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Abstract—From an information theoretic point of view,
multiple-input multiple-output (MIMO) broadcast channels are
separable, i.e., the optimal (capacity achieving) strategy performs
encoding and decoding separately on each of the parallel channels
(e.g., carriers in multicarrier system). In recent publications, it
was shown that this separability can be lost if a restriction to a
certain class of transmit strategies (such as linear strategies or
zero-forcing strategies) is imposed. In this paper, we categorize
the recent results into three different kinds of inseparability, and
we discuss the characteristic properties of each kind. Moreover,
two new inseparability results that fit into these categories are
presented: for the case of linear zero-forcing with time-sharing
and for linear transceivers in systems with two users.

Index Terms—linear transceivers, multiple-input multiple-
output (MIMO), multiuser multicarrier systems, parallel broad-
cast channels, separable and inseparable channels.

I. INTRODUCTION

The notion of inseparability first attained significant atten-

tion in the context of parallel interference channels, where it

might happen that capacity can only be achieved by coding

jointly across the parallel channels instead of separately on

each channel [1]. In parallel MIMO broadcast channels, i.e.,

in the case of a single base station that transmits on multiple

orthogonal carriers, the situation is different: in this setting, the

capacity achieving strategy based on dirty paper coding (DPC)

[2] can be applied separately on each carrier (e.g., [3]). Only

the power allocation has to be optimized across all carriers.

However, DPC is not an adequate method for implementa-

tion in a real system since even approximate implementations

as in [4] have prohibitive complexity due to the involved vector

quantization operations. Also approximate implementations

based on Tomlinson-Harashima precoding (THP) have draw-

backs such as the shaping, power, and modulo loss (e.g., [5]).

An adequate alternative for practical systems are MIMO tech-

niques with linear transceivers, where all operations involving

more than one data stream have to be linear while nonlinear

operations (encoding, detection, . . . ) are only applied to single

data streams (e.g., [6]). On the other hand, the optimization of

the transmit strategy becomes more involved in this case and

additional aspects such as inseparability have to be considered.

As we could recently show in a series of publications [7]–

[9], the question of inseparability becomes important also in

broadcast channels if linear transceivers are employed. Let

us consider a restriction of the allowed transmit strategies

to a certain class of strategies, e.g., to linear transceivers or,

even stricter, to linear transceivers with zero-forcing (complete

interference cancellation), and let us assume that, among all

strategies in this class that employ separate coding on each

carrier, we know the optimal one. Then, there is some perfor-

mance gap between this strategy and the capacity-achieving

DPC strategy that also uses separate coding. However, among

the strategies in the considered class that employ joint coding

across carriers, there might be some strategies that perform

closer to the DPC solution. Whenever this happens, i.e., when-

ever allowing joint coding makes the performance gap smaller,

we say that a scenario is inseparable. As the possibility

of inseparability can be shown by constructing appropriate

examples, it often suffices to consider very simple special

cases of MIMO broadcast channels, maybe even with a single

antenna at some of the terminals (cf. e.g., [9]).

In each of the publications [7]–[9], inseparability was shown

for different performance criteria and under different assump-

tions on the permitted transmit strategies. In [7], problems with

quality of service constraints were considered in overloaded

systems (i.e., with more users than degrees of freedom) under

the assumption of linear transceivers without time-sharing

(switching between several transmit strategies and considering

average per-user rates as well as the average sum transmit

power). Quality of service problems without time-sharing were

also considered in [8], but without the restriction to overloaded

systems. Therein, it was shown that inseparability can occur

if a constraint to zero-forcing strategies is present. The most

general inseparability result was shown in [9] for the class of

strategies with linear transceivers without further constraints.

Restricted to this class, parallel broadcast channels can be

inseparable also for weighted sum rate problems or for quality

of service problems with time-sharing.

