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Abstract

This study addresses a capacitated intermediate product selection and blending problem

typical for two-stage production systems in the food processing industry. The problem involves

the selection of a set of intermediates and end product recipes characterizing how those selec-

ted intermediates are blended into end products to minimise the total operational costs under

production and storage capacity limitations. A comprehensive mixed integer linear model is

developed for the problem. The model is applied on a data set collected from a real-life case.

The trade-offs between capacity limitations and operational costs are analysed, and the effects

of different types of cost parameters and capacity limitations on the selection of intermediates

and end product recipes are investigated.

Keywords: Production planning; Scheduling; Food processing; Capacity limitations; Interme-

diate Storage; Intermediate product;

1 Introduction

The food processing industry is characterised by divergent product structures where a relatively

small number of (agricultural) raw materials are used to produce a large variety of often customer

specific end products (see e.g. Akkerman and Van Donk, 2009). Due to the large variety of end
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products, it is often not possible or at least inefficient to produce and stock all end products. A

common practice used to mitigate the effect of the product variety on the operational performance

in food-processing systems is to produce some or all end products by blending them from a limited

number of selected intermediate products (Van Donk, 2001; Soman et al., 2004; McIntosh et al.,

2010). The basic notion of this practice follows the well known principle of postponement which is

widely used amongst various industries (Van Hoek, 1999; Venkatesh and Swaminathan, 2004; Pil

and Holweg, 2004; Skipworth and Harrison, 2004; Caux et al., 2006; Forza et al., 2008).

The concept of postponement is often defined on the production stage where intermediates are

transformed to end products after demand is realised. Zinn and Bowersox (1988) defined potential

stages of postponement as manufacturing, assembly, packaging and labelling. In this respect,

the approach considered in the current study concerns the postponement at manufacturing and

assembly stages, which are respectively referred to as processing and blending in process industry

terminology.

There is a variety of studies in the postponement literature that aim at assisting managerial

decision making by putting the concept of postponement into action. However, as compared to

other industries, the food processing industry has not been very active in taking up postponement

strategies (Van Hoek, 1999; Cholette, 2010). Also, the research efforts taken in this domain are

rather concentrated on the postponement practices at the packaging and labelling stages (see e.g.

Cholette, 2009, 2010; Wong et al., 2011), mainly due to the fact that delayed packaging is considered

to be a natural level of postponement in food industry (Van Hoek, 1999).

There are, however, a number of factors which grant a potential advantage in practicing post-

ponement strategies at the blending level in the food processing industry (McIntosh et al., 2010).

For instance, in food production, processing operations are often coupled with extensive setups.

Also, blending operations in food processing are not as substantial as their assembly counterparts

in discrete manufacturing. These, in connection to the inherent divergence of product flows due to

the product variety, provide a strong motivation towards processing and stocking only a moderate

number of intermediates, and then blending them into the whole range of end products following

realised demands. This approach reduces the frequency of processing runs in the intermediate

product level in expense of additional blending operations in the end product level.

Nevertheless, postponement practices in processing and blending are strongly coupled with the

processing operations as well as the intermediates used in those operations. In particular, it may

be required to use standardised intermediates for blending multiple end products. These interme-

diates may not even be marketable themselves. Also, it may be necessary to employ more complex

production processes (Venkatesh and Swaminathan, 2004). These, all together, may lead to signi-

ficant increases in productions costs, and overcome the advantage of employing the postponement

strategy. As a result, companies employing such postponement strategies need to face a decision

problem involving the selection of a set of intermediates from a large set of potential intermedi-

ates usually designed by quality management experts, and end product recipes which prescribe
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how those selected intermediates are blended into end products in order to minimise the total

operational costs (Rutten, 1993; Akkerman et al., 2010).

The current study seeks to address the aforementioned decision problem. The problem relates to

the well-known blending problems, where, given a set of products, the objective is to find a minimum

cost mix satisfying a set of quality related attributes. Due to their practical relevance, a considerable

amount of work has been done on industry-specific production planning problems involving blending

components, such as feedlot optimization problems (see e.g. Glen, 1980; Taube-Netto, 1996), sausage

blending problems (see e.g. Steuer, 1984), multi-period production planning problems (see e.g.

Williams and Redwood, 1974; Rutten, 1993), and grade selection and blending problems (see e.g.

Karmarkar and Rajaram, 2001; Akkerman et al., 2010). However, these studies assume unlimited

production and/or storage capacities. The problem we consider in this paper stands apart from

the aforementioned literature with regard to two main aspects. First, we capture whether blending

of intermediates is required to produce end products by acknowledging the possibility of direct use

of intermediates as end products. Secondly, we approach the blending problem by considering the

costs and the capacity limitations related to both the production and the storage operations which

also affect the selection of the intermediates and end product recipes.

The rest of the paper is organised as follows: In Section 2, we provide a detailed description

of the production system under consideration. In Section 3, we review the related literature. In

Section 4, we present the mathematical programming formulation of the problem. In Section 5,

we demonstrate an application of the model for a real-life case. We conduct a numerical study to

illustrate the effects of some operational settings on the optimal decisions. Finally, in Section 6, we

summarise our work and suggest directions for future research.

2 Problem description

The production system under consideration involves two production stages: processing and blend-

ing. The processing stage involves the production of intermediates. In the blending stage, interme-

diates are blended into end products following end product recipes which specify the blending pro-

portions of intermediates. This production environment is common particularly in food processing

because food products can often be prepared in a generic form. For instance, in dairy processing,

the main raw material fresh milk is processed into fat, protein concentrate, cream, whey, dry

milk, and skim milk. These materials are then used in processing a variety of milk products such

as condensed and evaporated milk, nutritional products, buttermilk, and milk powder (Nicholson

et al., 2011). In flour manufacturing, different types of starchy food are milled into a variety of

grains which are then blended into flour products targeted for bakeries and industrial manufacturers

(Akkerman et al., 2010). Also, in wine production, after being processed, different wines, possibly

from different grape origins, can be blended to produce a particular brand (Cholette, 2010).

