Mapping an Embedded Hard Real-Time
Systems SDL Specification to an Analyzable
Task Network — A Case Study*

Thomas Kolloch Georg Férber

Laboratory for Process Control and Real-Time Systems, Prof. Dr.—Ing. G. Féarber
Technische Universitdt Miinchen, Germany
{Thomas.Kolloch,Georg.Firber}@lpr.e-technik.tu-muenchen.de

Abstract. It is undoubtedly true, that the usage of a formal specifica-
tion methodology in software design will reduce the development effort,
particularly as embedded hard real-time systems show increasing func-
tional complexity. We suggest the use of the language SDL even for
the design of real-time systems with hard timing constraints. Emerg-
ing problems, caused by the non—deterministic semantics of SDL, can
be solved by adding EDF process activation to the SDL system model.
This paper describes the different steps necessary to map a SDL system
specification to an analyzable task network. Considering a SDL process
as a typical server process, the mapping rules are resolving the result-
ing interdependencies and delays, caused by possible priority inversion
and blocking. Finally the study of an application example, the “Mine
Control System” proofs the usabilty of the introduced methods.
Keywords: hard real-time, schedulability analysis, design methodol-
ogy, Specification and Description Language SDL, EDF

1 Introduction

Rapid prototyping of embedded hard real-time systems requires a specification
language as the basis for an automated design process. The “Specification and
Description Language” (SDL), originally developed for the design of telecom-
munication systems, suits for this purpose. SDL [1] is very similar to ROOM
[2], but is a standard of the ITU and has a larger user family. In contrast to
the telecommunication domain, hard real-time systems require the proof that
all timing constraints will be met even in a worst case scenario, because a dead-
line miss may result in loss of money or even in loss of lives. Unfortunately
the semantics of SDL includes non—determinisms like unpredictable ordering of
messages or unpredictable process activation. The addition of earliest dead-
line first scheduling (EDF) to the execution scheme of SDL can resolve this
drawback. A survey of the rapid prototyping design methodology is given in

* The work presented in this paper is supported by the Deutsche Forschungsgemein-
schaft as part of a research programme on “Rapid Prototyping for Embedded Hard
Real-Time Systems” under Grant Fa109/11-1.

Partitioner
Mapper
/ @
RT-Analysis
SDL Model Code
2 a Generator

/ "L
Analyzer ‘

Fig. 1. Design Methodology

/

Fig.1: An extended MSC [3] specification provides a description of the embed-
ding process behaviour, i. e. describes the deadlines and the worst case scenario
of the triggering external events. The architectural and detailed design is built
with SDL blocks and processes. These two single models, complemented with
information about the target architecture, specify all aspects of the complete
system and have to be merged into the “RT-Analysis Model” (RTAM). In a
partitioning and mapping step [4] the RTAM is linked to the target architecture
[5]. Proceeding with HW/SW code generation [6], profiling should calculate the
worst case execution times (WCET) of the single SDL state transitions. Now,
all information, necessary for the schedulability analysis is available.

This paper is organized as follows: The next section surveys related work
in the research area of timing analysis in combination with formal specification
languages. Section 3 explains the schedulability proof based on EDF, followed by
a description of the SDL to RTAM mapping rules. The “Mine Control System”
case study (Sec.5) evaluates the usability of the introduced methods. The last
section gives a short conclusion and shows our future work.

2 Related Work

The design of embedded hard real-time systems requires a complete design
methodology, which allows both the expression of functional and non—functional
requirements and supports the verification of these system demands. HRT-
HOOD [7] includes the explicit definition of application timing constraints and
integrates appropriate scheduling paradigms with the design process, but lacks
of the capability of specifying the behaviour of HOOD objects in an abstract
and formal manner, e.g. with hierarchical statemachines.

Although ROOM [2] was developed for the design of real-time systems, the
validation of timing properties is not included. [8] provide a heuristic, which
leads to an analyzable implementation of ROOM models.

Supplementing SDL with a load and machine model, QSDL [9] uses queueing
theory to calculate job and message queueing times and processor peak and
average workloads.