Inseparability of MIMO broadcast channels with linear

transceivers was shown in each of the abovementioned pub-

lications, but, as we have just discussed, the results can

be considered as three different kinds of inseparability. In

Section III to V, we present a systematic classification of

these kinds of inseparability, and we discuss their characteristic

properties.

Moreover, we answer a question that was left open for future

research in [8]. Since the inseparability of broadcast channels

with linear zero-forcing strategies was only shown for the case

of quality of service problems without time-sharing in [8], it

was not clear if inseparability in the zero-forcing case can also

occur without time-sharing or for weighted sum rate problems.

In Section VI-A, we answer this question in the positive, by



constructing an example that demonstrates this inseparability.

This new separability result can be classified by means of the

systematics introduced in this paper.

Finally, based on the classification, we identify another

scenario that has not yet been considered under the point of

view of inseparability, and we again provide a corresponding

example to demonstrate the inseparability in Section VI-B.

II. TYPES OF LINEAR TRANSMIT STRATEGIES

Consider a set of C parallel MIMO broadcast channels

with M transmit antennas, K users, and Nk receive antennas

for user k, where the channel matrix of user k on carrier

c is given by H
(c),H
k ∈ C

Nk×M , and the additive circu-

larly symmetric complex Gaussian noise is characterized by

η
(c)
k ∼ CN (0,C

(c)
k ). Transmission with linear transceivers

can be described by

x̂k = GH
k







H
(1),H
k

. . .

H
(C),H
k
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k
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j=1

Bjxj+







η
(1)
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ηk
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where Sk ≤ min{NkC,MC} streams of i.i.d. Gaussian data

symbols are intended for user k, i.e., xk = [xk,1, . . . , xk,Sk
] ∼

CN (0, ISk
). The matrices Bk ∈ C

MC×Sk and GH
k ∈

C
Sk×NkC are the transmit filters (beamforming matrices) and

the receive filters (linear equalizers), respectively.

A. Separate and Joint Transmission

If the transmit filter matrices Bk have arbitrary structure,

a transmit symbol might be transmitted over several carriers

so that the transmit strategy is a joint strategy (or carrier-

cooperative strategy, according to the nomenclature in [10]). In

this case, to find the optimal receive filters for given transmit

filters, an arbitrary structure should also be allowed for the

receive filters GH
k . On the other hand, if the transmit filters

can be decomposed as

Bk = blockdiag
(

B
(1)
k , . . . ,B

(C)
k

)

(2)

matching the block-diagonal structure of the channel matrices

HH
k , we have a separate strategy (or carrier-noncooperative

strategy [10]), and the corresponding receive filters

GH
k = blockdiag

(

G
(1),H
k , . . . ,G

(C),H
k

)

(3)

match the block structure as well.

B. Zero-Forcing Beamforming

In parts of this paper, zero-forcing strategies are considered.

Zero-forcing requires complete suppression of the inter-stream

interference, i.e., an estimate x̂k,s of the sth stream of user

k may not contain interference of any other data stream.

In the context of linear transceivers, the term zero-forcing

beamforming is often used to stress that the interference

suppression is achieved only by means of the linear filters,

i.e.,

gH
k,sH

H
k bℓ,t = 0 ∀k, s, ℓ, t : (ℓ, t) 6= (k, s) (4)

r1

r2

R(P )

convR(P ) ατ , α ≥ 0

r⋆t

r⋆

Fig. 1. Rate balancing solution r
⋆ without time-sharing and r

⋆

t with time-
sharing.

where gH
k,s is the sth row of GH

k and bℓ,t is the tth column

of Bℓ. In this paper, the term zero-forcing always refers to

zero-forcing beamforming according to the definition in (4).

C. Time-Sharing

The term time-sharing refers to applying different transmit

strategies one after another in order to achieve some average

data rate with some average transmit power. Otherwise, if

time-sharing is not allowed, one particular strategy has to be

chosen and such an averaging is not possible. Both concepts,

transmission with and without time-sharing, are worth being

considered since they both have their advantages and disad-

vantages. In particular, transmission with time-sharing can lead

to higher system performance, while strategies without time-

sharing have a smaller signaling overhead.

