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Abstract— In this paper, a novel switching controller is
proposed for a networked visual servo control system with
varying feedback delay due to image processing and data
transmission. The varying image processing delay caused by
the varying number of extracted features for pose estimation
due to different view angles, illumination conditions and noise,
is modeled by its occurrence probability. The time delay due to
transmission over the communication network is also modeled
as random process. By using a sampled-data system approach
and an input-delay approach, the linearized visual servo con-
trol system is reformulated into a stochastic continuous-time
system with time-varying delay. A novel stability condition
and associated switching controller are derived based on the
occurrence probabilities of delays. Experiments on a 1-DoF
linear module equipped with a camera are conducted to
validate the proposed approach. A non-switching controller
approach is implemented for comparison. The experimental
results demonstrate significant performance improvement of the
proposed control approach.

I. INTRODUCTION

It has long been recognized that the integration of vision

into control is fundamental to increase the accuracy, versatil-

ity and application domain of robots in manufacturing. The

use of visual-data in the feedback control loop is referred

to as visual servo control, see [1] for an overview on

advantages and challenges of visual servo control systems.

With recent advances in communication and computing

technologies, video grabbing, image processing and control

can be implemented on different platforms across a com-

mon communication network. This kind of setup results

in networked visual servo control systems (NVSCSs), see

Fig. 1 for a visualization. The benefits of an NVSCS include:

an NVSCS employs different cameras over a network; it

provides wide-range visual feedback and increases system

autonomy. An NVSCS may employ distributed computation

for image processing; it enables high-speed vision feedback

and is more robust to occlusions, see [2] for details.

However, using visual-data in the feedback loop causes

delay from image acquisition, image processing and data

transmission [3], [4]. In particular, time required for image

processing depends not only on the platform, on which

the algorithm is implemented, but also on the selection of

image processing algorithm, which is designed for a specific

application. For position-based visual servoing (PBVS) con-
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Fig. 1: Scheme of networked visual servo control systems

with distributed sensors and distributed computations.

sidered in this paper, features are extracted from the image

and used to estimate the pose of the target with respect to the

camera. Therefore, the delay of image processing includes

the time required for feature extraction, feature matching and

pose estimation in PBVS. Furthermore, exchanging visual-

data over a communication network is affected by random

time delay and possibly packet loss. In this paper we consider

systems with random time delay. Note that packet loss can

be viewed as fictitious delay [5] and can therefore be also

considered within the presented formulation.

Time delay is known to be a source of instability and

deteriorates the control performance. In [6], [7], the perfor-

mance limitation due to feedback delay has been addressed.

However, system stability analysis and controller design

regarding the feedback delay are not considered. For appli-

cations where more complex image processing algorithms

are demanded, longer computational delay is inevitable and

should be taken into consideration for system analysis. In the

past literature, various methodologies have been developed

to handle systems with delay [8]–[14]. In [8]–[10], systems

with deterministic delay are studied by using standard anal-

ysis approaches from time-delay systems or robust control.



However, these stability results can only be derived for worst-

case delay and discard probability distributions of delays.

This results in conservative controller design for NVSCSs.

A less conservative controller design approach refers to

the switching of controllers according to delays, see [11]–

[14] for details and technical realization. The random delay

is modeled by a Markov process. Systems with delay-

dependent switching controller result in Markovian jump lin-

ear systems (MJLSs). The stability conditions are derived by

Lyapunov methods. Associated delay-dependent controllers

are designed by solving linear matrix inequality (LMI)

problems with known probability transition rates of delays.

However, the camera takes an image whenever the processing

of the previous image is finished in our specific setting.

Hence, the sampling interval is equal to the computational

delay and has the same stochastic properties. The resulting

stochastic delay model has the holding time correlated to its

state, i.e. the sampling intervals. In this case, the Markovian

modeling is no more applicable.In our approach, a set of

indicator functions having independent identical distribution

(i.i.d.) is introduced to model the delays.

