
Multi-Objective Routing and Topology Optimization
in Networked Embedded Systems

Michael Glaß, Martin Lukasiewycz, Rolf Wanka, Christian Haubelt, and Jürgen Teich
Hardware/Software Co-Design, Department of Computer Science

University of Erlangen-Nuremberg, Germany
Email: {glass, martin.lukasiewycz, rwanka, haubelt, teich}@cs.fau.de

This is the author’s version of the work. The definitive work was published in Proceedings of the International Conference on Embedded Computer Systems: Architectures, Modeling,

and Simulation (IC-SAMOS 2008), pp. 74-81, 2008. The work is supported in part by the German Science Foundation (DFG), SFB 694.

Abstract— Modern networked embedded system design has
to cope with multiple design objectives. One major challenge
is the determination of optimal routings with respect to these
objectives. Existing automatic optimization approaches carry out
a two step optimization: First, they perform a multi-objective
topology optimization of the networked embedded system. Then,
a multi-objective routing optimization for a subset of Pareto-
optimal solutions obtained from the first step is performed. In
general, this may exclude several globally optimal solutions from
the optimization process. To overcome this drawback, a unified
approach based on Multi-Objective Evolutionary Algorithms is
presented that ensures a combined optimization of the topology
and routing. Since the system topology is varied within the
optimization, the main contribution of this paper contribution is a
novel routing technique that always samples feasible paths using
a topology independent genetic encoding. This encoding preserves
optimized routing information when changing the underlying
topology. An experimental evaluation shows the effectiveness of
the presented approach.

I. INTRODUCTION

Today’s embedded systems can be found in consumer prod-
ucts, prototyping systems or applications from automotive and
avionics industries. Especially in automotive and avionics sys-
tems, there are many Electronic Control Units (ECUs) that are
connected via different types of shared buses. These systems
are commonly known as networked embedded systems. Design
alternatives are not only given due to computational resources
anymore, but include communication over several communi-
cation standards like LIN [15], CAN [6], FlexRay [11] or
TTP [20]. This highly increases the design complexity of the
networked embedded system.

Typically, the networked embedded system is a distributed
system concurrently executing communicating processes that
are statically bound onto computational resources in the net-
work. A system-level designer, hence, has to take several
issues into account: Which computational and communica-
tion resources are required, where to execute tasks on the
given computational node, and how to route data through the
network such that no overload occurs on resources and the
capacity of communication links is not exceeded. Of course,
all these decisions should be taken into account by optimizing
different and often competitive objectives, like minimization
of monetary costs, power consumption or maximizing fault-
tolerance while fulfilling different constraints.

In this paper, networks consisting of computational re-
sources that are able to execute a certain amount of software
load, and links with a certain capacity for the communication
demand between the functions are considered. In contrast to
previous approaches, where the optimization process was di-
vided into a two step process, it is not distinguished between a
so-called topology optimization, where the binding of tasks on
computational resources is performed, and a routing optimiza-
tion, where the focus is an optimal communication for a given
architecture and process binding. Hence, a combination of
these two optimization approaches into a unified optimization
process using state of the art Multi-Objective Evolutionary
Algorithms (MOEAs) [3] is presented. Thus, a true multi-
objective optimization is performed that includes the allocation
of resources, the binding of processes and a calculation of
a routing to ensure a correct communication. By respecting
multiple objectives, the introduced methodology determines a
set of so-called Pareto-optimal solutions that allows for an
unbiased decision making.

The proposed optimization approach is outlined in Algo. 1.
The core functionality is performed by a three step decoding
technique that a) determines an allocation α of resources, b)
performs a binding β of tasks onto the allocated resources,
and c) determines a feasible static routing γ for all communi-
cation demands. Thus, each decoded solution corresponds to
a complete networked embedded system that can be evaluated
with respect to all given objectives. In contrast to approaches
based on several steps where only a subset of objectives is
used to preselect to individuals for a further synthesis step,
the presented one step approach avoids to miss global optima.
This is obvious since the optimality of solutions from previous
optimization steps does not guarantee an optimality of the
solutions that can be synthesized based on the already found
solutions. With the three step encoding technique, a common
MOEA procedure including selection of the fittest individuals
as well as crossover and mutation operations can be used to
perform the optimization.

