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Chapter 1

Introduction

Weather prediction and prediction of temperatures has a long history. Due to the fact that
the lives of humans have always been affected by weather in lots of different fields like
agriculture, economy in general or even in everyday life, there was always great interest in
predicting the weather. However it is not possible to fix a specific date of birth of weather
prediction.

In this thesis we are going to present new, vine copula based approaches for weather
prediction. Utilization of available spatial information for the purpose of model building
will lead to a distinct reduction in the number of parameters needed to parametrize these
high dimensional vine copula models.

Copulae are multivariate distribution functions which can be understood as a tie be-
tween a distribution function and its marginals and which capture all dependency infor-
mation. Vine copulae, which were introduced by Bedford and Cooke (2001, 2002) and
trace back to ideas of Joe (1996), are constructions of d-dimensional copulae built on bi-
variate copulae only. Bivariate copulae are well understood and easy to compute. Due to
the paper of Aas, Czado, Frigessi, and Bakken (2009) on pair-copula constructions, regular
vines (a special class of vine copulae) got into the focus of a broad field of research.

Throughout the years lots of different methods and ideas of weather prediction and
the (joint) modeling of weather characteristic variables were developed. The research was
intensified in several different directions. The bandwidth of methods range from simple
heuristic predictions to complex mathematical and physical models which for example
rely on dynamical systems. Nowadays also statistical methods play an important role
in weather prediction. In practice approaches from different disciplines are used in a
combined fashion. All modern weather prediction methods have in common, that they
are based on data measurements from a dense network of observation stations all across
the world and data collected by satellites, amongst others.

Also the area of geostatistics or more general spatial statistics aims to propose suitable
models and methods to handle such kind of data. Georges Matheron (1962) was the
one who established geostatistics. He was amongst others inspired by work of the South
African mining engineer Danie G. Krige, after whom Matheron named the popular method
of spatial prediction called kriging. The book of Cressie (1991) is still considered as an
extensive standard reference on spatial statistics, covering a wide range of classical spatial
statistical methods. A continuation of this book to the treatment of spatio-temporal data
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is provided by Cressie and Wikle (2011).

On February 21th, 2013 a Spatial Copula Day organized by Prof. Claudia Czado
and Ulf Schepsmeier was held at the Chair of Mathematical Statistics at the Technische
Universitat Miinchen. The aim of the seminar was to present and discuss different recent
approaches to model spatial data with the help of copulae, which allow a more flexible
modeling compared to the classical geostatistical approaches. Amongst others, first ideas
of the modeling approaches presented in this master’s thesis which are based on vine
copulae were discussed.

In the following we are going to present two new approaches intended to model the
spatial dependencies of spatio-temporal data. Furthermore, prediction methods based on
the presented models are introduced. The exploratory investigations initiating the devel-
opment of the spatial models are based on daily mean temperature data collected over the
period 01/01/2010-12/31/2012 by the German Meteorological Service (Deutscher Wetter-
dienst) at 54 selected observation stations across Germany. The following investigations
on the goodness of the models fitted to the training data set are conducted on a validation
data set consisting of mean temperature time series over the same period as before for 24
additional observation stations in Germany.

Subsequent to this introduction we prepare the model building process by clarifica-
tion of some fundamental concepts applied throughout the thesis. Besides some theory
on copulae, the dependence measure Kendall’s 7 is introduced and the basic statistical
concepts of least squares estimation and linear regression are repeated. Moreover, Ljung-
Box tests are introduced and a summary on elementary graph theory needed to organize
the vine construction in trees is provided. Furthermore, a tool called Fisher z-transform
is presented and two different types of scoring rules which will be used for the purpose of
model validation are given.

The actual model building process is already initiated in Chapter 3. Bit by bit we
develop a joint model for the marginal densities corresponding to the variables defined by
the 54 observation stations of the training data. In the end of this chapter the calculation
of so called copula data by means of the joint marginal model is explained.

Chapter 4 summarizes the basic findings on regular vines (R-vines) of the last years,
which are required to understand the models presented in the subsequent chapters. The
theoretical part on regular vine models is followed by an analysis of the spatial depen-
dencies of the copula data obtained in Chapter 3, which includes the investigation of the
structure of an R-vine model fitted to the data.

The investigations in Chapter 4 initiate the model building process of the first spa-
tial dependency model presented in Chapter 5. The new model which we name spatial
R-vine model relies on a reparametrization of an R-vine model, which exploits the rela-
tionship between the model parameters and the available spatial information. Different
reparametrizations based on distances and elevation differences are compared and the
most promising reparametrization is chosen. An explanation of maximum likelihood es-
timation of the model parameters and its performance are followed by the illustration of
the prediction at a new location based on the specified spatial R-vine model.

The model presented in Chapter 6 is built on the theory of composite likelihood meth-
ods. First the necessary theory on composite likelihood models is introduced, then the
new model structure is set up. The presented model is a composition of low dimensional



canonical vine models which model dependencies locally. Canonical vines (C-vines) are a
special class of vine copulae, having a star like tree structure with a unique root node.
Similarly to the spatial R-vine models a joint reparametrization of the C-vine copula
parameters is selected. This time the parameters are estimated by maximum compos-
ite likelihood estimation. Prediction at new locations is performed by simulation from
conditional distributions which are constructed based on the newly developed model.

Finally an evaluation and comparison of the new models is conducted in Chapter 8.
For this purpose a further spatial model is introduced in Chapter 7, which is set up by
means of classical geostatistical methods.
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Chapter 2

Preliminaries

Throughout this thesis we are going to repeatedly apply different kinds of basic tools. We
briefly present the most important of these recurring concepts in the following.

First of all copulae, the basis for all of our new developed models, are introduced in
Section 2.1. The second section treats dependence measures like Kendall’s 7, which plays a
central role in the modeling process of the spatial models presented in this thesis. Section
2.3 summarizes two important classes of bivariate copulae, elliptical and Archimedean
copulae. The basic statistical concepts of least squares and linear regression are repeated
in Section 2.4. Furthermore, the so called Ljung-Box test, a test for serial autocorrelation
is presented in Section 2.5. A short summary of some elementary graph theory concepts is
provided with Section 2.6. Moreover Section 2.7 gives a definition of the Fisher z-transform
and its inverse. Finally two different types of scoring rules are presented in Section 2.8.

2.1 Copulae

Copulae are an important tool to analyze the multivariate dependence structure of random
variables. The fundamental building blocks of our models are bivariate copulae, so we will
give a short overview over copulae in the following, including a definition, some of their
main properties and a concept called pair-copula construction, which plays an important
role in the model building process of the subsequent chapters. Different types and examples
of bivariate copulae are given in Section 2.3.

For a penetrative introduction to copulae we refer to Nelsen (2006). Our short intro-
duction here is based on Joe (2001, Section 1.6) and Fischer (2011).

2.1.1 Definition and properties

Generally speaking, copulae are multivariate cumulative distribution functions on the unit
hypercube [0, 1] with uniform margins. For our purpose and for the sake of convenience
it is sufficient to give a definition for the bivariate case.

Definition 2.1 (Copula, bivariate case). Let U,V ~ U (0,1). Then the bivariate cu-
mulative distribution function C' : [0,1]* — [0,1] with (U, V) ~ C is called (bivariate)
copula. ]
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The fundamental theorem of Sklar (1959) associates a copula C' to any arbitrary
(bivariate) distribution function F'.

Theorem 2.2 (Sklar, bivariate case).

(i) Let (X,Y) ~ F, where F is a bivariate cumulative distribution function and Fx, Fy
are the continuous marginal distribution functions of X and 'Y, respectively. Then
there exists a unique copula C : [0,1]? — [0,1] such that for all (z,y)" € R? holds,
that

F(r,y) = C (Fx(x), Fy (1)) (2.1.1)

(ii) Let Fx, Fy be arbitrary univariate distribution functions and C' be a bivariate copula.
Then F : R? — [0,1] defined through Equation (2.1.1) is a bivariate distribution
function with marginals Fx and Fy .

Remark 2.3.

(i) Equation (2.1.1) explains where the name copula stems from. The copula C' ”cou-
ples” the marginal distributions F'x and Fy to the joint distribution F'.

(ii) If F in Equation (2.1.1) is continuous, and Fy', Fy;' are the quantile functions of
Fx and Fy, then the uniquely determined copula C' is given by

Clu,v) = F (Fy'(u), Fy ' (v) . (2.1.2)

An important concept which is frequently used in the context of copulae is the prob-
ability integral transform. It says that on the one hand it holds for a univariate random
variable Z ~ F that U = F(Z) ~ U (0,1) and on the other hand Z = F~}(U) ~ F for
U~ U(0,1) and F a continuous distribution function. If we consider now the setting
given in Remark 2.3 (ii), this yields, that (Fx(X), Fy(Y)) ~ C, if (X,Y) ~ F. Moreover
if (U,V)~ C, then (Fy'(U),F,*(V)) ~ F.

Furthermore we give some basic properties of (bivariate) copulae in the following.

Proposition 2.4. Let C : [0,1]> — [0,1] be a bivariate copula and u,v € [0,1]. Then

Q

u, 0
0,

Q
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These properties can be easily checked in the case of Remark 2.3 (ii) or for the following
basic examples of bivariate copulae.

Example 2.5 (Independence copula and Fréchet-Hoeffding bounds). Let u,v € [0, 1].
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(i) Independence copula: In the case of independent random variables X, Y, Equation
(2.1.1) can be written as Fx(z) - Fy(y) = C (Fx(x), Fy(y)), which leads to the
independence copula

C*H(u,v) = u-v.

(ii) Fréchet-Hoeffding bounds: The upper (bivariate) Fréchet-Hoeffding bound is given
through
CY(u,v) :== min {u,v},

whereas the lower (bivariate) Fréchet-Hoeffding bound is defined as
Ct(u,v) == max {u+v—1,0}.

For every arbitrary copula the inequality
Ch(u,v) < C(u,v) < CY(u,v)

holds. J

Lower Fréchet-Hoeffding bound Independence copula Upper Fréchet-Hoeffding bound

0.00.0 0.00.0

Figure 2.1.1: Visualization of the three copulae of Example 2.5. Left: Lower Fréchet-
Hoeffding bound (z = C%(u,v)). Middle: Independence copula (z = C*(u,v)). Right:
Upper Fréchet-Hoeffding bound (z = CY (u,v)).

2.1.2 Pair-copula construction

Following Aas, Czado, Frigessi, and Bakken (2009) we briefly introduce the concept of pair-
copula construction (PCC). For some theoretical background on pair-copula constructions
we refer the reader to Joe (1996), Bedford and Cooke (2001, 2002) and Kurowicka and
Cooke (2006).

Aas et al. (2009) summarize the pair-copula construction method in a concise fashion:
The "radically new way of constructing complex multivariate highly dependent models [...]
is based on a decomposition of a multivariate density into a cascade of pair copulae, applied
on original variables and on their conditional and unconditional distribution functions.”
Moreover they (Aas et al., 2009) call it ”a simple and powerful tool for model building.”
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For a formal explanation of pair-copula constructions we consider a random vector
X = (X1,...,Xy)", with absolute continuous distribution function F and continuous,
strictly increasing marginal densities, denoted as Fi, ..., Fy. Furthermore we make the
general assumption, that pair copulae do not depend on the conditioning variables. Usually
this assumption is called simplifying assumption.

First, the joint probability density function f(xy,...,24) of X can be decomposed
uniquely (aside from relabeling) into a product of a marginal density and d—1 conditional
densities, i.e.

f(xl, e ,$d> = f1<x1) . f2‘1<x2 ’ 371) . f3|12(563 | Ty, 132) cee fd|1~~~d—1<xd | T1y... 7l‘d,1). (213)

The next step is to depict the d — 1 conditional densities in (2.1.3) in terms of pair-
copulae respectively bivariate copulae and marginal densities. From (2.1.1) we obtain

0 0

frz(x1,22) = 8_1‘1(9—.’1721?12(:81’3:2) = ci2 (Fi(x1), Fa(22)) - fi(z1) - fo(xe) (2.1.4)

by partial differentiation, where ¢ (+) denotes the density of the bivariate copula corre-
sponding to Fy respectively fi5. From this follows

fop (w2 | 1) = 1z (Fi(21), Fa(22)) - fo(zo) (2.1.5)
for the second term in (2.1.3). The calculations to get the third factor of (2.1.3) are a

little bit more involved. We advance as follows: First we calculate

Fanals | 21, 23) = Fros(wy g, w5) _ foyn(wa, 25| @0) - filen) _ fosp(wo, ] 21)

f12($1,$2) f12($17$2) B f2|1($2|$1)
Together with
o 0
f23\1($2, T3 | $1) = 8_9328_:7531?23‘1(@’ T3 | $1)
g 0

= 8—1328—1:3023;1 ((F2|1($2 | ZL’l), F3‘1<;U3 | xl)))

= C23;1 (F2|1(372 | xl), F3|1($3 | 1’1)) : f2|1($2 | Il) : f3|1($3 | 961)

and a relabeled version of (2.1.5) we obtain

f3|12(5U3 ’ I, 1‘2) = C231 (F2|1(ZU2 ’ 351), F3|1(9C3 ‘ 3131)) “C13 (Fl(xl)a F3(1'3)) : f3(1'3)- (2-1-6)

We easily recognize that this decomposition is not unique. If we would have decomposed
fi23(x1, x2, 23) in the first step as

f123(51717352>$3) = f13|2(331>$3 ’ 552) : f2($2)

an analogous derivation would have led to the decomposition

fapa(zs| 21, m2) = cigo (Fip(z1 | 22), Fyp(xs | 22)) - cog (Fa(ws), Fs(x3)) - f(zs).  (2.1.7)

We conclude that in general there is no unique pair-copula construction.
Before we finish the general d-dimensional case of the decomposition, we have a look
at the following three-dimensional example.
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Example 2.6 (Pair-copula construction, d = 3). According to (2.1.3) we obtain

f(xh 91?27353) = f1(951) : fz\l(ivz ’ $1) : f3|12($3 ’ I, 952)

for d = 3. With (2.1.5), (2.1.6) and (2.1.7) we get the two alternative pair-copula con-
structions

f(x1, 9, 23) = fi(21) - fa(x2) - fa(x3)
“e1z (Fi(wy), Fa(w)) - cug (Fi(w1), F3(x3))
< ez (Fopi (w2 | 31), Fap (23 | 1))

and

f(x1, 22, 23) = fi(21) - fa(w2) - f3(x3)
- C12 (F1(1U1), F2(I2)) €93 (F2($2), F3($3))
 C13;2 (F1|2($1 | 22), FS\Z(xS | I2)) .

Note that there is (only) one further way to decompose the density f(z1,xs,x3), i.e. there
are exactly three different pair-copula constructions in the three-dimensional case. 2

To finalize the general case of the pair-copula construction we need a generalized
formula for the conditional densities

fi|1---i71(l‘i|x17"'7xi—1)7 i:27"'7d7
in (2.1.3). To shorten the notation, we write
xz={x: 1 €L},

for arbitrary index sets Z. Then we obtain

fi\l-..i—1($z' |21, T) = CijiT_; (E‘\Lj (4 | mz_j), Fj\z,j (z; | iBI_j)) fi|I,j (2 | CBI_J-),
analogous to the derivation in the three-dimensional special case above, where: = 2, ... ,d,
Jj is an arbitrary index out of {1,...,i — 1},

T;={1,.. . i-1\{j={1,....j—1j+1,...i—1}

is the index set up to i — 1, where the j-th index is removed, and ¢;j;z_; (-, -) is a bivariate
copula density. This formula allows it to rewrite (2.1.3) in the desired product form, where
all building blocks are bivariate copulae or marginal densities.

It remains to give an expression for the calculation of the conditional distribution
functions which occur in the pair-copula construction. Therefore we consider the two
indices k,l € {1,...,d}, k # [, and an arbitrary index set J which satisfies {I} C J C
{1,...,d}\{k}. Moreover we define J_; .= J\{l}. According to Joe (1996) we have

0 Crg, (Fug(wi|ls,), Fyz (z|xs.,))
OFyg (v |z7.,) ’
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where Cy.7, (+,+) is a bivariate copula. In the univariate case, where J = {l} holds,
(2.1.8) can be written as

0 Okl (Fk<xk)7 F}(JZ;))

Fku(lﬁk |7) = OF,(x;)

(2.1.9)

The special case of Equation (2.1.9), where the univariate margins are uniform, i.e.
uy = Fy(x) = xp, w = Fj(z;) = x;, and a dependence of the copula Cy;. 7, (+,-) on some
parameters @ is indicated, plays an important role in some simulation and maximum
likelihood estimation algorithms. That’s why it got its own name in the literature. The
so called h-functions are defined as

0 Ch (ug, up; 0)

h(uk,ul,O) = 8ul

This concludes the section about pair-copula constructions. In Chapter 4 the developed
formulas and the concept of pair-copula construction will be picked up again and applied
to a special case.

2.2 Dependence measures

The data investigated in this thesis stems from spatially spread observation stations. The
reason why we investigate such kind of data is the spatial dependence of the observations
at different locations. Hence we need to introduce some measures of dependence, to be able
to model and to capture these dependencies. We will focus on two very basic dependence
measures, Kendall’s 7 and tail dependence. For further dependence concepts and details
we refer the reader to Joe (2001, Chapter 2).

2.2.1 Kendall’s 7

Kendall’'s 7 plays a central role in the new spatial models that are introduced within
this work, as the parametrization and the dependence structure of these models can
be characterized via Kendall’s 7’s. Another rank correlation measure is the so called
Spearman’s p. For an extensive introduction to rank correlation methods see for example

Kendall (1970). Besides we refer to Joe (2001, Section 2.1) and Nelsen (2006, Chapter 5).

Definition 2.7 (Kendall’s 7). Let (X,Y) and (X', Y”) be independent pairs of continuous
random variables, each with bivariate, cumulative distribution function F'. Then the rank
correlation coefficient Kendall’s 7 is defined as

xy =P(X-X")Y -Y)>0)-P(X-X")Y-Y')<0) (2.2.1)
=2P((X - X)(Y =Y") > 0) — 1.
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The first term in (2.2.1) is the probability that the two pairs (X,Y) and (X', Y”)
are concordant, i.e. that both components of one of the two pairs are greater than the
corresponding components of the other pair. In formulas this means, that either X > X’
and Y > Y  or X < X" and Y < Y’. Accordingly the second term in (2.2.1) represents
the probability that one component of a pair is larger than the corresponding one of the
other pair and the other component is smaller, i.e. X > X’ and Y <Y’ or X < X’ and
Y > Y. In these two cases the two pairs are called discordant.

Now we want to give a definition for an empirical version of Kendall’s 7. Therefore
we have to note, that in general concordance and disconcordance are not the only cases
that can occur. It is also possible that so called ties occur. This is the case when either
X=X Y=Y or X =X and Y =Y’ But if we consider only continuous random
variables, ties occur with a probability of zero.

Q
—

@
o

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 2.2.1: Visualization of concordance, disconcordance and ties. The points (0.2,0.4)
and (0.8,0.7) are concordant, (0.2,0.4) and (0.8,0.2) are disconcordant and (0.8,0.2) and
(0.8,0.7) are tied.

Definition 2.8 (Empirical Kendall’s 7 in the case of no ties). Let (z;,v;),i=1,..., N, be
N independently sampled observations of a pair of continuous random variables (X,Y") ~
F'. Then the empirical Kendall’s T is defined as

d 2
Fo 0 2 4 (2.2.2)

G G 6)

where
¢ = # concordant pairs = #{i < j:x; < xj,y; <yj or ; > T,y > Y;}
and

d = # disconcordant pairs = # {i < j:x; < zj,y; > y; or x; > xj,Yy; < Y;}.
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Note that (g) = N(N —1)/2 = ¢+ d is the total number of distinct pairs (x;,y;),
(x;,9y;), i < j. Comparison of (2.2.1) and (2.2.2) yields that the empirical Kendall’s 7 is
defined analogously to the theoretical version of Definition 2.7.

From Definition 2.7 some useful properties of Kendall’s 7 can be derived.

Proposition 2.9 (Properties of Kendall’s 7). Let (X,Y) ~ F be a pair of continuous
random variables with copula C. Then:

(1) =1 <7xy <1;
(11) if X, Y are independent, it holds Txy = 0;
(i1i) if g : R — R is a strictly increasing function and Y = g(X), then 7xy = 1;
() if g : R — R is a strictly decreasing function and Y = g(X), then 7xy = —1;
(v) if g1 : R =R, g2 : R = R are strictly increasing functions, then Ty, (x),g,(v) = TX,v;
(vi) Txy = 4fC’dC' —1.

While properties (i)-(iv) of Proposition 2.9 are the typical properties which we expect
to be fulfilled by correlation measures, the properties (v) and (vi) depict the great ad-
vantage of the rank correlation measure Kendall’s 7. Property (vi) yields, that 7xy only
depends on the copula and not on the hole bivariate distribution function F'. This means,
that the dependence given through the copula is captured in 7.

2.2.2 Tail dependence

Additionally to Kendall’s 7, which is a measure for overall correlation, we consider the
dependence concept called tail dependence, measuring correlation in the tails of multivari-
ate distributions. For this purpose we follow the approach of Joe (2011). For properties
of tail dependence in the context of vine copulae (which will be introduced later on), we
advert to Joe, Li, and Nikoloulopoulos (2010).

In contrast to rank correlation measures, tail dependence is a measure for the de-
pendence of extreme events. Informally spoken there exists tail dependence if there is
a positive probability that an extreme value close to 0 or 1 within [0, 1] occurs for one
variable of a copula, given that an other variable already takes an extreme value close to
one bound of [0, 1].

Definition 2.10 (Positive tail dependence in the case of bivariate copulae). Let (U, V') ~
C'. If the limit

Ay =1m PU <ulV <u) = lm P(V <ulU <u) = lim S
u\0 ) D U

exists and A\rp € (0, 1], then C has lower tail dependence. If A, = 0, C' has no lower tail
dependence. Accordingly, if the limit

|- 2u+C
Mot = i P(U > u|V > ) = lim P(V > u|U > u) — lim 220 Clww)
u/1 u,/ u 1 1—u
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exists and Ayy € (0,1], then C has upper tail dependence. If A\yy = 0, C' has no upper
tail dependence. 2

Definition 2.11 (Negative tail dependence in the case of bivariate copulae). Let (U, V') ~
C. If the limit

_ 1 —
/\LU::limP(l—U>u|V>u):11mP(1_VSU|USU):hmu C(u, u)
u N1 u\0 u\0 u

exists and Ay € (0, 1], then C has (negative) lower-upper tail dependence. If A\py =0, C
has no (negative) lower-upper tail dependence. Accordingly, if the limit

—C(1 -
)‘UL::hmP(U>U’1_V>U):hmP(Vgu]l—Ugu):hmu (1 —wu,u)
v uNo uN\O 1—u

exists and Ay € (0, 1], then C has (negative) upper-lower tail dependence. If Ay, =0, C
has no (negative) upper-lower tail dependence. 2

From the definitions follows, that Arr, A\vu, Arv, Avr € [0, 1]. Figure 2.2.2 illustrates
the different types of tail dependence. The corresponding Kendall’s 7’s are indicated in
brackets.

2.3 Important classes of bivariate copulae

In this section we want to present some important bivariate copulae, which are uti-
lized in the model building processes of the subsequent sections. The copulae, which
we take into consideration, stem from two different classes of copulae, the elliptical and
the Archimedean copulae. For a broad study of different kinds of copulae, we refer the
reader to Joe (2001).

2.3.1 Elliptical copulae

According to Fischer (2011), elliptical copulae are copulae that are linked to elliptical
distributions. They are applied in different areas such as statistics and econometrics. To
construct a bivariate elliptical copula, (2.1.2) is employed. In the following we highlight
the construction and some properties of two prominent (bivariate) elliptical copulae, the
Gaussian and the Student-¢ copula in two dimensions.

Example 2.12 (Gaussian copula, bivariate case). Let ®, be the distribution function of
the bivariate normal distribution N5 (0, X) with zero mean, unit variances and correlation
p € (—1,1), i.e. covariance matrix

Furthermore let ® be the distribution function of the standard normal distribution N (0, 1)
and ®~! the corresponding quantile function. Application of (2.1.2) yields the (bivariate)
Gaussian copula

C(u,v;p) = @, (27" (u), 2 ' (v)).
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Its density is given as

1 22 + % — 2pxy 1, 9
C(U,U;p>:1—_p2€Xp{_ 2(1_)02) exp 5(1’ +y) )

where 2 = ®~!(u) and y = ®~!(v) (cp. Joe, 2001). One can easily see that the density de-
generates to 1 if p = 0, i.e. for p = 0 the Gaussian copula coincides with the independence
copula C*. J

Example 2.13 (Student-¢ copula, bivariate case). Compare Demarta and McNeil (2005)
for the following derivation of the Student-¢ copula and the stated properties. Let T, g
be the cumulative distribution function of the bivariate Student-t distribution with v > 2
degrees of freedom and density corresponding to

L) () R @y
r(3) S ot te)

(9

and p € (—1,1). Furthermore let 7, be the cumulative distribution function of the uni-
variate Student-¢ distribution with v > 2 degrees of freedom and T, ! the corresponding
quantile function. Application of (2.1.2) yields the (bivariate) Student-t copula

tu(z,y) =

where

C(u,v;p) =T, 5 (T, (u), T, (v)).

[ %

Its density is provided by

L e [0+2) )]

2
L (v+2))
A TEOR (e ey

Y

where z = T, ! (u) and y = T, (v). For the positive tail dependence holds, that

ﬂ)
AL = pp =21, —r+1 )
LL UuU +1( v \/m

Contrary we have

v1+
/\LU:)\ULZQTV—i—l (—Vl/—f—]_ \/m) .

for the negative tail dependence (see Joe, 2011). 4

The Gaussian copula of Example 2.12 is the limiting case of the Student-t copula for
v — oo. This yields zero tail dependence for the Gaussian copula. Figure 2.3.1 illustrates
the contour plots of Student-t respectively Gaussian copulae for different combinations of
the parameters p and v, given normal margins.

Fang, Fang, and Kotz (2002) deliver a simple relationship between Kendall’s 7 and p
which is valid for elliptical copulae.
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Figure 2.3.1: Contour plots with normal margins of Student-t copulae, for different com-
binations of the parameters v and p.
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Proposition 2.14 (Kendall’s 7 for Gaussian and Student-¢ copula). For (X,Y) ~ C,
where C' s either the Gaussian or the Student-t copula, we have

2 :
Txy = — arcsin(p).
m

Finally we want to address the symmetry properties of the investigated copulae. For a
copula C' we talk of reflection symmetry if ¢ (u,v) = ¢ (1 — u,1 — v). This is true for both,
the Gaussian copula of Example 2.12 and the Student-t copula of Example 2.13. Moreover
both copula types are symmetric in their arguments. That means that C'(u,v) = C(v, u).

2.3.2 Archimedean copulae

The second class of copulae which we want to introduce are (bivariate) Archimedean cop-
ulae. Due to their properties and ability to model different kinds of (tail) dependence, they
became quite popular in the area of pair-copula constructions. The following definitions
and propositions are inspired by the compact introduction on Archimedean copulae in

Kurowicka and Cooke (2006).

Definition 2.15 (Generator of an (bivariate) Archimedean copula and its inverse). A
strictly convex, strictly decreasing function ¢ : [0, 1] — [0, oo] with existing second deriva-
tive ¢”(x) > 0 for all z € (0, 1] and ¢(1) = 0 is called generator of an Archimedean copula.
Its (quasi) inverse is defined as

_ “z) for 0 <z < (0
<p[ 1](:1:) — ¢ (z) ©(0)
0 for ¢(0) < z < 0.

Note that p=(z) = o7 (z) if p(0) = cc.

Definition 2.16 (Archimedean copula, bivariate case). Let ¢ be a generator with inverse
@l and u,v € [0,1]. Then C defined by

C(u,v) = o7 (p(u) + p(v))
is called (bivariate) Archimedean copula. 4

Proposition 2.17 (Density of an Archimedean copula, bivariate case). Let C' be an
Archimedean copula with generator . Then the copula density is given as

_ " (Cu)e (e (v)
c(u,v) = { (¢ (Clu0))? Jor p(u) + ¢(v) < ¢(0)

0 Jor o(u) + ¢(v) > ¢(0).
Eventually we state some properties that are valid for Archimedean copulae in general.

Proposition 2.18 (Properties of Archimedean copulae). Let C' be an Archimedean copula
with generator ¢ and u,v € [0,1]. Then the following properties hold:



18 CHAPTER 2. PRELIMINARIES

(i) C is a copula.
(ii) C is symmetric in its arguments, i.e. C(u,v) = C(v,u).
(iii) If o(x) = —aln(x) with a > 0, then C = C*, i.e. C equals the independence copula.
One further advantage of Archimedean copulae is that there exists an easy formula
for the calculation of Kendall’s 7 in dependence of the generator function and its first

derivative (cp. Genest and MacKay, 1986).

Proposition 2.19 (Kendall’s 7 for Archimedean copulae). For (X,Y) ~ C, where C is
an Archimedean copula, we have

In the following we are going to state some examples. Since most of our later calcu-
lations base on the R (R Development Core Team, 2012) packages CDVine (Brechmann
and Schepsmeier, 2013) and VineCopula (Schepsmeier, Stober, and Brechmann, 2013),
we will stick to their naming conventions and parameter restrictions. Besides, formulas
for generators, copulae, their respective densities, expressions for Kendall’s 7’s and for tail
dependence as well as further information is taken from Joe (2001), Nelsen (2006) and
Embrechts, Lindskog, and McNeil (2003), if not stated differently.

Example 2.20 (Clayton copula). This bivariate copula family was first discussed by
Clayton (1978). It depends on one parameter 6 € (0,00) and is generated by

@(@:%(5_1),

We can write the copula as

and get

146 (1 1 —(@+/e)
C(U,U;G)IW (@—i_ﬁ_l)

for its density. Kendall’s 7 can be expressed as
0
Xy = ——.
XY =5

For the (positive) tail dependence we obtain Az; = 27 and A\yy = 0. 4
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Figure 2.3.2: Visualization of a Clayton copula with § = 2. Left: Random sample (N =
1000). Middle: Contour plot with normal margins. Right: Density on [0.05,0.95]2.

Example 2.21 (Gumbel copula). Gumbel (1960) was the first to discuss this bivariate
copula family. It is generated by the one parametric generator

pl(z) = (~Inz)”,
where it holds 6 € [1, 00) for the parameter. Following we can write
1/9
C (u,v;0) = exp (— ((— Inu)’ + (—In v)9> )
for the copula and

C (u,v;0) (Inulnv)?=! 0 o\ V0
c(u,v;0) = 7 | ((=Inu)” + (=Inv) +60-—1
(uv) <(— Inw)’ + (—1In U)9> / (< > )

for the corresponding density. We obtain

0—1

XYy = —9

for Kendall’s 7. There is no lower (positive) tail dependence and it holds Ay = 2 — 2'/°
for the upper (positive) tail dependence. J

Example 2.22 (Frank copula). The bivariate copula family, which is nowadays known
as the Frank copula family, was first treated by Frank (1979) in a non-statistical context.
Dependent on one parameter 6 € R\ {0}, the generator is given by

1—¢e?