In this paper, a novel switching controller is proposed

for a networked visual servo control system with varying

feedback delay. The numbers of image features vary from

frame to frame due to different viewing angles, illumination

conditions and noise. The time required for image process-

ing in PBVS is thus modeled as a random process. As

a simplification, we consider a local linear approximation

of a visual servo control system. An analysis and design

approach is proposed for this special case. A visual servo

control system with sensor-to-controller random delay is

reformulated into a stochastic continuous-time system with

time-varying delay. An LMI-based delay-dependent stability

condition is derived by a Lyapunov-Krasovskii functional

and the associated delay-dependent switching controller de-

sign algorithm is presented in terms of LMI. The stability

condition and controller design algorithm are determined

based on occurrence probabilities of delays. The proposed

approach is experimentally validated in a visual servo system

comprising a pair of 1-DoF linear motor modules, one

equipped with a camera. As benchmark a conventional non-

switching approach is implemented for comparison. The

experimental results demonstrate a significant performance

improvement by the proposed approach.

The remainder of the paper is organized as follows: The

problem statement of visual servo sampled-data control is

given in Section II. In Section III, a stochastic continuous-

time system with time-varying delays is introduced by using

input-delay approach. An LMI controller design algorithm

is established in Section IV. In Section V, the experimental

validation and performance comparison are discussed. This

paper is concluded in Section VI.

Notation. In this paper λmax(M) and λmin(M) denote the

maximal and the minimal eigenvalues of a matrix M, whereas

MT and ||M|| denote the transpose operator and induced

Euclidean norm of matrix (or vector) M, respectively. The

symbol ∗ denotes the transpose of the blocks outside the
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Fig. 2: Scheme of the visual servo control system with linear

motor modules, one equipped with a camera.

main diagonal block in symmetric matrices. E stands for

mathematical expectation and Pr for probability.

II. PROBLEM SETTING

In this paper, a tracking problem with a simple networked

visual servo control is studied. A camera-in-hand structure

is selected for tracking of a moving target with PBVS, as

shown in Fig. 2.

For image processing, image features are firstly extracted

from the image sequence. Then the pose of the target

with respect to the camera is estimated. The controller is

designed to reduce the error between the current pose xc

and desired pose xd . Time delay for computing the pose

from visual data, which consists of time for image capturing,

feature extraction, feature matching and pose estimation, is

inevitable. Moreover, image features vary from frame to

frame due to different view angles, illumination conditions

and noise. This causes random delay for pose estimation

which depends on the number of image features.

A. Pose Estimation

The fundamental issue of the tracking system with PBVS

is pose estimation. By given matched feature pairs, the pose

estimation problem could be considered as dual problem of

2D visual servoing proposed in [15]. A virtual camera is

applied and is moved by using a visual servoing law to

minimize the position errors between current observed image

features and previous ones.

In order to increase the accuracy of pose estimation, Scale

Invariant Feature Transform (SIFT) [16] which is known

for its robust character is applied for feature extraction.

To improve performance, SIFT is implemented on a GPU

(Graphics Processing Units) exploiting its massive parallel

processing capability. Matched feature pairs contain outliers,

which lead to errors of the pose estimation. Therefore,

RANSAC (RANdom Sample Consensus) [17] algorithm is

used for the rejection of outliers.

B. Visual servo control with feedback delay

For computing efficiency, a distributed system structure

is applied, by which image processing and manipulator

control run in parallel on two PCs. The configuration of

the manipulator is controlled through a host PC. The image

processing is implemented on a standalone PC and its results,
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Fig. 3: Timing diagram of a networked visual servo control

system, τk denotes the time-delays of image processing and

data transmission.

i.e. difference between current and desired camera pose, are

fed back through a communication network to the host PC.

