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AbstractThe speci�cation of an embedded system at systemlevel together with co{joint hardware/software synthe-sis is a goal of many rapid prototyping projects. SDLhas been proposed as a formal and abstract speci�ca-tion language well suited for this purpose. The im-plementation of SDL's asynchronous communicationmodel in application speci�c hardware, however, is un-proportionally expensive in terms of area and responsetime. This paper discusses the e�ciency of the servermodel | the implementation model used in all knowncodesign approaches based on SDL | and comparesit with an alternative implementation model for SDLknown from software, the activity thread model. In acombination of both implementation stategies, the com-munication and synchronization overhead for each ap-plication can be minimized, and an e�cient implemen-tation on distributed architectures realized. The inte-gration in an existing rapid prototyping design processis presented as well as results gained from applicationexamples.1 IntroductionThe challenge in system level design of embeddedsystems of today is to master their ever increasingcomplexity in the short development times and coststhe market allows. Modern design methodologies, re-alized in HW/SW{codesign environments like [5], [3],[1] (see also [6], [14]), start with a model of the systemin one or several speci�cation languages. Using such amodel, validation with simulation, formal veri�cation,real{time analysis or rapid prototyping are possible,providing a means to �nd design 
aws in early phasesof the development. Embedded systems typically con-sist of microprocessors respectively processor cores ex-

ecuting software, and application speci�c hardware. Asuitable architecture of processors, buses and customhardware is determined and the speci�cation is parti-tioned and mapped to the available execution units.The next steps towards implementation are communi-cation re�nement, automated codegeneration and syn-thesis of hardware and software. The �rst commercialtools based on these research results are now emerg-ing. The Cadence Cierto VCC environment1 is basedon Berkeley's Polis approach. Arexsys, the commercialspin{o� of the TIMA laboratory, markets a codesignenvironment based on Cosmos2.A multitude of speci�cation languages and methodsare used in embedded systems design, i.e. C, C++,VHDL, Esterel, Statecharts, Matlab and SDL. Severalproperties of the \Speci�cation and Description Lan-guage" SDL (see also Section 2) make it well suited fora design methodology like outlined above. SDL allowsimplementation independent systemmodeling at a highlevel of abstraction, in graphical and textual form. Itsformal semantics form a solid basis for validation andsimulation. Due to SDL's asynchronous execution andcommunication scheme, dividing and joining models iseasy, which allows for more 
exibility in architecturalsynthesis, and e�cient implementations on distributedsystems. Other, non{technical criteria, are maturityand popularity of the language, and the well developedtool support. SDL's standardization ([10]) makes itsuitable for o�cial authorization procedures, in someof which it is already mandatory. SDL is a supportedinput format of both commercial codesign tools men-tioned above.The use of SDL in a HW/SW{codesign environmentrequires automated generation of hardware from SDL| in order to use a homogenous SDL speci�cation for1www.cadence.com/technology/hwsw/ciertovcc2www.arexsys.com



hardware and software, or at least to enable a 
exibleallocation to hardware or software when a heterogenousspeci�cation containing SDL parts is used.This paper discusses the e�ciency of SDL imple-mentations in hardware. It identi�es the cases whenthe prevalent SDL implementation model | the servermodel | leads to unreasonable designs in terms of areaand timing. It presents the activity thread implemen-tation model, which can reduce the | in hardware un-proportionally expensive | communication overheadcaused by SDL's asynchronous communication model.Section 2 introduces the language SDL and gives anoverview on SDL implementation strategies used in dif-ferent approaches. Section 3 and 4 describe the servermodel and the activity thread model in greater detail.Section 6 presents the integration of both implemen-tation schemes in a rapid prototyping environment forhard real{time systems, where �rst experimental re-sults were gained (Section 7).2 Implementation Strategies from SDLStructure in SDL is expressed with hierarchicalblocks and processes. The lowest level of re�nement isa network of parallel SDL processes, each with its pri-vate in�nite message queue, communicating via asyn-chronous messages (SDL signals). An extended �nitestate machine (EFSM), which can contain local vari-ables, speci�es the behaviour of each SDL process. Sig-nals are processed in order and trigger a state tran-sition, which in turn can contain arbitrary code in-side a SDL task block, SDL output{statements and
ow control statements like decisions. With the save{statement, the processing of a signal can be postponed,while a signal marked with priority input is processedat once. Timers send signals to the requesting process,using the process' message queue.In the design process, the speci�cation is trans-formed into software and con�gurable hardware for thetarget architecture. The rules for this transformation,the implementation model, must make sure thatthe implementation is semantically conform with thespeci�cation. Two implementation models, which pre-serve the semantics of SDL are the server model andthe activity thread model. In the server model, eachSDL process is implemented as a single RTOS task inSW, respectively as a separate VHDL entity in the HWimplementation, each with its own message queue. Incontrast to this, the activity thread model mapseach activity thread, i.e. each chain of activations inthe SDL model caused by one stimulating event (anevent from the environment or a timer output), to oneRTOS task respectively HW entity.

