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Abstract—For the vector broadcast channel (BC), the case
of erroneous channel state information (CSI) at the receiver is
considered. Employing a well established lower bound for the
mutual information with Gaussian signaling, a rate balancing
problem is formulated where the rates of the different users are
maximized under a transmit power constraint, but the rates of
the different users have fixed ratios. A duality w.r.t. the signal-
to-interference-and-noise ratio (SINR) between the vector BC
with erroneous receiver CSI and an appropriately constructed
vector multiple access channel (MAC) is established. Based on
the observation that an interference function can be defined in the
dual vector MAC that is standard, an iterative algorithm can be
found for an appropriately formulated quality-of-service (QoS)
optimization that is used for solving the balancing problem.

I. INTRODUCTION

For the case of perfect CSI, the vector BC is well researched

and understood. Based on the SINR duality of [1], the sum

capacity based on dirty paper coding (DPC, [2]) could be

identified. Additionally, the optimality of DPC to reach the

whole capacity region was shown in [3]. The rate balancing

problem for the vector BC with error-free CSI was investigated

in [4]. In [5], a QoS formulation with DPC was considered

where the transmit power is minimized under constraints for

the minimum SINRs of the different users. The QoS problem

with linear precoding was solved in [6]. Additionally, an

algorithm to obtain the solution for the balancing of the SINRs

under a transmit power constraint was proposed in [6]. In [7],

the framework of interference functions from [8] was applied

to solve the QoS problem with linear precoding.

In contrast, the case of erroneous CSI at the receiver side is

considered in this paper where we concentrate on the design

of linear precoding in this scenario. The CSI is obtained via

a training channel and the channel estimate is fed back from

the receivers to the transmitter. However, we do not explicitly

formulate the estimation step. Instead, we use a general CSI

error model with the assumption that the estimation error is

independent of the estimate, that holds for minimum mean

square error estimation of Gaussian channels for example.

The theoretical basis of this paper is the lower bound for the

mutual information introduced in [9] for single-input single-

output (SISO) channels with erroneous receiver CSI. In [10],

[11], this bound has been generalized to the multiple-input

multiple-output (MIMO) case. The main conclusion from this

lower bound is that the CSI errors lead to additional noise

terms which depend on the statistical properties of the channel

estimation errors and, interestingly, on the beamformers used

for data transmission. Due to these properties, the application

of existing schemes developed for the case of error-free CSI

is not straightforward.

Our contributions are as follows. First, we construct a vector

MAC that is dual to the considered vector BC in the sense

that values for the mutual information lower bound can be

achieved in the BC iff they are achievable in the dual MAC.

Thus, the BC problems can be solved equivalently in the

dual MAC. Second, we construct an interference function in

the dual MAC whose entries constitute the SINRs which are

connected to the mutual information lower bounds via a one-

to-one map. As it can be shown that the interference function

is standard, the framework of [8], [7] can also be applied

to the case of imperfect CSI at the receivers. Third, the rate

balancing problem, i.e., the ratios of the mutual information

lower bounds and the rate targets of the different users are

maximized and set to the same value using the given transmit

power, is solved for the case of imperfect CSI at the receivers.

II. SYSTEM MODEL & ASSUMPTIONS

We consider the transmission over a vector BC with N
transmit antennas and K single-antenna receivers. The data

signal sk ∼ NC(0, 1) for user k is linearly precoded with

the beamformer tk ∈ CN . The resulting transmitted signal

x =
∑K

k=1 tksk ∈ CN propagates over the vector channel

hH
k ∈ C1×N and is perturbed by the noise nk ∼ NC(0, σ

2
k).

Therefore, the received signal of user k reads as

yk = hH
k

K
∑

i=1

tisi + nk.

We do not make the standard assumption that the channel

state hk, k = 1, . . . ,K, is available error-free. Instead, the k-

th receiver estimates hk, e.g., via a common pilot channel,

and feeds back the estimate to the transmitter. For decoding,

the knowledge of hH
k tk is necessary at the k-th receiver, that

can be obtained with a dedicated pilot channel for example.

Nevertheless, we assume that the knowledge about both, hk

and hH
k tk , is erroneous at the receiver.