Event Sream ES

cot s {G-{00-G)

T T T T T T T T T T T T T Ll

T T
0 1 5 10 14 15

Fig. 2. Event Stream Example

E(), €
A

WCET= 16
0l : -

T T T T T T T T T T T T IVI

1 deadline=3 5 cycle=7 10

Fig. 3. Event Function E(I) and Requested Computation Time C(I)

3 Schedulability Analysis

This section introduces the EDF based schedulability analysis for event driven
hard real-time systems [10]. First, the characteristics of the embedding process
have to be described, i.e. the timely behaviour of stimulating events using Event
Streams (ES). ES describe the maximum possible number of events i of a certain
type within an interval a; [11]. Considering the occurrence of interrupts on the
left side of Fig. 2, the resulting ES® is shown on the right. This leads to an Event
Function E(I), expressing the number of events per interval I (Fig. 3).

Single tasks are characterized by their WCET ¢pq2,; and a deadline d; for
the triggering event. The internal structure of an analysis task consists of atomic
receive and semaphore obtain operations at the beginning of each task, a pre-
emptive task body without calls to operating system services and finally atomic
send (non-blocking), semaphore release, timer and in, out operations.

The C(I) Function is defined as maximum computation time requested and
due within interval I. For a single task C;(I) can be calculated easily from E;(I)
by shifting by the deadline d; and multiplication with the WCET ¢y44,; (Fig. 3).
While the resulting C(I) for a number of independent tasks on a computing
node is simply the sum of all C;(I) functions, Gresser developed an algorithm

! there are no 2 simultaneous events, i.e. only 1 event occurs in interval 0, a maximum
of 2 events in interval 1 and a maximum of 3 events in interval 3, repetition with
cycle 7

to determine C(I) for a network of communicating tasks, taking into account
dependencies? of the triggering events, precedence constraints, inter node com-
munication and mutual exclusion. For EDF he proved, that all tasks on one
node meet their deadlines, if the resulting C'(I) always runs under the bisector
which specifies the available computing time in each interval.

cH<I v I>0 (1)

One crucial point in schedulabilty analysis is the avoidance of priority in-
version in critical regions. For the analysis of complex structures of mutual
exclusion, i.e. several tasks in different and overlapping critical regions, [10] ex-
plains two strategies to resolve the edges of a “priority inversion graph”: FEither
by shifting the deadline of the task to a new shorter, but during runtime fixed
deadline or by taking into account a dynamic deadline inheritance protocol.

4 Mapping SDL to the RT—Analysis Model

There are prerequisites, which have to be satisfied for the translation of a SDL
system to the RTAM: A static allocation of processes to processing units is
mandatory and dynamic process instantiation can not be considered in the mo-
ment, i.e. most of the object oriented language extensions of SDL-92 are for-
bidden in a SDL model. Further language restrictions are: no usage of services
and priority inputs, continuous signal trigger conditions and signal SAVE state-
ments. A general requirement — valid for all real-time systems — is saveness.
Saveness means, that in spite of any possible stimulation the system will regain
a save (rest) state, especially there are no receive/send — receive/send loops. For
a save system the algorithm, described in Sec. 4.4 will terminate.

4.1 SDL Process — Server Behaviour

The similarity of the analysis model (Sec.3) and the statemachine structure of
the SDL process allows an automatical RTAM generation. For this purpose
the hierarchical SDL block composition is transformed into a network of com-
municating (leaf) SDL processes. If there are no dependencies between these
processes, the simple addition of the WCET c¢;,4,,; Will be allowed for the cal-
culation of the overall C(I). Therefore the interferences within this process
structure have to be resolved.