The timing diagram of a networked visual servo control

system is shown in Fig. 3, where τk is the time-delays

caused by image processing and data transmission. At time

tk, processing of the current captured image starts. The

extracted image features are fed into the pose estimation

algorithm. As soon as pose estimation is finished, a new

image is acquired and processed. The pose estimation results

are transferred to the host PC through the communication

network, and experience a random transmission delay. For

the considered visual servo control system, the total delay,

τ(t), contains mainly three parts: the image processing delay,

the transmission delay and the sampling interval, as shown

in Fig. 3.

For the preliminary study of an NCSCS with delays, we

consider a linearized system as shown in Fig. 2. The system

dynamics with identified parameters m, c is given by

ẋ(t) = Ax(t)+Bu(t), (1)

where

A =

[

0 1

0 − c
m

]

and B =

[

0 0
1
m

0

]

.

Consider a controller u(t) = Kx(tk) with tk representing the

sampling instant. The closed-loop system is derived as

ẋ(t) = Ax(t)+BKx(tk), tk ≤ t < tk+1. (2)

Remark 1: Assuming a more general manipulator dynam-

ics M(q)q̈+C(q, q̇) = Γ and a Jacobian transpose controller

Γ = JT Kx, a general closed-loop formulation of PBVS is

[18]
d

dt

[

q

q̇

]

=

[

q̇

D

]

,

where

D = M−1(q)(JT (q)Kx(t)−C(q, q̇)),

with q joint displacements, M(q) manipulator inertia matrix,

C(q, q̇) centripetal and Coriolis torques, J(q) robot Jacobian.

The existence of a stable equilibrium and regularity of the

Jacobian in a sufficiently small region around this equilib-

rium are assumed for stability analysis according to [19].

The linearized model at the origin q ≡ 0 can be written as

d

dt

[

q

q̇

]

=

[

0 1
d

dq
D d

dq̇
D

]

.

Thus, in case of the considered 1-DoF system with its

dynamics Γ = mq̈+cq̇, we arrive at the simplified model (1).

The stability analysis and controller design algorithm pro-

posed here can be applied to nonlinear visual servoing

systems with more DoF locally by linearizing the system

at equilibrium states or by the computed torque feedforward

approach proposed in [20].

It is assumed that the delay of image processing and

data transmission causes the sampled data x(tk) arriving at

the controller with random delay τk ≥ 0, so the closed-loop

system in (2) becomes

ẋ(t) = Ax(t)+BKx(tk), tk + τk ≤ t < tk+1 + τk+1. (3)

The closed-loop system in (3) has a non-deterministic sam-

pling period

hk = tk+1 − tk + τk+1 − τk,

depending on delays of kth and (k + 1)th sampled measure-

ment. Due to the randomness of τk and τk+1, the sampling

period hk is also random. The problem to be addressed in

this paper is formulated as follows:

Problem Given a system in (3) with random sampling

intervals hk, develop a control algorithm such that the closed-

loop system in (3) is exponential mean-square stable (EMSS)

satisfying

E
{

||x(t)||2|x(t0)
}

≤ b||x(t0)||
2e−ρ(t−t0)

, (4)

where b > 0, ρ > 0 are real numbers and x(t0) is the initial

condition.

III. SYSTEM REFORMULATION BASED ON

INPUT-DELAY APPROACH

In this section, the NVSCS with aperiodic sampling is re-

formulated into a continuous-time system with time-varying

delay by means of the input-delay approach. A random

process is introduced to describe delays caused by image

processing and network transmission. A delay-dependent

switching controller is considered, finally resulting in a

stochastic continuous-time system with time-varying delays.



A. Input-delay transformation

Reconsider the sampling instant tk as

tk = t − (t − tk)

= t − τ(t), tk + τk ≤ t < tk+1 + τk+1.

It is assumed that the overall time-delay is bounded by

τ̄ = min
k∈K

{τk},

τ = max
k∈K

{tk+1 − tk + τk+1}.

The closed-loop system in (3) is reformulated into a

continuous-time system with time-delay

ẋ(t) = Ax(t)+BKx(t − τ(t)),

x0 = x(t +θ), θ ∈ [−τ̄,0],

t ∈ [tk + τk, tk+1 + τk+1).

