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ABSTRACT

Accurate time-delay measurement is essential for position-
ing with Global Navigation Satellite Systems (GNSS). For
mobile receivers small cost, moderate complexity and low
energy consumption are desirable. In contrast, Safety-of-
Life (SoL) applications require fast processing in order
to meet strict time constraints. Concerning these techni-
cal considerations, single bit analog-to-digital converters
(ADC) are highly attractive as they are simple to build, re-
quire low energy and allow to realize high sampling rates
and fast digital processing. On the other hand, such sys-
tems introduce a loss in the estimation accuracy. In this
work we derive a mathematical model for 1-bit GNSS re-



ceivers, which takes into account the effects of the analog
filters and the non-linear quantizer in the receiver front-end.
Based on this refinement we derive analytic formulations
for the receiver performance by resorting to the estimation
theoretic tools which have become popular for the analy-
sis of ideal receivers with infinite resolution. Finally, we
verify the 1-bit quantization-loss for time-delay estimation
systems, acting in low SNR scenarios, and investigate pos-
sible approaches to reduce this degradation by adjusting the
analog front-end.

INTRODUCTION

Today, location-based services are an integral part of
mobile devices, while time synchronization is essential
for technical infrastructure like communication systems
or networks which distribute electrical power or finan-
cial data. Therefore the reception of GNSS signals
has emerged as a powerful technique in order to attain
precise information about position in time and space.
While high accuracy is desired in such applications, the
architecture of the receiver is limited by technical con-
straints like complexity, chip-size and energy consumption.

Coarse analog-to-digital converters (ADC) have the
advantage of simplicity and require low energy during
system operation. In particular 1-bit quantizers allow
very high sampling rates and can therefore be placed
close to the antenna in order to realize a quasi all-digital
implementation. Further, the signal processing chain is
simplified significantly. For example the correlation of a
reference signal with a 1-bit receive signal requires no mul-
tiplications. Especially in the case of Binary Offset Carrier
(BOC) signals, which are used for Galileo and modernized
GPS, this is advantageous. The auto-correlation function
of a BOC signal has additional extrema close to the
global maximum. This requires additional correlation
operations in order to determine the time-delay precisely
and track it reliably. Besides these attractive properties,
1-bit quantization introduces a loss in the effective receive
SNR. Due to the non-linear operation, information about
the signal at the input of the quantization device is lost.

The mathematical background to solve the problem
of determining a channel parameter like the time-delay
of a signal which has been disturbed by additive noise is
provided by estimation theory. Estimation theory yields
methods to derive estimators and to analytically determine
their performance. When applying this theory to real
technical GNSS systems, due to mathematical tractability,
it is usually assumed that the sampled receive signal is
available with infinite resolution and that the additive
noise samples are white. Nevertheless, the assumption
of signals with infinite resolution is not applicable for
common digital GNSS receivers. These systems work

with signals of finite and preferably coarse resolution due
to the presence of ADC. In addition the assumption of
white Gaussian noise after sampling with an ideal ADC
of infinite resolution is only justified in very special cases.
Therefore it is important to include all these aspects into
the receiver model in order to provide the optimum design
criteria and digital processing algorithms for future GNSS
receivers.

Related Work

An early discussion on the problem of estimating unknown
parameters based on quantized signals can be found in [1].
Channel parameter estimation based on single-bit quanti-
zation, under the assumption of uncorrelated noise, was
treated in [2][3][4]. Also the problem of signal process-
ing with low resolution when considering data transmis-
sion over noisy channels is discussed in different works.
In [5] it has been shown that the well known reduction of
low SNR channel capacity by factor 2/π (−1.96 dB) due
to 1-bit quantization holds also for the general MIMO case
with uncorrelated noise. Paper [6] provides a survey on the
quantization-loss of GNSS receivers, where the well known
1-bit loss of −1.96 dB has been verified. Contrary, in [7]
the authors showed that this loss can be reduced for AWGN
channels with low SNR by oversampling the analog receive
signal. Additionally, in paper [8] the authors investigated
the opportunity of improving the correlator output SNR un-
der quantization by using high sampling frequencies and
reducing the front-end bandwidth. In [9] it was recently
shown that the capacity bound of MIMO channels under
spatial noise correlation can be higher than under white
noise for low SNR.