The challenge of this unified approach is the changing
topology that the routing optimization has to cope with. Since
allocation as well as binding may alter the topology signif-
icantly, the used routing optimization has to be able to deal
with changing underlying topologies. For this purpose, a new
multi-objective routing approach that is based on the sampling
of feasible paths is presented. These paths are generated

Algorithm 1 The optimization process including the three-step
decoding.

1: procedure EA
2: while generation < maxGenerations do
3: for each individual ∈ population do
4: individual.decodeAllocation()
5: individual.decodeBinding()
6: individual.decodeRouting()
7: individual.evaluateObjectives()
8: end for
9: population = selectNextGeneration(population)

10: population.mutate()
11: population.crossover()
12: generation++
13: end while
14: end procedure

via genetically encoded decision values and weighted routing
hops. Furthermore, two algorithms are introduced that perform
a fast and accurate weighting of hops based on matrices.

The remainder of the paper is outlined as follows: Section II
discusses prior work. Section III introduces the used system
model of the networked embedded system. Section IV gives
a description of the problem targeted in this paper. Section V
introduces the proposed path sampling algorithm while Sec. VI
presents two weighting algorithms for the path sampling
procedure. Experimental results are presented in Sec. VII
while the paper is concluded with a summary in Sec. VIII.

II. RELATED WORK

Several approaches exist that target a similar problem which
is commonly referred to as design space exploration of em-
bedded systems, e.g., [9], [10], and [16]. Unfortunately, these
approaches are destined for SoC or MPSoC designs whereas
no straightforward extensions exist for exploring the imple-
mentation alternatives of networked embedded systems as they
occur in automotive, avionic, or wireless sensor networks.

In [19], a framework has been proposed that is able to
satisfy the demand for an exploration of network embedded
systems. The main drawback of this solution is the absence of
a true multi-objective routing when exploring the design space.
Hence, a heuristic is used that is based on routing over shortest
paths from source to sink with the number of hops being
the weight of a path. This heuristic makes sense since many
objectives of networked embedded systems like the network
flow, latency or fault-tolerance are often correlated with the
number of hops to be taken. A comparison of the heuristic
from [19] with the multi-objective routing approach proposed
in this work is given in Sec. VII.

On the other hand, there are several multi-objective routing
approaches that focus on so-called Multi-Objective Routing
Problems (MORPs) [5]. In [2], [7], and [14], Evolutionary
Algorithms are used to search for Pareto-optimal multi-cast
routings for a given topology. Hence, all these approaches use
a genetic encoding of the routing-paths for a fixed topology

c
4
 = 40

p
3

r
1

r
2 r

3

c
1
 = 50 c

3
 = 20

c
2
 = 50

c
5
 = 20

BUS1 BUS2
d

2
 = 30

d
1
 = 40

p
1

p
2

d
3
 = 5

Problem Graph Architecture Graph

Fig. 1. Specification Graph: Edges in the problem graph are annotated with
demands de. Edges in the architecture graph are annotated with capacities ce.

including resources and communication connections. As al-
ready mentioned, the approach proposed in this work has to
deal with changing topologies and bindings from the first two
decoding steps. Using the encodings proposed in [2], [7], [14],
a change of the topology would imply a new encoding of the
routing and therefore, a loss of all information for the routing
optimization.

In [12], a framework called UMARS is presented that
combines mapping of cores and routing of communication
demands for Network-on-Chip architectures. Although this
approach combines a mapping optimization with a routing
optimization, the topology of the NoC is fixed. Therefore, the
need for a topology independent routing is not given in this
approach.

To the best of our knowledge, besides the approach in [19],
there exists no framework for the topology optimization of
networked embedded systems. Furthermore, there is no evolu-
tionary driven multi-objective routing approach that can handle
different underlying topologies without changing its genetic
encoding and therefore losing information or requiring a huge
amount of analysis to find reusable genetic information.

III. SYSTEM MODEL

The used system specification strictly separates behavior and
structure and is represented by a specification graph [4].

• The specification graph Gs = (Gp, Ga, Em) consists
of a problem graph Gp, an architecture graph Ga and
mapping edges Em.

• The problem graph1 Gp = (Vp, Ep) consists of processes
p ∈ Vp and their data dependencies e = (pi, pj) ∈
Ep ⊆ Vp × Vp and represents the application that is
executed in the networked embedded system. The given
data dependencies have to be implemented by routing the
data from process pi to pj .