(5)

Remark 2: The reformulation of a sampled-data system

into a continuous-time system with time-varying delay is

called input-delay approach. This approach was first in-

troduced in [9] [21], where system periodic sampling is

dealt with. Sampled-data systems with aperiodic (random)

sampling using input-delay approach are addressed in [22].

However, no switching controller is considered. This paper

further extends the concept derived in [22] to cope with

NVSCSs with random delays.

B. Stochastic system with time-varying delays

For further technical development, the time-delay in the

closed-loop system (3) is categorized into n ≥ 2 intervals by

si > 0, i = 1, ...,n−1, satisfying si < si+1, s0 = τ and sn = τ̄ .

The n interval delays are defined as

τ1(t) = {τ(t)|s0 ≤ τ(t) < s1},

τ2(t) = {τ(t)|s1 ≤ τ(t) < s2},

...

τn(t) = {τ(t)|sn−1 ≤ τ(t) < sn}.

The occurrence of τi(t),i = 1, ...,n, is described by a set of

indicator functions

βi(t) =

{

1, si−1 ≤ τ(t) < si, i = 1, . . . ,n

0, otherwise
(6)

satisfying

Pr{βi(t) = 1} = pi,

n

∑
j=1

pi = 1.

The expected value and variation of βi(t) are given by

E{βi(t)} = pi, E{(βi(t)− pi)
2} = pi(1− pi).

In order to increase the control performance, a delay-

dependent switching controller, which switches its feedback

gain according to the active delay interval, is introduced. The

control law of the system in (3) becomes

u(t) = Kix(t − τi(t)), i = 1, ...,n. (7)

According to (6)-(7), the closed-loop system in (3) can be

rewritten as

ẋ(t) = Ax(t)+
n

∑
i=1

βk(t)BKix(t − τi(t)). (8)

Remark 3: Note that the feedback gain Ki of system

(8) is switched according to delays τi(t) and results in a

randomly switched time-varying delay system. It is assumed

that each switching of (8) is separated by a finite time

interval. Therefore, the Zeno solutions are excluded in this

paper.

IV. STABILITY ANALYSIS AND

CONTROLLER DESIGN

The objective of this section is to derive an exponential

mean-square stability condition for NVSCSs in (8) and to

design a delay dependent switching controller.

A. Stability Analysis

The Lyapunov-Krasovskii approach is considered to cope

with the stability of the system (8), as it is stochastic and con-

tains time-varying delays. Generally, the stability condition

derived by Lyapunov-Krasovskii approach can be categorized

into two types; a delay-independent and delay-dependent

condition. In order to derive a delay-dependent condition,

the following Newton-Leibnitz formula is considered

∫ t

t−τi(t)
ẋ(s)ds = x(t)− x(t − τi(t)), i = 1,2.

Substitute the Newton-Leibnitz formula into (8) and let

zT (t) = [xT (t) ẋT (t)]. The closed-loop system (8) yields

Eż(t) = Āz(t)−
n

∑
i=1

Āi

∫ t

t−τi(t)
z(s)ds, (9)

where E =

[

I 0

0 0

]

,

Ā =

[

0 I

A+∑n
i=1 βi(t)BKi −I

]

, Āi =

[

0 0

0 βi(t)BKi

]

.

The system (9) is used for stability analysis. Details of the

stability condition are given in the following theorem.

Theorem 1: For the closed-loop system in (8), if symmet-

ric matrices exist, Q1 > 0, Qi > 0, i = 1, . . . ,n, P1 > 0 and

real matrices P2 and P3 with

P =

[

P1 0

P2 P3

]

,

such that the following LMI is satisfied













Ψ s1PT · · · snPT

∗ −s1Q1 0
...

