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Abstract: In this paper, the need for a tool for early design stages is discussed. A tool to 
satisfy this need, the Sustainable Office Designer (SOD) is presented. The functionality 
and implementation of this tool is discussed in detail. Afterwards, the output by the tool is 
presented. At the end, a small example under the use of the tool is shown and compared 
with a calculation without the use of the tool. Finally, a conclusion and outlook for 
further development is given. 

1 Introduction 
In the field of Building Information Modeling, it is becoming increasingly important to 
support the design team of a building project in the early design stages by providing 
information about the impact of decisions they make and the possibility to compare them. 
While there are many fully developed software tools for later design stages, the early design 
of the form and functionality of buildings and their structural design is supported 
insufficiently. But this is essential, because conceptual changes in this project phase have a 
major influence on later costs of the construction, facility management and deconstruction of 
the building. 

“Until now, concept design has been a largely mental exercise of generating various spatial 
concepts and assessing them intuitively, based on the designer’s knowledge and accumulated 
expertise. Reliance on such expertise is perhaps one reason why architectural success has 
traditionally come only to those with decades of experience who are able to bring to bear the 
wisdom required to assess and select design concepts worthy of being fully developed.” 
(Eastman 2009). 

The reason why most design decisions are made intuitively, without actual performance 
prediction with respect to a variety of performance aspects, such as lighting, energy, comfort, 
etc., is that most performance simulation tools have steep learning curves (Reichard et al. 
2005). Therefore we have decided to develop a software tool which compares different typical 
steel and steel composite constructions for office and administrative buildings and to evaluate 
them regarding sustainability, flexibility, costs and energy consumption. With this, designers 
can be aware of the estimated performance of their creations and different structure variants 
generated out of them. Therefore, the effect of the modifications can be understood better. 
The procedure is divided into stages, i.e. architecture-structure design iterations. 

2 Architectural aspects for the workflow of the tool 

To develop a tool like this, it is in a first step important to understand the workflow of the 
future user. It has to fit in his workflow as well as support the known way of decision making 
without making constraints to his creativity. It has to be easy to use and to receive. 



In a further step, it has to support the architect with common design knowledge. This is 
implemented in the tool on the one hand with rules from national standards, like minimum 
room heights, and on the other hand with design rules defined by architects supporting us (in 
name: Frank Lang and Jo Eisele from TU Darmstadt). This design rules include decisions 
about the construction height for a defined flexibility in the building and consumptions about 
how to categorize the different parts of a building in different office types and split the 
geometry in different bars for a better optimization (see Eisele 2011). 

3 Implementation in SketchUp 

In a first step a Graphical User Interface (GUI) is needed that helps the designer to draw his 
ideas in a simple way for the first iteration. To this end, a tool based on Google SketchUp is 
implemented named Sustainable Office Designer (SOD). SketchUp fulfills the criteria 
described above. It is an intuitive usable program which everybody can use, because it is 
freeware. Furthermore, it is already a common tool used by architects. 

On the other hand it is a handsome tool for developing own functionalities. It is based on the 
programming language Ruby, which is a powerful object oriented language. With Ruby it is 
not only possible to create new Plug-Ins for SketchUp but also enhancing the implemented 
classes directly or as derived subclasses. 

  

  

Figure 1: The workflow within the tool: The architect can draw a footprint and define 
the project requirements in a first step (upper left). In a second step the tool will do a 

first calculation and view the resulting geometry (upper right). In further steps, the 
architect can modify the volume with passages and entrances (lower left) and vertical 

circulation zones (lower right). 

This is necessary, because SketchUp only provides geometric modeling. There are no features 
which help to make decisions based on engineering knowledge. It is not even possible to 
define a face as a slab or wall. But this information is needed to start a structural optimization 
of a building. 



With this, the values needed for the optimization can be created by the input in the tool and 
the implemented design rules given by the architects in the project. This input serves as a 
basis for the structural optimization tool. 

4 Programming the optimization tool 
In the system a Genetic Algorithm (GA) is used to obtain an optimized solution automatically 
by searching for the best fitting structural system based on pre-defined parametric structures 
and design rules. With this, the different variants can be generated and compared efficiently. 
The result depends on the fitness function previously defined by the user. With the help of 
this fitness function it can be specified how the criteria costs, energy consumption, 
sustainability and flexibility are considered in the evaluation. A usable balance between these 
different criteria has to be found, because real life structures cannot fulfill all the best at once. 