Contribution

To the best of our knowledge the performance of signal
parameter estimation under 1-bit quantization and colored
noise has not been considered in a systematic way. Us-
ing a refined expression of the Cramér-Rao lower bound
(CRLB), which takes into account the non-linear effects
of quantization, we validate the possibility of reducing the
well known quantization-loss of −1.96 dB through the re-
ceiver front-end design. To this end, we provide a general
framework for optimizing the front-end with respect to the
Fisher information measure. Possible degrees of freedom
in the front-end are the analog filter and the sampling rate.
Consequently, the impact of the filter bandwidth, the filter
shape and oversampling on time-delay estimation perfor-
mance is shown for the case of a GNSS BOC receiver with
a 1-bit ADC.

Outline

The paper is organized as follows. After introducing the
notation, a signal model of the GNSS receive signal with



a single satellite in an interference free scenario is given.
For this model with infinite ADC resolution we review the
derivation of the the maximum-likelihood estimator (MLE)
for the time-delay as well as a lower bound for the variance
of this estimator. Then the system model is refined in order
to characterize the influence of sampling and filtering on
the noise covariance and a linear model for the quantization
device is introduced. For simulations we focus on Galileo
BOC signals and show that the performance of time-delay
estimation for quantized signals can be improved by opti-
mizing the sampling rate and the analog filter.

Notation

Throughout this work scalars are denoted by lower case
letters, whereas column vectors and matrices are written
with lower case bold letters and upper case bold letters,
respectively. In addition, the transpose of a matrix A is
given byAT , whileAH represents the conjugate transpose
(Hermitian) of a matrix. diag(a) yields a matrix with the
elements of a on its diagonal and all other elements equal
to zero, while diag(A) denotes a matrix with the diagonal
elements of A on its diagonal and all other elements equal
to zero. The n-th element of a vector a ∈ RN×1 is denoted
an with n = 1, 2, . . . , N , while the entry in the n-th row
and m-th column of a matrixA ∈ RN×M is writtenAnm,
where the indices always range from n = 1, 2, . . . , N and
m = 1, 2, . . . ,M .

SYSTEM MODEL

Consider a coherent analog GNSS receive signal from one
satellite with receive carrier-power C ∈ R, time-delay τ ∈
R

y(t) =
(
d(t) ∗

√
Cδ(t− τ) + η′(t)

)
∗ h(t) ∗ g(t)

=
√
Cs(t− τ) + η(t), (1)

where

δ(t− τ) =

{
1 if t = τ

0 else.
(2)

The power spectral density (PSD) of the additive white
Gaussian noise η′(t) ∈ R is Φ(ω) = N0

2 . The impulse
responses h(t) of an ideal low-pass filter with one-sided
bandwidth B and g(t) of an additional filter with arbitrary
shape characterize the analog receive filter. The satellite
transmit signal is assumed to be

d(t) =

∞∑
m=−∞

b(mod(m,M)+1)p(t−mTc) (3)

where bm ∈ {−1, 1}M×1 is a code sequence of length M
with chip duration Tc and chip-rate fc = 1

Tc
, while p(t) is

the transmit pulse shape. The structure of the receive signal

s(t) = d(t) ∗ h(t) ∗ g(t) (4)

is known at the receiver. Contrary, τ is a deterministic time-
delay parameter but unknown at the receiver. Collecting N
samples of the receive signal at a rate of fs = 1

Ts
yields

y =
√
Cs(τ) + η, (5)

where for convenienceN is restricted to be an even number
and

s(τ) = [s(−τ), s(Ts − τ), . . . , s((N − 1)Ts − τ)]T ∈ RN×1,
η = [η(0), η(Ts), . . . , η((N − 1)Ts)]

T ∈ RN×1,
y = [y(0), y(Ts), . . . , y((N − 1)Ts)]

T ∈ RN×1. (6)

The noise samples η are assumed to be additive Gaussian
noise with zero mean and a covariance matrix

E
[
ηηT

]
= R. (7)

The probability density function (pdf) of the random re-
ceive signal y, parametrized by τ , is therefore

py(y; τ) =
1√

(2π)N det(R)
·

exp

(
−1

2

(
y −
√
Cs(τ)

)T
R−1

(
y −
√
Cs(τ)

))
.

