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Abstract

The specification of an embedded system at system
level together with co—joint hardware/software synthe-
sis is a goal of many rapid prototyping projects. SDL
has been proposed as a formal and abstract specifica-
tion language well suited for this purpose. The im-
plementation of SDL’s asynchronous communication
model in application specific hardware, however, is un-
proportionally expensive in terms of area and response
time. This paper discusses the efficiency of the server
model — the implementation model used in all known
codesign approaches based on SDL — and compares
it with an alternative implementation model for SDL
known from software, the activity thread model. In a
combination of both implementation stategies, the com-
munication and synchronization overhead for each ap-
plication can be minimized, and an efficient implemen-
tation on distributed architectures realized. The inte-
gration in an existing rapid prototyping design process
is presented as well as results gained from application
examples.

1 Introduction

The challenge in system level design of embedded
systems of today is to master their ever increasing
complexity in the short development times and costs
the market allows. Modern design methodologies, re-
alized in HW/SW-—codesign environments like [5], [3],
[1] (see also [6], [14]), start with a model of the system
in one or several specification languages. Using such a
model, validation with simulation, formal verification,
real-time analysis or rapid prototyping are possible,
providing a means to find design flaws in early phases
of the development. Embedded systems typically con-
sist of microprocessors respectively processor cores ex-

ecuting software, and application specific hardware. A
suitable architecture of processors, buses and custom
hardware is determined and the specification is parti-
tioned and mapped to the available execution units.
The next steps towards implementation are communi-
cation refinement, automated codegeneration and syn-
thesis of hardware and software. The first commercial
tools based on these research results are now emerg-
ing. The Cadence Cierto VCC environment! is based
on Berkeley’s Polis approach. Arexsys, the commercial
spin—off of the TIMA laboratory, markets a codesign
environment based on Cosmos?.

A multitude of specification languages and methods
are used in embedded systems design, i.e. C, C++,
VHDL, Esterel, Statecharts, Matlab and SDL. Several
properties of the “Specification and Description Lan-
guage” SDL (see also Section 2) make it well suited for
a design methodology like outlined above. SDL allows
implementation independent system modeling at a high
level of abstraction, in graphical and textual form. Its
formal semantics form a solid basis for validation and
simulation. Due to SDL’s asynchronous execution and
communication scheme, dividing and joining models is
easy, which allows for more flexibility in architectural
synthesis, and efficient implementations on distributed
systems. Other, non—technical criteria, are maturity
and popularity of the language, and the well developed
tool support. SDL’s standardization ([10]) makes it
suitable for official authorization procedures, in some
of which it is already mandatory. SDL is a supported
input format of both commercial codesign tools men-
tioned above.

The use of SDL in a HW /SW—codesign environment
requires automated generation of hardware from SDL
— in order to use a homogenous SDL specification for
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hardware and software, or at least to enable a flexible
allocation to hardware or software when a heterogenous
specification containing SDL parts is used.

This paper discusses the efficiency of SDL imple-
mentations in hardware. It identifies the cases when
the prevalent SDL implementation model — the server
model — leads to unreasonable designs in terms of area
and timing. It presents the activity thread implemen-
tation model, which can reduce the — in hardware un-
proportionally expensive — communication overhead
caused by SDL’s asynchronous communication model.
Section 2 introduces the language SDL and gives an
overview on SDL implementation strategies used in dif-
ferent approaches. Section 3 and 4 describe the server
model and the activity thread model in greater detail.
Section 6 presents the integration of both implemen-
tation schemes in a rapid prototyping environment for
hard real-time systems, where first experimental re-
sults were gained (Section 7).

2 Implementation Strategies from SDL

Structure in SDL is expressed with hierarchical
blocks and processes. The lowest level of refinement is
a network of parallel SDL processes, each with its pri-
vate infinite message queue, communicating via asyn-
chronous messages (SDL signals). An extended finite
state machine (EFSM), which can contain local vari-
ables, specifies the behaviour of each SDL process. Sig-
nals are processed in order and trigger a state tran-
sition, which in turn can contain arbitrary code in-
side a SDL task block, SDL output—statements and
flow control statements like decisions. With the save—
statement, the processing of a signal can be postponed,
while a signal marked with priority input is processed
at once. Timers send signals to the requesting process,
using the process’ message queue.

In the design process, the specification is trans-
formed into software and configurable hardware for the
target architecture. The rules for this transformation,
the implementation model, must make sure that
the implementation is semantically conform with the
specification. Two implementation models, which pre-
serve the semantics of SDL are the server model and
the activity thread model. In the server model, each
SDL process is implemented as a single RTOS task in
SW, respectively as a separate VHDL entity in the HW
implementation, each with its own message queue. In
contrast to this, the activity thread model maps
each activity thread, i.e. each chain of activations in
the SDL model caused by one stimulating event (an
event from the environment or a timer output), to one
RTOS task respectively HW entity.