4.1 Genetic Algorithms 

A Genetic Algorithm (GA) is based on the principles of inheritance and therefore belongs to 
the evolutionary algorithms (Eiben et al. 2007). The idea behind this is, to code certain 
characteristics for different options as gen and to store the information there. Subsequently, 
the different chromosomes, i.e. strings of genes, are created and compared to each other. The 
selection is done by a previously defined terminating function, also called fitness-function in 
accordance to the evolutionary theory. Further modifications to the selected individuals can 
be done by so called crossings or mutations. From these newly created individuals, again a 
selection is done. This happens until a defined termination criterion is fulfilled (see Mensinger 
et al. 2012). 

 

Figure 2: The basic idea behind genetic algorithms: Based on different characteristics 
(genes) the best fitting combination for an environment are searched. Here as an 

example: Darwinfinches in different forms and therefore adopted to different 
conditions. 

Solving optimization problems normally involves discontinuous objective functions because 
of using simulation tools or engineering design rules. Thus, for such problems stochastic 
optimization algorithms are often chosen. Among many different kinds of stochastic 
optimization algorithms, the benefit from the GA and the reason GA is chosen, is that it is 
easy to implement, the optimized individuals are found very quickly, a bunch of optimized 
solutions at one time is available, and it is widely used for conceptual/early design phase (see 
Rafiq et al. 2003, Grierson & Khajehpour 2002 and Turrin et al. 2011). 

For the implementation, an open source C++ library, GAlib, developed by Matthew Wall at 
MIT (Wall. 1996), is used. The genes representing the parameters are encoded as integer 



numbers in an array using GA1DArrayGenome from the GAlib library. For the evaluation of 
the fitness value, a penalty term indicating the violation of design constrains was added, e.g. 
deflection constraints and stress constraints, while it is weighted large enough to make sure 
infeasible solutions die out. The design constraints are defined according to Eurocode 4 
(2004) and other engineering design rules. 

5 Connecting the two tools 
To connect the office structure generator (OSG) programed in C++ to the SketchUp plugin, 
SOD programmed in ruby, SWIG is used, which generates a wrapper for ruby to use a C++ 
library as a ruby extension. With the help of SWIG, the office structure generator can be 
compiled into a .dll library that can be loaded in a ruby script as an extension. At this stage of 
implementation, the information of the architectural design model is passed from the SOD to 
the OSG as a set of parameters, e.g. the value for the dimensions of the footprint, room height, 
number of stories, etc. Thus, the OSG can be called within the SOD to get the optimized 
structure automatically generated for the architect. Since the version of ruby used in SketchUp 
API is 1.8.x, which doesn’t support native multithreading and this leads to a problem that 
calling OSG freezes the main GUI, a new thread in the OSG in the C++ side to run the 
optimization is created. This approach solves the half of the problem that helps us avoiding 
frozen the GUI.  

 

Figure 3: Structure of the Tool. 

The other half is to obtain the result, i.e. the generated structure design, from the ruby side in 
the SOD. It is not easy to directly return the model back to the SOD, since it is in another 
thread created at the C++ side. So it was decided to output the result from the OSG to a log 
file and let the SOD check in each 0.1 second interval this file and read the parameters until 
the optimization finishes. 

6 Output by the SOD 

Another important aspect to develop an intuitive tool which supports the design process is to 
visualize the results from the optimization in a clear and easy understandable way. To provide 
this, it was decided not to show the structural model in all its details. The architect can choose 
a volumetric view, where he can easily understand the appearance of the building. The other 
view he can chose shows the structural grid and the construction heights of the slabs, to 
understand the structure without distracting from the overall design process. The structural 
grid is needed to do a proper design of the spaces inside the building but to do so the exact 
structure is not necessary and may only be confusing. 



  

Figure 4: Visualization of the geometry as volumetric model (left) and as structural 
grid-model (right). 

To support decision-making, it is necessary not only to provide a means for performance 
prediction but for performance evaluation as well. This means, comparison among 
alternatives is required (Papamichael et al. 1999). So another important feature of a tool for 
early design stages is to make the impact of the decisions made visible. Therefore, the 
architect can open a wind rose to see the impacts of his design and even compare it to other 
geometries or construction types (see Figure 5). The wind rose can be used for a “question 
and answer” concept as well, because it displays the new calculated values after each change 
of the geometry, so the architect can see the impact of his changes immediately. 

 

Figure 5: Visualization of the calculated values from the design tool to view the impact 
of the design or to compare two different designs or construction types. 

The information to calculate this output comes from the members of the P881 NASTA Project 
(see Mensinger et al. 2011). Here it is to mention, that the tool only provides single object 
optimization. That means, only one of the visualized values is optimized. The other values 
result from this optimization e.g. the structure is optimized in regard of the costs and then the 
Global Warming Potential, Flexibility, etc. are calculated for this structure, without being 
optimized. 