(8)

PARAMETER ESTIMATION

The receiver determines its position by estimating the dis-
tance to four or more in-view satellites. If the receiver
and the satellites have access to the same reference point
in time, the distance can be calculated with the estimated
signal propagation delay. In order to determine τ the re-
ceive signal is correlated with a delayed local replica of the
transmit signal s(τ).

Maximum Likelihood Estimation

For the problem of determining an estimate τ̂(y) ∈ R, the
maximum likelihood estimator (MLE) is efficient if N is
large. The MLE decides for the value τ̂(y) which maxi-
mizes the parametrized pdf py(y; τ)

τ̂ = arg max
τ

py(y; τ)

= arg min
τ

(
y −
√
Cs(τ)

)T
R−1

(
y −
√
Cs(τ)

)
= arg min

τ
yTR−1s(τ), (9)

where it was assumed that s(τ)TR−1s(τ) is constant in τ
for sufficiently large N , which is shown in (57).



Performance Bound

The variance of the estimator τ̂(y) with y being distributed
according to the parametrized pdf (8) is given by

var(τ̂) = E
[(
τ̂(y)− E [τ̂(y)]

)2]
, (10)

where E [•] is the expectation with respect to py(y; τ). A
lower bound for the achievable variance of an unbiased es-
timator, i.e., an estimator which asymptotically in N satis-
fies

E [τ̂(y)] = τ, (11)

is given by the CRLB [10]

var(τ̂) ≥ 1

F (τ)
, (12)

where

F (τ) = C
∂s(τ)T

∂τ
R−1

∂s(τ)

∂τ
(13)

is the Fisher information measure.

FILTERS AND SAMPLING RATE

When considering the problem of GNSS parameter esti-
mation, often the assumption is made, that the noise η(t)
behind the analog filter h(t) ∗ g(t) is white and therefore
R is a scaled identity matrix. This assumption neglects the
noise correlations produced by the receiver front-end. To
achieve optimum performance with the MLE, the correct
noise correlation has to be used in (9). In the following the
properties of η(t) due to the filter bandwidth B, the filter
shape of g(t) and the sampling rate fs are discussed and an
exact expression forR is derived.

Noise characterization for filtered and sampled signals

The frequency response of the ideal low-pass filter h(t) in
the analog filter front-end of the receiver is

H(ω) =

{
1 if − 2πB ≤ ω ≤ 2πB

0 else,
(14)

while g(t) has an arbitrary frequency response G(ω). The
covariance matrix R of the sampled noise η can be deter-
mined with the auto-correlation function of η(t)

r(t) =

∫ ∞
−∞

η(t)η∗(λ− t)dλ (15)

which has a Fourier representation

R (ω) =
N0

2
|H(ω)|2|G(ω)|2. (16)

Using the inverse Fourier transform, the auto-correlation
function of the noise after filtering withH(ω)G(ω) is given
by

r (t) =
N0

4π

∫ 2πB

−2πB
|G (ω)|2 ejωtdω (17)

and therefore the entries of the noise covariance matrix R
are

Rij = r (Ts|i− j|) . (18)

Special case: Ideal low-pass filter

Considering the case G(ω) = 1, the auto-correlation func-
tion of the noise, strictly band-limited to B, is

r (t) =
1

2π

∫ ∞
−∞

R (ω) ejωtdω

=
N0

4π

∫ ∞
−∞
|H(ω)|2ejωtdω

=
N0

4π

∫ 2πB

−2πB
ejωtdω

= BN0 sinc (2Bt) , (19)

where a normalized version of the classical sinc-function is
used

sinc (x) =
sin(πx)

πx
. (20)

Consequently, the entries of the noise covariance matrixR
of the band-limited and sampled noise η are

Rij = BN0 sinc (2BTs|i− j|) . (21)

Note, that the common assumption of uncorrelated noise
with a covariance matrix that has vanishing off-diagonal
entries is only correct if the signal is filtered with an ideal
low-pass H(ω) and the sampling rate is exactly fs = 2B.