• The architecture graph Ga = (Va, Ea) consists of a set
of available resources r ∈ Va and their interconnections

1In [13], it has been shown how applications can be represented by a
problem graph.

e = (ri, rj) ∈ Ea ⊆ Va × Va. This graph represents the
architecture that is available to implement the networked
embedded system.

• The mapping edges m ∈ Em ⊆ Vp × Va relate processes
of the problem graph Gp to resources of the architecture
graph Ga and indicate a possible implementation of a
process on the corresponding resource.

An example of a specification graph is shown in Fig. 1. White
resources connected via directed edges represent processes
with their data dependencies while gray resources represent the
available resources connected via directed edges. The dashed
edges in Fig. 1 depict the mapping edges.

With each data dependency e ∈ Ep, a demand value de ∈
R+

0 is associated that represents the required bandwidth. On
the other hand, the supported bandwidth is modeled by capac-
ities ce ∈ R+

0 associated with the interconnections e ∈ Ea in
the architecture graph. Therefore, the routing possibilities of a
data dependency e ∈ Ep are limited to connections ê ∈ Ea that
have enough bandwidth, hence fulfilling de ≤ cbe. Furthermore,
tasks, resources, and mapping edges can be attributed to
model their properties for the evaluation of the objectives like
monetary costs, network flow, latency, reliability, or power
consumption. For a further explanation of the system model,
cf. [19].

IV. PROBLEM DESCRIPTION

In this section, the problem targeted in this paper is in-
troduced. Afterwards, the need for a topology independent
routing technique that results from the first decoding steps
of allocation α and binding β is explained.

A. Design Space Exploration

The task of design space exploration is to find the set of
optimal feasible implementations for a given specification. An
implementation or solution of the problem is deduced from
the specification and consists of three main parts:

• The allocation α ⊆ Va is the subset of available hard-
ware resources that are actually used to implement the
networked embedded system.

• The binding β ⊆ Em determines on which allocated
resource each process is executed. For each process from
the problem graph exactly one mapping has to be in use.

• The routing γ contains a communication path through
the network for each data dependency e ∈ Ep that,
thus, allows a data transfer between the data dependent
processes.

Due to the data dependencies, the demand values, and the
capacities of the interconnections, an implementation can
be infeasible. An implementation is called feasible if every
process is mapped to an allocated resource and every data de-
pendency imposed by the problem graph could by successfully
established with a routing on the given resources with respect
to the demand values and interconnection capacities.

Definition 1 (Design Space Exploration): The task of de-
sign space exploration can be formulated as the following
multi–objective optimization problem:

minimize f(α, β, γ),
subject to:

α is a feasible allocation,
β is a feasible binding,
γ is a feasible routing

B. Routing

Since the focus of this work is on the routing, a formal
introduction is given in the following. Per definition, a feasible
routing γ contains a path γe for each data dependency e =
(ps, pt) ∈ Ep:

γ = {γe | e ∈ Ep} (1)

A path γe ∈ Γe
α,β is defined as a vector of resources Va that

use their point-to-point interconnection to pass the data. Here,
Γe

α,β denotes the set of all feasible paths on an allocation α
serving e ∈ Ep.

γe = (γe
1 , . . . , γe

n) with γe
i ∈ Va (2)

One resource γe
i within such a path is called a hop. A feasible

paths fulfills the following conditions:

γe : γe
1 = rs ∧ γe

|γe| = rt (3a)

∧ ∀1 ≤ i < |γe| : (γe
i , γe

i+1) ∈ Ea (3b)
∧ ∀1 ≤ i ≤ |γe| : γe

i ∈ α (3c)
∧ ∀1 ≤ i, j ≤ |γe| ∧ i 6= j : γe

i 6= γe
j (3d)

Eq. (3a) ensures that the path starts at the resource rs of
the sending process ps and ends on the resources rt of the
receiving process pt. Eq. (3b) ensures that there exists an
interconnection between all used hops. Eq. (3c) takes care of
all used hops being allocated, while Eq. (3d) forbids loops in
the path.