7 Example 

GA is a heuristic algorithm which provides good solutions, but does not guarantee to find the 
best ones. Figure 7 shows the parametric structural model tested. The green elements are 
primary beams, which in this case are in longitudinal direction, can also be placed in 



transverse direction. The red ones are secondary beams. The profiles for primary and 
secondary beams can be chosen from 71 available profiles: IPE 140 to 600 (15 profiles), HEA 
100 to 600 (19 profiles), HEB 100 to 600 (19 profiles) and HEM 100 to 550 (18 profiles). All 
primary beams are of one profile, while all secondary beams are of another profile. Columns 
are separated into two groups, columns located at the inner row and columns located at the 
boundary. One profile is chosen for either group. IPE’s are not used for columns. Fitness 
function is set to minimize Carbon dioxide equivalent (CDE). The building has three stories. 
For every story different columns are used. 
 

Figure 6: The parametric structural model of a rectangular floor.  

We tested different combination of population size and generation size and compared the 
execution time and minimized fitness (see Table 1). The tests are running on Dell Precision 
M4500 with 8GB DDR3 and i7-840QM(1.86GHz,8MB,Quad Core,45W). 

Table 1: Execution Comparison 

p1 g avg. time (from 5 runs) avg. fitness (from 5 runs) 
800 1200 5.5 sec 66660 
800 2000 8.9 sec 65460 
1200 2400 18.4 sec 64400 
2000 4000 66.2 sec 62764 
1Population Size, 2Generation Size 

 
We also asked a structure engineer to propose a solution (see Figure 7) and compared it with 
two of the solutions obtained by the OSG (see Table 2). In Table 2 “System A/B” indicates 
the direction of the primary beam, while in system A the primary beam is in longitudinal 
direction. For the solution given by the engineer, more profiles are used for one solution. 

 

Figure 7: A structure design made by an engineer. IPE 240, IPE 270 and IPE 330 are 
European steel sections, while S355 and S235 are steel grades.  
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It has to be mentioned that beside of the comparison of the structure, there are other values 
not shown in the table. On the one hand it is the time to get these results. The Engineer 
needed half a day for this calculation. He also calculated this structure for a fixed position of 
columns and beams and a single system. Therefore he needs a long experience in this field to 
make the right decisions. Otherwise, he has to compare it with other systems, which need 
another half a day to be calculated. On the other hand, there is no further information about 
the Carbon Footprint, energy consumptions, costs, etc. of the system. To provide this, further 
calculations of other experts are required. 

Table 2: Structure Solutions Comparison 

 

Geometry 

Slab Secondary 
Beams 

Primary 
Beams Columns3 

Fitness 

(CDE) 
Position 

of 
Columns 

Number 
of 

Columns 
System  

Number 
of Sec. 
Beams 

p1 :8
00

  g
2 :1

20
0 

4.8m 5 B 5 (Cofrasta, 
120mm) 

(IPE330, 
S355) 

(IPE450, 
S355) 

(HEA200,S235) 
(HEA120,S235) 

(HEA240,S460) 
(HEB120,S355) 

(HEA240,S460) 
(HEA160,S460) 

66123 

p:
20

00
 g

:4
0l

00
 

4.8m 5 A 9 (Cofrasta, 
120mm) 

(IPE330, 
S355) 

(IPE300, 
S460) 

(HEB120,S460) 
(HEB120,S460) 

(HEA200,S460) 
(HEA140,S355) 

(HEA260,S460) 
(HEA160,S460) 

61736 

E
ng

in
ee

r 

4.8m 5 A 12 (Cofrasta, 
140mm) 

(IPE200, 
S235) 

(IPE240, 
S355) 

(IPE240,S355) 
(IPE330,S355) 
(IPE270,S355) 

(HEA140,S355) 
(HEA120,S355) 
(HEA120,S355) 

(HEA200,S355) 
(HEA160,S355) 
(HEA160,S355) 

(HEA240,S355) 
(HEA180,S355) 
(HEA180,S355) 

71831 

  1Population Size, 2Generation Size, 3Column profiles vary for different stories and between the inner row and the outer. 

8 Conclusion and Outlook 

With the use of the SOD, the architect can easily design his ideas and get further information 
about the decisions he makes. He can rely on information from other experts in the field of 
engineering implemented in the tool. With the decision to use SketchUp as a basis, it is 
possible to provide this tool for free after completion. In further steps the possibility to do 
further iterations will be provided as well. The user will get the possibility to refine the 



constraints and define column-free spaces, for example. Based on these new constraints, the 
program generates new suggestions. With each iterative step, different variants of the 
structure can be created and compared afterwards. On the side of the GA, the single criteria 
optimization will be expanded, so that the optimization addresses more than one object. So 
multi criteria optimization will be implemented. In the future, other systems e.g. wooden or 
concrete structures can easily be implemented in the tool. In this project, only steel structures 
are considered. 
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