
1 INTRODUCTION 

1.1 Warning and alarm systems in an integrative 
risk management approach for natural hazards 

An integrative approach to risk management incorpo-
rates risk mitigation measures to reduce damage 
caused by natural hazards. In recent years, warning 
and alarm systems (WASs) have been increasingly 
applied as cost-efficient risk mitigation measures 
with little environmental impact (Intrieri et al., 2013). 
WASs generate information or issue an alert before a 
hazard event causes loss of property and life (UNEP, 
2012). By generating these alerts, WASs mainly mit-
igate the overall risk by reducing the probability of 
presence of endangered persons. The vulnerability or 
the number of mobile objects can only be reduced if 
sufficient lead time is offered and appropriate coun-
termeasures are taken (Medina-Cetina & Nadim, 
2008, Bründl et al., 2009). To incorporate WASs as 
standard measures into an integrative risk manage-
ment approach and to make them comparable to well 
proven measures such as rock fall nets, dams and gal-
leries, their reliability should be quantified. 

1.2 A system classification to identify factors 
relevant to reliability  

To identify factors that influence the reliability of the 
currently operational WASs in a structured manner, 
Sättele et al. (2012) classify WASs into three main 
categories: i) threshold systems, ii) expert systems 
and iii) model-based expert systems. They apply the 

classification to 52 WASs in Switzerland and identi-
fy typical system characteristics for each system 
class. As a result, the classification allows a struc-
tured identification of factors that influence the relia-
bility of each defined system class.   

The reliability of a threshold system strongly de-
pends on the definition of an appropriate alarm 
threshold, on the availability of well-designed and 
redundant sensor units and on the functionality of the 
alarm system to start and stop transmission of the 
warning. The alarm threshold of WASs is a prede-
fined minimum value of monitored parameters. If 
this value is exceeded, an alarm is automatically ini-
tiated. The threshold is an essential variable to char-
acterize and distinguish events in an early warning 
process (Felgentreff & Glade, 2008).  

In this paper, the reliability of an active threshold 
system, the debris flow alarm system at Illgraben, is 
quantified. Suitable reliability methods, which ad-
dress the factors influencing the reliability of a 
threshold system, are identified, applied and evaluat-
ed. This case study is the first step towards the de-
velopment of a generic method to quantify the relia-
bility of WASs, which shall ultimately help 
incorporating WASs as standard measures into an in-
tegrative risk management approach.  
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ral hazards that supplement protective measures such as rock fall nets, dams and galleries. To integrate warn-
ing and alarms systems as standard measures in a risk management approach, their reliability should be quan-
tified. In this paper, selected methods are applied to quantify the reliability of an active threshold-based debris 
flow alarm system. The reliability is defined as the ability of the system to detect dangerous debris flow 
events, to issue alarms in a timely manner and to avoid false alarms. Bayesian networks are applied to proba-
bilistically model the considered alarm system and to calculate its overall reliability. The final system reliabil-
ity is expressed in terms of the receiver operator characteristics, which allow the identification of the optimal 
trade-off between the probability of detection and the probability of false alarms. 



2 RELIABILITY METHODS 

2.1 System reliability analysis 

In many industry sectors, tailored standards and 
methods exist to assess system reliabilities. Reliabil-
ity methods such as Failure Mode Effects and Criti-
cality Analysis (FMECA) and Fault Tree Analysis 
(FTA) are applied in production industries to evalu-
ate the reliability of the system designs in different 
life cycle phases. Thereby, it is common to express 
the reliability of system components in failure rates 
(Blanchard & Fabrycky, 2011). In most classical re-
liability methods, dependencies between the system 
components are not considered (Pagès & Gondran, 
1986). Specially designed methods for quantification 
of the reliability of WASs for natural hazards could 
not be identified. An initial approach to investigate 
the reliability of the Swiss avalanche warning system 
was presented by Bründl & Heil (2011). They use 
FTA to identify the most critical system components, 
but conclude that the method is not sufficient to cov-
er the total complexity of the system. Natural hazard 
events are complex, often site-specific, rare and ran-
dom in nature. WASs that are currently operated for 
a variety of natural hazard processes are mainly in-
stalled as prototypes. To quantify the overall system 
reliability, methods used in the area of civil engineer-
ing appear to be suitable. They are designed for the 
assessment of  unique, complex systems under uncer-
tainties (Bensi et al., 2012). The reliability of civil 
engineering systems are assessed through combining 
probabilistic models of system parameters with phys-
ical or logical models representing system failures 
(Stewart & Melchers, 1997).  