The terms server model and activity thread model
stem from the telecommunications area, where they are
used to describe different stategies to implement mul-
tilayer communication systems ([12]). In the server
model, each protocol unit from one layer is imple-
mented as a single software task, communicating with
other layers via messages. In the activity thread model,
one software task processes an incoming or outgoing
request through several layers. A recent approach, [8],
proposes the employment of efficient methods known
from the manual implementation of communication
systems in an automated software design process based
on SDL. In their realization of the activity thread
model, each SDL process is implemented as a reentrant
procedure. Each activity thread is a sequence of calls
to these procedures. Commercial codegenerators for
SDL targeting software, like SDT’s CAdvanced ([13]),
only support the server implementation model.

Several approaches generate VHDL using the server
model. The main focus here is mapping the abstract
communication between SDL processes to existing in-
terfaces and protocols. The SDL-to—-VHDL transla-
tor presented in [7]uses a textual implementation de-
scription to select functions from a library of channel
and protocol descriptions. In [4], the VHDL genera-
tion is embedded in the codesign environment Cosmos.
An SDL description is translated to an intermediate
format. During an interactive refinement process, the
abstract channels of this model are replaced by proto-
cols, communication units and interfaces from a library.
This approach is now integrated in a commercial tool
(cf. Section 1). A further approach, aiming to support
SDL’s dynamic process creation feature also in hard-
ware, is presented in [9].

3 Server Model

The server model maps each SDL process to one
HW-entity with its own message queue. Figure 1 shows
a typical hardware architecture implementing one SDL
process according to the server model. One input in-
terface for each communication channel receives SDL
messages, implementing the channel’s protocol. The
message is put at the end of the queue. The extended
finite state machine is implemented in an infinite loop
with two nested case-statements. In turn a message is
taken from the queue, the transition belonging to mes-
sage type and process state executed, and, if necessary,
a new SDL message is sent via an output channel.

The server model is a straightforward, semantically
correct implementation of SDL. While the EFSM part
has to be generated for each new SDL model, the
message queue, timers, and the entire inter-process
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Figure 1. Server Model Architecture

Figure 2. a) SDL specification, b) server
model implementation

communication can be implemented from a library of
reusable components.

Figure 2 shows an exemplary SDL specification and
the corresponding server model implementation. The
specification consists of a network of five SDL pro-
cesses, communicating via messages m;;. A transition
triggered by message m;; consists of a task ¢;; and the
sending of a new message mj(jy1)-

Area Efficiency For a single SDL process, a large
portion of the occupied area comes from the message
queue. While the hardware effort for a simple FIFO
is high enough, it becomes prohibitive for a queue cor-
rectly implementing save and priority input, i.e. per-
mitting message insertion and removal at random po-
sitions. Next to the message queues, a considerable
hardware effort is incurred by the sending and receiv-
ing of SDL messages. Each input channel implicates
a protocol implementation and data conversion, plus
handshake and multiplex logic for the queue’s input.
Each SDL output—statement also implies an output in-
terface, implementing data conversion and the chan-
nel protocol, plus multiplexer logic if several output—
statements write on one channel.

Response Time and Throughput The response
time ¢, to a certain event consists of the computation
time t. needed to process the event and a possible wait-
ing time t,, that elapses while a message resides in the
queue. While £, is directly determined by the hardware

architecture, an upper bound of t,, has to be computed
by a real-time analysis. t. of a single SDL process con-
sists of the time needed to receive and enqueue the mes-
sage, the time to remove the message from the queue
and process it, plus the time to output a new message.

Summary Typically, an SDL specification consists
not of one, but of several processes, interconnected by
signals. For such a network of processes, the hardware
effort increases not only linearly with the EFSMs and
message queues, but disproportionate to the number
of processes with each signal interconnection between
two processes. Each additional connection generates a
larger input interface, and, depending on the number
of output—statements, very high overhead for the out-
put interfaces. The parallel and potentially pipelined
execution of a network of SDL processes allows, de-
pending on the application, good average and worst
case throughput. The computation time necessary to
respond to an external event, however, can be very
high, since the communication overhead of all involved
SDL processes adds up.

The communication overhead incurred in area and
time can be dramatic, since asynchronous communica-
tion is especially expensive in hardware, and can easily
surmount the effort for the computation actually in-
cluded in the SDL processes.