After the feedback, the transmitter has obtained the quan-

tized channel estimates ĥk, k = 1, . . . ,K . Additionally, we



assume that the transmitter knows the covariance matrix

Ch̃k
= E[h̃kh̃

H
k ] of the zero-mean CSI error h̃k = hk − ĥk.

Since we assume that the channel estimates ĥk are instantly

available at the transmitter, the beamforming vectors tk can

be designed as functions of the matrix Ĥ ,
[

ĥ1, . . . , ĥK

]

.

Similarly, T = [t1, . . . , tK ] denotes the precoding matrix, i.e.,

the collection of beamforming vectors tk, k = 1, . . . ,K .

III. MUTUAL INFORMATION LOWER BOUND

The optimal signaling for the case of erroneous CSI at

the receiver is unknown even for the SISO case [9]. Addi-

tionally, the standard expression for the mutual information

for the Gaussian vector BC with Gaussian signaling, e.g.,

E[log2(1+SINRk)] for user k, is not applicable for erroneous

receiver CSI. Thus, we have to resort to a lower bound that is

valid for Gaussian signaling (e.g., [10], [11], [12])

I(sk; yk) = h(sk)− h(sk|yk)
≥ E

[

log2

(

1 + σ−2
eff,k

∣

∣ĥH
k tk
∣

∣

2
)]

, E
[

IBC
k

] (1)

with the variance σ2
eff,k of the effective noise neff received by

user k, neff = nk+
∑K

i=1 h̃
H
k tisi+

∑K

i=1,i6=k ĥ
H
k tisi, viz., the

signal portions in the received signal yk that are either due to

noise, interference, or channel estimation errors. The variance

of the effective noise can be written as

σ2
eff,k = σ2

k +
K
∑

i=1

tHi Ch̃k
ti +

K
∑

i=1,i6=k

∣

∣ĥH
k ti
∣

∣

2
.

The bound (1) is found by assuming that sk ∼ NC(0, 1),
bounding h(sk|yk) with E[log2(π e E[|sk − E[sk|yk]|2|yk])],
replacing E[sk|yk] by the linear minimum mean square er-

ror estimate E[sky
∗
k](E[|yk|2])−1yk, and applying Jensen’s

inequality.

Note that the effective noise neff of user k, and thus σ2
eff,k,

depends on the respective beamformer tk. With the definition

of the “signal-to-interference-and-noise ratio”

SINRBC
k = σ−2

eff,k

∣

∣ĥH
k tk
∣

∣

2
(2)

the lower bound is expressible in the usual form, i.e., IBC
k =

log2(1 + SINRBC
k ) and I(sk; yk) ≥ E[log2(1 + SINRBC

k )]. In

this paper, we use IBC
k as the figure of merit for user k.

IV. MUTUAL INFORMATION UPPER BOUND

Following a similar procedure as in [13] to obtain an upper

bound I(sk; yk) ≤ E
[

I
BC

k

]

, we expand the mutual information

into the difference of entropies

I(sk; yk) = h(yk)− h(yk|sk)
≤ log2(π eσ2

yk
)− h(yk|s1, . . . , sK) , E

[

I
BC

k

]

.

The inequality results on one hand from upper bounding h(yk)
by the differential entropy of a Gaussian variable with the same

variance σ2
yk

= E[|yk|2], and on the other hand, by lower

bounding h(yk|sk) through additional conditioning. In fact,

when conditioned on s1, . . . , sK , the variable yk is Gaussian,

whereby we obtain an analytic upper bound I
BC

k . After some

algebra, we find

I
BC

k = IBC
k +∆BC

k . (3)

If the h̃k are Gaussian, the non-negative bound difference ∆BC
k

is given by

∆BC
k = E log2

σ2
k +

∑K

i=1 t
H
i Ch̃k

ti +
∑K

i6=k

∣

∣ĥH
k ti
∣

∣

2

σ2
k +

∑K

i=1 t
H
i Ch̃k

ti|si|2
, (4)

where the expectation is over all inputs si, ∀i. Using methods

similar to [14], one can show that

∆BC
k ≤

1

ln(2)
· θ
(

1 +

∑K

i6=k

∣

∣ĥH
k ti
∣

∣

2

∑K

i=1 t
H
i Ch̃k

tHi

,

∑K

i=1 t
H
i Ch̃k

tHi

σ2
k

)

where θ(x, y) = ln(1+ xy)− e
1

y E1

(

1
y

)