.

This yields
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Figure 2.3.3: Visualization of a Gumbel copula with § = 2. Left: Random sample (N =
1000). Middle: Contour plot with normal margins. Right: Density on [0.05,0.95]%.

for the copula and we get

0 (1 o 6—9) e—&(u—l—v)
(1—ef—(1—e%)(1- 6*9”))2

¢ (u,v;0) =
for its density. The respective Kendall’s 7 is
4

XYy = 1-— 5 (1 — Dl(ﬁ)) R

where

k[ k
Dy(x) = / Y _dy, keN,
0

zk e¥y —1

is the Debye function. The Frank copula exhibits no (positive) tail dependence. Moreover
it is reflection symmetric, i.e. it holds ¢ (1 — u, 1 — v;0) = ¢ (u, v;0) for all u,v € [0,1].

o
- 7 ® \
«Q _ N
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o / Y
< ]
o - _
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~
S N
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o X . - \
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Figure 2.3.4: Visualization of a Frank copula with § = 8. Left: Random sample (N =
1000). Middle: Contour plot with normal margins. Right: Density on [0.05,0.95]%.
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Example 2.23 (Joe copula). This last example of a bivariate copula family was first
treated intensely by Joe (1993). It depends on one parameter § > 1 and is generated by

p(z)=In(1-(1- x)‘))_l :
The copula is given by
Cu,v;0) =1— ((1—u)’ + (1—0v) — (1—u)’(1—0v)")"
and its density is

(I—w)l1=v)f (@ -1+1-w)+(1-v)—(1—-u)Pl- 0)9).

c(u,v;0) = 2-1/p
( ) (1= w)f+ (1 =) = (1—u)0(l—v)9)*"

In terms of 6, Kendall’s 7 can be expressed as

1

4 _
Txy =1+ 7 yIn(y)(1 — y)2(1 9>/9dy.
0

Once again there is no lower (positive) tail dependence, but it holds Ay = 2 — 2" for the
upper (positive) tail dependence. Here the results for Kendall’s 7 and the tail dependence

are taken from Schepsmeier (2010). g
o
o ©
© N
2
o
©
©
o —
<
S ] o
|
N
o 3 N
o | "'!-'- -
C T T T T T 1
00 02 04 06 08 10 -3 -2 -1 0 1 2 3

Figure 2.3.5: Visualization of a Joe copula with § = 2.5. Left: Random sample (N = 1000).
Middle: Contour plot with normal margins. Right: Density on [0.05,0.95]2.

2.3.3 Survival copulae and copulae with negative dependence
structures

In the previous subsections we have seen, that all of the considered copula families exhibit
symmetry in their both arguments, but not all of them are reflection symmetric, e.g. the
Clayton and the Gumbel copula. These copulae are moreover asymmetric in terms of tail
dependence. Sometimes there is only upper tail dependence and sometimes only lower
tail dependence. This leads to the idea to extend the previously considered copulae by
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reflecting their arguments, i.e. we consider the reflection of the first, the second and both
arguments in an arbitrary copula C'(u,v) at 1/2.

Let’s first consider reflection in the first argument, i.e. let (1—U, V') ~ C. The resulting
copula is given as

Cl'(u,v) =v—C(1 —u,v) with density c'(u,v) = c(1 —u,v).
Now we investigate reflection in the second argument, i.e. let (U,1 — V) ~ C. We obtain
C*(u,v) =u— C(u,1 —v) with density c*(u,v) = c(u,1 —v).

Finally we are also interested in the case where both arguments are reflected. We have to
consider (1 —U,1 — V) ~ C. This results in the copula

C®(u,v) =u+v—1+C(1 —u,1—v) with density ¢"(u,v) :=c(l —u,1—v),

which is called survival copula.

Our idea for these extensions stems from Joe (1993). Often these copulae are also
called rotated copulae. In the order given above, they are referred to as 90°, 270° and
180°-rotated copulae, respectively. For this naming convention we want to give Czado
and Stober (2012) as a reference.

2.4 Least squares and linear regression

As least squares estimation and linear regression are essential tools in lots of our modeling
processes, we give a short overview of the most important concepts and results on these
topics. The following is based on Czado and Schmidt (2011).

In the context of regression, we consider a setting as follows. The goal is to model a
response vector Y = (Y1,...,Y,)" with realizations y = (y1,...,¥,) . The models are
build on explanatory variables, i.e. we have k covariates &; = (z1;,...,Zn;) ", 7 =1,..., k.

2.4.1 General regression models

Now let us first define a general regression model.

Definition 2.24 (General regression model). Let 8 = (61,...,6,)7 € © be an (un-
known) parameter vector out of the r-dimensional parameter space © C R". Moreover let

G1s- -, 0n : RF x © = R be parametric functions. Then
K:gz(xlbaxzkyg)_'_gu 2:1,,77/, (GRM)
is called general regression model, if €1, ..., e, fulfill the white noise conditions (R).

(R) It holds for the random variables ¢1, ..., &,, that
(i) E(e;) =0,i=1,...,n,

(i) Var(e;) =02 i=1,...,n, for 0 > 0 unknown and
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(ili) Cov(e;,ej) =0,1<i#j<n. g

Consequently the errors of these regression models exhibit a constant (homogeneous)
variation around zero and they are not correlated among each other. However it may
occur in practice, that condition (ii) of (R) is to strong. To weaken it, we consider (known)
weights w; > 0,1 =1,...,n, and replace (ii) by

(ii’) Var(g;) = o?w;, w; > 0,7=1,...,n, known, o > 0 unknown,

which allows for heteroscedasticity. We denote the conditions (R), where (ii) is replaced
by (ii’), as (R’). If we now set

this leads to a weighted regression model

lehz(a:zl,,xzk,ﬂ)—i—af, 1= 1,...,n, (241)
with hy,...,h, :RF x© — R and & = 6Z~wi_l/2, t=1,...,n. For ,...,¢, which satisfy
the conditions (R’), we can follow directly, that £}, ..., ¢’ satisfy (R), since

Var(e; :
Var(e}) = ar(e:) = o, 1=1,...,n.
Wi

Following we can treat the model given in (2.4.1) in the same way as a general regression
model (GRM), i.e. we found a way to solve a heteroscedastic regression by means of
homoscedastic regression.

2.4.2 Least squares estimation

We proceed with a definition of the residual sum of squares in the framework of general
regression models and eventually present the concept of least squares estimation.

Definition 2.25 (Residual sum of squares). For a general regression model (GRM) the
residual sum of squares @ : © x R™ — [0, 00) is defined by

n
2

Q(0,y) = Z(?Jz = gi(Ta1, - .. ,ink;e)) :

i=1

(2.4.2)

|

Definition 2.26 (Least squares estimator). If there exists a measurable function 6 :
R™ — ©, such that

Q <§(y),y> <Q <§, y> for all @ € 0,y € R,

then we call §(Y) least squares estimator (LSE) of a general regression model (GRM).
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If the parameter space © is open, the least squares estimator 0 has to fulfill the so
called normal equations

0 .
= Q0.Y)lo_g,) =0, j=1....m (2.4.3)

00;
>: , Jg=1...,r
6=0(y)

Sometimes these equations may be solved explicitly, e.g. if the g;, + = 1,...,n, are linear
functions, but often numerical methods are needed.

. 0
(2é>2) Z <(yz - gi(fbil, ey Tiks 9)) ) a_ejgi(ffil’ o Liks 0)

i=1

2.4.3 Linear models

Next, an important special case of regression models, the linear models, and some prop-
erties of these are summarized.

Definition 2.27 (General linear model). A general regression model (GRM) is called

general linear model, if the functions ¢i,..., g, : R¥ x © — R, are given by
9i(@i, - T B) = Bo + Brva + ...+ B, i=1,...,n, (LM)
where B = (Bo,..., )" € R” with r = k + 1 and if it holds for the errors that &; Y
N(0,0%),i=1,...,n, with ¢ > 0. N
If one merges the covariates into a design matriz
I ST IREE A7
X=1: + "~ |,
1 Tn1  Tnk
and consolidates the errors in a vector € = (gy,...,&,)", the general linear model (LM)
can be rewritten in matrix-vector notation as
Y = X3 +e, e~ N, (0,,0°1,), (2.4.4)

where 0,, is a vector consisting of n zeros and [,, an n x n identity matrix. Note that the
least squares estimator of (2.4.4) can be calculated explicitly from the normal equations
(2.4.3) as
BY)=(X'X)" XY,
if X has full rank. Moreover it holds that
BY)~N (B,0°(XTX)™").

Based on this property it is possible to perform hypothesis tests on the significance of the
parameter estimates 3(y).

Finally we will present the so called coefficient of determination and an adjusted
version thereof.
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Definition 2.28 (Coefficient of determination). For a general linear model (LM) we
define the total sum of squares by

SSior = |y — 1.7%,

where 1,, is a vector of n ones and § = %ZLI yi- The residual sum of squares is given as
~ 2

SSres = Hy - Xﬁ(y)
Then the coefficient of determination and its adjusted version are defined as

SSres (n — 1)SShes
SStot (n — T)SStot ’

R?:=1-—

and dej =1

|

The coefficient of determination measures the percentage of the total variability in the
data explained by a linear model. Whereas R? increases when an additional covariate is
added to the model, dej is adjusted for this effect and designed for the comparison of mod-
els with different numbers of covariates. We are going to use the above defined measures
for the purpose of model building, in order to compare models and model components by
means of explanatory power.

2.5 The Ljung-Box test

The Ljung-Box test (cp. Ljung and Box, 1978) is a statistical test intended to check if
the error terms specified by a model for a discrete time series {X;,t =1,..., N} exhibit
no autocorrelation up to a certain lag m.

Usually the time series under consideration are modeled in terms of a so called
autoregressive-moving average (ARMA (p,q)) model, i.e. as

P q
X =c+ Z OiXi—i +e0+ Zﬁﬂt—h

i=1 i=1
where the components of the process {e;,t = 1,..., N} are i.i.d. with zero mean and finite
variance o2. Then the null hypothesis tested by the Ljung-Box test is given as

Ho . p1<€t> =...= Pm(&) = 0,

where m > p + ¢ and
Zi\;kﬂ Et—kEt
D1 €

is the autocorrelation with lag k of the process {g;,t € N}. The test statistic on which the
test is based is given by

N —

=

Qo) = N +2) Y 2
k=1

For large N it is approximately x7, , , distributed.
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2.6 Graph theory

Furthermore, we want to take a brief look at graph theory, since the so called vine copula
models, which build the base for our models in the subsequent chapters, are systematized
via graphs. We refer to the comprehensive introduction of graph theory in Diestel (2010,
Chapter 1) and pick out the concepts and definitions which are important for our purposes.

Definition 2.29 (Graph). Let V be an arbitrary set and & C {{v,w} : v,w € V}. Then
the pair G = (V, €) of the sets V and & is called graph. An element v of V is called vertex
or node of the graph G. Each element e € £ is named edge. J

Usually graphs are visualized in a way, where the vertices v € V depicted as

®

are arranged (arbitrarily) over a plane. Moreover two vertices v,w € V are connected by

lines, if {v,w} € &.

Example 2.30. Figure 2.6.1 is an example of a graph G = (V, ) with vertex set V =
{1,...,8} and edges in £ = {{1,2},{2,3},{3,4},{3,7},{4,5},{5,6},{6,7}}. N

OO

7 (6) 5
(6)

Figure 2.6.1: Example of a graph.

As we are interested in a special class of graphs we need some further definitions.
Definition 2.31 (Degree). Let G = (V, €) be a graph. Then the set £(v) C & of all edges
at a vertex v € V is defined as

Ew)y={ecf :vee}.
This allows to define the degree of a vertex v € V as
deg(v) = #E(v),
i.e. deg(v) equals the number of edges at the vertex v. 4
Definition 2.32 (Path). Let P = (V',&’) be a sub-graph of a graph G = (V, &) with

vertex set of the form
V' ={v1,...,u,} TV
and edge set
E={{v, v}, ... {vn1,00}} CE,
where n € N, and let v; #v; foralli=1,...,n,j=1,...,n,4# j. Then we call P path
in G. In this case the vertices v; and v,, are called ends. J
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Definition 2.33 (Connected). Let G = (V, £) be a non-empty graph. We call G connected
if for every pair v, w of vertices in V there is a path P C G with ends v and w. J

Let us reconsider Example 2.30 and Figure 2.6.1. We easily see that deg(l) = 1,
deg(3) = 3, deg(2) = deg(4) = deg(h) = deg(6) = deg(7) = 2 and deg(8) = 0. For exam-
ple, the unique path between the vertices 1 and 3 is given as P = ({1, 2, 3}, {{1,2},{2,3}}).
Notice that P’ = (V',£) with V' = V\{8} is no path, since the maximum allowed degree
of a vertex of a path is two, but it holds deg(3) = 3. Moreover there is no edge that links
the vertex 8 to any other vertex. It follows, that G is not connected.

Definition 2.34 (Cycle). Let G = (V,€) be a graph and P = (V',£’) C G be an arbitrary
path in G with V' = {vy,...,v,} and & = {{vy,v2},...,{vn_1,v,}}, where n € N. Let
e={v,v,} € E Then C = (V',E Ue) C G is called cycle in G. 4

Example 2.30 yields an example for a cycle. Here a cycle is given through the sub-graph
C=V,&) of Gwith V' ={3,...,7} and & = {{3,4},{4,5},{5,6},{6,7},{3,7}}.

Finally we are ready to define the special class of graphs, which we are interested in.
Definition 2.35 (Tree). A connected graph 7 = (V, E) without cycles is called tree.
To learn about the properties of trees, we state the following

Proposition 2.36 (Properties of trees). For a graph T = (V, &) the following properties
are equivalent:

(i) T is a tree.
(ii) There is a unique path between two arbitrary nodes in V.

(i11) T is minimally connected, i.e. T is connected but for e € € and & = E\{e},
T = (V,E&) is not connected.

(iv) T is mazimally acyclic, i.e. T has no cycle but for v,w € V such that e = {v,w} ¢ &
and & =E U{e}, T' = (V,E&') has got a cycle.

With the help of Proposition 2.36 we verify, that Figure 2.6.2 depicts an example of a
tree. Property (ii) can be checked easily and adding or removing any edge to respectively
of the graph would lead to a violation of the properties (iii) respectively (iv) of a tree.

OO

Figure 2.6.2: Example of a tree.
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2.7 The Fisher z-transform

We are also going to apply a tool called Fisher z-transform. It is a transformation between
the interval (—1, 1) and the real numbers R and is often applied to transform correlation
coefficients. The Fisher z-transform F,(-), first introduced by Fisher (1915), is given by

1 1
P, (r) :§ln(1i—:) re(-1,1), (2.7.1)
while its inverse
Pl = =1 L er (2.7.2)
z z) = €2Z+1’ z ) o

transforms back to the interval (—1,1).

Whereas the two functions (2.7.1) and (2.7.2) are illustrated in Figure 2.7.1, some
values of the Fisher z-transform and its inverse are given in Table 2.1 and Table 2.2,
respectively. Both, the figures and the tables, show that it holds (approximately)

F.(r) =,

for r close to 0, and that correlations r with a high absolute value, let’s say |r| > 0.9 are
widely spread over (—oo, F,(—0.9)) U (F.(0.9), c0).

r: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F.(r): 0 0.100 0.203 0.310 0.424 0.549 0.693 0.867 1.099 1.472 oo

Table 2.1: The Fisher z-transform for a range of r’s.

zz 0 025 050 075 1.00 125 150 2.00 250 3.00
F '(2): 0 0.245 0462 0.635 0.762 0.848 0.905 0.964 0.987 0.995

z

Table 2.2: The inverse of the Fisher z-transform for a range of z’s.
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Figure 2.7.1: The Fisher z-transform and its inverse.
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2.8 Scoring

Since we are going to predict based on the models developed in this thesis, we are also in-
terested in evaluating these predictions. One possibility to do such evaluations are scoring
rules. Following the extensive summary of different scoring rules in Gneiting and Raftery
(2007) we briefly introduce to different kinds of scoring rules presented there.

In general scoring rules can be considered as quality measures of probabilistic predic-
tions. Thus they can be used to rank different prediction procedures.

The first scoring rule is a popular scoring rule for continuous variables. It is defined
in terms of the predictive cumulative distribution function F' under consideration. For
an arbitrary element y of the sample space R the so called continuous ranked probability

score is defined as -

CRPS(F, y) = — / (F(2) — 1pnyy) da. (2.8.1)

—0oQ
Here 1 is the indicator function. Since the continuous ranked probability score takes only
negative values, bigger scores, i.e. scores close to zero, are preferred.

A case in which the continuous ranked probability score can be stated explicitly is the
case when the predictive distribution is a Gaussian distribution. We obtain with ¢ the
probability density function and ® the cumulative distribution function corresponding to
the standard normal distribution, that

CRPS(/\/(M,UZ’),y):a[\%—w(y;”) —y;“ (2<1> (y;“) —1)}.

Hersbach (2000) explains the calculation of (2.8.1) when only a sample from the pre-
dictive distribution F'is available.

Sometimes it may be that one cannot access the full predictive distribution. However
if one is able to calculate (1 — «) - 100% central prediction intervals, the interval score
might be considered. Thus let [ denote the «/2 quantile of F' and u the respective 1 — /2
quantile. Then for an arbitrary realization y € R the interval score is defined as

9 9
ISa(liwsy) = (I —u) — = —y) Ly — —(y — w)lgysuy-
(@] [0

Obviously the interval score favors prediction procedures whose prediction intervals are
small and are likely to cover the y which materializes.

We conclude the preliminaries with this introduction to scoring rules and advance
to a preparatory analysis and modeling of the data which we are going to investigate
throughout the thesis.



Chapter 3

Modeling the margins

Now we are ready to initiate the model building process for an exemplary spatial data
set. The goal of this chapter is to find a joint model for the marginals given in this data
set. Whereas the multivariate data set is presented in the first section of this chapter,
the subsequent sections discuss the components of models intended to model each margin
separately. Based on the parameter estimates obtained from these separate models, a joint
model for all margins is developed in Section 3.6. In the last section the transformation
of the data to so called copula data is presented.

3.1 Mean temperature data

The data which we are going to investigate in the following, is daily mean temperature
data in °C collected over the period 01/01/2010-12/31/2012 by the German Meteorological
Service (Deutscher Wetterdienst) at 54 selected observation stations across Germany. As
an example one of these 54 time series, i.e. the 1096 data points of the observation station
”Miinchen” (Munich), is depicted in Figure 3.1.1.

mean temperature
-10 0 10 20

I I I I
2010 2011 2012 2013

Figure 3.1.1: Mean temperature in °C in Miinchen over the years 2010 to 2012.

A list of all 54 observation stations is given by Table 3.1. Besides the full station
name a short name consisting of four letters and an ID number are assigned to each
station. Moreover longitude (Ziongs), latitude (z1a,s) and elevation (Zeey,s) are given for
each observation station.
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s/ short full Tlong,s Tlat s Telev,s
ID name name (longitude) (latitude) (elevation)

1 ange Angermiinde 13.99 53.03 54.00
2 auee Aue 12.72 50.59 387.00
3 brle Berleburg, Bad-Stiinzel 8.37 50.98 610.00
4 brln Berlin-Buch 13.50 52.63 60.00
5 bonn Bonn-Roleber 7.19 50.74 159.00
6 brau Braunschweig 10.45 52.29 81.20
7 brem Bremen 8.80 53.05 4.00
8 cott Cottbus 14.32 51.78 69.00
9 cuxh Cuxhaven 8.71 53.87 5.00
10 dres Dresden-Hosterwitz 13.85 51.02 114.00
11 emde Emden 7.23 53.39 0.00
12 esse Essen-Bredeney 6.97 51.41 150.00
13 fran Frankfurt/Main 8.60 50.05 112.00
14 frei Freiburg 7.84 48.02 236.30
15 fuer Filrstenzell 13.35 48.55 476.40
16 gard Gardelegen 11.40 52.51 47.00
17 gies Gielen/Wettenberg 8.64 50.60 202.70
18 goer Gorlitz 14.95 51.16 238.00
19 goet Gottingen 9.95 51.50 167.00
20 hall Halle-Krollwitz 11.95 51.51 93.00
21 hamb Hamburg-Fuhlsbiittel 9.99 53.63 11.00
22 hann Hannover 9.68 52.47 55.00
23 holz Holzdorf (Flugplatz) 13.17 51.77 81.00
24 jena Jena (Sternwarte) 11.58 50.93 155.00
25 kais Kaiserslautern 7.74 49.42 285.00
26 kass Kassel 9.44 51.30 231.00
27 kauf Kaufbeuren 10.60 47.87 716.00

(continued on next page)



3.1. MEAN TEMPERATURE DATA
s/ short full Tlong,s Tlat s Telev,s
ID name name (longitude) (latitude) (elevation)
28 kons Konstanz 9.19 47.68 442.50
29 kron Kronach 11.32 50.25 312.00
30 ling Lingen 7.31 52.52 22.00
31 1lipp Lippstadt-Bokenforde 8.39 51.63 92.00
32 1lueb Liibeck-Blankensee 10.70 53.80 15.50
33 magd Magdeburg 11.58 52.10 76.00
34 mann Mannheim 8.55 49.51 96.10
35 mein Meiningen 10.38 50.56 450.00
36 mont Montabaur 7.81 50.44 265.00
37 mnch Miinchen-Stadt 11.54 48.16 515.20
38 mnst Miinster/Osnabriick 7.70 52.14 47.80
39 neub Neuburg/Donau (Flugplatz) 11.21 48.71 380.00
40 neur Neuruppin 12.81 52.91 38.00
41 nuer Nirnberg 11.06 49.50 314.00
42 pidi Piding 12.91 47.77 458.00
43 rege Regensburg 12.10 49.04 365.40
44 rost Rostock-Warnemiinde 12.08 54.18 4.00
45 saar Saarbriicken-Ensheim 7.11 49.21 320.00
46 schl Schleswig 9.55 54.53 43.00
47 stut  Stuttgart (Neckartal) 9.22 48.79 224.00
48 trie Trier-Zewen 6.61 49.73 131.50
49 wueck Ueckerminde 14.07 53.74 1.20
50 uelz Uelzen 10.53 52.94 50.00
51 ulmm Ulm 9.95 48.38 566.80
52 ware Waren 12.67 53.52 70.00
53 weid Weiden 12.19 49.67 439.60
54 wuer Wiirzburg 9.96 49.77 268.00

33

Table 3.1: Observation stations: ID, short name, full name, longitude, latitude and eleva-
tion in meters.

The location of the observation stations in Germany is illustrated in Figure 3.1.2,
where the particular stations are marked with their ID number and their respective short
name. The elevation is depicted based on an 80 x 120 elevation grid, which is obtained
from the NGA Raster Roam of the National Geospatial-Intelligence Agency. Dark colored

cells indicate low elevation, whereas light cells represent high elevations.

The now following modeling process was inspired by Pachali (2012), who developed

different marginal models for daily mean temperature data.
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Figure 3.1.2: The 54 observation stations across Germany.
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3.2 A model for annual seasonality

As we all know temperature is subject to daily and yearly fluctuations. Since we are
interested in daily means of temperature we do not have to take the daily fluctuations
into consideration. Contrariwise we need to capture the yearly fluctuations in our model,
which are caused amongst others by the inclination of the Earth’s axis. These annual
fluctuations in temperature can be clearly observed for our data. Figure 3.2.1 illustrates,
that a sine curve of the form

Asin(wt + 0) (3.2.1)

parametrized by

A amplitude,
w : angular frequency,
0 : phase shift,

is able to capture the seasonal trend of our data.

mean temperature
-10 0 10 20

I I I I
2010 2011 2012 2013

Figure 3.2.1: Mean temperature in °C in Miinchen over the years 2010 to 2012 (gray) and
sine curve fitted to the data (black).

Inspired by Simmons (1990) we substitute the parameters in (3.2.1) according to

Bsin
0) =—,
cos(d) ;)
sin(6) :BCOS, (3.2.2)
A
>\ = SZin _I_ CQOS )
and use the trigonometric identity
sin(z + y) = sinz cosy + cosxsiny
to transform (3.2.1) to
Bsin Sin(wt) + Peos cos(wt). (3.2.3)

Due to the fact that we are going to use (3.2.3) in an annual context, we set w =
2n/365.25. Hereby we select 365.25 for the denominator to account for leap years. Thus
(3.2.3) can be used as a linear component of a regression model.
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3.3 Autoregression

Furthermore, the errors of our regression models shouldn’t exhibit any dependence. But if
we have a look at the deseasonalized time series, see for instance Figure 3.3.1, we clearly
observe that the temperature on a particular day depends on the previous days.

-10

2010 2011 2012 2013

Figure 3.3.1: Deseasonalized mean temperature time series (Miinchen, 2010-2012).

To model this kind of dependence on previous points in time, we apply the concept
of autoregression. This simply means that we add some lagged responses as covariates to
our current models, i.e. we consider regression models of the form

27t 27t g
Y, = sin S SAE oF cos SAE oc Y , t=1,...,N, (3.3.1
¢ = Fot flan sin (365.25> - Beos c08 (365.25) +;% g e (3:3.1)

where the errors €1, ..., ey are independent and identically distributed random variables
with E(g;) = 0 and Var(g;) =0*>0,t=1,...,N.

residuals
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Figure 3.3.2: Residuals of the mean temperature time series for Miinchen according to
model (3.3.1) with ¢ = 3.

It remains to choose ¢ in (3.3.1), such that the errors are no longer dependent. Some
further investigations in Section 3.5 will show that ¢ = 3 is an adequate choice for our
data.
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As an example we consider again the time series for Miinchen. Whereas the corre-
sponding residuals of Model (3.3.1) with ¢ = 3 are depicted in Figure 3.3.2, Figure 3.3.3
shows the autocorrelation function of these residuals. From the figures we see, that there
is no significant autocorrelation left. Moreover, we cannot detect further functional trends
in the residuals.

Lo
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o
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Figure 3.3.3: Plot of the autocorrelation function of the residuals depicted in Figure 3.3.2.

For a theoretical background on time series regression models, which cover linear
regression models that include autoregression, we advert to Durbin (1960).

3.4 Skew-t distribution

Until now we have not specified a distribution for the errors €y, ..., ex of our model given
in (3.3.1). To find a suitable distribution family we fit different distributions (normal,
skew normal and skew-¢ distribution) to the corresponding residuals and compare the fit
of the respective densities to the histograms of the residuals. Moreover we investigate the
corresponding Q-Q-plots.

The mentioned plots for Miinchen are depicted in Figure 3.4.1. From both, the his-
tograms and the Q-Q-plots, we clearly see that the skew-t distribution yields the best fit
in the tails.

Furthermore we observe that a skew-t distribution is most suitable in general, since it
is able to capture skewness on the one hand and heavy tails on the other hand. For the
construction of the skew-t distribution we follow Azzalini and Capitanio (2003), defining
the density of a skew-t distributed random variable X ~ skew-t (£, w, o, v) as

v 2
(@) = Zt, @y (oﬁf (45) ) ,

where T = (@=8)/u, t, is the density and T,,; the cumulative distribution function of a
usual, univariate Student-t distribution with v and v + 1 degrees of freedom, respectively.
Whereas the parameters £, w and « can be interpreted as location, scale and shape param-
eter, respectively, v denotes the degree of freedom parameter of the skew-t distribution.
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Figure 3.4.1: Histograms of the residuals of the mean temperature time series for Miinchen
overlaid with densities and respective Q-Q-plots for normal, skew normal and skew-t
distribution.
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Defining

___«a o s [rT(E)
5= S d p= 5\/: Ok (3.4.1)

the expectation and the variance of a random variable X ~ skew-t ({,w, o, v) are given
by

E(X)=¢+wn and Var(X) = w? ( v 5~ u2> , (3.4.2)
V _—
and exist for v > 1 and v > 2, respectively. The skewness is of the form
v(3 —6%) 3v 9 v 5 ik
kw(X) = - 2 — = 4.
sow(3) = (“E =) - ) (- (34.3)

and exists for v > 3, whereas the kurtosis exists for v > 4 and is given as
3v? 4pPv(3 —6%)  6uiv v

krt(X) = — —3u!
rt(X) ((V—Q)(V—4) v—3 +1/—2 s v—2

Eventually, as the most important theoretical issues on the skew-t distribution are
clarified, we agree on

— ;ﬁ) _2—3. (3.4.4)

e, en = skew-t (&, w,a,v) (3.4.5)

as distribution model for the errors. Note that the location parameter has to fulfill the
condition £ = —wy, in order that the zero mean condition for the errors holds.

3.5 Separate marginal models for daily mean tem-
peratures at different locations

Now that we have discussed the single components of our model for daily mean temper-
ature time series, we summarize our considerations by presenting the 54 final separate
marginal models and how their parameters are estimated.

Let’s recall, that our data consists of d times N (d = 54, N = 1096) observations y;
(t=1,...,N, s =1,...,d) of daily mean temperatures. We consider the observations
y;,...,yx collected at the observation stations s = 1,...,d, as realizations of time series
Yo, . Y8, s=1,....d.

Before we can apply Model (3.3.1) to each of the time series Y7°, ..., Y3, s=1,...,d,
we have to ensure that the homoscedasticity assumption of the errors €3,...,e%, s =
1,...,d, is fulfilled. In fact the errors are heteroscedastic, i.e. there exist weights w; > 0,
t=1,...,N,s=1,...,d, such that

Var(ef) = o®wi, t=1,...,N,s=1,...,d,

for ¢ > 0. In order to achieve (approximate) homoscedasticity we have to estimate ap-
propriate weights w;, t =1,..., N, s = 1,...,d, and consider the scaled time series

oo

e s
wy Wy
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instead of the original ones. In a first step we estimate common weights w;, t = 1,..., N,
for all stations s = 1,...,d, by calculating the sample variances
1

(yf—@t)Q, t=1,...,N,
1

R

d
s=

where
1
ytfzasglyt, tzl,...,N,

are the sample means. Since these weights, which we from now on will call raw weights,
exhibit big jumps from one point in time to the next, we smooth our first weight estimates
in a second step. For this purpose we apply least squares estimation, to fit a polynomial

q(t;a) = ag + aqt + aot® + ...+ agt?, a=(ag,...,00)",

of degree nine to the logarithmized raw weights In(w,), t = 1,..., N. With

N

a= argminZ(q(t; o) — ln(@t))

@ t=1

2

we obtain the smoothed weights
wy =exp{q(t;a)}, t=1,...,N.

Figure 3.5.1 depicts the raw as well as the smoothed weights. We observe higher variance
during winter and relatively lower variances in the summers.
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Figure 3.5.1: Plot of the estimated raw weights w;, t = 1, ..., N, and the smoothed weights
@ta tzl,,N

Now we are ready to apply (3.3.1) to the weighted responses

~ Y.:s
}/ts — t

t=1,....N,s=1,....d.