... 0
. . . ∗

∗ · · · ∗ −snQn













< 0, (10)



where

Ψ =

[

Ξ1 Ξ2

P1 −P2 −P3

]

+

[

Ξ1 Ξ2

P1 −P2 −P3

]T

+
n

∑
i=1

si

[

0 0

0 piBKi

]T

Qi

[

0 0

0 piBKi

]

,

Ξ1 = AT P2 +
n

∑
i=1

pi(BKi)
T P2,

Ξ2 = AT P3 +
n

∑
i=1

pi(BKi)
T P3.

then the trajectory of the system satisfies (4).

Proof: See Appendix 7.1.

The stability condition in Theorem 1 is derived in terms

of an LMI, which can be efficiently solved by computational

toolbox for Matlab, e.g. Yalmip [23].

Remark 4: Theorem 1 is derived by a similar Lyapunov

candidate as used in Theorem 3 of [13]. However, the

stability condition of [13] is determined by known proba-

bility transition rates of delays. This requires an exponential

distribution of delay. Since the data processing delay is in

general not exponentially distributed, the stability in Theo-

rem 1 is conditioned merely by occurrence probabilities of

random delays and the restriction on exponential distribution

of delays is relaxed.

Remark 5: Note that due to the assumptions in Remark 1

only local stability is proven.

B. Controller Design

Solving feedback gains Ki, i = 1, ...,n in Theorem 1

involves nonlinear terms, e.g. PT
2 BK1, PT

3 BK1, PT
2 BK2 and

PT
3 BK2 in (10). These nonlinear terms render the inequality in

(10) into a bilinear matrix inequality (BMI) problem, whose

solutions are difficult to find as it is non-convex and NP-hard.

However, the nonlinear terms can be eliminated by choosing

a special matrix X = P−1 and so an LMI formulation is

recovered. The controller design algorithm is given in the

following theorem.

Theorem 2: Given positive scalars r1 and r2, if there exist

symmetric matrices Ri > 0, i = 1, ...,n and X1 > 0 satisfying

X =

[

X1 0

−r1X1 r2X1

]

,

such that













Ψ̂ Ψ̂T
1 · · · Ψ̂T

n

∗ −s1R1 0
...

... 0
. . . ∗

∗ · · · ∗ −snRn













< 0, (11)
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where

Ψ̂ =

[

−r1X1 r2X1

Ξ3 −r2X1

]

+

[

−r1X1 r2X1

Ξ3 −r2X1

]T

+
n

∑
i=1

siRi,

Ξ3 = AX1 +
n

∑
i=1

piBYi + r1X1,

Ψ̂1 = s1Ā1X = s1

[

0 0

−p1r1BY1 p1r2BY1

]

,

...

Ψ̂n = snĀnX = sn

[

0 0

−pnr1BYn pnr2BYn

]

,

holds, then the NVSCS is MES with the feedback gain

Ki = YiX
−1
1 , i = 1, . . . ,n. (12)

Proof: See Appendix 7.2.

Remark 6: The structure of matrix X is chosen based on

the requirement P−1 = X , where EP = PT E. Therefore, X is

determined as follows

X =

[

X1 0

X2 X3

]

, X1 = XT
1 > 0. (13)

However, by expanding Ψ̂i, i = 1, ...,n in (11) it results

in terms, e.g. BKiX j, i = 1, ...,n and j = 1,2,3, which make

deriving an LMI formulation impossible. In order to obtain

an LMI formulation, X2 and X3 in (13) are restricted to −r1X1

and r2X1, where r1 and r2 are positive real numbers.

Although LMI can be efficiently solved by LMI toolbox,

the restriction on matrix X introduces certain conservatism

in the controller design and leads to unfeasibility in some

cases. When the unfeasibility occurs, the general form of X

in (13) is used and an BMI (bilinear matrix inequality) solver

is applied to solve the problem in (11).

V. EXPERIMENTS

Experiments in this section are designed to validate the

proposed control approach. The experimental testbed con-

sists of two linear motor modules, as shown in Fig. 4.