, with the exponential

integral E1(z) =
∫∞

z
t−1 e−t dt. It is shown in [14] that

θ(x, y) < γ + ln(x) with the Euler-Mascheroni constant

γ ≈ 0.577. Note in particular that when only user k is active,

i.e., ti = 0, ∀i 6= k, we have the single-user bound ∆
BC

k,su < γ.

V. PROBLEM FORMULATION

We consider the balancing optimization which is well es-

tablished for the case of error-free CSI and transpose it to

the case of erroneous CSI. The average rates relative to the

quality-of-service (QoS) requirements, expressed as minimum

rates τ̄k, k = 1, . . . ,K , are balanced under an average transmit

power constraint, i.e.,

max
β,Ĥ 7→T (Ĥ)

β s.t.: E
[

IBC
k

]

≥ βτ̄k, ∀k

E
[

‖T (Ĥ)‖2F
]

≤ P̄tx

(5)

where ‖T (Ĥ)‖2F =
∑K

k=1 ‖tk(Ĥ)‖22 denotes the squared

Frobenius norm of the precoding matrix T , and thus, the

average total transmit power is E[‖T (Ĥ)‖2F]. Problem (5)

belongs to the class of variational optimization problems,

where the optimum is taken over a family of CN×K → CN×K

functions that map the current CSI Ĥ to the precoding matrix

T . It turns out that (5) can be equivalently formulated as

max
Ĥ 7→Ptx(Ĥ),Ĥ 7→τ(Ĥ)

E
[

β⋆(Ptx(Ĥ), τ (Ĥ))
]

(6)

s.t.: E
[

Ptx(Ĥ)
]

≤ P̄tx, E
[

β⋆τk(Ĥ)
]

≥ E
[

β⋆]τ̄k, ∀k

with β⋆ = β⋆(Ptx(Ĥ), τ (Ĥ)) in the last constraint, and

β⋆(Ptx, τ ) = max
β,{t1,...,tK}

β s.t.:

K
∑

k=1

‖tk‖22 ≤ Ptx

IBC
k ≥ βτk, ∀k.

(7)

In (5) and (6), an average transmit power constraint is imposed.

However, if the system doesn’t allow an instantaneous power

above P̄tx, it is necessary to change the transmit power

constraint to ‖T (Ĥ)‖2F ≤ P̄tx in (5) and to set Ptx(Ĥ) = P̄tx

in (6). Since the variational problems arising in (5) and (6)

appear to be difficult, we avoid finding the solution to the



full problem (5). Instead, in the nested two-stage formulation

(6)–(7), we will only solve optimally the inner problem (7)

and choose heuristics for the variational outer part (6). For

example, the instantaneous rate targets may be chosen to be

constant, i.e., τ (Ĥ) = τ̄ . Hence, we will concentrate on (7)

in the following. However, note that, even in the case of an

instantaneous power constraint, i.e., Ptx = P̄tx, and where all

τk = τ̄k, ∀k are chosen to be constant, IBC
k still depends on

Ĥ and, thus, also the maximum balancing factor β⋆(P̄tx, τ̄ )
found via (7). The resulting optimum of (5) is E[β⋆(P̄tx, τ̄ )].

Note that the constraints in (7) are active in the optimum

due to the monotonicity properties of SINRBC
k that is, SINRBC

k

increases with ‖tk‖22 but decreases with ‖ti‖22, i 6= k [see (2)].

Therefore, the transmit power is Ptx in the optimum and the

resulting rates are balanced, i.e., the rate of user k is β⋆τk.