QUANTIZATION

For digital signal processing the discrete-time but
continuous-valued signal y is quantized by a non-linear
function

r = Q(y). (22)

Especially for coarse quantization this has a significant in-
fluence on the noise correlation. In order to achieve opti-
mum estimation performance for quantized receive signals,
the noise covariance matrix has to be adjusted with respect
to the quantization operation. In the following the extreme
case of 1-bit hard-limiting quantization is discussed where
the quantization device Q(•) processes every signal com-
ponent yi individually

Q(yi) =

{
1 if yi ≥ 0

−1 if yi < 0.
(23)

Bussgang decomposition for quantized signals

In [9] it was shown that using the Bussgang theorem [11]
the output of a non-linear device, such as a 1-bit quantizer,



can be approximated by a linear signal component and an
uncorrelated distortion e

r = Qy + e. (24)

By minimizing the mean squared error

E
[
||e||2

]
= E

[
||r −Qy||2

]
(25)

the matrix

Q = arg min
Q

E
[
||r −Qy||2

]
= arg min

Q
tr
(
Rrr −RryQ

T −QRyr +QRyyQ
T
)

= arg min
Q

Λ(Q) (26)

can be obtained. A solution to (26) has to fulfill

∂Λ(Q)

∂Q
= −2Rry + 2QRyy = 0, (27)

which yields
Q = RryR

−1
yy , (28)

where Rry denotes the cross-correlation matrix of the in-
put signal of the quantizer y with the output of the quan-
tizer r and Ryy denotes the auto-correlation matrix of the
signal y. For a 1-bit hard-limiter the cross-correlation ma-
trix is given by [12, p. 307]

Rry =

√
2

π
diag(Ryy)−

1
2Ryy (29)

such that

Q =

√
2

π
diag(Ryy)−

1
2 . (30)

Note, that due to the orthogonality principle

E
[
eyT

]
= 0. (31)

Effective noise model for the quantized signal

For the GNSS signal model (5), the output of the quantizer
is given by

r = Qy + e

=
√
CQs(τ) +Qη + e

=
√
CsQ(τ) + ηQ. (32)

The covariance matrix of the error e

Ree = Rrr −RryQ
T −QRyr +QRyyQ

T

= Rrr −RryR
−1
yyRyr (33)

allows to characterize ηQ by the covariance matrix

RQ = E
[
(Qη + e)(Qη + e)T

]
= QRQT +Ree

= QRQT +Rrr −RryR
−1
yyRyr, (34)

where it was used that in the low SNR regime

E
[
ηeT

]
= Ey

[
E
[
eηT |y

]]
≈ Ey

[
E
[
eyT |y

]]
= E

[
eyT

]
= 0. (35)

Using the arcsine law [12, p. 307] allows to specify the
auto-correlation matrixRrr

Rrr =
2

π
arcsin

(
diag (Ryy)

− 1
2 Ryy diag (Ryy)

− 1
2

)
(36)

for a 1-bit hard-limiting quantizer. Inserting (30) and (36)
into (34)

RQ =
2

π
diag(Ryy)−

1
2R diag(Ryy)−

1
2

− 2

π
diag(Ryy)−

1
2Ryy diag(Ryy)−

1
2

+
2

π
arcsin

(
diag (Ryy)

− 1
2 Ryy diag (Ryy)

− 1
2

)
(37)

gives a full characterization of the gain-noise model for the
1-bit hard-limiter. Note, that the covariance matrix of ηQ
only depends on the covariance matrices of y and η. For
signals in the low SNR regime Ryy = CRss +R is dom-
inated byR, which allows to approximate

RQ ≈
2

π
arcsin

(
diag (R)

− 1
2 R diag (R)

− 1
2

)
, (38)

by Ryy ≈ R. In [13] it was shown that under a fixed
second moment additive Gaussian noise minimizes the
Fisher information. Therefore a Gaussian model in general
yields an equivalent system, which is pessimistic with
respect to the parameter estimation performance.

