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Abstract—We consider the downlink of a cellular network
with cooperative multiple antenna base stations and single
antenna user terminals. Based on a limited number of measured
interference channels and an interference prediction strategy, we
address the implementation of interference temperatures in a
large scale system. With interference temperatures, each base
station has linear constraints on its transmit covariance matrix.
These constraints limit the intercell interference at mobile devices
in other cells to a certain level.

I. INTRODUCTION

In this paper, we concentrate on interference coordination,

where each MD is served only by its associated base station

(BS). But, the BSs try to mitigate the intercell interference

(ICI) they create at mobile devices (MDs) in other cells. In-

terference coordination includes many known techniques next

to interference temperatures, where the caused interference is

limited with linear constraints to the transmit covariances [1].

For network sum rate optimizations, this results in a weighted

sum rate optimization with multiple linear constraints and can

be solved with the minimax duality from [2] as shown in [3].

Other interference coordination techniques include interfer-

ence alignment, where the BSs try to spare subspaces of the

received signals from interference [4]. Interference pricing is

an iterative technique for finding a balance between the signal

power at the served MDs and the interference caused at other

MDs [5]. Interference leakage power based optimizations try

to maximize the ratio between the received power at the served

MDs and the caused interference power at other MDs [6].

It is still an open topic, if cellular systems will benefit from

cooperation. The gain of cooperation is very promising, but the

drawbacks are often neglected. With interference alignment,

the possible degrees of freedom can be given to characterize

the behavior of networks with ICI [4]. But the costs for

measuring all the additional channels and communicating

the strategic information between the transmitters are not

taken into account. A fair comparison to networks without

cooperation requires to include the benefits and the drawbacks.

We will take a look at the gain of the interference tempera-

ture technique, where we reduce the transmission efficiency

according to the number of measured interference channels.

We used this method already to give an upper bound on

interference coordination [7]. Similar upper bounds are given

for network MIMO, where each MD can be served by multiple

BSs, in [8] and [9].

As we limit the number of measured interference channels,

we have to care about the interference over the unknown

interference channels. When the BSs update their precoding

simultaneously, the problem of interference awareness arises

[10]. The precoder optimizations cannot be based on the

interference power during the transmission, as this information

will not be available before the precoding is selected. To match

the cost function of the optimization and the performance

measure, we consider the expectation of the rates with respect

to the ICI [11]. The partitioning of the ICI into interference

over measured channels and over unknown channels, and

the described strategies for both types of ICI allow us to

implement interference coordination in a large scale cellular

system.

II. SYSTEM MODEL

A cellular network with 19 three faced sites and, therefore,

57 BSs is considered. Each BS serves the MDs of the

hexagonal shaped cell it covers. An MD in the set K of

all MDs is specified by the tuple (b, k) ∈ K, where b ∈ B
identifies the BS in the set B of all BSs and k ∈ Kb the MD

in the set Kb of all MDs in the cell of BS b. The wrap-around

method is used to treat all cells equally and the channels are

found with the 3GPP MIMO urban macro cell model [12].

A. Supported Rate

In this paper, each BS has N antennas and serves K = |Kb|
single antenna MDs, respectively. The vectors h

b̂,b,k
∈ CN

contain the channel coefficients between the antennas of BS

b̂ and MD (b, k). With (•)T and (•)H the transposition and

the complex conjugate transposition are denoted, respectively.

With the pre-log factor ξ, which takes the signaling overhead

into account, the achievable, normalized rate of MD (b, k) in

bits per channel usage can be expressed as

rb,k = ξ log2

(

1 +
|hT

b,b,kpb,k|
2

∑

k̂>k
|hT

b,b,kpb,k̂
|2 + θb,k + σ2

b,k

)

, (1)

θb,k =
∑

b̂∈B\b

hH
b̂,b,k

Q
b̂
h
b̂,b,k

, (2)

where pb,k ∈ CN is the beamforming vector of BS b intended

for serving MD (b, k). The sum transmit covariance matrix of

BS b can be found as
∑

k pb,kp
H
b,k = Qb ∈ CN×N . All BSs

have to satisfy the transmit power constraint tr(Qb) ≤ P .
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∑

k̂>k
|hT

b,b,kpb,k̂
|2 is the variance of the intracell inter-

ference with dirty paper coding. Only the signals from BS

b to MDs with an index k̂ > k contribute to the intracell

interference at MD (b, k). The signals to MDs with an index

k̂ < k can be considered as known interference at the

transmitter. Costa showed that interference, which is known

to the transmitter, does not reduce the rate of the transmission

[13].