The recipe of an end product may involve single or multiple intermediates. In the former
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case, demands can directly be satisfied from intermediate stocks. In the latter case, however,

intermediates are first blended to form end products which are then used to serve demands. Figure 1

illustrates a small example of such a system involving two selected intermediates and three end

products where circles and rectangles represent materials and production operations respectively.

Notice that two of the three end products in the example require blending operations, whereas the

last one does not.

Figure 1: An example production system

The problem we address in this study involves the selection of (i) a set of intermediates to

be stocked from a given set of potential intermediates, and (ii) end product recipes which specify

how those intermediates are blended into end products. The selection of intermediates and end

product recipes is associated with a set of cost factors and constraints. The total operational cost

is composed of material procurement costs, processing costs, storage costs associated with selected

intermediates; and blending costs associated with end products. There are two basic constraint sets.

First, the compositions of end products, which are defined by their product recipes, must comply

with a specified set of quality requirements in order to guarantee the conformity of end products.

The composition of an end product characterises all types of attributes associated with it. Here,

we refer to those attributes as quality parameters. For instance, in milk processing, fat, protein,

and dry-matter concentration; in flour production, water absorption ability, dough extensibility,

deoxynivalenon level, and bread volume; and in wine production, acid and tannin levels, and flavour

intensity could be of importance. The quality requirement regarding a particular quality parameter

states that the relevant parameter must be within a given range. Second, available production and

storage capacities must be sufficient to put the selected intermediates and end product recipes to

use. That is, given a set of selected intermediates and end product recipes, it must be possible to

produce the necessary amount of intermediates and to blend them into end products to satisfy the

demand, and the storage facilities must be sufficient to stock production lots.

The processing stage is characterised by processing and setup times/costs associated with each
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intermediate. In order to avoid high setup costs and down times, long processing runs and/or a

limited number of intermediates are preferred. Production operations are scheduled following the

common cycle scheduling policy (Hanssmann, 1962). This approach is widely used in industry due

to its simplicity and adaptability and has been proven to produce optimal or near-optimal schedules

in many practical situations especially when products are similar in terms of their cost structure

and setup times are relatively short (Jones and Inman, 1989). In a common cycle schedule, one

lot of each product is produced in each production cycle and the cycle time is identical for each

product (in our case selected intermediate). If the usage rates of selected intermediates were known

in advance, then the optimal cycle time could easily be determined following the common cycle

policy. However, in our case, the usage rates depend on the decisions regarding the set of selected

intermediates and end product recipes. Hence, rather than optimizing the cycle time we aim at

finding the optimal set of selected intermediates and end product recipes for a given cycle time.

Due to the perishable nature of food products, cycle times are rather short in food processing

industry. Furthermore, cycle times are usually not just arbitrary intervals but integer multiples of

an applicable time period such as a shift or a day. Thus, in case it is needed, the model can be

solved for a limited set of applicable cycle lengths.

As discussed previously, the product variety at the end product level often makes it impossible

to store all end products. Because of this reason, blending operations run on a daily basis following

end product demand. The blending stage usually involves very standardised operations. Hence we

assume a constant blending rate for all end products. The setup operations in this stage are minor

and are assumed to be negligible.

The selected intermediates are stored between the two production stages in a number of storage

units (e.g. silos or tanks) which are identical in terms of their volume. The limitations on the

storage capacities are rather restrictive in the food processing industry since only a single type of

intermediate can be stored in a storage unit (Akkerman et al., 2007). The customer preferences

and demands change gradually over time, and consequently, selected intermediates and end product

recipes are usually revised to correct for those periodically. We assume that demand is stable within

those revision intervals.

3 Related literature and positioning

The first example of the blending problem is the famous diet problem of Stigler (1945) where a

minimum cost diet is determined subject to a set of dietary allowances. Following the line of this

problem a large body of literature has emerged addressing blending problems particularly in the

petrochemical industry and the agricultural industry. Most of this work has been concentrated on

stand-alone blending problems which usually concern the determination of a minimum cost blend

or a recipe while respecting a set of quality related constraints. However, in processing systems,

the production and the storage operations are tightly coupled with product recipes and demands
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which together determine the consumption rates of the ingredients to be used in processing the

blends. Crama et al. (2001) classify blending problems into three basic categories based on the

degree of the integration of the blending problem with production and storage operations: (i)

design problems where the blending operations are considered in isolation, (ii) long- or medium-

term planning problems where the blending operations are integrated in the long- or medium-

term (master) planning, and (iii) short term planning and scheduling problems where the blending

problem is a part of everyday operations. The problem under consideration in this study falls into

the category of medium-term planning problems. Here we briefly review some of the work in this

domain.

Glen (1980) develops a method for the beef cattle feedlot operations to determine the rations

to feed animals. His method gradually changes the rations over time in order to obtain a specified

liveweight at the minimum cost. Steuer (1984) studies sausage blending problems which concern the

optimization of meat blends to produce sausages under a set of quality constraints. Taube-Netto

(1996) presents an integrated planning model for poultry production which encompasses, among

other aspects, the formulation of feed to be used over the planning horizon. In the aforementioned

examples, the processing and blending operations of the feedstuffs are not integrated into the overall

production planning problem.