A target is mounted on the reference module, and the

manipulator equipped with a camera is connected to the

controlled module. Both modules are controlled through



MATLAB/SIMULINK blocksets on host PC with the sam-

pling period of T = 1ms. Standalone real-time code is gen-

erated directly from SIMULINK modules with the Realtime

Workshop. The input signal assigned to the reference module

is:

xd(t) = 0.15 sin(1.57 t).

The high-speed camera with a resolution of

640×480 pixels is connected to a second PC (X86-

64, AMD, Phenom II×4 810 processor), which deals with

image processing. As an approximation to an event-based

system, a high image framerate of 400fps is used. In

comparison with an ideal event-based approach, this results

in a jitter of 2.5ms with respect to the sampling rate of 1kHz

of the robot controller. Compared to the time-delays of data

transmission and image processing, it can be neglected and

the system may thus be approximatively considered as an

event-based system. The results of image processing are

packetized with time-stamp and sent from second PC to host

PC through network. The time required for realtime image

processing depends on image features and has random

values between 33ms to 45ms. The relationship between

image features and image processing delay is shown in

Fig. 5 (a) (b). The cross correlation coefficient between

these two signals is 0.9346, which indicates that image

processing delay is closely related with image feature

number. More image features require more time for image

processing, e.g. 18 image features take about 33ms while

55 image features take about 43.5ms. As soon as the

image processing is finished, a new image is acquired and

processed. This results in a random sampling intervals up

to 45ms. In addition, random delay of data transmission

is simulated by a network emulator (Netem) having i.i.d.

delay ranging from 5ms to 10ms. The overall delay (i.e. the

sum of computation delay, transmission delay and sampling

interval) has the range from 38 ms to 100 ms as shown in

the Fig. 5 (c).

The dynamics of the linear motor module is identified as:

m = 0.073, c = 85.4. According to (8) and considering n = 2,

the closed-loop system of the controlled module yields

d

dt

[

x(t)
ẋ(t)

]

=

[

0 1

0 −1169.9

][

x(t)
ẋ(t)

]

+β (t)

[

0 0

K1 0

][

x(t − τ1(t))
ẋ(t − τ1(t))

]

+(1−β (t))

[

0 0

K2 0

][

x(t − τ2(t))
ẋ(t − τ2(t))

]

.

(14)

s1 = 65ms and p = 0.53 are heuristically selected. Solving

Theorem 2, the feedback gains are

K1 = 800, K2 = 160.

The experiment runs 20 times with the same initial con-

ditions of both modules. For the comparison of control

performance, the standard non-switching controller is imple-

mented, i.e. a robust controller that stabilizes for all occurring

time delays up to τ̄ = 100ms. The corresponding controller
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(b) and histogram of delays in the feedback loop (c).
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design gain is K = 160. The control error is defined by

e(t) = xd(t)− xc(t),

where xd(t) and xc(t) denote the position measurements of

the reference module and the controlled module respectively.

The resulting control errors are shown in Fig. 6. The delay

dependent switching controller approach has maximal track-

ing error emax = 3.63cm and the variance of the tracking

error evar = 7.22cm2, while the maximal tracking error of

standard design controller approach is emax = 9.66cm and

the variance of the tracking error evar = 42.95cm2.The ex-

perimental results demonstrate that the switching controller

approach leads to a better control performance compared to

the conventional non-switching control design.



VI. CONCLUSION

This paper presents a novel analysis and design approach

for networked visual servo control systems with random

delays due to image processing and data transmission. The

resulting system is a continuous-time system with stochastic

variable and time-varying delays. The exponential mean-

square stability is shown by using a Lyapunov-Krasovskii

function. A delay-dependent controller is derived based on

linear matrix inequalities (LMI). The proposed approach is

validated in experiments. The results demonstrate perfor-

mance benefits of the proposed design approach over the

conventional counterpart. In the current stage, the approach

is limited to visual servo control, which can be approximated

by linear systems. Future work is concerned with extending

the approach to more general nonlinear systems.

VII. APPENDIX

Before the proof is shown, the following definition and

lemma have to be given.

