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Abstract

Video adaptation is a key technology for universal video access in heterogeneous communica-

tion environments. The main challenge in this context is the selection of an optimal combi-

nation of Multi-Dimensional Adaptation (MDA) operations (such as spatial down-sampling,

frame dropping and adjustment of quantization parameters) to maximize the user’s Quality

of Experience (QoE) under certain resource constraints. To achieve this goal, different factors

that affect the perceptual quality need to be considered. The focus of this thesis is to solve

this optimization problem by a QoE-driven approach.

To begin with, extensive subjective experiments are conducted to study the human pref-

erence between temporal and spatial details for different types of video content and a wide

range of bit rates. A detailed analysis of the experimental data unveils how the perceived

quality is influenced by the video content, available transmission rate and MDA operations.

Moreover, the impacts of SNR, temporal and spatial resolution on the perceptual video

quality are modelled separately based on the observations from the subjective test and a

multi-dimensional video quality metric MDVQM is proposed. Performance evaluations using

subjective quality ratings show that the proposed video quality metric provides accurate

quality estimation in the presence of different spatial and temporal quality impairments.

Furthermore, accurate rate adaptation based on ρ-domain analysis is studied. The pro-

posed rate control algorithm combines ρ-domain rate model and header size estimation for

H.264/AVC video. Experimental results show that the proposed algorithm achieves better

rate control accuracy and video quality when compared with the original ρ-domain rate control

algorithm.

Finally, this thesis ends up with a QoE-driven multi-dimensional video adaptation scheme

combining both the proposed video quality metric and the rate control algorithm. The video

quality metric is used to predict the resulting QoE under different adaptation modes. The

optimal combination of adaptation operations is determined by considering both the resulting

QoE and computational complexity. Significant QoE improvement against conventional video

adaptation schemes has been confirmed by performance evaluation using various types of

video contents.
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Zusammenfassung

Videoanpassung ist eine Schlüsseltechnologie für universellen Video-Zugang in heterogenen

Kommunikationsumgebungen. Die größte Herausforderung in diesem Kontext ist die Auswahl

der optimalen Kombination von Multi-Dimensionalen Anpassungsoperationen (MDA), um die

Nutzerzufriedenheit (QoE) unter begrenzten Ressourcen zu maximieren. Um dieses Ziel in

heterogenen Umgebungen zu erreichen, müssen verschiedene Faktoren, welche die wahrnehm-

bare Qualität beeinflussen, berücksichtigt werden. Der Schwerpunkt dieser Arbeit ist, dieses

Optimierungsproblem durch einen QoE-orientierten Ansatz zu lösen.

Zunächst werden umfangreiche subjektive Tests durchgeführt, um die menschliche Präferenz

zwischen zeitlichen und räumlichen Details für verschiedene Videoinhalte und einen breiten

Bereich von Datenraten zu studieren. Eine detaillierte Analyse der experimentellen Daten

zeigt, wie die wahrgenommene Qualität von dem Videoinhalten, von verfügbaren Übertra-

gungsraten und von MDA-Operationen beeinflusst wird.

Außerdem, basierend auf den Beobachtungen aus den subjektiven Tests, werden die Auswir-

kungen von SNR und zeitlicher und räumlicher Auflösung auf die wahrgenommene Video-

qualität separat modelliert und eine multi-dimensionale Videoqualitätsmetrik MDVQM wird

vorgeschlagen. Leistungsbewertungen mit subjektiven Qualitätsbewertungen zeigen, dass die

vorgeschlagene Qualitätsmetrik in Gegenwart von unterschiedlichen räumlichen und zeitlichen

Qualitätsdegradierungen eine genaue Qualitätsschätzung liefern kann.

Weiterhin wird eine genaue Datenratenanpassung basierend auf ρ-Domain-Analyse unter-

sucht. Der vorgeschlagene Datenratensteuerungsalgorithmus kombiniert das ρ-Domain Daten-

ratenmodell mit der Schätzung der Header-Größe für H.264/AVC Video. Experimentelle

Ergebnisse zeigen, dass der vorgeschlagene Algorithmus die Datenrate genauer steuern kann

und bessere Videoqualität erreicht, verglichen mit dem ursprünglichen ρ-Domain Ratenalgo-

rithmus.

Schließlich endet diese Dissertation mit einer QoE-orientierten multi-dimensionalen Video-

anpassungsmethode, welche die vorgeschlagene Videoqualitätsmetrik und den Datenratens-

teuerungsalgorithmus kombiniert. Die Qualitätsmetrik wird verwendet, um die resultierende
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Nutzerzufriedenheit unter verschiedenen Anpassungsmodi vorherzusagen. Die optimale Kom-

bination von Anpassungsoperationen wird durch die Berücksichtigung der resultierenden Nutzer-

zufriedenheit und Rechenaufwands ermittelt. Signifikante QoE-Verbesserungen im Vergleich

zu herkömmliche Videoanpassungssystemen wird durch eine Leistungsbewertung mit ver-

schiedenen Videoinhalten bestätigt.
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Chapter 1

Introduction

1.1 Motivation

Over the past 20 years, internet video applications (such as video streaming, video telephony,

video sharing, etc.) have gradually become an indispensable part of our daily lives. The

fast development of mobile networks has inspired the idea of Universal Multimedia Access

(UMA)[MSL99] which has further propelled the boom of video services in the internet. The

aim of UMA is to allow the users to access the multimedia content at anytime and from

anywhere.

This has raised a big challenge to the traditional video transmission system due to the

different display characteristics of the video content (such as frame rate and spatial resolution),

the heterogeneity of the transmission channels, the time-varying nature of the mobile networks,

and the diversity of the users’ end-devices.

Figure 1.1 shows a typical application scenario for video streaming. The video contents are

encoded and stored on media servers, which are normally owned by content providers (such

as film companies or news agencies). The media servers are connected to the core network.

The core network might be a traditional best-effort IP network or a special Content Delivery

Network (CDN). Then between the core network and the end-users, there might be diverse

access networks (which are often referred to as “the last mile” in the delivery path). The

access networks can be classified by different access rates, from low-bitrate networks such

as traditional dial-up networks over PSTN or 2.5G mobile networks (GPRS), to middle bit-

rate networks such as low-speed xDSL or 3G mobile networks, to broadband services such as

high-speed xDSL, 4G mobile networks, Wifi/WiMax or fiber networks.

It is quite likely that the content server does not have any a priori knowledge about the

device capacities or network conditions of the end users. So conventionally, the video content

is often encoded with the goal of optimizing the rate-distortion performance. Therefore a
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Media delivery over heterogeneous access networks (adapted from [Lab])

video stream needs to be adapted along the delivery path before it can be delivered to the

end-user.

One way to manage the heterogeneity is simulcast [CAL96, MJ96], in which the same video

content is encoded at several different bit-rates or even using different coding standards. Then

different versions of the video content are delivered to the end users according to their specific

characteristics. This strategy might work well for wired networks where the transmission

capacity of the users is fixed and relatively stable. For end-users connected over mobile

networks, however, the available transmission rate is time-varying and hard to predict, so the

chosen bitstream may not match the user’s transmission characteristics very accurately. Also,

storing multiple versions of the same content consumes more storage on the content server,

which is costly for content providers.

An alternative solution to simulcast is to apply video adaptation at the edge of the access

network. In this solution, the video stream received by the end-user is no longer directly

transmitted from the content server, but is generated at an intermediate network node by
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adapting the original video stream from the server to match the user’s network characteristics

and device capacities. This could be done, for example, on a proxy which is built on top

of the gateway nodes (base stations, access points, routers etc.) in Figure 1.1. If the video

stream is delivered through a CDN, normally there are also special proxy servers deployed at

the edge of the core network, which can also be used to perform the video adaptation tasks.

In this solution, only one high quality version of the video content needs to be stored on the

content server. When a user requests to access a video content, the stored video stream is

first delivered to the proxies, the proxy then performs the video adaptation in real-time to

meet the user’s requirement. Compared with the simulcast solution, performing the video

adaptation at the edge of the core network can save valuable storage space on the content

server. Furthermore, since only one version needs to be transmitted through the core network

and the video stream can be cached on the proxies, this solution can also reduce the traffic in

the core network.

Video adaptation can be performed by adjusting different parameters of the encoded

stream such as quantization step-size, frame rate and spatial resolution of the video content.

Multi-Dimensional Adaptation (MDA) refers to the schemes where the impacts of all these

factors are considered jointly to meet the resource constraints and optimize the video quality.

Joint optimization among different dimensions offers us more opportunities for quality opti-

mization but also raises several new challenges, which include the assessment of video quality

under different spatial/temporal resolutions and the selection of the optimal combination of

adaptation operations [Wan05]. These issues in MDA can be solved by a Quality-of-Experience

(QoE) driven approach.

Since the target users of most video delivery systems are human beings, the most reason-

able way for quality assessment is to collect the user’s opinions on the delivered video streams.

The user’s satisfaction level is often referred to as Quality-of-Experience of the users. The

most accurate way to measure QoE is by conducting subjective tests. However, subjective

tests are usually costly and time-consuming, so this approach is not practical for the evalua-

tion of video quality in real-time. Due to the limitations of subjective quality assessment and

the increasing demand for in-service quality assessment, there have been intensified studies of

perceptual Video Quality Metrics (VQM) which aim to estimate the QoE of a video processing

system by taking into account the characteristics of human visual perception.

QoE-driven MDA schemes utilize perceptual VQMs to assess the video quality and make

optimal adaptation decisions on the fly when needed. The general diagram of a QoE-driven

multi-dimensional video adaptor is shown in Figure 1.2.

In Figure 1.2, the resource allocator collects the feedback information (such as network

conditions and user’s preference) from the channel and the end-users. Based on the collected

information, it determines the target source coding bit-rate for the adaptation operation
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Figure 1.2: Block Diagram of a QoE-driven multi-dimensional video adaptation system

(BR∗) and passes this information to the mode selector. On the other hand, the incoming

video stream is decoded by the video decoder and the decoded video frames are used by

the mode selector to extract necessary video features. The perceived quality of the adapted

videos under different adaptation modes can be estimated by feeding all the information to

a perceptual video quality metric. Taking into account various factors (such as the compu-

tational complexity and resulting QoE of different adaptation operations), the mode selector

determines the optimal parameters (e.g., spatial resolution SR∗ and frame rate TR∗) for the

video adaptation operations. According to the decisions of the mode selector, the encoder

performs proper adaptation operations. The rate control module interacts with the encoder

to guarantee the adapted video meets the rate requirements given by the resource allocator.

In this thesis, various aspects of such a QoE-driven MDA system are studied. More

specifically, the focus is put on the estimation of the perceived video quality (quality metric),

the selection of optimal adaptation mode (mode selector) as well as the accurate control of

the bitrate (rate controller). The corresponding modules are marked in grey in Figure 1.2.

1.2 Summary of Main Contributions

The main contributions of this dissertation can be summarized as follows:

� The individual and overall impact of different video properties (such as the quantization



1.3. OUTLINE OF THE THESIS 5

step-size, the spatial resolution, the frame rate) on the perceived video quality are

studied through specifically designed subjective tests. Prior works in the literature

concerning video quality assessment mainly focus on videos with fixed frame rate. In

this work, subjective tests are conducted which help us to understand how the perceived

video quality is affected when the spatial and temporal resolution of the video content

are changed separately or even jointly.

� An accurate no-reference VQM for evaluating the perceived video quality at different

frame rates and spatial resolutions is presented and its prediction performance is ana-

lyzed. The proposed metric models the overall video quality as the product of separate

items, with each of the items simulating the impact of quantization, frame dropping

and spatial down-sampling, respectively. All the features used in the VQM can be eas-

ily computed from the encoded bitstream so that it is well suited for in-service video

quality estimation. The performance of the proposed metric is also validated by the

results of the subjective tests.

� An accurate rate control algorithm based on ρ-domain analysis is proposed. The ap-

proach uses a two-stage encoder structure to resolve the inter-dependency between RDO

and ρ-domain rate control. The size of the header information is estimated using an

improved rate model which considers the different components in a macroblock header.

Experimental results show that the proposed algorithm achieves better rate control

accuracy and video quality when compared with the original ρ-domain rate control al-

gorithm. The proposed rate control algorithm can be used together with the video

quality metric to perform accurate bitrate adaptation for QoE optimization.

� Based on the proposed VQM and rate control algorithm, a QoE-driven MDA scheme

is developed for optimizing the perceived video quality. The adaptation scheme uses

the proposed VQM to estimate the resulting video quality under different adaptation

modes and then determines the optimal adaptation mode by taking into account the

video quality as well as the computational complexity. The algorithm is evaluated and

shown to provide better performance than conventional adaptation schemes.

1.3 Outline of the Thesis

The rest of the thesis is arranged as follows. Chapter 2 outlines the main aspects of video

quality assessment and gives a review of the state-of-the-art video quality metrics. In Chapter

3, a multi-dimensional video quality metric is proposed and evaluated with results from ex-

tensive subjective tests. Then, an improved ρ-domain rate control algorithm for H.264/AVC

video with header size estimation is presented in Chapter 4. The proposed QoE-aware video
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adaptation scheme is presented in Chapter 5 together with performance evaluation. The thesis

concludes in Chapter 6 with a summary of the results.

Parts of this thesis have been published in [ZS11, SZPD12].



Chapter 2

Overview of Video Quality Assessment

Nowadays, video data is responsible for a considerable part of the total internet traffic due to

the boom of various video related services and the remarkable evolution of network technolo-

gies and mobile devices. Video quality assessment is fundamental to monitor and guarantee

the quality of these video services.

Depending on whether human observers are involved in the assessment process, video

quality assessment can be performed subjectively or objectively. The purpose of subjective

video quality assessment is two-fold. First, it can be used to evaluate or compare the perfor-

mance of different video processing algorithms/systems. Second, it can help us to find out

how the perceived video quality is affected under different conditions. On the other hand,

objective video quality assessment estimates the video quality using video features which can

be measured and computed objectively, thus makes it possible to monitor and optimize the

video quality automatically. Both of them are indispensable parts of designing and evaluating

a video system which aims to provide the best QoE to the users. In this chapter, background

and related work in the field of both subjective and objective video quality assessment are

discussed. Section 2.1 provides a summary of the guidelines given in the ITU standard doc-

uments for conducting subjective tests. This is followed by a review of the development of

objective video quality metrics in Section 2.2.

2.1 Subjective Video Quality Assessment

In subjective video quality assessment, a set of test video sequences are presented to the

human observers (also referred to as test subjects). The task of the human observers is to

provide their opinions about the video quality. There are two basic forms of subjective tests:

the paired comparison approach and the Mean Opinion Score (MOS) approach. In paired

comparison, two test videos are displayed side by side and the human observers need to judge

7
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which one has a better quality. By the MOS approach, the videos are displayed one by one

and the human observers are asked to rate the quality of each video. The MOS value is

calculated as the mean value of the collected ratings.

The judgement of human beings tends to be affected by many factors, such as the health

situation, the mood as well as the surrounding environment. Therefore, to ensure the accuracy

of the results, subjective tests must be conducted in a controlled manner. For this purpose, the

International Telecommunication Union (ITU) has established a series of recommendations to

standardize the design and procedure of subjective tests. The most important documents are

ITU-R Rec. BT.500-11 [ITU99] (for television applications), ITU-T Rec. P.910 [ITU98] and

ITU-T Rec. BT.1788 [ITU07] (for multimedia applications). The most important aspects de-

fined in the documents regarding preparation and conduct of subjective tests are summarized

in the following.

2.1.1 Test Method

When designing a subjective test, the first question one needs to answer is the purpose of

the test. The standard documents recommend different test methods addressing various test

scenarios. The test method should be carefully selected depending on the specific goal of

the test. The following is a brief description of the most widely used test methods. Since a

comparison of system performance is not the focus of this thesis, only test methods following

the MOS approach are discussed. The reader can refer to [ITU98, ITU99, ITU07] for more

details.

� Double-Stimulus Continuous Quality Scale (DSCQS)

DSCQS is a Double Stimulus (DS) method defined in [ITU99], in which two videos,

i.e. the original source sequence (also referred to as reference sequence) and a processed

version of the same sequence, are presented twice to the test subjects. The presentation

order of the two sequences is randomized, i.e., sometimes the reference sequence is

presented first and sometimes the processed sequence is presented first. The test subjects

are asked to give their ratings at the second presentation of each video. This voting

procedure is shown in Figure 2.1a. The test subjects use a continuous grading scale as

shown in Figure 2.1b for the rating. As pointed out in [ITU99], DSCQS is more resilient

to contextual effects when compared with other test methods (contextual effects refer to

the phenomenon that the results of the subjective tests tend to be affected by the level

and ordering of the impairments that appear in the tests. For example, if an impaired

test sequence is presented after several high quality test sequences, the viewers may give

it a lower score than it normally deserves). This is due to the fact that the original source

sequence is always available in DSCQS to serve as a reference when the test subjects

rate the processed sequences. However, the use of a reference for each test sequence also



2.1. SUBJECTIVE VIDEO QUALITY ASSESSMENT 9

causes DSCQS to be very time-consuming and only a small number of test sequences

can be evaluated during a session, which is the major disadvantage of DSCQS.

(a)

(b)

Figure 2.1: Double-Stimulus Continuous Quality Scale (DSCQS) [ITU99]: (a) Presentation
structure; (b) rating scale.

� Absolute Category Rating (ACR)

This method is a Single Stimulus (SS) method defined in [ITU98]. In the ACR method,

the test sequences are presented one at a time and the test subjects are asked to rate each

sequence after the presentation. The procedure of ACR is shown in Figure 2.2a. In order

to alleviate the impact of contextual effect, the presentation order of the test sequences

should be randomized for each individual test subject. Typically, ACR uses a five-level

categorical grading scale as shown in Figure 2.2b. A nine-level scale can also be used

in case a higher discriminative power is desired, as suggested in [ITU98]. Because each

sequence is presented only once before being rated, ACR allows more test sequences to be

evaluated during the same time interval in comparison with DSCQS. But the drawback

of ACR is that it is a SS method, so it may be seriously affected by contextual effects

and therefore, ACR needs more participants to achieve the same reliability as DSCQS

[ITU05a]. The efficiency of ACR is partially offset by this drawback. Due to this reason,

VQEG has used an enhanced version of ACR in its Multimedia Test [VQE07]. In the

improved method, the original version of each video content is randomly inserted into
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the test dataset to serve as a hidden reference. Therefore, this improved ACR method is

also referred to as ACR-HR (ACR with Hidden Reference). In [HTG05], a comparison

is performed between ACR-HR and DSCQS for low-resolution videos, the results show

that ACR-HR can provide the same reliability as DSCQS while keeping the simplicity

and efficiency of ACR.

(a)

(b)

Figure 2.2: Absolute Category Rating (ACR) [ITU99]: (a) Presentation structure; (b) rating
scale.

� Subjective Assessment of Multimedia VIdeo Quality (SAMVIQ)

SAMVIQ is a new assessment methodology defined in [ITU07]. In SAMVIQ, the evalu-

ation is conducted scene by scene. Each scene contains all the processed test sequences

of the same video content. To alleviate the contextual effects, an explicit reference and

a hidden reference of the same content are also included in each scene. The hidden

reference is inserted randomly into the processed test sequences.