Williams and Redwood (1974) propose a multi-period blending model for a company that refines

and blends different types of raw oils to produce a number of brand oils. Their model decides upon

the purchasing and production quantities for each time period considering the price fluctuations of

raw oils. Rutten (1993) develops a hierarchical approach for the operational planning of a dairy

firm. He considers the planning problem at the operational planning level and decomposes it into

smaller problems each of which can be solved in reasonable computational times. However, these

studies do not consider the economies of scale resulting from the setup costs/times.

Karmarkar and Rajaram (2001) study the joint production and blending problem. They propose

a general mixed integer non-linear program (MINLP) and a Lagrangean heuristic to solve the

problem. Their work is substantial since they jointly optimise the lot sizes and end product recipes.

However, they consider only a single quality parameter and use a cost function to penalise the

nonconformity of end product. Furthermore, they assume uncapacitated production and storage.

Our study is closely related to the work of Akkerman et al. (2010) where a flour manufacturing

system is considered. They study a system where a limited number of grains are milled and

blended into various types of flour products. They propose a mixed integer linear program (MILP)

to determine the recipes of flour products minimizing total milling and blending costs. Their

approach also accounts for the option of using selected intermediates directly as end products.

They do not explicitly consider the production and storage capacities. However, they approximate

these limitations by using an upper bound on the number of intermediates to be selected. They

mention that it is logical to limit the number of intermediates since the opposite would require

large setup times and a huge storage capacity. In this study, we build on the model provided by
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Akkerman et al. (2010) and extend their study by explicitly incorporating the capacity limitations

and costs on production and storage operations.

4 Model formulation

In this section, we present a mathematical model for the intermediate selection and blending prob-

lem. We first provide the notation used in the rest of the paper. Then we outline the objective

function and the constraints characterizing the problem.

4.1 Notation

Consider a food processing system producing a set of end products J . These end products can

be produced by using a set of intermediates I. Intermediates and end products are characterised

by their compositions in terms of a set of ingredients K. We refer to the proportions of those

ingredients as quality parameters. The quality parameters of intermediates are known whereas

they are defined on minimum and maximum levels for end products. The end product recipes

should comply with those bounds.

We are given the quality specifications

qik = quality parameter k ∈ K of intermediate i ∈ I (%)

qmin
jk = minimum quality parameter k ∈ K of end product j ∈ J (%)

qmax
jk = maximum quality parameter k ∈ K of end product j ∈ J (%)

demand and process characteristics

dj = demand rate of end product j ∈ J (tons/day)

si = setup time of intermediate i ∈ I (days)

pi = processing rate of intermediate i ∈ I (tons/day)

pb = blending rate of end products (tons/day)

N = number of available storage units

V = capacity of each storage unit (tons)

π = cycle time (days)

and cost parameters

ai = setup cost of intermediate i ∈ I (Euros)

ci = processing (and material) cost of intermediate i ∈ I (Euros/ton)

cb = blending cost of end products (Euros/ton)

hi = holding cost of intermediate i ∈ I (Euros/ton day).

In order to specify the basic intermediates to be used and corresponding end product recipes

we define the variables
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xij = fraction of end product j ∈ J supplied by intermediate i ∈ Ij

where Ij ⊂ I is the set of intermediates which can be used in producing end product j,

yi =

1, if intermediate i ∈ I is selected as a basic intermediate

0, otherwise

and

vij =

1, if intermediate i ∈ I∗j is used directly as end product j ∈ J

0, otherwise

where I∗j ⊂ Ij is the set of intermediates which comply with all quality specifications of end product

j, i.e.

I∗j = {i ∈ Ij | qmin
jk ≤ qik ≤ qmax

jk ,∀k ∈ K}.

For notational simplicity, we also introduce the expressions

wi = the consumption rate of intermediate i ∈ I (tons/day)

such that,

wi =
∑
j∈J

djxij i ∈ I (1)

and

zj =

1, if end product j ∈ J is produced with blending operations

0, otherwise

such that,

zj = 1−
∑
i∈Ij

vij ∀j ∈ J. (2)

Notice that, the domain of zj can be verified since vij equals 1 for at most one intermediate. This

will further be clarified in the constraints.

4.2 Objective function

The objective is to minimise the daily total cost which is comprised of cost components associated

with setup, processing and storage of intermediates; and blending of end products. Setup costs

are relevant to those intermediates which are selected as basic intermediates. Since processing

operations are carried out following a common cycle schedule, in each cycle a setup is initiated for

every basic intermediate. Thus, cost incurred in a single cycle equals
∑

i∈I aiyi. To obtain the setup

cost per day, the cost per cycle is divided by the cycle time. Processing costs involve the material

and operational costs of processing operations, and they are incurred for all basic intermediates in

proportion to their consumption rates. Hence, daily processing cost can be expressed as
∑

i∈I ciwi.
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It is important to note that processing cost, as a combination of material and operational costs, is

usually the largest cost component of the total costs in food process industries. Storage costs depend

on the average inventory levels of intermediates. The processing of an intermediate, say intermediate

i, starts when the inventory drops down to zero, and stops when reaches up to πwi(1 − wi/pi).

Because both production and consumption rates are assumed to be constant, the average inventory

equals half of the maximum inventory level. Thus,
∑

i∈I 0.5hiπwi(1−wi/pi) gives the daily storage

cost. Blending costs are incurred for end products which go through the blending operation in

proportion to their demand rates. Hence, the daily blending cost equals cb
∑

j∈J djzj . The following

expression, therefore, provides daily total costs.

1

π

∑
i∈I

aiyi +
∑
i∈I

ciwi +
∑
i∈I

1

2
hiπwi

(
1− wi

pi

)
+ cb

∑
j∈J

djzj . (3)

4.3 Constraints

The capacitated intermediate selection and blending problem involves constraints related to the con-

servation and quality requirements of end product recipes, and capacity limitations on processing,

storage and blending operations. These constraints are articulated in this subsection.