Considering the Fisher information measure for a
quantized GNSS receive signal

F (τ) = C
∂s (τ)

T

∂τ
QTR−1Q Q

∂s (τ)

∂τ
(39)

it is useful to define an effective noise covariance matrix

R′Q = Q−1RQ(QT )−1 (40)

which includes the effects of quantization on the noise cor-
relation as well as on the signal.

FISHER INFORMATION - FREQUENCY DOMAIN

Due to the inversion of R, the calculation of the Fisher
information F (τ) in the time domain (39) is costly if N
becomes large. In the following, an expression for the
Fisher information in the frequency domain is derived,



which allows a simple calculation for a large but finite
number of samples.

As the GNSS signal s(t) is periodic with periodic
time T0 it can be represented by an infinite sum of complex
sinusoids

s(t) =

∞∑
k=−∞

s̃ke
jkω0t, (41)

with ω0 = 2π
T0

and

s̃k =
1

T0
S (kω0) , (42)

where

S(ω) =

∫ T0

0

s(t)e−jωtdt. (43)

As s(t) is band-limited, the sum (41) can be replaced by a
finite counterpart

s (t) =

K
2 −1∑

k=−K
2

s̃ke
jkω0t, (44)

with

K ≥ 4πB

ω0
= 2BT0. (45)

Sampling the band-limited signal at a rate fs ≥ 2B, each
element of the sampled transmit signal can be written

s (nTS) =

K
2 −1∑

k=−K
2

s̃ke
jkω0nTS . (46)

For N = K and Ts

Tc
= M

N the transmit signal is given by

s = Ws̃, (47)

whereW is the well known Inverse Discrete Fourier Trans-
formation (IDFT) matrix, which for convenience is here de-
fined in a modified form

Wkn =
1√
N
ej2π

(−N
2
−1+k)(−N

2
−1+n)

N ∈ CN×N , (48)

and
s̃ = [s̃−N

2
, s̃−N

2 +1, . . . , s̃N
2 −1

]T ∈ CN . (49)

The time shifted signal

s (nTS − τ) =

N
2 −1∑

k=−N
2

s̃ke
jkω0(nTS−τ) (50)

in vector notation is given accordingly by

s(τ) = WT (τ)s̃, (51)

where T (τ) ∈ CN×N is a diagonal matrix with

Tkk(τ) = e−j(−
N
2 −1+k)ω0τ . (52)

For large N the temporal noise covariance matrix R is ap-
proximately circulant and therefore can be replaced by

R ≈WΩRW
−1, (53)

whereΩR ∈ CN×N is a diagonal matrix with

ΩR,kk =
1

T0
Φ

((
−N

2
− 1 + k

)
ω0

)
(54)

and Φ(ω) is the PSD of the noise. Using (51) and (53)

s (τ)
T
R−1s (τ) = (WT (τ)s̃)

H
WΩ−1R W−1WT (τ)s̃

= s̃HT (τ)HΩ−1R T (τ)s̃

= s̃HΩ−1R s̃, (55)

where we used

WH = W−1

TH = T−1. (56)

Therefore,

∂s (τ)
T
R−1s (τ)

∂τ
= 0, (57)

showing that the assumption in (9) is justified. Moreover,
one element of the sampled derivative ∂s(τ)

∂τ is given by

∂s (nTS − τ)

∂τ
=

N
2 −1∑

k=−N
2

−jkω0s̃ke
jkω0(nTS−τ). (58)

Using the modified IDFT matrix (48), the derivative vector

∂s(τ)

∂τ
= WT (τ)Ω0s̃, (59)

with the diagonal matrixΩ0 ∈ CN×N

Ω0,kk = −jω0

(
−N

2
− 1 + k

)
, (60)

allows to write the Fisher information of the time-delay

F (τ) = C
∂s (τ)

T

∂τ
R−1

∂s (τ)

∂τ

= Cs̃HΩH
0 Ω

−1
R Ω0s̃

=
C

T0

N
2 −1∑

k=−N
2

(kω0)2
|S(kω0)|2

Φ(kω0)
= F. (61)

