
• Tessellation

• Moment fitting method

• Direct divergence method

Flow past an oscillating hemi sphere

Tessellation Moment fitting Direct divergence

Conclusion
• Tessellation
– computationally efficient but not robust

– volume decomposition process fails in complex situations

• Moment fitting method
– most efficient for stationary interface simulations, but expensive for moving boundary problem

– less accurate for certain polyhedra due to ill-conditioned moment fitting equation system

• Direct divergence method
– involves neither volume decomposition nor special equations

– slightly expensive than tessellation

– robust, accurate and easy to implement

• Embedded interface introduces arbitrary polyhedral shaped volume cells

• Weak form integration over volume cells — stiffness matrix of cut elements

• Accurate and robust integration method over polyhedra is essential for EIM
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Introduction

Tessellation
• Decompose a polyhedron into a number of tetrahedra[1, 2, 3]

• Integrate over each tet and sum it up

Direct divergence method

......... (1)

Moment fitting method
• Construct quadratures for polyhedra by solving moment fitting equations [5]

Methods available in 'Baci'

Identify integration facets Mark reference plane Split integration facets

Results
• Robustness

P1

• Computational efficiency

• Accuracy of weak form integration

Tessellation Moment fitting Direct divergence

Flow past a stationary star

P2

P3

P4

• Step 1: predefine base functions
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• Step 2: integrate base functions and get l.h.s of (1) using divergence theorem

• Step 3: distribute Gauss points inside polyhedra and evaluate the matrix in (1)

(Xmax, Ymax, Zmax)

(Xmin, Ymin, Zmin)

• Step 4: Solve eqn (1) to obtain weights of quadrature points
• Use divergence theorem to convert volume integral into surface integrals [4]

• The divergence theorem

• Applying it for a scalar integrand

Surface integral Line integral

• Two sets of Gauss points to evaluate the two integrals separately

Distribute main Gauss points Project main Gauss points to reference
plane

Distribute internal Gauss points

• Evaluate line integrals using internal Gauss points

• Compute surface integrals with main Gauss points

• Possibility of converting the surface integrals into contour integrals is avoided

Number of integration points

Error in integrating a 6th order polynomial

Error in weak form integration of Navier-Stokes equations

Quadrature construction time

Total simulation time