= 1)

Wy
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Therefore we define the 54 parameter vectors
s . s s s s 5 8\
ﬁls = (BO7 sins Peoss 115 V2> 73)
and the functions
90 = g* (1.7, V0 Vi B

: Zﬂ.t S 27Tt S~S 5~5 $~S
= [ + B, sin ( ) T Peos COS ( ) +NnY + Y+ Y,

365.25 365.25

for all s =1,...,d. Together with (3.4.5) this yields the models
VS =g° <t, V2L Y, }N/ts’_g;ﬂfs> + &}, ] ~ skew-t (£°,w®, o, 1°), (3.5.1)

wheret=1,...,N,s=1,....d, and

gkew—t = (587 w87 a/s’ VS)T
are the parameters of the skew-t distribution corresponding to the stations s =1,...,d.

The parameters 3, of the models (3.5.1) are estimated via least-squares estimation.
For this purpose we consider the weighted observations

=L t=1,.. Ns=1,....d

v,
Then we obtain the estimates of the parameter vectors 8, s =1,...,d, as
N 2
B = ar%gnnz(af g (LT T s BL)) s =Ld
Is t=4

which yields the residuals
é\i = ?jf _gS (t,@?,17gf,2,gf,3;ﬁfs> ) t: 47“'7N7S - ]-7"'7d'

To conclude the parameter estimation we fit a skew-¢ distribution parametrized by 33,
to each of the residual series 3, ...,8%, s = 1,...,d. This is done by maximum-likelihood
estimation. Since there are no explicit expressions for the parameter estimates, the esti-
mation has to be performed numerically. All in all this yields the vector

- B S e Bs ms s ms Do ~s s o) T
B | 206 ) = (B B B 07595, €., 87,97 (3.5.2)
skew-t
of estimated model parameters for s =1,...,d.

To check if our models (3.5.1) eliminate any kind of temporal dependence, respec-
tively to verify if it is sufficient to include autoregression components up to a lag ¢ = 3,
we investigate the residuals obtained from the fitting process described above. For this
purpose we apply the Ljung-Box test presented in Section 2.5. More precisely we compute
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lag= |10 15 20 30 [lag=]10 15 20 30

ange | 0.282 0.404 0.240 0.325 || kons | 0.410 0.589 0.799 0.984
auee | 0.440 0.207 0.360 0.786 | kron | 0.919 0.607 0.703 0.784
brle | 0.576 0.540 0.723 0.951 || 1ing | 0.375 0.383 0.144 0.153
brln | 0.146 0.144 0.089 0.174 || 1lipp | 0.245 0.566 0.735 0.694
bonn | 0.176 0.385 0.649 0.937 || 1lueb | 0.288 0.311 0.377 0.114
brau | 0.183 0.150 0.310 0.308 | magd | 0.074 0.058 0.156 0.283
brem | 0.475 0.316 0.081 0.056 || mann | 0.206 0.330 0.521 0.860
cott | 0.300 0.273 0.389 0.779 || mein | 0.053 0.112 0.241 0.174
cuxh | 0.064 0.160 0.364 0.011 || mont | 0.212 0.443 0.517 0.886
dres | 0.241 0.196 0.298 0.757 || mnch | 0.497 0.123 0.233 0.691
emde | 0.280 0.335 0.164 0.038 || mnst | 0.338 0.375 0.198 0.285
esse | 0.232 0.342 0.299 0.529 | neub | 0.124 0.011 0.063 0.356
fran | 0.369 0.522 0.678 0.928 | neur | 0.151 0.122 0.077 0.063
frei | 0.089 0.179 0.302 0.231 || nuer | 0.601 0.245 0.447 0.806
fuer | 0.883 0.137 0.166 0.301 || pidi | 0.132 0.161 0.253 0.431
gard | 0.209 0.121 0.105 0.171 || rege | 0.392 0.055 0.152 0.332
gies | 0.097 0.209 0.437 0.790 || rost | 0.121 0.234 0.312 0.057
goer | 0.168 0.207 0.105 0.321 || saar | 0.535 0.800 0.834 0.906
goet | 0.199 0.335 0.519 0.754 || schl | 0.179 0.321 0.501 0.405
hall | 0.124 0.232 0.336 0.637 || stut | 0.492 0.455 0.720 0.960
hamb | 0.426 0.423 0.339 0.080 | trie | 0.130 0.298 0.277 0.426
hann | 0.426 0.144 0.095 0.093 | ueck | 0.083 0.072 0.077 0.134
holz | 0.272 0.159 0.265 0.657 || uelz | 0.306 0.318 0.059 0.051
jena | 0.124 0.186 0.422 0.557 | ulmm | 0.348 0.254 0.567 0.928
kais | 0.625 0.848 0.835 0.922 || ware | 0.287 0.167 0.136 0.070
kass | 0.230 0.285 0.606 0.849 || weid | 0.783 0.183 0.406 0.807
kauf | 0.139 0.044 0.131 0.268 | wuer | 0.151 0.157 0.323 0.773

Table 3.2: p-values of Ljung-Box tests with lags 10, 15, 20 and 30.

the respective p-values for different lags (10, 15, 20 and 30) for all 54 residual time series
g5, ...,8r, s=1,...,d. The results of these computations are summarized in Table 3.2.

Only the four p-values for Kaufbeuren (15), Neuburg/Donau (15), Cuxhaven (30) and
Emden (30) in Table 3.2 are smaller than 0.05. These would indicate the rejection of
the serial independence hypothesis, but notice that the respective p-values for lower or
higher maximum lags given in the table do not support the rejection. The overall picture
emerging from Table 3.2 leads to the conclusion that our models are appropriate with
regard to autoregression.

Finally, we investigate estimates of the expectation, standard deviation, skewness and
kurtosis of the error series €f,...,¢%, s = 1,...,d. These are summarized in Table 3.3 and
are calculated by means of the formulas (3.4.2)-(3.4.4), based/on\the parameter estimates

ES, w*, @® and V°, s = 1,...,d. From the table we see, that E(¢f) ~ 0 for all 54 stations,
i.e. the zero mean assumption for the errors is fulfilled. Moreover we observe, that the
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standard deviations for the 54 observation stations lie between 1.115 and 1.521 and that
most of them scatter closely around 1.35. We conclude that our weighting approach yields
reasonable homoscedasticity.

B(ef) sd(ef) skw(ed) krt(es) Bef) sd(e) skw(s) kit(s)
ange | 0.001 1.344 0.035  0.650 || kons | 0.001 1.283 -0.333  1.149
auee | 0.000 1.521  -0.239  0.598 || kron | 0.000 1.370  -0.081  0.518
brle | 0.000 1.335 -0.163  0.359 || 1ling | 0.001  1.300 0.201  0.640
brln | 0.000 1.377 -0.013  0.351 || lipp | 0.001 1.408 0.119  0.483
bonn | 0.000 1.329  -0.001  0.336 || lueb | 0.003 1.326 0.446  1.395
brau | 0.001 1.365 0.116  0.773 || magd | 0.001 1.361 0.033 0437
brem | 0.001 1.308 0.358  1.122 || mann | 0.000 1.308 -0.074  0.385
cott | 0.000 1.488  -0.081  0.255 || mein | 0.001 1.363 -0.115  0.470
cuxh | 0.001 1.115 0.537  2.090 || mont | -0.000 1.263 0.057  0.499
dres | 0.000 1.416 -0.180  0.264 | mnch | 0.003 1.502 -0.315  0.799
emde | 0.001 1.204 0.334  1.099 || mnst | 0.000 1.361 0.194  0.516
esse | 0.000 1.368 -0.022  0.414 || neub | 0.000 1.363  -0.182  1.000
fran | 0.000 1.287 0.063  0.281 || neur | 0.000 1.296 0.048  0.445
frei | -0.000 1.385  -0.075  0.826 || nuer | 0.001 1.395 -0.133  0.756
fuer | 0.001 1.337 -0.396  0.946 | pidi | -0.001 1.351  -0.324  0.940
gard | 0.003 1.417 0.159  0.923 || rege | 0.001 1.308 -0.255  0.752
gies | 0.000 1.289 0.110  0.332 || rost | 0.002 1.165 0.513  1.407
goer | -0.000 1.446  -0.275  0.317 || saar | 0.000 1.304 -0.048  0.505
goet | 0.001 1.322 0.070  0.464 || schl | 0.000 1.178 0.357  1.940
hall | 0.001 1.414 0.014 0482 || stut | 0.000 1.385 -0.162 0.971
hamb | 0.001 1.313 0.366  1.177 || trie | -0.000 1.254 0.087  0.342
hann | 0.001 1.369 0.200  0.796 || ueck | 0.001 1.340 0.114  0.653
holz | 0.000 1.470  -0.018  0.194 || uelz | 0.003 1.347 0.266  1.309
jena | 0.001 1.419  -0.040  0.498 || ulmm | 0.002 1.389  -0.294  0.852
kais | 0.000 1.312  -0.000  0.469 || ware | 0.001 1.285 0.178  0.664
kass | 0.000 1.297 0.041  0.266 || weid | 0.001 1.408 -0.292  0.860
kauf | 0.001 1.453 -0.208  0.788 || wuer | 0.001 1.358  -0.057  0.666

Table 3.3: Estimates of expectation, standard deviation, skewness and kurtosis of the
error series for all 54 observation stations under the assumption of a skew-¢ distribution,
calculated based on the parameter estimates £°, W°, a® and v°, s = 1,...,d.

—

In Figure 3.5.2 the estimates skw(ef) and kg(g\f) given in Table 3.3 are plotted against
the latitude of the respective observation stations. From the plots we see, that both
skewness and kurtosis alter from the north to the south. We observe positive skewness
in the north and negative skewness in the south. For some of the observation stations
there would be no need to allow for skewness in the model. But since there are stations
whose skewness deviates evidently from zero, the allowance of skewness in our model is
justified. Contrariwise the kurtosis is always positive and exhibits lower values in middle
Germany, whereas the kurtosis in north and south Germany is relatively larger. The
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presence of positive kurtosis justifies the model assumption of a leptokurtic distribution,
i.e. the application of a skew-t distribution is justified.

estimated skewness

estimated kurtosis

Figure 3.5.2: Plots of the skewness and kurtosis estimates given in Table 3.3 against
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The trends observed in Figure 3.5.2 will be captured by the joint marginal model,
which we are going to develop next.
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3.6 Joint marginal model for daily mean temperature
data

In this section we will investigate potential dependencies of the separate marginal model
parameters on the covariates Zejev,s (elevation), g s (longitude) and x4 s (latitude) and
develop a joint (space-time) marginal model, which models the mean temperatures Y,®
over time t = 1,..., N and space s = 1,...,d. In contrast to the separate models, the
goal is a joint model for all observation stations where the common parameters do not
depend on s =1,...,d.

From Figures 3.6.1-3.6.10 we clearly observe that the separate parameter estimates
exhibit (polynomial-) trends with respect to the three covariates elevation, longitude and
latitude. Therefore we investigate linear models for each of the ten components of the
parameter estimates given in (3.5.2), where we regress each parameter estimate on poly-
nomials of the covariates Teev,s, Tiong,s a0d Z1at,s UP to a degree of nine, i.e. we search for
models of the form

p q T
0° ~ 90 + Z 91jxélev7s + Z egkl’ﬁmg’s + Z 9311'%%,8 (361)
j=1 k=1 =1

where 6° stands for an arbitrary parameter of the parameter vector 8° in (3.5.2) (or
its logarithm, if the parameter is restricted to the positive real numbers) and the de-
grees p,q,r < 9 of the polynomials are the maximum permissible degrees such that the

. . p q
parameters 01,, 05, and 05, corresponding to the covariates xg., o, Tjong s a0d Tjy , are

significant.

‘ p q r ‘ #par\ dej dej (3) Ridj (9>
Bo 1 0 1 308043 0.8028  0.7431
Bsin 4 1 6 12 | 0.5550  0.4400  0.5078
Beos 6 2 1 10 | 0.9383  0.9245  0.9306
o 1 2 6 10 | 0.7051  0.6478  0.6452
Yo 1 2 6 10 | 0.6879  0.6101  0.6686
s 0 4 7 12105723 0.4331  0.5635
¢ 1 2 1 510.8345 0.8416  0.8568
w 3 1 6 1105370  0.5123  0.5164
o 4 2 1 81 0.8689 0.8618  0.8947
v 2 2 4 9107517  0.6990  0.7302
Sum | 23 18 39 90

Table 3.4: Analysis of the dependence of univariate marginal model parameters on the
covariates elevation, longitude and latitude.

Table 3.4 summarizes the selected models and compares the dej to those of the
corresponding models with p, ¢ and r fixed to 3 or 9 respectively. Except for the parameters
¢ and «, the Ridj of the selected models, which are quite high, are bigger than the ones

of the comparison models. Due to the fact that our models for ¢ and o need much less
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parameters than the corresponding models with polynomial degrees fixed to nine and
that the difference in the Ridj of these models is not that big, we are satisfied with our
selection. Thus we obtain the polynomials respectively exponentials of polynomials

1 1
. ] l
Bo(s) = Boo + Z Bo1jT ey s T Z Bo3i1at, 55
j=1 =1
4 1 6
. j k !
6sin(5) = ﬁsinO + Z Bsin lszﬂev75 + Z 6sin 2kx10ng,s + Z /Bsin3lxlat,sa
j=1 k=1 =1

6 2 1
. j k l
5cos($) = /BCOSO + Z 6cos 1jxilev,s + Z 6005219:5101—1%75 + Z Bcos SZfElat,s)
j=1 k=1 1=1

1 2 6
— o k l
71<S> =70+ V11 elev,s + 712k Llong,s + V1318 0at, 55
j=1 k=1 =1
1 2 6
(s) =120 + e Tlong,s + 7]
Y2 = 720 Y214 elev,s Y22k L1ong, s V231 1at, s>
j=1 k=1 =1
4 7
(5) = 30 + Tngs + )
Y3 = 730 V32kT1ong, s V331T1at, s>
k=1 =1

1 2 1
§(5) = €0+ D €0iliows + D EobTiong.s + D €l
j=1 k=1 I=1
3 1 6
— J k l
w(‘S) = exp {CUO + Z wljxelev,s + Z WQkxlong,s + Z w3lxlat,s} ’
j=1 k=1 I=1
4 2 1
— J k l
Oé(S) = o+ Z aljxelev,s + Z Q2kTong, s + Z Q31T 15t 5>
j=1 k=1 I=1

2 2 4
o J k l
V(S) = €Xp § o + V1j$elev,s + VQkxlong,s + V3l$lat,s :
j=1 k=1 =1
For reasons of convenience we summarize the parameters in the two vectors

) T T 4T T T  T\T
IBIS = (ﬁo y» IMsin M cos? 71 772 773 )
and -
ﬁskew—t = (£T7 wTa aTa VT) )

where

T
Bo = (Boo, Boir, Bos1)
T
ﬁsin = (ﬁsin()a 5sin117 s a@sin14a Bsin217 /Bsin317 <. 7ﬁsin36) 5
T
Bcos = (ﬁcosOa ﬁcoslb s 75cos 165 5005217 5005227 Bcos 31) 5
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Y105 Y111, Y121, Y1225 V1315 - - - 5 V136

~—~—
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4

= (
= (
Y3 = (Y30, V321, - - - » V3245 V331, - - -, V337)
€= (% 61,601,602, 6n) "
= (
= (
= (

T
Wo wll,---,CU13,(JJ21,W31,---,W36) )

T

(O3 &0,0411,-~~,Oé1470421,a2270431) )

W, V11, V12, V21, V22, V31, . . ., V34)

The results above allow us to state our final joint marginal model. For this purpose
we replace the parameters of the models (3.5.1) by the functions By(s), Bsin(S), Beos(s),
71(8), 12(5), 73(s), £(s), w(s), a(s), v(s) derived above. Eventually we consider the model

is =g <t7 ?ts_l’ 25_2’ 28_37 Lelev,s xlong,& Llat,s) ﬁls) + 6?7
5 ~ skew-t (£(s), w(s), a(s), ¥(s)) (3.6.2)
t=1,...,N,s=1,....d.

where

— Vs Vs s .
g(t7 S) =g <t7 th—la th—Qa Y;f—37 xelev,sa xlong,sa xlat,sv /Bls)

) 2mt 2mt
= Fo(s) + Bsin(s) sin (m) + Beos(s) cos (365.25)
+7(8) Y2y 4+ 72(8)Y 5 +73(8) Y25

The parameter estimation for our joint model (3.6.2) is performed analogously to
Section 3.5. Consequently the estimates Bjs are obtained by least-squares estimation, i.e.
as

2
615 = argmmz Z (yt - t gf_l, Yp—2: U3, Telev,ss Llong,s, Llat,s’ Bls)) .
Pis o=t =4

Thereafter a reparametrized skew-t distribution is fitted to the residuals resulting from
the least-squares estimation. Again maximum-likelihood estimation is applied, but this
time the parameters of the likelihood corresponding to an ordinary skew-t distribution are
replaced by the polynomials £(s), a(s), w(s) and v(s) from above. The whole procedure
results in the vector

~ T
/8 = ( ﬁls > </60 ’ﬂhln?ﬁcos?%;— %21%315 &}T aT ij\T)
IBSkew t
of parameter estimates for Model (3.6.2).
Figures 3.6.11-3.6.13 illustrate the components of the estimated model (3.6.2) by means
of level plots. The depicted components are evaluated on the 80 x 120 grid, which was
already introduced in Figure 3.1.2. For all figures a scale within a reasonable range was
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chosen. Thus all plots show some white regions for extreme locations, where the polyno-
mials of our model yield inadequate values. These extreme locations are locations which
lie distinctly outside of the longitude, latitude and elevation range of the data on which
the model is based. A prediction of mean temperatures of such locations based on our
marginal model will lead to values diverging considerably from the temperatures which
occur in reality. To prevent this, some further adjustments of the model will be necessary.

From Figure 3.6.11 we see that the mean value [3y(s) of the daily mean temperature
yields higher values for upcountry parts of Germany which are low and comparatively
low values for mountainous areas and areas close to the sea. Moreover we observe that
the autoregression components with lag one and two (7 (s) and 7,(s)) act in an opponent
fashion. For northern and southern parts of Germany the mean temperature tends to
decrease compared to the previous day, whereas it tends to increase in the rest of Germany.
The mean temperature depends negatively on the temperature observed two days ago.
Furthermore we notice that the influence of three days ago (73(s)) is relatively low.

The spatial visualization of the skew-t parameters is given in Figures 3.6.12. Whereas
the location parameter £(s) increases from north-west to south-east, the shape parameter
a(s) behaves the other way round. The structure of the shape parameters yields that
for areas close to the North Sea positive temperature extremes are more likely and for
more continental areas negative temperature extremes occur more often. The scale pa-
rameter wW(s) shows its local maxima in the eastern respectively the south-eastern parts
of Germany. Following, these regions exhibit relatively broader fluctuations in mean tem-
perature. Moreover the degrees of freedom 7(s) are relatively low in the north and in
the south on the one hand and they increase westward and eastward on the other hand,
meaning that heavy distribution tails are more present in the north and in the south of
Germany, yielding more temperature extremes in these areas.

Figure 3.6.13 represents the seasonality component of our model. Since a meaningful
interpretation of fgn(s) and Peos(s) is not possible, we use (3.2.2) to transform our pa-
rameters back to the amplitude A(s) and the phase shift 4(s) of the sinusoidal model for
the seasonality. This allows for an interpretation of the annual temperature oscillations.
We clearly observe higher amplitude of the seasonal fluctuations if we move further to the
south-east, which is due to the fact that the climate in the north-east of Germany is rather
maritime, whereas the south-east exhibits more continental climate. The parameters §(s)
are governed by the seasons. The other way round we can deduce from these parameters,
on which days the colder respectively the warmer half-year begins. For instance in the
south-east of Germany where §(s) exhibits values around —1.8, the warmer half-year lasts
from the middle of April to the middle of October. For the north-east of Germany this
period starts up to eight days later, if we rely on our model.
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Figure 3.6.11: Level plots of the estimated polynomials By (s), 91(s), A2(s) and Fs(s) with
the locations of the observation stations indicated.
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Figure 3.6.12: Level plots of the estimated polynomials &(s), @(s), a(s) and v(s) with the
locations of the observation stations indicated.
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3.7 Transformation to copula data

This section aims to conclude our investigations on the marginals of our mean temperature
data set. In the following chapters we are going to consider different kinds of models,
which are based on the concept of pair-copula construction and intended to model the
dependence structure among several variables. Since the building blocks of these models
are copulae and the marginals are going to take a back seat, we transform our data to so

called copula data, i.e. we transform our original time series Y*,... Yy, s =1,...,d, to
uf,...,uy, s=1,...,d, such that
Uy, ..., Uy i'fifl'l/{((),l) forall s=1,...,d. (3.7.1)

The transformation to copula data is carried out by means of the probability integral
transform. All required tools were already presented previously. We saw that for all s =
1,...,d theerrors e, ..., e} of our model are i.i.d. skew-¢ distributed with the parameters
£(s), w(s), a(s) and v(s), respectively. Hence the desired copula data is gained as

~

0 = T (571€(5),8(5),8(5),7(5) ) . t=4,...,N;s=1,....d,

where Tyew (- | €, w, o, v) is the cumulative distribution function of a skew-¢ distribution
with location parameter £, scale parameter w, shape parameter o and v degrees of freedom.

To see if the transformed data series uj,...,u%, s = 1,...,d, fulfill the property
given in (3.7.1), we consider the histograms given in Figure 3.7.1 and Figure 3.7.2. This
consideration yields uniformity for most the 54 copula data series, only the transformed
data of some of the observation stations like Aue, Cuxhaven and Miinchen yield obvious
deviations from being uniformly distributed. This might be due to the fact that the
overall number of parameters in the joint marginal model is reduced compared to the

total number of parameters needed to model each margin separately, which may result in
a loss of precision of the estimates [y(s), Bsin($), Beos(S), 71(8), F2(s), Y3(s), &(s), ©(s),
s oS AS =

a(s), v(s) compared to the respective estimates 35, 5., B 7oy Vas Vs £, @°, @°, U° of
the separate marginal models, for all s =1,...,d.
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Figure 3.7.1: Histograms of the copula data obtained from the joint marginal model for
the observation stations s = 1,...,27.
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Figure 3.7.2: Histograms of the copula data obtained from the joint marginal model for
observation stations s = 28, ..., 54.



Chapter 4

Regular vines

The aim of this chapter is to briefly introduce the so called regular vine (R-vine) copula
models. This special case of a vine model, which is a graphical tool to model the de-
pendence of random variables, is the base for our new models developed in the following
chapters. Vine models in general were introduced by Bedford and Cooke (2001, 2002) and
trace back to ideas of Joe (1996). Due to the paper of Aas et al. (2009) on pair-copula
constructions, which we already introduced in Section 2.1.2, regular vines got into the
focus of a broad field of research, since they systematize the composition of pair-copula
constructions.

In the following sections we will define, amongst others, regular vines and two special
cases hereof. Furthermore, we present a concept to organize R-vines in matrices for the
purpose of computations and we discuss how to select R-vine distributions for a given set
of multivariate data.

4.1 R-vines and their distributions

The subject matter of this section are R-vines and their corresponding distributions. As
a reference for the following definitions in the setting of vines in general, we advert to
Bedford and Cooke (2001, 2002). With regard to the fact that we focus on R-vines, we
stick to Difmann et al. (2013) in the following.

As already mentioned, regular vines are graphical models, with the aim to ease the
depiction and the structuring of the dependence between random variables. They are
graphical in the sense, that they are composed out of trees, which fulfill certain conditions.
These conditions are summarized in the following formal definition of an R-vine.

Definition 4.1 (Regular vine (R-vine)). If
(1) V= (7—17 s 77:i—l)a
(il) 71 = V1, &) is a tree with vertices V; = {1,...,d} and edges &,

(iii) 7; = (V;, &) is a tree with vertices V; = &1 and edges &;, for all i = 2,...,d — 1
and

65
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(iv) if it holds for every two vertices a = {ay,a2},b = {b1,b2} € V; connected by an edge
e={a,b} €&,i=2,...,d—1, that #(aNb) =1,

then we call 7" d-dimensional regular vine respectively R-vine. J

The definition of an R-vine by itself says nothing about any multivariate distribution
of random variables, but its interpretation is as follows: The vertices in V; of the first tree
T: represent d random variables X1, ..., X4, whose dependence is modeled by the R-vine.
The edges &;, i = 1,...,d — 1, of the trees represent all bivariate (conditional) dependen-
cies of these random variables, which are needed to completely specify the multivariate
distribution of the random variables X1, ..., Xy, according to the pair-copula construction
principle. Moreover we stress that condition number (iv) of Definition 4.1, which is called
prozimity condition, is crucial in order to obtain a valid pair-copula construction. All this
will become clearer in line with the example after the next definition.

Definition 4.2 (Complete union, conditioning set, conditioned set, constraint set). Let
¥ be an R-vine on d elements. For an arbitrary edge e = {a,b} € &;,i=1,...,d—1, we
define

(i) the complete union of the edge e

U ={veVi:de;e&,j=1,...,i—1, such that v € e; € ... € e;_1 € e},

(ii) the conditioning set associated with e

D, = U, N Up,

(ili) the conditioned set(s) associated with e
Ce =CcqoUCcp, where C.,=U,\D. and C.;:=U\D.,
and
(iv) the constraint set for the R-vine ¥

C(V) = {{CeaCen

D.}:e={ab}€&,i=1,...,d—1}.

|

In the following, whenever we depict R-vines as graphs, we will use a type of short
notation which is based on Definition 4.2, for to label vertices and edges. The vertices
V), of tree one will be labeled with the numbers or names of the corresponding random
variables, whereas the vertices V; of the trees of higher order will inherit their label from
their corresponding edge in &_;. The edges e = {a,b} € & of tree one are labeled
according to the scheme C. ,C.; and the edges e = {a,b} € &, i =2,...,d—1, are labeled
Ce7ace,b|De~
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Figure 4.1.1: Example for an R-vine.

Example 4.3 (R-vine: d = 5). An example for a five dimensional R-vine is given in
Figure 4.1.1. The four trees of the vine ¥ = (71,...,7T,) are depicted, where the vertices
and edges are named according to the scheme described above. From the figure we see,
that

Vi ={1,...,5},
& =Vs = {{1,2},{2,3},{3,4},{3,5} },
52 :V3 = {{{1,2}, {273}}’ {{273}7 {374}}7 {{2’3}’ {375}}}7

a-ve- {2 o e s} {(za ok (e e |
£ = {{{{{172},{2,3}}, {23 3.4} ) {23 (3.4}, {{2,3},{3,5}}}}}-

It can be checked easily that the proximity condition is fulfilled. In order to illustrate the
sets defined in Definition 4.2, let’s consider & = {¢/, ¢*}, where ¢’ :== {d’, '}, e* := {a*, 1"},
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a = {{1,2},{2,3}}, V' = a" = {{2,3},{3,4}} and b* := {{2,3},{3,5}}. The complete
unions of the edges d’, I/, a* and b* are

Uy ={1,2,3}, Uy =U,» ={2,3,4} and U ={2,3,5}.
The conditioning sets of the edges e’ and e* are
Do =Uy NUy = {2,3} = Uy NUps = Do~
and the conditioned sets are
Co =CoaUCuopy ={1,4} and C. = Cer g+ UCerp» = {4,5}.
J

By means of the next two definitions we introduce the already mentioned link of an
R-vine to the multivariate distribution of some random variables X1, ..., Xj.

Definition 4.4 (Regular vine copula specification). Let

—

(i) F'=(F1,...,F;) be a vector of d univariate continuous invertible distribution func-
tions,

(ii) 7 be a d-dimensional R-vine and

(ili) B={Cy:be€(¥)} = {Ce..c.,p. :e={a,b} €&,i=1,...,d— 1} be a set of
bivariate copulae.

Then we call (ﬁ, V', B) reqular vine copula specification. a

Definition 4.5 (Realization of a regular vine copula specification, R-vine distribution).
Let F be the joint distribution of the random vector X = (Xi,...,X,)". F is called
realization of a reqular vine copula specification (ﬁ, V.B), ifforallec &,i=1,...,d—1,
the bivariate copula Cg, ,c,,.p. of Xc,, and X¢,, given Xp, lies in B, and if F; is the
marginal distribution of X; for all ¢ = 1,...,d — 1. In this case F' is also called R-vine
distribution. J

Now that a connection between R-vines and corresponding R-vine distributions is
established we are interested in how to depict the pair-copula construction respectively
the R-vine distribution density in terms of an R-vine copula specification. Moreover, the
expression for the density given in the following theorem is unique.

Theorem 4.6 (Uniqueness of R-vine distribution). Let ¥ be a d-dimensional R-vine
and (ﬁ, YV ,B) a corresponding R-vine copula specification. Then there exists a unique
R-vine distribution F', that realizes this R-vine copula specification. For the density f
corresponding to F' we get

d d—1
f@) =TT fel@o) [T ] cconconm. (Feonp. (ze.. |®p,), Fe,p. (2c,, | ®p,)) . (4.1.1)
k=1 J=1 e€é;
where * = (z1,...,74)", fx, k =1,...,d, are the marginal densities corresponding to Fy,
k=1,....d, and cc,,c,,mp. (-,-) are the densities corresponding to the bivariate copulae

Ce Ce.b;De € B.

e,a;
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To evaluate such a density, we need to calculate the so called transformed variables
Fe. .ip. (e, . | ®D,), Fe,,p.(2c,, | p,) of Equation (4.1.1). We do this in analogy to the
formula stated in (2.1.8).

Lemma 4.7 (Recursive calculation of transformed variables). Let ¥ be a d-dimensional
R-vine and a = {aj,as},b = {b1,b2} € V; be arbitrary vertices connected by an edge
e={a,b} €&,i1=2,...,d— 1. Then we obtain

0 Ce,ipy (Fea, D0 (XC0n, | 2D,) Fy oy D (2,0, | TD,))
aFCa,a2|Da ($Ca,a2 | a:Da)

Fe. .p. (e, . | ®D,) =

fori=3,....,d—1 and

& Cca (Fca,al (‘rca,al )7 Fca,a2 (xca,az ))
ore, ., (7e,..,)

for i = 2. The respective expressions for b are obtained analogously.

Fe. .. (e, | TD,) =

4.2 C- and D-vines

Now we are going to consider two special cases of R-vines, therefore we refer to Kurowicka
and Cooke (2003) and Kurowicka and Cooke (2005) for the definitions and to Aas et al.
(2009) for the density formulas.