Note that by (61) the Fisher information can be calculated
in the frequency domain by evaluating a finite sum which is



independent of τ . For T0 → ∞, (61) becomes a Riemann
sum and converges to

F̄ =
C

2π

∫ ∞
−∞

ω2|S(ω)|2

Φ(ω)
dω. (62)

The spectrum of the signal is

S(ω) = B(ω)P (ω)H(ω)G(ω) (63)

with P (ω) being the spectrum of the transmit pulse p(t)
and B(ω) being the spectrum of the binary sequence b
which for sufficiently large M is equal to

B(ω) ≈ T0
Tc
. (64)

Therefore the Fisher information (61) can be approximated

F ≈ T0
Tc

C

2π

∫ 2πB

−2πB

ω2|G(ω)|2|P (ω)|2

Φ(ω)
dω. (65)

ANALOG FRONT-END OPTIMIZATION

In the following a GNSS receiver with a 1-bit quantizer is
optimized. Using the expression for the Fisher informa-
tion in the frequency domain (61) and the refined expres-
sion for the noise correlation (73), it is demonstrated that
the analog receiver front-end has an impact on the estima-
tion performance of the time-delay. This is used to find
optimum front-end parameters in order to achieve a perfor-
mance gain in comparison to an unoptimized 1-bit GNSS
receiver.

GNSS system

To visualize the possible performance improvements we
consider a Galileo E1 OS receiver, for which Tc =
977.52 ns (fc = 1

Tc
= 1.023 MHz). The code sequence b

has length M = 4092 and the spectrum of the BOC trans-
mit pulse p(t) is [14]

P (ω) = −j2
sin
(
ω
2fc

)
ω

tan

(
ω

4fc

)
. (66)

Reference systems

For illustration, the 1-bit receiver is compared to a refer-
ence receiver with infinite resolution. For an unquantized,
band-limited signal with one-sided bandwidth B = 2fc
which is sampled at Nyquist rate fs = 4fc, the Fisher in-
formation with respect to τ is

F∞ =
2C

T0N0

N
2 −1∑

k=−N
2

|kω0|2 |S(kω0)|2 . (67)

As an appropriate measure for the performance of a quan-
tized system we employ the ratio of its Fisher information
Fq over the Fisher information F∞ of an ideal system with
infinite resolution

χ =
Fq
F∞

. (68)

For a standard receiver with a 1-bit hard limiting quantizer
and a receive signal with one-sided bandwidth B = 2fc
which is sampled at Nyquist rate fs = 4fc the Fisher infor-
mation with respect to τ is

Fq,ref =
2

π

2C

T0N0

N
2 −1∑

k=−N
2

|kω0|2 |S(kω0)|2 (69)

and therefore the performance loss of this receiver is χref =
Fq,ref
F∞

= 0.636 (−1.96 dB) in comparison to the receiver
with infinite resolution [15].

Receiver with optimized radio front-end

For a receive low-pass filter H(ω) with bandwidth

B = 2fcρ ρ ∈ [0, 1], (70)

sampling rate

fs = 4fcµ µ ≥ 1, (71)

and an arbitrary filter with frequency response G(ω) the
Fisher information is given by

Fq(τ) =
C

T0

N
2 −1∑

k=−N
2

|kω0|2 |S(kω0)|2

Φq(kω0;ν)

=
C

T0

N
2 −1∑

k=−N
2

|kω0|2 |D(kω0)|2 |H(kω0)|2 |G(kω0)|2

Φq(kω0; ρ, µ, g)
,

(72)

where ν = [ρ, µ, g]T is the vector of all parameters in-
fluencing the noise correlation and g is the vector of all
parameters specifying the filter G(ω). The spectrum of the
quantized noise is given by

Φq(ω; ρ, µ, g) =

Ts

n=∞∑
n=−∞

r(0; ρ, µ, g) arcsin

(
r (nTS ; ρ, µ, g)

r(0; ρ, µ, g)

)
e−jωnTs .