The major difference between SAMVIQ and conventional test methods (such as DSCQS

and ACR) is that the test subjects can control the order of the presentation as well as

start/stop the presentation of a test sequence at any time. There is no strict timing

for the rating of each test sequence. The test subjects can freely make comparisons

between a processed test sequence and the reference sequence or between two processed

test sequences and then give or adjust their rating for individual test sequences accord-

ingly. This allows SAMVIQ to produce reliable subjective ratings. Figure 2.3 shows the

presentation structure and rating scale for SAMV IQ.
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In [BHTHB06], the performance of SAMVIQ and ACR-HR is compared using test se-

quences with CIF (352x288) resolution. The results suggest that the subjective ratings

produced by both methods are very similar. Considering the higher efficiency of ACR-

HR (In SAMVIQ, test subjects tend to spend more time to make comparisons between

different sequences), ACR-HR is considered to be the preferred method. In comparison,

the impact of spatial resolution on the result accuracy of SAMVIQ and ACR-HR is stud-

ied in [PP08]. The results show that for video contents of high resolutions (VGA/HD),

the results from SAMVIQ are more precise than those from ACR-HR for the same

number of test subjects.

According to the above discussion of different test methodologies as well as the number

and spatial resolution of the test sequences, SAMVIQ is selected as the test method in the

work presented in Chapter 3 for collecting subjective ratings.

2.1.2 Test Material

Since the purpose of video quality assessment is to evaluate the performance or help optimize

the QoE of a certain video processing system, the target application of the system under

consideration should be taken into account when selecting the test materials. Also, to improve

the reliability of the test results, it is important that a wide variety of materials are used in the

test. The variety of the test materials refers to not only the diversity of the video contents but

also the quality range of the processed sequences. In the subjective tests conducted by VQEG

[VQE00, VQE03, VQE08, VQE09], the Spatial perceptual Information (SI) and Temporal

perceptual Information (TI) are used to determine the characteristics of the video contents.

The two parameters are defined as:

SI = maxtime{stdspace[Sobel(Fn)]} (2.1)

TI = maxtime{stdspace[Fn − Fn−1]} (2.2)

where Fn denotes the video frame at time n and Sobel(Fn) is the filtered frame by the Sobel

filter. Sobel filter is widely used in image processing algorithms to compute an approximation

of the gradient magnitude at each point in the input image. The 2D Sobel filter uses a pair

of 3x3 convolution kernels given in Eq.(2.3):

Kx =


+1 0 −1

+2 0 −2

+1 0 −1

 and Ky =


+1 +2 +1

0 0 0

−1 −2 −1

 (2.3)
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(a)

(b)

Figure 2.3: Subjective Assessment of Multimedia VIdeo Quality (SAMVIQ) [ITU07]: (a)
Presentation structure; (b) rating scale.
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and the filtered frame of the Sobel filter is calculated as:

Gx = Kx ∗A and Gy = Ky ∗A

G =
√

Gx
2 +Gy

2

(2.4)

where A is the input image and G is the filtered image. The operator ‘∗’ denotes the 2D

convolution operation. The selected video contents should span the full range of scene char-

acteristics which is of interest to the system under test.

To achieve precise and reliable quality ratings, the quality range of the test materials

should be as large as possible. Otherwise, if the quality range is too narrow, the test subjects

tend to give quality scores which exaggerate the quality difference of two test sequences. In

most cases, it is a good practice to include processed sequences with extremely high and low

quality in the test material.

2.1.3 Test Subjects

When selecting the test subjects, the number and type of the viewers should be carefully

considered. In most standard documents [ITU98, ITU99, ITU07], it is suggested that the

number of test subjects should not be less than 15 in order to produce reliable results. In

practice, the appropriate number of participants should be selected according to the reliability

of the test method as well as the expected precision of the results. For example, VQEG

recommends to use at least 24 test subjects for its Multimedia Test [VQE07] using the ACR-

HR method while the European Broadcast Union (EBU) suggests to use at least 15 test

subjects in its video codecs evaluations [KSW05] using SAMVIQ.

Two types of test subjects should be distinguished, i.e. experts and non-experts. The term

“non-expert” refers to people who “are not directly concerned with picture quality as part of

their normal work and are not experienced assessors” (quoted from [ITU07]). All the standard

documents suggest that the test subjects in the subjective tests should be non-experts. The

consideration here is that experts tend to have a fixed or preconceived way of evaluating the

image/video quality which is different from that of non-experts. Since non-experts compose a

much larger part of the public who consume the video contents, the results from non-experts

are more representative and reliable. That does not mean, however, that the test subjects do

not have any background knowledge about the tests. They need to understand the type of

artifacts and quality range that are expected in the tests. This can be done through a training

session before the formal test session.

2.1.4 Test Procedure

In general, a subjective test can be divided into five phases: preparation, introduction, training

session, test session and post-processing.
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In the preparation phase, the test environment (including the room used for the test as

well as the display devices) should be set up according to the guidelines provided in [ITU99].

The visual acuity of the test subjects should also be checked.

Before the test starts, both a written and an oral introduction should be given to the test

subjects. The content of the introduction should include the timing and organization of the

test, how the test sequences will be presented, how the test subjects should rate the sequences

and sometimes, the expected types of impairment which occur in the tests, etc.

After that, a training session should also be provided to help the test subjects get familiar

with the test interface, voting process as well as the types of video contents and visual artifacts

in the test. The procedure and video materials used in the training session should be similar

to those of the formal test session, but the same video contents should not be included in

the test session again. The ratings collected from the test session should not be considered in

the final results. Any questions from the test subjects about the test can be answered at this

point. After the formal test session begins, no further questions are allowed.

After the test sessions, the collected subjective data should be screened and outliers should

be removed. Different screening processes are defined in the standard documents for the use

of different test methodologies. In Section 3.3.6, the screening process defined for SAMVIQ

is discussed in more details. For more information about different screening processes, the

reader can refer to the corresponding ITU recommendations [ITU98, ITU99, ITU07].

The standardization efforts discussed above have made subjective tests the most reliable

way for video quality assessment. Although subjective quality assessment is not suitable

for real-time applications, they are still very important in the sense that they provide the

“ground-truth” data for the design and verification of objective video quality metrics which

enable real-time in-service video quality evaluations. Also, the information from the subjective

tests can help us to understand the properties and limits of the human visual system.

2.2 Objective Video Quality Assessment

Objective video quality assessment can be used instead of subjective quality assessment when-

ever the involvement of human beings needs to be avoided. It can be useful for a number of

scenarios throughout all the phases of building a video processing and communication system,

such as:

� Estimation of necessary resources to deliver a certain quality level at the planning stage

of a network service.

� Comparison of different processing algorithms when designing the system.

� Verification of system performance during the testing phase.



2.2. OBJECTIVE VIDEO QUALITY ASSESSMENT 15

� Monitoring and optimization of the perceived video quality when the system is running.

The basic idea of objective video quality assessment is to use mathematical quality metrics

to estimate the perceptual video quality in an automatic and objective manner. The most

widely used objective video quality metric nowadays is perhaps the Peak Signal-to-Noise Ratio

(PSNR), which can be calculated as follows:

MSE =
1

WH

W∑
i=1

H∑
j=1

[I1(i, j)− I2(i, j)]
2 (2.5)

and

PSNR = 10 · log 2552

MSE
(2.6)

where W and H denote the width and height of the picture, I1 and I2 are the corresponding

frames in the original and processed video, respectively. Since the human eyes are more

sensitive to the details of the luminance component in an image or video than those of the

chrominance components, normally the PSNR value is only calculated for the luminance

component. And the PSNR value for a video sequence is calculated as the average PSNR

value over all the frames included in the sequence.

The popularity of PSNR is largely due to its simplicity and clear physical meaning. It does

provide a good estimation of the perceived video quality as far as the video content and the

type of distortion are not changed [EF95, HTG08]. However, for more complicated cases where

different video contents, different frame rates and spatial resolutions are to be considered, the

performance of PSNR is not satisfactory [Gir93, EF95, Win99, WB02]. The major drawback of

PNSR is that it measures only the fidelity of the signal without considering the characteristics

of the video content, the Human Visual System (HVS) as well as the interaction between the

two. In this sense, there is no difference between a video signal and an audio/speech signal

or signals of any other type. In [WM08], this kind of pure fidelity measurement is named

“data metric” to differentiate it from perceptual metrics where psychophysical aspects are

considered.

2.2.1 Classification of Objective Video Quality Metrics

If the HVS is considered as a processing system, then the video content is its input and

the perceived video quality is its output. One straightforward way for predicting the system

output is to find out the internal components of the system and to model the behavior of the

fundamental functional blocks. This is the basic idea behind the so called HVS-based approach

[WM08]. Over the years, several famous HVS-based VQMs have been proposed such as the

Visible Difference Predictor (VDF) by Daly [Dal93], the Sarnoff model proposed by Lubin

[Lub97], the Perceptual Distortion Metric (PDM) proposed by Winkler [Win98, Win99], as

well as the Digital Video Quality (DVQ) proposed by Watson [WHM01]. In [WSB03a], a
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general framework of these HVS-based VQMs is summarized as shown in Figure 2.4. From

the framework, it can be seen that several most important perceptual features (such as light

adaptation, contrast sensitivity, masking and facilitation, error pooling, etc. ) of the HVS are

considered and integrated to imitate the visual perception process of humans. The biggest

challenge for the VQMs of this category is that the human visual perception is a very complex

process which involves not only the signal reception in the eyes but also the processing of the

resulting signals in the human brain. Although our understanding of the whole system is much

better than a decade ago, there is still a long way ahead of us until the visual perception can be

modeled accurately enough. Also, the computational complexity required by the HVS-based

approach has limited the scope of its possible application. Since the target of the work in

this dissertation is to build a video quality metric for real-time video adaptation, HVS-based

metrics are not our focus. Interested readers can refer to the overviews in the literature for

more details of HVS modeling [WSB03a, UE07, WM08, CSRK11].

Figure 2.4: General framework of HVS-based visual quality metrics (adopted from [WSB03a]).

The second way of modeling the system is to treat it as a black box. Then the system

response can be approximated by observing the relationships between the input and output

signal. In [WM08], it is referred to as the Engineering Approach. In this way, complicated

modeling of the building blocks of the HVS can be avoided and the problem of predicting the

output signal can be solved by numerical approaches. Although the accuracy and universality

of the engineering approach is not as good as the HVS-based approach, it is more suitable

for real-time applications. Therefore, the engineering approach is adopted in Chapter 3 for

developing the video quality metric.

Another traditional classification of video quality metrics is based on the amount of refer-

ence information available for quality estimation [ITU00]. If the metric requires the access to

the whole reference video sequence for the quality estimation of a distorted video (as shown

in Figure 2.5), then it is classified as a Full-Reference (FR) video quality metric. When hu-

mans determine the quality of an image/video, it is always helpful to have the original visual

content as a reference for the comparison (for example, to identify the type and strength of

distortions). Similarly, it is generally accepted that the use of more reference information

can help to reduce the complexity and improve the accuracy of the quality metric [ITU00].
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However, due to the dependency on the whole reference information, FR metrics can only be

used in applications where the original video content is available at the place where quality

estimation is performed, such as quality optimization at the source side or test in a laboratory

scenario.

For a broader range of video systems where the quality estimation needs to be done

in the middle of the network or at the end-user side, FR metrics are not feasible. This

has promoted the development of No-Reference (NR) video quality metrics, where the video

quality is estimated solely on the distorted video contents without any reference to the original

content (as shown in Figure 2.7). NR quality metrics can be used at any place within the

system, so they can be applied to a wider range of applications (such as for real-time quality

estimation in a transmission scenario). However, the design of NR quality metrics faces more

difficulties than FR metrics due to the lack of reference information. This is reflected by the

number of established ITU-T standards for different classes of quality metrics as discussed in

Section 2.2.2.

The third class of video quality metrics is the Reduced-Reference (RR) metrics, which

can be seen as a compromise between FR and NR solutions. In RR metrics, normally a

set of important video features are extracted at the source side and transmitted using an

ancillary communication channel to the place where the video quality is estimated. The same

features are also extracted from the distorted video contents and quality degradations caused

by distortions is estimated by comparing the features from both sides (as shown in Figure

2.6). As discussed above, the more reference information is available, the more accurate is the

quality estimation. But this also requires more transmission capacity of the ancillary channel.

So the most critical issue in the design of RR metrics is the tradeoff between accuracy and

the amount of overhead information.

Figure 2.5: Block diagram of a full-reference video quality assessment system (adapted from
[ITU00]).
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Figure 2.6: Block diagram of a reduced-reference video quality assessment system (adapted
from [ITU00]).

Figure 2.7: Block diagram of a no-reference video quality assessment system (adapted from
[ITU00]).

2.2.2 Advances of Objective Video Quality Metrics

Due to the increasing demand of reliable and accurate video quality metrics, there has been

a large amount of effort devoted to this topic from both industry and academia. The most

remarkable work has been done by VQEG from ITU. From 1997, VQEG has conducted a

number of validation tests to evaluate the performance of various proposed VQMs. Based on

the test results, VQEG has also established a series of standards which give recommendations

for the choice of objective video quality metrics for different applications. A summary of the

work by VQEG is given in Table 2.1. Apart from the standardization efforts from VQEG,

there are also contributions in other literatures. In the following, a review of several most

important works in the field of perceptual video quality metrics will be given. As mentioned

previously, the focus is put on metrics following the engineering approach.

Full-reference video quality metrics

The Structure SIMilarity (SSIM) index is proposed by Wang et al. in [WBSS04]. Similar to

PSNR, SSIM does not make any assumption about the type of artifacts in the video. But

different from PSNR, which calculates the picture quality based on pixel-to-pixel errors, SSIM

estimates the quality by measuring how well the structural information contained in the pic-

ture is preserved. Since it is observed that human perception is more sensitive to distortions in
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Table 2.1: ITU Recommendations for objective video quality metrics

ITU Standard
Metric
Type

Target
Application

Validation Test

ITU-T J.144[ITU04b]
ITU-R BT.1683[ITU04a]

FR SDTV
FR-TV1/FR-TV2

(1997-2003)

ITU-T J.249[ITU10] RR SDTV RRNR-TV (2000-2008)

ITU-T J.247[ITU08b] FR Multimedia MM-I (2003-2008)

ITU-T J.246[ITU08a] RR Multimedia MM-I (2003-2008)

ITU-T J.341[ITU11a] FR HDTV HDTV-I (2004-2010)

ITU-T J.342[ITU11b] RR HDTV HDTV-I (2004-2010)

structural information [WBSS04], SSIM provides much better quality predictions than PSNR.

To measure the structure similarity between the original content x and distorted content y,

SSIM calculates the following three components [WBSS04]:

l(x, y) =
2·x· y
x2 + y2

(2.7)

c(x, y) =
2σxσy
σ2
x + σ2

y

(2.8)

s(x, y) =
σxy
σxσy

(2.9)

where x and y are the mean pixel values of x and y, respectively. σ denotes the standard

deviation. The first two components, i.e. l(x, y) and c(x, y), can be seen roughly as measures

of similarity of brightness and contrast between x and y, respectively. The third components

s(x, y) is the linear correlation of the two signals, which is a indication of how well the

structural information is preserved. The SSIM index is then calculated as the product of the

three components:

SSIM(x, y) = l(x, y)· c(x, y)· s(x, y) (2.10)

The range of SSIM index is [0, 1], with a higher value indicating better perceptual quality.

The SSIM index has been originally proposed for still image quality assessment. In

[WLB04], it is adapted for video quality assessment by calculating the weighted sum of the

SSIM indices of the Y, Cb and Cr components. Other extensions of the SSIM index include

the MultiScale-SSIM in [WSB03b] and the Speed SSIM proposed in [WL07].

The Psytechnics full-reference video quality metric is one of the four metrics suggested

by ITU-T J.247 [ITU08b] for multimedia applications with spatial resolutions from QCIF

to VGA. It performed best in VQEG’s Phase-I Multimedia Test [VQE08]. After the spatial

and temporal alignment process between the reference and distorted video, seven features are

extracted from the videos. The spatial distortion is measured by decomposing the frames

into sub-bands using a pyramid transform (similar to the concept of wavelet transform) and
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then calculating the PSNR values for selected sub-bands according to the spatial resolution

of the frames. The temporal distortion is calculated based on the frequency and duration

of dropped/frozen frames. These features, together with other features measuring the edge

distortion, the blocking artifacts, the blurring artifacts and spatial complexity, are combined

by a linear integration function to produce a final estimation of the video quality. Different

integration functions are used for different spatial resolutions (QCIF/CIF/VGA).

VQuad-HD developed by SwissQual is the only full-reference video quality metric sug-

gested by ITU-T J.341 [ITU11a] for HDTV applications. A jerkiness feature is calculated

based on the local and global motion intensity to indicate temporal degradation. A blockiness

measure is used to measure the spatial degradation. The basic idea of the blockiness detection

algorithm is that if the video is processed using a block structure of size n, then average edge

strength values calculated at a step-size of n could be very different for different offsets. The

third component is calculated as the distribution of the local similarity and difference features.

Finally, a logistic function is used to integrate these three features together for the quality

estimation.

Other important full-reference video quality metrics include the Picture Quality Scale

(PQS) [YMM00], the Perceptual Evaluation of Video Quality (PEVQ) by Opticom [ITU08b],

the Motion-based Video Integrity Evaluation (MOVIE) index by Seshadrinathan and Bovik

[SB10].

Reduced-reference video quality metrics

In [WJP+93], Webster et al. proposed a reduced-reference quality metric based on localized

TI and SI values (refer to Eq.(2.2)(2.1)). The TI and SI are calculated for a certain Spatial-

Temporal region (S-T region) in the video sequence. The values from the original video are

transmitted to the quality estimator and compared with the values calculated from the dis-

torted video. The outputs of the comparison are three measurements indicating the level of

spatial and temporal distortions. A weighted sum of these three measurements is used as

the quality estimation. The size of the overhead information can be controlled by selecting a

suitable size of the S-T region.

The Yonsei reduced-reference quality metric (proposed by Yonsei University, Korea) is

the only metric which is included in all the three RR video quality standards by ITU-T

(J.246 [ITU08a] /J.249 [ITU10]/J.342 [ITU11b]). In this scheme, an edge map is generated

by applying edge enhancement filters to the original video frames. The position and value of

a set of edge pixels are transmitted to the quality estimator. The quality estimator calculates

again an edge map based on the distorted video frames. The pixel values in the distorted

edge map are then compared with the corresponding transmitted values to calculate the Edge

PSNR (EPSNR). EPSNR is then adjusted according to the strength of different artifacts
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(blocking/blurring/jerkiness). A piecewise linear function is finally applied to form the quality

estimation based on EPSNR. By adjusting the number of position/value pairs transmitted to

the estimator, a compromise between prediction accuracy and side information is achieved.

Perhaps the most widely used RR metric is the General Model of the Video Quality Model

(GMVQM) from National Telecommunications and Information Administration (NTIA) [WP99,

WL07]. It is included in ITU-T J.144 [ITU04b] and ITU-T J.249 [ITU10] for SDTV applica-

tion (although ITU-T J.144 is a standard for full-reference quality metrics, the techniques used

in GMVQM are actually reduced-reference). It was the best-performing metric in VQEG’s

FR-TV tests [VQE00, VQE03] and also presented good performance in VQEG’s RRNR-

TV test [VQE09]. In GMVQM, a number of video features, such as SI/TI (as shown in

Eq.(2.1)(2.2)), ratio between the strength of Horizontal/Vertical edges and diagonal edges,

mean chrominance pixel values, standard deviation of luminance component, are calculated

for both the reference and distorted videos. Then the strength of various artifacts, such as

blocking, blurring, noise, jerkiness and color distortion, are measured according to the gain or

loss of these features. These measurements are then combined by a linear function to provide

an estimate of the overall video quality. Similar to the Webster metric, the rate required to

transmit the features from the reference video can be controlled by adjusting the size of the

S-T region for which the video features are calculated.

Another technique that can be used to implement reduced-reference video quality met-

rics is data hiding (such as watermarking) [FCM05, NCA06, CMB02]. Although the schemes

based on data hiding are often classified as no-reference quality metrics, the quality estimator

does need certain shared information from the reference video (for example, in the case of

watermarking, the undistorted version of the watermark needs to be available). From this

point of view, it is more suitable to consider them as reduced-reference metrics.