Definition 1: [24] Let L be the infinitesimal generator of

a function V (z(t)). Then, the operator L acting on V (z(t))
is defined as

LV (z(t)) = lim
∆→0

1

∆

{

E{V (z(t +∆)|z(t))}−V (z(t))
}

.

Lemma 1: [25] Let X and Y be real constant matrices

with appropriate dimensions. Then

XTY +Y T X ≤ εXT X +
1

ε
Y TY

holds for any ε > 0.

A. Proof of Theorem 1

Consider a Lyapunov candidate

V (z(t)) = V0(z(t))+
n

∑
i=1

Vi(z(t)),

where

V0(z(t)) = zT (t)EPz(t),

Vi(z(t)) =
∫ 0

−si

∫ t

t+θ
zT (s)ĀT

i QiĀiz(s)dsdθ .

According to Definition 1, it has

LV0(z(t)) = żT (t)EPz(t)+ zT (t)PT Eż(t)

= zT (t)
[

ĀT P+PT Ā
]

z(t)

−2
n

∑
i=1

zT (t)PT Āi

∫ t

t−τi(t)
z(s)ds.

According to Lemma 1, LV0(zt) becomes

LV0(z(t)) ≤ zT (t)
[

ĀT P+PT Ā
]

z(t)

+
n

∑
i=1

siz
T (t)PT Q−1

i Pz(t)

+
n

∑
i=1

∫ t

t−si

zT (s)ĀT
i QiĀiz(s)ds.

(15)

Likewise, it has

n

∑
i=1

LVi(z(t)) =
n

∑
i=1

siz
T (t)ĀT

i QiĀiz(t)

−
n

∑
i=1

∫ t

t−si

zT (s)ĀT
i QiĀiz(s)ds.

(16)

Combine (15) and (16), it yields

LV (z(t)) ≤ zT (t)[ĀT P+PT Ā+
n

∑
i=1

siĀ
T
i QiĀi

+
n

∑
i=1

siP
T Q−1

i P]z(t)

= zT (t)Θz(t).

(17)

Apply Schur complement to (17), it results in (10).

Note that maxθ∈[−τ ,0]{||z(t +θ)||} ≤ φ ||z(t)|| for some

ϕ > 0 [26], the following inequality can be established

V (z(t)) ≤

[

λmax(EP)+
n

∑
i=1

s2
i

2
λmax(Qi)

]

||z(t)||2

≤ Λmax||z(t)||
2
.

(18)

Combining (17) and (18) yields

LV (z(t))

V (z(t))
≤−

λmin(−Θ)

Λmax
, −ρ0

and

E{LV (z(t))} ≤ −ρ0E{V (z(t))}. (19)

By applying Dynkin’s formula into (19) it becomes

E{V (z(t))}−E{V (z(0))}

= E

{

∫ t

0
LV (z(s))ds

}

≤

−ρ0

∫ t

0
E{V (z(s))}ds.

(20)

Using the Gronwall-Bellman lemma, (20) results in

E{V (z(t))} ≤ e−ρ0t
E{V (z(0))}.

Since

V (z(t)) ≥
[

λmin(EP)+
n

∑
i=1

s2
i

2
λmin(Qi)

]

||z(t)||2

= Λmin||z(t)||
2
,

it is established that

E{||z(t)||2} ≤ e−ρ0t E{V (z(0))}

Λmin
. (21)

Equation (21) provides the proof for mean exponential sta-

bility.



B. Proof of Theorem 2

Define

X = P−1 =

[

X1 0

−r1X1 r2X1

]

.

Pre- and post-multiply Θ in (17) by XT and X , it becomes

ĀX +XT ĀT +
n

∑
i=1

siQ
−1
i +

n

∑
i=1

siX
T ĀT

i QiĀiX < 0 (22)

Let Ri = Q−1
i and Yi = KiX1, i = 1, . . . ,n. Applying Schur

complement to (22) results in (11).
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