Unfortunately, a SDL process (statemachine) has usually server process be-
haviour, with different sources of incoming messages and different destinations
of outgoing messages. The RTAM, corresponding to a server process, has the
process duplicated and protected in an area of mutual exclusion (Fig.4(a)). Du-
plication takes into account a possible worst case delay, caused by an earlier
message, mutual exclusion protects the ordering of execution. Preemption of

2 “eyent dependency matriz” (EDM)

1
(2 (e

\
ES1 |
d I

\ ~ | ! d; dy

= | ES ES
d | =

ES2 ! I
ES2 |)

0 PG

x1, x2, x3

c3 ‘ cmax

cmax

g
R A, o e
oo 0O

Fig.5. Analysis Model — (a) different and (b) same message source

a state transition is not allowed in SDL semantics, but can occur in the im-
plementation. Depending on the type of implemented task system (Sec.6), a
transaction may be even preempted by a state transition of the same SDL pro-
cess with shorter deadline, therefore the access to common SDL state information
has to be synchronized by mutual exclusion. Using “tight integration” for code
generation, which maps to one task per SDL process and one message queue
per task, the order of computation is managed by the queue and therefore the
mutual exclusion is not necessary in the implementation. But regarding the
possible delay, caused by the computation of a reaction to an earlier received
message, the analysis must take into account a mutual exclusion too.

4.2 Mapping SDL Statemachines

Depending on the source of the incoming messages (one single ES or serveral
different ES), a statemachine has to be mapped to different RTAM trees, either
with individual execution times ¢; and mutual exclusion (Fig.5 (a)) or to one
single task (Fig.5 (b)) with ¢ = ¢pmax = Maz(c;).

If the same message triggers a transition in different states (Fig.6, states
A, B,C), the RTAM only takes into account the maximum computation time
Cmaz = Mazx(c;). Depending on the destinations of the outgoing messages, the
target analysis node can be derived. Assigning an asterix symbol to states and
message receive statements, SDL syntax provides a kind of behavioural hierarchy
like ROOMCharts [2]. This conforms to a state or a message enumeration and
can be translated using the former explained mapping rules.

TPD &

X

I .

cl l c2 l c3 cmax
l cmax

b
—Ef) 1 ¥2,y3
5 b &8

Fig. 6. Analysis Model — same message in different states

Sk

Resp Timer

CIT T L el Fomer

X

X

Timer

Fig. 7. Analysis Model — Dependent Timer

4.3 Mapping SDL Timers

SDL Timers are internal events, which can occur independently or dependently
on external events. An example of a independent timer event is the cyclic ac-
tivation of polling tasks in the case study (Sec.5). A dependent timer event is
e. g. the surveillance of a timely response to a server request. The first type has
to be mapped to an analysis node with its own, the timer behaviour describing
ES (2). The dependent timers mapping rule is identical to the former one, but
supplemented with additional event dependency information ([10], Fig. 7). The
minimum distance between the stimulating external event and the internal timer
event results from the sum of minimum computation times of the tasks in the
same precedence system plus the timer interval (3).

ESTimer = ESl = (21> (2) EDM = (Zl Cp + T> (3)
0 0 z1

4.4 Mapping Algorithm

The mapping algorithm starts the transformation at each triggering external
event or each independent SDL Timer. Then, for each environment handling

Table 1. Mine Control System — Timing Constraints and Analysis Parameters

P/S |Cycle|Interv.||Deadl. WCET||Deadl.[WCET| Deadl. | WCET
Zi a; dz C; dz Cq di,mutez Ci,mutex
CH, Sensor P 1ls 0s 1s [0.350s|| 1s [0.350s
CO Sensor || P 5s 0s 5s |0.125s|| 5s |0.075s 1s 0.050 s
Air Flow || P 5s 0s 5s |0.125s|| 5s |0.075s 1s 0.050 s
H>0 Flow P 3s 0s 3s |0.075s 1ls 0.075 s
H>0 Level || S |100s| Os 20s |0.150s|| 20s |0.025s| 1s 0.125 s
Operator || S | 10s | 0s 1s [0.175s|| 1s [0.175s

SDL process, the consecutive SDL processes are identified by means of SEND
statements. In a next step dependent SDL Timers have to be detected and
the assignment of their own ES have to be prepared. Subsequently all state
transitions, triggered by the same message, are eliminated, and a replacement
with maximum computation time has to be defined. Finally, the analysis node,
appropriate to the resulting dependent state transitions, has to be multiplied in
an area of mutual exclusion. The algorithm continues with the next SDL process
in the precedence system, until no more SEND statements can be found.
Applying this transformation to a SDL system, the resulting RTAM will
consist of serveral independent analysis task precedence systems (Fig.4 (b)),
whereby each network is triggered by a different type of ES. The single branches
of the RTAM tree are linked by regions with mutual exclusion. All analysis nodes
in one precedence system have the same deadline, i.e. are fixed to the messages,
sent through a precedence system. This leads to the fact, that different SDL
state transitions in one SDL process may have different timing constraints.