The terms server model and activity thread modelstem from the telecommunications area, where they areused to describe di�erent stategies to implement mul-tilayer communication systems ([12]). In the servermodel, each protocol unit from one layer is imple-mented as a single software task, communicating withother layers via messages. In the activity thread model,one software task processes an incoming or outgoingrequest through several layers. A recent approach, [8],proposes the employment of e�cient methods knownfrom the manual implementation of communicationsystems in an automated software design process basedon SDL. In their realization of the activity threadmodel, each SDL process is implemented as a reentrantprocedure. Each activity thread is a sequence of callsto these procedures. Commercial codegenerators forSDL targeting software, like SDT's CAdvanced ([13]),only support the server implementation model.Several approaches generate VHDL using the servermodel. The main focus here is mapping the abstractcommunication between SDL processes to existing in-terfaces and protocols. The SDL{to{VHDL transla-tor presented in [7]uses a textual implementation de-scription to select functions from a library of channeland protocol descriptions. In [4], the VHDL genera-tion is embedded in the codesign environment Cosmos.An SDL description is translated to an intermediateformat. During an interactive re�nement process, theabstract channels of this model are replaced by proto-cols, communication units and interfaces from a library.This approach is now integrated in a commercial tool(cf. Section 1). A further approach, aiming to supportSDL's dynamic process creation feature also in hard-ware, is presented in [9].3 Server ModelThe server model maps each SDL process to oneHW{entity with its own message queue. Figure 1 showsa typical hardware architecture implementing one SDLprocess according to the server model. One input in-terface for each communication channel receives SDLmessages, implementing the channel's protocol. Themessage is put at the end of the queue. The extended�nite state machine is implemented in an in�nite loopwith two nested case-statements. In turn a message istaken from the queue, the transition belonging to mes-sage type and process state executed, and, if necessary,a new SDL message is sent via an output channel.The server model is a straightforward, semanticallycorrect implementation of SDL. While the EFSM parthas to be generated for each new SDL model, themessage queue, timers, and the entire inter-process
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Figure 2. a) SDL specification, b) server
model implementationcommunication can be implemented from a library ofreusable components.Figure 2 shows an exemplary SDL speci�cation andthe corresponding server model implementation. Thespeci�cation consists of a network of �ve SDL pro-cesses, communicating via messages mij . A transitiontriggered by message mij consists of a task cij and thesending of a new message mi(j+1).Area E�ciency For a single SDL process, a largeportion of the occupied area comes from the messagequeue. While the hardware e�ort for a simple FIFOis high enough, it becomes prohibitive for a queue cor-rectly implementing save and priority input, i.e. per-mitting message insertion and removal at random po-sitions. Next to the message queues, a considerablehardware e�ort is incurred by the sending and receiv-ing of SDL messages. Each input channel implicatesa protocol implementation and data conversion, plushandshake and multiplex logic for the queue's input.Each SDL output{statement also implies an output in-terface, implementing data conversion and the chan-nel protocol, plus multiplexer logic if several output{statements write on one channel.Response Time and Throughput The responsetime tr to a certain event consists of the computationtime tc needed to process the event and a possible wait-ing time tw that elapses while a message resides in thequeue. While tc is directly determined by the hardware