Recipe conservation constraints. For each end product j, the percentages xij defining the

contribution of each intermediate i into end product j must sum up to 1 in order to specify a

complete recipe: ∑
i∈Ij

xij = 1 ∀j ∈ J. (4)

The decision on whether intermediate i is selected to be used in one or more end product recipes

is indicated by the binary decision variable yi. Hence, intermediate i cannot take place in any end

product recipe as long as yi equals 0:

xij ≤ yi ∀i ∈ Ij , ∀j ∈ J. (5)

If end product j is directly supplied as intermediate i then its contribution in the associated

recipe (in percentage) must equal 1 (i.e. %100):

vij ≤ xij ∀i ∈ I∗j ,∀j ∈ J. (6)

Notice that Eq. (6) together with Eq. (4) guarantees that
∑

i∈I∗j
vij ∈ {0, 1}, and hence

zj ∈ {0, 1}.

Quality constraints. Quality constraints guarantee that recipes comply with the quality re-

quirements of end products. That is, each quality specification k of end product j, as the weighted
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average of the specifications of the intermediates take place in the corresponding recipe, must be

between the pre-specified minimum and maximum quality parameters:

qmin
jk ≤

∑
i∈Ij

qikxik ≤ qmax
jk ∀j ∈ J,∀k ∈ K. (7)

Processing capacity constraints. Processing capacity constraints state that there must be

enough time for the setup and the production operations of the selected intermediates within the

given cycle length. This can be guaranteed by∑
i∈I

{
siyi + π

wi

pi

}
≤ π (8)

where the terms in the summation stand for the total setup time and the total processing time asso-

ciated with the selected intermediates respectively. Notice that, wi equals 0 for those intermediates

that are not selected (see Eq. (1) and Eq. (5)).

Storage capacity constraints. Storage capacity constraints limit intermediate inventory levels.

More specifically, there are N storage silos available each with V tons of capacity. Because the

form of storage is homogeneous, the number of storage units constitutes an upper bound on the

number of intermediates. However, it is also possible to assign multiple storage units to a particular

intermediate. Henceforth, the number of storage silos assigned to an intermediate bounds the

maximum inventory level of that intermediate.

The maximum inventory level of an intermediate depends on the production mode as discussed

in forming the objective function. Following the same reasoning, we can write the storage con-

straints as ∑
i∈I


πwi

(
1− wi

pi

)
V

 ≤ N. (9)

Blending capacity constraints. Blending capacity constraints limit the extent of the daily

blending operations. The daily blending rate is given as pb. The total daily blending volume is

the sum of the demands associated with those end products which undergo blending operations as

indicated by the binary variable zj . Hence, the daily blending capacity constraint is expressed as∑
j∈J

djzj ≤ pb. (10)

The mathematical formulation provided so far involves non-linear expressions both in the ob-

jective function and constraints. In particular, both storage costs and constraints are non-linear

(see Eq. (3) and Eq. (9)). These expressions are difficult to handle with general purpose mathem-

atical programming solvers. In Appendix A, we provide a linearisation scheme for those expressions
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which enables us to express the model as a MILP. Also, in Appendix B, we provide some upper

bounds on the consumption rates of potential intermediates which can be used to strengthen the

formulation.

5 Numerical study

We implement our approach on a data set collected from a medium-sized flour manufacturer that

supplies flour products to bakeries and industrial manufacturers. The main processing operation in

flour manufacturing is the milling process where the grains are ground between successive sets of

mill stones or rollers to produce different types of intermediate flour products. These flour products

can be used directly as end products to satisfy demands. Alternatively, they can be blended into

end products following to a blending operation where they are dispersed within each other and

homogenised. Consequently, the decision problem is to select those flour products to be stocked,

and to determine the recipes of end products specifying how they are blended.

The production system under consideration involves 76 potential intermediates and 45 end

products with 9 different quality parameters. The flour mill can process flour products with a

capacity around 350 tons/day. This does not include the setup times which are around 30 minutes

per changeover. The blender mixes flour products with an average capacity of 200 tons/day. There

are 18 storage silos each of which can store around 50 tons of material. The total demand sums

up to 220 tons/day. However, the demands vary substantially between different end products. We

do not provide the cost figures here for the sake of confidentiality. It is important to note that, as

it is in most process industries, the material procurement costs (which are expressed in processing

costs in the formulation) are dominant with respect to other operational costs. However, while

good purchasing is pivotal, minimizing the non-procurement costs is important to stay competitive

since profit margins are rather small in the food processing industry.

We analyse the case in a constructive manner by using several, increasingly comprehensive,

scenarios, thereby illustrating the effect of the different constraints and cost factors. In Scenario

1, we consider the blending problem in isolation, ignoring all types of capacity limitations. This

scenario establishes a benchmark to compare the following scenarios with. In Scenario 2, we add

the production capacity limitations and setups costs to the problem showing us how these affect

the selection of intermediates and end product recipes. In Scenario 3, we integrate the storage costs

into the problem, demonstrating the trade-off between setup costs and storage costs. In Scenario 4,

we finally add the storage capacity limitation, thereby considering all relevant costs and capacity

limitations. This scenario reflects the actual production environment addressed in this study. In

Scenario 5, we again study the complete problem, but change the production setup of the case

company to look at possible ways to increase efficiency.