To enable the design space exploration process to find all
global optima, every path γe ∈ Γe

α,β has to be evaluable by the
exploration. Thus, the used algorithm to perform the routing
must ensure that every path has a chance to be chosen:

∀γe ∈ Γe
α,β : P (γe) > 0 (4)

Note that, e.g., a shortest path algorithm only considers paths
with minimal length k, thus, paths |γe| > k of greater length
have a probability P (γe) = 0 and are pruned from being
chosen, respectively.

Furthermore, the used algorithm should perform a fair
routing, i.e., every γe ∈ Γe should have the same probability
P (γe) to be chosen:

P (γe) =
1
|Γe|

(5)

C. Changing Topologies

The need for a technique that can determine a routing
γ while handling different underlying topologies can be ex-
plained by an example based on the graph in Fig. 2: Imagine
the process p1 being bound to r1, p2 being bound to r3 and
p3 being bound to r2, cf. Fig. 2a). The data dependency d2

from p1 to p3 can either be routed directly over BUS 1 or
over BUS 2 and a direct connection between r3 and r2. On

r
1

r
2 r

3

BUS1 BUS2

γd2= (r
1,
 BUS1, r

2
)

γd2= (r
1,
 BUS2, r

3
, r

2
)

γd2= (r
1,
 BUS1, r

2
)

a) b)

r
1

r
2

BUS1

p
2

p
3

p
2

p
1

p
3

p
1

Fig. 2. Implementations of the specification in Fig. 1: Implementation a)
offers two paths to establish the data dependency d2 while implementation
b) only offers one possible path, because resource r3 and BUS2 are not
allocated.

r
x

r
z

r
y

A∣∣−n r x , t =10

A∣∣−n1r z , t =8

A∣∣−n1r y , t =2

n n1

P= 8
10

P= 2
10

Fig. 3. Sampling for a fair routing in step n. The number of feasible paths
A that are still left to reach the target determine the probability of a hop to
be taken in n + 1.

the other hand, process p2 can also be bound onto r2 in the
first phase of allocation and binding, cf. Fig. 2b). In this case,
BUS 2 as well as r3 do not have to be allocated anymore
and, thus, are not available as hops for a path to pass the
data. In current optimization approaches, the hops, i.e., the
avail resources are fixed and, thus, used directly to encode the
routing in the Evolutionary Algorithm. Hence, a change in the
topology leads to a loss of all the genetic routing information
that may still be valid and is often already optimized for parts
of the topology that are also present in the changed topology.

To overcome this drawback, a genetic encoding independent
of the underlying topology as well as a sampling algorithm that
enables to calculate feasible paths based on this encoding are
introduced in the next section.

V. PATH-SAMPLING IN UNKNOWN
TOPOLOGIES

In this section, a novel path sampling algorithm is intro-
duced that is controlled by decision values. These decision
values can be genetically encoded and substitute the encoding
of the topology of the network embedded system.

A straightforward solution for a routing algorithm fulfilling
the fairness property stated in Eq. (5) is randomly choosing
a path γe ∈ Γe

α. Hence, this algorithm needs to compute the
set Γe

α explicitly. Unfortunately, the computation complexity

of |Γe
α|, which is the number of simple paths of maximum

length lmax = |α| − 1, is already #P -complete [21]. As a
consequence of the calculation of the number of simple paths
being that complex, enumerating all simple paths to form the
set Γe

α is an even harder problem.

A. Path Sampling using Weighted Hops
To avoid the complex computation of Γe

α, a constructive
heuristic is presented that samples a path from the source to the
destination guided by the genetically encoded decision values.
At this juncture, the number of feasible paths Al(s, t) that
are still left to reach the target t from the source s in l steps
are used to weight each hop. These weights, as well as the
genetically encoded decision values, are then used to decide
which hop is taken next during the path sampling process.

The principle of the path sampling is illustrated in Fig. 3.
Imagine the sampling has come in n steps to the resource
rx. Moreover, it is known that a maximum of l = |α| − n
steps are left to reach the target with a loop-free path. The
weight of rx is Al(rx, t) = 10, i.e., there are 10 feasible paths
being left to reach the target. In step n + 1, there are two
resources reachable that can be taken as the next hop: ry with
Al−1(ry, t) = 2 feasible paths and rz with Al−1(rz, t) = 8
feasible paths left. To ensure a fair routing, ry , thus, has to be
taken with probability 2

10 = 0.2 and rz with probability 8
10 =

0.8. The decision which hop is taken next is hereby guided
by the genetically encoded decision variable he

n. The complete
sampling approach is outlined in Algo. 2. Based on the weights
of each hop and the derived probabilities of each next to be
taken, the presented algorithm approach approximates Eq. (5)
without the need for the complex calculation and storage of
the set Γe

α.