We can conclude that the appropriate value for the balancing

factor β must be found and the resulting non-linear equation

system evolving from the constraints must be solved to obtain

the solution to (7). As will be described in Section VIII, the

following QoS formulation is useful for solving this equation

system. Given QoS requirements, expressed as minimum rates

τk, k = 1, . . . ,K , shall be fulfilled using minimum resources,

expressed as total transmit power ‖T ‖2F, i.e.,

P ⋆(τ ) , argmin ‖T ‖2F s.t.: IBC
k ≥ τk, ∀k. (8)

Note that IBC
k = τk, ∀k in the optimum of (8) due to the

monotonicity properties of SINRBC
k . As has already been

discussed in [6], [15], (8) and (7) are inverse problems. It

holds that [15]

P ⋆(β⋆(Ptx, τ )τ1, . . . , β
⋆(Ptx, τ )τK) = Ptx. (9)

In other words, the optimal precoders for (8) coincide with

those of (7) if the appropriate β⋆ is known. This connection

of (8) and (7) will be exploited in Section VIII. For example,

(7) could be solved via a bisection where β is ajusted such

that P ⋆(βτ1, . . . , βτK) is equal to Ptx since β⋆(Ptx) is mono-

tonically increasing in Ptx (e.g., [15]). However, the difficulty

of such a bisection procedure is that (8) might be infeasible

contrary to (7). In [16], a simple feasibility test was proposed

for the case of error-free CSI, i.e., Ch̃k
= 0, ∀k.

Additionally note that (8) can equivalently be formulated

as a power minimization with minimum SINR requirements

γk = 2τk − 1, ∀k, since a bijective map connects the mutual

information lower bound IBC
k and SINRBC

k .

VI. SINR DUALITY FOR ERRONEOUS RECEIVER CSI

In the following, an SINR duality between the vector BC

with erroneous receiver CSI and an appropriately constructed

vector MAC is presented. This SINR duality is a generalization

of that proposed in [17] since the channels, and therefore the

respective estimation errors, need not have the same covariance

matrix.

Let the channels of the dual vector MAC be defined as

bk = σ−1
k hk ∈ CN . Accordingly, the estimates and the errors

are b̂k = σ−1
k ĥk and b̃k = σ−1

k h̃k, respectively. With the

noise η ∼ NC(0, I), the received signal in the dual vector

MAC is

r =

K
∑

k=1

bk
√
pkξk + η ∈ C

N .

Here, ξk ∼ NC(0, 1) denotes the data signal for user k and

pk ∈ R+ is the power of the k-th user in the MAC. To be able

to find a connection to the original vector BC, the receiver

applies the equalizer fk ∈ CN to the received signal r to

get the data signal estimate ξ̂k = fH
k r. Also for the dual

MAC, a lower bound for the mutual information of user k
with Gaussian signaling can be found. With

SINRMAC
k =

∣

∣fH
k b̂k

∣

∣

2
pk

‖fk‖22 +
∑

i f
H
k Cb̃i

fkpi +
∑

i6=k

∣

∣fH
k b̂i

∣

∣

2
pi
(10)

this lower bound is IMAC
k = log2(1+SINRMAC

k ). In the follow-

ing, we will show that there exists a one-to-one relationship

between SINRBC
k and SINRMAC

k .

Assume that some SINRs are achievable in the vector MAC.

If we set

tk = αkfk ∀k. (11)

we get from SINRBC
k = SINRMAC

k [see (2) and (10)] that
(

‖fk‖22 +
∑

i

fH
k Cb̃i

fkpi +
∑

i6=k

∣

∣fH
k b̂i

∣

∣

2
pi

)

α2
k =

= pk +
∑

i

fH
i Cb̃k

fipkα
2
i +

∑

i6=k

∣

∣b̂Hk fi

∣

∣

2
pkα

2
i

for k ∈ {1, . . . ,K}. The K scalar equations can be comprised

in

Φa = p (12)

where a = [α2
1, . . . , α

2
K ]T and p = [p1, . . . , pK ]T with a,p ∈

RK
+ . Since

[Φ]k,ℓ =







‖fk‖22 +
∑

i6=k

fH
k Cb̃i

fkpi +
∑

i6=k

∣

∣fH
k b̂i

∣

∣

2
pi ℓ = k

−fH
ℓ Cb̃k

fℓpk −
∣

∣b̂Hk fℓ

∣

∣

2
pk else

the matrix Φ is column-wise diagonally dominant with pos-

itive diagonal entries and non-positive off-diagonal elements.