In each scenario, we communicate the daily costs and capacity utilization levels of production

and storage operations, and provide some basic information regarding the selection of intermediates
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and end product recipes. More specifically, we report:

1. Cycle time (CT): π

2. Total costs (ToC): 1/π
∑

i∈I aiyi +
∑

i∈I ciwi +
∑

i∈I 1/2hiπwi(1− wi/pi) + cb
∑

j∈J djzj

3. Processing costs (PrC):
∑

i∈I ciwi

4. Setup costs (SeC): 1/π
∑

i∈I aiyi

5. Blending costs (BlC): cb
∑

j∈J djzj

6. Storage costs (StC):
∑

i∈I 1/2hiπwi(1− wi/pi)

7. Processing utilisation (PrU): 1/π
∑

i∈I{siyi + πwi/pi}

8. Blending utilisation (BlU):
∑

j∈J djzj/p
b

9. Storage utilisation (StU):
∑

i∈Idπwi(1− wi/pi)/V e/N

10. Number of selected intermediates (#SI):
∑

i∈I yi

11. Number of end products directly supplied from intermediate stocks (i.e. end products in-

volving a single intermediate in their recipes) (#EPFS): |J | −
∑

j∈J zj

Notice that, we define the utilization levels as the ratio of the engaged capacity to the available

capacity. As such, the storage utilization relates to the percentage of storage units in use, rather

than utilization of each individual storage unit.

5.1 Scenario 1

We start our analysis with the blending problem in isolation. That is, we minimise the sum of

processing and blending costs subject to the quality constraints of end products. Thus, we assume

that the production and storage capacities are both infinite and we neglect the setup and storage

costs. Notice that, the optimal solution of this problem is independent of the cycle time, and it

sets a lower bound on the costs for the original problem. The results are given in Table 1.

Table 1: Optimal solution – Scenario 1

Costs (Euros/day) Utilization (%) Recipes

CT ToC PrC SeC BlC StC PrU BlU StU #SI #EPFS

1 31202 31129 - 73 - - - - 30 32
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We observe that the daily total cost is minimised at 31202. Only a very small portion of this cost

originates from the blending operations. The model selects 30 out of 76 intermediates to be stocked

and 32 out of 45 end products to be supplied from stock. One could expect that supplying all end

products from stock yields a lower total cost by preventing any blending costs. Yet, the optimal

solution suggests that 13 of 45 end products should undergo blending operations. This shows that

the unit production costs of those end products which are not directly supplied from stock are

smaller when they are blended from a number of intermediates despite the additional blending

costs. In other words, the intermediates which comply with the quality requirements of those end

products possess larger unit processing costs than the unit processing cost of the optimal blend

plus the blending costs. Another result is that 32 end products are supplied from stock although

only 30 intermediates are selected to be stocked. This means that some selected intermediates

comply with the quality requirements of multiple end products. Notice that this scenario reflects

the minimum attainable combination of processing and blending costs. In the following scenarios,

we analyse how additional costs and capacity limitations add on this cost figure.

5.2 Scenario 2

In this scenario, we integrate production capacities (i.e. processing rates and setup times) and

related costs (i.e. setup costs) into the problem considered in Scenario 1 while still neglecting the

storage capacity limitation and storage costs. Note that the optimal solution of the problem is now

dependent on the cycle time. In Table 2, we therefore report the optimal solutions of the problem

for cycle times of 1 to 10 days.

Table 2: Optimal solution – Scenario 2

Costs (Euros/day) Utilization (%) Recipes

CT ToC PrC SeC BlC StC PrU BlU StU #SI #EPFS

1 31875 31215 531 129 - 0.88 0.32 - 11 21

2 31585 31178 290 117 - 0.77 0.29 - 12 21

3 31480 31165 224 91 - 0.74 0.23 - 14 24

4 31423 31160 174 89 - 0.71 0.22 - 15 25

5 31386 31151 146 89 - 0.71 0.22 - 16 25

6 31363 31153 124 86 - 0.70 0.21 - 16 25

7 31346 31153 107 86 - 0.69 0.21 - 16 25

8 31331 31141 102 88 - 0.70 0.22 - 17 24

9 31319 31142 90 87 - 0.69 0.22 - 17 25

10 31311 31132 92 87 - 0.72 0.22 - 19 25

The results show that both the cost figures and the selection of intermediates are quite different
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from the ones in Scenario 1. We notice a sharp decrease in the number of selected intermediates

compared to Scenario 1. This leads to higher processing and blending costs which, together with

setup costs, significantly increase the daily total cost. We also observe that neither the production

nor the blending capacity is binding for the system under consideration. For the cycle times

considered, the utilisation in production and blending does not reach 100%.
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Figure 2: Daily total costs and the number of selected intermediates – Scenario 2

The trade-off between the daily total cost and the number of selected intermediates is one of

the core issues considered in this study. In Figure 2, we illustrate this trade-off with respect to

varying cycle times. As can be observed, the number of selected intermediates gradually increases

with the cycle time. The optimal daily total cost, however, is decreasing on cycle time since we

do not consider storage costs. A setup cost is incurred for each selected intermediate in every

production cycle. Thus, the daily total setup cost is decreasing on the cycle time and increasing

on the sum of the individual setup times of selected intermediates. In this sense, having a larger

number of selected intermediates may lead to higher setup costs. The results clearly show that

this effect is dominated by the cost reduction due to the increasing cycle time. On the other hand,

having a larger number of intermediates may also result in lower processing and/or blending costs

by bringing more options to supply end products. We can detect these effects in Table 2. The

results show that increasing cycle time leads to a larger number of selected intermediates, and

thus, reduce processing and blending costs.
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5.3 Scenario 3

In this scenario, we integrate the storage costs into the problem considered in Scenario 2 while

still neglecting the storage capacity limitation. In Table 3, we report the optimal solutions of the

problem for cycle times of 1 to 10 days.