B. Genetic Encoding
The used genotype consists of an encoding for the allo-

cation α ⊆ Va realized as bit-vectors and of an allocation-
independent encoding of the binding β ⊆ Em by using priority
lists [4]. Moreover, the decision values for the path sampling
algorithm are encoded using a set h = {he|e ∈ Ep} of vectors
he = (he

1, . . . , h
e
|Va|). Thus, the sampling of a path for each

data dependency e ∈ Ep is guided by modifiable a vector
of decision values. The initial genotype of each individual is
constructed the following:

∀e ∈ Ep, 1 ≤ i ≤ |Va| : he
i = R[0,1) (6)

The used genetic operators to handle the introduced encoding
are the normally distributed mutation [17] with a handling for
bounded decision values and the so-called Simulated Binary
Crossover [8].

VI. WEIGHTING HOPS USING MATRICES

In the following, two weighting techniques based on adja-
cency matrices and matrix multiplication are introduced. These
approaches solve the problem of weighting hops according to
the number of feasible paths to the target. Furthermore, an en-
hancement for both algorithms to take the limited capacity of
the communication interconnections into account is presented.

Algorithm 2 The sampling algorithm to perform the actual
routing from source to destination by using weighted hops.
The algorithm serves Eq. (3a) in lines 2 and 3 through
determining source and target resource. Until the target is
reached, see line 6, every used hop is appended to the path in
line 7. Eq. (3b) and Eq. (3c) are ensured via line 10. Line 11 is
used to calculate an actual decision value using the weight of
the actual hop and the possible next one. The decision which
hop to take next is done in line 12 by comparing the actual
decision value and the genetic encoded one. If the target is
reached, the path is returned.

1: procedure SAMPLING(data dependency e = (p, ep) ∈ Ep,
allocation α, binding β)

2: source s = v ∈ Va ∧ (p, v) ∈ β
3: destination t = v ∈ Va ∧ (ep, v) ∈ β
4: a = s
5: n = 1
6: while a 6= t do
7: γe

n = a
8: σ = 0
9: l = |α| − n

10: for each (a, ea) ∈ Ea with ea ∈ α do
11: σ += Al−1(ea, t) / Al(a, t)
12: if he

n ≤ σ then
13: a = ea
14: break
15: end if
16: end for
17: n = n + 1
18: end while
19: γe

n = t
20: return routing path γe

21: end procedure

A. Plain Path Enumeration

The first algorithm called plain path enumeration uses an
extended adjacency matrix to weight hops. For this purpose,
the matrix for the topology α is generated that is available
after the allocation has been performed:

A = (ai,j)1≤i,j≤|α| =

{
1, i, j ∈ α ∧ ((i, j) ∈ Ea ∨ i = j)
0, otherwise

(7)
Taking A to the l-th power results in a matrix with the number
of paths of maximum length l including (self-)loops [1,
Sec. 5.9].

Al = Al (8)

The maximum length of a feasible, loop free path calculates as
the number of resources minus 1, i.e., |α| − 1. Therefore, it is
sufficient to calculate and store the matrices A1, . . . , A|α|−1.
Of course, these matrices have to be calculated only once for
each α.

B. Self-Loop Free Path Enumeration

Since the plain path enumeration also includes self-loops,
short paths are weighted much heavier than long paths. There-
fore, an enhancement can be introduced that excludes self-
loop. This algorithm is called self-loop free path enumeration.

For this purpose, the adjacency matrix itself is used:

Ã = (ai,j)1≤i,j≤|α| =

{
1, i, j ∈ α ∧ (i, j) ∈ Ea

0, otherwise
(9)

Taking Ã to the l-th power results in a matrix Ãl containing
the number of feasible paths of exact length l. The matrices
used for sampling consisting of feasible paths of maximum
length l then calculate as:

Al =
l∑

k=1

Ãk. (10)

Of course, this algorithms still contains loops of length l >
1, but eliminating these loops requires, hence, an increasing
amount of extra computational effort.