2.2 Bayesian Networks to quantify the reliability of 
warning and alarm systems for natural hazards 

Bayesian Networks (BNs) are suitable methods for 
probabilistic quantification of the reliability of WASs 
for natural hazards. Aquilera et al. (2011) summarize 
suitable applications of BNs for environmental mod-
eling and Straub (2005) states reasons why BNs have 
a large potential for assessing natural hazard risks. 
BN allow the incorporation of expert knowledge, 
deal with rare data and are based on an intuitive 
modeling approach (Friis-Hansen, 2001). A BN is a 
graphical model that allows a quantitative system 
analysis by combining sub-system reliabilities. The 
nodes of a BN represent random variables to express 
the uncertain state of a component. The arcs repre-
sent the causal probabilistic dependencies between 
the nodes (Pearl 1988, Jensen & Nielsen 2007). 
Nodes have a child-parent relationship and the prob-
abilities of the states of a child node are expressed in 
conditional probability tables (CPTs) (Jensen & 
Nielsen, 2007). For this case study, the free software 
GeNIe is used to calculate the reliability of the 
Illgraben debris flow alarm system (DSL, 2013). 

2.3 Receiver Operator Characteristics to express 
the system performance  

Receiver Operator Characteristics (ROCs) are com-
bined with the BN to represent the overall system 
performance as the ratio between the probability of 
detection POD (true positives) and the probability of 
false alarms PFA (false positives) (Figure 1). ROC 
curves have their roots in signal detection theory, but 
have seen widespread application, e.g. to represent 
the accuracy of diagnostic tests in medicine (Fawcett, 
2006). ROC curves are a simple tool for the defini-
tion of optimal alarm thresholds (England, 1988, 
Schoefs et al., 2009). An optimal threshold allows 
the detection of all events and keeps false alarms to a 
minimum (Intrieri et al., 2013). In this case study, 
ROC curves are modeled to investigate the influence 
of system alarm thresholds on the system reliability.  

   
 
Figure 1. Typical Receiver Operator Characteristic (ROC) curve 
to model the relationship between the probability of detection 
and the probability of false alarm.  

 

3 THE ILLGRABEN DEBRIS FLOW ALARM 
SYSTEM 

3.1 The Illgraben: An active debris flow catchment   

The following analysis aims to quantify the reliabil-
ity of a threshold system, which is installed in Swit-
zerland to detect dangerous debris flows and floods 
in the Illgraben catchment. A debris flow is a fast-
flowing mixture of water and solid particles which 
typically consists of surges. The Illgraben catchment 
ranges in elevation from 610 m a.s.l. to 2716 m a.s.l. 
and half of the catchment area (~ 4 km2) is covered 
by bedrock and debris deposits. Due to the geological 
conditions there is a remarkably high occurrence rate 
of debris flows (Badoux et al., 2009). In 2000, a 
monitoring system was installed by the Swiss Federal 
Institute for Forest, Snow and Landscape Research 
WSL, which was further developed into an alarm 
system in 2006. Since 2008 a detailed data base has 
been built up. It contains continuously measured sen-
sor data that are included in this reliability analysis.  