Definition 4.8 (Canonical vine (C-vine)). A regular vine (R-vine) ¥ = (T1,...,Ta-1)

is called d-dimensional canonical vine (C-vine) if each tree T;, i = 1,...,d — 1, has one
vertex v € V; of maximal degree deg(v) = d — i. These vertices of maximal degree are
called root wvertices or root nodes. 2

From the definition of the canonical vine it follows directly, that all vertices which
are no root vertices have a degree of one, i.e. each tree has a star structure. The whole
structure of a C-vine is determined uniquely, if one fixes an ordering of the root vertices.
A simple, four dimensional example of a C-vine is depicted in Figure 4.2.1. Here the root
vertices are 1, {1,2} and {{1,2}, {1,3}}, respectively.

Since a C-vine is a special case of an R-vine, we can use Formula (4.1.1) to get the
density for a general d-dimensional C-vine. Due to the special structure of C-vines the
density exhibits a special structure as well. It holds

d d—1d—j
f@) =11 felee) [T T cisviz (Foz, (25|, Fypam, (w540 21,))
k=1 j=1i=1

where © = (z1,...,24)", Z; = {1,...,7 — 1} and fi, k = 1,...,d, are the marginal
densities corresponding to Fj, k=1,...,d.
Now we advance to the second special case of an R-vine.

Definition 4.9 (Drawable vine (D-vine)). A regular vine (R-vine) ¥ = (T1,...,Ta-1) is
called d-dimensional drawable vine (D-vine) if it holds for the vertices v € V; of the first
tree Ty that their degree is only one or two (deg(v) < 2). N
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Figure 4.2.1: Example for a four dimensional C-vine.

From the definition of the D-vine follows, that all trees of a D-vine are paths. In the
case of a D-vine the whole structure is determined uniquely, by fixing the structure of
tree one. Again a four dimensional example, this time of a D-vine, is depicted in Figure
4.2.2. Here the structure is determined through the path 7; = (V;, &) with edge set

& = {{17 2}7 {27 3}’ {37 4}}

T: - @ 12 @ 23 @ 34 @

7_2 : @ 13|2 @ 24|13 @

14]23

Figure 4.2.2: Example for a four dimensional D-vine.

Application of Formula (4.1.1) yields now the density for a general d-dimensional D-
vine, which exhibits again a special structure. It holds

d d—1d—j
F) =TT ) TTTT crivizs (Fiz, (x| ®2,), Fivjiz, (wa45 | 22,))
k=1 =1 =1

where € = (zy1,...,24)",Z;; ={i+1,...,i+j—1} and fi, k =1,...,d, are the marginal
densities corresponding to Fy, k=1,...,d.

For a software package which is designed to work with C- and D-vines and an extensive
guideline on it, we advert to Brechmann and Schepsmeier (2013).
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4.3 Regular vine matrices

In order to enable efficient algorithms for statistical inference on R-vines, it is crucial to
be able to access all necessary information on an R-vine in an efficient manner. Therefore
we present a storage scheme for R-vines according to Diimann (2010) and Difmann et al.
(2013). Here the main idea is to implicitly store the structure of R-vines in lower triangular
matrices instead of storing the whole set of nested trees.

In the following we give the definition of an R-vine matrix, which captures the structure
of R-vines and ensures that the proximity condition is fulfilled. Moreover we state two
properties of these R-vine matrices.

Definition 4.10 (R-vine matrix). Let M = (m;;)ij=1..a € R™? be a lower triangular
matrix. For j =1,...,d—1 let

ol (M. ;) = {{m“ﬂS} D = {mpj,...,ma;},k=7+1,... ,d} ,
BM.) = {{m,w@} D = {my Y U oma b k=441, ,d} .
M is called R-vine matriz if for all ¢ = 1,...,d —2, k =i+ 1,...,d — 1, there is a
je{i+1,...,d— 1} such that
Z3i(M) = {mp i {mps14, ..., mai}} € A (M ;) or Z..(M)e B(M.;). (43.1)
N

Proposition 4.11 (Properties of R-vine matrices). Let M = (m; ;)i j=1. .a € R™? be an
R-vine matriz. Then

(1) {mjj,...,ma;} CT{misi....ma;} for1 <i<j<d and

(ZZ) m;.; §é {mj+1,j+1, N ,de-H} fOT‘j = 1, N ,d— 1.

We can follow directly, that all entries in a column of an R-vine matrix differ. Proposi-
tion 4.11 (i) says that all the entries of a column of an R-vine matrix are also included in
each column with lower index, whereas (ii) yields, that each diagonal entry of an R-vine
matrix is new compared to the entries of the columns with higher index.

At first glance the definition of an R-vine matrix is rather counterintuitive. To illus-
trate Definition 4.10 and the subsequent proposition, we have a look at the following five
dimensional example.

Example 4.12 (R-vine matrices: Example 4.3 continued). We consider the two triangular
matrices

1 5
5 4 1 4

M*=|4 5 2 and M=14 1 3
325 3 2 21 2
2 3 35 5 33 211

In order to see that M* is an R-vine matrix, we examine the sets &/ (M;), B(M7;),
j=1,...,4and Z;(M*),i=1,....4, k=1+1,...,4, given in Table 4.1, Table 4.2 and
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Table 4.3, respectively. We easily check that 25,(M*) € B(M%,), 231(M*) € o/ (M?,),
Z1(M*) € B(M?,), Z3o(M*) € B(M), Zin(M*) € o (M?y) and Zi5(M?) € B(M,).
This yields that M* is an R-vine matrix. The proof, that M’ is an R-vine matrix as well,
is left to the reader. Furthermore both matrices apparently fulfill the properties (i) and

(ii) from Proposition 4.11.

A (M) A (M) o (M) A (M)
k=2 {1]{2,3,4,5}}
k=31 {1{2,3,4}} {4/{2,3,5}}
k=4 ] {142,3}} {4{2,3};  {21{3,5}}
k=5 ] {142}} {4{3}} {2143}y {3K5}}
Table 4.1: o/ (M) for j =1,...,4.
AB(M?)) AB(M,) BM)  BM)
k=2|{5{1,2,3,4}}
k=31 {4/{1,2,3}} {5|{2,3,4}}
k=4 {31{1,2}} {2{3,4};  {51{2,3}}
k=5 ] {2{1}} {3{4}} {3{2}y  {5H{3}}
Table 4.2: B(M*;) for j =1,...,4.
Zi(M*) |i=1 i=2 i=3
k=2 {5|{2,3,4}}
k=3 {442,3};  {5l{2,3}}
k=4 {3{2}} {2143}y {5N{3}}

Table 4.3: 25 ;(M*) fori =1, ..

A k=i+1,...,4

|

Since the structure of an R-vine ¥ is, amongst others, specified by a constraint set
€ (7), as we saw in Section 4.1, an analogous set for lower triangular matrices is consid-

ered.

Definition 4.13 (Matrix constraint set). Let M =

triangular matrix. We define

(i) the j-th (matriz) constraint set for M

C (M. ;) = {{mjj,mr;|D} : D = {mp11,

forj=1,...,d—1and D := () for k = d, and

(mij)ij=1..a € R be a lower

...7md7j},k‘:j—|—1,...7d},
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(ii) the (matriz) constraint set for M

C(M)=C(M1)U...UE(M.q1).

For the elements {m;;, my;|D}, j =1,...,d —1, k = j+1,...,d of the constraint set
E (M) we call

(ili) {mj;, muk;} (matriz) conditioned set and
(iv) D (matriz) conditioning set. 3

Difimann (2010) presents two algorithms, that allow to transform between R-vines ¥
and R-vine matrices M = (m; ;)i j=1...a € R%*%. Moreover it is proven that for an R-vine
¥ there exists an R-vine matrix M and vice versa, such that the constraint set € (") of
the R-vine equals the (matrix) constraint set ¢’ (M) of the R-vine matrix.

Until now, nothing was said about how to extract the information stored in an R-vine
matrix. Now we know that the solution for this lies in Definition 4.13. For an R-vine
matrix M, the elements of the matrix constraint set € (M) represent all the bivariate
building blocks of the R-vine, respectively the pair-copula construction. To get the desired
information, we just have to treat the matrix conditioned sets and the matrix conditioning
sets in the same way as we use the corresponding sets of a constraint set € (7") for an
R-vine 7. An Example follows.

Example 4.14 (R-vine: Example 4.12 continued). Let’s reconsider the two triangular
matrices M* and M’ from Example 4.12. The components of € (M*) are given by

C(M7y) = {{1,5]2,3,4},{1,4]2,3},{1,3[2}, {1,2/0}},
(5<MT2> = {{47 5|27 3}7 {27 4‘3}7 {37 4’(2)}} )
¢ (M73) = {{2,53}.{2,30}},

(M)

T(M) = ({3,510}

The unconditioned elements of €' (M*) yield the first tree of the R-vine, the elements
with one conditioning variable the second, and so on. We obtain the R-vine of Figure
4.1.1 which already was investigated in Example 4.3. For M’ we get

¢(M,) = {{1,512,3,4},{4,5[2,3},{2,5]3}, {3, 5[0} },
(M) = {{1,412,3},{2,4[3},{3,4/0}},

(M3) = {{1,3]2},{2,30}},

T (M) = {{1,2(0}}.

This yields that € (M*) = € (M'), i.e. M* and M’ represent the same R-vine. We conclude
that in general there is no unique R-vine matrix representation of an R-vine. a

For reasons of convenience information about copula families and the parameters cor-
responding to the bivariate copulae of an R-vine are also stored in d x d matrices. Whereas
the parameters are real numbers, it is convenient to code the copula family types with
natural numbers.
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Definition 4.15 (R-vine family and parameter matrices). Let M = (m; ;); j=1.. a4 € R4
be an R-vine matrix. Then we store information about the copula family of the bivariate
copulae Cy, i simiiyjrimays J = Lo o,d—1,1=7+1,...,d — 1 in the entry ¢; ; of the
lower triangular matrix T = (¢; ;); j=1,....4, which we call R-vine family matriz. Analogously
the parameters are stored in the entries Hﬁd of the matrices P! = (9573')1-7]':17”,7(1 € R4, where
1 <1 < lpax and lpay is the maximum number of parameters needed to parametrize the
bivariate copulae which occur. The matrices P' are called R-vine parameter matrices.

Example 4.16 (R-vine: Families and parameters). Let’s again reconsider the R-Vine
matrix M* € R of Example 4.12. For ly.x = 2 the R-vine family matrix and the
R-vine parameter matrices could be given by

IT 0 0
T=|G J , P'=135 54 , PP=10 o0 ,

C & F 1.1 —03 —2.1 0 0 0

t t D t 0.7 06 08 0.7 35 53 0 9.1

where the coding of the families used in 7' is given in Table 4.4.

no. ‘ code copula family name

0 II Independence
1 d Gaussian

2 t Student-t

3 C Clayton

4 G Gumbel

5 F Frank

6 J Joe

Table 4.4: Coding for copula families.

— (.,..9,1 62 t,j) for i = 3 and
5,7

Let us consider the bivariate copula Cm;.‘yj,m’?‘ i 107 4,07 5, ti,

i, Vi1,
j = 1. The matrix conditioned set equals {mj;,m},} = {1,4} and the matrix conditioning set
is given by {mj 1, m5,} = {2,3}, i.e. we consider C14;23 (-, -;051,931,153,1). The copula family
is given by t31 = 4, which means that the copula is a Gumbel copula. The Gumbel copula
is one-parametric, that’s the reason why 931 is set to zero. For the first parameter we have

05, = 3.5. J

Corollary 4.17 (Density of an R-vine distribution based on R-vine matrix). Let M =
(Mij)ij=1,..d € R4 be an R-vine matriz corresponding to an R-vine ¥ . Let moreover
T = (tij)ij=1,.a be the R-vine family matriz and P' = (0§7j),-7j:17m,d e R 1 <[ <
lmax, be the R-vine parameter matrices corresponding to M. Then it holds for the R-vine
distribution density f, that

d—1

d d
f@) =TT el IT T empomisimicrsecmas (@, Tigs 005 tis) (4.3.2)
k=1

j=1i=j+1
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where & = (z1,...,14)", fr, k=1,...,d, are the marginal densities of the R-vine distri-
bution F,
Ujj = ij7j|mi+1,ja~-,md,j (xmg',j ’wmi+1,j’~~-7md,j)7
U5 = qu|mz+1 Goeend,j (‘xmz] | mmi+1,j,~-,md,j)7
—(pl p2
0,, = (9”,9”,...) ,

and Com; ; m; jimigy grma, (@ ;, w; ;3 0;5,t:;) are the densities of bivariate copulae with family
ti; and parameters 6; ;.

Of course for i = d the transformed variables simplify to u;; = F, (zm,,;) and
tq; = Py, (Tm,,). In general the transformed variables are again computed in analogy
to Lemma 4.7.

For the purpose of inference, we want to calculate the log-likelihood of an R-vine ¥
with given R-vine matrix M = (m; ;)i j=1,.4 € R¥*4_This is easily done, since we already
have got an expression for the R-vine density based on the information stored in an R-
vine matrix and the corresponding R-vine family and R-vine parameter matrices. With
Equation (4.3.2) we get

((0|x) = Zlnfk Xy, —l—Z Z N oy omissmigngomay (Wg, Wig; B4, tig)  (4.3.3)

Jj=11i=j+1

for the log-likelihood.

4.4 Selection of R-vine distributions

Now that we are provided with the necessary knowledge for parameter estimation in the
context of R-vines, it remains to answer the question, how to select an appropriate R-vine
copula specification, i.e. the parametric pair-copula construction, for a given data set. To
this end we keep on following Diimann et al. (2013).

Let us first of all emphasize that the R-vine model selection procedure consists of three
main steps. The first step is the choice of the R-vine tree structure. This is equivalent
to the determination of the corresponding R-vine matrix. The second step deals with the
selection of the (parametric) copula families for the bivariate pairs, which were chosen
in the previous step. The estimation of the model parameters is the final step needed to
complete the selection procedure. Whereas all work for the third step is already done, we
will subsequently focus on the first two steps.

Usually it is the goal of model selection to choose the model with the highest likelihood.
But due to a high number of different models that have to be taken into consideration and
high computational effort, this is intractable for R-vines in higher dimensions, as they,
for instance, occur in our applications. Consequently Diffimann et al. (2013) developed a
heuristic, sequential method for the purpose of R-vine structure selection. They called the
method ”sequential”, since the R-vine structure is chosen tree-wise, as we will see next.
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For more details on the infeasibility of a ”full” model selection procedure and a substantial
reasoning for the adequacy of the sequential approach see Difimann et al. (2013).

Now we will present the sequential method, which interweaves the three modeling steps
outlined above. As already mentioned the structure of the R-vine is chosen tree by tree.
Starting with the first tree 77, the model is set up by building one tree onto the other, i.e.
the now following steps have to be performed iteratively for each tree 7;, i =1,...,d — 1.

The (conditioned) variable pairs to be modeled by the tree under consideration (7;)
are chosen such that the strongest pairwise dependencies that occur are modeled (first
step). To access these pairwise dependencies different approaches could be followed, but
normally Kendall’s 7 (see Section 2.2.1) is used as measure of dependence. Note that for
1 =2,...,d — 1 these calculations are performed on the transformed variables from the
previous iteration.

On the base of the quantities, which measure the dependence of all the variable pairs
that are relevant according to the proximity condition, a graph G; = (V;, /) is set up. The
edges of G; represent the valid variable pairs and are weighted with the absolute values
of the quantities described above. Starting from G; the tree 7; = (V;, &;) that maximizes
the sum of the weights of its edges (maximum spanning tree) is determined.

The next step is the choice of the bivariate copula families for the selected pairs. To
do so, we choose the family separately for each pair. Moreover we choose among plenty of
different kinds of families (see Section 2.3 for a selection of bivariate copula families), so
it is appropriate to utilize Kendall’s 7 in the prior step, since rank correlation measures
like that do not depend on the chosen distributions.

For the family selection, first of all the independence copula is considered. An indepen-
dence test, which can be found in Genest and Favre (2007) and is based on Kendall’s T,
is performed. If the null hypothesis of independence cannot be rejected, the independence
copula is chosen. Otherwise all other copula families under consideration are compared by
means of their Akaike Information Criterion (AIC). The family that yields the smallest
AIC is selected.

Finally we have to estimate one or more parameters for each of the specified bivariate
copulae. This is done by maximum-likelihood estimation. It remains to calculate the
transformed variables according to Lemma 4.7, which are the base for the calculations in
the next iteration. This concludes the last step for tree number .

Algorithm 4.1 (cp. Dimann et al. (2013)) summarizes the previous explanation of the
sequential model selection procedure for R-vines. It yields an R-vine copula specification
(ﬁ , V', B). Together with an R-vine matrix calculated from 7', we have all the necessary
information to be able to jointly estimate the R-vine parameters by maximizing the log-
likelihood given in Equation (4.3.3).

We finally note, that the modifications on Algorithm 4.1 are small if one is only
interested in selecting C- respectively D-vines. One simply has to select a spanning star
respectively a spanning path, in Line 6 and Line 21 of the algorithm.
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Input: Data (2;1,...,2:4) , t=1,...,T, (realizations of i.i.d. random vectors).
Output: R-vine copula specification (ﬁ , V', B).
1: Determine adequate marginals F= (Fy,..., Fy).
2: Set up a complete graph G, = (V; ={1,...,d},& = {{j,k} € V}:1<j <k <d}).
3: for {j,k} € & do
4: Calculate the measure of dependence m;;, (e.g. Kendall’s 7).
5: end for
6: Select the spanning tree 71 = (V1,&1) of G1 that maximizes Y, 11ce [Mk]-
7. for e = {j,k} € & do
8: if Hy of the independence test for the pair {j, k} cannot be rejected, then
9: choose the independence copula,
10: else
11: compare the other copula families under consideration by their AIC and choose
the family with the smallest AIC (Cjx(-, 5 9)).
12: end if
13: Estimate the parameter(s) € corresponding to the selected copula family.
14: Calculate the transformed variables ]*qﬂk(xm | 24 ) and F\klj (Tep|xey), t=1,....T,
by applying Lemma 4.7 with Cjj (-, ; 4/9\)
15: end for
16: for i = 2,...,d — 1 do {Iteration over the trees T3,...,Tq_1.}
17: Set up the graph G; = (V; = &1, & = {{a, b} € V? : #(anb) = 1}).
18: for {j, k|D} corresponding to the edges in £ do
19: Calculate the measures of dependence m;p (based on the transformed vari-
ables from the previous iteration).
20: end for
21: Select the spanning tree 7; = (V;, &;) of G; that maximizes Zee&- M ko
22: for {j, k|D} corresponding to the edges & do
23: if Hy of the independence test for the pair {j, k|D} cannot be rejected, then
24: choose the independence copula,
25: else
26: compare the other copula families under consideration by their AIC and
choose the family with the smallest AIC (Cjx.p(-,-;0)).
27: end if
28: Estimate the parameter(s) € corresponding to the selected copula family.
29: Calculate  the  transformed  variables ]3j| ko (T | T, D) and
ﬁ]ﬂjup([ﬁt,k |21, xep), t =1,...,T, by applying Lemma 4.7 with Cjip(-, §)
30: end for
31: end for

Algorithm 4.1: Sequential R-vine model selection.
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4.5 R-vines on spatial mean temperature data

To conclude our chapter about regular vines we investigate the spatial dependencies of our
daily mean temperature data and fit an R-vine to the data or more precisely to the copula
data calculated from the original mean temperature data set as presented in Chapter 3.

Initially we have a look on the copula data and the bivariate dependencies for five
selected observation stations, namely Hamburg-Fuhlsbiittel (21) and Liibeck-Blankensee
(32) which are located in northern Germany, as well as Nirnberg (41), Regensburg (43)
and Weiden (53) in Bavaria, i.e. south-east Germany. We expect that the data corre-
sponding to observation stations which are located close to each other exhibits strong
correlation, whereas observations which are collected far apart should be rather weakly
correlated. This expectation is confirmed by Figure 4.5.1, which depicts a pairs plot for
the five observation stations addressed above. The three Bavarian stations yield Kendall’s
7’s bigger than 0.65. For the Kendall’s 7 corresponding to the pair Hamburg and Liibeck
a value of 0.78 is calculated. The remaining results for the rank correlation measures in-
dicate a low correlation between the data stemming from the north and the data from
the south.

Besides Figure 4.5.1 depicts histograms of the copula data on the diagonal panels,
scatter plots on the upper off diagonal panels and contour plots on the lower off diagonal
panels. From the histograms we see that the copula data fulfill the requirement of being
uniform on [0, 1]. Both the scatter plots and the contour plots indicate the magnitude
of the correlation in accordance with the observations on the Kendall’s 7’s from above.
The scatter and contour plots corresponding to the six north-south pairs suggest slightly
asymmetric copulae in case these pairs should be modeled in the first tree of an R-vine.

Since the variable pairs of the current tree of an R-vine are selected in such a way
that the highest dependencies are modeled and since we expect that high dependencies
occur for station pairs with short distance, we consider the contour plots of the station
pairs with the twelve shortest distances. They are illustrated in Figure 4.5.2, where the
two numbers in the upper left corner of each plot are the distance in kilometers and
the elevation difference in meters. The respective Kendall’s 7’s in the lower right corners
are all larger than 0.7, with the exception of the pair GieBen (17) - Berleburg (3). It is
conspicuous that this pair exhibits a large elevation difference, which seems to be the
reason for the relatively low Kendall’s 7. Compared to the eleven other contour plots,
the contour plot for this outstanding pair seems to be the only one which shows slight
asymmetry. The eleven remaining contour plots possess an elliptical shape, which is a
hint that a big share of the bivariate copulae in tree one of the subsequently investigated
R-vine will be either Student-t or even Gaussian copulae.

In order to learn more about the structure of an R-vine for our daily mean temperature
data, we fitted an R-vine to the respective copula data. For this purpose we took Gaus-
sian, Student-¢, Clayton, Gumbel, Frank and Joe copulae and rotated versions thereof
into consideration. Moreover an independence test was performed for each variable pair,
to check if an independence copula would be more appropriate than any other copula
type. Figure 4.5.3 shows the first tree of this R-vine embedded into a map of Germany.
A comparison with Figure 4.5.2 yields, that eleven of the twelve pairs, excluding the pair
Gieflen (17) - Berleburg (3), are building blocks included in the first tree of our fitted
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Figure 4.5.1: Pairs plot of the copula data of Hamburg-Fuhlsbiittel (21), Liibeck-
Blankensee (32), Nirnberg (41), Regensburg (43) and Weiden (53), with contour plots on
the lower off diagonal panels, histograms on the diagonal panels and scatter plots on the
upper off diagonal panels.
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Figure 4.5.2: Contour plots for the station pairs with the twelve shortest distances.
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Figure 4.5.3: Tree one of the fitted R-vine embeded into a map of Germany.
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R-vine. A further observation arising from the two previously considered figures is, that
the R-vine selection procedure most likely chooses variable pairs whose respective ob-
servation stations are located closely to each other. Our observations indicate that the
spatial arrangement of the observation stations plays an important role with regard to
the modeling of the dependence structure.

Finally we are interested in the number of independence copulae respectively the
number of elliptical copulae occurring in our R-vine. The upper part of Figure 4.5.4
illustrates the number of non-independence copulae for each tree of the R-vine. The dashed
diagonal gives the number of bivariate pairs building the respective tree, i.e. it indicates
the maximum number of non-independence copulae that would be possible. From the plot
we observe that the number of non-independence copulae decreases quickly with increasing
tree number. Starting from tree number 19 a maximum number of ten non-independence
copulae isn’t exceeded. Contrariwise the lower part of the figure visualizes the share of
independence copulae for each tree. We find that more than 50% of the copulae in trees of
order ten or higher are independence copulae, which might justify to truncate the R-vine
after a certain tree.

The intention of Figure 4.5.5 is it to visualize the number of elliptical copulae compos-
ing the R-vine. It shows that all copulae of the first tree are Student-¢ copulae. Besides we
find that the number of elliptical copulae decreases rapidly with increasing tree number.
Only a few of the elliptical copulae are Gaussian, most of them are t-copulae. Moreover
we observe that the share of non-elliptical copulae is quite high for most of the trees. This
observation justifies the application of pair-copula constructions instead of simply using
a multivariate Student-t copula.

Motivated by the outcomes of this section we are going to develop some new spatial
vine models in the subsequent chapters. Within this framework we will return to our
exemplary data set of daily mean temperatures.
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Figure 4.5.4: Visualization of the number of (non-)independence copulae per tree, which
occur in the estimated R-vine.
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Chapter 5

Spatial R-vine models

The previous investigations in Chapter 4 showed that for spatial data, the spatial arrange-
ment of the locations where the data stems from plays an important role with regard to
the modeling of the dependence structure. Moreover we saw that the number of param-
eters of an ordinary R-vine model becomes quite high, if a huge number of variables are
included into the model. In our case (d = 54) we have two consider parameters for 1431
pair-copulae. These observations lead to the idea, to use additional spatial information to
reduce the number of parameters and to develop a spatial R-vine model (SV).

5.1 Preliminary analyses

For the purpose of the development of a spatial R-vine model, we first need to in-
troduce some notation. In the following we consider the copula data u!,...,u? with
u® = (uf,...,uy)", s =1,...,d, i.e. we consider time series of length N for d different
observation stations. Elevation, longitude and latitude for an arbitrary observation station
s are denoted by Telev,s; Tiong,s and T1ats. These quantities allow to calculate an

unsigned distance d; ;

and an
unsigned elevation difference e; ;

for each pair of observation stations (7, j) with 1 <i < j <d.

For an arbitrary edge e of the subsequently developed spatial R-vine, the corresponding
bivariate copula is denoted as

CijiDes
where 1 < i < j < d compose the conditioned set C. = {i,j} and D, is the conditioning
set according to Definition 4.2. Then the respective first and second copula parameters
are denoted as
Oijo.  and  vigp,,

where the second parameter is only needed if C; ;.p, stems from a copula family with two
parameters (e.g. Student-t copula). The corresponding Kendall’s 7 is given as

7;,; respectively 7 jp,,

85
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depending on whether it is calculated directly from the data or based on transformed
variables in the trees 75,73, ..., T4—1 of the R-vine.

Now that the necessary notation is introduced, we return to the mean temperature
data set (d = 54) to conduct further investigations on the spatial dependencies of the
given variables. To this end we are interested in a potential relationship of the correlation
and the distance respective the elevation difference of observation station pairs. These
relations are investigated in Figure 5.1.1.

For all d(d-1)/2 = 1431 possible station pairs (i,j), 1 < i < 7 < 54, the empirical
Kendall’s 7’s 7;; are calculated, to quantify the correlations of these pairs. Moreover,
the respective pairwise distances d; ; and elevation differences e; ; are calculated. As the
empirical Kendall’s 7’s 7; ; are restricted to (—1,1), and since we want to take a linear
model into consideration, where the response should live on the whole real line, we apply
the Fisher z-transform given in (2.7.1) to transform from (—1, 1) to (—oo, 00). Furthermore
we apply the natural logarithm to the distances and elevation differences.

The upper part of Figure 5.1.1 is a plot of the Fisher z-transformed Kendall’s 7’s
against the logarithmized distances. Here, a distinct linear relationship is observed. The
lower part of the figure illustrates the respective plot against the logarithmized elevation
differences. Also in this case there seems to be some kind of linear relationship, but it is
not that distinct, as it was in the case of the pairwise distances.

The straight gray lines in both plots depict the regression line corresponding to the par-
ticular linear relationship. The horizontal lines help to identify the values 0.2,0.3,...,0.8
of Kendall’s 7, whereas the vertical lines indicate the three distances of 50, 100 and 200
kilometers respectively the three elevation differences of 50, 100 and 200 meters.

Recalling our investigations of R-vines on the mean temperature data, we saw that
primarily pairs exhibiting short distances respectively high correlations enter the R-vine
model in the lower trees. This yields that the relevant pairs are represented by the upper
parts of the plots in Figure 5.1.1, where we observe higher fluctuation around the regression
lines. This proposes a tree-wise investigation of the pairs occurring in an R-vine, in order
to detect significant relationships. This investigation is going to be performed later on.

In order to justify the application of linear models to model the empirical Kendall’s
7’s T, ;, we fit the linear model

F.(1;) =a+ Baln(d; ;) + Beln(e;;) +€ij,  €ij S (0702) , 1 <i< <54

We obtain highly significant parameter estimates a = 2.2596, Bd = —0.3074 and //8\@ =
—0.0066, and a pretty high R? = 0.9412.

To see that the assumptions of a linear model are fulfilled, we investigate the stan-
dardized residuals obtained from fitting the above stated model to the data. The Q-Q-plot
and the histogram in Figure 5.1.2 yield, that the normality assumption is justified. From
the scatter plot of the standardized residuals against the empirical Kendall’s 7’s we ob-
serve random scatter around zero, but increasing volatility with increasing 7; ;, which was
already observed from the regression plots in Figure 5.1.1. If we would restrict us once
again only to high correlations, the assumption of constant variance might be adequate.

So far we figured out, that the Kendall’s 7’s corresponding to spatially arranged ob-
servation station pairs might be modeled by means of distance and elevation difference.
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In the following we aim to apply these findings to reduce the number of parameters which
are needed in an R-vine model. Hence a tree-wise analysis of an R-vine model fitted to
the mean temperature data might lead to a deeper insight into the relationship of the
R-vine parameters and available spatial information. For these investigations we consider
an R-vine truncated after tree ten, which allows for Gaussian, Student-t, Clayton, Gum-
bel and Frank copulae, as well as rotated versions thereof, where the copula families are
selected according to the Akaike information criterion. Moreover we modify our notation
intuitively, in order to indicate dependence on the edge e € & and sometimes we add
[ <10 as a superscript to underline the dependence on the tree number.

Table 5.1 summarizes the structure of the R-vine which we are going to investigate in
more detail in the following, where the families are coded according to Table 4.4. On the
one hand we observe that the copula family wich occurs most for the trees one to nine
is the Student-¢ family. On the other hand the number of other copula families increases
with the tree number. In tree ten the Gumbel family is the dominating one.

! #O #t #C #G #F min(7, op) Max(Tiop.) U ) ()De
1 0 53 0 0 0 0.591 0.809 7.659
2 1 38 1 7 5 -0.153 0.317 9.908
3 1 35 4 6 5 -0.222 0.356 10.837
4 2 23 5 13 7 -0.180 0.300 11.873
5 1 21 9 9 9 -0.154 0.278 11.843
6 5 20 5 12 6 -0.114 0.285 12.967
7 6 15 10 10 6 -0.193 0.239 13.378
8 5 18 4 7 12 -0.098 0.193 14.888
9 7 15 6 8 9 -0.066 0.279 14.373
10 3 10 8 16 7 -0.128 0.246 14.105
Sum 31 248 52 88 66

Table 5.1: Summary of the structure of the truncated R-vine under consideration.

Figure 5.1.3 plots both the Kendall’s 7’s ?il(e)’j(

the degrees of freedom Df(e),j(e)me of the t-copulae which occur in the R-vine against the
respective tree number [. Recall that the Kendall’s 7’s in tree number two and higher are
calculated based on transformed variables.