No-reference video quality metrics

The main focus of previous works in the field of objective video quality assessment has been

put on FR and RR metrics. Due to the ever increasing demand of in-service quality moni-

toring, more and more research efforts have been devoted to the development of NR metrics

in the recent years. According to the video features used in the metrics, no-reference metrics

can be further divided into 3 categories [THB08]: bitstream layer metrics, media layer metrics

and hybrid metrics.

Bitstream layer metrics utilize information from the encoded video bitstreams as well as

information related to network performance (such as packet-loss rate). The metrics require no

or only partial decoding of the encoded bitstream, so they can be used in lightweight solutions

for quality estimation. But since they do not fully exploit content characteristics, they are

often less accurate than media layer metrics. ITU-T G.1070 [ITU12] describes quality assess-
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ment metrics for videophone applications over IP networks. The content contains metrics for

speech, video and overall multimedia quality. The video metric in ITU-T G.1070 is based on

the work of Yamagishi et al. in [YH06, HYTT07]. The metric models the quality degradation

caused by coding distortion and transmission errors separately. The coding quality of the

video is modelled as the product of a power function of bitrate and an exponential function

using both the bitrate and frame rate. The transmission quality of the video is modelled

based on an exponential function of the packet loss ratio, which also considering the impact

of frame rate and bitrate. The overall video quality is estimated using the product of the two

items. The metrics include 12 model parameters which need to be trained for different video

codecs. Suggested parameter values for different video resolution and codecs are also given in

the recommendation. The metric above considers any random packet loss and in [BM10], it

is extended by considering the duration and strength of burst packet loss.

In [RGSM+08], a bitstream layer metric for SD and HD IPTV applications is proposed.

Similar to the metric in ITU-T G.1070, the coding distortion and transmission distortion are

modelled separately. The coding distortion is based on an exponential function of bitrate and

the transmission distortion is modelled using bitrate and packet loss rate. To take into account

the video content, the same authors proposed in [GSR10] a new model for the coding dis-

tortion using information from the encoding process such as motion vectors and quantization

parameters. Other bitstream layer models include [RCNR07, KSI09, KKHD11].

Media layer metrics assess the video quality based on the decoded pixel values. Most NR

metrics in this category try to estimate the video quality by measuring the physical strength

of different types of artifacts and their psychophysical impact on human perception. The

main artifacts considered are blocking, blurring, ringing and motion jerkiness. For a complete

review of models for different types of artifacts, the readers can refer to [HR10, Cha13].

Usually, a distorted video stream contains more than one artifact, so metrics considering

the impacts of multiple artifacts are more robust and practical. In [FM05], such a metric is

proposed by accounting for three artifacts. The blocking artifact is measured by comparing

the correlations between adjacent pixels within and across the borders of the block structure

used in the codec. The blurring is estimated by examining the spread of edges in the frame.

To measure the noisiness, the frames are first filtered to remove its nature structure (such as

edges and textures) and keep only the noise. Then the noise variance is calculated to estimate

the strength of the noise. The overall frame quality V Q is modelled by using a weighted

p-Minkowski metric to combine the three measurements (see Eq(2.11)).

V Qp = (α ·Blockinessp + β ·Blurrinessp + γ ·Noisinessp)1/p (2.11)

where p, α, β and γ are parameters which are determined by least-squares fitting.

Although humans can easily identify the type and strength of visual distortions in a video

without the reference to the original content, it is not an easy job for NR quality metrics.
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To address this issue, a extensive framework has been proposed in [MB11] for blind image

quality assessment based on Nature Scene Statistics (NSS). The basic assumption is that

natural scenes hold certain statistical properties which tend to be destroyed by distortions, so

the abnormality of picture statistics is a good indication for the type and strength of different

distortions. The proposed algorithm first extracts 88 statistical features from the content,

then two vectors are calculated based on these extracted features. The first vector tells the

probabilities of the content suffering from different types of artifacts and the second vector

estimates the resulting picture quality when the content is affected by a certain artifact. The

overall quality is computed as the inner product of the two vectors.

Hybrid metrics aim to combine the merits from media layer metrics and bitstream layer

metrics by combining all the available information. On one hand, the decoded pixel informa-

tion can help to improve the accuracy of the estimation. On the other hand, information from

the network and the bitstream can be used to extract video features more efficiently and thus

avoid unnecessary computation.

In [KHD12], Keimel et al. propose a NR hybrid video quality metric for HDTV content

coded with H.264/AVC. The metric utilizes features extracted from both the bitstream (such

as slice type, average quantization parameter for each slice, motion information, percentage

of different MB type, etc.) and the pixel domain (such as blocking/blurring measurements,

motion continuity, edge continuity, etc.). The weighted sum of these features is then used in a

sigmoid function for the estimation of the overall quality. In comparison to a previous metric

using bitstream layer information [KKHD11], the hybrid metric provides a better prediction

accuracy. The hybrid metric also outperforms FR metrics such as PSNR, SSIM and GMVQM

according to the evaluation.

VFactor is a patent-protected hybrid video quality metric which is used for many com-

mercial applications for quality monitoring [Che]. According to the introduction in [WM08],

VFactor uses not only information from the decoded pixel domain and the video coding layer

of the bitstream, but also those calculated from the Packetized Elementary Stream (PES)

layer (such as timing information) and Transport Stream (TS) layer (packer loss, delay and

delay jitter, etc.).

The development of hybrid video quality metrics is also a main focus of the VQEG. One

of the initial work focuses of the Joint Efforts Group (JEG) newly formed by VQEG is to

develop a no-reference hybrid video quality metric for H.264/AVC.

2.3 Summary

In this chapter, both objective and subjective methods for video quality assessment are intro-

duced. For the discussion of subjective video quality assessment, the guidelines provided in

the ITU standards are summarized. Also, the advantages and disadvantages of different test
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methodologies are analyzed. This is followed by a review of the previous works on objective

video quality assessment. Different approaches for designing objective video quality metrics

are discussed and the metrics are classified according to the utilized information. From the

review, it can be seen that most of the achievements so far are in the field of full-reference and

reduced-reference quality metrics. Most no-reference metrics proposed so far are distortion

and application specific due to the lack of reference information. It is still very difficult to

build generic no-reference metrics without a deeper understanding of the HVS. In Chapter 3,

the guidelines presented in this chapter are followed to conduct extensive subjective quality

assessments, and the results are used to develop a no-reference objective video quality metric

for QoE-driven multi-dimensional video adaptation.



Chapter 3

Perceptual Video Quality Modeling

In this chapter, the impact of frame size, frame rate and quantization on the perceived quality

of a video is explored and a Multi-Dimensional Video Quality Metric (MDVQM) is proposed to

estimate the video quality in the presence of quantization, frame dropping and spatial down-

sampling. The SNR video quality is captured by a logistic function whereas the impact of

frame rate reduction and spatial down-sampling are modelled separately as temporal/spatial

correction factors. The overall video quality metric is then calculated as the product of these

components. The proposed metric uses only several features that can be easily extracted

from the bitstream or decoded frames and thus is practical for real-time video adaptation

applications.

3.1 Introduction

The remarkable evolution of communication networks has enabled video content delivery

over mobile networks. The increased power of end-devices and the user’s ever-increasing

demand for video content further boosted the popularity of video applications. The video

quality perceived by the end users is the most crucial factor for the success of video services.

Therefore, in-service monitoring and optimization of the video quality is becoming more and

more important for service providers. As discussed in Chapter 1, subjective quality assessment

is not feasible in this scenario due to the involvement of human observers and it can only

be achieved by employing objective video quality metrics which can estimate the perceived

video quality automatically and accurately. Many quality metrics have been proposed so far

in the literature and some have already been used in commercial solutions. However, the

heterogeneity of the end-users brings new challenges for quality estimation. Most prior video

quality metrics deal with a fixed spatial and temporal resolution. Meanwhile, as mentioned in

Chapter 1, transmitted videos often need to be adapted to a different display size and frame

25
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rate. Hence, it is important to develop new video quality metrics which consider the impacts

of different adaptation schemes on the perceived video quality.

Typically, the video adaptation can be performed by changing either the Quantization

Parameter (QP), the frame rate/Temporal Resolution (TR), or the frame size/Spatial Reso-

lution (SR). Using a larger QP results in stronger coding artifacts (e.g. blocking artifacts for

block-based hybrid video coder). Reducing TR by dropping frames affects the smoothness

of motion and reducing the SR by spatial down-sampling introduces blurring artifacts if the

video is later up-sampled and displayed in the original resolution. In the following, unless

otherwise stated, the term SNR Video Quality (SNRV Q) is used to denote the video quality

resulting from quantization only. The term Spatial Video Quality (SV Q) and Temporal Video

Quality (TV Q) are used to refer to the perceived video quality when a reduction of SR and

TR is performed, respectively. The term Spatial-Temporal Video Quality (STV Q) is used to

denote the video quality when both TR and SR are reduced.

The remainder of this chapter is structured as follows. Section 3.2 reviews the related work

on video quality assessment involving quantization, frame rate and frame size, separately and

jointly. Section 3.3 gives a description of the conducted subjective tests. In Section 3.4 the

results of the subjective tests are analyzed and a novel no-reference video quality metric is

introduced. The performance of the proposed quality metric is evaluated and compared with

the related metrics in the literature. In Section 3.5, the work presented in this chapter is

summarized.

3.2 Related Work

Several subjective studies have been performed and reported in the literature to analyze the

impact of frame rate and spatial resolution on the subjective quality.

In [WCL04], the authors study the preference of frame rate by performing subjective

tests using CIF (352x288) sequences encoded at different bit-rates (50-1000kbps) and frame

rates (30fps/15fps/7.5fps). The results show a general trend that the preferred frame rate

reduces when the encoding bit-rate decreases. The sequences are further divided into three

categories according to their content complexity and the analysis shows that for videos of

different categories, the switching bit-rates of the optimal frame rate vary significantly, which

indicates the content dependency of the user preference - the higher the content complexity,

the higher the switching bit-rates.

In [CT07], the results from a number of previous studies are summarized to study the

effects of different frame rates on human perception for various scenarios. The finding is

that although the results vary slightly according to the task, the viewing condition and the

viewers’ characteristics, the minimum frame rate should be kept between 10-15fps to achieve

an acceptable performance.
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The study in [WSV+03] investigates the impact on subjective quality of QP, spatial res-

olution and frame rate for H.263 encoded videos. Two subjective tests are conducted using

five source sequences with an original resolution of 320x192 at 30 fps. The first one studies

how the subjective quality is affected when jointly adjusting QP and the spatial resolution

while the second one focuses on jointly adjusting QP and frame rate. The overall conclusion is

that human vision is more sensitive to quantization artifacts than blur and motion jerkiness,

especially at middle and low bit-rates. The authors suggest that when the QP used for encod-

ing reaches a certain threshold, the frame rate and/or spatial resolution should be changed

in order to achieve a better subjective quality and the QP threshold depends highly on the

spatial/temporal activity of the content. A similar study of the joint impact of the same pa-

rameters (QP, SR and TR) for low bit-rate cases is conducted in [ZCL+08]. Both H.263 and

H.264/AVC codecs are used to encode the test sequences (CIF@50fps) at a constant bit-rate

(in comparison to [WSV+03], where constant QP values are used). The test results confirm

the conclusions in [WSV+03].

In [LSR+10], an extensive study is performed for HD (1280x720@50fps) resolution videos

encoded with two scalable video codecs - H.264/SVC and a wavelet-based scalable video codec

(W-SVC). The sequences are encoded for a wide range of bit-rates (from 300kbps to 4Mbps)

using 3 spatial layers (HD/640x360/320x180) and 4 temporal layers (from 50fps to 6.25fps).

The conclusion is that when the bit-rate is small, it is preferable to reduce the spatial resolution

from HD to 640x360 to prevent strong blocking artifacts. But further spatial-downsampling

(to 320x180) should be avoided due to the strong blurring artifacts caused by up-sampling

back to HD. While for relatively high bit-rate cases, since a certain level of spatial quality is

already guaranteed, a higher frame rate is more desirable than a higher spatial resolution. It

is also found that although the choice of codec type does have influence on the test results,

the overall tendency is consistent across the two codecs.

The above works do not propose any concrete video quality metrics for different spatial

and temporal resolutions.

In [LLS+05], the authors propose a metric based on an expo-logarithm function of the

frame rate to estimate the negative impact of frame dropping on the perceived video quality.

The average of every frame’s maximal motion vector magnitude is used in the metric as a

representation of the motion intensity to consider the impact of the video content. Another

work in [QG08] considers the jitter and jerkiness effects. A subjective study is conducted, in

which the video quality is deteriorated by frame dropping with varying strength, burst length

and frequency. An interesting finding is that jitter is more annoying than jerkiness, therefore

the change of frame rate should not be performed too frequently. Unfortunately, only the

jerkiness effect is modelled with a sigmoid function of the frame rate. A problem in the above

metrics is that only the temporal quality of the video is considered which has limited their
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application in practice.

A video quality metric QM is proposed by Feghali et al. in [FWSV07]. The metric

considers both the SNR and the temporal quality of the video. The video quality is estimated

simply by the average PSNR value when no frame rate reduction is conducted (FR=30fps).

In case of frame dropping, the PSNR value is significantly affected due to the difference

between the repeated frames and the original frames. To address this issue, the authors

propose to add a compensation term to the PSNR value which depends on the frame rate and

motion intensity for a more accurate estimation of the overall quality. The motion intensity is

estimated by the average magnitude of the top 25% of the largest motion vectors in each frame.

In [KJSR08, SYN+10], the above metric is extended by considering also the impact of spatial

characteristics of the video. The SNR quality is still estimated by PSNR and temporal quality

is modeled similarly except that the motion activity measure is calculated as the standard

deviation of the motion vector magnitudes. Spatial quality is modelled as a sigmoid function

of the height of the frame in [KJSR08] and in [SYN+10] it is modeled using an exponential

function of the height and a spatial activity measure. The overall quality is computed as the

weighted sum of the three quality values. However, the accuracy of motion vectors is strongly

affected by the chosen motion estimation algorithm and sometimes also the bit-rate (which

affects the quality of the reference frames), therefore the above metrics sometimes suffer large

estimation errors.

In [OMW09, OMLW11], Ou et al. propose the metric VQMTQ which models the impact

of frame dropping and quantization on the perceived video quality. The overall video quality

is estimated as:

SQF = Q̂max ·
(
1− 1

1 + ep(SPSNR−s)

)
(3.1)

TCF =
1− e

−αt
f

fmax

1− e−αt
(3.2)

V QMTQ = SQF · TCF (3.3)

where Q̂max is the subjective rating for the highest quality video (which is empirically set to

90 for a 0-100 MOS scale). f and fmax are the frame rate after and before frame dropping,

respectively. αt, p and s are parameters depending on the video content. SQF estimates the

SNR quality of the video and TCF is a correction factor modeling the negative impact of

frame dropping on the video quality.

In [XOMW10, OXMW11], VQMTQ is extended to QSTAR, where the impact of frame

size is also considered by introducing a spatial correction factor:

SCF =
1− e

−αs

(
s

smax

)βs

1− e−αs
(3.4)
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QSTAR = V QMTQ · SCF (3.5)

where αs and βs are content dependent parameters.

In [PS11], Peng et al. propose a full-reference video quality metric STVQM for the esti-

mation of SNR and temporal video quality:

SV QM =
100

1 + e−(SPSNR+ws·SA+wt·TA−µ)/s
(3.6)

TV QM =
1 + a · TAb

1 + a · TAb · 30

FR

(3.7)

STV QM = SV QM · TV QM (3.8)

where SVQM and TVQM model the SNR video quality and quality degradation caused by

frame dropping, respectively. SPSNR is the spatial PSNR (which is computed by averaging

the PSNR values over the non-dropped frames). ws, wt, µ, s, a and b are parameters that

need to be trained from the quality ratings collected from the subjective tests. TA and SA

are measures of spatial and temporal activity of the video content, respectively. TA and SA

are calculated by the following equations:

SA = meantime{stdspace[Sobel(Fn)]} (3.9)

TA = meantime{stdspace[Fn − Fn−1]} (3.10)

It can be seen that the calculations of TA and SA are very similar to that of TI and SI in

Eqs.(2.2)(2.1), except that the average value over time is calculated instead of the maximum

value.

According to the evaluations in [PS11], VQMTQ and STVQM provide significantly better

estimation performance than QM, while the performance difference between VQMTQ and

STVQM is not statistically significant. More concretely, for both VQMTQ and STVQM, the

Pearson Correlation (PC) with the ratings from subjective tests is higher than 0.95 and the

Root-Mean-Square Error (RMSE) is less than 10 on a 0-100 MOS scale.

Summarizing the above results, almost all the current quality metrics which deal with

the problem of multi-dimensional optimization of perceived video quality are FR metrics and

designed based on PSNR. Although they can provide accurate prediction of video quality, it is

not feasible to use them for real-time video adaptation inside the network due to the absence

of the original video which is requested for the PSNR, SA and TA calculation. In this chapter,

a no-reference video quality model named MDVQM is proposed to address the demand for

multi-dimensional video adaptation. The impacts of quantization, frame rate and frame size
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are modelled separately and the overall video quality is determined as the product of theses

different factors. The metric uses only two activity measures from the video content and thus

is computationally efficient. Validation tests show that the quality predictions of the metric

correlate very well with subjective ratings obtained in subjective tests.

3.3 Details of the Subjective Study

In order to understand how different factors (i.e. quantization, frame rate and frame size)

affect the perceptual video quality, two separate subjective tests are conducted. The first

test (Test I) focuses on the impact of individual impairments such as those caused by frame

dropping or spatial down-sampling. The second test (Test II) aims to evaluate the impact on

video quality when TR and SR are changed at the same time.

Since the current 3G mobile networks employ powerful error correction techniques at the

physical and link layer, it is assumed in this work that the channel impairments such as bit-

error and packet loss are hidden from the application layer, so that from the perspective of

the video applications, changing channel conditions are only reflected by varying transmission

rates, which define the target rate for the video adaptation. Therefore, network errors are

not explicitly considered during the design of the subjective tests and the development of

objective quality metrics.

Furthermore, this work focuses on the non-scalable version of H.264/AVC video, because it

covers the lion share of the video traffic in today’s internet. All the test materials are encoded

using H.264/AVC video codecs and the proposed metric is trained based on the corresponding

subjective data. Although the choice of video codec might affect the results, the analysis and

evaluation in this work are general and can easily be extended to other codec types.

3.3.1 Source Sequences

In Test I, eight source video sequences (SRC) with a wide range of spatial and temporal content

characteristics are used. Six of them are well-known standard test sequences available from

[Xip]: CREW (CR), HARBOUR (HA), SOCCER (SC), PEDESTRIAN AREA (PA), PARK

JOY (PJ), FOOTBALL (FB). Two of them are internet videos from Youtube: OBAMA

(OB)[Youb] and KOBE (KO)[Youa].

In Test II, three standard test sequences (PA, FB, and Rush Hour (RH)) are used.

A clip of 10 seconds from each SRC is selected in order to maintain a high concentration of

the subjects. All the standard test sequences are in 4CIF(704x576) resolution. The original

spatial resolution of the two Youtube sequences is 1024x768 and the sequences are center-

cropped to 4CIF resolution. The frame rates of the SRCs are either 60fps or 30fps. Figure 3.1

shows example frames of the SRCs and their original frame rates are given in the titles.
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Their spatial information (SI) and temporal information (TI) indices [ITU07] are shown in

Figure 3.2. It can be observed that they span a wide range in the SI-TI space.