4 Activity Thread Model

The activity thread implementation model analyzes
the chain of activations in an SDL system triggered by
an external event or timer output: The event (in form
of an SDL message) is received by an SDL process, trig-
gers a transition, where in turn an SDL message may
be sent to a second process. This chain of activations is
called “activity thread”. Activity threads contain state
choices, branch at multiple SDL output statements in
a transition, and terminate with the sending of a mes-
sage to the environment or with the consumation of
an SDL message in a process without triggering a new
SDL output. All actions and state changes contained
in the transitions along an activity thread are imple-
mented sequentially, thereby avoiding the message send
and receive overhead between the processes. Special
attention has to be paid to a semantically correct im-
plementation, especially concerning process data con-
sistency and the correct ordering of messages.

Architecture Alternatives In hardware, each ac-
tivity thread could be executed in parallel. Depend-
ing on the type of application, other implementation
alternatives can be more efficient. Figure 3 shows two
architecture alternatives, using the example from Fig-
ure 2.
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Figure 3. Activity thread model alternatives

In the serialized activity thread architecture, all ac-
tivity threads are implemented in one VHDL process.
One event at a time is taken from the input message
queue, and the corresponding activity thread is exe-
cuted.

The parallel activity thread architecture implements
each activity thread in its own parallel VHDL process
with its own input message queue. This requires a
shared access to the local variables and state data pro-
tected by a lock mechanism, if an SDL process has been
split into more than one activity thread.

Area Efficiency For input interface, message queue,
timers and output interface, the same library compo-
nents as in the server model can be used. The se-
rialized activity thread architecture requires message
queue, and input and output interfaces only for mes-
sages at the border of the SDL model.

In the parallel activity thread architecture, each ac-
tivity thread requires its own message queue. Each
SDL process divided in several activity threads needs a
component implementing shared data access protected
by a lock mechanism. This implies an additional syn-
chronization overhead.

The activity thread model displays the effect that a
single functionality inside one SDL process, when trig-
gered by different external events, will be multiplied,
because it appears in several activity threads. In the
serialized activity thread architecture, a joining of ac-
tivity threads is conceivable. In the parallel activity
thread architecture, this functionality will be imple-
mented multiply, leading to additional area overhead.

Response Time and Throughput The serial-
ized activity thread architecture serializes the activity
threads for all incoming events. The computation time
t. consists of a very small communication overhead plus
the computation required for the entire activity thread.
Due to the serialization, a potentially increased waiting
time t,, has to be taken into account. In the case of dis-
junct activity threads, the parallel activity thread archi-
tecture has the same computation time as the other two
models. When the mutual exclusion mechanism is nec-

essary, however, the calculation time increases because
of the access time to the shared variables. Addition-
ally, blocking times of the lock mechanism by another
thread have to be considered. The parallel activity
thread model allows parallel execution, but no pipelin-
ing. Its throughput is therefore lower than the server
model’s.

Serialized Activity Thread Summary For the
extreme example of a single SDL process, the server
implementation and the serialized activity thread im-
plementation are identical. In the general case, t; otm
is smaller than t. seryer- tw has to be determined in
a real-time analysis. The realizable throughput of the
serialized activity thread architecture is lower because
of the unused parallelization potential. The used area
of the activity thread implementation is smaller than of
the server model, if the area added by multiply imple-
mented functionality is smaller than the server model’s
communication overhead, which is true for a large class
of applications.

Parallel Activity Thread Summary In the ex-
treme example of a single SDL “server”—process, that
performs one functionality for a number of “clients”,
the area overhead due to the multiple implementation
of this functionality is maximal, as well as the syn-
chronization overhead. For such a case, a server model
implementation is most suitable. In a different extreme
example of a model consisting of disjunct chains of
SDL processes (i.e. multilayer protocol stacks), syn-
chronization overhead and multiple implementations
are low. Here the parallel activity thread implemen-
tation shows high throughput and response time, but
a slightly higher area compared to the serialized activ-
ity thread implementation. Here, both activity thread
alternatives are very efficient.

In the general case, the parallel activity thread im-
plementation is smaller in area than the server model,
if the server model’s communication overhead is larger
than synchronization and computation overhead of a
activity thread model. This is for example the case
in a control-dominated SDL model with fine process
granularity. Analogously, t. o+ is smaller than t. seryer,
if the communication overhead is larger than the syn-
chronization overhead.