From the figure and from Table 5.1 we observe that the strong dependencies are already
captured in tree one and that the correlations in higher trees scatter mostly between —0.2
and 0.3, i.e. negative dependencies occur as well. In the upper panel of Figure 5.1.3 t-
copulae are highlighted, to be able to detect patterns in the relationship of Kendall’s 7
and the tree number. No such relation can be detected. Moreover we cannot detect any
pattern in the Kendall’s 7’s, with respect to the tree number.

For the degrees of freedom we discover a quadratic trend with regard to the tree
number. For higher tree numbers the degrees of freedom seem to be higher, at least in
the mean. In the next section we will use this finding to reparametrize the second copula

parameters yf(e) i(e)/De together for all trees [ = 1,...,10.

It remains to specify relations between the first copula parameters 95(6)7 i

oD, ATiSing in the truncated R-vine and

&) D and the
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corresponding distances dj) ;) respectively elevation differences e;) (), distinguishing
which tree [ < 10 the edge e stems from. We already figured out, that the Kendall’s 7’s
D might be modeled by means of the predictors dj.) ) and eje) ). Moreover

l
Tie),j(e

we know that there exist relations between the copula parameters 95(6)7 ()| and the

Kendall’s 7’s Tz‘l(e),j(e)\De> depending on the copula family t;.) () p.. Hence we have got
to investigate possible dependencies of the Fisher z-transformed Kendall’s 7’s on the
distances and elevation differences, separately for each tree, in case we find such relations,
we are able to transform back to the copula parameter level.

Before we continue with the tree-wise analysis, we briefly address the relationship
between Kendall’s 7 and the model parameter. For a selection of important copula families,
the respective relations have already been stated in the examples of Section 2.3. For our
purposes we need a transformation that transforms a Kendall’s 7 to the respective model

parameter. The expression

l _ ! )
ei(e),j(e)\De =T (Ti(e),j(e)\De7 ti(e),j(e)\De) )

denotes the desired transformation.

To continue the tree-wise analysis, we start with an investigation of the first tree (it
holds D, = (), i.e. let e € & be an arbitrary edge of 77. For all 53 edges e € &, we
plot the respective Fisher z-transformed Kendall’s 7 F (7, j(¢)) both against In(d;) j())
and against In(e;(e)j()). Figure 5.1.4 shows these plots, from which we conclude that a
linear relationship seems appropriate in both cases, since the slope of the regression line
is significant.

For edges e € & of trees T, with [ > 1, D, is non-empty. This means that the distances
and elevation differences between elements k € D, and i(e) respectively j(e) may also be
considered as additional predictors for the parameters ;) j)p. . Since there is no ordering
of the elements of D,, there is no justification that the potential predictors corresponding
to different elements of D, should be treated in a different way. Therefore we define the
means

1
di(e),p. = 1 Z di(e) k>

ke€De

1
€i(e),De “— -1 Z €ie) ks
keDe

1
di.p. = 77 > di

k€D,

and use them as further predictors in our models, i.e. we are going to investigate six plots
for all trees 7, with [ > 1.

For Tree T3 it holds that D, = {k} for all edges e € &, i.e. the above defined means
equal the single distances respectively elevation differences that enter the respective sum.



92

F.(Ty)
0.9

F.(Ty)
0.9

1.1

1.0

0.8

0.7

1.1

1.0

0.8

0.7

CHAPTER 5. SPATIAL R-VINE MODELS

°
™~ o °
o
| \ o o oo
) °
\\\\ o
L
[ o
— o o
o 0 o o
o o
o o =~
_| ° ° o® °0° %o o
o [
o
I I I I I I
3.8 4.0 4.2 4.4 4.6 4.8
In(dy)
o ©O
° o
o o o o &
— o o
° o
o
\ .
— o o
5
o o
o
n °o o o
fo) o \Qo\
o o
o
o ° © ° o .
@
| o o o )
o o
o
I I I I I I
1 2 3 4 5 6

In(eij)

Figure 5.1.4: Scatter plots of F(T;() j(¢)) against In (di(e),j(e)) and In (ei(e),j(e))7 respectively,
where e € & (Tree 1).



5.2. MODEL FORMULATION 93

The six plots of Fz(%\i(e),j(e)\’Dg) against In (di(e),j(e)), In (ei(e)’j(e)), In (di(e),k)a In (ei(e)’k),
In (dj(e)’k) and In (ej(e)vk) are given in Figure 5.1.5 and yield a linear relationship of
F.(Tite).j(e)p.) on each of the six predictors. The plot against In (di(e)d(e)) shows a negative
slope, whereas the other five plots show positive slopes.

Figures 5.1.6 to 5.1.8, corresponding to the trees 73, 74 and 75, show again a significant
negative slope for the predictor In (di(e),j(e)). The remaining plots mostly do not show any
significant slope. These findings suffice us, that we proceed to the next section, where
we set up different tree-wise models for the copula parameters, which include different
subsets of the predictors examined above.

5.2 Model formulation

In this section we are going to propose several reparametrizations of an R-vine model,
based on the spatial predictors examined in the previous section.

Let us first of all assume a polynomial reparametrization for the second copula parame-
ters D’f(e),j(e)lpe of the copulae Cje) je):p., € € &, 1 = 1,...,10, wherever second parameters
occur. For this purpose we model the logarithm of the parameters in dependence of the
tree number as

v v v v ii.d.
In vy i, = B5 + 811+ 5P + . 4 B+ €o i) Eitergte) ~ N (0,0%), (5.2.1)

ec&, 1=1,...,10,

where the degree g of the polynomial is determined by adding summands S}I" to the
model, as long as Y is significant at a level of 5% for the data set under consideration.
We set ¢ = r — 1, with [, being the first non-significant parameter added to the model.
Having determined ¢, the reparametrization for the degrees of freedom (nu) is defined
via
Uiy jem. =exp{(LLE, ... 198V}, ee&, 1=1,...,10,

where the respective parameters are summarized in the vector

BV = (85, 8¢, B8, ..., 8) | € R,

where
Npar =7 =q+ 1.
Now we are going to propose several different reparametrizations for the first parame-
ters Qﬁ(e),j(e)lDe of the bivariate copulae Cj) je):p. of the trees [ =1,...,10, where e € &,.
The first reparametrization which we are going to take into consideration is the re-
parametrization which involves all available predictors. That is why we call it full repara-
metrization (full). It is given by

i full 5V —  —
Oy, = 91" (dite),j(e)s €ite)ite)s dice),Des Eife),Des di(e), Do Ei(e) e [Bratis tice) o) 0.
=T (F2' (W™ (elBrany)) s tie)jep.) s € €&, L=1,...,10,

where
P (el Bran) = B0 + B In (dige) jo)) + A% In (i g) € € &,
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with T
/Bfull,l = ( il(l)lv {l,lil7 {1,1%1) < R3’
and where
™ (elBras) = 615" + 813 In (dice) jo)) + Bl n (€ite)ice))
+ 5{};}1 In (dieyp,) + B4 In (&0,
+ 85 I (djo.p.) + B8 W (Gop.), e€&, 1=2,...,10,
with

full pfull full T 7
/Bfull,l:(l}é), ﬁ,..., l}é) eER”, 1=2,...,10.
All parameters of the full reparametrization are summarized in the vector

full

.
full (ﬁfullla"'aﬁfulhlo) € Rpar

where ngﬁ =3+ 7-9 = 66.
All other reparametrizations which we are going to consider include only a part of the
predictors included in the full reparametrization. The distance reparametrization (dist)

for example includes all possible distances. It is given by

i dis
Oiter.iteyp. = 9" (dite).j(e)s die) pe» d 0).i(©)D.)
=T, (F; (hdlSt(elﬁdlstl)) t(e),j(e)|De) , e€&, 1=1,...,10,

where
W™ (e|Baisea) = Ao’ + Ais I (dioysc0)) » € € &,
with
Basa = (A5, B15) " € R2,
and where

h;iist (dﬁdist,l) —_ dlst + ﬁdlst In (d ( ,j(e))
+ BZ:}IQSt In (di(e),'DE) + 51(3;1;“ In (dj(e),De) , e€&, 1=2,...,10,
with .
Buist, = (ﬁfE)St, lc}lft, ;?;t, ;f;ft) eRY 1=2,...,10.
The parameters of the distance reparametrization are summarized as

dist

T
dlst (IBdlst 15 7/6dist,10) S Rnpar

where ndst =2 +4.9 = 38.
We are going to reduce the number of parameters even more, i.e. we are going to
investigate the following d0 reparametrization (d0), which involves only the distances

between the pairs which are indicated by the conditioned set of the respective copulae.

91 )ID. = 9/ (di(e),j(e)|Baoys tice) i) m. )
=T ( (hd0(6|5doz)) tie)jm.), e€&, 1=1,...,10,
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where

h?O (e[Baoy) = +5zd?111( ze)](e)) ec&, 1=1,...,10,

with .
Bao, = (10, f}?) eR? 1=1,...,10.

The summary of the respective parameters is given by

SV T T T do
a0 = (IBdO,D e 7/8d0,10) € R"ar,

where nd0, = 2 - 10 = 20.

Furthermore we take the two reparametrizations called elevation reparametrization
(elev) and e0 reparametrization (e0) into consideration. These are constructed in analogy
to the distance and d0 reparametrization, respectively. Replacement of the distances in
the distance and d0 reparametrization by the respective elevation differences yields the
elevation and e0 reparametrization.

The last reparametrization of interest gets the name d0+e0 reparametrization (de). It
is again a reparametrization which includes both, distances and elevation differences, but
only those which are given by the pairs indicated by the conditioned set of the respective

copulae. The reparametrization is given by

é;lj(e),j(e)rDe = glde (d'(e)d (e) el(e |ﬁdel7 ‘De)
=Tr9 (F ( ( |ﬁdez)) Lite),je )\De) , e, 1=1,...,10,

where

i (€]Baey) = Bils + B In (digeyje)) + BisIn (eie) i), €€& 1=1,...,10,

with
.
Baes = ( 38; f‘f} ldS) eR3 1=1,...,10.

The occurring parameters are summarized as

SV T T T de
de — (Bde,b o 7/6de,10) € R

where npar =3-10 = 30.

Based on the above reparametrizations, six different spatial R-vine models arise. In
order to be able to estimate the respective model parameters, we have to specify the
corresponding likelihood, since parameter estimation is done via maximum-likelihood es-

timation. Applying the reparametrization (nu) for the degrees of freedom ﬂ?( (o). and

selecting a reparametrization (r) for 91(6 (e)|p,» out of the six reparametrizations (full),
(dist), (d0), (elev), (e0) or (de), the hkehhood is given through

N
SV gSVv ~i(e) ~j(e). gl ~
Lsv (B, 8,7 [u', HHHCJ )P (“t Vg5 Bie) <)\DevVz'(e>,j<e>|7>e>ti<6>ﬂ‘<6>“’e)’

t=1 I=1 e€&
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where the transformed variables m(e) and ﬁi ) are calculated according to

0 = Fioyp, (1 | uf*),
W = Fyop, (u]' |ule),
with
uPe = {ui: s €D.}.

Numerical maximization of the log-likelihood
ESV (/81~Sv7 /HSV | ulv s 7ud) =In £SV (/Brsvv IBSV | ’U,l, s 7U’d> (522>

yields the maximum-likelihood estimates (mle)

N s e\ T
e = (B, BY) € RObrtnin),

In the rest of Chapter 5, we will address the above specified spatial R-vine models
according to the selection of the reparametrization as full, distance, d0, elevation, €0,
respectively d0-+e0 model.

5.3 A spatial R-vine model for mean temperature

In this section we are going to investigate a spatial R-vine model for the mean temperature
data set. To this end we aim to select a suitable reparametrization of an R-vine copula
on this data set, which is truncated after tree ten and allows for Gaussian, Student-t,
Clayton, Gumbel and Frank copulae, as well as rotated versions thereof. We are going to
select the reparametrization among the six reparametrizations presented in the previous
section.

5.3.1 Model selection

The first step of our model selection is the determination of the degree ¢ for the reparame-
trization of the degrees of freedom. The analysis of the lower plot of Figure 5.1.3 in Section
5.1 makes us expect that a degree equal to two might be suitable. Table 5.2 confirms this
expectation. It summarizes the parameter estimates and their estimated standard errors,
Wald statistics and p-values of a fit of the linear model (5.2.1) in the case ¢ = 2. The
respective numbers for the case ¢ = 3 are given in Table 5.3. Whereas some of the param-
eter estimates in Table 5.3 are insignificant at a significance level of a@ = 5%, all estimates
in Table 5.2 are significant, i.e. the degree ¢ is chosen to be 2 and it holds ny, = 3. The
estimates in Table 5.2 can be used as start parameters for 3,, when the log-likelihood
(5.2.2) of the reparametrized R-vine model is going to be maximized.

One principal purpose of our reparametrization is the reduction of the number of
parameters. Whereas the R-vine on the mean temperature data truncated after tree ten
is parametrized by 733 parameters, the numbers of parameters of the six models presented
in the previous section are considerably smaller. The respective numbers are summarized
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\Estimate Std. Error t-value p-value

By 1.8424 0.0645  28.55 0.0000
BY 0.1848 0.0324 5.71  0.0000
By -0.0112 0.0032 -3.54  0.0005

Table 5.2: Parameter estimates, estimated standard errors, Wald statistics and p-values
of the polynomial model for the second parameters l/f(e)J(e”De, ee &l =1,...,10

(R? = 0.2949, RZ,;; = 0.2891).

\Estimate Std. Error t-value p-value

B 1.7350 0.1059  16.39  0.0000
BY 0.2929 0.0904 3.24  0.0014
By | -0.0369 0.0203 -1.82  0.0707
By 0.0017 0.0013 1.28  0.2021

Table 5.3: Parameter estimates, estimated standard errors, Wald statistics and p-values
of a polynomial model for the second parameters Vf(e),j(e)\De’ ee€ &, l=1,...,10, with

non-significant parameter (R* = 0.2996, R2;; = 0.2910).

in Table 5.4. The last row of the table gives the total number of parameters needed, if
the reparametrization according to the respective model given in the header of the table
is chosen.

Table 5.5 gives the cumulated number of parameters for the different models. It shows
how the parameter numbers could be reduced further, if a lower truncation level would
be chosen.

To be able to compare the explanatory power of the models under consideration, we
fit the six linear models

F.(Tite)iem.) = W™ (e|Brang) + Eite)jie)s  Eite),ice) N (0,0%), e€é&,
F. (T sep.) = B (el Baista) + it ity > N (0,02), e€&,
F. (Tieiom.) = b (elBaos) + iterjion it ~ N (0,0%), e€é&,

F.(Titeim.) = b5 (€]Betevi) + €ite)jie)  Eiterse) o N (0,0%), e€é&,

‘full distance dO0 elevation e0 dO+e0

n;ar 3 3 3 3 3 3
Tree 1 3 2 2 2 2 3
Tree 2 7 4 2 4 2 3
Tree 10 7 4 2 4 2 3
Sum 69 41 23 41 23 33

Table 5.4: Number of parameters in case of the 'full’, distance’, ’d0’, ’elevation’, e’ and
"d0+e0’ model.
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# trees ‘ full distance dO elevation e0 dO+e0

1 6 2 5 5 5 6
2 13 9 7 9 7 9
3 20 13 9 13 9 12
4 27 17 11 17 11 15
> 34 21 13 21 13 18
6 41 25 15 25 15 21
7 48 29 17 29 17 24
8 95 33 19 33 19 27
9 62 37 21 37 21 30
10 69 41 23 41 23 33

Table 5.5: Cumulated number of parameters for the 'full’, ’distance’, ’d0’, ’elevation’, ’e()’
and 'd0+4-e0’ model.

Lid.

F.(Tie)je).) = B§° (€|Beost) + Eite)jie)s  Eiterjte) ~ N (0,0%), e€& and
. Lid.

F.(Tite)j)p.) = 0§ (€| Baes) + Eiterite)s  Eiterjte) ~ N (0,0%), e€&,

separately for all trees 7;, | = 1,...,10. The respective R* and dej are summarized
in Table 5.6 and Table 5.7 for comparison. Furthermore, they are visualized in Figure
5.3.1. Note moreover, that the estimates of the above model fittings can be used as start
parameters for 3,, when (5.2.2) is maximized in order to fit a spatial R-vine model on the
mean temperature data.

Tree ‘ full distance d0 elevation e0 dO0+e0
1 0.5507 0.4992 0.4992 0.0608 0.0608 0.5507
2 0.6935 0.6275 0.2642 0.1259 0.1136 0.3633
3 0.6069 0.5643 0.4638 0.0045 0.0003 0.4683
4 0.6099 0.5964 0.3603 0.0336 0.0307 0.3693
5 0.4862 0.4415 0.3271 0.0733 0.0002 0.3402
6 0.4269 0.4094 0.2610 0.0559 0.0294 0.2616
7 0.3895 0.2977 0.1875 0.0719 0.0626 0.2807
8 0.5540 0.4929 0.1902 0.0477 0.0004 0.2125
9 0.6132 0.5645 0.3810 0.0214 0.0002 0.4038
10 0.2987 0.2290 0.1631 0.0771 0.0024 0.1671

Table 5.6: R? for the 'full’, *distance’, ’d0’, ’elevation’, ’e0’ and 'd0+e0’ model.

From the plots of Figure 5.3.1 we observe clearly, that the models which include only
elevation differences and no distances perform considerably bad, i.e. the explanatory power
of the elevation predictors appears to be only marginal. On the other hand we see that
the explanatory power of the distance model seems to be close to the explanatory power
of the full model. In terms of the dej the distance model is even superior compared to
the full model for two trees. The performance of the d0 and the d0+e0 model cannot
keep up with the performance of the distance and the full model. Due to the fact that the
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Figure 5.3.1: Tree-wise R? and Ridj for different kinds of spatial R-Vine models.
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Tree ‘ full distance d0 elevation e0 dO0+e0
1 0.5328 0.4894 0.4894 0.0424 0.0424 0.5328
2 0.6526 0.6042 0.2495 0.0713  0.0958 0.3374
3 0.5532 0.5365 0.4529  -0.0591 -0.0201 0.4462
4 0.5555 0.5701 0.3470  -0.0295 0.0105 0.3425
5 0.4128 0.4043 0.3128 0.0115 -0.0211 0.3115
6 0.3430 0.3691 0.2449  -0.0085 0.0083 0.2287
7 0.2979 0.2487 0.1694 0.0071  0.0418 0.2480
8 0.4854 0.4567 0.1718  -0.0204 -0.0223 0.1759
9 0.5521 0.5326 0.3666  -0.0502 -0.0231 0.3754
10 0.1850 0.1712 0.1432 0.0079 -0.0213 0.1264

Table 5.7: dej for the ’full’, "distance’, ’d0’, ’elevation’, ’e0’ and 'd0+e0’ model.

selection of the distance model in comparison to the full model yields a reduction in the
parameters from 69 to 41, and that the distance model performs nearly as good as the
full model, we decide to choose the distance model as our final model.

5.3.2 Model fit

Based on the selected reparametrization, the distance reparametrization (dist), we are
now ready to fit our model via maximum likelihood estimation.

For this purpose we have to weaken the copula family specification of the truncated R-
vine under consideration in terms of family rotation, since the reparametrized parameter
95(6)’ i(e)[D, MAY change its sign during the numerical optimization procedure. The final
parameter estimates will determine the rotation of the corresponding families.

Finally model fitting is performed by maximization of the log-likelihood (5.2.2), where
the distance model (dist) is selected for (r). For the mean temperature data set we obtain
the parameter estimates Arsn\{e = (A(Sth,BEV)T e RO%+75a) which are summarized in
Table 5.8. Additionally the start values, which were used for the maximum-likelihood
estimation, are given.

A supplementary visualization of the estimates and start values, which cuts of the
intercepts B5", Bgg" as well as 3y, is presented in Figure 5.3.2. It is intended to help to
detect possibly existing trends in the parameter estimates. To be able to do so, the esti-

mates of the distance models’ intercepts B%S“, [=1,...,10, and the ones corresponding to

the predictors dj(e) j(e), die),p. and dj() p,, are connected by lines, respectively. Obviously
there is no simple trend for the intercepts, but it may be possible to find adequate linear
or quadratic reparametrizations of the remaining parameters ﬁfift, 312“ and Bﬁi;t across
all ten trees [ = 1,...,10, in order to further reduce the number of parameters. This is
left open and we are contented with our model at the moment.

Furthermore we note from the table and the figure that the used start values lie pretty
close to their respective final estimates. This fact is also reflected in the small difference
of the initial value of the log-likelihood 54533.74 and the final maximum log-likelihood

aist <,§§i\sft, ﬁf}v |ul,. .. ,ud) = 54650.11. Hence the calculation of start values according
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no. par start mle I no. par start mle I no. par start mle
L opigt 2056 1.965| 15 ggg'  0.011 -0.014 | 29 fFg5° 0233  0.185
2 B -0.264 -0.245 | 16 BgE -0.289 -0.295 | 30 g% 0.201  0.207
3 /g 0095 0165 | 17 pgst 0114 0.125 | 31 ggst -0.403 -0.393
4 Bt -0.405 -0.346 | 18 pg5t 0.201  0.203 | 32 Bg5t -0.226 -0.223
5 pgst 0238 0200 19 Fg° -0.303 -0.308 | 33 Agst 0.121  0.136
6 A5 0208 0169 | 20 fFgF -0.227 -0.191 | 34 pgst 0.204 0.184
7 pget 0198 0227 | 21 Bg5T 0187 0.165 | 35 iy -0.133 -0.162
8 pBght -0.334 -0.297 | 22 pg5Y 0124 0.107 | 36 By -0.122 -0.100
9 pgst 0131 0.088| 23 Bt -0.458 -0.463 | 37 By 0.035  0.018
10 pAgst 0197 0196 | 24 G5 -0.206 -0.204 | 38 By 0123 0.122
11 pfst -0.298 -0.293 | 25 5" 0.140 0.165 | 39 [ 1.842 1.618
12 gt -0.376 -0.412 | 26 G750 0174 0.148 | 40 pY 0.185  0.247
13 A95" 0308 0.304 | 27 gt -1.129 -0.946 | 41 By -0.011 -0.016
14 gt 0168 0213 | 28 Fg -0.196 -0.191

Table 5.8: Start values and maximum-likelihood estimates of the spatial R-vine model for
the mean temperature data.
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Figure 5.3.2: Visualization of the maximum-likelihood estimates of the spatial R-vine
model for the mean temperature data.
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to the previous subsection yields a model which is already close to the finally estimated
one.

Figure 5.3.3 illustrates the differences between the Kendall’s 7’s occurring in our newly
estimated spatial R-vine model, which are calculated as

?i(%ies)t,j(eﬂDe = Fz_l (h?iSt(elﬁdist,l)) , e€&, 1=1,...,10,
and the respective Kendall’s 7’s
Tiej@p, €€&, 1=1,...10,

of the original R-vine model on which the development of the spatial R-vine model was
performed.

The upper part of Figure 5.3.3 is a plot of /T\z%ies)t,j(e)me against Ti(e)j(e)p., € € &, | =
1,...,10. If the correlations of the bivariate building blocks of our model were completely
explained by our distance model, all points of the plot should lie on the angle bisector. That
is of course not the case, but the points scatter closely around this line, which supports
the adequacy of our reparametrization. It is however conspicuous that our model tends
to estimate ﬁ%ies)ﬁj(e)‘pe close to zero, where negative Kendall’s 7’s Tj(¢) j(e)/p. Occur.

In addition Figure 5.3.3 plots

~dis ~
M&@@—ﬁ@mme

. e€&, 1=1,...,10,

against the respective tree number [ = 1, ..., 10, in its lower part. Moreover the tree-wise
shares of differences smaller than 0.1 are given. We observe that the spatial R-vine model
doesn’t differ that much from the original R-vine model for the first tree. However about
23% of the correlations in tree two show a difference of more than 0.1 to the respective
R-vine model correlations. For the remaining trees more than 80% of the Kendall’s 7’s
exhibit a precision better than 0.1.

Finally we present an illustration of the dependencies modeled by the spatial R-vine
model. Figure 5.3.4 shows all 54 observation stations of the mean temperature data set
on which the spatial R-vine model is built and all edges that occur in the ten trees of
the R-vine. The magnitude of correlation between station pairs which is modeled by the
spatial R-vine model is indicated through edge width and edge color. The thicker and
darker the edges are, the higher is the respective correlation. The resulting network gives
an impression for which pairs dependencies are modeled and how strong they are and
which pairs are treated as conditionally independent by the model. One clearly observes
that the strongest dependencies are already captured in tree one, which is silhouetted
against all other trees. Moreover, some stations like for instance Berleburg, Bad-Stinzel
(3) or Holzdorf (Flugplatz) (23) play an important role for the modeling of dependencies,
whereas the dependency of stations like Gdttingen (19) or Rostock-Warneminde (44)
with other stations is mostly captured by the respective edges of the first tree. Note
furthermore, that due to the selection of the first tree and the truncation after tree ten
there are no edges between stations which are located relatively close to each other, e.g.
stations Jena (Sternwarte) (24) and Kronach (29).
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model and in the original R-vine. Lower: Absolute value of the difference between these
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Figure 5.3.4: Visualization of the dependence structure in the estimated spatial R-vine
model. The edges of all ten trees of the truncated R-vine are depicted. The thicker and
darker the edges are, the higher is the respective correlation.
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5.3.3 Prediction

Now that we have selected an adequate spatial R-vine model for the mean temperature
data and the respective model parameters are estimated, we aim to predict mean temper-
atures at new locations based on the model fit. In order to be able to validate the outcome
of these predictions, the locations from which we predict are chosen among observation
stations where mean temperature data is available for the relevant period. The validation
data set which we are going to take into consideration is composed out of the mean temper-
atures of 24 observation stations across Germany over the period 01/01/2010-12/31/2012.
All stations of the validation data set get again their own identification number and a
short name. Besides their names and IDs the respective stations’ longitudes, latitudes and
elevations are supplied in Table 5.9. Moreover the stations’ locations are visualized on a
map of Germany in Figure 5.3.5. The locations of the 54 stations composing the training
data set are indicated by plus signs.

s/ short full Tlong,s Tlat s Teley s
ID name name (longitude) (latitude) (elevation)
55 albs Albstadt-Badkap 8.98 48.22 759.00
56 alfe Alfeld 9.80 51.97 143.90
57 arko Arkona 13.44 54.68 42.00
58 arns Arnsberg-Neheim 7.98 51.47 159.00
59 augs Augsburg 10.94 48.43 461.40
60 blan Blankenrath 7.31 50.04 417.00
61 bork Borkum-Flugplatz 6.70 53.60 3.00
62 bvoe Bremervorde 9.14 53.45 10.00
63 buch Buchen, Kr. Neckar-Odenwald 9.32 49.52 340.00
64 cosc Coschen 14.73 52.02 40.00
65 ebra Ebrach 10.50 49.85 346.00
66 ellw Ellwangen-Rindelbach 10.13 48.99 460.00
67 falk Falkenberg, Kr.Rottal-Inn 12.73 48.48 472.00
68 gram Grambek 10.68 53.58 27.00
69 garb GroBler Arber 13.14 49.11 1436.00
70 grue Griinow 13.94 03.32 95.90
71 hohe Hoherodskopf/Vogelsberg 9.22 50.51 743.30
72 1luec Liichow 11.14 52.97 17.00
73 mitt Mittenwald-Buckelwiesen 11.27 47.48 981.00
74 muel Miillheim 7.64 47.81 273.00
75 neuh Neuhaus am Rennweg 11.14 50.50 845.00
76 ohrz Oberharz am Brocken-Stiege 10.88 51.67 494.00
77 rahd Rahden-Varl 8.57 52.45 42.00
78 wies Wiesenburg 12.46 52.12 187.00

Table 5.9: Observation stations (validation data): ID, short name, full name, longitude,
latitude and elevation.
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Figure 5.3.5: 24 locations across Germany where we will predict mean temperature time
series for the period 01/01/2010-12/31/2012.
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We have to keep in mind based on which data the models under consideration were
developed and that these models might not be able to predict outside the scope of the
training data set. Screening of the metadata supplied and visualized in Table 5.9 and
Figure 5.3.5, respectively, yields that prediction might be problematic at some extreme
locations which exceed the scope of the locations setting up the training data set. For ex-
ample the elevations of Albstadt-Badkap (55), Grofier Arber (69), Hoherodskopf/Vogelsberg
(71), Mittenwald-Buckelwiesen (73) and Neuhaus am Rennweg (75) lie outside the range
of elevations of the training data set, where the maximum elevation is 716 meters. Whereas
Mittenwald-Buckelwiesen (73) lies comparatively extremely southern, Arkona (57) is lo-
cated extremely northern on an island in the Baltic Sea.

Since the spatial R-vine model is constructed based on data transformed to copula
data, predictions from this model will also be on a copula data level. Thus a back trans-
formation to the original level of mean temperatures is needed, which is based on the
joint marginal model developed in Chapter 3. Due to the polynomial structures (3.6.1)
involved in the model, extreme locations s might yield meaningless values for the aggre-
gated parameters 5y(s), Bsin($), Beos(S), 71(5), Ya(s), F3(s), &(s), W(s), a(s) and V(s). In
order to achieve meaningful predictions, we are going to impose restrictions on the aggre-
gated parameters calculated for new locations s, i.e. aggregated parameters which exceed
the lower or the upper bound of a specific interval will be restricted to the value of the
respective bound.! R R R

Table 5.10 summarizes the aggregated parameters By(s), Bsin(S), Beos(s), 71(s), 72(s),
~3(s), g(s), W(s), a(s) and v(s), which are calculated for the validation data set with-
out any restrictions. Additionally the aggregated parameters X(s) and g(s) are provided,
which are calculated from Bsin(s) and gcos(s) according to (3.2.2). Moreover the ranges
[lb(é\), ub(é\)] of the respective aggregated parameters of the training data set are given,
where we define

~ -~

Ib(f) = min_ 6(s) and ub(é\) = max_ 60(s),

s=1,...,54 s=1,...,54

for all § € {B@, B\sin, BCOS, 1,72, V3, E, w,a, v, X, g} All aggregated parameters which lie out-
side of the respective range are highlighted. Especially for the stations Grofer Arber (69),
Mittenwald-Buckelwiesen (73) and Neuhaus am Rennweg (75), most of the aggregated
parameters lie outside the range defined by the training data set.

For the purpose of back transformation of the copula data to the original mean temper-
ature level, we are going to restrict the aggregated parameters to the ranges [Ib(6), ub(6)]
specified in the two bottom rows of Table 5.10, due to the insights we recently got. How-
ever we do not restrict fgn(s) and Seos(s) directly. Instead A(s) and §(s) are restricted,
since this kind of restriction yields more meaningful results for the seasonality compo-

~

nent. Also £(s) is restricted indirectly. Since the marginal model errors are assumed to

have zero mean, we set £(s) = —w(s)(s), where ji(s) is calculated according to (3.4.1),
which ensures the zero mean condition.