Let rk be the Shannon rate of user k, and let R(P ) denote
the rate region without time-sharing, i.e., the set of all rate

vectors r = [r1, . . . , rK ]T achievable with sum transmit power

P . Since time-sharing can be interpreted as creating convex

combinations of points in the rate region R(P ), allowing time-

sharing corresponds to taking the convex hull convR(P ).
If we consider a weighted sum rate maximization

max
r∈R(P )

µTr (5)

for a given transmit power P , where µ = [µ1, . . . , µK ]T

is a vector of weights, transmitting with or without time-

sharing does not make a difference since taking the convex

hull of R(P ) cannot increase the weighted sum rate [11,

Corollary A5.9]. However, for problems with quality of service

constraints, such as the so-called rate balancing problem

max
r∈R(P )

K∑

k=1

rk s.t.
r1

τ1
=

rk

τk
∀k (6)

for a given transmit power P and a given vector of relative rate

targets τ = [τ1, . . . , τK ]T, replacing R(P ) by its convex hull

can lead to an improved optimal value due to [11, Proposition

A5.10]. A visualization can be found in Fig. 1. The same is

true for the power minimization problem

min
P≥0

P s.t. ρ ∈ R(P ) (7)

for a given vector of rate requirements ρ = [ρ1, . . . , ρK ]T

(e.g., [12]).

The solution to a quality of service problem with time-

sharing consists of an optimal convex combination of several



solutions of weighted sum rate problems (with or without time-

sharing), cf., e.g., [12]. Therefore, for inseparability studies,

considering quality of service problems with time-sharing is

equivalent to considering weighted sum rate problems.

On the other hand, quality of service problems without

time-sharing have qualitatively different properties than the

weighted sum rate maximization. Moreover, for quality of

service problems without time-sharing, we have to distinguish

the case of an overloaded system with more users than degrees

of freedom and a system where the transmitter has at least as

many degrees of freedom as the system has users.

III. OVERLOADED SYSTEMS WITHOUT TIME-SHARING

In [7], the quality of service (QoS) feasibility was stud-

ied for multicarrier MIMO broadcast channels with linear

transceivers. Without interference, arbitrary QoS requirements

can be fulfilled as long as enough transmit power is spent.

Therefore, this kind of study is only relevant for overloaded

system without time-sharing. If time-sharing is allowed, ar-

bitrary QoS requirements can be fulfilled, e.g., by assigning

each time slot exclusively to one user [7]. The same is true

if the number of degrees of freedom at the transmitter, i.e.,

the product MC of the number of transmit antennas and the

number of carriers, is at least as high as the number of users.

In this case, interference-free transmission is possible without

time-sharing by means of linear zero-forcing beamforming,

and arbitrary QoS requirements can be fulfilled.

However, in an overloaded system, i.e., if the number of

users K is larger than the number of degrees of freedom MC,

a given set of QoS requirements might be impossible to ful-

fill without time-sharing—even with arbitrarily high transmit

power (e.g., [7], [13], [14]). We restrict our considerations to

overloaded systems with so-called regular channels [14] with

Rank
[

H
(c)
K

]

≥ min(|K|,M) ∀K ⊆ {1, . . . ,K} (8)

on each carrier c, where H
(c)
K ∈ C

M×
∑

k∈K
Nk comprises all

matrices H
(c)
k with k ∈ K in a block row. This condition is

fulfilled almost surely if the channels are drawn from a general

continuous distribution.