Figure 3.1: Example frames of the source videos used for the subjective tests

3.3.2 Test Sequences

Table 3.1: Bit-rates, frame rates and spatial resolutions of the processed video sequences for
Test I

SRC BR (kbps) FR(fps)xSR

CR 5200 2800 1600 1200 60x4CIF 15x4CIF 60xCIF

HA 8000 3500 2000 1300 60x4CIF 15x4CIF 60xCIF

SC 3600 2400 1400 1000 60x4CIF 15x4CIF 60xCIF

PJ 8000 6000 4000 2000 60x4CIF 20x4CIF 60xCIF

PA 2000 1500 1000 500 30x4CIF 10x4CIF 30xCIF

OB 640 384 256 192 30x4CIF 15x4CIF 30xCIF

KO 1500 1000 800 640 30x4CIF 15x4CIF 30xCIF

FB 1500 1000 800 640 30x4CIF 15x4CIF 30xCIF
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Figure 3.2: Spatial Information vs. Temporal Information indices of the source videos

Table 3.2: Bit-rates, frame rates and spatial resolutions of the processed video sequences for
Test II

SRC BR (kbps) FR(fps)xSR

PA 1500 1000 800 500 30x4CIF 15xCIF

FB 1500 1000 800 640 30x4CIF 15xCIF

RH 2000 1000 640 512 30x4CIF 15xCIF

In Test I, 12 processed video sequences (PVS) (96 in total for the 8 SRCs) are generated

for each SRC. The PVSs are encoded using the open source X264 encoder in an IPPP. . .P

structure with Constant Bit-Rate (CBR). The original rate control algorithm in X264 is

replaced by a new algorithm based on ρ-domain analysis, which will be discussed in more

detail in Chapter 4. The PVSs for each SRC are divided into 3 groups (4 for each group).

For the first group, the original SR and TR are kept unchanged and it is referred to as the

SNR group. For the second group, the PVSs are spatially down-sampled to CIF resolution,

referred to as the SR group. And for the last group (referred to as TR group), the PVSs

are temporally down-sampled by a factor of 2-4. For each group, the PVSs are encoded at 4

different bit-rates. A description of the encoding bit-rates, frame rates and spatial resolutions

of the PVSs is given in Table 3.1. One thing to note here is that in the test a display window

of fixed size (4CIF) is used, so all the spatially down-sampled sequences are resampled back

to their original resolution for playback. Details of how the subjective data is split for model
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training and subsequent validations are given in Section 3.4.1.

In Test II, 8 PVSs are generated for each SRC, among which 4 are encoded in full-resolution

and 4 are down-sampled both spatially and temporally before encoding. Within each group,

the PVSs are encoded with 4 different bit-rates in a CBR manner. Detailed information of

PVSs in Test II is given in Table 3.2.

To avoid fatigue of the test subjects, Test I is divided into 3 subtests. The first subtest

includes all the PVSs from CR, HA and SC. The second subtest includes all the PVSs from

HA, PA and PJ. The third subtest includes all the PVSs from HA, FB, OB, KB. The PVSs

from HA are included in all three subtests so that this common set can be later used to combine

the scores from different subtests into a super dataset as will be discussed in Section 3.3.6.

Similarly, in Test II, a set of common sequences from FB and PA are included for calibration

purposes.

3.3.3 Test Methodology

As mentioned in Section 2.1, the SAMVIQ method [ITU07] is adopted in this work to collect

subjective ratings for the test videos. A graphical software interface is developed which

implements SAMVIQ for the subjective test. The central part of the interface is shown in

Figure 3.3. The video is displayed at the original resolution at the center of the screen and

the background is set to mid-level grey color. The test sequences are accessed through the

access buttons (“REF” buttons corresponds to the reference sequence and button “A”-“M”

correspond to the processed sequences and the hidden reference). After viewing each sequence,

the test subject can use the slider bar on the right hand side to score the sequence. The score

is displayed under the corresponding access button. The slider uses a continuous quality scale

from 0 to 100 and is divided into five equal intervals with annotation by five adjectival quality

terms (Excellent, Good, Fair, Poor, Bad) for general guidance according to [ITU07]. If a

test subject is viewing a sequence for the first time, the whole sequence should be watched

and no jump to other sequences is allowed during the play (the access buttons of all other

sequences are disabled during the first play). If the test subject is viewing a sequence to which

a score has already been given, the playout process can be stopped and resumed (through the

“STOP” and “PLAY” button, respectively). In this case, the test subject can also switch to

other sequences at any time (through the access buttons). Once all the sequences in a test

scene have been scored, the “NEXT” button can be used to proceed to the next scene (a test

scene contains all the test sequences from the same source sequence). After the test subject

has finished all the test scenes, the subjective test can be ended using the “END” button.
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Figure 3.3: The graphical user interface implementing the SAMVIQ method.

3.3.4 Test Subjects

A total of 56 test subjects have participated in the tests. The number of test subjects in each

test is summarized in Table 3.3 (the number in the bracket is the number of subjects that are

rejected by the screening process as discussed in Section 3.3.6). Note that the participants in

the tests are overlapping. All the participants are non-experts, which means that they were

not professionally involved in image/video quality assessment at their work. The subjects are

all with normal or correct-to-normal visual acuity and between 21 and 38 years old, including

both males and females.

3.3.5 Test Environment and Procedure

The general viewing conditions in the subjective tests were arranged as specified by ITU-T

Rec. BT.1788 [ITU07] for a laboratory environment. The room for the experiments was

equipped with 17-inch LCD monitors of type FUJITSU SIEMENS SCENICVIEW B17-2 CI.

The ratio of inactive screen luminance to peak luminance was kept below a value of 0.02. The

viewing distance is about 4 times the height of the video stimulus.

A test session is divided into three phases: instruction, the training session and the formal

test session. During the introduction phase, a written instruction was distributed to the

participants, explaining the tasks to be performed in the tests. The training session was

conducted prior to the test session to get the participants familiar with the test mechanism
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and to demonstrate the range of artifacts to be expected during the actual test session. The

scores obtained during the training session were not considered in the final results. Questions

from the subjects were allowed during the training session. The test session begins after the

training session, the average duration of the test session was about 20 minutes. No question

was allowed during the test session.

Table 3.3: Number of subjects in the tests. The numbers in the bracket indicate the number
of test subjects rejected by the screening process in each subtest as discussed in Section 3.3.6

Test
Test I

Test II
Sub. I

Sub.
II

Sub.
III

#Subj. 18 (2) 18 (1) 24 (3) 24 (2)

3.3.6 Subjective Data Post-Processing

The screening process defined in [ITU07] is adopted to reject test subjects who may have rated

randomly or inconsistently. More specifically, the Pearson correlation coefficient rp and the

Spearman’s rank correlation coefficient rs between the ratings of each viewer and the mean

ratings of all viewers are calculated using Eq.(3.11) and Eq.(3.12), respectively:

rp =

Nv∑
i=1

(xi − x)· (yi − y)√
Nv∑
i=1

(xi − x)2·

√
Nv∑
i=1

(yi − y)2

(3.11)

rs = 1−
6·

Nv∑
i=1

[R(xi)−R(yi)]
2

N3
v −Nv

(3.12)

where xi is the individual score of the viewer for video i and yi is the mean score of all the

viewers for video i. Nv is the number of test sequences. x and y are the mean value of

{xi|i = 1...Nv} and {yi|i = 1...Nv}, respectively. R(xi) is the ranking order of the score xi in

{xi|i = 1...Nv}. Then, the correlation of individual scores from viewer j against corresponding

mean scores from all the viewers is rj calculated by:

rj = min(rpj , rsj) (3.13)

The rejection threshold is determined by:

threject =

0.85, if [mean(r)− std(r)] > 0.85

mean(r)− sdt(r), otherwise
(3.14)
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Figure 3.4: DMOS values of all test videos in Test I. The vertical bar indicates the correspond-
ing 95% confidence interval. Data are calibrated and merged as described in Section 3.3.6.
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Figure 3.5: DMOS values of all test videos in Test II. The vertical bar indicates the correspond-
ing 95% confidence interval. Data are calibrated and merged as described in Section 3.3.6.
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where r = [r1, r2, ...rj ..., rNs] is the vector of correlation values of all the viewers. Finally, the

following rejection criteria is applied:observer j is rejected, if rj < threject

observer j is not rejected, otherwise
(3.15)

The number of rejected subjects in each test is given in Table 3.3.

After screening, the Mean Opinion Score (MOS) is calculated from the subjective ratings.

Let xji denote the rating of test sequence i given by subject j, and xjref be the rating of the

corresponding hidden reference given by the same subject. The Differential Mean Opinion

Score (DMOS) value of test sequence i (denoted as µi) is calculated as:

µi =
1

Ns

Ns∑
j=1

(xji − xjref + 100) (3.16)

where Ns is the number of test subjects. The DMOS value is used as the subjective quality

measure for the PVSs. Note that since the raw subjective rating is in the range [0,100], it is

possible that DMOS values are greater than 100, and these values are considered valid and

included in the analysis.

With the subjective ratings from the common set as mentioned in Section 3.3.2, the

method proposed in [PW08] is used to generate a super dataset for the development of our

video quality metric. Briefly speaking, an overall average (over all subtest) of the DMOS

values is first calculated for each of the videos in the common set. These overall average

values are considered as the most accurate measurements of the video quality. By fitting the

average values of the common videos from each subtest to the overall average values, a linear

mapping function is determined. This linear mapping function is used to convert the DMOS

values from the subtests to form a super dataset for our later analysis.

The Confidence Interval (CI) associated with the DMOS value of test sequence i is given

by:

[µi − δi, µi + δi] (3.17)

The term δi in Eq.(3.17) can be derived from the standard deviation σi and the number

of test subjects Ns. For example, a 95% CI is calculated as:

δi = 1.96
σi√
Ns

(3.18)

where the standard deviation σi for test sequence i is defined as:

σ2
i =

1

Ns − 1

Ns∑
j=1

(xji − µi)
2 (3.19)

The derived DMOS values of all test videos, along with the corresponding 95% confidence

interval are shown in Figures 3.4 and 3.5. In the figures, the blue curves always correspond to
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the videos with full resolution. In Figure 3.4, the red dotted curves correspond to the videos

with reduced SR and the green curves correspond to the videos with reduced TR. In Figure

3.5, the red dotted curves correspond to the videos whose TR and SR are reduced at the same

time.

From the results, it can be seen that at high bit rate, the blue curves are always above the

other curves, which indicates full spatial/temporal resolution is preferred. With the decrease

of bit rate, some blue curves intersect with the red or green curves, indicating that at a lower

bit rate, reducing the spatial/temporal resolution is the better choice for transcoding. The

different appearance of the curves also suggests that the characteristics of the video content

have a strong impact on the perceived video quality.

3.4 Design of the NR Video Quality Metric

As mentioned in the previous section, in order to understand the impact of changing different

parameters, subjective tests are conducted to collect subjective quality ratings. These data

serve as the “ground-truth” quality ratings for the design, development and validation of

objective quality metrics. As mentioned above, the three considered parameters that affect

the perceived video quality are QP, TR and SR. It has been shown in [OXMW11][PS11] that

the impact of quantization (QP) is separable from that of TR and SR, so they are studied

and modelled separately in the following.

3.4.1 SNR Quality Metric

3.4.1.1 Design of the SNR Quality Metric

Many objective quality metrics for measuring the SNR quality of video sequences have been

proposed in the literature. According to our application scenario, video adaptation is usually

performed at an intermediate network node (e.g. a proxy server) at the edge of the core and

access network, where the reference video is not available. Therefore, a no-reference video

quality metric is best suited for this situation.

To model the SNR video quality, the first step is to select an appropriate functional form.

Many PSNR-based full-reference video quality metrics, such as the PSNR-VQM in [PW02],

the PEVQ in [ITU08b] and VQuad-HD in [ITU11a], choose to use the sigmoid function as

the basic function form. The popularity of the sigmoid function is due to the finding from

the subjective results [VQE00, VQE03] that PSNR usually only correlates linearly with the

MOS values in the middle of the quality range, while saturation of MOS values appears

towards the two extremes of the quality range. This phenomenon accords with the fact that

human observers tend to have difficulties to identify quality difference between two videos



3.4. DESIGN OF THE NR VIDEO QUALITY METRIC 39

with extremely good or bad quality. The typical form of a sigmoid function can be written

as:

P (t) =
1

1 + ec(t−d)
(3.20)

where c and d are parameters which can be used to adjust the shape of the sigmoid function.

Figure 3.6 shows several sigmoid functions with different parameters.

Figure 3.6: sigmoid functions with different parameters

From the figure, it can be seen that the parameter c controls the dropping rate of the

middle range of the curve while the parameter d can be used to control the position of the

saturation point. In practice, c and d can be modelled as functions of the spatial-temporal

characteristics of the video content.

The full-reference metric STVQM in Eq.(3.1) also uses the sigmoid function for the es-

timation of SNR video quality and has been shown to provide good quality prediction. In

the following, it is used as a starting point to derive a no-reference video quality metric.

To change the metric into a no-reference quality model, the features SPSNR, SA and TA

in Eqs.(3.9)(3.10) need to be estimated from the decoded video frames instead of from the

reference video.

To observe the difference of TA and SA values between the original video and the encoded

video subjected to quantization artifact, experiments are conducted in which several typical

test video sequences at CIF resolution (including Foreman, Mother&Daughter, etc.) are

encoded with different QPs and TA and SA values are extracted from the encoded sequences.

The obtained TA and SA values are shown in Figure 3.7. It can be seen that although the

TA and SA values do change as a function of the QP values, the extent of change is quite

limited. In our experiments, the change of TA and SA from high QP (low bit-rate) to low QP

(high bit-rate) for most test sequences is no larger than 8%. This observation indicates that

TA and SA extracted from decoded sequences can be seen as a good approximation to those

extracted from the original sequences.
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Figure 3.7: Spatial Activity (SA) and Temporal Activity (TA) variation against bit-rate for
typical test sequences

It is known from rate-distortion theory that the relationship between the bit-rate and

PSNR can be approximately modeled using a logarithmic function. Since our test videos have

different frame rates and frame sizes, here the pixel bit-rate (bit-per-pixel) is used instead of

normal bit-rate in bit-per-second:

bpp =
BR

FR·FS
(3.21)

where FR and FS are the frame rate and frame size respectively. Then the SPSNR in Eq.(3.6)

can be estimated by:

SPSNR = m· ln(bpp) + n (3.22)

where bpp is the pixel bit-rate and ln(x) is the natural logarithm of x. m and n are content-

dependent parameters. For simplicity, the parameter n is modelled as a linear combination of

SA and TA, so that it can be merged with the other items in Eq.(3.6). For the parameter m,

different types of functions are examined and the power function seems to provide the best

performance. Finally, the SNR quality of a video is modeled as:

m = TAa0 ·SAa1 · a2 (3.23)

SNRV Q =
100

1 + e−(m·ln(bpp)+a3·SA+a4·TA+a5)
(3.24)
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where a0, . . . ,a5 are model parameters which need to be trained using subjective data. Com-

pared to the FR quality metric in STVQM, our NR quality metric has two more parameters.

But all the features can be extracted from the decoded frames, which makes this metric

applicable for video adaptation in the absence of the original content.

3.4.1.2 Performance Analysis of the SNR Quality Metric

In this section, the performance of the proposed SNR quality model is evaluated against

several state-of-the-art video quality metrics.

According to the criteria used by VQEG in its multimedia test [VQE08], the performance

of a video quality metric can be measured by the accuracy and consistency of the predictions.

In [VQE08], accuracy is defined as “the ability to predict the subjective quality ratings with

low error” while consistency is defined as “the degree to which the model maintains prediction

accuracy over the range of video test sequences”. The Pearson Correlation (PC) and the Root

Mean Square Error (RMSE) are used to measure the accuracy of a metric and the consistency

is measured by the Outlier Ratio (OR).

The formula to calculate the PC value has already been given in Eq.(3.11), but xi in the

formula now denotes the quality prediction from the metric for video sequence i. The PC

values are within the range [0,1], with 1 indicating the highest linear relationship between the

model predictions and the subjective quality ratings.

The RMSE value is defined as:

RMSE =

√√√√ 1

Nv − d

Nv∑
k=1

[DMOS(k)− PQ(k)]2 (3.25)

whereNv denotes the number of videos considered in the analysis, and d denotes the number of

metric parameters which need to be trained from the subjective data. DMOS is the obtained

quality rating from the subjective test and PQ is the predicted quality from the metrics.

If the prediction of a video quality metric (PQ) deviates too far from the subjective data

(DMOS), then it is considered as an outlier:

|DMOS(k)− PQ(k)| > 2· σDMOS(k)√
Ns

(3.26)

where Ns is the number of test subjects, and σDMOS denotes the standard deviation of the

DMOS value over all Ns subjects. The OR is then calculated as the ratio of number of outliers

R0 to the total number of test videos in the analysis:

OR =
R0

Nv
(3.27)

The performance of the proposed SNR quality metric (noted as MDVQM SNR) is evalu-

ated and compared with three other objective metrics: PSNR, SSIM [WBSS04, WLB04] and
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Figure 3.8: Actutal DMOS vs. predicted DMOS from the SNR quality models

the SNR quality metric in VQMTQ as given in Eq.(3.1) (referred to as VQMTQ SNR). For

a fair comparison, the PSNR and SSIM values are first fitted to the DMOS values measured

from the subjective tests by the use of first order least-squares fitting. The linear relationship

between the actual DMOS values and predicted quality values from all the four metrics are

given in Figure 3.8. It can be seen that the predicted quality values from PSNR are very

inaccurate due to the neglect of content characteristics. The performance of SSIM is much

better by considering the structural information of the video content, but is still not very

satisfactory. In comparison, the predictions from MDVQM SNR and VQMTQ SNR are more

linearly correlated with the subjective ratings. The statistical metrics for performance evalu-

ation along with the corresponding 95% confidence intervals are given in Tables 3.4-3.6. The

limits of the 95% confidence intervals are represented by the lower bound (LB) and upper

bound (UB). The results show that in every aspect of the metric performance, MDVQM SNR

provides better results than the comparison metrics.
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To determine whether the performance of the metrics is significantly different from a

statistical point of view, significance tests based on F-test are performed. For example, if the

result from the significance test between two metrics is 0.95, then it can be concluded with

95% confidence that the performance difference of the two comparison metrics is statistically

significant. For more information about significance tests for video quality metrics, the readers

can refer to [VQE00, PW08]. The results of the significance tests are also given together with

the corresponding performance metrics in Tables 3.4-3.6. From the results, it can be seen

that the statistical significance of the performance difference between MDVQM SNR and the

comparison metrics is well above the 95% significance level for all the three performance

metrics.

Table 3.4: Pearson correlation values of the SNR quality metrics

Metric PC LB PC UB PC Sig. Level

PSNR 0.5753 0.2575 0.7808 1

SSIM 0.7795 0.5731 0.8929 1

VQMTQ SNR 0.955 0.9039 0.9792 1

MDVQM SNR 0.987 0.9717 0.994 -

Table 3.5: RMSE values of the SNR quality metrics

Metric RMSE
LB

RMSE
UB

RMSE
Sig. Level

PSNR 16.936 13.4401 22.9051 1

SSIM 12.9703 10.2929 17.5417 1

VQMTQ SNR 6.1614 4.8896 8.333 0.9989

MDVQM SNR 3.3377 2.6488 4.5141 -

Table 3.6: Outlier ratios of the SNR quality metrics

Metric OR CI Sig. Level

PSNR 0.8214 0.1419 0.9996

SSIM 0.75 0.1604 0.9978

VQMTQ SNR 0.5 0.1852 0.8199

MDVQM SNR 0.3214 0.173 -

Another concern when evaluating a quality metric is the performance on unknown data. In

this case, the data sets for training and validation should be separate. This is the way VQEG

proceeds in their tests [VQE00, VQE03]. Compared with the subjective tests conducted by

VQEG, a relatively small set of test sequences are used in our subjective tests. To overcome

the problem of limited subjective data for training and verification of the quality metrics, cross
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validation [Gei93, DK82] is used to evaluate the proposed metric for unknown data. There

are different forms of cross validation, and the most widely used variant is the K-fold cross

validation. In K-fold cross validation, the entire data set is divided into K subsets of equal

size. From the K subsets, one is selected as the validation set and the other K − 1 subsets

are used for training the metrics. This process is repeated for K times, with each subset

being used once as the validation data. In our validation, the leave-one-out cross validation

(LOOCV) [Sto74], which is the simplest case of K-fold cross validation with K equals to the

size of the entire dataset, is used. This means that each time one source sequence out of

the training data set is excluded from the training data set and the metric parameters are

trained using data from other sequences. Afterwards, the excluded data are used for validation

purpose. If the proposed metric works well for all the verification sequences, it is stable and

accurate.