In order to avoid such restrictions the aggregated parameters of the joint marginal model have to
be modeled by means of a different approach which prohibits extreme parameter values for longitudes,
latitudes and elevations which exceed the range of the training data set. One possible approach may be
the modeling via B-splines.
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Having imposed these restrictions, the rest of the back transformation of the copula
data uj, ..., u% for a location s, which result from the respective prediction procedure, is
nearly straightforward. Remember, that due to the inclusion of the three autoregression
components in the marginal model there are no copula data available for the first three
points in time.

The first step is a back transformation of the copula data to the marginal model

residuals €5, . . ., £%. This is achieved by means of the quantile function 77, of the skew-t

~

distribution with (restricted) parameters Er(s), W"(s), a"(s) and " (s), i.e. we calculate

& =1l (at 1€ (5), 0" (s), ar(s>,ﬁ"(s>) . t=4,... N

The only difficulty which arises for the back transformation is due to the autoregres-
sion components in the marginal model. In order to be able to calculate the predictions
Ui, .-, Y, we have to determine meaningful start values for this time series for t = 1, 2, 3.
We proceed by predicting ¥, ¥5 and 45 based on three linear models of the form

s s g Lid. )
}/t - 00 + eelevxelev,s + Qlongxlong,s + Qlatxlat,s + €ty & (07 g ) )

fort=1,2,3.
Ina last step we have to divide the inital predlctlons yi, y5 and y5 by their respective

weights w1, w2 and w3 which results in @17 Y, and . y3 Afterwards the weighted mean
temperatures y4, e ,y ~ can be calculated successively as

=5 AT‘ AT : 27rt AT r = ~r =$ r =5
Y = 50(3) + A (S) Sl (365 o5 +0 (S)) + 71(3)%—1 + 72(5)%—2 + 73(3)%—3 + &,

wheret =4,..., N and 36(3), A (s), 67(s), AT (s), A5 (s), 7% (s) are the restricted aggregated
parameter estimates for location s. Finally we obtain the unweighted mean temperatures

as
@\?:gt\/'&}t, t:1,7N

Thus we know how to transform from copula data back to mean temperatures, but
until know nothing was said about how the actual prediction from the spatial R-vine
model is conducted. We are going to explain this in the following as general as possible.

In order to predict mean temperatures respectively the corresponding copula data
u; of a location s for an arbitrary point in time ¢, we need to specify the conditional
distribution Fy1,_q(uf]uy, ..., uf) of the variable u§ conditioned on the known values
uy, ..., ud constituting the copula data at the point in time ¢ corresponding to the training
data set on which the spatial R-vine model is built. The spatial R-vine model specifies
the joint distribution of u}, ..., ud, which is essentially an R-vine distribution. Following,
access to the conditional distribution Fy; _ g(uflu;,. .., uf) can be achieved by extending
the R-vine underlying the spatial R-vine model.

If one wants to preserve the structure of the underlying (truncated) R-vine, one has to

add the new variable as a leaf to the first R-vine tree. To do so we calculate the Kendall’s

T's
e —~ ~ — mod 2
Ti(e1),j(e1)|De; = Ti(e1),j(er) = Tr,s = FZ ! (hl <61 = {Tv 5}|/6m0d,1)>
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for all d edges e; = {i(e1),j(e1)} = {r,s}, r =1,....d, which may be added to the first
R-vine tree, where h°d is the model function for the first parameters of the first R-vine
tree corresponding to the chosen model. The edge e} which yields the biggest Kendall’s 7
is selected to extend the first R-vine tree. For this edge a copula family #;(cr) jx) has to be
selected. This selection may be based on the number of the different families constituting
the original R-vine. Then the first copula parameter is calculated as

Nl - .
Oty stepimng = Tro (Frepatepim.g i ) (5.3.1)

If needed the second copula parameter 1//\11(6;) (DD, is calculated as
) el

Wy — * 1135V
Viena(enipeg = v (61, 118) ) ) (5.3.2)

where the function h,, (e, [ ,BEV), which depends on the respective edge e and tree number
[ and is parametrized by @5V, represents the model specification for the second copula
parameters.

The rest of the R-vine is extended tree-wise starting from tree number two. For each
tree [ we have to ensure that the proximity condition is fulfilled after a new edge e; has
been added. For all edges e¢; with j(e;) = s and D,, = D,  Ui(ej_ ;) which fulfill the
proximity condition, we calculate the respective Kendall’s 7’s

%\i(el),j(elﬂDel = Fz_l <h;nOd <6l|/6mod,l>> .

Again the edge e with the biggest Kendall’s 7 is selected and included into the R-vine. As
before a copula family ;) jer)p,. has to be selected and the corresponding parameters
l

@i(e?)’j(e?)me;ﬂ and ’//\g(el*)vj(EZ‘)IDe; have to be calculated in analogy to (5.3.1) and (5.3.2),

respectively.

For trees exceeding the truncation level k < d, arbitrary edges which fulfill the prox-
imity condition can be chosen. The copulae corresponding to these edges are selected to
be independence copulae. Thus, no parameters have to be specified for these copulae.

The above described procedure yields an R-vine copula specification corresponding to
the variables uf,u}, ..., ué with R-vine distribution F(u$,u},... , u?). Applying Lemma
4.7, this allows to calculate Fyp g(uluy,. .., uf) iteratively. Following we are able to
simulate from the predictive distribution Fyy,_q(uf|ug, .. ., ul) by means of the probability
integral transform. We simulate v ~ U (0,1) and calculate @ = Fs_\11,,.,,d(v|“%> coud).

If one transforms the copula data @} resulting from these simulations back to the level
of the originally modeled data ¢;, one can calculate point predictions as the mean of the
back transformed simulations. Moreover the calculation of prediction intervals is possi-
ble. The conditional distribution F,(y{|y},...,yd) can be approximated by the empirical
distribution function calculated from the respective simulated sample.

Omiting all arguments, the conditional densitiy fy,. 4 corresponding to Fy; . 4 can

be obtained by decomposing numerator and denominator of

fodd
fs\l,...,d: > 5

flv"-vd
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according to (4.1.1) into products of pair copulae and marginal densities. Since the R-vine
copula specification corresponding to fs; 4 differs from the R-vine copula specification

corresponding to f; 4 only in terms of the additional edges €7, ..., e}, this yields
d—1
— . =l
fspa = | | Citepyieyim. (E@)me;aFj(ef)lDe;’9i<ez*>,j<ez‘>lve;’”i(ez*%j(e?)lpe;’t“el*)’j(e? >'Def> ’
=1
(5.3.3)

where the marginal density fs vanishes, because we perform our calculations on the copula
data level. Due to the fact that it holds j(ej) = s by construction and that we usually
consider truncations at a certain level k < d, (5.3.3) simplifies to

k
— .l =l
f8|1,-..,d = H Ci(ez“),s;’Del* <Fi(€z*)|De?‘ s FS‘Dez‘ ; ei(e;)75|pef R Vi(ez*)vs‘pcl* , ti(ez*)vﬂpef) . (534)

In our case we perform the above presented calculations based on the distance model
and on the model (5.2.1) for the second copula parameters. Due to our previous inves-
tigations on the structure of the R-vine underlying the spatial R-vine model (see Table
5.1) we select a Student-t copula for every edge which is added to the truncated R-vine.

Eventually we are ready to predict the 24 mean temperature time series over the
period 01/01/2010-12/31/2012 corresponding to the 24 observation stations constituting
the validation data set. The complete results of these predictions, which are based on
1000 simulations of each time series, are visualized in Figures A.1.1-A.1.12 in Appendix
A.1. Since we expect a dependence of the quality of the predictions on the elevation, we
arranged the results in the different types of figures and tables according to the respective
observation station elevations.

Figures A.1.1-A.1.4 illustrate the predicted time series for the 24 observation stations
of the validation data set. For the purpose of comparison we plotted the observed values
in black and the prediction in gray. Moreover, the respective 95% prediction intervals are
indicated by the light gray area around the point predictions. For most of the observation
stations with low elevations we observe that our predictions reflect the realizations pretty
good over all three years. The gray lines representing the predictions cover the realizations
nearly completely. Only for some of the stations with low elevations a deviance of the
predictions from the observed time series can be detected based on these plots. Moreover
the respective prediction intervals tend to be narrow. Arkona (57), which is a station
with an elevation of 42 meters, is an example for a station with low elevation where clear
deviations between prediction and realization can be detected. With rising elevation we
increasingly observe time periods where the predictions doesn’t meet the realizations, up
to observation stations like Grofier Arber (69) which are located in mountainous regions,
where the prediction fails systematically.

In order to be able to compare the goodness of the predictions of the 24 different time
series we calculated mean squared errors according to

N
1 S “~S
MSE(s) =+ > (v = )

t=1
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s short name clevation MSE(s) | s short name elevation MSE(s)

61 Dbork 3.00 0.57 | 63 buch 340.00 1.08
62 Dbvoe 10.00 0.36 | 65 ebra 346.00 1.01
72 luec 17.00 0.24 | 60 blan 417.00 0.80
68 gram 27.00 0.19 | 66 ellw 460.00 0.96
64 cosc 40.00 0.85 | 59 augs 461.40 0.68
57 arko 42.00 1.87 | 67 falk 472.00 0.43
77 rahd 42.00 0.28 | 76 ohrz 494.00 0.92
70 grue 55.90 0.17 | 71 hohe 743.30 3.65
56 alfe 143.90 0.64 | 55 albs 759.00 2.06
58 arns 159.00 0.94 | 75 mneuh 845.00 6.58
78 wies 187.00 0.75 | 73 mitt 981.00 2.85
74 muel 273.00 0.63 | 69 garb 1436.00 14.69

Table 5.11: Mean squared errors of the mean temperature predictions over the period
01/01/2010-12/31/2012 for the observation stations of the validation data set based on
the spatial R-vine model.

for s = 55,...,78, where N = 1096. The resulting mean squared errors (ordered according
to elevation) are summarized in Table 5.11.

Based on the mean squared errors we select three stations for which we will have a
closer look on the results of the predictions. We select the stations Grinow (70) and
Grofier Arber (69) which exhibit the lowest and the highest mean squared error, respec-
tively. Moreover we choose the station Arkona (57), which is the station with the highest
mean squared error among all stations where there was no need of restriction of the aggre-
gated parameters summarized in Table 5.10. The respective predictions are compared in
Figure 5.3.6. Whereas the predictions for Griinow meet the observed values pretty good
and the prediction intervals are very narrow, we observe noticeable deviations for Arkona.
There seems to be more uncertainty in the predictions for Arkona, which is reflected in
the comparatively broad prediction intervals, however there are periods in which the pre-
dictions are better and periods in which the predictions deviate from reality. From the
plot for the observation station Grofler Arber we conclude that the temperatures there
are more volatile. Most often the predictions are far apart from the realizations and the
true temperature observations fall outside the prediction intervals. This observed deviance
is a result of a misspecification of the marginal model parameters. We already observed
by means of Table 5.10, that our marginal model is not able to capture the temperature
trends of stations which lie outside the range of the training data set. In the case of the
station Grofler Arber especially a misspecification of the parameters of the seasonality
component and the shape and scale parameter of the skew-t distribution seem to be prob-
lematic, since we observe periods of consequent over- respective underestimation of the
true temperatures and since comparatively extreme temperature events are not captured
by the predictions.
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Figures A.1.5-A.1.8 are plots of the prediction errors (y; — y;) for all 24 time series
of the validation data set, once again arranged according to increasing elevation. We find
that for all observation stations there are single days where the prediction errors are
comparatively high. Whereas we observe that most of the prediction errors for stations
like Bremervorde (62), Grambek (68), Grinow (70) and Rahden-Varl (77) lie within a
range of —2°C and 2°C, we see that the errors of stations with elevations higher than 740
meters can get pretty large. Moreover we see that there are stations like Ebrach (65) and
Falkenberg, Kr.Rottal-Inn (67) where the real temperatures tend to be over- respectively
underestimated. Furthermore, systematic prediction errors owing to a misspecified sea-
sonality component, are detected for a handful of observation stations, e.g. Arkona (57)
and Grofter Arber (69). Figure 5.3.7 highlights the corresponding prediction errors for the
three previously selected stations Griinow (70), Arkona (57) and Grofler Arber (69).

As an additional tool for the analysis of the predictions based on the spatial R-vine
model, we provide the plots given in Figures A.1.9-A.1.12. They depict 95% prediction
intervals, point predictions and observed mean temperatures for the first days of each
months during the years 2010-2012 for all 24 validation data stations. These monthly
snapshots of our predictions and the respective observed values facilitate the evaluation
of the predictions compared to an analysis of Figures A.1.1-A.1.3, they give an impression
how the complete time series behave over the years 2010-2012.

Let us first remark, that there always is no prediction interval for the first of January
2010, since we had to calculate fix start values for each of the time series, which is due to
the inclusion of three autoregressive components in the marginal model. Comparison of
the different plots shows that there are stations where the predictions are more uncertain
compared to other stations. Besides we see that there are single days like the first of
May 2012, where we observe higher uncertainty over large parts of Germany. An overall
consideration of Figures A.1.9-A.1.12 yields that for most of the stations only up to two
of the considered observations fall outside their respective prediction interval, however,
for the highly situated observation stations Neuhaus am Rennweg (75) and Grof$er Arber
(69) a big share of the observations under consideration lie outside the corresponding
prediction interval. Surprisingly nearly all considered observations for the observation
station Mittenwald-Buckelwiesen (73) which has the second highest elevation fall into
their associated prediction interval. The respective plots for the three selected stations
Griinow (70), Arkona (57) and GroBer Arber (69) are illustrated in Figure 5.3.8.

This first analysis of predictions from our spatial R-vine model yields a good first
impression of the prediction capabilities of our model. In most cases our predictions seem
to be able to approximate the reality appropriately good. However some shortcomings
of our marginal model became clear. With these observations we advance to the next
chapter, where we are going to present a different approach to model spatial dependencies
based on vine copulae.



Chapter 6

Spatial composite vine models

The previous chapter was a straigthforward approach to model spatial dependencies based
on vine copula models by embedding spatial information into the parametrization of an
R-vine model. This chapter is going to follow a different approach which composes several
local dependency models by means of a composite likelihood, where the modeling of these
local dependencies is carried out by C-vines.

6.1 Composite likelihood methods

In order to have the necessary background to be able to understand the models presented
in the following, we briefly provide some theoretical aspects on composite likelihood meth-
ods. For this purpose we refer to Varin, Reid, and Firth (2011), who give a broad overview
on these methods.

Composite likelihood methods are inferential statistics methods. The main idea of
these methods is the composition of a composite likelihood function as a product of
potentially dependent likelihoods corresponding to certain parts of the model under con-
sideration. Due to the fact that the single likelihoods are not necessarily independent,
the composite likelihood can be considered as the likelihood of a misspecified model. The
usage of such misspecified models is most often motivated computationally.

Let us now formally define the composite likelihood. To this end, let Y be an m-
dimensional random vector with multivariate probability density function f(y;@), where
0 is a p-dimensional parameter vector. Moreover we consider K events Aj, ..., Ax and
weights w, > 0, K = 1,..., K, related to these events. Furthermore, let the likelihoods
corresponding to the events Ay, k = 1,..., K, be denoted by L (0 |y) x f(y € Ax;0),
k=1,..., K. Then the composite likelihood is defined as

c(0y) = H (L4 (0] y)]"" .
k=1

Following the composite log-likelihood is given and denoted by

c(@|ly) =InLec(0|y) = Zwkln [Lr (0] y)] Zwk&f @y).

k=1
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The idea behind the weights wy, k =1, ..., K, is to improve the efficiency of maximum
composite likelihood estimation. Their selection depends on the specific problem.

Varin et al. (2011) distinguish between composite conditional and composite marginal
likelihoods. Whereas a composite conditional likelihood is composed out of conditional
densities, a composite marginal likelihood is based on marginal densities. Since we are
going to use a composite marginal likelihood, we focus on this variant in the following.

A straightforward composite marginal likelihood is the product of the univariate
marginal densities f(y,; ), = 1,...,m. Due to this structure, this kind of likelihood does
not allow to access parameters which are related to the dependence of the components of
Y . In order to do so, multivariate marginal densities have to be taken into consideration.
A popular example is the so called pairwise likelihood

m—1 m
Lo 019) =[] TI fWrrvs:0),
r=1 s=r+1

but it is also possible to use products of higher dimensional marginal densities, what we
are going to do in the following.

6.2 Composite vine model

Now we are ready to propose our own composite likelihood model in the area of spatial
dependence modeling. For this purpose let us again consider the copula data u', ..., u?
with w® = (uf,...,u%)", s = 1,...,d. To model the dependence of this data, we are
going to set up a composite likelihood model which is composed out of the densities
corresponding to d 4-dimensional C-vines numbered 1,...,d, i.e. we consider one C-vine
for every variable u®, s = 1,...,d. The first root node of every C-vine s = 1,...,d
complies with the number s of the C-vine. In other words, the C-vines are numbered
according to their first root nodes. For each C-vine s we select the variable p, with the
shortest distance to the first root node s as the second root, the variable ¢, with the second
shortest distance as the third root and the variable r, with the third shortest distance as
the forth variable of the C-vine. Now we have uniquely fixed the tree structure of all d
C-vines in the model. Figure 6.2.1 gives a graphical representation of these C-vines.

Moreover, the families of the bivariate copulae corresponding to the edges of the d
C-vines have to be specified. They are determined by means of a sequential selection
algorithm, for each single C-vine.

Finally, as all necessary components of the C-vines s = 1,...,d are established, we
are able to state their likelihoods. They are given as

s, Ds q: Ts) s, DP: g: Ts.
Es <esays|ut7ut97ut97utg) = Cs (ut7ut§7utg7utsygsays)

= Cp, (U, up®; Ospes Vsps) * Csqa (U5, ui®; Osga> Vsgs)

: Csrs (Uf, U;é, 057’5’ Vsrs)

" Cpygs;s <a€s7 g’ Opagalss VpsqSIS) " Cpsrs;s (ﬁijsa U Opry s, Vps?“s\S)
s g5 0

" Cgsrsssps ( qsTs|sps s Vqsrs\szls)
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Figure 6.2.1: Structure of all C-vines s = 1,...,d composing the composite likelihood
model.
where 5
ﬂ? = F(u(t) | uf) = ﬁoos (u?, uf; 9507 Vso) y 0= Ds,4s,Ts,
Uy
~ 0 o s s a ~O  ~Ds
Uy = F(ut |ut7ut ) = Wcops;s (ut7ut ;9p50|sa Vp50|s) ) 0=4{(s,Ts,
t

and

T
05 - (08p37 qusa 087"37 8p5q5|sa 0p5r5|57 eqsrs\sps) P

T
Vs = (V5P37 Vsqs7 Vsrgs Vp5q5|87 Vps’r‘5|87 Vqs'r‘5|sp5)

Note that the second parameter v;;... of the bivariate copula is only needed in the case of
a Student-t copula, for the respective degrees of freedom. Otherwise the bivariate copula
does not depend on vy and we omit this parameter or set it simply to zero. Note
furthermore, that in trees of order one it holds for the parameters, that 6;; = 60, and
vij=vj,i=1,...,d,j=1,...,d, since each edge {i,j} may occur in up to two of the d
C-vines composing the model.

In order to be able to set up the composite likelihood, it remains to specify the weights

ws, s =1,...,d. We define them as the reciprocal value of the number counts

ns = #{k : s is included in C-vine k}, s =1,...,d,

of C-vines which include s = 1,...,d, i.e. we define
1
Wy = —.
nS

All in all, this results in the composite likelihood

N
£CVM (00VM7 VCVM | 'U,l, s 7ud) - HH [Es (087 Vs | Uf7ufs7 ugs7 U:S)]ws

s=1t=1
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and accordingly in the composite log-likelihood

d N
clova (0N VM ut L ud) = Z Zwsﬁs (05, Vg | uf, ul uf* up®) , (6.2.1)
s=1 t=1
where
U (Os,vg | ug, ub® uf up®) = In Ly (0, vs | uf, ub®, ud, up®)
and where

M =10:0c0,,s=1,...,d},

vYM — v e, s=1,...,d}.

We call the above model a (three neighbors) composite vine model (CVM).

6.3 A composite vine model for mean temperature

Eventually we are going to investigate the mean temperature data set with the help of
the above model. In a first step we have to select the structure of the composite vine
model. This involves amongst others the selection of the 54 C-vines. They are selected as
described in Section 6.2. The result of this selection is given in Table 6.1. Moreover we
have to determine adequate families for the 6-54 = 324 bivariate copulae corresponding to
the edges of the previously chosen C-vines. To this end we allow for Gaussian, Student-¢,
Clayton, Gumbel and Frank copulae, without specifying in detail if a rotated version of
the respective copula is used or not. The exact rotation type will be fixed later on, when
the respective parameters are estimated. We achieve families as given in Table 6.2, where
the families are coded according to Table 4.4 and where it remains unsettled, if any kind
of rotation is used. This results in a parametrization with 464 parameters.

Figure 6.3.1 illustrates the achieved model structure. On the one hand the numbered
circles indicate the locations of the 54 observation stations s = 1,...,54 summarized in
Table 3.1. Their circumference and color represents the numbers n,, s = 1,...,54, of C-
vines in which the respective nodes are included, i.e. the inverse of the respective weights
wg, s = 1,...,54, according to the scale defined at the left bottom of the figure. On the
other hand the lines indicate all C-vine edges that occur in the first trees of the C-vines
s = 1,...,54. Dotted lines represent edges that occur only once, whereas dashed lines
represent edges that occur in the first tree of the two C-vines whose first root nodes are
the nodes at the end of the respective line.

For the mean temperature data set numerical maximization of the composite log-
likelihood (6.2.1), whose structure and components where specified above, yields a max-

imum composite log-likelihood of clayy (OCVM, DEVM |ul, ..., u?) = 42106.41. The re-
spective AIC and BIC are given by AICcyy = —83222.8 and BICqyy = —80749.5.
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Figure 6.3.1: Visualization of the model structure of a (spatial) composite vine model on
the 54 observation stations of our mean temperature data set.
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s ps g rs| s ps as s s b as rs| s ps g 7y
1 4 49 4015 42 43 37] 29 35 24 4143 53 39 41
2 24 10 29|16 33 6 50|30 38 11 7|44 52 32 49
3 17 31 36|17 3 13 36|31 3 38 26|45 25 48 34
4 1 40 23|18 10 8 23|32 21 50 44|46 9 21 32
5 36 12 3|19 26 6 35|33 16 20 647 51 34 54
6 22 16 5020 33 24 23|34 13 25 47|48 45 25 36
7 22 9 2121 32 50 935 20 54 2449 1 52 40
8 23 18 1022 6 50 7|36 5 17 13|50 6 16 22
9 21 46 7|23 8 20 10|37 39 27 43| 51 47 27 28
10 18 8 224 20 29 238 30 31 12|52 40 44 49
11 30 7 9|25 45 34 4839 37 43 41|53 43 41 29
12 5 38 31|26 19 31 340 4 52 154 41 35 13
13 34 17 36|27 51 37 39|41 53 54 29

14 28 47 45 (28 51 27 14|42 15 37 43

Table 6.1: Variables composing the 54 C-vines of the (spatial) composite vine model on
the 54 observation stations of our mean temperature data set.

s|FF 8 2 2 3 sFF s 2 2 3 s FF 222
11t t t t t t191t t t t t C|37]t t ¢t t t t
21t t ot t t t20] t t t t t G388t t ¢t t t t
3|1ttt t t Cf21]t t ¢ t t C|39]t t ¢t t t t
41t t t t t G2t t t t t t40| t t t C t t
51t t ot t t t123]t t t t t t|41 ]t t t t t G
6|t t t F t t24]t t t t t t)42]t t t t t P
7Tt t t C F t20]t t ¢ t t t43|t t t G t t
8|t t t G t t26]t t t t t t]44 |t G ¢ t t t
91t t ¢t t t t27T]t t ot t t t)145]t t t F t t
100t ¢t ¢ t t t28]t t t t t G466t t G t G t
11t ¢t ¢t t F t)129]t t t F t t47|t t t C t t
121 ¢ t ¢ t t t301t t ¢t t t t48 ]t t ot t t t
13t t ¢t t G t31 ]t t t t t t149 ]t t t t t t
41t t ¢t t t t132]t t G t t G50t t ¢t t t t
Bt t G @ t @33t t t t t C|hl]t t ¢t t t t
6t t ¢t t t t134]t t t F t t52]t t ot t t t
17t t ¢ t t t35 ]t t t t t to93 ]t t t t t t
181t t ¢ t t t36]t t t G t to54]t t t t t t

Table 6.2: Families of the copulae of the C-vines s = 1,...,54 of the (spatial) composite
vine model for our mean temperature data set.
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6.4 Spatial composite vine models

Now we are going to enhance our composite vine model in terms of parameter number
reduction by utilization of additionally available spatial information on the considered
variables. Therefore we follow a similar reparametrization approach as in the chapter
about spatial R-vine models (Chapter 5).

This time we have to consider reparametrizations of the parameters 8°VM of the com-

posite vine model. Since these reparametrizations differ from the ones in Chapter 5, we
are going to state them in detail in the following. Furthermore a reparametrization of the
parameters VM is needed.

Once again we will initiate our model building process by a tree-wise exploratory anal-
ysis of the dependence of the parameters 8°V™ on the distances and elevation differences
occurring in the C-vines composing the composite vine model on the mean temperature
data. To this end we again calculate and transform the Kendall’s 7’s corresponding to
the variable pairs specified by the 54 C-vines and plot their transformations against the
respective logarithmized distances and logarithmized elevation differences.

The respective plots for the first trees of the C-vines are depicted in Figure 6.4.1. 54
trees s = 1,...,54, each consisting of the three edges {s,ps}, {s,qs} and {s,rs}, yield
162 points per plot, where a big share of the previously mentioned edges occur twice, i.e.
lots of the points of the plot are twofold. These twofold points are highlighted in gray.
Both plots, the plot of the Fisher z-transformed Kendall’s 7’s against the logarithmized
distances and the plot against the logarithmized elevation differences, suggest the inclusion
of the predictors d;, and e, into the model for the parameters of the first tree, where
0= DPs;qs,Ts-

For the second and third trees we additionally have to consider the distances and
elevation differences to the conditioning variables of the respective copulae. This time
there is an ordering of the conditioning variables, since there is an ordering of the root
nodes of the C-vines, i.e. the variables s enter the conditioning set before the variables p,
s = 1,...,54. Hence we do not have to define means according to our investigations in
Section 5.1, i.e. the distances and elevation differences corresponding to the edges of the
third trees can be considered separately.

Figure 6.4.2 shows the six scatter plots of the Fisher z-transformed Kendall’s 7's 7,,_ s
against the logarithmized distances and elevation differences of the station pairs {ps, o},
{ps, s} and {o, s}, where o = ¢;,7s. We observe evident linear trends for the distances.
The three plots for the elevation differences exhibit only slight slopes of the regression
lines and seemingly random broad scatter around this line.

The plots for the third C-vine trees are given in Figure 6.4.3. In accordance with the
lower trees, the Fisher z-transformed Kendall’s 7’s show an evident linear dependence
with respect to the logarithmized distances corresponding to the conditioned variables,
whereas the regression line slopes of most of the remaining plots are rather negligible.

The above investigations of the mean temperature data set give us an idea, which
distances and elevation differences might play an important role in the reparametrization
of our composite vine model. In order to be able to select an adequate reparametrization
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we set up different reparametrizations of the form

gzol - TT—>9 (F (hmOd(l 01|/6mod 1)) ; tiol) )
Oiosli = Trmo (F21 (R5°(i, 4, 02 Bmod.2)) 5 toals) (6.4.1)
0k03|1] — TT*}@ (F (hmod@ .77 k 03|/8m0d 3)) ;tk03|ij) )

where 'mod’ stands for the reparametrization under consideration. Selection of

1=35,
j:psa
k:qsa

01 = Psy(4s,Ts,
02 = ¢s,7s, and

03 = T,

for all s =1,...,54, yields formulas for all parameters composing 8. The model functions
hmed 1 =1,2,3, for different reparametrizations 'mod’ will be specified in detail, below.
Due to the structural similarity of these reparametrizations to the reparametrizations
defined in Chapter 5, we adopt the names applied there.

First of all we consider the full reparametrization (full), where the model functions
hmed [ =1,2,3, in (6.4.1) are given as

hfull (Z Olyﬁfull 1) full + ﬁ{u{l ln dz,ol) + 5{%1 ln (61701)
WS (7, 5, 02| Bran2) = f““ + ﬁé“il I (djo,) + B35 I (djs) + B5% I (do, )
By In (€50,) + A58 In (€54) + B3 In (€0y,)
(di.i) + B3 In (dy. ;)
) (dos,5)
€hyop) + BYY In (er;) + B5% In (er)
i) (

full
+ B310 In (€oq J)

+ 53{1 In (do,;) + 55;1;1 In

)

(
(
(
hfull (Z ]7 k 03’ﬁfull 3) full + ﬁzt;’uil In (dk,03) + ﬁguél In
(
full In (
(€05

+ ﬁé“él In

and it holds

_ (pfull pfull pfull T 3
ﬁfull,l - ( 1,05 21,1 172) eR )

full full) T 7
ﬁfu11,2=(21,10,---> 2?6) e R,
T
ﬁfull,?) = ( Z?,lél’ SR le)l,lil()) € Rll’

for the corresponding parameter vectors. The full reparametrization involves all available
predictors. Its parameters are summarized in the vector

full

SCVM __ !
full (/Bfull 1 /Bfull 2 IBfull 3) € R,

where nf =3 4+ 74+ 11 = 21.

par
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Next we give the model functions k"4, | = 1,2, 3, for the distance reparametrization
(dist). They are defined as

B (5, 00| Baeet) = B¢ + A 1 (
T A

hg™ (i, J, k, 03] Baist,3) = dlSt + G55t In (
+ B33 I (do,

)

dz,ol) )
dj,Oz)
dk 03)

)+

)

BystIn (d;;) + 855 In (doy q)
d‘“ In (d;) + 555 In (d.;)
dlSt 1 (dog,j) ,
with

Baist = (815, ?,ilst)T €R?,

Baist,2 = ( g,igt, ce g,igt)T e R,

__ ( pdist dist) | 6
/Bdist,3—(3,oa---a 3,5) SIS
All possible distances are included. The occurring parameters are summarized as

dist

SCVM __ T
dist (ﬁdlst 1 ﬁdlst 29 /Bdlst 3) S Rnpa

where ndst =2 4+ 4+ 6 = 12.

par

The d0 reparametrization (d0) is defined by the model functions

h{° (i,01|Bao) = f,% + Bi{% In (dio, ),
hs° (i, 4,02 Baoz) = B30 + B39 In (dj0,) ,
th <Z7 j: k? 03’/6d0,3) = g,% + Bgﬁ In (dk,03) )

where
Baoa = (59,65) " e R?,
Bao2 = ( 3,%, Sﬂ)T € R?,
Baos = ( ;5,1,%7 §‘fi)T € R?.