3.2 Design of the alarm system 

Two sensor units are located close to the release area 
to detect events in real-time. Sensor unit 1 (SU1) is 
located in the upper catchment, where geophone 1 
(G1) continuously monitors ground vibrations. Sen-
sor unit 2 (SU2) is located 200 m below, where two 
geophones (G2 / G3) and two radar devices (R1 / R2) 
measure the ground vibrations and the flow depth. 
The sensors in each unit are controlled by a logger 
and if predefined threshold values are exceeded, an 
alarm call is automatically issued via modem and 
transmitted to the communication unit in the valley. 
The power at these remote locations is supplied via 
solar panels and batteries. The communication unit in 
the valley forwards incoming alarm calls via T-Box 
and SMS-Butler to three alarm units. They are locat-
ed close to three crossings of the streambed in the 
catchment. Each alarm unit is equipped with a red 
light and an audible alarm. In addition, responsible 
authorities and system operators receive alarm mes-
sages via SMS and E-mail.  
 The alarm time for endangered persons is in the 
range of 5-15 min and is determined by the distance 
between the sensors and the uppermost crossing in 
the channel. At present, the system aims to detect all 
events that represent a hazard, even for persons 
crossing the catchment (Graf et al., 2009). For the 
case study, events are classified according to the flow 
depth increase, measured by R1 and R2.  At this lo-
cation, small events (A) lead to a flow depth increas-
es of up to 0.6 m. Further down the catchment, close 
to the crossing, they remain entirely within the chan-
nel and represent a hazard only for persons situated 
in the channel. Medium-sized events (B) have flow 
depth increases of up to 1.5 m and imply a limited 
overbank flow. Large flood events (C) are character-
ized through flow depth increases of more than 1.5 m 
and are characterized through small amounts of de-
bris. Debris flows events (D) contain a high debris 
percentage. Since 2000, D events varied in density 
and reached flow depths of between 1 m and 8 m, but 
never entered populated areas. According to histori-
cal documentation, the last serious overbank flow 
happened in 1961 (Badoux et al., 2009).  

4 BAYESIAN NETWORKS TO QUANTIFY THE 
RELIABILITY OF THE ILLGRABEN SYSTEM 

4.1 Three levels of the Bayesian Network  

In this case study, BNs are applied to probabilistical-
ly model the alarm system and quantify its reliability. 
The overall system reliability refers to the ability of 
the system to fulfill its designated performance, 
which is to issue an alarm to protect endangered ob-
jects close to the channel of an ongoing event in a 
timely manner and to avoid false alarms. The BN de-
veloped for Illgraben consists of three main levels. 

Level one represents the main functionalities and in-
formation flow through the BN. Level two models 
the technical components and their dependencies. 
Level three focuses on the interpretation of the meas-
ured data and deals with the influence of the system 
threshold on the overall system reliability. 

4.2 Main functionalities and information flow 

The basic structure of the BN reflects the system’s 
main functionalities and information flow. Main sys-
tem functionalities are represented as chance nodes 
and the arcs show the information flow between the-
se functionalities (Figure 2).  

 

 
Figure 2. Main functionalities (chance nodes) and information 
flow (arcs) through the BN. 

 
 
The CPTs of nodes representing the main func-

tions allow the definition of terms and conditions un-
der which information is forwarded to the child 
nodes. Theses nodes are deterministic, i.e. the proba-
bility values in their CPTs are 1 or 0. Due to the re-
dundant sensor design, the state of the node “sensor 
unit calls communication unit” is given by an OR 
condition (Figure 3). The state is set to "yes" if either 
SU1 or SU2 indicates event detection or issues a 
false alarm. Therefore, the state of either the parent 
node “sensor unit 1 detects event” OR the parent 
node “sensor unit 2 detects event” is "yes".  

 

 
Figure 3. CPT of the node "sensor unit calls communication 
unit": Main functionality is based on OR conditions. 



In contrast, the state of the root node “alarm” is 
defined through an AND condition (Figure 4). The 
root node only indicates that an event is detected or a 
false alarm issued if the states of all three child nodes 
"alarm unit 1 / 2 / 3 activates alarm" are "yes". 

 

 
Figure 4. CPT of  the node "alarm": Main functionality is based 
on AND conditions.  
 