Table 3: Optimal solution – Scenario 3

Costs (Euros/day) Utilization (%) Recipes

CT ToC PrC SeC BlC StC PrU BlU StU #SI #EPFS

1 31892 31215 531 129 17 0.88 0.32 - 11 21

2 31623 31178 290 117 38 0.77 0.29 - 12 21

3 31539 31165 224 91 59 0.73 0.23 - 14 24

4 31503 31165 168 91 79 0.71 0.23 - 14 24

5 31485 31151 146 89 99 0.71 0.22 - 16 25

6 31482 31153 124 86 119 0.70 0.21 - 16 25

7 31485 31153 107 86 139 0.69 0.21 - 16 25

8 31490 31142 102 87 159 0.70 0.22 - 17 25

9 31498 31142 90 87 179 0.69 0.22 - 17 25

10 31509 31142 81 87 199 0.69 0.22 - 17 25

We observe that the cost figures, the utilisation rates, and the selection of intermediates are

very similar to the ones reported in Scenario 2. Because the difference between these demonstrates

the effects of storage costs, we can argue that the magnitude of storage cost is not sufficiently large

to effect the decisions regarding the design of intermediates and end products. Nevertheless, we can

clearly detect the trade-off between setup and holding costs, i.e. the daily setup cost is decreasing

whereas the daily storage cost is increasing on cycle time. As a consequence, the optimal daily

total cost is no longer decreasing on cycle time.

In Figure 3, we illustrate the daily total costs and the number of selected intermediates with

respect to varying cycle times. We observe that the minimum daily total cost 31482 is achieved

when the cycle time is 6 days. The optimal daily total cost is higher for cycle times shorter than

6 days due to larger setup costs, and for cycle times longer than 6 days due to larger storage

costs. The effect of holding costs on the selection of intermediates is mostly visible for longer cycle

times where the magnitude of storage costs is rather large. Consider the cycle time of 10 days.

In Scenario 2, the model selects 19 intermediates which can supply 25 end products directly from

stock. In Scenario 3, however, the model selects 17 intermediates which can also supply 25 end

products directly from stock. The difference between those figures can be explained as follows. The

total consumption rate of selected intermediates equals the total demand rate, and it is allocated

15
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Figure 3: Daily total costs and the number of selected intermediates – Scenario 3

between the selected intermediates following the end product recipes. The average inventory level

of a selected intermediate is increasing on intermediate’s production rate whereas it is concave

on intermediate’s consumption rate. Thus, with other things held constant, the total holding

cost would be lower when the production rates and holding costs of the selected intermediates

are lower and/or the number of selected intermediates is smaller. The reduction in the number

of intermediates also leads to a slight increase in the processing costs, demonstrating that more

expensive raw materials are required to produce more flexible intermediates.

5.4 Scenario 4

In this scenario, we integrate the storage capacity limitation into the problem considered in Scenario

3. Thus, we consider all types of capacity limitations and costs and investigate the actual real-life

problem. In this particular case, there are 18 storage units available. In Table 4, we report the

optimal solutions of the problem for cycle times of 1 to 6 days. We do not consider cycle times

longer than 6 days because there is no feasible solution for those with the given storage capacity

limitation.

The results show that the storage capacity limitation significantly affects the optimal cost

structure and the selection of intermediates and end product recipes. Notice that, in general,

a longer cycle time leads to higher inventory levels. Thus storage capacity limitation is more

restrictive when the cycle time is longer. For cycle times longer than 2 days, the utilization of

storage units reaches 100%, and the storage capacity becomes binding. As can be observed, for

those cycle times, the storage capacity limitation leads to large differences in daily total costs
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Table 4: Optimal solution – Scenario 4

Costs (Euros/day) Utilization (%) Recipes

CT ToC PrC SeC BlC StC PrU BlU StU #SI #EPFS

1 31892 31215 531 129 17 0.88 0.32 0.61 11 21

2 31623 31178 290 117 38 0.77 0.29 0.78 12 21

3 31539 31165 224 91 59 0.74 0.23 1.00 14 24

4 31577 31215 155 128 79 0.73 0.32 1.00 13 21

5 31891 31386 93 327 85 0.82 0.82 1.00 9 11

6 32451 31959 54 346 92 0.90 0.87 1.00 7 12

reported in Scenario 3 and Scenario 4. The magnitude of this difference gradually increases with

the cycle time, and eventually, the storage capacity limitation results in an infeasible problem for

cycle times longer than 6 days.
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Figure 4: Daily total costs and the number of selected intermediates – Scenario 4

Figure 4 illustrates the daily total costs and the number of selected intermediates with respect

to varying cycle times. We observe that daily total cost is minimised when the cycle time is 3

days, and it is increasing rapidly with the cycle time. We also see that the storage limitations

significantly change the structure of the optimal set of selected intermediates and the end product

recipes. In particular, for those cycle times where the storage capacity is binding, the model selects

a smaller number of intermediates, preferably the ones with lower production rates, in order to

reduce the stock levels. This, however, increases processing and blending costs because the set of
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selected intermediates and end product recipes further move away from the optimal ones.