Only the distances indicated by the conditioned sets of the copulae are involved. The
parameters of the d0 reparametrization are summarized as

SCVM do
(/Bd() 1 ﬁdo 2 /Bd() 3) c Rnpar7

where nds, = 3-2 = 6.

Again we also consider reparametrizations called elevation reparametrization (elev)
and el reparametrization (e0). They are obtained analogous to the distance and dO re-
parametrization, by choosing elevation differences instead of distances.

Eventually the d0+e0 reparametrization (de) is given by

hi® (i, 01]Bae,1) = By + B15 1 (dioy) + A1 In (€i0,)
hge (Za j? 02|/6de,2) = + Bde In (dj,oz) + 63762 In (ej,oz) )
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hge <i7 Js k? 03’/6(16,3) = g,% + Bg,el In (dk,03) + 63,62 In (ek,03) )
and

T

Bde,l = ( i%a ?,617 (11762) € Rg’
T

/8(16,2 = ( 37%7 37617 3782) € R3a
T

Bde,S = ( ?(i%a :())1761’ 3?762) S Rg'

It involves the distances and elevation differences indicated by the respective conditioned
sets. The summary of its parameters is given by

SCVM T T T T de
de - (Bde,l? IBde,27 /Gde,g) € R"par

where nggr =3-3=0.

In order to terminate the reparametrization of the composite vine model parameters,
a reparametrization of the second copula parameters respectively the degrees of freedom
vOVM ig required. As before, we investigate the parameters stemming from the composite
vine model on the mean temperature data.

Let 7. denote any arbitrary degrees of freedom parameter of our composite vine
model, irrespective of the tree which the parameter stems from. Figure 6.4.4 shows plots
of the parameters 7j;;. against their respective tree number and against the distances
d; ; and elevation differences e; ;. From the plots we observe, that the average degrees of
freedom rise with the tree number. Moreover there seems to be a significant trend of the
parameters ﬁiﬂ_. with respect to the distances d; j, but there is no evident influence of the
elevation differences.

Due to our observations on Figure 6.4.4, we are going to use the reparametrization

;iol = exp (BOV + 511} -1+ ﬁgdi,ol) )
Vjooli = €xXp (By + 01 - 2 + By djo,) (6.4.2)
Ukoslij = €xXp (B + 57 - 3+ B3dp.0,)

of the second copula parameters, in the following. The respective parameters are summa-
rized as

SCVM T ¥
By = (B, By, B5) € R,

where ny. = 3.

A (three neighbors) composite vine model which is reparametrized by reparametriza-
tions of the type (6.4.1) and (6.4.2), will be called (three neighbors) spatial composite vine
model (SCVM). In order to estimate the respective model parameters, the composite log-
likelihood (6.2.1) parametrized via (6.4.1) and (6.4.2) has to be maximized. This yields

the maximum composite likelihood estimates (mcle)

~ ~ ~ T
SCVM __ SCVM 2SCVM (nm2d4ny, )
mcle < mod /81/ ) € R P

From now on, we will address the above specified spatial composite vine models ac-
cording to the selected reparametrization as full, distance, d0, elevation, e0 or d0-+e0
model.
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Plots of 7. against tree number, In(d; ;) and In(e; ;), respectively.
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6.5 A spatial composite vine model for mean tem-
perature

This application of the previously specified model is intended to investigate a spatial
composite vine model for the mean temperature data set. For this purpose we are going
to choose a suitable reparametrization of the composite vine model which was set up in
Section 6.3.

6.5.1 Model selection

Table 6.3 summarizes the required number of parameters for the six models specified up
to now. Even the full model needs only 24 parameters. We will conduct further analyses in
the following, intended to check, if the number of parameters can be reduced even more.

‘full distance dO elevation e0 dO0+e0

Tree 1 3 2 2 2 2 3
Tree 2 7 4 2 4 2 3
Tree 3 | 11 6 2 6 2 3
Npar 3 3 3 3 3 3
Sum 24 15 9 15 9 12

Table 6.3: Number of parameters for the 'full’, ’distance’, 'd0’, ’elevation’, ’e0’ and d0+e0’
model.

In order to get a clue about the explanatory power of the six reparametrizations of the
first copula parameters given in Section 6.4, we investigate the following linear models.
For all reparametrizations (mod) among the reparametrizations (full), (dist), (d0), (elev),
(€0), and (de), we define the linear models

F.(Te0) = B (5, 0 Bumod.1) + 2s0r €50 = N (0,02), 0 € {ps,qsrs},
. Lid.
Fz(Tpso\s> = hQ Od(s7p87 O|/6mod,2) + Z‘:pso|sa 5pso|s ~ N (0, 02) 5 (NS {QSa rs}»

ii.d.
Fz(Tq5r5|sps> = h§10d(87p87 ds; rs|/8mod,3> + Eqsrslspsy  Eqsrs|sps K N (0, 0'2) ,

where s = 1,...,54. The R? and Ridj which are obtained from fitting these linear modes
are summarized in the tables 6.4 and 6.5. The resulting parameter estimates can be used
as start parameters for B,,0q for the purpose of fitting a spatial composite vine model on
the mean temperature data set.

Tree ‘ full distance d0 elevation e0 dO0+e0
1 0.5789 0.4873 0.4873 0.0980 0.0980 0.5789
2 0.7349 0.7183 0.4548 0.0714 0.0058 0.4565
3 0.8107 0.7803 0.6334 0.1833 0.0356 0.6341

Table 6.4: R? for the 'full’, ’distance’, 'd0’, ’elevation’, ’e0’ and 'd0+e0’ model.
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Tree ‘ full distance d0 elevation e0 dO0+e0
1 0.5736 0.4841 0.4841 0.0924 0.0924 0.5736
2 0.7191 0.7102 0.4497 0.0447 -0.0035 0.4462
3 0.7667 0.7575 0.6264 0.0983 0.0171 0.6198

Table 6.5: RadJ for the "full’, "distance’, ’d0’, "elevation’, ’e0’ and 'd0+4-e0’ model.

Comparison of the values given in Table 6.4 and Table 6.5 again yields bad performance
of the elevation and e0 model, which include only elevation differences. For the first trees
the d0+e0 respectively the full model is distinctly superior compared to the other models.
Considering the RadJ for the second and third trees, the d0 model outperforms the d0+4-e0
model. Extension of the d0 model to the distance model yields a considerable improvement
in terms of the R?, respectively RadJ Since the distance model performs similarly well as
the full model for the trees two and three, we decide to choose a mixed reparametrization
(select) of the first copula parameters, which is build up of the (de) reparametrization for
the first trees and the (dist) reparametrization for the second and third trees.

The model functions hi?** [ = 1,2, 3, of the reparametrization (select) are given as

hseleCt (Z 01|/Bselect 1) - hde (Z 01|/35e1ect 1)
hseleCt (Z ]7 02‘ﬁselect 2) hdlSt (Z ]7 02’ﬁselect 2) (651)
hselect (Z j, k 03|/Bselect 3) hdlSt (’l j, k 03|ﬁselect 3)

where

_ select select select) | 3
Bselect,l - ( 75 1,2 ) eR )

_ select select | 4
/Gselect,Q — ( 2,0 -3 M23 ) € R )

select select | 6
ﬁselectﬁ: ( 30 - F35 ) c R

Its parameters are summarized as

select

SCVM __ n
select (Bselect 1 /Bselect 29 select 3) S R"par ’

where nfﬂf“ =3+4+6=13.
It remains to analyze the reparametrization (6.4.2) of the second copula parameters.

To this end we fit the linear model defined by

In(vs) = By + BY1+ Bydso + €50, 0 € {Ds, s, 75},
1n(Vpso|s) = 5(1)/ + ﬂi/l + Bzydps,o + €pso\37 o€ {QS7 7“3},
1n(’/q50|5ps) =B + Bl + Bydg,0 + Eqeojsps 0 € {rs},

where s = 1,...,54 and eqp,, €sq,» Esry s Epagalss Eperals Equrs|sps RS- N(0,0%) fors=1,...,54.
The respective parameter estimates, their standard errors, Wald statistics and p-values
are given in Table 6.6. The estimates for 3§, 87 and 34 are significant at a significance
level o = 5%. These findings yield that the reparametrization (6.4.2) is adequate for our
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\Estimate Std. Error t-value p-value

By 0.6745 0.2900 2.33  0.0207
BY 0.1532 0.0299 5.13  0.0000
By 0.2571 0.0677 3.80  0.0002

Table 6.6: Parameter estimates, estimated standard errors, Wald statistics and p-values
of the model for the second parameters v;;.

purposes. As before, the obtained parameter estimates can be used as start values for 3,
within the framework of model fitting.

All in all we have selected a reparametrization according to (6.5.1) and (6.4.2), which
is based on nfﬂf“ +ng,, = 16 parameters. In the following we will call the resulting model
selected spatial composite vine model.

6.5.2 Model fit

Next we are going to fit our selected spatial composite vine model to the data. This
is conducted by maximization of the composite log-likelihood (6.2.1) which is repara-
metrized by means of (6.5.1) and (6.4.2). This time we get a maximum composite log-

o~

likelihood of clscvm (,BSCVM B\ECVM |ul, ... ,ud> = 40938.80, AIC and BIC are given as

select >

AlCscyy = —81845.6 and BICscyy = —81765.7. Compared to the composite vine model
the composite log-likelihood of the spatial composite vine model shrinked by about 1168.
Due to the fact that the number of parameters is reduced considerably, the BIC of the
spatial composite vine model is smaller. Comparison based on the AIC would however
favor the composite vine model. R R R

The fitting procedure yields the parameter estimates B5CVM = (B5¢VM BSCVM)T ¢
R0, which are given in Table 6.7. The table moreover compares the parameter estimates
to their respective start values, which were already addressed in the previous subsection.

no. par start  mcle ‘ no. par start  mcle ‘ no. par start  mcle
1 5?%‘3“ 2.300 2.251 7 ﬁ;%e“ 0.297 0.248 | 13 ﬁg%e“ 0.120 0.119
2 5?’{6“ -0.305 -0.299 8 ﬁg%e“ 0.256 0.704 | 14 B¢ 0.675 0.404
3 ff%e“ -0.025 -0.022 9 §‘ﬁeet -0.434 -0.405 | 15 pY 0.153 0.015
4 S%e“ 0.306 0.577 | 10 5%'3“ 0.109 0.076 | 16 pY 0.257 0.271
5 Byt -0.510 -0.480 | 11 B33t 0.089 0.016
6 3%‘3“ 0.222  0.175 | 12 ;ff“ 0.115  0.095

Table 6.7: Start values and maximum composite-likelihood estimates of the spatial com-
posite vine model for the mean temperature data.
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6.5.3 Prediction

Again we aim to predict from our newly developed model. The structure of the spatial
composite vine model suggests to perform prediction based on a four-dimensional C-vine
which is composed out of the variables corresponding to the new location s from which
to predict and to its three closest neighbors among the stations 1,...,d. As before we
denote the closest observation station as p,, the second closest neighbor as ¢s and the
third closest station as r,.

For the purpose of prediction we are going to sample from the conditional distribution
Fypgor, (u®|uPs,u® u’). It has to be calculated iteratively according to Lemma 4.7. Based
on the copulae needed for these calculations, we are going to set up the corresponding
C-vine. For convenience we drop the arguments of the conditional distribution functions
F' in the following, since it is anyway indicated in the indices which arguments to use.
Moreover the estimates of the first and the second copula parameters, whose calculation
will be presented later on, are denoted by # and U, respectively, the corresponding copula
families are denoted by t with respective indices.

The conditional distribution Fj, 4.», is calculated as

aCTsS;Psqs <F5|psl157 Frs\psqs§ ers$|ps¢Is7 V"'sslpslIs7 t"'sslpSQS)

Fs rs —
|Pst s aFrs|

Psqs

This yields that we are going to use r4s|psqs as edge for the third C-vine tree. The iteration
continues with the two equations

8Cqsrs;ps <Frs|ps> Fqslps§ eqsrs\ps: Vysrs)ps tqsrs\ps)

FT’s |p8qs = aF )
qslps
and
OCy,s:p, <F8|psv Foops QquIPsa Vass|ps > thS|ps>
Fslps% = aF )
qs|ps

which yields the second tree edges ¢srs|ps and gss|ps. The arguments needed above are
furthermore calculated via

~

. o~ q p . -~ A~
aCPst (FQS7 Fps’ 0Ps¢]s7 VPSQS ’ tps%> aCPSQS (u U 9?’3‘137 VPS‘IS’ tl’s‘ls)

F = =

oo oF,, o |

) T T v 7

F ansTs <F7's ’ Fps ) 9}’87'37 yps7'57 tps"'s) ansrs (u ° ? ups ? eps"'s ? Vpsrs ? tps'rs)

Telpe OF,, Oups ’

.0 I S S . 0 I
9Ch,s (Fs> FpeiOpys, Upgss tp55> Cp,s <u L UP Op s, Upgs, tp55>
Fy,. = = .
eles oF,, Dups

The unconditioned distributions F, F, , Fy,, F,, involved here are known to be the
cumulative distribution functions of ¢ (0,1) distributed random variables. Following it
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TsS|Psqs

Figure 6.5.1: C-vine structure in order to sample from Fj, o, (u®|uPs, uds, u").

holds that F,(u®) = u° for o € {s, ps, s, s }. We gain psqs, psrs and pss for the three edges
of the first C-vine tree. All in all we obtain the C-vine illustrated in Figure 6.5.1.

In order to be able to simulate from Fj, o, (u’|uPs, u%, u™), we have to specify the
copula families and the respective parameters involved in the calculations above. The
first copula parameters are calculated based on the model functions of the selected spatial
composite vine model and the respective parameter estimates according to

(v
Opor. = Trsg (F ! (hseleCt ( 3,7”8|5se1ect 1)) ;tpsrs> ;
é\pss =T, (F ! (hseleCt (p |ﬂse1ect 1>> pss> :
é\qsrs|ps =T (F ! ( hietect (P QS7TS|B\select,2>> ;tqsrs|ps> ,
0. (F ! (hsele“ (p Gs» Slaselect,Q)) ;tqssm) :
/e\rss\psqs =T (FZ_ (h?fle“ (ps> sy Ts) 5|B\select,3)> ;trss\psqs> :

where 2y, g, tpores tpess Laerslpss tassps a0 Ly gpp.q, denote the respective copula families. Due
to the fact that most copulae in our selected spatial composite vine model were determined
to be Student-t copulae (see Table 6.2), we choose the Student-¢ family for all of these
families. Following we have to determine a second copula parameter for each of the six
Student-t copulae involved. According to the reparametrization (6.4.2), we obtain

eqs slps — TT~>0

/V\ps(Is = exp (ﬁg + ﬁ]l_j + /Bgdps’QS) )

/’/\psTs:eXp ﬁ0+/81+52 Psﬂ"e)?

/80 + 2/81 + /BngS,rs> )
Daespe = oxb (By + 2B + Bidy)

7//\7"55|qu5 = €xp <50 + 3611/ + 62ydrs,s> .

Vf]s"‘slps = eXp

(7

/V\pss:eXp< +51 +52 ps,>a
(5
(5

Furthermore we are interested in the predictive density fy,,q4,», corresponding to
Fypp,qor,- It is calculated similarly to the conditioned R-vine density in Subsection 5.3.3 of
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Chapter 5. We obtain

fs\psqsrs = Cp,s (Fpsa Fs; epssa Vp,s, tpss>
’ CQSSSPS <Fq5‘p87 Fs\ps; 0(138|p37 Vqss|p57 tqss\pé») (652)

' c""ss;psq.s (Frs |pSQS7 Fs‘pSQS; HTSSIPSQS’ Vr58|p5q57 trs£|ps‘]s> .

This concludes the methodology of prediction from spatial composite R-vine models on
the copula data level. The copula data obtained from the simulations can be transformed
back to the original data level as described in Subsection 5.3.3 of the previous chapter.

The results of the spatial composite R-vine model based predictions of the mean tem-
peratures at the 24 observation stations constituting the validation data set are visualized
in Figures A.2.1-A.2.12. Since they show the results of the predictions in analogy to Fig-
ures A.1.1-A.1.12 and due to the fact that the results are pretty similar, however not
identical, we do not discuss every figure in detail and refer instead to the observations of
Subsection 5.3.3 in Chapter 5. The respective plots for the three selected stations Griinow
(70), Arkona (57) and Grofler Arber (69) are given by Figures 6.5.2-6.5.4.

We again summarize the mean squared prediction errors in Table 6.8. As before Arkona
(57) has an outstanding high mean squared error among the stations with elevations
smaller than 500 meters. The reason why we have problems with the prediction of mean
temperatures at Arkona may originate from the location of the observation station. Due
to the fact that the observation station Arkona lies on an island in the Baltic Sea, it has
an outstanding position compared to the rest of our observation stations and it may be
exposed to factors which are not captured by our models. Once again the mean squared
errors and the plots for the observation stations Neuhaus am Rennweg (75) and Grofler
Arber (69) show obviously that the prediction fails in these cases.

s short name eclevation MSE(s) | s short name elevation MSE(s)

61 bork 3.00 0.55 | 63 buch 340.00 1.21
62 bvoe 10.00 0.38 | 65 ebra 346.00 0.92
72 luec 17.00 0.30 | 60 blan 417.00 0.66
68 gram 27.00 0.22 | 66 ellw 460.00 0.90
64 cosc 40.00 0.92 | 59 augs 461.40 0.47
o7 arko 42.00 232 | 67 falk 472.00 0.41
77 rahd 42.00 0.25 | 76 ohrz 494.00 0.72
70 grue 55.90 0.19 | 71 hohe 743.30 3.42
56 alfe 143.90 0.23 | 55 albs 759.00 2.04
58 arms 159.00 0.98 | 75 neuh 845.00 6.45
78 wies 187.00 0.99 | 73 mitt 981.00 2.90
74 muel 273.00 0.68 | 69 garb 1436.00 15.07

Table 6.8: Mean squared errors of the mean temperature predictions over the period
01/01/2010-12/31/2012 for the observation stations of the validation data set based on
the spatial composite vine model.
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Whereas the mean squared errors given in the Tables 5.11 and 6.8 allow a first com-
parison of the different prediction methods respectively models, we are going to perform
an extensive model comparison in the following chapter, which is amongst others based
on scoring.
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Chapter 7

Spatial Gaussian model

In the subsequent chapter we are going to compare the predictions of the spatial R-vine
model and the spatial composite vine model to each other and to the predictions from a
classical semivariogram based model. Before we can conduct this comparison, we have to
introduce the classical model, which will be called spatial Gaussian model (SG) from now
on.

Let YS be a real valued random variable, which represents the (welghted) mean tem-
perature at a location s and a point in time ¢. Let moreover Y; := (Y;l, . Yd) € R? for
all t = 1,..., N. The random variables Y,® are weighted according to Sectlon 3.5. Then
the spatial Gaussian model for the mean temperature data set which we are going to take
into consideration is of the form

2:Ht+€t7 €ti.’i§.Nd(0,2(08G>), tzl,...,N7

where gy = (u}, ..., pd)" € R% is a vector of means for all t = 1,..., N and 3(0) € R?*?
is a positive definite covariance matrix depending on some npar dlmensmnal parameter
vector 859, The components of the mean vector p; are modeled in analogy to the joint
marginal model (3.6.2) as

S .__ _ s Vs Vs .
My = g<t7 3) =g (t, Y;‘,flv Y;‘,727 Y;‘/fgv xelev,s; xlong,m xlat,s; /61s>

+71(8)Y21 +72(8)Y, +13(s)Y s,
i.e. including an intercept, a seasonality component and three auto regression terms,
which are thought to capture all temporal dependencies of the variables. The spatial
dependencies are modeled by means of the covariance matrix 3(6%¢) = (%, ;(659)); j=1. 4

which in turn is modeled based on a Gaussian variogram model (see e.g. Gelfand, Diggle,
Fuentes, and Guttorp, 2010, Chapter 3)

v(hin, s, p) = (1 — exp ( ];2>) + 11 0,00) (),

where we call the parameters 7, ¢ and p, nugget effect, sill parameter and range parameter,
respectively. Then we model

Z (GSG) _O _’y(di,j;n7§>p)7

145
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where the parameter vector 5% consists of the four components o, 7,, p and d; ; are the
1,6, P J

pairwise distances between the observation station pairs (i, 7), ¢,j = 1, ..., d. By doing so
we implicitly make a stationarity assumption, i.e. we assume E(&!) = 0, Var(e!) = 02 < 00
and Cov(ei,e{) =0?—7(d;j;n,s,p) foralli,j=1,...,dand t =1,...,N.

Eventually the model parameters are estimated in two steps. First the mean vectors
e, t = 1,..., N, are estimated by means of least-squares estimation of the parameter
vector (Bi. This is done in the same way as for the marginal model in Section 3.6 and
we obtain the same estimates (3. Based on these estimates we calculate the residual
vectors € = y; — ;. In a second step we perform maximum likelihood estimation of the
parameters 8°¢ = (o,7,¢,p)". The log-likelihood to be maximized is given as

N
Z OSG st.

For the purpose of prediction of the mean temperatures at a new location o we assume
that the mean temperatures Y,°, ¢ = 1,..., N follow the model specified above. Thus we
assume that

17;’ e €7 €7 iid. +/nSG
L) = + : ~ Ngi (0,2%(0 , t=1,...,N,
(Y) (u) (st € o (0, 2E)

. o*| o,
E (0) - ( o, E(OSG) ) € Rd"rl’

with , = (Y(d1,0;1,6,0), -,V (dao;n,s,p))" € R Using some basic results on the
conditional distribution of a mulitvariate normal distribution (see e.g. Eaton, 2007, Section
3.4), this yields that

tsc (65|, 8x) = _% In ((2m)" [5(659)))

l\.’)lr—A

where

efler = e XN ((6%¢),T(65)) . t=1,....N,

with 72(05¢) = o, [% (OSG)] e and $(65¢) =0? — o, [T (HSG)} o,

We perform the prediction in analogy to our vine copula based models by means
of simulation. The first step 1s the repeated simulation of &9 from N (f (HSG) E(HSG))
Next we calculate i = g(t, yt 1,?/? z,yt 3,xelevo,xlongp,wlato,Bls) imposing the same
restrictions as in the back transformation of the copula data in Subsection 5.3.3 of Chapter
5. Moreover we calculate initial values for @?, = 1,2, 3, in the same was as in Subsection
5.3.3, in order to be able to perform the previous Calculatlons Then the weighted mean
temperatures can be calculated as yt = [if + 7. The unweighted mean ternperatures vy

are again obtained by multiplication with the square roots of the respective weights w.
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The results from the predictions at the 24 observation stations s = 55, ..., 78 based on
the spatial Gaussian model fitted to the mean temperature training data set are illustrated
in Figures A.3.1-A.3.12. These figures are quite similar compared to the respective figures
for the spatial R-vine and the spatial composite vine model. It is very hard to detect the
tiny differences in the predictions based on Figures A.3.1-A.3.4 and their respective figures
of the previous chapters. Consideration of the differences depicted in the Figures A.3.5-
A.3.8 eases the comparison a little bit. The most eye-catching observation from Figures
A.3.9-A.3.12 is that the width of the prediction intervals seem to be more homogeneous
across time and space, compared to the prediction intervals obtained for the spatial R-vine
and the spatial composite vine model. The respective plots for the three selected stations
Griinow (70), Arkona (57) and Groler Arber (69) are given by Figures 7.0.1-7.0.3.

In order to perform a first model comparison and to see that there are differences
in the predictions, we compare the mean squared prediction errors of the three different
models for all 24 validation stations, which are summarized in Table 7.1. We obtain
the smallest mean squared errors for all models for the station Grinow (70), where the
spatial R-vine model yields the lowest mean squared error. The station Grofier Arber (69)
yields the biggest mean squared errors by far. The predictions from the spatial R-vine
model and the spatial composite vine model yield eight respectively six times the smallest
mean squared errors. The spatial Gaussian model however yields ten times the best mean
squared error. If we calculate overall mean squared errors for all three models over all 24
stations, we obtain MSEgy = 1.800, MSEgcym = 1.798 and MSEgq = 1.788, which lie
pretty close together.

s short MSE(s) MSE(s) MSE(s) | s short MSE(s) MSE(s) MSE(s)
name SV SCVM SG name SV SCVM SG

61 Dbork 0.57 0.55 0.78 | 63 buch 1.08 1.21 1.03
62 bvoe 0.36 0.38 0.28 | 65 ebra 1.01 0.92 0.88
72  luec 0.24 0.30 0.25 | 60 blan 0.80 0.66 0.35
68 gram 0.19 0.22 0.29 | 66 ellw 0.96 0.90 0.78
64 cosc 0.85 0.92 1.08 | 59 augs 0.68 0.47 0.75
57 arko 1.87 2.32 2.51 | 67 falk 0.43 0.41 0.40
77 rahd 0.28 0.25 0.26 | 76 ohrz 0.92 0.72 0.61
70 grue 0.17 0.19 0.21 | 71 hohe 3.65 3.42 3.60
26 alfe 0.64 0.23 0.27 | 55 albs 2.06 2.04 2.08
58 arns 0.9/ 0.98 1.30 | 75 neuh 6.58 6.45 6.13
78 wies 0.75 0.99 0.67 | 73 mitt 2.85 2.90 2.99
74 muel 0.63 0.68 0.79 | 69 garb 14.69 15.07 14.65

Table 7.1: Comparison of the mean squared errors of the mean temperature predictions
over the period 01/01/2010-12/31/2012 for the observation stations of the validation data
set based on the spatial R-vine model, the spatial composite vine model and the spatial
Gaussian model.

The above comparison by means of mean squared errors would lead to the conclusion
that the spatial Gaussian model barely yields the best prediction results, however this
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method doesn’t take the whole predictive distributions into consideration, instead it mea-
sures the goodness of the predictions only based on the respective point estimates. Thus
we are going to conduct further comparisons in the following chapter, which are based on
proper scoring rules.



Chapter 8

Model validation and comparison

In Chapter 5 and Chapter 6 two different kinds of new models for spatial data, the spatial
R-vine model (SV) and the spatial composite vine model (SCVM), were introduced. On
the one hand this chapter aims to compare these models to corresponding models which
do not account for spatial information, on the other hand these models are going to be
compared to the spatial Gaussian model, which was presented in Chapter 7.

8.1 Comparison with non-spatial models

We start with the comparison of the spatial R-vine model to a full R-vine model and a
truncated R-vine model where the truncation level equals the truncation level ten of the
spatial R-vine model. We compare these models based on their maximum log-likelihood,
AIC, BIC, number of parameters and computation time, where the computations were
performed on a 2.6 GHz AMD Opteron processor. The respective numbers are given in the
upper part of Table 9.3 in Chapter 9. Compared to the full R-vine model the likelihood
of the spatial R-vine model loses 8064.08 points. This number reduces to 3716.59 if we
compare the spatial R-vine model to the truncated R-vine model. However the number of
parameters is reduced immensely. Compared to the full R-vine model and the truncated
R-vine model the spatial R-vine model needs only 2.3% respectively 5.6% of the numbers
of parameters. This results in a considerably reduction of computation time. Whereas the
maximum likelihood estimation of the full R-vine model takes more than 50 days, this
time is reduced to approximately 3.7 days and only 18 hours for the truncated and the
spatial R-vine respectively. Even though the full R-vine model would be ranked highest
according to AIC and BIC, the immense differences in computation time suggest that the
application of a spatial R-vine model should be favored in practice.

Moreover, Table 9.3 compares our spatial composite vine model with its non-spatial
complement, the composite vine model. Whereas the maximum composite-likelihood es-
timation for the ordinary composite vine model involves the estimation of 495 parameters
and 6.1 days are needed for the computation, the respective calculations for the spatial
version of the model involve only 16 parameters and take 1.6 hours of computation time.
The maximum composite log-likelihoods differ about 1167.61 points. According to the
BIC the spatial composite vine model is preferred over the composite vine model.

152
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8.2 Spatial model comparison

Before we are going to compare our three spatial models based on the scoring techniques
presented in Section 2.8, we compare the densities of the predictive distributions of
the copula data for the spatial R-vine model and the spatial composite vine model. Kernel
density estimates of these densities, for the first of February, April, June, August, October
and December 2010-2012 at the observation station Arkona (57), which are calculated
based on 1000 simulations from the particular predictive distribution, are illustrated in
Figure 8.2.1. Moreover the respective medians and 95% prediction intervals are indicated.
We do not observe any kind of temporal dependence, which is in agreement with the
modeling assumption that the marginal model should capture all temporal dependencies.
On the one hand there are some days like the first of August 2012, where both densities
are nearly identical, contrariwise there are many days like the first of February 2012,
where the densities differ considerably, however we always observe some kind of similarity
in terms of shape, scale and skew.
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Figure 8.2.1: Comparison of kernel density estimates, each calculated based on 1000 simu-
lations from the predictive distributions arising from the spatial R-vine model (black) and
the spatial composite vine model (gray), for the first of February, April, June, August,
October and December 2010-2012 at the observation station Arkona (57). The respective
medians and 95% prediction intervals are indicated as vertical lines in the corresponding
color.
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8.2.1 Score based model comparison

For the purpose of further comparison we calculate continuous ranked probability
scores and interval scores for a = 0.05. These techniques will allow for an adequate
comparative model validation. We consider

e averaged scores (Table 8.1),
e percentaged model outperformance (Figures 8.2.2 and 8.2.3) and
e a new concept called log-score difference plots (Figures 8.2.4-8.2.9, 8.2.10)

in terms of both, continuous ranked probability scores and interval scores. In all figures
and tables where we compare results for the different stations of the validation data set,
we order the stations according to their elevation, as we did it in the previous chapters.