4.3 Technical components and dependencies 

The states of chance nodes, which represent main 
functionalities, are moreover directly influenced by 
the sub-reliability of individual and dependent tech-
nical system components (TSCs). The states of these 
TSCs are expressed through survival or failure prob-
abilities. The functionality "sensor unit calls commu-
nication unit" is only guaranteed if the modem is 
functioning and is supplied with power by the battery 
and the solar panel (Figure 5). The CPT of  “sensor 
unit calls communication unit” is extended to the one 
in Figure 3 to include the influence of TSC failures 
(Figure 6). 

 

 
Figure 5. Technical system components influence the function-
ality of the node "sensor unit calls communication unit". 
 

 
Figure 6. CPT of the node "sensor unit calls communication 
unit", including the influence of technical system components. 

 
 
The CPTs of nodes that represent states of TSCs 

express the probability for a system component of ei-
ther being in service (survival) at time t (Pr(S(t)) or 
not being in service (failure) at time t (Pr(F(t)). Fail-
ures occur following a Poisson process, i.e. occur 
randomly in time and independently of each other. 
The probability of failure at time t is given as 

Prሺܨሺݐሻሻ ൎ λ ൈ Eሾ ௥ܶሿ,          (1) 

 where λ is the failure rate and E[Tr] is the expected 
time it takes to detect and repair the failure. The ap-
proximation holds for small values of λ (Straub, 
2012). The failure rate λ incorporates both internal 
technical failure rates λIF and failures caused by ex-

ternal influences λEF such as rock fall, lightning, an-
imals, vandalism, humidity. 

λ ൌ λூி ൅ λாி,            (2) 

Internal failure rates λIF for TSCs are directly de-
rived from specified Mean Time To Failure (MTTF) 
data or, for repairable parts from Mean Time Be-
tween Failure (MTBF) data:  
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ଵ
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	,	       (3) 

External failure rates λEF are derived from field 
data, from operating or maintenance records, incident 
data banks or expert opinions (Stewart & Melchers, 
1997). Failures due to external causes are rare at 
Illgraben. In the period between 2006 and 2012, one 
out of two radar devices failed twice and one out of 
three solar panels once. One radar device was mud-
died during an event, measured unrealistic high val-
ues and continuously issued false alarms. Another 
time, the mounting of the radar device failed. The 
empirically observed external failure rates λEF for ra-
dar devices, based on two events for two sensors dur-
ing a period of 7 years, is λEF  = 2 / (2 * 7 * 365) = 
3.9 *10-4 per day. One solar panel was hit by a rock 
during a debris flow event and was almost complete-
ly destroyed. The resulting external failure rate λEF 

for the solar panel is λEF  = 1 / (3 * 7 * 365) = 1.3 
*10-4 per day. By adding the external failure rates λEF 
to the specified internal failure rates λIF, the overall 
failure rates λ of the radar devices and solar panels 
increase significantly. For the other TSCs, the overall 
failure rate λ is equal to internal failure rate λIF and 
derived from MTTF or MTBF data, specified by the 
suppliers (Table 1).  

 
Table 1.  Input values to calculate the failure rate λ. __________________________________________________ 
component   specified   λIF     λEF __________________________________________________ 
geophone   100y MTTF*      2.7 *10-5  

no failure observed 
radar        60y  MTTF   4.5 *10-5  3.9 *10-4 
data logger   180y MTBF  1.5 *10-5  

no failure observed 
modem    125y MTBF  2.1 *10-5  

no failure observed 
T-Box    45y  MTBF  6.0 *10-5  

no failure observed 
SMS Butler  50y  MTBF*  5.4 *10-5  

no failure observed 
audible alarm  20y   MTTF*  1.3 *10-4  

no failure observed 
red light    20y  MTTF*  1.3 *10-4  

no failure observed 
solar panel   50y  MTTF*  5.4 *10-5  1.3 *10-4 
battery    10y  MTTF*  2.7 *10-4  

no failure observed __________________________________________________ 
* assumptions. 

 
It is estimated that the E[Tr] for all TSCs of the 

debris flow alarm system is about three days. Diag-
nosis tools are incorporated into the system to ensure 
that the detection and communication of failures 
takes place within one day. On the same day the 
spare parts are ordered. The delivery takes another 
day before the TSC is replaced on the third day.   