θb,k is the variance of the received ICI at MD (b, k), which

will be investigated further in the following sections. The worst

case Gaussian noise approximation σ2
b,k = σ2

η + σ2
od,b,k + θbg

is the sum variance of the thermal noise σ2
η , the channel state

information (CSI) outdating σ2
od,b,k, and the background ICI

θbg. The background ICI models the BSs further away than

the closest 57 BSs for a signal variance per transmit antenna

of P/N .

B. Outdating of the Channel Measurements

Due to outdating, the measured channel h
b̂,b,k

differs from

the actual channel ĥ
b̂,b,k

at a different time and frequency

instance. With E [•] for the expectation and ‖ • ‖2 for the

Euclidean norm, respectively, the measurement error variance

σ2
e,b̂,b,k

= E
[

‖ĥ
b̂,b,k

− h
b̂,b,k

‖22

]

= σ2
e E
[

‖ĥ
b̂,b,k

‖22

]

(3)

can be found as the variance of the actual channel

E
[

‖ĥ
b̂,b,k

‖22

]

scaled down with the normalized mean error

variance of the outdating σ2
e . This outdating variance is

calculated from the correlation between channels at different

time and frequency instances and depends on the block length

for which the channel is assumed to be constant as described

in [7].

The CSI outdating variance at MD (b, k) is computed from

the sum over all measurement error variances, which are

associated with measured channels that link a BS with MD

(b, k). Not all channels are assumed to be measured and only

measured channels are used for serving users and mitigating

interference. With a signal variance per transmit antenna of
P
N

, the CSI outdating variance reads as

σ2
od,b,k =

P

N

∑

b̂∈Cb,k

σ2
e,b̂,b,k

, (4)

where Cb,k is the set containing all BSs, which measured the

channel to MD (b, k).
ĥ
b̂,b,k

is generated from the channel model in the simula-

tions. The according measured channel is set to

h
b̂,b,k

=
√

1− σ2
e ĥb̂,b,k

. (5)

With this selection, the variance of the generated channel is

preserved in the sum of the variance of the measured channel

and the measurement error variance. If the channel is not

assumed to be measured, the generated channel will be used

directly in the simulations. Pilot contamination and other errors

during the channel measurements are neglected. Except for

the outdating, the channel measurements are assumed to be

perfect.

C. Signaling Overhead

We employ a time division duplex system, where the reci-

procity of the propagation channels is exploited. The channels

are measured in the uplink and the gained information is then

utilized in the downlink. The number of channels a BS can

measure is equivalent to the length of the pilot sequences

Tpilots = K + L. Each BS can measure the channels to its

own K MDs and L interference channels, additionally. With

the block length Tblock between two channel measurements and

neglecting other overhead contributions, we find the efficiency

of the signaling as ξ = Tblock−(K+L)
Tblock

. Tblock − (K +L) are the

symbols remaining for data transmission.

III. PREDICTION OF THE UNKNOWN INTERFERENCE

The BSs are assumed to calculate their beamforming in a

distributed manner, but all BSs update their beamforming at

the same time. The ICI at each MD will change the moment

the beamforming is applied and cannot be known in advance.

Therefore, the BSs compute their beamforming based on an

assumed ICI θ̃b,k. The BSs are blind to the ICI change and

take the risk, that the actual ICI θ̂b,k increases and the MD

cannot decode the transmitted symbols or that θ̂b,k decreases

and valuable resources are wasted [10]:

r̂b,k =

{

r̃b,k = rb,k|θb,k=θ̃b,k
, for θ̃b,k ≥ θ̂b,k

0, for θ̃b,k < θ̂b,k.
(6)

If the transmission is successful, the rate r̃b,k will only depend

on the assumed ICI and not on the actual ICI.

Most optimizations in the literature utilize the expectation

of the ICI or an ICI realization from a previous step as the

assumed ICI. This results in a mismatch between the cost func-

tion of the optimization and the actual performance measure.

To counteract this problem, we consider the expectation of the

rate with respect to the random ICI variance Θ̂b,k [11]:

E
Θ̂b,k

[r̂b,k] = r̃b,kFΘ̂b,k

(

θ̃b,k

)

, (7)

where F
Θ̂b,k

(θ) is the cumulative distribution function (CDF)

of Θ̂b,k. By taking the expectation, the cost function and the

performance measure become the same.