5 Combining Implementation Models

Each SDL message connects two SDL processes in
an asynchronous manner. Because of this quality it
can serve as a connection point between parts of the
SDL system implemented after different implementa-
tion models. In particular this means:
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Figure 4. Partitioning Example

e Each SDL message can start an activity thread,
coming from the environment, a timer, or an SDL
process implemented after the server model.

e Each activity thread (or a branch of an activity
thread) can be terminated by the sending of an
SDL message to the environment, to a different
activity thread, or to a server process.

The server model and the activity thread model rep-
resent two different views of the SDL specification. The
SDL model is implemented in parallel VHDL processes,
each with input interface and message queue. Map-
ping an entire SDL process to one VHLD process cor-
responds to a server model implementation of this SDL
process. Accordingly, mapping one or several activity
threads entirely or partly to one VHDL process is a
serialized or parallel activity thread implementation.

Figure 4 shows a typical combination of the im-
plementation models. Here, an entire activity thread
with a short deadline is implemented in hardware. For
a short worst—case response time blocking times of
shared variable areas caused by an SDL process part
implemented in software cannot be accepted. Here,
asynchronous communication at the HW/SW bound-
ary is more appropriate.

6 Application in Rapid Prototyping

The presented hardware implementation models for
SDL are used in an automated design process of a rapid
prototyping environment for hard real-time systems
([11]). The rapid prototyping target architecture is
a heterogenous multiprocessor system, tightly coupled
by a global PCI bus. It consists of processor—based
execution units running software and FPGA-based ex-
ecution units serving as a flexible link to the embedding
system, and as a platform for tasks with deadlines too
short to be met in software.

Currently, the rapid prototyping design process
supports codegeneration for software after the server
model using Telelogic’s SDT CAdvanced code gen-
erator. The SDLCompiler presented in [2]generates
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VHDL code after the server model and after the se-
rialized activity thread implementation model. SDL
processes are mapped to HW and SW manually, us-
ing timing constraints and computational complexity
as main criteria.

7 Experimental Results

A simple event counter specification, consisting
of three SDL processes, was used for a first compar-
ison between the implementation models. The area
usage of a 8 bit wide server model implementation was
444 CLBs on a Xilinx 4025E, while an activity thread
implementation required only 117 CLBs.

As a non—trivial real-world example with strin-
gent real-time requirements, a CAN controller and
monitor application was implemented on the rapid
prototyping target architecture. Figure 5 depicts the
SDL process structure of the CAN physical layer, which
implements the access to the physical medium (send-
ing and receiving single message bits) and the accord-
ing low—level timing, bit stuffing and synchronization
functionality of the protocol. To achieve a precise tim-
ing, the duration of one message bit has to be divided
by a configurable number of internal controller ticks.
The SDL process Timing is triggered by the emission
of these ticks (signal ctrl_clock) and, depending on



its state, notifies other processes when a new bit frame
starts or the sampling point inside the bit has been
reached (signals can_clock and sample now). Figure 6
shows the corresponding activity thread. The branches
of this activity thread, e.g. the sampling of the bus level
followed by output of signal rx to the data link layer,
have to be finished before the emission of the next tick.
The deadline d, ,, of the activity thread ctrl_clock —
X is dejpp = ﬁ, for bus frequency f and a number of
8 internal ticks per message bit.

An automated implementation of the CAN physi-
cal layer on the CIOP’s FPGA after the server model,
using the SDLCompiler, required 1022 CLBs. The pro-
cess chain ctrl_clock — rx takes 16 cycles. This is
due firstly to message sending overhead of the three
processes Clock, Timing and Receiver, and secondly to
a delay in the timing—process, where the relevant sig-
nal is the last of three sequential output—statements.
With a cycle period of 80 ns this results in a maximal
possible CAN bus frequency of 98 kbits~!. In contrast
to this, a automated implementation using the serial-
ized activity thread model took 564 CLBs. The longest
path in the design was 4 cycles, leading to a achievable
bus frequency of 390 kbitst.

8 Conclusions and Future Work

Due to SDL’s asynchronous execution and commu-
nication semantic, a parallel implementation in hard-
ware inevitably causes communication overhead (server
model) or synchronization overhead (parallel activity
thread model). A serial implementation (serialized ac-
tivity thread model) on the other hand reduces syn-
cronization and communication overhead to a high de-
gree, but fails to make use of the possible paralleliza-
tion in hardware. The different implementation models
can be freely combined, which makes it possible to find
the most efficient implementation specifically for each
application, particularily on a distributed architecture.

The future vision for the rapid prototyping design
process is an interactive partitioning and mapping
step, where the designer can explore the trade—offs in
response time, throughput and area between the imple-
mentation alternatives, assisted with partitioning sug-
gestions and evaluations based on area and real-time
estimations.
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