With joint transmission, the system can be treated as an

equivalent single-carrier broadcast channel with MC transmit

antennas and NkC receive antennas, and rate requirements

ρ1, . . . , ρK are feasible if they fulfill [7], [14]

K∑

k=1

(1− 2−ρk) < MC. (9)

With separate transmission, additional conditions have to be

fulfilled. In this case, it must be possible to find per-carrier

rates r
(c)
k for each user such that

∑C
c=1 r

(c)
k = ρk and such

that the feasibility condition is fulfilled on each carrier [7]:

K∑

k=1

(1− 2−r
(c)
k ) < M. (10)

Summing up (10) over all carriers and taking into consider-

ation that (1 − 2−r
(c)
k ) is concave in r

(c)
k , we see that the

constraints in (10) are stricter than the one in (9) unless the

required rate of each user is achieved with a single data stream,

i.e., r
(ck)
k = ρk for some ck and all k. However, in case of

an unsuitable combination of the individual requirement sizes,

there might be no solution with single-stream transmission (bin

packing problem, cf. [7]). Therefore, as discussed in detail in

[7], we can find quality of service requirements ρ1, . . . , ρK
for which it is impossible to fulfill (10), even though (9) is

satisfied. In these cases, the scenario is inseparable.

This first kind of inseparability of parallel MIMO broadcast

channels with linear transceivers is the most specific one as

it only occurs for quality of service problems without time-

sharing in overloaded system. The characteristic property of

this kind of inseparability is that the question whether a setting

is inseparable does not depend on the channel realization

(at least as long as we restrict ourselves to the practically

relevant case of regular channels). Instead, the only decisive

factors are the system dimensions and the values of the

minimum rate requirements. The effect leading to the first

kind of inseparability is that despite of being feasible for

joint transmission, the rate requirements might form unsuitable

combinations that can not be allocated to the various carriers

in a feasible manner [7], [9].

IV. GENERAL SYSTEMS WITHOUT TIME-SHARING

In our recent work [8], another inseparability result for

quality of service problems was presented. Therein, the case of

zero-forcing beamforming was considered with the assumption

that time-sharing is not allowed. This setting obviously differs

from the one in the preceding section since zero-forcing is not

possible in an overloaded system. Therefore, the result that is

summarized below shows that inseparability can also happen

in general systems that are not overloaded. We will see later

that the result extends to the case without zero-forcing.

The inseparable example in [8] is a two-user single-antenna

system with two carriers. In this system, the number of users

K = 2 is equal to the degrees of freedom at the transmitter

MC = 2 so that the system is not overloaded, and zero-forcing

is possible. It was shown in [8] that inseparability under the

assumption of zero-forcing without time-sharing can occur in

case of so-called spectrally similar channels that fulfill
∣
∣
∣H

(c)
k

∣
∣
∣

2

C
(c)
k

≥

∣
∣
∣H

(d)
k

∣
∣
∣

2

C
(d)
k

∀k ∈ {1, 2} (11)

for some carrier c and d 6= c, where the noise covariance

matrices C
(c)
k and channel matrices H

(c),H
k are reduced to

scalars C
(c)
k and H

(c),∗
k due to the single-antenna assumption.

The question whether or not the setting is separable then

depends on the particular channel realization and on the value

of ρ1 and ρ2. For the case that the channels do not fulfill (11),

the setting was proven to be separable no matter what values

of ρ1 and ρ2 are chosen.

Unlike the first kind of inseparability, this second kind

does not only depend on the rate requirements, but also

on the channel realization. Now, the main effect leading to



inseparability is that several users might compete for a carrier

on which they all have good channel conditions. Note that

this effect is specific to quality of service problems: from

a (weighted) sum rate perspective, there is no competition

between users since only the (weighted) sum of the rates is

important. Moreover, this effect does not occur with time-

sharing, which enables the users to use the good carrier one

after the other. Therefore, this kind of inseparability is specific

to quality of service problems without time-sharing. However,

the zero-forcing assumption is not a prerequisite to obtain this

kind of inseparability as will be shown in Section VI-B.

V. SYSTEMS WITH TIME-SHARING

The most general inseparability result for parallel MIMO

broadcast channel with linear transceivers, which is not limited

to quality of service problems without time-sharing, was

shown in [9].