5.5 Scenario 5

In the previous scenarios, we have observed that the storage capacity limitation is the most critical

one among other limitations for the particular example considered in this numerical study. Con-

sequently, in this scenario, we focus on cost reductions that can be achieved by altering the storage

capacity. We conduct our analysis as follows. First, for each cycle time, we find a critical storage

capacity level which is large enough to provide the optimal daily total cost that can be achieved

when there is no storage limitation. Since inventory levels gradually increase with cycle time, we

expect critical storage capacity levels to be higher for longer cycle times. These levels can easily be

found by solving the problem without storage capacity limitations, as in Scenario 3, and checking

how many storage units are being used following the optimal solution. Notice that the storage

capacity constraint is binding only when the storage capacity is below those critical levels, and

if so then having extra storage capacity could reduce the daily total cost. Secondly, we solve the

problem for all storage capacity levels up to critical ones so as to find the added value of expanding

the storage capacity.
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Figure 5: Critical storage capacity levels for cycle times of one to six days – Scenario 5

We know, from Scenario 3, that the optimal cycle time is 6 days for the problem without storage

capacity limitations. This cycle time can be regarded as an upper bound for the optimal cycle time

when storage capacity is limited. Thus we limit our analysis to cycle times from 1 to 6 days. In

Figure 5, we report those critical resource levels. As expected, we observe that the critical storage

levels are increasing on cycle time. The critical storage capacity levels reflect the maximum number
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of storage units that could possibly be needed when a given cycle time is employed. Up to this

level, additional storage units lead to lower costs, but, there is no added value of expanding the

storage capacity beyond the critical level as long as the same cycle time is employed. Nevertheless,

from Scenario 3 we know that the daily total cost can still be improved by employing a longer cycle

time (not more than 6 days).

In what follows, we solve the problem for cycle times of 1 to 6 days and for all feasible storage

capacity levels up to the critical ones so as to find the added value of the extra storage capacity. In

previous scenarios we have already demonstrated the effects of the storage capacity limitation on

individual cost components, utilization rates, and the selection of intermediates and end product

recipes. Thus, in this scenario we only communicate the optimal daily total costs. Figure 6

illustrates the minimum daily total costs that can be achieved with respect to the available number

of storage units also including the cycle time linked to these solutions.
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Figure 6: Optimal daily total costs – Scenario 5

We observe that different cycle times are optimal for different storage capacities. For example,

when cycle time is 3 days, the critical storage capacity level equals 19 storage units. Further

increasing the storage capacity does not lead to a reduction of cost as long as the cycle time remains

the same. However, increasing the available number of storage units to 20, while also increasing the

cycle time to 4 days open up the possibility to reduce costs, since the storage capacity of 20 units

is less than the critical storage capacity level for the cycle time of 4 days. Hence, further increasing

the storage capacity leads to a lower daily total cost until we reach a storage capacity of 25. After

this, we would again need to increase the cycle time to enable further cost reductions. Notice that

the cycle time that minimises the daily total cost tends to increase as the storage capacity gets
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larger. Nevertheless, from Scenario 3, we know that the maximum cycle time that would be used

equals 6 days. Hence, it would never be necessary to use more than 32 storage units as it is the

critical storage level for the cycle time of 6 days.

We can also investigate the added value of extra storage capacity by looking at the minimum

daily total cost for each storage capacity level over the cycle times. These costs are illustrated by

the down-most bold line in Figure 6. We know that the daily total cost tends to decrease as the

storage capacity expands up to 32 storage units and then levels off. However, we observe that this

trend is not steady over the storage capacity. That is, the cost reduction due to an extra storage

unit is not decreasing on the number of available storage units. This is mainly because when an

additional storage unit increases the storage capacity to exceed a critical level, it brings up the

possibility of reducing the cost also by altering the cycle time which is not possible otherwise.

In the actual storage setting of the case company, 18 storage units are used. We know now that

expanding the storage capacity to 32 units will reduce the daily total cost but only if the cycle time

is increased simultaneously. Minor, more realistic, increases in the storage capacity should also be

considered in combination with changes in the cycle time. Adding one storage unit has almost no

effect on costs whereas adding two or three storage units in combination with an increase of the

cycle time to 4 would have a significant effect.

6 Conclusions

In this study, we addressed a capacitated intermediate product selection and blending problem

confronted in the food processing industry. The problem involves the selection of a set of inter-

mediates and end product recipes characterizing how those selected intermediates are blended into

end products to minimise the total operational costs under capacity limitations. We developed a

comprehensive MILP model for the problem. We applied the model to a data set collected from

a real-life company and we analysed the problem under several scenarios to better understand the

trade-offs between capacity limitations and costs. For the particular case considered in our numer-

ical study, we observed that the production and the blending capacities are not binding for the case

whereas the storage capacity is. Consequently, we investigated possible cost reductions that can

be achieved by altering the storage capacity. We showed that the cost reduction due to an extra

storage unit is not decreasing on the number of available storage units, mainly due to the use of

different cycle times. This suggests that a careful investigation is required when deciding upon an

expansion of the storage capacity.

In general, this study demonstrated important product-process interactions in the process in-

dustries, where the decisions on the selection of intermediates and the configuration of end product

recipes are affected by the capacity limitations and the costs associated with production and stor-

age operations. In this context, the problem addressed in this study can be regarded an extension

of production lot sizing problems with integrated design decisions. The conventional production
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lot sizing problems try to balance the trade-off between the fixed production setup costs and in-

ventory holding costs. We observed that this trade-off is affected by integrated design decisions,

since excessive setup and holding costs can be eliminated by reducing the number of intermediates,

however, in expense of additional blending costs. We also analysed how capacity limitations affect

the selection of intermediates and end product recipes. We saw that these limitations interact with

each other, and based on their magnitude, one or more of those limitations could be binding at the

same time. Especially the planning of the production operations within the capacitated situation

(in this paper represented by the selection of a certain cycle time) had a significant effect on the

selected intermediate products, the amount of storage units this requires, and the total costs. The

model presented in this paper can be used to gain insight in the complex interactions between

product design, process design, and operational planning. Also, an analysis as the one conducted

in this paper, could be useful for evaluating alternative design and/or expansion decisions.