To simplify the cross validation, 5 source sequences (HA, CR, PJ, OB, FB) with different

characteristics in terms of motion and spatial details are first selected. They are always

kept in the training data set. For the remaining 3 sequences (SC, PA, KO), one sequence

is used each time for validation and the other two are used for the training together with

the other 5 sequences above. The results of the cross validation are shown in Table 3.7.

Here for comparison purposes, the validation result for VQMTQ SNR is also included. Note

that TA and SA values from the processed sequences are used for MDVQM SNR, while for

VQMTQ SNR, the features are extracted from the reference sequences.

Table 3.7: Cross validation result for the SNR metrics

Test Veri.Seq.
MDVQM SNR VQMTQ SNR
PC RMSE PC RMSE

Test1 Soccer 0.9989 4.4839 0.9970 8.2911

Test2 Kobe 0.9914 2.0296 0.9902 5.6786

Test3 Peda 0.9988 2.3611 0.9998 3.3248

From the results, it can be seen that both metrics provide very stable and accurate pre-

dictions for the unknown data sets, with all PC values higher than 0.99. The proposed MD-

VQM SNR metric performs a little better with smaller RMSE values. This is in accordance

with the performance evaluation results in Table 3.4-3.6.

The better performance of the proposed metric is due to the fact that in VQMTQ SNR,

the drop rate of video quality against PSNR (which is the multiplier to the PSNR value) is

modelled as a content-independent constant, which ignores the characteristics of the underly-

ing videos. But in fact, the video content has a masking effect on the perceived video quality.

Video with high spatial or temporal details can hide the negative impact of encoding noise
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(PSNR drop) to some extent, so that the perceived quality of such videos drops more slowly

when the PSNR decreases. In the proposed MDVQM SNR metric, the drop rate of video

quality against the pixel bit-rate is modelled as a function of TA and SA, so that it adapts

to the characteristics of the video content. The cost of this is that MDVQM SNR needs two

more model parameters than VQMTQ SNR. But the better prediction performance justifies

the increased complexity of the metric.

When subjective ratings from all the SRCs are used to train MDVQM SNR, the obtained

model parameters are given in Table 3.8a. For reference, the obtained model parameters for

VQMTQ SNR are also given in Table 3.8b. They are used in the following sections for the

estimation of temporal and spatial quality.

Table 3.8: Model parameters trained with all the subjective ratings

(a) Model parameters for MDVQM SNR (Eq.(3.24))

a0 a1 a2 a3 a4 a5
-0.632 0.6591 4.1797 -0.0352 0.1133 5.6086

(b) Model parameters for VQMTQ SNR (Eq.(3.1))

p b0 b1 b2
0.4023 40.7058 2.0562 10.6558

3.4.2 Temporal Quality Metric

Apart from changing the QP values, another option for video adaptation is frame rate re-

duction. On one hand, reducing the frame rate allows us to use a smaller QP value for the

compression, so that the SNR quality of encoded pictures could be improved. On the other

hand, the resulting jitter/jerkiness artifacts also impair the user experience. How frame rate

reduction affects the overall perceived quality is hence a very practical question to be an-

swered. In this section, the impact of frame rate reduction is studied and a temporal video

quality metric is proposed to simulate the impact.

3.4.2.1 Design of the Temporal Quality Metric

As proposed in [OMLW11, PS11], the overall video quality in the presence of frame rate

reduction is modelled as the product of two terms:

TV QM = SNRV Q·TCF (3.28)

where SNRV Q models the SNR video quality without considering the impact of jerkiness

introduced by frame rate reduction. The second item, Temporal Compensation Factor (TCF ),
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models the negative impact of frame rate reduction. Normally, the value of TCF is in the

range [0,1].

For the estimation of SNRVQ, the metric in Eq.(3.24) can be used. One thing to note

here is that after frame rate reduction, the TA values of the adapted sequences (noted as

TAr) needed in Eq.(3.24) are different from those of the full-resolution sequences (noted as

TAf ) due to the larger temporal distance of the successive frames. Since our purpose is to use

this metric for video adaptation and before any real adaptation operations only TAf can be

measured, TAf is used in the estimation of SNRVQ here for the temporal quality model. Of

course, this may affect the accuracy of the prediction and a correction process is introduced

later in this subsection.

The bpp value in Eq.(3.24) can be calculated as:

bpp = bpp0· (
FRmax

FR
) (3.29)

where bpp0 is the pixel bit-rate when the sequence is encoded at the target bit-rate but with

full temporal resolution, FRmax is the original frame rate and FR is the actual frame rate

after frame rate reduction.

The actual video qualities of the test sequences are known from the results of the subjective

test, and SNRVQ can be estimated using Eq.(3.24). In this way, the TCF is derived as:

TCF = DMOS/SNRV Q (3.30)

The TCF curves for different sequences are shown in Figure 3.9. The subplots correspond to

different frame dropping ratios (from 2 to 4), respectively. It can be seen that the TCF is

also a function of bpp. But as mentioned above, TCF actually aims to model the impact of

jerkiness by frame dropping, so it should not have a very strong relationship with bpp. The

reason is that the TA values of the full-resolution sequences are used instead of those of the

sequences after adaptation. This can be explained with Figure 3.10.

In Figure 3.10, the x-axis is the pixel bit-rate and the y-axis is the SNR video quality

(which is only subjected to quantization artifact without considering the impact of frame

dropping). The solid blue curve is the RD-curve for the video sequence before adaptation

(Vo) and the red dotted curve is the RD-curve for the video sequence after adaptation (Va).

The impact of frame dropping on the spatial details is very limited and can be neglected, so

the spatial activity remains the same before and after the adaptation. But as discussed earlier,

the larger temporal distance of the successive frames after frame dropping results in a higher

temporal activity. In this sense Va is “harder” to be compressed than Vo, so at the same pixel

bit-rate, a coarser quantization is needed for Va and its SNR video quality is lower. This is

why in Figure 3.10, the red curve is always below the blue curve. Before the adaptation, the

video is encoded at a pixel bit-rate of bpp0, corresponding to point P1 in Figure 3.10. After

the frame dropping, the available pixel bit-rate becomes bpp calculated by Eq.(3.29). Since
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Figure 3.9: TCF vs. bpp without correction

the TA and SA values of the full-resolution video Vo are used for the estimation of SNR video

quality, the predicted value still corresponds to the point on the blue curve (P2). From P1

to P2, the bpp value increases because more bits can be used to encode the pixels in the non-

skipped frames. However, the actual operation point should be on the red curve at the same

pixel bit-rate bpp (P3 in Figure 3.10). If the blue curve is still used for the quality estimation,

a pixel bit-rate which is a little lower than bpp should be used (P4 in Figure 3.10). This means

if TA and SA values of the full-resolution video Vo are used in Eq.(3.24) to estimate the SNR

video quality in case of frame dropping, instead of using Eq.(3.29), bpp should be calculated

as:

bpp = bpp0· (
FRmax

FR
)PT (3.31)

where PT is a content-dependent parameter within the range [0,1] and PT increases as TA

decreases. As an extreme case, when TA → 0 (which means a static scene), frame dropping

does not affect the spatial-temporal complexity anymore. In this case, the red and blue curves

in Figure 3.10) should coincide with each other which means PT → 1. Therefore, in this work,
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Figure 3.10: Illustration of the bpp correction process

an exponential function of TA is used to estimate PT :

PT = e−aT ·TA (3.32)

where aT is a model parameter which needs to be trained with subjective data.

From Figure 3.9, several further conclusions can be drawn:

1. The decrease of the DMOS value is smaller for low-motion video content such as HA/OB

(suggested by a higher TCF value) and larger for high-motion videos such as SC/KO/FB.

This indicates that the impact of frame dropping is content-dependent and it has a

stronger negative impact for videos with higher temporal activity.

2. At the same reduction ratio, the impact of frame dropping is different for 60fps and

30fps sequences. This can be observed in Figure 3.9b. Actually, PJ is a sequence with

much higher motion than PA, but the TCF values of PJ are higher than those of PA.

This suggests that frame dropping might have a more negative impact on low frame

rate videos (e.g. PA with 30fps) than high frame rate ones (e.g. PJ of 60fps). This is

due to the fact that, although the reduction ratio is 3 in both cases (60fps to 20fps for

PJ and 30fps to 10fps for PA), a frame rate of 10fps already causes some uncomfortable

viewing experience while a frame rate of 20fps is still acceptable for most viewers.

According to the two considerations above, our proposed model for TCF is given as:
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TCF =
FR

FRmax
· 1 + bT ·FRmax/TA

1 + bT ·FR/TA
(3.33)

where bT is a model parameter which needs to be trained. It can be seen that when FR =

FRmax or TA → 0, TCF reaches 1, which is in accordance with the fact that at full frame

rate or for a static scene, the overall quality should be the same as the SNR quality.

The proposed temporal quality metric in Eq.(3.28) is trained again by using Eq.(3.24)

and Eq.(3.31) to estimate SNRV Q and using Eq.(3.33) for the TCF . When the temporal

quality metric is fitted to subjective ratings from all 8 SRCs, the obtained model parameters

are aT = 0.0518 and bT = 0.7889.

Now, the TCF values can be calculated again with Eq.(3.30) and the results are shown in

Figure 3.11. It can be seen that the curves are much more flat and this means that the TCF

can now be modelled independently of bpp which justifies the functional form of the TCF

model in Eq.(3.33).
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Figure 3.11: TCF vs. bpp with correction
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3.4.2.2 Performance Analysis of the Temporal Quality Metric

In this section, the performance of the proposed temporal video quality metric (referred to as

MDVQM TVQ) is evaluated in the presence of frame dropping. The metric is compared with

two other metrics that also consider the impact of frame rate reduction:

� VQMTQ TVQ: the metric in [OMLW11] (see Eqs.(3.1)-(3.3))

� STVQM TVQ: the metric in [PS11] (see Eqs.(3.6)-(3.8))

For the modelling of the TCF, both MDVQM TVQ and STVQM TVQ use the feature

TA extracted from the video sequence and two model parameters need to be trained. In

VQMTQ TVQ, two features from the video (Motion Direction Activity (MDA) and Displaced

Frame Difference (DFD)) are used and three parameters need to be trained from the subjective

data. For MDVQM TVQ, the TA value is calculated from the processed videos, while for

STVQM TVQ and VQMTQ TVQ, the required feature values are derived from the reference

videos. For all the metrics, the model parameters are trained based on the subjective ratings

of the sequences in the SNR and TR group obtained in our subjective tests.

To give an intuitive view of the estimation accuracy, Figure 3.12 illustrates the linear

correlation between the predicted quality values and the actual DMOS values. From the

figures, it can be seen that the predictions from all the three quality metrics have a high linear

correlation with the subjective ratings and the proposed MDVQM TVQ provides the best

performance. These observations are confirmed and quantified by the statistical performance

metrics given in Table 3.9-3.11. MDVQM TVQ outperforms the other two comparison metrics

with a higher PC value and a smaller RMSE value. The results from the significance test

show that this observed performance difference is statistically significant.

Table 3.9: Pearson correlation values of the temporal quality metrics

Metric PC LB PC UB PC Sig. Level

VQMTQ TVQ 0.9011 0.8362 0.941 1

STVQM TVQ 0.9468 0.9105 0.9686 0.999

MDVQM TVQ 0.9855 0.9752 0.9915 -

Similar to the evaluation of the SNR quality metric, cross validation is performed to

evaluate the metric for unknown data sets. Again, the sequences SC/KB/PA are used as

verification sequences for the cross validation. Table 3.12 shows the results of the cross

validation. The results confirm that the proposed temporal quality model also provides the

best prediction performance for unknown data.



3.4. DESIGN OF THE NR VIDEO QUALITY METRIC 51

0 20 40 60 80 100
0

20

40

60

80

100

Predicted DMOS

D
M

O
S

(a) MDVQM TVQ

0 20 40 60 80 100
0

20

40

60

80

100

Predicted DMOS

D
M

O
S

(b) VQMTQ TVQ

0 20 40 60 80 100
0

20

40

60

80

100

Predicted DMOS

D
M

O
S

(c) STVQM TVQ

Figure 3.12: Actual DMOS vs. predicted DMOS from the temporal quality metrics

Table 3.10: RMSE values of the temporal quality metrics

Metric RMSE
LB

RMSE
UB

RMSE
Sig. Level

VQMTQ TVQ 7.8957 6.666 9.686 1

STVQM TVQ 5.8041 4.9002 7.1202 1

MDVQM TVQ 3.0627 2.5857 3.7572 -

Table 3.11: Outlier ratios of the temporal quality metrics

Metric OR CI Sig. Level

VQMTQ TVQ 0.6071 0.1279 0.9993

STVQM TVQ 0.5 0.131 0.996

MDVQM TVQ 0.2321 0.1106 -
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Table 3.12: Cross validation results for the temporal quality metrics

Test V.Seq.
VQMTQ TVQ STVQM TVQ MDVQM TVQ
PC RMSE PC RMSE PC RMSE

Test1 Soccer 0.9963 7.6071 0.9431 7.0040 0.9789 5.6327

Test2 Kobe 0.8860 6.3960 0.9428 5.4634 0.9897 1.9002

Test3 Peda 0.9860 3.2990 0.9675 5.4790 0.9969 2.2346

3.4.3 Spatial Quality Model

The third option to adapt a video stream is to reduce the spatial resolution (spatial down-

sampling). Reducing the frame size allows for a finer quantization because the amount of

information to be compressed is reduced, thus it can alleviate several artifacts such as blocking

and ringing, etc. But on the other hand, spatial down-sampling is an irreversible process and

will introduce blurring into the video if it is up-sampled to the original spatial resolution. In

this section, the impact of spatial resolution on the perceived video quality is studied.

3.4.3.1 Design of the Spatial Quality Model

In [OXMW11], it was observed that the overall video quality with spatial down-sampling can

be decomposed as:

SV QM = SNRV Q·SCF (3.34)

where SNRV Q is the quality for a video which is subjected only to quantization effects. And

SCF is a Spatial Correction Factor, which captures the impact of spatial down-sampling.

Roughly, it can be considered that SNRV Q represents the SNR quality when the video is

down-sampled, encoded and displayed at the reduced spatial resolution without resampling

back to the original size. So there is no blurring effect introduced. Then SCF simulates the

negative impact of the blurring effect introduced when the video is up-sampled and displayed

at the original size.

Similar to the case of frame rate reduction, when calculating SNRVQ using the model in

Eq.(3.24), the SA values of the full-resolution (4CIF) sequences are used (because before the

decision for video adaptation is made, spatial down-sampling has not been done yet and the

SA value of the CIF sequence is unknown). The pixel bit-rate after transcoding with spatial

down-sampling can be calculated by:

bpp = bpp0/SF (3.35)

where bpp0 is the pixel bit-rate when the video is encoded at the target bit-rate with the

original resolution. SF denotes the spatial Scaling Factor which is the ratio between the

reduced and the original spatial resolution. In our case, SF = CIF/4CIF = 0.25.
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Inserting Eq.(3.35) into Eq.(3.24), the estimated SNRV Q in Eq.(3.34) can be obtained

and SCF is derived as:

SCF = DMOS/SNRV Q (3.36)
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Figure 3.13: SCF curves with/without correction

Figure 3.13a shows the obtained SCF values by this way and it can be seen that the SCF

values depend heavily on the pixel bit-rate. Similar to the design of the temporal quality

metric, it is desired that the SCF is modelled independently of the bit-rate, so a correction

to the bpp value is introduced for the estimation of SNRV Q:

PS = e−aS ·SA bpp = bpp0· (SF )PS (3.37)

where aS is a model parameter which needs to be trained using subjective test results.

From Figure 3.13a, it can be seen that the SCF value is content dependent. For contents

with higher spatial details, the SCF value is lower, indicating that the quality of this kind of

video is affected more seriously by spatial down-sampling. Based on these observations, the

proposed SCF model is given as:

SCF = (SF )bS ·SA (3.38)

where bs is a model parameter which needs to be trained. It can be seen that when SF = 1 or

SA → 0, SCF reaches 1, which indicates that without spatial down-sampling or for sequences

with very few spatial details, the overall quality should be the same as the SNR quality.

Using the subjective ratings from all 8 SRCs, the two model parameters aS and bS are

trained by least-square non-linear fitting. The obtained values are aS = 0.0222 and bS =

0.0035.

Figure 3.13b shows the obtained SCF values with the correction given in Eq.(3.37). It

can be seen that after the correction, the curves are quite flat at middle or high bit-rate (when
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bpp is greater than 0.3 bits/pixel), indicating that the SCF is independent of the bit-rate.

However, at the low bit-rate end, the curves become a little irregular. This can be attributed

to the difficulty in rating the videos when the quality is very low. For example, when there

are very obvious artifacts in the video, it is hard to decide whether to give it a rating of 20 or

30. But these ratings do have great impact on the obtained SCF values. It is assumed that

the curve will become flat and regular when the number of test subjects is larger.

3.4.3.2 Performance Analysis of the Spatial Quality Model

In this section, the performance of the proposed spatial quality metric (referred to as MD-

VQM SVQ) is evaluated and compared with that of three other quality metrics: PSNR,

SSIM and the spatial quality metric proposed in [OXMW11] (see Eq. (3.4), referred to as

QSTAR SVQ).

Figure 3.14 shows the linear relationship between the actual DMOS and the predicted

quality values from the models in comparison. Comparing Figure 3.14c with Figure 3.8c, it

can be found that the SSIM index becomes less accurate in case spatial down-sampling is

performed. This indicates that, although down-sampling only introduces spatial artifacts to

the video, SSIM alone is uncapable of capturing this impact on video quality caused by spatial

down-sampling. In comparison, the two metrics which explicitly model the impact of spatial

resolution, i.e., MDVQM SVQ and QSTAR SVQ do provide much better quality prediction

than SSIM and PSNR. The statistical performance metrics and results of significance tests are

summarized in Table 3.13-3.15. All the performance metrics indicate that the proposed spatial

quality metric provides the best prediction among the metrics in comparison. The difference

of performance is statistically significant, as suggested by the significance test results.

Also, our SCF model requires only one video feature (SA value) and two parameters that

need to be trained from the subjective ratings, while the model QSTAR SVQ requires four

parameters. The better results of the proposed model comes from the fact that the impact of

frame down-sampling is dependent on the characteristic of the video which is considered in

MDVQM SVQ, whereas no video feature is considered in QSTAR SVQ.