Parallel broadcast channels with C = 2 carriers, M = 2
transmit antennas, K = 3 users, and Nk = 1 receive antenna

∀k with noise variances C
(c)
k = 1 ∀k, ∀c and channels

HH
1 =

[

h
(1),H
1

h
(2),H
1

]

=

[
1 0 0 0
0 0 1 0

]

, (12)

HH
2 =

[

h
(1),H
2

h
(2),H
2

]

=

[
1√
2

1√
2

0 0

0 0 1√
2

1√
2

]

, (13)

HH
3 =

[

h
(1),H
3

h
(2),H
3

]

=

[
1√
2

j√
2

0 0

0 0 1√
2

− j√
2

]

(14)

was considered in [9]. It was shown that the globally optimal

strategy for separate linear processing requires a transmit

power Psep ≈ 3.5684 to fulfill the rate targets ρk = 1 ∀k.
Then, a joint linear strategy that only needs Pjoint ≈ 3.1174
was presented, which shows inseparability.

Due to the relations discussed in Section II-C, this kind

of inseparability not only holds for quality of service prob-

lems without time-sharing, but also for weighted sum rate

maximization.1 In fact, this kind of inseparability can occur

for various objective functions that take their optimal values

on the Pareto boundary of the rate region [9]. This makes it

significantly different from the first two kinds of inseparability.

As the third kind is not limited to quality of service

problems, the rate targets do not seem to play the major

role for the question of inseparability. However, their exact

influence as well as the influence of the weights µ1, . . . , µK

in case of a weighted sum rate maximization is not yet studied.

According to the study in [15], this kind of inseparability can

occur in the high-SNR regime as well as in the low-SNR

regime. As discussed in detail in [15], the important factor

for deciding about separability or inseparability of this kind

is the particular channel realization. However, unlike for the

second kind presented above, inseparability is not caused by

spectrally similar channels, where the channel quality strongly

depends on the carrier index. Instead, symmetry among the

1An example with sum rate maximization can be found in [15].

carriers—and also among the users—seems to be conducive to

this kind of inseparability [15]. Just like for the second kind of

inseparability, absence or presence of zero-forcing constraints

is not crucial for this kind of inseparability (cf. next section).

VI. NEW RESULTS ON INSEPARABILITY

In this section, we present two new examples of insepara-

bility in order to answer questions that have been left open

for future research in previous publications. The presented

examples are classified by means of the three categories

introduced above, which helps to better understand both the

new results and the classification scheme.

A. Zero-Forcing with Time-Sharing

In [8], the question was left open whether inseparability can

occur in parallel MIMO broadcast channels with zero-forcing

constraints also in the case where time-sharing is allowed. It

was stated, that the example system from [8] cannot be used

to show inseparability for this case.

The reason for this is that the result shown in [8] belongs to

the second kind of inseparability while showing inseparability

for zero-forcing with time-sharing would belong to the third

category. As discussed above, the factors causing inseparabil-

ity are fundamentally different for these two categories.

To obtain the desired inseparability result, we therefore

propose to reconsider the example system from [9], which

is reproduced in (12) to (14), since this scenario was already

used to obtain an inseparability result of the third kind—albeit

for the case without zero-forcing constraints. The channel

vectors in this scenario have unit norm and symmetric angular

separations θ
(c)
k,j = arccos |h(c),H

k h
(c)
j | = 45◦ for k 6= j.

As adding zero-forcing constraints cannot improve the op-

timal value of the objective function, the necessary power

to fulfill ρk = 1 for all k with separate zero-forcing is

Psep,ZF ≥ Psep ≈ 3.5684 (cf. Section V).2

To construct a joint zero-forcing strategy, we decide for

Sk = 1 ∀k and use receive filter vectors

tHk =
1√
2

[
1 ejϕk

]
(15)

with ϕ1 = 0, ϕ2 = − 5π
6 , and ϕ3 = 5π

6 (similar as

in [9]), yielding effective vector channels h̃H
k = tHk H

H
k .