To perform the described procedure, the CDFs of the ICI

at each associated MD need to be available at the serving BS.

The CDFs can be approximated with long term measurements

at the MDs. To reduce the feedback, a probability distribution

can be matched to the measurements at the MDs. Then,

only the parameters of the distribution function need to be

transmitted to the BS. It could also be possible to estimate a

rough CDF directly based on the channel measurements. This

would not require any additional measurements and feedback

for the CDF. The actual ICI cannot be known in advance

in the regarded scenario, because the transmit covariances

at all BS change at the same time, while the channels are

assumed to be constant for the block of transmission. The

CDFs of the ICI for this scenario are different from the

CDFs, where the channels also change over time. Although

the later scenario with changing channels is more realistic,
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especially for CDFs, which are approximated with long term

measurements, the scenario with fixed channels is assumed to

reduce the simulation complexity. The cost of acquiring the

CDFs is neglected in the following.

Additionally, it is possible to measure θ̂b,k with a second

pilot, which removes the uncertainty in the ICI afterwards but

increases the overhead [7].

IV. UPPER BOUND TO INTERFERENCE COORDINATION

The expectation of the sum rate of all MDs in the system is

used as cost function. With L measured interference channels

per BS, an upper bound to interference coordination can be

given, as described in [7]. The ICI can be split into the

interference over the measured interference channels and the

interference over the unknown interference channels.

The result of a joint optimization with respect to all beam-

forming vectors Rcoop is always smaller than the result of the

upper bound Rupper, where all measured interference channels

are set to zero:

Rcoop ≤ Rupper = max
{pb,k,θ̃b,k|∀(b,k)∈K}

∑

(b,k)∈K

E
Θ̌b,k

[řb,k] ,

s.t. tr(Qb) ≤ P ∀b, (8)

řb,k = r̂b,k|θ̂b,k=θ̌b,k
(9)

θ̌b,k = θ̂b,k

∣

∣

∣

h
b̂,b,k

=0 ∀b̂∈Cb,k\b
, (10)

Cb,k is the set containing all BSs, which know the channel to

the MD (b, k). If some interference channels are set to zero,

the statistics of the ICI will chance accordingly.

By using (7) in problem (8), the rate of an MD only depends

on the precoding of the associated BS and the CDF of the ICI.

Therefore, the joint problem breaks down into a distributed

problem at each BS, respectively:

Rsum,b = max
{pb,k,θ̃b,k|∀(b,k)∈Kb}

∑

(b,k)∈Kb

r̃b,kFΘ̌b,k

(

θ̃b,k

)

,

s.t. tr(Qb) ≤ P. (11)

The optimal solution of problem (11) can be found with an

alternating optimization. For a fixed assumed ICI, a weighted

sum rate optimization has to be solved. For fixed precoders, the

optimal assumed ICI can be found with numerical algorithms

[11].

The sum rate is improved in every step and the algorithm

converges. The behavior of the sum rate per cell along the

iterations can be seen in Figure 1 for a low mobility scenario

with a common MD device speed of v = 3 km/h, which is

used in all following figures. The actually supported sum rate
∑

(b,k)∈Kb
rb,k|θb,k=θ̌b,k

can only be reached, if the actual ICI

θ̌b,k values are known through a second pilot. It can be seen

that the expected sum rate Rsum,b and the actually achieved

sum rate
∑

(b,k)∈Kb
řb,k converge to almost the same value.

The remaining error can be explained with the finite resolution

and imprecision of the CDFs, which are approximated with

Monte Carlo simulations. The actually acheived sum rate is

calculated with (6) and includes the cases of outage. At odd

iteration steps the transmit beamforming is optimized and

at even iterations steps the optimal assumed interference is

calculated.
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Figure 1. Convergence, K = 4, N = 4, L = 0, Tblock = 120

This upper bound is not achievable, because the costs of

nulling the L interference channels per BS are neglected. As

it was shown in [7], this loose upper bound strongly limits

the possible gain of cooperation. The upper bound is plotted

in Figure 2 for different values of L. All curves ascend in

the beginning for longer block lengths, because the efficiency

of the system improves. At some point, each curve starts

to descend, because the outdating of the channel degrades

the possible rates. The upper bound reaches higher values

for increasing L in the beginning, because more and more

interference is suppressed. But, increasing L above the optimal

value of L = 35 reduces the possible rates. The eliminated

interference cannot compensate the reduced efficiency due to

the increased overhead.