C. Incorporating Capacity Constraints

A drawback of both plain path enumeration and SL-free
path enumeration is that routing constraints based on a too low
remaining capacity cannot be considered. Thus, topologically
feasible paths can still be infeasible due to capacity constraints.
The remaining capacity of a communication edge ê ∈ Ea is
defined as follows:

crbe = cbe − ∑
γe∈γ

de · xγe,be (11)

With xγe,be being 1 if the communication edge ê ∈ Ea is
used in a path γe and 0 otherwise. Therefore, a feasibility
check after the sampling of a path is needed. To overcome this
drawback, a modification can be applied to both algorithms.
Hereby, an adjacency matrix has to be calculated for every
demand de. At this juncture, such connections are set to 1 that
have enough capacity cr to serve the demand, while others are
set to 0, just like missing connections, respectively:

A∗ = (ai,j)1≤i,j≤|α| =

1, i, j ∈ α ∧ (ê = (i, j) ∈ Ea∨

i = j) ∧ de ≤ crbe
0, otherwise

(12)

Ã∗ = (ai,j)1≤i,j≤|α| =

1, i, j ∈ α ∧ (ê = (i, j) ∈ Ea)

∧ de ≤ crbe
0, otherwise

(13)
Using this matrices for the exponentiation, sampling a feasible
path also under given capacity constraints, is guaranteed.
Hence, the drawback of this modification is a high compu-
tational cost that scales in the number of demands.

D. Example

The first sampling step using plain path enumeration for the
example in Fig. 1 is shown in Fig. 4. The reachable hops are
determined using the matrix A which has a resource order of

r
1

r
BUS1

r
1

A4r1, r3=13 A3rBUS1 , r3=5

A3r1, r 3=4

n=0 n=1

P= 5
13

P= 4
13

r
BUS2

P= 4
13

A3rBUS2 , r3=4

Fig. 4. Example: First sampling step for the routing of demand d3 from
resource r1 to r2.

{r1, r2, r3, BUS 1, BUS 2}:

A =

1 0 0 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0
1 0 1 0 1

 (14)

The possible next hops are written in bold letters. The weight-
ing of the hops is done by using the matrices A3 and A4, with
the weights of the hops shown in Fig. 4 written in bold letters:

A3 =

7 4 3 6 6
3 4 0 5 1
4 5 4 4 5
6 5 1 7 3
6 4 5 4 7

 (15)

A4 =

19 13 9 17 16
9 9 1 12 4
13 13 9 13 13
16 13 4 18 10
17 13 12 14 18

 (16)

The sampling approach can now use the genetic encoded
decision values to sample the path. As next hops with a weight
of 0 are not considered by the proposed approach, reaching
the target resource is guaranteed in a maximum of |α| − 1
steps.

VII. EXPERIMENTAL RESULTS

The presentation of the performed experimental results
is twofold: The first part deals with a static topology in
order to have a better competition of the introduced path
sampling algorithms. The second parts describes design space
exploration test cases done for the combined topology and
routing optimization.

Since the presented weighting algorithms based on matrices
do not exclude loops from the paths, an exact algorithm that
eliminates all loops from the weighting of each hop has been
implemented, too. This so-called loop free path enumeration
only considers the subset of hops that are reachable for
each routing demand. Afterwards, it performs a modified

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200 250

ε-
do

m
in

an
ce

Generations

ShortestPath
Plain

SL-Free
Loop-Free

Fig. 5. ε-dominance over generations for the test case of the routing only
approach in Sec. VII-A.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200 250

E
do

m
in

an
ce

Time [s]

SLMatrix
Set

ShortestPath
FastMatrix

Fig. 6. ε-dominance over time for the test case of the routing only approach
in Sec. VII-A.

breadth-first search algorithm with exponential time complex-
ity. Hence, this algorithm was only applicable for examples
containing a maximum of about 10 to 15 allocated resources.

In order to evaluate the quality of the methods, the ε-
dominance [22] criterion is used. The ε-dominance specifies
the convergence of a set of solutions A to the set of the
Pareto-optimal solutions B, which is approximated as the best
solutions of all methods and runs.

Dε(A,B) = inf
ε
{b ∈ B | ∃a ∈ A : a �ε b} (17)

A smaller ε-dominance value corresponds to a better conver-
gence to the Pareto-optimal front.

