A mortar method for incompressible fluid flow discretized by

non-matching grids in a stabilized finite element framework

A. Ehrlt, A. Popp?, V. Gravemeier!, W.A. Wall*

L Institute for Computational Mechanics, Technische Universitat Minchen, Germany, contact: ehrl@Inm.mw.tum.de

Motivation Non-conforming meshes

For many applications in different fields of engineering and applied sciences, — Domain decomposition into sub-domains with an internal boundary (see Fig. 1 and 2)
flud systems in relatively large domains have to be investigated. — Mortar method is used for weakly enforcing coupling constraints by dual Lagrange
Computational methods are increasingly used for such investigations. While Multipliers (mortar matrices M and D)
most of the domain can often be discretized with a rather coarse — The initial saddle-point system is transformed to a non-saddle-point system by trivial
discretization length without jeopardizing the overall solution quality, a rather condensation operations (see Fig. 3) Kavgn 0 [Kegor | 0| 0
small characteristic discretization length is required locally, for instance due to - 0 Kpogo| 0 |Kgopw| 0
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boundary layers, which need to be resolved. An adequate resolution of such | E uz B ,£ziiii 0 Ko | 0 [Kew oM
boundary layers as well as the large number of elements needed to bridge 0D master side L L HrrT T 0 0 D | -M | 0
from the fine boundary layer mesh to the coarse domain grid are usually Q) slave side [ »—HHJAM_A—-A wil ﬂ
linked with high computational costs. Therefore, it is desirable to develop Iy (carries LM) - EPIERS 'H;Eﬁ: ﬁm_' ranat KQ: e
efficient methods enabling the use of different discretizations for boundary- N mell [ FRom Keom Kot Ko
layer regions and the bulk of the flow domain. - . | L o
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Numerical examples

/ Beltrami flow \ / Lid-driven cavity flow \
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e Fig. 8: Non-matching mortar-based discretization ~ Fig. 10: Velocity component u, and pressure p
Fig. 4: Computational domain with a piecewise Fig. 6: Velocity error for diffusion-dominated for the lid-driven cavity discretized with 32x32x32 along the line P1-P2 in y-direction for 32x32x32
planar internal interface of a cubic subdomain. flow. elements. elements at t=100.
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| | | | o | | Fig 9.: Euclidean norm of velocity vector ||ul| for Fig. 11: Velocity component u, and pressure p
Fig. 5: Euclidean norm of velocity vector |uf for Fig. 7: Pressure error for diffusion-dominated the 32x32x32 nonmatching mortar-based along the line P3-P4 in y-direction for 32x32x32
QOOHVGCTIOH dominated flow field. flow. / @cre’cization in three different planes at t = 100 elements at t = 100 /
/ Blood flow through an artery with an aneurysm
Outflow

Fig. 12: Patient-specific, aortic aneurysm with structured Fig. 14: Velocity field [mm/s] at t=1.5 s for the Fig. 16: Wall shear stress [kPa] for the mesh
surface mesh. mesh shown in Fig. 12. shown in Fig. 12.
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Fig.13: Inflow region of aneurysm with hexahedral boundary layer Fig. 15: Pressure field [kPa] including isolines at t=1.5 s Fig. 17: Wall shear stress [kPa] compared with a mesh without
mesh and tetrahedral mesh in the bulk region. for the mesh shown in Fig. 12. internal interface consisting of a comparable number of
tetrahedral elements.
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