The possible improvements through cooperation are sub-

stantial in this scenario, but vanish for increasing mobility.

The upper bound does not show how much improvement is

possible with cooperation. It gives a loose limit to the possible

improvement. It can be seen, that the gain from L = 0 to

L = 10 is almost of factor two. But the additional gain of the

optimum with L = 35 is not much higher.

For this upper bound, we do not make any restrictions to

the backbone network, which connects all BSs. Despite the

amount of exchanged information between the BSs, this upper

bound will hold, if each MD is only served by its associated

BS.

V. LOWER BOUNDS TO INTERFERENCE COORDINATION

At the first glance, it seems that interference coordination

demands from the BSs to achieve two contradicting goals.

On the one hand, the BSs try to serve their own MDs with

all their degrees of freedom. On the other hand, the BSs try

to spend their degrees of freedom to limit the interference

they create at MDs in other cells. The previously described

upper bound achieves both goals perfectly. The measured

interference channels are set to zero. No interference is caused
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Figure 2. Upper bound, K = 4, N = 4

over these channels and not a single degree of freedom has to

be spend for mitigating the interference. The BS can still use

all their degrees of freedom to serve their own MDs.

With interference coordination the BSs pursue the higher

goal of maximizing the sum rate of the network. This will

inherently maximize the sum rate of the cell. A compromise

between serving the associated MDs and limiting the ICI at

other MDs has to be found. The optimal compromise will

always be at least as good as if only one of the goals is

followed. For a given L, two lower bounds can be defined

by looking at the two extremes.

A. No Cooperation

Obviously, no cooperation is always an option. The BSs

use all their degrees of freedom to serve their own MDs

egoistically. This rate can be found with problem (11), where

no channels are set to zero. L has still an influence on the

efficiency ξ.

B. Zero Forcing of the Interference

The other extreme is to use the degrees of freedom to set

the interference caused over measured channels to zero. The

number of degrees of freedom at a BS are assumed to be

equal to the number of antennas N . If the number of measured

interference channels at a BS is smaller than the number of

antennas, N − L degrees of freedom will be left for serving

the associated MDs. This can be implemented by transmit-

ting in the nullspace of the measured interference channels

as described in [14]. The transmit covariance matrices are

decomposed:

Qb = VbQ̂bV
H
b , (12)

where Vb ∈ C
N,N−L is the nullspace of the measured

interference channels. The lower bound rates can be found

by plugging (12) into the sum rate optimization (11) and

optimizing the remaining reduced transmit covariance matrices

Q̂b ∈ CN−L,N−L.

If L is equal to or larger than N , zero forcing of the

interference will force the BS to shut down.

C. Simulation

In Figure 3 the lower bounds are plotted over the block-

length Tblock. For L = 0, the lower bound with zero forcing

of the interference (LB ZF) and the lower bound without

cooperation (LB NC) are equal. These curves are also equal

to the upper bound with L = 0. For increasing L, the LB NC

decreases according to the overhead efficiency. The LB ZF

increases at first, but degrades at L = 3 dramatically and hits

zero for L > 4.

5.6
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Figure 3. Lower Bounds, K = 4, N = 4, L = 0, Tblock = 120

VI. INTERFERENCE TEMPERATURES

It is not possible to set the interference channels to zero

as described for the upper bound and it is not advisable to

ignore or zero force the interference as discussed for the

lower bounds. But, the BSs can limit the ICI they cause over

the L measured interference channels to a certain level, the

interference temperatures [1].

The problem at each BS can be formulated as a weighted

sum rate optimization with linear constraints:

max
{pb,k,θ̃b,k|∀(b,k)∈Kb}

∑

(b,k)∈Kb

r̃b,kFΘ̌b,k

(

θ̃b,k

)

,

s.t. tr(Qb) ≤ P

θ
b,b̂,k̂

≤ γ
b,b̂,k̂

, ∀(b̂, k̂) ∈ Lb, (13)

where Lb is the set of MDs, which are not associated to BS

b, but the channel between these MDs and BS b is known.