A. Routing Optimization

To evaluate the influence of the loops that are included in the
presented weighting algorithms, several topologies with 5 up
to 40 network resources and a fixed binding were generated.
The probability of two resources being linked was specified
as a ratio. The ratio for the generated test-cases was varied

Fig. 5 Fig. 7
time[s] time[s]

ShortestPath 68 132
Plain 204 147
Plain∗ – 294

SL-Free 198 177
Loop-Free 134 144

TABLE I
AVERAGE TIME CONSUMPTION OF THE EXPLORATIONS USING THE

DIFFERENT PATH ENUMERATION STRATEGIES.

between 0.2 and 1. For each test-case class, 10 instances were
created with each being explored 10 times with a population
size of 100 individuals. Furthermore, two times the number of
resources routing demands were generated for each instance.
For the evaluation of a found solution, three objectives with
uniformly distributed values were used.

As an example, the results for 10 resources and a ratio for
the degree of resources of 0.5 which is representative for all
test cases and enables a comparison to the exact loop free
algorithm is presented. In these test cases, routing constraints
were neglected, such that the capacity constraints were not
incorporated into the plain and SL-free path enumeration
strategies. Fig. 5 shows that all presented algorithms clearly
outperform the shortest path approach. Noticeable is that
eliminating the self-loops with the SL-free path enumeration
does not improve the results. Regarding only these test cases,
the exact loop free path enumeration is by far superior to the
matrix algorithms. Even when considering the time consump-
tion, shown in Tab. I, the loop free path enumeration performs
better than the matrix routers. This behavior was expected,
since the loop free path enumeration eliminates all loops and
therefore allows long, but in some objectives optimal paths to
be taken with the same probability.

B. Unified Topology and Routing Optimization

The design space exploration that combines topology and
routing optimization was also carried out on the same topolo-
gies as in the previous Sec. VII-A. Hence, for each example,
two times the number of resources processes were generated
in the problem graph, each having a chance of 0.25 of being
bindable onto a resource. The connectivity of the problem
graph leads to a number of routing demands of about 1.5
times the task count. Again, 10 examples of each class were
generated and explored 10 times with a population size of
100 individuals. The considered objectives were area cost,
power consumption, and reliability [18]. Representative for all
experiments, the results for 20 resources, 40 tasks, and about
60 routing demands are shown in Fig. 7. A little surprising,
the loop free path enumeration had the worst results of all
methods used. This may be due to the fact that good values
for the objectives area cost, power consumption, and reliability
are often correlated with a low number of hops taken. Hence,
the loop free path enumeration tends to find many relatively
long paths. The assumption of a correlation of the objectives

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 200 400 600 800 1000

ε-
do

m
in

an
ce

Generations

ShortestPath
Plain

Plain*
SL-Free

Loop-Free

Fig. 7. ε-dominance over generations for the test case of the unified
optimizing approach in Sec. VII-B.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 200 400 600 800 1000

ε-
do

m
in

an
ce

Generations

ShortestPath
Plain

Plain*
SL-Free

Loop-Free

Fig. 8. ε-dominance over time for the test case of the unified optimizing
approach in Sec. VII-B.

with short paths seems reasonable as also the SL-free path
enumeration performs badly in the performed test-cases. The
deviation shows that the shortest path approach may perform
good or bad, depending on the explored example. Hence,
its results are less reliable than the ones achieved by the
introduced path sampling approaches. The best performance
with a relatively low standard deviation had the plain path
enumeration as well as the plain∗ path enumeration. Tab. I
shows that the plain∗ path enumeration needs a huge amount
of extra time that the plain path enumeration can invest on
punishing infeasible paths instead of avoiding them, thus
achieving results of the same quality.