Table 3.13: Pearson correlation values of the spatial quality metrics

Metric PC LB PC UB PC Sig. Level

PSNR 0.5749 0.3675 0.7278 1

SSIM 0.6765 0.5031 0.7976 1

QSTAR SVQ 0.9298 0.8827 0.9584 0.9926

MDVQM SVQ 0.9846 0.9737 0.991 -
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Figure 3.14: Actual DMOS vs. predicted DMOS for the spatial quality metrics

Table 3.14: RMSE values of the spatial quality metrics

Metric RMSE
LB

RMSE
UB

RMSE
Sig. Level

PSNR 14.4586 12.2068 17.7371 1

SSIM 13.0131 10.9864 15.9638 1

QSTAR SVQ 6.5194 5.5041 7.9977 0.9999

MDVQM SVQ 3.1252 2.6385 3.8339 -



56 CHAPTER 3. PERCEPTUAL VIDEO QUALITY MODELING

Table 3.15: Outlier ratios of the spatial quality metrics

Metric OR CI Sig. Level

PSNR 0.7857 0.1075 1

SSIM 0.7679 0.1106 1

QSTAR SVQ 0.5179 0.1309 0.9687

MDVQM SVQ 0.25 0.1134 -

Again, the performance of the metrics on unknown data sets is evaluated through cross

validation. The sequences SC/KB/PA are used as the verification sequence in the three

validations separately. Table 3.16 summarizes the results of the cross validation:

Table 3.16: Cross validation result for the spatial quality metrics

Test Veri.Seq.
QSTAR SVQ MDVQM SVQ
PC RMSE PC RMSE

Test1 Soccer 0.9647 5.6103 0.9897 3.0565

Test2 Kobe 0.9195 7.3253 0.9881 2.8517

Test3 Peda 0.9360 6.4076 0.9876 2.8659

3.4.4 Spatial-Temporal Quality Model

As mentioned in Section 3.3, subjective tests are conducted to study the impact on perceived

video quality when both TR and SR are changed simultaneously (TEST II). In this section,

the interaction between spatial and temporal impairments and the corresponding impact on

overall video quality are examined.

As shown in the previous sections, the impact of quantization is separable from that of TR

and SR changes. So the overall spatial-temporal video quality metric MDVQM is designed

as:

PT = e−aT ·TA PS = e−aS ·SA (3.39)

bpp = bpp0· (SF )PS · (FRmax

FR
)PT (3.40)

MDVQM = SNRV Q(bpp,TA,SA) · STCF (TA,SA) (3.41)

where STCF is a Spatial-Temporal Correction Factor which simulates the negative impact

of jerkiness and blurring artifacts introduced by frame dropping and spatial down-sampling.

Earlier metrics in the literature assume that the impacts of frame dropping and spatial

down-sampling are separable [OXMW11], so that STCF is modelled as the product of TCF
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and SCF . If this assumption is adopted, the STCF can be derived from the TCF and SCF

models proposed in the previous sections as:

STCF = TCF ·SCF (3.42)

where, TCF and SCF can be calculated according to Eq.(3.33) and Eq.(3.38), respectively.

To verify the accuracy of the above model, the subjective ratings from TEST II are used as

the validation data set. For SNRV Q, TCF and SCF , the obtained model parameters given

in Section 3.4.1 to 3.4.3 are used. Figure 3.15(a) shows the linear relationship between the

actual subjective ratings and the predicted DMOS values using the STCF model in Eq.(3.42)

(referred to as PROD). The performance metrics of model PROD are given in the first lines

of Tables 3.17-3.19. From the results, it can be seen that the prediction accuracy is not

satisfactory. The RMSE value is high and the predicted values are often far below the actual

value as shown in Figure 3.15(a).

Based on this observation, instead of directly using the product of TCF and SCF as in

Eq.(3.42), three other models for the STCF are examined:

STCF =
√
TCF ·SCF (3.43)

STCF = max (TCF, SCF ) (3.44)

STCF = min (TCF, SCF ) (3.45)

and the overall video quality is then predicted by Eq.(3.41).

Again, the subjective ratings from TEST II are used to validate these candidate models.

The metric predictions and the actual DMOS values are shown in Figs.3.15(b)-(d). The

performance metrics of different models are given in Tables 3.17-3.19.

From the results, it can be seen that the minimum function in Eq.(3.45) achieves a bet-

ter overall performance than the other three comparison STCF models with a higher PC

value and lower RMSE and OR values. The results from the significance tests (also shown

in Tables 3.17-3.19) indicate that this performance difference between MIN and PROD is

statistically significant, but the statistical significance of the difference among SQRT, MAX

and MIN is below the typical 95% significance level.

Further, the performance of the metrics is examined on each individual verification se-

quence as shown in Table 3.20. It can be seen that, although the minimum function does not

always perform the best (e.g., the performance of SQRT and MAX is better for the sequence

FOOTBALL), the performance of it is much more stable than that of the other models. Based

on the above observation, the minimum function given in Eq.(3.45) is selected to calculate

STCF in our overall spatial-temporal video quality metric MDVQM (see Eq.(3.41)).

This indicates that when both TR and SR are reduced, the perceived video quality is

mostly affected by the prevailing (more significant) distortion, either temporal or spatial.
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Figure 3.15: Linear relationship between the actual DMOS and the predicted DMOS for
different STCF models

Table 3.17: Pearson correlation values of the spatial-temporal quality metrics

Metric PC LB PC UB PC Sig. Level

PROD 0.9093 0.7989 0.9604 0.9455

SQRT 0.9647 0.9189 0.9848 0.3068

MAX 0.9525 0.8918 0.9795 0.6207

MIN 0.9723 0.9360 0.9881 -
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Table 3.18: RMSE values of the spatial-temporal quality metrics

Metric RMSE
LB

RMSE
UB

RMSE
Sig. Level

PROD 9.4365 7.3683 13.1276 1.0000

SQRT 4.4236 3.4541 6.1540 0.7656

MAX 5.3801 4.2009 7.4845 0.9493

MIN 3.7962 2.9641 5.2810 -

Table 3.19: Outlier ratios of the spatial-temporal quality metrics

Metric OR CI Sig. Level

PROD 0.5417 0.1993 0.9144

SQRT 0.2917 0.1818 0.0000

MAX 0.3750 0.1937 0.4567

MIN 0.2917 0.1818 -

Table 3.20: Performance of video quality metrics using different STCF models (Eqs.(3.42-
3.45)) when both TR and SR are changed

Veri.Seq.
PROD SQRT MAX MIN

PC RMSE PC RMSE PC RMSE PC RMSE

PEDA 0.9758 6.8067 0.9307 6.3021 0.9021 8.0971 0.9543 4.8327

FOOT 0.7446 12.2296 0.9841 2.7401 0.9902 2.6633 0.9743 3.2484

RUSH 0.9091 8.4407 0.9713 3.3885 0.9646 3.7655 0.977 3.0538

3.5 Summary

In this chapter, a no-reference objective video quality metric MDVQM is presented, which

considers the impact of both spatial and temporal quality impairments on the overall perceived

video quality. The metric is based on the pixel bit-rate, frame rate, frame resolution as well

as spatial and temporal video features (SA and TA values) that can be easily computed from

the video sequences. Different from previous works, the situation in which frame rate and

frame resolution change at the same time is also investigated. Verification with the data

collected from our subjective tests shows that MDVQM provides accurate predictions for the

perceptual video quality. The performance is significantly better than that of the comparison

metrics.





Chapter 4

Improved ρ-domain Rate Control for

H.264/AVC Video

In many video applications, compressed video streams are delivered under a certain rate

restriction. Therefore rate control (RC) plays a very important role in order to meet the rate

requirement as well as maintain a good picture quality.

H.264/AVC is a widely deployed international video coding standard. By utilizing many

coding options such as variable block size, intra prediction, quarter-pel motion compensation,

multiple reference frames, etc., the coding efficiency is significantly improved. Compared

with previous video coding standards (MPEG4 or H.263), a bit rate reduction of 50% can be

achieved [WSBL03].

ρ-domain rate control [HM01, HM02a] has been shown to be simple and effective for

DCT-based hybrid video codecs. When it is applied to H.264/AVC, improvements need to

be made because of the large amount of header information and the QP-dependent Rate

Distortion Optimization (RDO). In this chapter, new rate models to estimate the size of

header information in H.264/AVC coded video streams are proposed. A two-stage rate control

algorithm is presented which combines the proposed header rate model and the ρ-domain

source model. In comparison with previous header rate models and rate control algorithms,

the proposed approach improves the PSNR of the decoded video, meets the target bit rates

more accurately and results in smaller quality fluctuation inside one frame.

The remainder of this chapter is organized as follows. A review of related work is given in

Section 4.1. Section 4.2 presents the proposed rate control algorithm based on the ρ-domain

model. Experimental results are presented and discussed in Section 4.3. Section 4.4 gives a

summary of this chapter.

61
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4.1 Related Work

Although rate control is not a normative part of any video coding standards, it is an essential

part of video codecs which are used in practical applications. The purpose of rate control is to

maximize the video quality under certain resource constraints (such as file size, transmission

rate or delay, etc.). According to whether or not the instantaneous bit-rate is allowed to

vary significantly, rate control can be classified into Variable Bit-Rate (VBR) algorithms and

Constant Bit-Rate (CBR) algorithms. VBR algorithms have the flexibility to allocate more

resources to more complex scenes within a sequence, therefore a better video quality can be

achieved. However, there are many scenarios where variation of the content complexity is

not known or strict constraints are put on the instantaneous bit-rate. In these situations,

CBR algorithms are used to ensure the constraints are met. VBR algorithms are often used

in storage applications where the video is consumed locally and CBR algorithms are widely

used in video streaming or video communication (telephony/conference) applications. In this

work, considering the real-time video adaptation scenario, the focus is put on CBR situations.

Nowadays, H.264/AVC is the dominant video coding standard and many rate control algo-

rithms have been proposed for it. Most of these algorithms are based on a certain functional

relationship between the bit-rate and the encoding parameters (mainly the quantization pa-

rameters). The encoding process utilizes this function to adjust the encoding parameters in

order to meet the target bit-rate. For example, in [MGWL03, MLW03], Li et al. propose a

rate control algorithm employing a quadratic model, which has been adopted by the Joint

Video Team for its reference implementation of H.264/AVC (JM codec) [Tea]:

D̂i = a ·Di−1 + b (4.1)

R =
c · D̂
QS

+
d · D̂
QS2

+ h (4.2)

where D̂i is the predicted Mean Absolute Difference (MAD) of frame i. As shown in Eq.(4.1),

D̂i is estimated using a linear function of the actual MAD value of frame i − 1 (Di−1).

QS denotes the quantization step-size and h is the size of header information. a,b,c and d

are model parameters which need to be updated with the statistics of the encoded frames.

Another widely used open source implementation of H.264/AVC is X264 [X26]. In [MV07], the

rate control algorithm for X264 is introduced. Before encoding a frame, motion estimation

is performed on a half-resolution version of the frame and the Sum of Absolute hadamard

Transformed Difference (SATD) of the residual signal is calculated as a measure of frame

complexity. The initial QP value is then determined by this SATD value empirically. During

the encoding process, the QP values are updated for each macroblock (MB) according to

the difference between the target frame size and the actual number of bits that have been

generated. The above algorithms do not utilize the frame statistics of the current frame, so

they often suffer from relatively large errors in terms of rate control accuracy.
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In [HM01, HM02a], He et al. observed that for DCT-based video coding (H.263/MPEG4),

the coding bit-rate has a linear relationship with the percentage of coefficients which are

quantized to zero:

R(ρ) = θ· (1− ρ) (4.3)

where R denotes the coding bit-rate, ρ is the percentage of zero coefficients after quantization,

and θ is a content-depend constant. To use this relationship in rate control, a one-to-one

mapping between ρ and the quantization parameter is needed. This mapping can be derived

from the specific quantization scheme used in the video codecs. Taking the H.263 video coding

[ITU05b] as an example, the quantized coefficients are calculated as:

L =



Round(
COF

8
) : if COF is a DC coefficient in an intra-MB

UTSQ(2q, 2q;COF ) : if COF is a AC coefficient in an intra-MB

UTSQ(2q, 2.5q;COF ) : if COF is a coefficient in an inter-MB

(4.4)

where COF denotes the unquantized transform coefficients and q is the quantization param-

eter. UTSQ denotes the Uniform Threshold Scalar Quantization:

UTSQ[q, δ; c] =



0, if |c| ≤ δ

⌈
c− δ

q

⌉
, if c > +δ

⌊
c+ δ

q

⌋
if c < −δ

(4.5)

where δ is the dead-zone threshold. Then the relationship between ρ and q can be derived as:

ρ(q) =
1

L

∑
|c|<2q

HI(c) +
1

L

∑
|c|<2.5q

HP (c) (4.6)

where HI(·) and HP (·) are the histograms of the unquantized DCT coefficients for intra-coded

and inter-coded MBs respectively. L is the number of coefficients in the current video frame.

The ρ-domain rate control algorithm proposed in [HM02a] utilizes Eq.(4.3) and Eq.(4.6)

as a rate model for the rate control of H.263 and MPEG-4 video codecs. Compared with other

algorithms, the ρ-domain rate model is very simple and can provide more accurate control

of the coding bit-rate. However, when it is used for H.264/AVC video coding, several issues

need to be resolved first.

The first issue is the inter-dependency between RDO and rate control. In H.264/AVC,

up to 7 block sizes are supported for motion estimation. Small blocks improve the accuracy

of motion estimation and reduce the energy of the residual signal, but leads to more motion
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information (reference frame ID, motion vectors (MVs)). Therefore, a trade-off needs to be

found. This is typically done by a rate-distortion optimized way:

C = D + λ ·Rmot (4.7)

where C means the cost of encoding the MB, D denotes the distortion (normally calculated

as the Sum of Absolute Difference (SAD)), Rmot is the estimated size of the encoded motion

information and λ is a Lagrange multiplier which depends on the choice of QP values [SW98].

Hence, the QP value is required by the rate-distortion optimized motion estimation. But on

the other hand, ρ-domain rate control determines the QP value based on the statistics of the

transformed coefficients, which requires to perform motion estimation before the selection of

QP. This contradiction leads to the so-called “chicken-egg-dilemma”.

The second issue comes from the increased amount of header information in H.264/AVC.

By utilizing various coding options in H.264/AVC, the energy of the intra/inter prediction

errors is significantly reduced. But at the same time, more bits are spent to signal these coding

options (such as block size for an inter MB and intra prediction mode for an intra MB). At

high bit-rates, the impact is not very serious since the texture information dominates the

bitstream. But at low bit-rates, the header information occupies a large portion of the total

bit-rate, which causes the accuracy of ρ-domain rate control to be reduced.

In [HW08], He and Wu propose to use the average QP value of the previous frame for

the estimation of λ in Eq.(4.7) to break the inter-dependency between rate control and RDO,

so that ρ-domain rate control can be used for H.264/AVC. The authors assume that the size

of header information is also proportional to ρ, so that the ρ-domain rate control originally

proposed for H.263 can also be applied to H.264/AVC. However, as will be discussed in Section

4.2, this assumption is not always true, especially for low bit-rate cases. In [KSK07], Kwon et

al. propose a method to estimate the size of motion information in H.264/AVC. The method is

combined with the quadratic rate model in [MGWL03, MLW03] and the experimental results

show that it performs better than the rate control method in JM8.1 [Tea] which uses the same

source rate model.

In the following, a method to estimate the size of header information in H.264/AVC is

proposed. The proposed method is used together with the ρ-domain rate model to improve

the accuracy of rate control for H.264/AVC codecs. A two-stage encoding structure is also

employed to decouple rate control and RDO.

4.2 Proposed Rate Control Algorithm

In [HW08], the ρ-domain rate control algorithm is adapted for the H.264/AVC encoder. The

authors claim that for H.264/AVC video coding, the total bit-rate consumed by a frame follows

a similar linear relation with ρ. However, as has been mentioned, H.264/AVC introduces
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several advanced prediction schemes which can reduce the prediction error but the size of

overhead information is also increased. Typically this header information overhead changes

from frame to frame and is not addressed in the ρ-domain rate model. Figure 4.1 shows the

relationship between the percentage of non-zero coefficients (NNZs) and the size of a frame.

To run the experiment, the X264 encoder [X26] is used to encode the sequence FOREMAN

and MOTHER&DAUGHTER (CIF@25fps) with CAVLC (Context Adaptive Variable Length

Coding). The sequences are encoded using different QPs from 25 to 45. The results for high

bit-rates and low bit-rates are shown separately. For high bit-rates, the used QP values range

from 25 to 33. For low bit-rates, the QP values are from 34 to 45.

The X-axis shows (1-ρ), which is the percentage of non-zero coefficients. The Y-axis shows

the number of consumed bits. The red crosses show the size of a frame and the blue dots

show the size of the texture information (residual information). It can be seen that although

the size of the texture information is strictly proportional to (1-ρ), the total size of a frame

does not follow such a rule, especially at low bit-rates. The difference between the red and

blue points is simply the size of header information in each frame. To make ρ-domain rate

control more accurate for H.264/AVC, a precise estimation of the size of header information

is very important. The number of header bits changes significantly for different frames and

it is hard to derive a closed-form mathematic model to relate the number of header bits with

the parameter ρ. In the following, selected observations from the experiments are presented

and the size of the header information is estimated in an adaptive manner.

4.2.1 Header Information in H.264/AVC

Header information in H.264/AVC includes the NAL (Network Abstraction Layer) header,

the sequence header (PPS and SPS), the slice header and the MB header. The NAL header

is rather small (1 byte per NAL unit). PPS and SPS are not sent very often. A single slice

header is also very small but when a frame is divided and encoded into multiple slices, it might

also occupy a certain percentage of the total frame size. Compared with the MB header, the

size of a slice header is stable and easy to estimate. Normally, a slice contains either a constant

number of MBs or a constant number of bits. The size of the slice header can be estimated

as:

RSH =


NMB
NMBpS

· bSH (fixed MB number)

RT
NBpS

· bSH (fixed slice size)

(4.8)

where RSH is the estimated size of slice headers of the current frame, NMB is the total number

of MBs in the frame, NMBpS is the number of MBs per slice, RT is the total number of bits
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Figure 4.1: Relationship between the percentage of non-zero coefficients (1-ρ) and the num-
ber of generated bits (total bits and texture bits) for test sequences. (a) Foreman. (b)
Mother&Daughter(M&D)
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allocated to the frame, NBpS is the number of bits allocated to each slice, and bSH is the

average slice header size in the previous frames.

4.2.2 Rate Model for Inter MB Headers

The MB header is the most important header information. It contains the encoding param-

eters for inter MBs (such as the MVs, the reference frame IDs, etc.) and for intra MBs

(such as intra prediction type, etc.). Since the header of different MB types contains differ-

ent information, the numbers of header bits for inter and intra MBs need to be estimated

separately.

In [KSK07], a linear rate model for the size of the header information in inter MBs is

proposed. The authors claim that there is a strong relationship between the header size of

inter MBs and the number of non-zero horizontal/vertical MVs. The authors also consider that

the size of the coded block pattern (CBP bits) has a strong relationship with the number of

non-zero coefficients. Specifically, the size of the header information in inter MBs is modelled

as:

Rhdr,p = γ· (NnzMV e + ω·NMV ) (4.9)

where ω is fixed to 0.3 for single frame motion estimation, NnzMV e is the number of non-zero

motion vector elements, NMV is the total number of MVs, and γ is a parameter to estimate.

The experiments in [KSK07] show that this model works well for many sequences. But our

experiments show that this model does not always predict the number of header bits very

accurately.

In our experiments, the video sequences (250 frames long) are encoded at different bit-

rates using the original rate control algorithm of the X264 encoder. Figure 4.2 shows the

result for the CIF sequence FOREMAN encoded at 512kbps and Mother&Daughter (M&D)

encoded at 384kbps. The x-axis gives the value of (NnzMV e + ω·NMV ) and the y-axis is the

size of the information. The blue points correspond to the total header size and the red crosses

correspond to the size of motion information. It can be seen that for both the total header

size and the motion information size, the predictions provided by the model in Eq.(4.9) do

not correlate well with the actual value.