θ
b,b̂,k̂

= hH
b,b̂,k̂

Qbhb,b̂,k̂
is the interference BS b causes at MD

(b̂, k̂) and γ
b,b̂,k̂

is the corresponding interference limit.

For a fixed assumed ICI, the weighted sum rate maximiza-

tion with multiple linear constraints can be solved via the

minimax duality presented in [2] as shown in [1], [3]. The

optimization of the assumed ICI is independent of the linear

constraints and can be solved as discussed before.
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A. Sum Rate Maximization with a Single Linear Constraint

To get an insight to the sum rate maximization with lin-

ear constraints, the minimax duality is revised for a single

constraint. The weighted sum rate maximization over the

beamforming vectors and for a fixed assumed ICI in the

downlink (DL),

max
{pb,k|∀(b,k)∈Kb}

∑

(b,k)∈Kb

r̃DL
b,kFΘ̌b,k

(

θ̃b,k

)

,

s.t. tr(Φb,0Qb) ≤ γb,0, (14)

with the single constraint tr(Φb,0Qb) ≤ γb,0 is regarded,

where Φb,0 is the full-rank constraint direction matrix and γb,0
the constraint limit. For Φb,0 equal to the identity matrix and

γb,0 = P , this constraint is equal to the power constraint. The

rate (1) is rewritten as

r̃DL
b,k = ξ log2

(
∑

k̂≥k
|hT

b,b,kpb,k̂
|2 + φb,k

∑

k̂>k
|hT

b,b,kpb,k̂
|2 + φb,k

)

, (15)

where the ICI and the noise are combined in the substitute

noise φb,k = θ̃b,k + σ2
b,k.

By switching the role of the transmitter and the receivers,

the dual uplink (UL) problem can be formulated [2]:

max
{qb,k|∀(b,k)∈Kb}

∑

(b,k)∈Kb

r̃UL
b,kFΘ̌b,k

(

θ̃b,k

)

,

s.t.
∑

(b,k)∈Kb

φb,kqb,k ≤ γb,0, (16)

where the evaluated CDFs of the ICI are regarded as fixed

weights for the optimization. The rate of an MD in the UL

reads as

r̃UL
b,k = log2





∣

∣

∣

∑

k̂≤k
h∗
b,b,k̂

hT
b,b,k̂

q
b,k̂

+Φb,0

∣

∣

∣

∣

∣

∣

∑

k̂<k
h∗
b,b,k̂

hT
b,b,k̂

q
b,k̂

+Φb,0

∣

∣

∣



 . (17)

Not only did the role of the transmitter and the receivers

change, also the role of the constraint and the noise changed.

Problem (16) can be solved with standard weighted sum rate

maximization codes [15]. The optimal transmit covariances in

the uplink can then be transformed to the optimal transmit

covariances in the downlink.

B. Sum Rate Maximization with Multiple Linear Constraints

The weighted sum rate maximization with an arbitrary

number of constraints X = |Xb| is given as

max
{pb,k|∀(b,k)∈Kb}

∑

(b,k)∈Kb

r̃BC
b,kFΘ̌b,k

(

θ̃b,k

)

,

tr(Φb,xQb) ≤ γb,x ∀x ∈ Xb, (18)

where the constraint matrices Φb,x do not need to be of

full rank, individually. But the concatenation of all constraint

matrices needs to be of full rank.

The constraints in problem (13) can be mapped to the

constraints in problem (18). For index x = 0, Φb,0 is set to the

identity matrix and γb,0 = P . For indices x > 0, the constraint

matrix is Φb,x = hb,xh
H
b,x, where x is taken from the set Lb of

MDs, which profit from the interference limitation. Therefore,

the set of all constraint indices Xb = 0 ∪ Lb has X = L + 1
elements.

Problem (18) is relaxed to the weighted sum rate maximiza-

tion

max
{pb,k|∀(b,k)∈Kb}

∑

(b,k)∈Kb

r̃BC
b,kFΘ̌b,k

(

θ̃b,k

)

,

s.t. tr

((

∑

x∈X

λxΦb,x

)

Qb

)

≤
∑

x∈X

λxγb,x = Λ, (19)

where the constraints are combined with a weighted sum to

a single constraint. For fixed weights λx ≥ 0, problem (19)

can be solved as described before. If the individual constraints

of problem (18) are met, the sum constraint of problem (19)

will hold as well and the sum constraint cannot be stricter than

all the individual constraints together. Therefore, problem (18)

is an upper bound to problem (19). By taking a look at the

Karush–Kuhn–Tucker conditions of problem (18) and (19),

it can be shown that the upper bound becomes tight for the

weights λ̂x, which minimize the sum [3].

