X, = A7'BS™U = %;'B (BTs;'B) " U.

Note that we did not follow this approach earlier in this thesis, since the resulting solu-
tion for the minimized variance and the “optimal” weights requires the inversion of the
matrices Yy and BTY(B. This would be not really efficient and costs a lot of time. Since
the matrix ¥y has to be updated every time for each new prediction point xo, we would
have to invert or decompose both matrices for each single prediction point again. This
would be inefficient and expensive, since we want to perform prediction for many different
prediction points on a grid.

Hence we followed the Lagrange approach. Its final solution only requires the new set-up
of ¢y for a new prediction point. Thus, we have to invert or decompose I' only once
and can use its inverse or decomposition for each prediction point again. The necessary
conditions, i.e. the first partial derivatives equated to zero, are thus sufficient, since we
proved that we in fact achieve the uniquely determined minimum.

A.2 Minimality of the prediction variance in universal kriging

The same applies to the universal kriging case, where we have to deal with the residual
covariances and some more constraints for uniform unbiasedness. Recall the minimization
problem for the prediction variance in universal kriging as given in section 8.4 (p. 67).
We translate it into the covariance setting:

minimum of 0%, = C(0) + w’ Lyw — 2w’ ¢y subject to Fw = f,

Fortunately, we can rewrite this problem into the following equivalent problem analogously
0

to above. For this, let F := F 0 e RO+ and £ = (fOT,—l)T.

0 --- 0]1




A.2 Minimality of the prediction variance in universal kriging 95

Further denote the symmetric and positive definite covariance matrix of the random vector
(Y(x1),...,Y (%), Y (x0))" by By, € RO*DX(+D We obtain

minimum of 0125 = XTEY,OX > 0 subject to FT'x = f‘o,
where x € R"*1,

Since our minimization problem can be written in this compact form, we infer that it
coincides with the setting of Theorem 2.15. Hence, we can apply this theorem again,
since Xy, is positive definite and the constraints can be written in the special form above.
Therefore, we infer that we achieve the minimum in our former computations. I.e. that
the necessary conditions on the weights are sufficient for obtaining the unique minimum
of the prediction variance subject to the unbiasedness conditions.

Finally, we conclude that in both cases, ordinary and universal kriging, the prediction
variances are nonnegative and the necessary conditions for minimality of the underlying
constrained minimization problems of the Lagrange approaches yield in fact the unique
minimum and are hence sufficient. We prefered following the Lagrange approach, since it
yields a nicer, more efficient solution for the kriging weights, variances and estimates.
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