In order to get a first impression which models provide the best performance in terms of
averaged scores, we compare the averaged continuous ranked probability scores (CRPS)
and interval scores (ISg5) in Table 8.1, where we average over time. Moreover the overall
averages are given in the last row of the table. For the purpose of comparison we recall
that scores close to zero are preferred, i.e. the overall consideration of the averaged scores
in Table 8.1 yields, that we prefer the spatial R-vine model according to the continuous
ranked probability scores and the spatial composite vine model according to the interval
scoring method. We observe furthermore, that the performance of the different models
seems to depend on the elevation of the respective observation stations. The results of
Table 8.1 can be summarized as

SV > SCVM > SG in terms of CRPS,
SCVM > SG > SV in terms of IS s,

where >~ is defined as ’is favored over’.
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short CRPS 1So.05
S name SV SCVM SG SV SCVM SG

61 bork | -2.5318 -2.420 -3.321 | -4.569 -4.455  -6.331
62 bvoe | -2.324 -2.118 -2.620 | -4.349 -3.808  -4.969
72 luec | -2.212 -2454 -2.617 | -3.976  -4.066  -4.859
68 gram | -1.840 -1.904 -2.577| -3.433 -3.310 -4.834
64 cosc | -2.652 -2.948 -2874 | -5.27 -3.532  -5.984
o7 arko | -3.112 -3.289 -3.383 | -7.827  -7.987  -8.849
77 rahd | -2.8360 -2.576 -2.655 | -4.269 -4.382  -5.034
70 grue | -1977 -1.917 -2.641 | -3.593 -3.271 -4.908
56 alfe | -3.197 -2.281 -2.604 | -5.710 -3.861 -4.820
o8 arns | -2.246 -2.474 -2.616 | -4.950 -5.326  -5.670
78 wies | -2.722 -2806 -2.627 | -5.319  -5.663 -5.242
74 muel | -2.220 -2.434 -2.997 | -4.599 -4.826  -5.644
63 buch | -2.540 -2.487 -2.626 | -5.069  -5.036 -5.016
65 ebra | -2.333 -2489 -2.606 | -5.301 -4.844 -5.093
60 blan | -2.988 -2.565 -2.623 | -5.524  -5.060 -4.883
66 ellw | -3.221 -3.204 -2.613 | -5.819  -5.449  -4.905
99 augs | -2.732 -2.662 -2.572 | -5.135 -4.502  -4.794
67 falk | -2.636 -2.678 -2.614 | -4.721 -4.548  -4.818
76 ohrz | -3.6567 -3.023 -2.611 | -6.640  -5.440 -5.404
71 hohe | -2.654 -3.436 -2.562 |-12.573 -8.854 -11.258
595 albs | -2.995 -3.094 -2.634 | -6.577  -6.429  -06.060
75 meuh | -2.164 -2.678 -2.552 | -34.449 -27.331 -21.725
73 mitt | -3.487 -3.765 -3.006 | -9.154 -10.223 -11.604
69 garb | -3.209 -3.520 -2.972 |-50.834 -47.922 -54.172
mean -2.658 -2.717 -2.730 | -8.735 -8.005  -8.620

Table 8.1: Comparison of the continuous ranked probability scores (CRPS) and the in-
terval scores (ISp5) of the spatial R-vine model (SV), the spatial composite vine model
(SCVM) and the spatial Gaussian model (SG) averaged over the period 01/01/2010 —
12/31/2012 for the observation stations of the validation data set. In the last row of the
table the overall averages are given.



8.2. SPATIAL MODEL COMPARISON 157

The following two figures, Figures 8.2.2 and 8.2.3, compare our three spatial models
pairwise by means of continuous ranked probability scores and interval scores, respec-
tively, and illustrate the percentaged outperformance' of one model compared to the
other for all 24 observation stations composing the validation data set. As before, we
detect a dependence of the model performance on the elevation. From Figure 8.2.2 we
observe 15 outperformances of the spatial R-vine model over the spatial Gaussian model,
16 outperformances of the spatial composite vine model over the spatial Gaussian model
and 7 outperformances of the spatial composite vine model over the spatial R-vine model
in terms of the continuous ranked probability scores. Figure 8.2.3 compares the outperfor-
mance in terms of the interval scores. This time we gain 17 victories of the spatial R-vine
model over the spatial Gaussian model, 18 outperformances of the spatial composite vine
model over the spatial Gaussian model and the spatial composite vine model yields better
results than the spatial R-vine model for 15 stations. We summarize the previous findings
as

SV = SCVM = SG in terms of %CRPS,
SCVM > SV > SG in terms of %IS,

where > is defined as ’is favored over’.

'For all stations it is counted for how many points in time one model yields a higher score than the
other model.
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Figure 8.2.2: Percentaged outperformance of the spatial R-vine model over the spatial
Gaussian model, the spatial composite vine model over the spatial Gaussian model and
the spatial composite vine model over the spatial R-vine model in terms of continuous
ranked probability score for all 24 observation stations of the validation data set.
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Figure 8.2.3: Percentaged outperformance of the spatial R-vine model over the spatial
Gaussian model, the spatial composite vine model over the spatial Gaussian model and
the spatial composite vine model over the spatial R-vine model in terms of interval score
for all 24 observation stations of the validation data set.
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It could be possible that the model outperformance depends on the time, i.e. there
may be time intervals in which one model yields better results than the others. In order
to be able to detect such kinds of time dependencies, we consider the Figures 8.2.4-8.2.9,
as well as Figure 8.2.10. We call the plots given in these figures log-score difference
plots, since they depict the difference of the logarithmized negatively oriented? scores of
two models against the respective points in time.

Let us first consider the log-score difference plots for the continuous ranked
probability scores. Figure 8.2.4 compares the spatial R-vine model and the spatial Gaus-
sian model. With increasing elevation the domination of the black x signs which indicate
the outperformance of the spatial R-vine model decreases and we observe predominance
of the grey plus signs for many of the stations with high elevations. For example for the
station Oberharz am Brocken-Stiege (76) a clear outperformance of the spatial Gaussian
model is observed. An overall consideration of the 24 plots in Figure 8.2.4 yields, that
there are short time intervals (in the winters) where the spatial Gaussian model yields
higher scores, whereas the spatial R-vine model tends to perform better for some bigger
time intervals. The log-score difference plots in Figure 8.2.5 which compare the spatial
composite vine model and the spatial Gaussian model yield similar results as Figure
8.2.4, however we observe differences in the outperformance. The comparison of the spa-
tial composite vine model and the spatial R-vine model in Figure 8.2.6 yields distinct
outperformance of the spatial composite vine model for stations like Bremervirde (62),
Alfeld (56), Blankenrath (60) and Oberharz am Brocken-Stiege (76). Moreover, the spatial
R-vine model scores tend to be higher for stations like Hoherodskopf/Vogelsberg (71) and
Neuhaus am Rennweg (75).

Now we take a look at Figures 8.2.7-8.2.9, the respective log-score difference plots
for the interval scores. We find that the scores for stations like Hoherodskopf/Vogelsberg
(71), Neuhaus am Rennweg (75) and Grofer Arber (69), which exhibit high elevations,
tend to differ more distinctly. For most of the other stations there are always relatively
few outliers, but for the big share of the points in time the differences are rather moderate.
Nonetheless it is possible to judge the station-wise outperformance in terms of interval
scores.

Figure 8.2.10 depicts the averaged log-score difference plots, which average the
results from Figures 8.2.4, 8.2.5, 8.2.7 and 8.2.8. From the plots for the continuous ranked
probability scores we see, that there are short time intervals around the turns of the
years, where the spatial Gaussian model consequently yields higher scores than the other
two models. Moreover we observe that the differences between the spatial R-vine model
and the spatial Gaussian model seem to be higher than the respective differences of the
spatial composite vine model and the spatial Gaussian model. The comparison of the
spatial R-vine model and the spatial Gaussian model by means of the interval scores
yields a balanced picture, whereas the comparison of the spatial composite vine model
and the spatial Gaussian model favors the spatial composite vine model.

2Negatively oriented means that the scores are multiplied by —1 and are therefore positive.
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Figure 8.2.4: Station-wise log-score difference plots of the continuous ranked probability
scores comparing the spatial R-vine model and the spatial Gaussian model, for all 24
observation stations of the validation data set. Points in time where the spatial R-vine
model has the higher score are marked by a black x. In contrast, points in time where the
spatial Gaussian model has the higher score are marked by a gray plus sign.
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Figure 8.2.5: Station-wise log-score difference plots of the continuous ranked probability
scores comparing the spatial composite vine model and the spatial Gaussian model, for
all 24 observation stations of the validation data set. Points in time where the spatial
composite vine model has the higher score are marked by a black x. In contrast, points
in time where the spatial Gaussian model has the higher score are marked by a gray plus
sign.
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Figure 8.2.6: Station-wise log-score difference plots of the continuous ranked probability
scores comparing the spatial composite vine model and the spatial R-vine model, for all 24
observation stations of the validation data set. Points in time where the spatial composite
vine model has the higher score are marked by a black x. In contrast, points in time where
the spatial R-vine model has the higher score are marked by a gray plus sign.
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Figure 8.2.7: Station-wise log-score difference plots of the interval scores comparing the
spatial R-vine model and the spatial Gaussian model, for all 24 observation stations of the
validation data set. Points in time where the spatial R-vine model has the higher score
are marked by a black x. In contrast, points in time where the spatial Gaussian model
has the higher score are marked by a gray plus sign.
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Figure 8.2.8: Station-wise log-score difference plots of the interval scores comparing the
spatial composite vine model and the spatial Gaussian model, for all 24 observation sta-
tions of the validation data set. Points in time where the spatial composite vine model
has the higher score are marked by a black x. In contrast, points in time where the spatial
Gaussian model has the higher score are marked by a gray plus sign.
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Figure 8.2.9: Station-wise log-score difference plots of the interval scores comparing the
spatial composite vine model and the spatial R-vine model, for all 24 observation stations
of the validation data set. Points in time where the spatial composite vine model has the
higher score are marked by a black x. In contrast, points in time where the spatial R-vine
model has the higher score are marked by a gray plus sign.
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Figure 8.2.10: Log-score difference plots of the averaged continuous ranked probability
scores respectively the averaged interval scores comparing the spatial composite vine
model and the spatial R-vine model to the corresponding averaged spatial Gaussian model
scores (average over all 24 observation stations of the validation data set). Points in time
where the first mentioned models have the higher average scores are marked by a black
x. On the other hand, points in time where the spatial Gaussian model has the higher
average scores are marked by a gray plus sign.
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8.2.2 Comprehensive prediction all over Germany

Finally we aim to predict the mean temperatures all over Germany. For this purpose we
perform prediction for all pixels on a regular 80 x 120 grid. For each of these 80-120 = 9600
pixels and for each point in time, at least up to the point in time of interest (e.g. t; = 200),
we have to perform several (let’s say 100) simulations from the predictive distribution in
order to get adequate predictions. It becomes clear, that this procedure is connected with
high computational effort. In our case, where we want to predict the mean temperatures
on the 19th of July 2010 we have to perform 9600 - 200 - 100 = 192million simulations
and back transformations in total. Comparison of the predictive densities (5.3.4) of the
spatial R-vine model and (6.5.2) of the spatial composite vine model yields that the com-
putational effort for a prediction from the spatial R-vine model is usually higher. Due
to this fact we decided to restrict us to a prediction based on the spatial composite vine
model and to compare it to a prediction from the spatial Gaussian model. The results are
visualized in Figures 8.2.11-8.2.15.

Figure 8.2.11 compares the two level plots of the point predictions of the mean
temperatures on the 80 x 120 grid covering Germany for the 19th of July 2010.
The locations and temperatures of the 54 stations on which the models are built are indi-
cated by circles, whereas the squares depict the mean temperatures at the 24 observation
stations composing the validation data set. We observe comparatively high temperature
predictions in the west of Germany and rather low predictions for mountainous areas,
which is reasonable. The predictions from both models tend to meet the observed tem-
peratures. In order to ease the analysis of the slight differences of both predictions, we
have a look at the difference of both predictions, illustrated in Figure 8.2.12. The
biggest differences emerge in the west of Germany. The yellow and red areas in the left
plot indicate that the temperatures predicted by the spatial composite vine model are
one to two degrees higher. Conversely the violet and pink areas indicate that the temper-
ature predictions of the spatial Gaussian model are one to two degrees higher than the
predictions of the spatial composite vine model.

The next two figures, Figures 8.2.13 and 8.2.14 depict the 5% and the 95% quantiles
of the predictions, respectively. We observe that most of the realized temperatures at
the observation stations fall into the 90% prediction interval. Moreover we are interested in
the lengths of these prediction intervals. For this purpose we plotted the differences
between the 5% and the 95% quantiles in Figure 8.2.15. We find that the prediction
intervals for the spatial composite vine model are pretty short for locations close to the
observation stations of the training data set (circles). Their length increases however the
further one moves away from theses stations, i.e. predictions outside the range of the
training data set are more uncertain. We observe however that the prediction intervals in
the south-east of Germany tend to be bigger than the ones in the north-west of Germany.
The respective plot for the spatial Gaussian model yields a more balanced picture. There
is no big variation in the length of the prediction intervals over the area which is covered
by the model. Naturally we observe increasing prediction interval length, the further we
move away from this area.
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For the purpose of comparison we provide Figures A.4.1-A.4.5 in Appendix A.4, which
are the equivalent figures to Figures 8.2.11-8.2.15 for the 20th of January 2010.

We terminate our model comparison at this point and advance to a summary of the
results of this thesis and the drawn conclusions.



Chapter 9

Conclusions and outlook

Finally we aim to summarize the results of the investigations performed in this thesis
and give a brief outlook on possible model improvements and future fields of interest. The
modeling process in this thesis evolved starting from a marginal model to the presentation
of two new vine copula based models for spatial dependencies, the spatial R-vine model
and the spatial composite vine model, and ended in an evaluation and comparison of these
models. Furthermore, prediction methods based on the presented models were introduced.
The fundament of all modeling was a data set of daily mean temperatures at 54 selected
observation stations across Germany.

The marginal model is intended to capture the marginal trends and distributions of
the single variables whose dependencies are modeled subsequently. Besides an intercept
term, components which capture the seasonal fluctuations and the temporal dependencies
of the data are included into the regression model of the marginals. Moreover we found
that a skew-t distribution is an appropriate distribution for the error terms of the regres-
sion model, since we observed a skew and heavy tails for the residuals calculated from the
data. Due to the fact that the final goal of the thesis is the prediction from the developed
models, it was reasonable to model all marginals jointly, depending on elevation, longi-
tude and latitude. An investigation of the parameter estimates obtained from separate
marginal model fits led to the replacement of the model parameters by polynomials of
these quantities. Further investigations showed, that the eventually developed marginal
model, which is summarized in the subsequent box, is able to eliminate any seasonal fluc-
tuations and time dependencies in the data to a reasonable extent. However we found that
our marginal model can lead to inadequate prediction results if the location from which
to predict lies outside the range of the data based on which we developed our models.
Obviously, this is due to the inclusion of the polynomial components into our model. As
already addressed in Chapter 5, there is room for an improvement of our marginal model,
for instance by applying B-splines instead of the polynomials. On the other hand it might
be reasonable to select the training data observation stations such that their locations are
evenly spread over the area from which one wants to predict.

175



176 CHAPTER 9. CONCLUSIONS AND OUTLOOK

joint marginal model (JMM):
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An extensive analysis of the structure of an (truncated') R-vine copula fitted to the
data led to a first new model for spatial dependencies, the spatial R-vine model. The inves-
tigation of the relationship between the Kendall’s 7 values occurring in the R-vine copula
and the distances and elevation differences which can be associated to these Kendall’s 7’s
proposed different kinds of tree-wise reparametrizations of the first copula parameters.
We found that the explanatory power of the elevation differences is comparatively small,
whereas the station distances are able to explain the respective correlations to a big ex-
tent. This induced the selection of a reparametrization which accounts for all distances
between the observation stations which are associated to the respective bivariate copulae
of the R-vine copula specification. Moreover a reparametrization of the second copula
parameters ﬁf(e)’ (e)[De depending on the tree number [ = 1,...,10 is applied. All in all
the selected reparametrizations led to a reduction from 733 parameters (truncated R-vine
copula) to 41 parameters. They are summarized subsequently.

spatial R-vine model (SV):

Nl dis
Oieri@m. = 90" (dite).j(e)s dice) Do dj(e) 0 J@D.)
=T (F" (™ (e |,3dmz)) tite)j(e )\De> , ee&, 1=1,...,10

h(liist (€|,3dist 1) — dlst + Bdlstl ( ,j(e)) 7 ec gl
h;iist ( |/3d1st l) dlst + /Bdlst ( ),j(e))

+ /Bdlst ( ) + /Bdlst (m) e c gl, [ = 2, R 10

gi(e)J(e)"De :eXp{<1,l,l2) 'IBSV}, e c 5[, = ].,710

IWe considered a truncation after tree ten.
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Our second spatial dependency model is built on the theory of composite likelihood
methods. In a first step the model structure, a composition of C-vine copulae, is set up,
which results in the definition of a composite vine model. For each variable u; under
consideration we determined the three closest? variables denoted as u}*, u{* and u}*, to
set up the four dimensional C-vines composing the model. The resulting components £,
of the composite likelihood Lcyvy and the respective weights w; are given in the following
box.

composite vine model (CVM):

N
*CCVM (OCVMa VCVM | ’u'la s 7ud) = H H [‘Cs (087 Vs | ufa ufsa ugs7 u:s)]ws
s=11t=1

with

S Ps qs Ts\ __ S Ps qs Ts.
‘CS (057’/8 | Uy, Uy 5 Uy 7uté) = Cs (ut,ut s Up 5 U 05;’/5)
_ s ,,Ps.
- Csps (utvut ’espsu Vsps)
S gs .,
’ qus (ut ) ut ) esqsv Vsqs)
S Ts.
: CSTs (uta utsa 087"57 Vsrs)
~Ds s,
* Cpsgs;s (ut , Ut 7‘9p5q5|37 Vp5q5|s)
~Ps MTs.
* Cpgrs;s (ut ) utsa epsm\sa Vpsrs\s)
~ Qs ~Ts.

" Cgsrs;sps (ut y Uy 79qsrs|5psv Vqsrslsps) , t=1,...,N

0
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t

d = # of components
N = # of observations

and weights

1
ws == —, with ng:=#{k:sisincluded in C-vine k}, s=1,...,d

2{n terms of station distance
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We subsequently investigated a fit of the resulting composite vine model to the data
in a similar way as for the spatial R-vine model. Again different reparametrizations were
compared. This time we decided to account additionally to the distances for the eleva-
tion differences in the joint reparametrization of the first copula parameters of the first
C-vine trees. The second and third tree copula reparametrizations account furthermore
only for the occurring distances as predictors. The reparametrization of the second copula
parameters depends on the tree number [ = 1,...,10 and the distances indicated by the
respective conditioned sets. Whereas the composite vine model is based on 495 parame-
ters, this number could be reduced to 16 for the reparametrized composite vine model,
the spatial composite vine model. It is summarized in the following box.

spatial composite vine model (SCVM):

9501 - TT—>9 (F ! (hselect(s’ 01|/6$elect,1>) ;tsol)
‘9p502|s = TT—>9 (F ! (hselect(&p& 02|/3select,2)) ;tp502|s)
9‘157’3\81)3 = TT—>9 (F ! (hseleCt<Svp37 ds, Ts|/65elect,3)) ;tqsrs|5ps) 5 S = 1, PN ,d

(ds.0,) _}_ﬁselectl (€s.01)

h;elect (3, Ds, 02| Bacleet2) = ;e(l)ect select In (dy, o,) + Bselect In (d,, )+ Bselect In (do, )

B (5, Dy, s ol Brtocts) = B 0 (A )+ B 0 (A ) + B In ()
n(dy,s) + Seml n (dr, p,)

hi,elect (S, o1 |/Bselect,1) — ie(l)ect select In

select In

Vso, = exp (By + B7 - 1+ B3ds0,)
Upsoals = €XD (By + 67 -2+ Bydp,.0,)
qurs|Sps = eXp (/Bg + /81,/ : 3 + BQV q57rs)

01 = Psy(4s,Ts

02 = (s,Ts
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For the purpose of model evaluation and comparison a third spatial model was in-
troduced, the spatial Gaussian model, which models the spatial dependencies based on a
Gaussian variogram model and assumes a multivariate Gaussian distribution of the mean

temperatures.

spatial Gaussian model (SG):

i:ut+€t7 €t 1'1\51 Nd (072<08G))7 t:L;N

S .__ _ \ s Vs Vs .
My = g(tu 8) =g (t’ }/t_l’ }/15_27 }/1%_37 Lelev,ss Llong,ss Llat,ss Bls)

. 2mt 27t
= Po(8) 7 flin(s) sin (365.25) 7 Beos(8) cos (365.25)
F71(8)Y, 4 72()Y g + 13(s)Y, g (compare marginal model)

2
v(h;n,s,p) =5 (1 — exp (—h—2)) + 11(0,00)(R) (Gaussian variogram model)
p

Zivj(HSG) = 02 - /Y(dl,_% n,s, p)

~

& = — 1i(Bu)

An overview and comparison of all dependency models under consideration is given

by Tables 9.1-9.3. Amongst others, the likelihood-functions corresponding to the models

summarized above are given.3*

36;(6) = Li(e)|De (U;(e) ‘utDE)a ag(E) = F‘j(e)ﬂ)e (uJ(E) |utDE)a utDE = {uz NS De}
4Reparametrized parameters are indicated by a tilde.
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The prediction results from all three models were quite similar and reasonable, as long
as the location from which we aimed to predict lay within the range of the training data.
In order to rank the different model predictions, we calculated and compared continuous
ranked probability scores and interval scores. In terms of both scores we observed an
outperformance of our two vine copula based spatial dependency models over the spatial
Gaussian model. Direct comparison of the spatial R-vine model and the spatial composite
vine model yielded an outperformance of the spatial R-vine model with regard to the
continuous ranked probability scores and an outperformance of the spatial composite
vine model with respect to the interval scores.

Whereas the prediction from our spatial R-vine model uses the information of all
54 observation stations of the training data set, the spatial composite vine model based
predictions are only conditioned on the observations of three neighboring stations. These
differences in the model structure naturally have an effect with regard to computation
time. Therefore, further investigations of the performance of spatial composite vine models
which consider different numbers of neighboring stations are of big interest. Moreover an
application of our modeling approaches to other types of data sets is desirable, which
implicitly requires the development of new marginal models. Especially an investigation
of data sets where asymmetries of bivariate dependencies are observed should stand in
the focus of further work on this topic.
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Outsourced figures

A.1 Predictions: spatial R-vine model
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Figure A.1.1: Prediction of the mean temperatures for the observation stations 61, 62, 72,
68, 64 and 57 for the period 01/01/2010-12/31/2012 based on the spatial R-vine model.
black line: observed values. dark gray line: prediction. light gray area: 95% prediction
intervals.
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Figure A.1.2: Prediction of the mean temperatures for the observation stations 77, 70, 56,
58, 78 and 74 for the period 01/01/2010-12/31/2012 based on the spatial R-vine model.
black line: observed values. dark gray line: prediction. light gray area: 95% prediction

intervals.
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Figure A.1.3: Prediction of the mean temperatures for the observation stations 63, 65, 60,
66, 59 and 67 for the period 01/01/2010-12/31/2012 based on the spatial R-vine model.
black line: observed values. dark gray line: prediction. light gray area: 95% prediction

intervals.
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Figure A.1.4: Prediction of the mean temperatures for the observation stations 76, 71, 55,
75, 73 and 69 for the period 01/01/2010-12/31/2012 based on the spatial R-vine model.
black line: observed values. dark gray line: prediction. light gray area: 95% prediction
intervals.
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Figure A.1.5: Prediction errors of the predictions for the observation stations 61, 62, 72,
68, 64 and 57 for the period 01/01/2010-12/31/2012 based on the spatial R-vine model.
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Figure A.1.6: Prediction errors of the predictions for the observation stations 77, 70, 56,
58, 78 and 74 for the period 01/01/2010-12/31/2012 based on the spatial R-vine model.



192 APPENDIX A. OUTSOURCED FIGURES

o~ -
I I I I
N 1 2010 2011 2012 2013

2010 2011 2012 2013

Figure A.1.7: Prediction errors of the predictions for the observation stations 63, 65, 60,
66, 59 and 67 for the period 01/01/2010-12/31/2012 based on the spatial R-vine model.
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Figure A.1.8: Prediction errors of the predictions for the observation stations 76, 71, 55,
75, 73 and 69 for the period 01/01/2010-12/31/2012 based on the spatial R-vine model.
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Figure A.1.9: 95% prediction intervals, point predictions and observed mean temperatures

for the first days of each months during the years 2010-2012 for the observation stations

61, 62, 72, 68, 64 and 57, each calculated based on 1000 simulations from the predictive

distribution of the mean temperatures at the respective observation station (spatial R-vine

model).
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tures for the first days of each months during the years 2010-2012 for the observation
stations 77, 70, 56, 58, 78 and 74, each calculated based on 1000 simulations from the

predictive distribution of the mean temperatures at the respective observation station

Figure A.1.10: 95% prediction intervals, point predictions and observed mean tempera-
(spatial R-vine model).
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tures for the first days of each months during the years 2010-2012 for the observation
stations 63, 65, 60, 66, 59 and 67, each calculated based on 1000 simulations from the

predictive distribution of the mean temperatures at the respective observation station

Figure A.1.11: 95% prediction intervals, point predictions and observed mean tempera-
(spatial R-vine model).
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tures for the first days of each months during the years 2010-2012 for the observation
stations 76, 71, 55, 75, 73 and 69, each calculated based on 1000 simulations from the

predictive distribution of the mean temperatures at the respective observation station

Figure A.1.12: 95% prediction intervals, point predictions and observed mean tempera-
(spatial R-vine model).
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A.2 Predictions: spatial composite vine model
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Figure A.2.1: Prediction of the mean temperatures for the observation stations 61, 62,
72, 68, 64 and 57 for the period 01/01/2010-12/31/2012 based on the spatial composite
vine model. black line: observed values. dark gray line: prediction. light gray area: 95%
prediction intervals.
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Figure A.2.2: Prediction of the mean temperatures for the observation stations 77, 70,
56, 58, 78 and 74 for the period 01/01/2010-12/31/2012 based on the spatial composite
vine model. black line: observed values. dark gray line: prediction. light gray area: 95%
prediction intervals.
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Figure A.2.3: Prediction of the mean temperatures for the observation stations 63, 65,
60, 66, 59 and 67 for the period 01/01/2010-12/31/2012 based on the spatial composite
vine model. black line: observed values. dark gray line: prediction. light gray area: 95%

prediction intervals.
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Figure A.2.4: Prediction of the mean temperatures for the observation stations 76, 71,
55, 75, 73 and 69 for the period 01/01/2010-12/31/2012 based on the spatial composite
vine model. black line: observed values. dark gray line: prediction. light gray area: 95%
prediction intervals.
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Figure A.2.5: Prediction errors of the predictions for the observation stations 61, 62, 72,
68, 64 and 57 for the period 01/01/2010-12/31/2012 based on the spatial composite vine
model.
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Figure A.2.6: Prediction errors of the predictions for the observation stations 77, 70, 56,
58, 78 and 74 for the period 01/01/2010-12/31/2012 based on the spatial composite vine
model.
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Figure A.2.7: Prediction errors of the predictions for the observation stations 63, 65, 60,
66, 59 and 67 for the period 01/01/2010-12/31/2012 based on the spatial composite vine
model.
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Figure A.2.8: Prediction errors of the predictions for the observation stations 76, 71, 55,
75, 73 and 69 for the period 01/01/2010-12/31/2012 based on the spatial composite vine
model.
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Figure A.2.9: 95% prediction intervals, point predictions and observed mean temperatures

for the first days of each months during the years 2010-2012 for the observation stations

61, 62, 72, 68, 64 and 57, each calculated based on 1000 simulations from the predic-
tive distribution of the mean temperatures at the respective observation station (spatial

composite vine model).
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tures for the first days of each months during the years 2010-2012 for the observation
stations 77, 70, 56, 58, 78 and 74, each calculated based on 1000 simulations from the

predictive distribution of the mean temperatures at the respective observation station

Figure A.2.10: 95% prediction intervals, point predictions and observed mean tempera-
(spatial composite vine model).
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Figure A.2.11: 95% prediction intervals, point predictions and observed mean tempera-

tures for the first days of each months during the years 2010-2012 for the observation
stations 63, 65, 60, 66, 59 and 67, each calculated based on 1000 simulations from the

predictive distribution of the mean temperatures at the respective observation station

(spatial composite vine model).
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tures for the first days of each months during the years 2010-2012 for the observation
stations 76, 71, 55, 75, 73 and 69, each calculated based on 1000 simulations from the

predictive distribution of the mean temperatures at the respective observation station

Figure A.2.12: 95% prediction intervals, point predictions and observed mean tempera-
(spatial composite vine model).
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A.3 Predictions: spatial Gaussian model
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Figure A.3.1: Prediction of the mean temperatures for the observation stations 61, 62, 72,
68, 64 and 57 for the period 01/01/2010-12/31/2012 based on the spatial Gaussian model.
black line: observed values. dark gray line: prediction. light gray area: 95% prediction

intervals.
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Figure A.3.2: Prediction of the mean temperatures for the observation stations 77, 70, 56,
58, 78 and 74 for the period 01/01/2010-12/31/2012 based on the spatial Gaussian model.
black line: observed values. dark gray line: prediction. light gray area: 95% prediction

intervals.
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Figure A.3.3: Prediction of the mean temperatures for the observation stations 63, 65, 60,
66, 59 and 67 for the period 01/01/2010-12/31/2012 based on the spatial Gaussian model.
black line: observed values. dark gray line: prediction. light gray area: 95% prediction
intervals.
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Figure A.3.4: Prediction of the mean temperatures for the observation stations 76, 71, 55,
75, 73 and 69 for the period 01/01,/2010-12/31/2012 based on the spatial Gaussian model.
black line: observed values. dark gray line: prediction. light gray area: 95% prediction
intervals.
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Figure A.3.5: Prediction errors of the predictions for the observation stations 61, 62, 72,
68, 64 and 57 for the period 01/01/2010-12/31/2012 based on the spatial Gaussian model.
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Figure A.3.6: Prediction errors of the predictions for the observation stations 77, 70, 56,
58, 78 and 74 for the period 01/01/2010-12/31/2012 based on the spatial Gaussian model.
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Figure A.3.7: Prediction errors of the predictions for the observation stations 63, 65, 60,
66, 59 and 67 for the period 01/01/2010-12/31/2012 based on the spatial Gaussian model.
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Figure A.3.8: Prediction errors of the predictions for the observation stations 76, 71, 55,
75, 73 and 69 for the period 01/01/2010-12/31/2012 based on the spatial Gaussian model.
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Figure A.3.9: 95% prediction intervals, point predictions and observed mean temperatures

for the first days of each months during the years 2010-2012 for the observation stations

61, 62, 72, 68, 64 and 57, each calculated based on 1000 simulations from the predic-
tive distribution of the mean temperatures at the respective observation station (spatial

Gaussian model).
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Figure A.3.10: 95% prediction intervals, point predictions and observed mean tempera-

tures for the first days of each months during the years 2010-2012 for the observation
stations 77, 70, 56, 58, 78 and 74, each calculated based on 1000 simulations from the

predictive distribution of the mean temperatures at the respective observation station

(spatial Gaussian model).
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tures for the first days of each months during the years 2010-2012 for the observation
stations 63, 65, 60, 66, 59 and 67, each calculated based on 1000 simulations from the

predictive distribution of the mean temperatures at the respective observation station

Figure A.3.11: 95% prediction intervals, point predictions and observed mean tempera-
(spatial Gaussian model).
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tures for the first days of each months during the years 2010-2012 for the observation
stations 76, 71, 55, 75, 73 and 69, each calculated based on 1000 simulations from the

predictive distribution of the mean temperatures at the respective observation station

Figure A.3.12: 95% prediction intervals, point predictions and observed mean tempera-
(spatial Gaussian model).



222 APPENDIX A. OUTSOURCED FIGURES

A.4 Predictions for the 20th of January 2010
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