Scaling all λx jointly does not change problem (19). There-

fore,
∑

x∈X λxγb,x can be set to any positive value Λ. The

minimization of the sum rate with respect to the λx reads as

min
{λx≥0|∀X∈Xb}

∑

(b,k)∈Kb

r̃MAC
b,k F

Θ̌b,k

(

θ̃b,k

)

,

s.t.
∑

x∈Xb

λxγb,x = Λ. (20)

An iterative algorithm is proposed to tackle Problem (20). The

individual λx are optimized independently while keeping the

others fixed:

λ̌i
x = min

{λx≥0}

∑

(b,k)∈Kb

r̃MAC
b,k F

Θ̌b,k

(

θ̃b,k

)

,

s.t.
∑

x∈Xb

λxγb,x = Λ, (21)

which can be solved with standard numerical techniques. The

solution to λ̂i
x at iteration i is an update of the previous

solution with the newly found λ̌i
x, which needs to be scaled

back to the sum constraint:

λ̂i
x = (1− d)λ̂i−1

x + dλ̌i
x

Λ
∑

x∈Xb
λxγb,x

, (22)

where 0 ≤ d ≤ 1 is the step size parameter.

The optimal solution to problem (18) can be found by alter-

natingly solving problem (19) for fixed λx and problem (20)

for fixed precoding vectors. The convergence speed depends

on the number of the constraints. For scenarios with only

one additional constraints, no more than 4 iteration steps are

needed. But, the number of required iterations rapidly grows

with the number of constraints.
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C. Selection of γ
b,b̂,k̂

The interference constraint limits are selected heuristically.

γ
b,b̂,k̂

is set to a scaled version of the mean ICI plus noise,

which remains at the MD (b̂, k̂) after the ICI over the measured

channels is subtracted.

γ
b,b̂,k̂

= α
(

E
[

θ̌
b̂,k̂

]

+ σ2
b̂,k̂

)

(23)

For the two extreme values of the scaling α ≥ 0, the solution

of the described algorithm converges to the solution with the

earlier described lower bounds:

1) γ
b,b̂,k̂

= 0, ∀(b̂, k̂) ∈ Lb.: If all interference constraint

limits are set to zero, the rates will converge to the solution,

where the BSs transmit in the nullspace of the interference

channels. For L ≥ N all rates are zero.

2) γ
b,b̂,k̂

→ ∞, ∀(b̂, k̂) ∈ Lb.: By setting the interference

constraint limits to a very large value, the solution of the sum

rate maximization with multiple linear constraints is equal to

the lower bound, where the ICI is simply ignored.

The influence of the common scaling α can be seen in

Figure 4 for L = {1, . . . , 5}. The lower bound with zero

forcing of the interference is marked with an × at the left

border of the plot for the different selections of L and the

lower bound which ignores the interference is marked with an

◦ at the right border of the plot. All curves converge to the

corresponding solution of the lower bounds for α → 0 and

α → ∞. For any L, the optimal value for α can be found

around α = 1, where the optimal α is larger for larger L. The

influence of choosing α correctly increased for increasing L.

For L = 1, the gain of the best α compared to the lower

bounds is rather small, while the correct selection of α for

L = 5 is crucial. Although the lower bounds decrease for

increasing L, the optimal value increases. But, the gain from

L = 3 to L = 5 is very small. A further increase of L will

result in worse sum rates at the optimal α.
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Figure 4. Lower Bounds, K = 4, N = 4, L = 0, Tblock = 120

The described selection of γ
b,b̂,k̂

requires that the BSs com-

municate. The BSs, which measured the interference channel

to an MD, need to know the ICI, which remains at the regarded

MD after the ICI over the measured channels is subtracted.

The CDFs need to be adapted to the changed ICI situation.

VII. CONCLUSION

Our main contribution is the combination of the weighted

sum rate maximization with multiple linear constraints with

the restriction to a limited set of measured interference chan-

nels and the interference prediction. This allows us to use the

interference temperature methods in a large scale system.

We compare the interference temperature algorithm with an

upper bound and two lower bounds. A heuristic is given for

selecting the interference temperatures.
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