VIII. CONCLUSION AND FUTURE WORK

In this paper, an approach for a unified multi-objective
topology and routing optimization using Evolutionary Algo-
rithms was presented. Therefore, a new algorithm for multi-
objective routing with a genetic encoding independent of the
underlying topology has been introduced. The performed ex-

perimental evaluation shows the effectiveness of the proposed
approach as well as more certain results compared to a com-
mon heuristic of using shortest path routing. In future work, a
further development of the presented algorithms to work faster
and more appropriate for the combined optimization approach
is aspired. One attempt could be bounding the maximum
length lmax of a path to lb, with 0 ≤ lb ≤ lmax, which
seems reasonable when dealing with latency constraints or
communication over buses only, and include this parameter
in the evolutionary optimization. This could highly improve
the performance of the presented algorithms by pruning the
search space.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[2] A. F. R. Araujo, C. Garrozi, A. R. G. A. Leitao, and M. M. J. Gouvea,
“Multicast routing using genetic algorithm seen as a permutation prob-
lem,” in Proceedings of the 20th AINA, Washington, DC, USA, 2006,
pp. 477–484.

[3] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA - A Platform
and Programming Language Independent Interface for Search Algo-
rithms,” in EMO, vol. 2632, Faro, Portugal, Apr. 2003, pp. 494–508.

[4] T. Blickle, J. Teich, and L. Thiele, “System-level synthesis using
Evolutionary Algorithms,” J. Design Automation for Embedded Systems,
vol. 3, no. 1, pp. 23–58, January 1998.

[5] B. Boffey, “Multiobjective routing problems,” vol. Top3, no. 2, pp. 167–
220, 1995.

[6] CAN, “Controller Area Network,” http://www.can.bosch.com/.
[7] J. Crichigno and B. Barn, “A multicast routing algorithm using multi-

objective optimization.” in Telecommunications and Networking - ICT
2004, 2004, pp. 1107–1113.

[8] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Systems, vol. 9, pp. 115–148, 1995.

[9] B. K. Dwivedi, A. Kumar, and M. Balakrishnan, “Automatic synthesis
of system on chip multiprocessor architectures for process networks,” in
Proceedings of the 2nd conference on Hardware/software codesign and
system synthesis (CODES+ISSS), 2004, pp. 60–65.

[10] C. Erbas, S. C. Erbas, and A. D. Pimentel, “A multiobjective optimiza-
tion model for exploring multiprocessor mappings of process networks,”
in Proceedings of the 1st conference on Hardware/software codesign and
system synthesis (CODES+ISSS), 2003, pp. 182–187.

[11] FlexRay, http://www.flexray.com/.
[12] A. Hansson, K. Goossens, and A. Rădulescu, “A unified approach to

constrained mapping and routing on network-on-chip architectures,” in
Proceedings of the 3rd conference on Hardware/software codesign and
system synthesis (CODES+ISSS), 2005, pp. 75–80.

[13] C. Haubelt, “Automatic Model-Based Design Space Exploration for
Embedded Systems – A System Level Approach,” Ph.D. dissertation,
University of Erlangen-Nuremberg, Germany, Berlin, July 2005.

[14] R. Kumar and N. Banerjee, “Multicriteria network design using evolu-
tionary algorithm.” in GECCO, 2003, pp. 2179–2190.

[15] LIN-Subbus, “LocalInterconnect Network,” http://www.lin-subbus.org/.
[16] M. Palesi and T. Givargis, “Multi-objective design space exploration

using genetic algorithms,” in Proceedings of the tenth international
symposium on Hardware/software codesign (CODES), 2002, pp. 67–72.

[17] I. Rechenberg, Evolution Strategy: Optimization of Technical Systems by
Principles of Biological Evolution. (In German) Stuttgart: Frommann-
Holzboog, 1973.

[18] T. Streichert, M. Glaß, C. Haubelt, and J. Teich, “Design space explo-
ration of reliable networked embedded systems,” Journal on Systems
Architecture, vol. 53, no. 10, pp. 751–763, 2007.

[19] T. Streichert, C. Haubelt, and J. Teich, “Multi-Objective Topology
Optimization for Networked Embedded Systems,” in Proceedings Int.
Conf. on Embedded Computer Systems: Architectures, Modeling, and
Simulation (IC-SAMOS 2006), Samos, Greece, July 2006, pp. 93–98.

[20] TTP, “Time Triggered Protocol,” http://www.TTTech.com/.
[21] L. G. Valiant, “The complexity of enumeration and reliability problems.”

SIAM Journal on Computing, vol. 8, pp. 410–421, 1979.
[22] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fon-

seca, “Performance assessment of multiobjective optimizers: an analysis
and review.” IEEE Trans. Evolutionary Computation, vol. 7, no. 2, pp.
117–132, 2003.