This estimation error results from the fact that the H.264/AVC encoder performs CAVLC

not directly on MVs but on the differential MVs (MVDs), which are the differences between

the actual MV and a predicted MV. So the size of the motion information should have a

stronger linear relationship with the statistics of the MVDs. Let NnzMVDe and NzMV De

denote the number of non-zero and zero MVD elements respectively (e.g. if two MVDs (-1,0)

and (0,0) are considered, then NnzMVDe = 1, NzMV De = 3), a new rate model is proposed for

motion information which is similar to Eq.(4.9) but based on the statistics of the MVDs:
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Figure 4.2: Performance of the MV-based rate model in Eq.(4.9)

Rmot,p = γmot· (NnzMVDe + ωmot·NzMV De) (4.10)

where ωmot is a fixed weighting factor and γmot is a parameter to be estimated. It is observed

from our experiments that ωmot=0.2 works well for all the sequences when only one reference

frame is used.

In Figure 4.3, the relationship between (NnzMVDe + ωmot·NzMV De) and the total header

size (blue points) as well as the size of the motion information (red crosses) are presented.

From the results, it can be seen that the size of the motion information can be very well

predicted using the proposed model. The estimation errors of the motion information size

for different sequences are presented in Table 4.1 using the R2 value [DF99]. The R2 value

between the actual values y⃗ and the model predictions x⃗ is calculated as:

R2 = 1−

n∑
i=1

(yi − xi)
2

n∑
i=1

(yi − y)2
(4.11)

where y is the mean value of the actual data in y⃗ and n is the size of the data set. The R2

value is used to measure the deviation between the predictions of a model and the actual data

values. It takes the value from 0 to 1 and the better the prediction, the closer the R2 value to

1. From the results in Table 4.1, it can be seen that the proposed rate model for the motion

information in Eq.(4.10) provides better predictions than the model in Eq.(4.9).

Another observation from the result is that, although size of the motion information

can be predicted quite accurately using the proposed model, the linear relationship between
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Figure 4.3: Performance of MVD-based rate model in equation (4.10)

Table 4.1: Performance comparison of the two rate models for motion bits in Eq.(4.9) and
Eq.(4.10)

Seq.
Bit-rate R2 Value
(kbps) Model in Eq.(4.9) Model in Eq.(4.10)

M&D (CIF) 384 0.5742 0.9219

Foreman (CIF) 512 0.7373 0.9767

Football (CIF) 640 0.7119 0.9730

Carphone (CIF) 384 0.7800 0.9772

(NnzMVDe + ωmot·NzMV De) and total header size is much weaker. This estimation error

results from other header information in inter MBs.

As specified in H.264/AVC, an inter MB contains the following header information:

� Motion Information (MVDs and Refs)

� MB Type information (16x16, 16x8, 8x16, 8x8.)

� Coded Block Pattern (CBP)

� QP value for the MB

To give an example, the average percentage of different types of header information in

inter MBs for the sequence Foreman (CIFx30fps, encoded at 512kbps) is shown in Figure 4.4.

From Figure 4.4, it can be seen that the size of the QP information is very limited compared
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to other header information. So the number of bits consumed by QP information is simply

estimated using the average size of QP information per MB in the previous frames (bQP ):

Rqp,p = Np· bQP (4.12)

where, Np is the number of inter MBs in the current frame.

The percentage of MB type information is a little higher but since the number of MB

types for an inter MB is limited (4 for MB Type and 4 for sub-MB Type) and code sizes for

each MB type or sub-MB type are fixed, once the number of MBs of each type or subtype is

known, the size for this header information can be estimated by:

Rtype,p =
∑
i∈A

Np,i· btype,i +
∑
j∈B

Np8,j · bsubtype,j

A = {P16× 16, P16× 8, P8× 16, P8× 8}

B = {D8× 8, D8× 4, D4× 8, D4× 4}

(4.13)

where Np,i is the number of inter MBs of type i (as given in set A), Np8,j is the number of

8x8 blocks of sub-block type j (as given in set B), btype,i and bsubtype,j are the number of

bits used for encoding the corresponding MB type and sub-MB type information for inter

MBs and inter-8x8 blocks, respectively. btype,i and bsubtype,j are fixed values specified in the

standard. For example, one bit is used for encoding the P16 × 16 mode and three bits are

used for encoding the P16× 8 mode and the P8× 16 mode.
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The percentage of the CBP information in different frames fluctuates heavily and for some

frames it occupies a significant portion of the header size. As has been mentioned, in [KSK07],

the authors consider that the size of the CBP information has a strong relationship with the

size of the texture (residual) information. Based on ρ-domain theory, the size of texture

information has a strong linear relationship with the percentage of non-zero coefficients (1-ρ).

So this assumption can be verified by observing the relationship between (1-ρ) and the size

of the CBP information. Figure 4.5 shows the experimental results for the CIF sequence

FOREMAN encoded using different QP values. The X-axis shows the percentage of non-zero

coefficients in a frame (1-ρ) and the Y-axis shows the size of the CBP information. It can be

observed that the linear relationship is not as strong as expected. To predict the number of

CBP bits based on (1-ρ) can introduce large estimation error.
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Figure 4.5: Relationship between the percentage of non-zero coefficients (1-ρ) and the size of
the CBP information for the sequence Foreman (left: high bit-rate range, right: low bit-rate
range)

A possible explanation for this is that the number of CBP bits depends not only on the

number of non-zero coefficients but also on the distribution of these coefficients. An extreme

example is that, assuming that there are six non-zero coefficients in a MB, the number of CBP

bits would be different when these coefficients are evenly distributed within all the six 8x8

blocks (four luma blocks and two chroma blocks) in a MB from that when these coefficients

all belong to one 8x8 block. Hence, to accurately estimate the size of the CBP information,

the distribution of non-zero coefficients should also be an important factor.

Let’s define the zero MBs as the MBs in which all the quantized coefficients are zeros. Then

inspired from the linear rate model for the motion information in [KSK07], the number of zero
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and non-zero MBs can be used as an indicator of the distribution of non-zero coefficients. Let

NnzMB and NzMB be the number of non-zero and zero MBs respectively, a linear rate model

for the CBP information is proposed as:

Rcbp,p = γcbp· (NnzMB + ωcbp·NzMB) (4.14)

where ωcbp and γcbp have a function similar to that in equation (4.10).

Figure 4.6 shows the relationship between (NnzMB +ωcbp·NzMB) (X-axis) and the size of

the CBP information (Y-axis). ωcbp is set empirically to 0.1 based on the experiments.
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Figure 4.6: Experimental results for Eq.(4.14)

From Figure 4.6, it can be seen that there is a very strong linear relationship as suggested

in Eq.(4.14). The estimation errors for different test sequences measured by the R2 values are

shown in Table 4.2. For all the sequences, the R2 values are very close to 1, suggesting that

our linear rate model for the CBP information works well.

Table 4.2: Performance of the proposed rate model for CBP bits

Seq.
Bit-rate
(kbps)

R2 Value of Eq.(4.14)

M&D (CIF) 384 0.9347

Foreman (CIF) 512 0.9725

Football (CIF) 640 0.9749

Carphone (CIF) 384 0.9740
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The header bits for an inter MB can be modelled as:

Rhdr,p = Rmot,p +Rqp,p +Rtype,p +Rcbp,p (4.15)

where Rmot,p, Rqp,p, Rtype,p and Rcbp,p are estimated using Eqs.(4.10)(4.12-4.14), respectively.

4.2.3 Rate Model for Intra MB Headers

As there are very few intra MBs in a frame, especially at low bit-rates, and the size of the

header information of intra MBs is limited compared to the size of the texture information in

the same MB, the size of header information of intra MBs in a frame is estimated by:

Rhdr,I = Ni16×16· bi16×16 +Ni4×4· bi4×4 (4.16)

where Ni16×16 and Ni4×4 are the number of intra-16x16 MBs and intra-4x4 MBs, respectively.

bi16×16 and bi4×4 are the average size of the header information of intra-16x16 and intra-4x4

MBs in the previous frame.

4.2.4 Two-Stage Rate Control Algorithm

In this section, a two-stage rate control algorithm is proposed. In the first stage, motion

estimation and mode decision are performed to collect necessary statistics of the MBs in

the current frame. In the second stage, the proposed rate models for header information in

Sections 4.2.2 and 4.2.3 are combined with ρ-domain rate control theory to accurately control

the size of the current frame.

1. Frame Level Bit allocation

Sophisticated frame level bit allocation algorithms can be used here. But since the main

purpose is to verify the accuracy of the proposed rate models for header information, a

simple frame level allocation method is used. The target size for a frame is determined

by:

RT =
r

F

where r is the target bit-rate of the video stream in the unit of bits/s, and F is the

frame rate in the unit of fps (frames/s).

2. Stage One: Analysis Stage

In this stage, motion estimation and mode decision are conducted for all the MBs in the

current frame using the average QP value of the previous frame in the RDO process.

Then, the prediction residuals are transformed into the DCT domain for ρ-domain

analysis. After the analysis, the model parameters NnzMVD and NzMV D are counted.

3. Stage Two: Actual Encoding Stage
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a) Before encoding each MB, the size of the header information except the CBP

information for inter MBs is estimated for the remaining MBs as discussed in

Section 4.2.2 and 4.2.3. The reason why the CBP information is excluded here is

that the number of zero MBs depends on the selected QP, so it is estimated later

when candidate QPs are examined according to the ρ-domain rate control method.

b) The estimated header size is subtracted from the remaining available bit budget for

the current frame RT to determine the available bits Ravail. Then all the possible

QP values are examined. The size of the texture information Rtex is estimated using

the original ρ-domain rate control model and the size of the CBP information Rcbp

is estimated by Eq.(4.14). The smallest QP which results in (Rcbp+Rtex) ≤ Ravail

for the current MB is selected.

c) After encoding each MB, the bit budget RT is updated by substracting the actual

number of bits used for encoding the current MB. Also, the parameters in the

header rate model (γcbp, γmot, bQP , bi4, bi16) and ρ-domain rate model (θ) are also

updated accordingly.

d) The above procedure is repeated for all MBs in the current frame.

4. After encoding the current frame, the model parameters for the current frame are saved

to be used for the first MB in the next frame. At the beginning of the first frame, default

values (γcbp = 4, γmot = 10.3, θ = 5.4) are used to initialize the model.

4.3 Experimental Results

The proposed rate control algorithm is implemented in X264, which is an open source im-

plementation of H.264/AVC. The encoder is configured to conform to the baseline profile.

CAVLC is used for entropy coding. Extensive simulations are conducted using various stan-

dard test sequences. For each sequence, 250 frames are encoded. The first frame is encoded as

an I frame and the following frames are encoded all as P frames. For fair comparison, the QP

value for the I frame is determined in the same manner as in the original X264 rate control

(CBR mode). As mentioned above, a simple frame level bit allocation which depends on the

target bit-rate and the frame rate is employed in order to examine the accuracy of the header

size prediction and rate control.

The proposed algorithm is compared with three other rate control algorithms:

� X264: The original CBR mode rate control algorithm in X264

� ORIG: The original ρ-domain rate control algorithm without estimation of header

information size
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� MVHE: ρ-domain based rate control algorithm, the rate model in [KSK07] is used to

estimate the size of header information

Several performance metrics are used for the evaluation: video quality in PSNR, accuracy

of the rate control, QP fluctuation within one frame.

4.3.1 Video Quality in PSNR

Table 4.3: Performance comparison of the rate control algorithms

Seq.

Target
Bit-
rate

X264 ORIG MVHE Proposed

(kbps)
BR

(kbps)
PSNR
(dB)

BR
(kbps)

PSNR
(dB)

BR
(kbps)

PSNR
(dB)

BR
(kbps)

PSNR
(dB)

M&D
(QCIF)

48 47.42 36.51 47.09
36.45
(−0.06)

47.95
36.58
(+0.07)

47.92
36.59
(+0.08)

96 95.43 39.89 95.04
39.94
(+0.05)

95.62
40.06
(+0.18)

95.60
40.07
(+0.19)

128 127.48 41.33 126.84
41.36
(+0.03)

127.42
41.51
(+0.18)

127.48
41.53
(+0.20)

Foreman
(QCIF)

96 94.95 33.43 90.80
33.42
(−0.02)

94.54
33.59
(+0.16)

95.01
33.72
(+0.29)

128 126.50 34.81 125.88
34.74
(−0.07)

126.20
34.94
(+0.13)

126.40
35.03
(+0.22)

192 189.81 36.65 188.74
36.64
(−0.01)

189.16
36.76
(+0.11)

189.58
36.86
(+0.21)

M&D
(CIF)

128 127.38 37.23 127.38
37.39
(+0.15)

128.08
37.30
(+0.07)

127.90
37.42
(+0.18)

192 191.17 39.18 191.08
39.30
(+0.13)

191.48
39.35
(+0.17)

191.56
39.40
(+0.22)

256 254.87 40.43 254.67
40.63
(+0.20)

255.04
40.65
(+0.22)

255.23
40.70
(+0.27)

Table 4.3 shows a subset of the test results in terms of PSNR. The bit-rate of the encoded

streams and the PSNR gain of the three ρ-domain rate control algorithms over the X264 rate

control are also presented. It can be seen that for the original ρ-domain rate control, the

PSNR gain is not always positive. The reason is that the X264 rate control uses a buffer to

smooth the bit-rate changes for different frames, so although the overall average bit-rate of the

sequence is very close to the target value, the fluctuation of frame sizes within the sequence

is very large. This will be discussed soon below. For MVHE and the proposed algorithm, a

positive PSNR gain can always be achieved. And the gain of the proposed algorithm is larger

than that of MVHE.
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4.3.2 Accuracy of the Rate Control

According to Table 4.3, all the algorithms can control the average bit rate quite accurately

with a control error smaller than 2%. But this is only one side of the story. As has been

mentioned, the size of every single frame should be controlled accurately. Figure 4.7 shows

the size of the first 100 P-frames for the QCIF sequence FOREMAN encoded at 192kbps,

30fps (i.e. each frame should be encoded with 400 bytes).

Figure 4.7a shows the comparison between the original ρ-domain rate control and the X264

rate control. It can be seen that the frame size fluctuation of X264 is much larger than the

original ρ-domain rate control, which demonstrates the advantage of ρ-domain rate control.

Further, Figure 4.7b shows the size of the encoded frames for the three ρ-domain algorithms.

It can be seen that the size fluctuation of MVHE and the proposed algorithm is smaller than

that of the original ρ-domain rate control. This improvement is due to the accurate estimation

of the header size. Table 4.4 presents the average deviation of the actual frame size from the

target frame size. It can be seen that for all the test sequences, the proposed algorithm gives

the smallest deviation, which means it can control the frame size most accurately.

Table 4.4: Average deviation of the actual frame size from the target frame size

Seq.

Target
Bit-
rate

Target
Frame
Size

ORIG MVHE Proposed

(kbps) (Byte)
Dev.
(Byte)

Percent
(%)

Dev.
(Byte)

Percent
(%)

Dev.
(Byte)

Percent
(%)

Foreman
(QCIF)

96 400 26.94 6.74 9.75 2.44 7.96 1.99

M&D
(CIF)

192 800 10.82 1.35 10.32 1.29 5.83 0.73

Football
(CIF)

384 1600 11.44 0.72 5.70 0.36 5.54 0.35

Foreman
(CIF)

192 800 24.74 3.09 7.25 0.91 5.73 0.72

4.3.3 QP Fluctuation among MBs within a Frame

All the MB level rate control algorithms allow the QP to be adjusted for each MB to meet the

target frame size accurately. On the other hand, if the QP changes too frequently, more bits

need to be spent to signal the QP changes between successive MBs in the bitstream. Also,

higher QP variation causes more significant quality fluctuations within a frame, which might

be annoying sometimes. Figure 4.8 shows an example of QP variation within one frame for

the three ρ-domain rate control algorithms. It can be seen that the proposed algorithm (green
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Figure 4.7: Comparison of the frame size fluctuation of different rate control methods
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Figure 4.8: Comparison of QP fluctuation within one frame

line with star points) results in much smaller QP variation within the frame compared with

the original ρ-domain rate control (blue line with diamond points) and MVHE (red line with

round points). Table 4.5 shows the average variance of the QP values within a frame. The

average maximum difference between the QP values within a frame (maximum difference is

the difference between the largest QP and smallest QP within a frame) is also given. The

results show that for most of the cases, the proposed algorithm results in a smaller variance

and maximum difference, which indicates again a smaller fluctuation of QP values within a

frame.

The smaller variation allows us to spend more bits on the residual signal and improve

the picture quality. It also proves that the proposed algorithm predicts the total size of

header and residual information more accurately than the other two algorithms, so that an

appropriate QP is selected from the beginning and does not need to be changed for the last

MBs dramatically to meet the target frame size.

In summary, compared with the other rate control algorithms, our proposed algorithm

gives the best video quality, the smallest frame size control error and the smallest QP variation

within a frame. This also proves the effectiveness of the proposed header estimation method.

4.4 Summary

In this chapter, an efficient rate control algorithm for H.264/AVC with accurate header infor-

mation estimation is proposed. The approach uses a two-stage encoder structure to resolve

the inter-dependency between RDO and ρ-domain rate control. The header information is

estimated using an improved rate model which considers different components in a MB header

(type information, motion information, CBP information, etc.). Experimental results show

the proposed algorithm can achieve better rate control accuracy and video quality compared
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Table 4.5: Average variance and maximum difference of QP values within a frame

Seq.

Target
Bit-
rate

ORIG MVHE Proposed

(kbps) Var. Max. Dif. Var. Max. Dif. Var. Max. Dif.

M&D (QCIF)
48 1.09 4.31 0.82 3.32 0.45 2.50
96 1.27 4.37 0.44 2.29 0.31 1.95
128 1.15 4.15 0.32 2.07 0.33 1.89

Foreman (QCIF)
96 0.52 3.35 0.69 3.37 0.16 1.33
128 0.48 3.52 0.51 2.83 0.19 1.31
192 0.48 3.73 0.38 2.51 0.17 1.49

M&D (CIF)
128 1.94 4.56 0.38 2.51 0.37 2.17
192 1.71 4.01 0.28 2.18 0.33 2.01
256 1.13 3.68 0.28 2.13 0.31 2.03

Football (CIF)
640 0.93 3.89 0.51 2.64 0.50 2.56
800 0.83 3.52 0.48 2.66 0.40 2.43
1000 0.66 3.28 0.39 2.53 0.32 1.97

with other rate control algorithms. The proposed rate control algorithm is used in the QoE-

driven MDA scheme presented in Chapter 5 to achieve accurate rate adaptation.





Chapter 5

QoE-driven Multi-Dimensional Video

Adaptation

In Chapter 3 and Chapter 4, the two most important components, i.e. perceptual quality

estimation and rate control, of the video adaptation system shown in Figure 1.2 are studied

respectively. Based on these studies, a QoE-driven MDA scheme is proposed in this chap-

ter to determine the optimal combination of different adaptation operations and optimize

the perceptual video quality. The QoE is estimated based on the objective quality metric

MDVQM presented in Chapter 3, which has been shown to provide a good estimation of

perceptual quality for videos in the presence of both spatial and temporal impairments. The

presented QoE-driven video adaptation scheme automatically examines the impact of different

adaptation strategies and makes the best decision for video adaptation. The ρ-domain rate

control algorithm presented in Chapter 4 is also integrated into the system for accurate rate

adaptation.

5.1 System Overview

As mentioned in Chapter 3, three major parameters can be adjusted to perform video adap-

tation: the quantization parameter, the temporal resolution of the video (frame rate) and

the spatial resolution of the video (frame size). They affect the SNR, temporal and spatial

quality of the video, respectively. The contribution of the three quality measures to the overall

perceived video quality depends heavily on the characteristics of the video content. The aim

of a QoE-driven video adaptation scheme is to find a compromise among different quality

measures to maximize the perceived video quality (QoE) for constrained system resources.

Therefore, in the proposed video adaptation scheme, three operating modes are considered:

81
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� SNR Mode: The video adaptation algorithm does not change the spatial and temporal

resolution of the video. Rate adaptation is performed by adjusting only the QP values.