This particular choice yields high angular separations, i.e.,

cos θk,j = |h̃H
k h̃j | is given (as in [9]) by

∣
∣
∣h̃

H
k h̃j

∣
∣
∣ =

{

1 if k = j,
1√
2
cos

(
5π
12

)
≈ 0.1830 if k 6= j

(16)

for all k, j ∈ {1, 2, 3}. The rates achievable with zero-forcing

are then given by rk = log(1+pkγk) where the channel gains
γk are computed from (e.g., [16])

γk =
[(
HHH

)−1
]−1

k,k
with H =





h̃H
1

h̃H
2

h̃H
3



 . (17)

2Using the algorithm from [12], it can be shown numerically that Psep,ZF ≈

3.6569, which can be achieved by time-sharing between single-user transmis-
sion, is optimal.



Note that the elements of HHH only depend on the inner

products h̃H
i h̃j between the effective channels.

We obtain γk ≈ 0.9180 for all k, and the required transmit

power is given by

Pjoint,ZF =

K∑

k=1

2ρk − 1

γk
≈ 3.2679. (18)

This proves that broadcast channels with linear zero-forcing

are not always separable even if time-sharing is allowed. As

discussed above, this is an inseparability of the third kind,

i.e., it can also happen for other objective functions such as

(weighted) sum rate maximization.

Similar as in the case without zero-forcing studied in [9], the

loss in performance resulting from small angular separation of

the channels in the case of separate transmission (θ
(c)
k,j = 45◦

versus θk,j ≈ 79.5◦ in the joint case) cannot be compensated

by the fact that two subchannels are available and by the use

of optimal time-sharing.

B. Two Users without Zero-Forcing

Having seen that inseparability of the third kind can happen

with and without zero-forcing constraints (Section VI-A), the

question arises whether this is also true for the second kind,

which has only been studied with zero-forcing constraints so

far. Therefore, we reconsider the example system from [8]

(cf. Section IV) with H
(1)
k = 1 ∀k, H(2)

k = 0.1 ∀k, and
C

(c)
k = 1 ∀k, ∀c, but this time without zero-forcing constraints.

We consider a power minimization with ρ1 = ρ2 = 1.
The globally optimal separate linear strategy without time-

sharing can be found numerically up to an arbitrarily small

error tolerance by means of the algorithm proposed in [17].

The optimal power is Psep ≈ 27.2843, which can be achieved

by choosing for the two users the per-carrier rates r
(1)
1 = 1,

r
(2)
1 = 0, r

(1)
2 ≈ 0.8092, r

(2)
2 ≈ 0.1908.

For the joint strategy, we use the receive filters

tHk =
1√
2

[
1 (−1)k

]
(19)

yielding effective vector channels h̃H
k = tHk H

H
k . Applying the

power minimization method for vector broadcast channels pre-

sented in [13], we get the transmit power Pjoint = 20 < Psep.

This shows that inseparability of the second kind can also

happen without zero-forcing constraints.

In [15], we have asked the question whether inseparability

without zero-forcing constraints can also occur in a system

with only two users. Using the classification proposed in

this paper, we can answer this question in part and pose

the remaining question more precisely: in this section, it was

shown that inseparability of the second kind can occur with

two users without zero-forcing, but we still do not know

whether inseparability of the third kind can happen in a system

with two users.

VII. DISCUSSION

The categorization into three kinds of inseparability pre-

sented in this paper shows that the inseparability of MIMO

broadcast channels with linear transceivers is a multifaceted

topic that merits further study in order to be understood better.

We hope that the systematic classification proposed in this

paper helps to better understand existing as well as future

results on the matter and assists in identifying separability-

related questions that need to be studied. For instance, the

systematic approach facilitated finding appropriate examples

for the new inseparability results presented in Section VI.
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