5 The Mine Control System

The “Mine Control System” case study is originally described in [7, pp. 145-224]
as an example of modelling a real-time system with HRT-HOOD. The purpose
of the pump is to manage the water level in a mining environment.

5.1 Functional and Non—Functional Requirements

The pump monitors the water level in a sump. According to a high level detector
or to operator interaction, the pump is turned on and the sump is drained, until
a low level detector responses or the pump is turned off by the operator. The
pump should only be allowed to operate, if the C'H; concentration is below a
critical level. The operator console and the level detectors communicate via
interrupts with the pump control station. Additional sensors for monitoring the
environment are polled in different cycles. Critical levels of CHy, CO or an
unsufficient air flow must be signalled to the operator as an alarm. In case of
an operating pump, the water flow in the pump can be measured. A critical

Air Flow Sensor

CH4 Sensor \ Water Level Sensor

100
77777 0

Operator

e e i Water Flow Sensor
[
I
[
[

Pump System

Fig. 8. Complete Analysis Model

C'Hy level must lead to an undelayed shut off of the pump. A summary of the
tasks characteristics, their cycle times, respectively the minimum distance of the
stimulating external events and the appropriate deadline is listed in Tab. 1.

5.2 Analysis Model and Analysis Results

As a representative, the analysis model of the pump control process (Fig.9 (a))
will be explained. Although six different messages are consumed, the number
of different message sources evaluates to three, therefore the analysis node must
be tripled in an area of mutual exclusion. The upper left node in the pump
control region of Fig. 8, triggered by an operators message, has three message
outputs, whereby one is the response to the operators request. Since there are
no further send statements in the consecutive processes, the forks of the analysis
precedence tree (mapping algorithm) end in the next nodes.

The execution times are derived from the HRT-HOOD example [7, pp. 145
224]. To demonstrate the influence of priority inversion avoidance, the values
of the WCETSs are multiple oversized, compared to the complexity of the pro-
cesses. The WCETs of the individual SDL state transitions can be seen in the
appropriate analysis nodes in Fig.8. Summing up the WCETSs ¢; of the nodes
of one precedence system results in analysis parameters, summarized in Tab. 1.

In a next step a possible priority inversion in critical regions is considered by
shifting the task deadlines to the shortest deadline in the region. The stimulat-
ing event stream remains untouched by this manipulation. The new deadlines
calculate to dj mutex = 1s. The sums of the ¢; muter in the critical regions of
one precedence system are shown in the last column of Tab. 1.

Requested Computation Time C(l)

Process PumpControllProcess < "‘“ée(i; T

PumpOnNoCH4
5
1 1

SwitchPumpeft

(WaterLow

ISwitchPumpaf

WaterHigh

(CriticalCHaLegel 4

[PumpOn VIA AY PumpOn VIA Al PumpOtt VIA Al [PumpOff VIA A PumpOft VIA AY 3
PSR, PR PSR, PR PSR, PR PSR, PR PSR, PR

5
(meomeens

c(l)

B

4
Intervall

Fig. 9. (a) Pump Control SDL Statemachine and (b) Analysis Results

The result of the schedulability analysis can be seen in Fig.9 (b). The dis-
tance between the C'(I) and the C'(I)muter functions shows the influence of the
manipulated deadlines. By shortening the deadlines, the analysis has to schedule
more computation time as possibly needed to meet all deadlines, i.e. the laxity,
available for further tasks, may be lost. This leads to design rules to evade this
effect: Keep computation times in critical region as small as possible; Minimize
the number of nodes in critical region, i.e. avoid SDL process server behaviour,
and minimize the number of critical regions by combining similar processes, e. g.
combine the cyclic polling processes.

6 Conclusion

In this paper, we focused on the integration of a schedulabilty proof in the
design flow for embedded hard real-time systems, based on the language SDL.
This integration is done, by adding EDF semantics to SDL process activation to
resolve non—predictable system behaviour and by mapping the SDL system to
an analyzable task network.