For the mobile network and the public power sup-
ply, the probability of failure at time t, Pr(F(t)), is 
specified in general. According to the local power 



supplier, Illgraben was not supplied with power for 
7.57 h between 2008 and 2011. It follows that the 
probability of failure for the power supply is Pr(F(t)) 
=  0.315 d / 1825 d = 1.1 *10-4 per day. For the mo-
bile network it is assumed (experience L. Meier, 
GEOPRAEVENT) that the probability of failure for 
the mobile connection is about 15 min per year. Thus 
the probability of failure per day is estimated at 
Pr(F(t)) = 0.0104 d / 365 d = 2.8 *10-5 per day. 

4.4 The influence of the system threshold on the 
system reliability 

The overall system reliability depends not only on 
the reliability of the TSCs, but is also strongly influ-
enced by the interpretation of the measurements and 
the choice of the system alarm threshold. These as-
pects are modeled directly in the BN. The final BN is 
designed in such a way that the system reliability in 
terms of the POD of an event versus the PFA can be 
calculated. Both probabilities are calculated automat-
ically for different types of events (A / B / C / D / no 
event). The top node thus represents the natural haz-
ard event type. If evidence is set on event A, B, C, or 
D the BN calculates the POD, while evidence set on 
"no event" calculates the PFA. 

 To analyze the influence of the threshold on the 
system reliability, sensor data, continuously meas-
ured in the period between 1st of May 2008 and 24th 
September 2012, are processed and interpreted with-
in the BN. The analyzed period includes 6 A, 18 B, 2 
C, 18 D events and 839 "no event" days. In the line 
below the top node "event", measurements of each of 
the five sensors are represented in independent 
nodes. Each CPT summarizes the frequency of oc-
currence of ground vibrations or flow depth differ-
ences measured by one specific sensor. These fre-
quencies are further subdivided and the relative 
frequencies are stated conditional on the event type. 
To obtain the frequency of occurrence of ground vi-
brations, the maximum ground vibration value per 
day and geophone is identified. This maximum value 

is a sufficient criterion to interpret the influence of 
the system threshold, because it indicates if an alarm 
is issued on a specific day. To obtain the difference 
in flow depth for a specific day, which is the alarm 
criterion for the radar, the respective maximum flow 
depth value of a given day is subtracted from the 
maximum value of the previous day. These maxi-
mum ground vibration values and flow depth differ-
ences for each day and sensor are then discretized in 
classes (Table 2).  

 
Table 2.  Ground vibration and flow depth classes. __________________________________________________ 
ground vibration maximum   flow depth  difference    ________________________       __________________ 
class   values (impulses / sec) class  values (m) __________________________________________________ 
GV1  = 0            FD1  ≤ 0  
GV2  > 0,   ≤ 1      FD2  > 0,   ≤ 0.1 
GV3  > 1,   ≤ 5     FD3   > 0.1,  ≤ 0.3 
GV4  > 5,     ≤ 20     FD4  > 0.3,  ≤ 0.7 
GV5  > 20,    ≤ 50     FD5  > 0.7,  ≤ 1.5 
GV6  > 50,  ≤ 200    FD6  > 1.5, ≤ 3 
GV7  > 200,   ≤ 500    FD7  > 3 
GV8   > 500         __________________________________________________ 

 
To calculate the relative frequencies of occurrence 

for each sensor and event type, these classified max-
imum ground vibration and flow depth difference oc-
currence values are enumerated per event type and 
sensor. The resulting frequencies of occurrence for a 
given geophone and event type differ strongly (Fig-
ure 7). G1 records no ground vibrations on "no 
event" days that exceed GV4, whereas G2 and G3 
monitor values in all classes. As a result, they are 
more likely to issue false alarms. On days with A 
events, G1 measures values in higher classes, be-
tween GV4 and GV6. The other geophones record 
values in lower classes for A events. G2 measures 
values between GV2 and GV5 and G3 between GV4 
and GV8. Thereby, G1 and G3 follow logical pat-
terns: The stronger the event type, the higher are the 
measured values. In contrast, G2 records values in 
lower classes even on days with strong events.  