architecture, an upper bound of tw has to be computedby a real{time analysis. tc of a single SDL process con-sists of the time needed to receive and enqueue the mes-sage, the time to remove the message from the queueand process it, plus the time to output a new message.Summary Typically, an SDL speci�cation consistsnot of one, but of several processes, interconnected bysignals. For such a network of processes, the hardwaree�ort increases not only linearly with the EFSMs andmessage queues, but disproportionate to the numberof processes with each signal interconnection betweentwo processes. Each additional connection generates alarger input interface, and, depending on the numberof output{statements, very high overhead for the out-put interfaces. The parallel and potentially pipelinedexecution of a network of SDL processes allows, de-pending on the application, good average and worstcase throughput. The computation time necessary torespond to an external event, however, can be veryhigh, since the communication overhead of all involvedSDL processes adds up.The communication overhead incurred in area andtime can be dramatic, since asynchronous communica-tion is especially expensive in hardware, and can easilysurmount the e�ort for the computation actually in-cluded in the SDL processes.4 Activity Thread ModelThe activity thread implementation model analyzesthe chain of activations in an SDL system triggered byan external event or timer output: The event (in formof an SDL message) is received by an SDL process, trig-gers a transition, where in turn an SDL message maybe sent to a second process. This chain of activations iscalled \activity thread". Activity threads contain statechoices, branch at multiple SDL output statements ina transition, and terminate with the sending of a mes-sage to the environment or with the consumation ofan SDL message in a process without triggering a newSDL output. All actions and state changes containedin the transitions along an activity thread are imple-mented sequentially, thereby avoiding the message sendand receive overhead between the processes. Specialattention has to be paid to a semantically correct im-plementation, especially concerning process data con-sistency and the correct ordering of messages.Architecture Alternatives In hardware, each ac-tivity thread could be executed in parallel. Depend-ing on the type of application, other implementationalternatives can be more e�cient. Figure 3 shows twoarchitecture alternatives, using the example from Fig-ure 2.
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Figure 3. Activity thread model alternativesIn the serialized activity thread architecture, all ac-tivity threads are implemented in one VHDL process.One event at a time is taken from the input messagequeue, and the corresponding activity thread is exe-cuted.The parallel activity thread architecture implementseach activity thread in its own parallel VHDL processwith its own input message queue. This requires ashared access to the local variables and state data pro-tected by a lock mechanism, if an SDL process has beensplit into more than one activity thread.Area E�ciency For input interface, message queue,timers and output interface, the same library compo-nents as in the server model can be used. The se-rialized activity thread architecture requires messagequeue, and input and output interfaces only for mes-sages at the border of the SDL model.In the parallel activity thread architecture, each ac-tivity thread requires its own message queue. EachSDL process divided in several activity threads needs acomponent implementing shared data access protectedby a lock mechanism. This implies an additional syn-chronization overhead.The activity thread model displays the e�ect that asingle functionality inside one SDL process, when trig-gered by di�erent external events, will be multiplied,because it appears in several activity threads. In theserialized activity thread architecture, a joining of ac-tivity threads is conceivable. In the parallel activitythread architecture, this functionality will be imple-mented multiply, leading to additional area overhead.Response Time and Throughput The serial-ized activity thread architecture serializes the activitythreads for all incoming events. The computation timetc consists of a very small communication overhead plusthe computation required for the entire activity thread.Due to the serialization, a potentially increased waitingtime tw has to be taken into account. In the case of dis-junct activity threads, the parallel activity thread archi-tecture has the same computation time as the other twomodels. When the mutual exclusion mechanism is nec-

essary, however, the calculation time increases becauseof the access time to the shared variables. Addition-ally, blocking times of the lock mechanism by anotherthread have to be considered. The parallel activitythread model allows parallel execution, but no pipelin-ing. Its throughput is therefore lower than the servermodel's.Serialized Activity Thread Summary For theextreme example of a single SDL process, the serverimplementation and the serialized activity thread im-plementation are identical. In the general case, tc;atmis smaller than tc;server . tw has to be determined ina real{time analysis. The realizable throughput of theserialized activity thread architecture is lower becauseof the unused parallelization potential. The used areaof the activity thread implementation is smaller than ofthe server model, if the area added by multiply imple-mented functionality is smaller than the server model'scommunication overhead, which is true for a large classof applications.Parallel Activity Thread Summary In the ex-treme example of a single SDL \server"{process, thatperforms one functionality for a number of \clients",the area overhead due to the multiple implementationof this functionality is maximal, as well as the syn-chronization overhead. For such a case, a server modelimplementation is most suitable. In a di�erent extremeexample of a model consisting of disjunct chains ofSDL processes (i.e. multilayer protocol stacks), syn-chronization overhead and multiple implementationsare low. Here the parallel activity thread implemen-tation shows high throughput and response time, buta slightly higher area compared to the serialized activ-ity thread implementation. Here, both activity threadalternatives are very e�cient.In the general case, the parallel activity thread im-plementation is smaller in area than the server model,if the server model's communication overhead is largerthan synchronization and computation overhead of aactivity thread model. This is for example the casein a control{dominated SDL model with �ne processgranularity. Analogously, tc;at is smaller than tc;server ,if the communication overhead is larger than the syn-chronization overhead.5 Combining Implementation ModelsEach SDL message connects two SDL processes inan asynchronous manner. Because of this quality itcan serve as a connection point between parts of theSDL system implemented after di�erent implementa-tion models. In particular this means:



short
EFSM

EFSM

I/O

I/O

HWSW

Deadline

c1

c4 c2

c3

c5

Lock

State data

Variables

Figure 4. Partitioning Example� Each SDL message can start an activity thread,coming from the environment, a timer, or an SDLprocess implemented after the server model.� Each activity thread (or a branch of an activitythread) can be terminated by the sending of anSDL message to the environment, to a di�erentactivity thread, or to a server process.The server model and the activity thread model rep-resent two di�erent views of the SDL speci�cation. TheSDL model is implemented in parallel VHDL processes,each with input interface and message queue. Map-ping an entire SDL process to one VHLD process cor-responds to a server model implementation of this SDLprocess. Accordingly, mapping one or several activitythreads entirely or partly to one VHDL process is aserialized or parallel activity thread implementation.Figure 4 shows a typical combination of the im-plementation models. Here, an entire activity threadwith a short deadline is implemented in hardware. Fora short worst{case response time blocking times ofshared variable areas caused by an SDL process partimplemented in software cannot be accepted. Here,asynchronous communication at the HW/SW bound-ary is more appropriate.6 Application in Rapid PrototypingThe presented hardware implementation models forSDL are used in an automated design process of a rapidprototyping environment for hard real{time systems([11]). The rapid prototyping target architecture isa heterogenous multiprocessor system, tightly coupledby a global PCI bus. It consists of processor{basedexecution units running software and FPGA{based ex-ecution units serving as a 
exible link to the embeddingsystem, and as a platform for tasks with deadlines tooshort to be met in software.Currently, the rapid prototyping design processsupports codegeneration for software after the servermodel using Telelogic's SDT CAdvanced code gen-erator. The SDLCompiler presented in [2]generates
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Figure 6. CAN Timing activity threadVHDL code after the server model and after the se-rialized activity thread implementation model. SDLprocesses are mapped to HW and SW manually, us-ing timing constraints and computational complexityas main criteria.7 Experimental ResultsA simple event counter speci�cation, consistingof three SDL processes, was used for a �rst compar-ison between the implementation models. The areausage of a 8 bit wide server model implementation was444 CLBs on a Xilinx 4025E, while an activity threadimplementation required only 117 CLBs.As a non{trivial real{world example with strin-gent real{time requirements, a CAN controller andmonitor application was implemented on the rapidprototyping target architecture. Figure 5 depicts theSDL process structure of the CAN physical layer, whichimplements the access to the physical medium (send-ing and receiving single message bits) and the accord-ing low{level timing, bit stu�ng and synchronizationfunctionality of the protocol. To achieve a precise tim-ing, the duration of one message bit has to be dividedby a con�gurable number of internal controller ticks.The SDL process Timing is triggered by the emissionof these ticks (signal ctrl clock) and, depending on



its state, noti�es other processes when a new bit framestarts or the sampling point inside the bit has beenreached (signals can clock and sample now). Figure 6shows the corresponding activity thread. The branchesof this activity thread, e.g. the sampling of the bus levelfollowed by output of signal rx to the data link layer,have to be �nished before the emission of the next tick.The deadline dc;rx of the activity thread ctrl clock!rx is dc;rx = 18�f , for bus frequency f and a number of8 internal ticks per message bit.An automated implementation of the CAN physi-cal layer on the CIOP's FPGA after the server model,using the SDLCompiler, required 1022 CLBs. The pro-cess chain ctrl clock ! rx takes 16 cycles. This isdue �rstly to message sending overhead of the threeprocesses Clock, Timing and Receiver, and secondly toa delay in the timing{process, where the relevant sig-nal is the last of three sequential output{statements.With a cycle period of 80 ns this results in a maximalpossible CAN bus frequency of 98 kbits�1. In contrastto this, a automated implementation using the serial-ized activity thread model took 564 CLBs. The longestpath in the design was 4 cycles, leading to a achievablebus frequency of 390 kbits�1.8 Conclusions and Future WorkDue to SDL's asynchronous execution and commu-nication semantic, a parallel implementation in hard-ware inevitably causes communication overhead (servermodel) or synchronization overhead (parallel activitythread model). A serial implementation (serialized ac-tivity thread model) on the other hand reduces syn-cronization and communication overhead to a high de-gree, but fails to make use of the possible paralleliza-tion in hardware. The di�erent implementation modelscan be freely combined, which makes it possible to �ndthe most e�cient implementation speci�cally for eachapplication, particularily on a distributed architecture.The future vision for the rapid prototyping designprocess is an interactive partitioning and mappingstep, where the designer can explore the trade{o�s inresponse time, throughput and area between the imple-mentation alternatives, assisted with partitioning sug-gestions and evaluations based on area and real{timeestimations.References[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A, Ju-recska, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B.Tabbara.Hardware-Software Co-Design of Embedded Systems:The Polis Approach. Kluwer Academic Press, 1997.
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