The introduced SDL to RTAM mapping rules and algorithm allow the au-
tomation of this transformation and therefore the integration in a rapid proto-
typing design environment. To cover the complete syntax and semantic of SDL,
further mapping rules are necessary. Forced by server behaviour of SDL pro-
cesses, the mapping creates many areas of mutual exclusion. For this reason the
system designer should get support by design rules, which help to develop an
efficient and analyzable software architecture.

A trade—off appears, regarding the way of code generation,?done by the SDT
CASE tool. Considering the fine granularity of a SDL process, — the transitions
of a SDL statemachine are normally short — the generated task system is fine
granular too. This leads to the phenomenon, that the resulting system will
mainly do task switching, instead of processing real data. A solution for this

% tight integration to the “Real-Time Executive for Multiprocessor Systems RTEMS”

effect could be the implementation of a complete analysis precedence system
in a single task (similar to [12]). The minimization of the number of context
switches and the number of receive and send calls, should result in a more
efficient implementation.

References

[1]
2]
(3]
[4]

[5]

[6]

[10]

[11]

[12]

ITU-T. ITU-T Recommendation Z.100: CCITT Specification and Description
Language (SDL), June 1994.

Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object—Oriented
Modeling. John Wiley & Sons, Inc., 605 Third Avenue, New York, 1994.

ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC),
September 1994.

Georg Farber, Franz Fischer, Thomas Kolloch, and Annette Muth. Improving
processor utilization with a task classification model based application specific
hard real-time architecture. In Proceedings of the 1997 International Workshop on
Real-Time Computing Systems and Applications (RTCSA’97), Academia Sinica,
Taipei, Taiwan, ROC, October 27-29 1997.

Franz Fischer, Thomas Kolloch, Annette Muth, and Georg Farber. A configurable
target architecture for rapid prototyping high performance control systems. In
Hamid R. Arabnia et al., editors, Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’97),
volume 3, pages 1382-1390, Las Vegas, Nevada, USA, June 30 — July 3 1997.
Franz Fischer, Annette Muth, and Georg Farber. Towards interprocess commu-
nication and interface synthesis for a heterogeneous real-time rapid prototyp-
ing environment. In Proceedings of the 6th International Workshop on Hard-
ware/Software Co—Design — Codes/CASHE 98, pages 3539, Seattle, Washing-
ton, USA, 15-18 March 1998. IEEE, IEEE Computer Society Press.

Alan Burns and Andy Wellings. HRT-HOOD: A Structured Design Method for
Hard Real-Time Ada Systems. Elsevier Science B. V., Amsterdam, The Nether-
lands, 1995.

M. Saksena, P. Freedman, and P. Rodziewicz. Guidelines for automated imple-
mentation of executable object oriented models for real-time embedded control
systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS’97),
San Francisco, California, December 2-5 1997. IEEE Computer Society Press.
Marc Diefenbruch, Elke Heck, Jérg Hintelmann, and Bruno Miiller—Clostermann.
Performance evaluation of sdl systems adjunct by queueing models. In SDL’95
With MSC in CASE, Proceedings of the Seventh SDL Forum, pages 231-242, Oslo,
Norway, September 1995.

Klaus Gresser. Echtzeitnachweis ereignisgesteuerter Realzeitsysteme. Number 268
in Fortschrittsberichte VDI, Reihe 10. VDI-Verlag, Diisseldorf, 1993. Dissertation
am Lehrstuhl fiir Prozessrechner, Technische Universitdt Miinchen.

Klaus Gresser. An event model for deadline verification of hard real-time systems.
In Proc. Fifth Euromicro Workshop on Real Time Systems, pages 118-123, Oulu,
Finland, June 1993. IEEE.

Ralf Henke, Hartmut Ko6nig, and Andreas Mitschele-Thiel. Derivation of efficient
implementations from SDL specifications employing data referencing, integrated
packet framing and activity threads. In Proceeding of the Eighth SDL Forum,
SDL’97 Time for Testing SDL, MSC and Trends, pages 397-414, Evry, France,
September 1997. Elsevier Science Publishers B.V.