Figure 7. Measured ground vibration frequencies conditional on event type and geophone.



Both radar devices measure flow depth differ-
ences in all defined classes on "no event" days and 
are thus prone to issue false alarms (Figure 8). As the 
event type gets stronger, R1 measures flow depth dif-
ferences in higher classes, whereas data measured by 
R2 are difficult to interpret. On days with A and B 
events, R2 only measures small flow depth increases, 
similar to values measured on "no event" days. For 
stronger events R2 performs better and monitors sig-
nificantly higher values. 

4.4.1 POD and PFA of individual sensors 
To determine the POD and the PFA for individual 
sensors, sensor units and the overall system, squared 
decision nodes are incorporated in the BN on two 
levels (Figure 9). Decision nodes, called "threshold", 
are incorporated to evaluate the influence of single 
system alarm thresholds on the sensors. The thresh-
olds are chosen according to the defined classes (Ta-
ble 1). The CPTs of their child nodes represent the 
terms and conditions set for an alarm release of a 
single sensor. An alarm is issued if the classified 
ground vibrations or flow frequencies of a certain 
event exceed the defined threshold.  
 

 
Figure 9. Decision nodes (squared) to determine the influence 
of the system thresholds. 

 
 

The ROC curves for each individual sensor and event 
type vary (Figure 10). Independent of the event type, 

the ROC curves of G1 are close to the optimum. 
Even for small events of type A, G1 is able to detect 
all events and reach a PFA of only 0.001 per day. 
Such an optimum threshold for the detection of A 
events does not exist for G2 and G3. If the threshold 
is defined in a way that all small events are to be de-
tected with a high probability, an unacceptably high 
number of false alarms would result. For stronger 
events of the type C or D, a better ratio between POD 
and PFA can be reached, which is, however, still far 
from the optimum.  

 

 
Figure 10. ROC curves for different event types and thresholds 
for geophone 1, 2 and 3, based on empirical estimates. Dots rep-
resent thresholds GV1 - GV8. 
 
 
 The performance of the two radar devices also var-
ies according to the position and event (Figure 11). 
R1 performs much better, especially for the detection 

Figure 8. Measured flow depth difference frequencies conditional on event type and radar device. 



of small events. For POD of values close to 1, the as-
sociated PFA is 0.045 per day. R2 reaches a maxi-
mum POD of 0.5 for small events, which implies a 
PFA of 0.5 per day. A better ratio between the POD 
and the PFA is only obtained by R2 for stronger 
events of type C and D.  
 

 
Figure 11. ROC curves for different event types and thresholds 
for radar 1 and 2, based on empirical estimates. Dots represent 
thresholds FD1 - FD7. 
 
 
 The thresholds implying the best ratio between 
POD and PFA for small events is identified from the 
ROC curves. For the only sensor in SU1 (G1), GV4 
is optimal. For the other sensors two threshold com-
binations, T1 and T2, are considered. T1 includes 
thresholds that achieve a POD close to 1 (G2: GV2, 
G3: GV4, R1: FD3, R2: FD2) and T2 includes the 
thresholds values above T1 that imply lower POD 
values (G2: GV3, G3: GV5, R1: FD4, R2: FD3). 

4.4.2 POD and PFA of the sensor unit 2 
The good performance of SU1 is achieved by G1. 
The individual sensors in SU2 are prone to a high 
number of false alarms. To be able to combine alarm 
threshold criteria for the sensors in SU2 and reduce 
the PFA, the decision node "alarm criteria" is added. 
Through this decision node, four alarm criteria are 
defined. Criterion 1 (C1) specifies that each sensor 
can issue an alarm individually. Criterion 2 (C2) re-
quires that the thresholds of at least one radar and 
one geophone are exceeded to issue an alarm. Crite-
rion 3 (C3) specifies that at least three sensors must 
detect an event to issue an alarm and Criterion 4 (C4) 
requires that the thresholds of all four sensors are ex-
ceeded for an alarm. By means of the node "sensor 
unit 2 detects event", the POD or PFA for a chosen 
threshold combination (T1 / T2) and the alarm crite-
rion (C1 - C4) in SU 2 can be calculated.  
 Independent of the threshold combination, an 
alarm combination C1 generates a maximum POD 
but unacceptably high values for PFA (Figure 12). 
The threshold combination T2 strongly reduces the 