� Temporal Mode (T-Mode): The video adaptation algorithm reduces the frame rate to

maintain a good SNR quality of the encoded frames. For T-Mode, there are different

sub-modes corresponding to different ratios of frame rate reduction (e.g., to reduce the

frame rate to 1/2, 1/3 or 1/4 of the original frame rate in our demo implementation).

The sub-mode providing the best quality is selected for T-Mode.

� Spatial Mode (S-Mode): The video adaptation algorithm reduces the spatial resolution

of the video. For simplicity, the down-sampling factor is fixed to 2 both horizontally

and vertically in our demo implementation, so that the frame size is 1/4 of the original

size.

Figure 5.1 shows the workflow of the proposed adaptation scheme. The incoming video

stream is decoded and a scene change detector is applied on the decoded frames. In the

presence of a scene change, the first frame after the scene change is encoded as an intra frame

and the current adaptation mode will be kept unchanged (left path in Figure 5.1). Otherwise,

the normal mode decision process is conducted as follows (right path in Figure 5.1).

The decoded frame is first used to calculate the spatial and temporal complexity measures

(TA/SA) required by the video quality metric (see Eq.(3.10)(3.9)). In order to make globally

optimal decisions, the TA and SA values are averaged over a window of 5 frames. The mean

TA/SA values are used to estimate the resulting video quality as proposed in Chapter 3. Note

that if there is a scene change, the mean TA/SA values are reset. This is because different

scenes have quite different spatial and temporal characteristics and by resetting the TA/SA

values, a more accurate estimation for the current scene can be achieved.

Then, the elapsed time since the last adaptation mode change is compared with a threshold

“waiting time” (referred to as Twait). Twait is used to control the minimum duration the

algorithm needs to wait before it is allowed to change the adaptation mode again. The

purpose for introducing Twait is to avoid too frequent mode changes. The considerations are

two-folds: Firstly, jumping between different adaptation modes may cause jitter effects of

the frame quality and affect the user experience. Secondly, the change of spatial resolution

requires to reset the encoder status and the first frame after this kind of adaptation mode

change must be encoded as an intra frame. If this happens too frequently, the number of intra

frames will increase and the coding efficiency of the adapted video stream will be affected. In

the implementation, a waiting period of 1 second is used.

If the elapsed time is longer than Twait, quality estimation and mode decision is con-

ducted to select the best adaptation mode. Otherwise, the current adaptation mode is kept

unchanged.
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Figure 5.1: Workflow of the video adaptation algorithm
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For the quality estimation, the mean TA/SA values are passed to the proposed quality

metric in Section 3.4. The estimated quality values for the sub-modes of the temporal mode

are first calculated and compared with each other to determine the optimal frame rate for the

temporal mode (Section 3.4.2). The estimated quality value for the temporal mode (referred

to as TV Qbest) is then compared with the estimated video quality for the spatial mode (SVQ,

Section 3.4.3) and for the SNR mode (SNRVQ, Section 3.4.1) to determine the optimal adap-

tation mode. The adaptation mode is changed only if 5 successive frames indicate the same

optimal adaptation mode. The consideration here is also to avoid frequent mode changes as

mentioned earlier.

After the whole mode decision process mentioned above, the adaptation mode for the

current frame is determined and the encoder re-encodes the current frame according to the

decision.

5.2 Performance Evaluation of the Video Adaptation Scheme

To evaluate the performance of the QoE-driven video adaptation algorithm, a prototype

system with a cascaded transcoding architecture is implemented based on the open source

X264 video codec.

Since the spatial adaptation mode changes the resolution of the frames, image scaling

needs to be implemented to down- and up-sample the frames. In our implementation, the

image scaling algorithm proposed in [Rie] is adopted. For image down-sampling, it simply

calculates the average of four adjacent source pixels to get the target pixel value. For image

up-sampling, it uses a directional interpolation method, which performs the interpolation

according to the direction of the gradient of each pixel so that the interpolation is done

“along the edge” instead of “across the edge”. This can avoid the typical strong blurring

artifacts introduced by bi-linear interpolation. Also, the rate control algorithm in the original

X264 codecs is replaced with the ρ-domain rate control algorithm introduced in Chapter 4 to

achieve a better accuracy for rate adaptation.

The developed transcoder prototype is used to adapt videos containing different types of

content. In the following, three test videos are selected to test the performance of the demo

system.

� The first one is a combination of 5 standard test sequences (PEDESTRIAN, OBAMA,

RUSH HOUR, FOOTBALL, KOBE) with 30fps frame rate (referred to as STAN-

DARD 30fps). Each sub-scene contains 300 frames (corresponds to a duration of 10

seconds), so the total length is 50 second.

� The second one is a combination of 5 standard test sequences (HARBOUR, SOCCER,
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PARKJOY, SHIELDS, CROWD RUN) with 60fps frame rate (referred to as STAN-

DARD 60fps). Each sub-scene contains 500 frames.

� The third test sequence is a video clip of sport news from BBC downloaded from Youtube

(referred to as BBCNEWS 30fps). The frame rate of this video is 30fps. The sub-scenes

in this video are of different duration.

Example scenes from the test videos are shown in Figure 5.2. The scenes are arranged

according to their order in the test videos.

(a) STANDARD 30fps

(b) STANDARD 60fps

(c) BBCNEWS 30fps

Figure 5.2: Example frames of test sequences

These videos are first encoded at a relatively high bit-rate so that the output video has

a very good quality (which can avoid the impact of the quality of the source videos on the

performance evaluation of the adaptation scheme). The developed transcoder is used to adapt

the videos to a relatively low bitrate. The encoding bit-rates of the input and output video

streams are summarized in Table 5.1. Adapted videos employing four different adaptation

strategies are generated for comparison:

� Proposed adaptive mode decision scheme, which adaptively selects the best video adap-

tation mode.
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� SNR-only scheme, which only uses SNR-mode for adaptation.

� TR-only scheme, which only uses T-mode for adaptation.

� SR-only scheme, which only uses S-mode for adaptation.

Table 5.1: Encoding bit-rates of the input and output video streams for performance evalua-
tion

test video
input bitrate output bitrate (kbps)

(kbps) BR1 BR2 BR3 BR4

STANDARD 30fps 4000 1500 1000 768 512

STANDARD 60fps 8000 1920 1440 1000 768

BBCNEWS 30fps 6000 1500 1000 768 512

To compare the performance of different adaptation schemes, the quality improvement is

measured quantitatively as:

IR =
V QQoE

V Qna

− 1 (5.1)

where V QQoE is the resulting mean video quality of the proposed QoE-driven adaptation

scheme and V Qna is the mean video quality when one of the three non-adaptive adaptation

schemes is used. The video quality is estimated using the video quality metric MDVQM

proposed in Chapter 3.

Tables 5.2-5.4 show the quality improvement of the proposed adaptation scheme against

the non-adaptive strategies when adapting the original video stream to different lower bit-

rates. The improvement is measured in two ways. The first one is the improvement of the

mean quality value over the whole video. This is referred to as “overall” quality improvement.

The second one is the improvement of the mean video quality over the periods in which

different decisions are made by the comparison schemes. For example, when the proposed

adaptive scheme is compared with SNR-only scheme, only the parts in the video where the

algorithm uses an adaptation mode other than SNR mode is considered. In Table 5.2-5.4, this

is referred to as “optimized” part.

From the results in Table 5.2-5.4, it can be seen that compared with the conventional

SNR-only scheme (which changes only QP for video adaptation), the proposed QoE-driven

adaptive scheme can achieve an overall quality improvement of up to 10%. Also, the “overall”

improvement of video quality decreases when the target adaptation bit-rate gets higher. This

is easy to understand, because when the temporal/spatial complexity of the video content is

low or the target bit rate is relatively high, then there is no need to do any special adaptation

operations other than changing the QP. In this case, the overall quality improvement against
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Table 5.2: Video quality improvement of the QoE-driven adaptation scheme against non-
adaptive strategies (for video STANDARD 30fps transcoded from 4Mbps)

Bitrate
QoE vs SNR QoE vs SR QoE vs TR

Optimized Overall Optimized Overall Optimized Overall

1500kbps 14.78% 0.69% 24.57% 22.97% 23.64% 23.64%

1Mbps 21.74% 3.07% 21.10% 16.98% 18.59% 18.59%

768kbps 23.67% 5.37% 19.74% 13.73% 15.07% 15.07%

512kbps 22.75% 8.68% 20.91% 11.04% 10.66% 10.59%

Table 5.3: Video quality improvement of the QoE-driven adaptation scheme against non-
adaptive strategies (for video BBCNEWS 30fps transcoded from 6Mbps)

Bitrate
QoE vs SNR QoE vs SR QoE vs TR

Optimized Overall Optimized Overall Optimized Overall

1500kbps 40.92% 4.24% 27.42% 22.71% 16.30% 16.30%

1Mbps 63.88% 7.80% 27.39% 21.22% 15.14% 15.14%

768kbps 58.01% 8.04% 28.44% 21.44% 12.67% 12.67%

512kbps 46.57% 6.34% 29.58% 22.87% 8.39% 8.36%

Table 5.4: Video quality improvement of the QoE-driven adaptation scheme against non-
adaptive strategies (for video STANDARD 60fps transcoded from 8Mbps)

Bitrate
QoE vs SNR QoE vs SR QoE vs TR

Optimized Overall Optimized Overall Optimized Overall

1920kbps 54.49% 5.19% 39.32% 32.68% 11.59% 11.42%

1440kbps 31.77% 5.80% 36.02% 30.49% 7.86% 6.86%

1Mbps 9.79% 8.13% 36.89% 32.08% 15.51% 3.53%

768kbps 11.81% 10.71% 39.05% 35.53% 14.06% 1.87%

the SNR-only scheme is low. Therefore, the level of “overall” quality improvement depends

heavily on the characteristics of the video content and target bit rate. When the proposed

QoE-driven adaptive scheme is compared with the other two non-adaptive (TR-only and SR-

only) schemes, significant quality improvements can also be observed. This indicates the

importance of choosing a proper adaptation method.

To make the comparison more clear, Figure 5.3 shows the change of video quality over

time when different adaptation strategies are used to transcode the video STANDARD 30fps

from 4Mbps to 512kbps. The x-axis is the frame index and the y-axis is the video quality

calculated by the metric MDVQM. The proposed QoE-driven adaptation scheme is compared

with three other non-adaptive strategies, i.e., SNR mode only(Figure 5.3a), temporal mode
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only (Figure 5.3b) and spatial mode only (Figure 5.3c). The red curves show the quality

change when the QoE-driven adaptation scheme is used and the blue curves show the case

when the other strategies are used. Sometimes the curves overlap because the QoE-driven

adaptation scheme has chosen the same adaptation mode as the one chosen by the comparison

scheme. It can be seen that the red curves are always higher than or overlap with the blue

curves, which proves that the proposed QoE-driven adaptation scheme can adaptively make

the best adaptation decision to optimize the video quality. Figure 5.4 and Figure 5.5 show the

change of video quality over time for the other two test videos (i.e. STANDARD 60fps and

BBCNEWS 60fps). In Figure 5.3 and Figure 5.4, the period of different sub-scenes contained

in the test videos is marked by showing example pictures of the sub-scenes to make the figures

more intuitive.

From the results, it can be seen that for 30fps sequences, the temporal mode is not used

very often. Most of the time, the transcoder operates in SNR- or spatial-mode. The reason

for this is that 30fps is already a threshold below which the human visual system tends to

recognize the jerkiness caused by frame dropping. So reducing the frame rate from 30fps to

15fps or lower is not a preferred way for the video adaptation. This behavior of the transcoder

accords with the result from the subjective tests.

On the other hand, for 60fps sequences, since the original frame rate is relatively high, the

impact of frame rate reduction from 60fps to 30fps is not very significant. So the temporal-

mode is used more often than for the 30fps sequences. This observation can also be confirmed

by the results in Table 5.2-5.4: For the two 30fps test videos, the performance of the TR-only

scheme is much worse than the SNR-only scheme (which is proved by a much higher overall

quality loss against the proposed scheme of the TR-only scheme than the SNR-only scheme).

However, according to the results for the test video STANDARD 60fps (Table 5.4), the overall

performance of the TR-only scheme is very close to that of the SNR-only scheme, sometimes

even better especially at low bit-rates. This indicates for videos with a relatively high frame

rate (e.g. 50/60fps), the temporal-mode (reducing the frame rate) could be a preferred choice

for adaptation.

Figure 5.6a shows sample frames from BBCNEWS 30fps adapted using the proposed adap-

tive QoE-driven scheme (right) and the conventional SNR-only scheme (left). For this frame,

the adaptive scheme chooses to encode the frame in SR-mode (which means the frame is

down-sampled and then encoded at the lower resolution) while the SNR-only scheme choose

to adjust simply the quantization parameter. The achieved quality improvement can be seen

clearly. In Figure 5.6b and Figure 5.6c comparisons of adapted frames for test videos STAN-

DARD 30fps and STANDARD 30fps are also presented. Similar quality improvements can

also be observed from the pictures.

The above results have shown the effectiveness of the proposed QoE-driven adaptation
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(a) QoE-driven adaptation vs. SNR mode only

(b) QoE-driven adaptation vs. Temporal mode only

(c) QoE-driven adaptation vs. Spatial mode only

Figure 5.3: Video quality comparison between the QoE-driven adaptation scheme and
three non-adaptive strategies (SNR-only, Spatial-only, Temporal-only) for the video STAN-
DARD 30fps (transcoded from 4Mbps to 512kbps)
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(a) QoE-driven adaptation vs. SNR mode only

(b) QoE-driven adaptation vs. Temporal mode only

(c) QoE-driven adaptation vs. Spatial mode only

Figure 5.4: Video quality comparison between the QoE-driven adaptation scheme and
three non-adaptive strategies (SNR-only, Spatial-only, Temporal-only) for the video STAN-
DARD 60fps (transcoded from 8Mbps to 1Mbps)
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(a) QoE-driven adaptation vs. SNR mode only

(b) QoE-driven adaptation vs. Temporal mode only

(c) QoE-driven adaptation vs. Spatial mode only

Figure 5.5: Video quality comparison between the QoE-driven adaptation scheme and
three non-adaptive strategies (SNR-only, Spatial-only, Temporal-only) for the video BBC-
NEWS 30fps (transcoded from 6Mbps to 512kbps)
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scheme.

5.3 Summary

In this chapter, a QoE-driven video adaptation scheme is proposed to adaptively make the

optimal adaptation decision according to the characteristics of the video content and the

channel resources. Three adaptation modes, i.e. SNR Mode, Temporal Mode and Spatial

Mode, are considered in the proposed scheme. The metric MDVQM proposed in Chapter 3 is

used to estimate perceived video quality and select the suitable adaptation operations. The

frequency of mode changes is restricted to avoid the spatial and temporal flickering effect.

The performance of the proposed scheme is evaluated using video sequences with different

characteristics. The results show that the proposed adaptive MDA scheme outperforms all

the other non-adaptive approaches. Compared with the traditional adaptation scheme where

only QP is adjusted, the improvement of the overall perceived video quality is up to 10%.
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(a) BBCNEWS 30fps

(b) STANDARD 30fps

(c) STANDARD 60fps

Figure 5.6: Sample frames of the test videos adapted using SNR-only mode(left) and QoE-
driven adaptation scheme(right)





Chapter 6

Conclusion and Future Work

6.1 Conclusions

In this thesis, various aspects of QoE-driven multi-dimensional video adaptation are investi-

gated. The main objective of this work is to find the optimal combination of multi-dimensional

adaptation operations and optimize the perceived video quality (QoE) for the end-users.

Specifically, two important issues are investigated: the objective estimation of QoE and rate

control for accurate rate adaptation.

To understand how the perceived video quality is affected when the spatial and temporal

resolution of the video content are changed separately or even jointly, extensive subjective

experiments are conducted using diverse video contents. Based on the subjective data from

the experiments, a no-reference video quality metric (MDVQM) for multi-dimensional video

adaptation is proposed to estimate the perceived video quality under different combinations

of spatial, temporal and SNR resolution. The overall video quality is modelled as the product

of separate items, with each of the items trying to catch the impact of quantization, frame

dropping and spatial down-sampling, respectively. The results of performance evaluation

indicate that the analytical quality metric can provide accurate quality estimation in the

presence of different spatial/temporal impairments.

A ρ-domain rate control algorithm with header size estimation for H.264/AVC video is

also proposed for the task of accurate rate adaptation. A two-stage encoder structure is

used to resolve the inter-dependency between RDO and ρ-domain rate control for H.264/AVC

encoding. The size of header information is estimated by an improved rate model which

considers various components in a MB header. Experimental results show that the proposed

algorithm achieves better rate control accuracy and video quality when compared with the

original ρ-domain rate control algorithm.

Finally, combining the proposed video quality metric and rate control algorithm, a QoE-

95
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driven approach is proposed for multi-dimensional video adaptation to optimize the per-

ceived video quality. The resulting QoE under different adaptation modes is estimated by

the proposed video quality metric and the optimal combination of adaptation operations is

determined by considering the predicted QoE and computational complexity. Performance

evaluations have shown that the proposed QoE-driven MDA scheme can provide significant

QoE improvements when compared with conventional video adaptation schemes.

6.2 Future Work

In this section, the potential extensions and applications of the work presented in this thesis

are discussed in three directions.

6.2.1 Video Quality Metric Design

The proposed metric uses the pixel-bit-rate as a video feature for the estimation of the video

quality. This feature is a good indicator of the video quality and can be read directly from

the compressed bitstream which reduces the complexity of the metric. One issue of using the

pixel-bit-rate is that it is encoder dependent and therefore, the parameters in the metric may

need to be re-trained for each encoder type (such as MPEG-4 ASP and VC-1). It will be

interesting to look into more general video features to improve the generality of the metric.

In the proposed metric, the spatial quality modelling which simulates the impact of spatial

down-sampling is only verified by a down-sampling ratio fixed to 2 (from 4CIF to CIF). It is

worth extending the discussion to more flexible spatial down-sampling ratios.

The temporal and spatial activity measures used in the proposed metric are calculated

from the decoded video frames which need a complete decoding process. From a complexity

point of view, it is desirable to estimate the measures without decoding or with only partial

decoding of the compressed stream. This could be done, for example, by using information

from the residual signal or the statistics of transformed coefficients in intra-coded frames.

6.2.2 Rate Control Algorithm

For simplicity, a simple frame level bit allocation scheme is used, which allocates the bit

budget evenly to the inter-coded frames. The video quality could be further improved by

employing a more advanced frame level bit allocation algorithm based on the characteristics

of the video content. This is of particular interest to applications where constant video quality

is more desired than a strict constant bit-rate constraint.
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6.2.3 QoE-driven MDA scheme

The proposed MDA scheme allows us to adapt the video content actively in the spatial and

temporal domain to meet the target bit-rate. However, too frequent changes of the SNR,

spatial or temporal quality may cause serious flicker effect which degrades the perceived

video quality. Researches have shown that the perceptual effect of flicker largely depends

on the frequency and amplitude of the quality variations [ZKSS03][NEE+11]. Therefore,

the time, the frequency and the amplitude of the adaptation operations should be carefully

considered. In the proposed MDA scheme in Chapter 5, this issue is only addressed empirically

by setting a fixed interval for successive adaptation operations. It is worth investigating how

the corresponding flicker effects affect the perceptual video quality.

In this thesis, the proposed video quality metric is only applied to the MDA problem for a

single video stream. Actually, the metric can also be applied to a multi-stream transmission

scenario, where multiple concurrent video streams are transmitted to a user or even multiple

users. In such scenarios, the metric can support the joint adaptation of a set of video streams

in consideration of their respective characteristics to achieve fairness among the streams and

users while maintaining a good perceived video quality.
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