(73)

Note, that it is not possible to apply the arcsine law directly
in the frequency domain and therefore Φq(ω; ρ, µ, g) has to
be calculated with the help of a Fourier series (73).
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Fig. 1 Optimization of bandwidth

Bandwidth optimization

Fig. 1 shows the relative Fisher information χ for different
bandwidth factors ρ, a fixed µ = 1 andG(ω) = 1. By using
a filter H(ω) with ρ < 1 the noise of the analog signal
becomes correlated. However, the 1-bit quantizer reduces
this correlation due to the characteristic of the arcsine and
distributes the noise power to higher frequencies which do
not contain information on the transmit signal. For ρ∗ =
0.79 the performance reaches its maximum (−1.7 dB).

Sampling rate optimization

Fig. 2 shows the relative Fisher information χ for different
sampling factors µ under ρ = 1 and ρ∗, while no additional
filter-shaping is applied, i.e. G(ω) = 1. Contrary to the re-
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Fig. 2 Oversampling

ceiver with infinite resolution, oversampling increases the
estimation performance for quantized signals, as the noise
power can spread into higher frequencies which contain

no signal information. For oversampling the performance
increases significantly by doubling the sampling rate to
µ = 2. Increasing the sampling rate further just gives
marginal additional improvements. For µ → ∞ the pos-
sible gain is approximately 1 dB. While increasing µ the
optimum bandwidth factor approaches ρ∗ = 1 and an opti-
mization of the filter H(ω) becomes less important.

High-pass filter optimization

For µ = 1, Fig. 3 shows the relative Fisher information χ
for a concatenation of H(ω) with an additional first-order
high-pass filter G(ω) with frequency response

G(ω) =
jω
α

1 + jω
α

, (74)

for different α and a fixed bandwidth factor ρ and ρ∗ =
0.79. Apparently, there is an optimum α∗ ≈ 0.5 · 2πfc.
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Fig. 3 Optimization of a high-pass filter

For α∗ and ρ∗ the possible gain in comparison to the un-
optimized 1-bit GNSS receive system is close to 0.5 dB.
The high-pass filter suppresses the center part of the signal
spectrum, where also the spectrum of the BOC signal has
a minimum and therefore has less impact on the estima-
tion accuracy. Through 1-bit quantization the noise power
spreads also into these free low frequencies.

ML RECEIVER

The previous results show that it is possible to improve the
Fisher information with respect to a time-delay parameter
and therefore to reduce the estimation error. By simula-
tions of the MLE (9) it is verified that the optimization
of the front-end based on a theoretic information measure
also leads to an improvement for 1-bit GNSS systems that
can be realized in practice. The root-mean-square error



(RMSE) of the estimator in meter

RMSE(τ)=̂
√

E [(τ̂ − τ)2] · vp, (75)

where vp is the propagation velocity, is used as a figure-
of-merit. The RMSE corresponds to the standard deviation√

var(τ̂) which was bounded through the CRLB. Simula-
tions are carried out for the Galileo satellite number 3 and
a fixed time-delay of τ = 49 ns, while coherent signal re-
ception is assumed. In Fig. 4 the CRLB and the RMSE for
the two reference systems are shown. For C/N0 between
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Fig. 4 RMSE(τ) for the reference receiver

50dB − Hz and 54dB − Hz the MLE achieves the lower
bound. Therefore simulations are carried out in this range.
In Fig. 5 CRLB and RMSE are shown for ρ∗ = 0.79 as
well as for oversampling with µ = 2. It can be seen that
the gain of−0.26 dB and−0.77 dB, respectively, is achiev-
able also for a real estimator.
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Fig. 5 RMSE(τ) for the optimized receivers (1-bit)

CONCLUSION

Coarse quantization is advantageous for the analog-to-
digital conversion and signal processing complexity. Here
it was shown that it is possible to significantly reduce the
well known 2

π (−1.96 dB) loss due to 1-bit quantization.
Using the fact that this performance loss is not valid in the
low SNR regime if noise correlation is present, an analog
GNSS receiver front-end can be designed with respect to
the Fisher information in order to attain a significant per-
formance gain. Note, that this gain is achievable without
any additional effort, once the optimum analog filter pa-
rameters are determined.
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