PFA. Threshold combinations play an important role 
in conjunction with C2 and C3. Only T1 in conjunc-
tion with C2 or C3 leads to a POD close to 1. POD 
values, generated through the threshold combination 
T2 and alarm criteria C2 or C3, are lower and C2 has 
a significant PFA. Alarm combination C4 implies a 
PFA equal to zero, but also a low POD. 
 

 
Figure 12. ROC curve for sensor unit 2 dependent on the 
threshold combinations (T1 or T2) and alarm criteria (C1 - C4). 
  

4.4.3 POD and PFA of the overall system 
The overall system reliability in terms of POD versus 
PFA can be calculated through the root node "alarm", 
by fixing the event type and computing the condi-
tional probabilities of alarm. A high POD, between 
0.998 and 0.999, is reached for all defined threshold 
combinations and alarm criteria of SU2 and the op-
timal threshold GV4 for G1 in SU1 (Figure 13). De-
spite the incorporation of the failure probabilities of 
all TSCs, the system achieves a maximum POD of 
0.999. The PFA ranges between 0.6 and 0.001 per 
day. The best result leads to a POD of 0.999 and a 
PFA of 0.002 per day and is reached by alarm crite-
rion C3 and, in contrast to section 4.4.2, by the 
threshold combination T2. The improved POD and 
decreased PFA values and the higher optimal thresh-
old combination for SU2 are a consequence of the 
incorporation of an excellent performing G1 in SU1.  
 

 
Figure 13. ROC curve for the alarm system dependent on the 
threshold combinations (T1 or T2) and alarm criteria (C1 - C4) 
and a threshold GV4 for the geophone in sensor unit 1. 

5 DISCUSSION AND CONCLUSION 

The case study shows that BNs are a suitable tool to 
analyze the reliability of warning and alarm systems 
for natural hazards. Uncertainties and system de-
pendencies can be included. The conditional POD 
and PFA for the overall system, for individual sen-
sors or sensor units can be calculated automatically 
for each event type.  



 The high overall system reliability observed for the 
Illgraben debris flow alarm system is reached by a 
redundant sensor configuration and the optimal per-
formance of the single geophone in sensor unit 1. 
The analysis revealed that the choice of the thresh-
olds and alarm criteria has the largest influence on 
the system reliability. Even identically constructed 
sensors have varying sensitivity to the hazard event. 
These differences are due to the positioning of the 
sensors, i.e. their proximity to the catchment. Ac-
cording to the analysis, sensors of sensor unit 2 per-
form less reliably. Even with combined alarm crite-
ria, the PFA would be unacceptable high. However, 
our analysis overestimates the PFA of sensor unit 2. 
The reason is that the duration of signals is included 
as an additional alarm criterion. The threshold of a 
geophone is only exceeded if ground vibrations ex-
ceed the defined threshold for at least 5 seconds. 
Consequently, short excitations due to spontaneous 
events such as rock falls do not cause false alarms.  
 In this case study, failure rates of the technical sys-
tem components have only a minor influence on the 
overall system reliability. The fact that a small num-
ber of external failures strongly increase the proba-
bility of failures for technical system components 
demands a detailed analysis in the future of external 
failure causes and associated probabilities. In addi-
tion, a cost-benefit analysis would give valuable in-
formation about the cost-effectiveness or redundant 
communication and alarm units.  

 The application of the BN and the resulting ROC 
curves showed that the selected methods are able to 
deal with criteria that influence the reliability of 
warning and alarm systems for natural hazards. A de-
tailed sensitivity analysis is currently being conduct-
ed to identify the optimal threshold. The final relia-
bility quantification method will include predefined 
acceptable risk levels and will explicitly quantify the 
consequences of false alarms and missed events as a 
basis for selecting the optimal warning strategy.   
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