This research is particularly aimed at the food processing industry. Nevertheless, it encompasses

characteristics, such as limitations on production and storage capacities, which are very common

in many other processing systems. Therefore, the proposed model can also be adapted to other

processing systems with some simple modifications. For instance, in some processing systems, pro-

duction lots go through a series of quality checks before they are used. This could easily be covered

by the proposed model by replacing the expression of maximum inventory levels πwi(1 − wi/pi)

with πwi in the objective function and the storage capacity constraints. This would also simplify

the linearization of storage capacity constraints. There are several directions we leave aside for

further research. We analysed the problem assuming that a common cycle scheduling policy is

employed. Although it is widely used in practice, it is known that under certain circumstances this

policy may perform badly. Hence, the same problem can be considered under more sophisticated

scheduling policies. We assumed that all storage units are identical, and they must be assigned

to certain intermediates. Violating these assumptions require significant modifications in our ap-

proach. However, in some cases, storage units may possess different characteristics, and it may be

possible to switch storage units between intermediates. Thus, it would be interesting to analyse

the problem while relaxing these assumptions.

A Piecewise linear approximation of storage capacities and costs

The mathematical formulation provided in Section 4 involves non-linearities in the objective func-

tion and constraints. The non-linearity arises due to the expression of the maximum inventory level

of intermediates which is a quadratic polynomial. The expression appears in the objective function

(see Eq. (3)) and the storage capacity constraints (see Eq. (9)). Here, we provide a piecewise linear

approximation for this expression. Let us define

fi(wi) = πwi

(
1− wi

pi

)
. (11)
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For any intermediate i, the consumption rate wi is non-negative, and it cannot exceed the

production rate pi (see Eq. (8)). Hence, we analyse fi(·) in the domain [0, pi], where it is concave,

equals 0 at wi = 0 and wi = pi, and reaches its maximum at wi = pi/2 (see Figure A1).

Figure 7: Approximation of fi(·)

The proposed approximation scheme is based on setting breakpoints of the piecewise approx-

imation to exact values of fi(wi) corresponding to integer multiples of the storage unit capacity

V . In order to account for the exact maximum inventory level and extreme values of the domain

of wi, we also use breakpoints at wi = 0, wi = pi/2, and wi = pi. This approach guarantees the

feasibility of any storage unit assignment while, in general, underestimating maximum inventory

levels and hence storage costs.

The number of linear segments that must be used for intermediate i depends on the production

rate pi, the capacity of storage units V , and the length of the planning horizon π. We denote the

set of linear segments for intermediate i by Li. Each linear segment l ∈ Li is bounded below and

above by two breakpoints denoted by uil−1 and uil. Notice that these values can easily be pre-

computed. Figure A1 depicts a possible realization of fi(·) and the corresponding approximation

function denoted by f̃i(·).
The approximation scheme requires the usage a set of new variables and constraints. Let αil

and βil be the intercept and the slope of the l’th linear segment of f̃i. Now, we introduce variables:

δil =

1, if uil−1 < wi ≤ uil
0, otherwise

and

µil =

wi, if uil−1 < wi ≤ uil
0, otherwise.
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It should be obvious that δil and µil represent the active segment and the corresponding con-

sumption rate for intermediate i. In order to guarantee that these variables take appropriate values,

we use the constraints:

uil−1δil < µil ≤ uilδil ∀l ∈ Li, ∀i ∈ I (12)

and ∑
l∈Li

δil = 1 ∀i ∈ I (13)

∑
l∈Li

µil = wi ∀i ∈ I. (14)

We can now re-write the objective function in Eq. (3) by replacing the exact expression of the

maximum inventory levels given in Eq. (11) with the following approximate one:

f̃i(wi) =
∑
l∈Li

αilδil + βilµil. (15)

Next, we revise the storage capacity constraint. The number of storage tanks that must be

assigned to intermediate i is uniquely defined for each linear segment l ∈ Li. Let us denote these

values by ril, such that, if δil = 1, then ril storage tanks are assigned to intermediate i. We can

now re-write the storage capacity constraint given in Eq. (9) as∑
i∈I

∑
l∈Li

rilδil ≤ N. (16)

B Upper bounds on the consumption rates of intermediates

We used a piecewise linear approximation scheme in order to ensure the linearity of the mathemat-

ical formulation. However, this necessitated the use of a new set binary variables. In this section,

we provide a simple method to reduce the number of those variables, and thus, to reduce the

computation time. The method is based on the idea of finding upper bounds on the consumption

rates of potential intermediates by using a slightly modified version of the blending sub-problem.

These bounds are then used to cut-off some of the binary variables associated with the assignment

of storage units to intermediates.

Let us consider the blending sub-problem:

min
∑
j∈J

∑
i∈Ij

cixij (17)

∑
i∈Ij

xij = 1 ∀j ∈ J (18)

qmin
jk ≤

∑
i∈Ij

qikxik ≤ qmax
jk ∀j ∈ J,∀k ∈ K (19)
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The blending sub-problem provides the optimal end product recipes when production and stor-

age capacities are unlimited and the only cost to be considered is the processing costs of interme-

diates. Hence, the constraints of the blending sub-problem define all feasible end product recipes.

Now, let us replace the objective function by

max wmax
i =

∑
j∈J

djxij . (20)

It is clear that wmax
i is an upper bound on any feasible wi of intermediate i in the original

formulation since it is the maximum possible consumption rate in the uncapacitated problem. The

modified version of the blending sub-problem is a simple linear program and can easily be solved for

each intermediate. Notice that it is possible to find stronger bounds by using more sophisticated

sub-problems following the same approach. However, we experienced considerable reductions in

the computation time even with this simple sub-problem.

Once upper bounds on the consumption rates are computed, for each intermediate i, we can

replace the set of linear segments Li with a smaller one L̃i which can be defined as follows:

L̃i = {l ∈ Li|uil ≤ wmax
i }. (21)
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