Therefore, Φ−1 exists and has non-negative entries. The re-

sulting solution a = Φ−1p is non-negative, i.e., all α2
k’s are

non-negative. In other words, any SINRs achievable in the

dual MAC are also achievable in the original BC. From the

multiplication of (12) with the all-ones vector, i.e.,

1
TΦa = [‖f1‖22, . . . , ‖fK‖22]a = 1

Tp =

K
∑

k=1

pk

we infer that, based on (11), SINRBC
k = SINRMAC

k for k =
1, . . . ,K, is always possible using the same transmit power
∑

k ‖tk‖22 in the BC as in the dual MAC.

Starting from given beamformers tk in the BC and using

fk = tk, ∀k, it can be shown with similar steps as above

that SINRMAC
k = SINRBC

k can be accomplished for all k ∈
{1, . . . ,K} by an appropriate choice for the MAC powers pk.



The resulting power allocation p1, . . . , pK always exists and

is non-positive. Moreover,
∑

k pk =
∑

k ‖tk‖22 holds. This

proves also the converse of following theorem.

Theorem 1. Any SINRs (2) are achievable in the vector

BC with erroneous CSI at the transmitter and the receivers

using some total transmit power, iff the same SINRs (10) are

achievable in the dual vector MAC with erroneous CSI at

the transmitters and the receiver employing the same total

transmit power.

Due to Theorem 1, we will formulate and solve the problems

in the dual vector MAC in the following. The BC solution can

then be obtained with (11) and (12).

VII. INTERFERENCE FUNCTION FOR ERRONEOUS

RECEIVER CSI

Whereas an SINR based formulation is essentially a pre-

coder design in the BC, in the dual MAC it reformulates

to a joint optimization of the transmit power allocation

p = [p1, . . . , pK ]T and the adaptive receive strategies fk,

k ∈ {1, . . . ,K}. For the joint power allocation and equalizer

design in the dual MAC based on the individual SINRs, a

generic framework with general interference functions of [8],

[7], [18] can be applied. To this end, let us define the effective

interference of user k

Zk(p,fk) =
‖fk‖22 +

∑

i f
H
k Cb̃i

fkpi +
∑

i6=k

∣

∣fH
k b̂i

∣

∣

2
pi

∣

∣fH
k b̂k

∣

∣

2

such that SINRMAC
k = pk/Zk(p,fk) [cf. (10)]. As can be

easily shown, the interference function

Z(p,F ) = [Z1(p,f1), . . . ,ZK(p,fK)]T (13)

is standard (see [8]) for fixed equalizers F = [f1, . . . ,fK ] (see

[7]), i.e., it satisfies the following three axioms for p ≥ p′ ≥ 0

and µ > 1:

A1. Positivity: Z(p,F ) > 0

A2. Monotonicity: Z(p,F ) ≥ Z(p′,F )

A3. Scalability: µZ(p,F ) > Z(µp,F ).

As has already been demonstrated in [8], choosing the opti-

mum equalizer also leads to a standard interference function,

that is,

I(p) = [minf1
Z1(p,f1), . . . ,minfK

ZK(p,fK)]T (14)

is standard. This observation led to the algorithmic solutions

in [7]. Note that the optimizer for the k-th element in (14) can

be written as

fopt,k(p) = αk

(

I+
∑

i
Cb̃i

pi +
∑

i6=k
b̂ib̂

H
i pi

)−1

b̂k.

The choice for αk ∈ C \ {0} is arbitrary. Therefore, we can

set αk = 1 for all k ∈ {1, . . . ,K}.

Algorithm 1 Rate Balancing

Require: p(0) > 0 with 1
Tp(0) = Ptx, n = 0

1: repeat

2: n← n+ 1 increase iteration counter

3: β(n) = max{β ∈ R : p(n−1) ≥ diag(γ(β))I(p(n−1))}
increase balancing factor

4: p̃ = diag(γ(β(n)))I(p(n−1)) fixed point step

5: p(n) = Ptx

1Tp̃
p̃ use full power

6: until ‖p(n) − p(n−1)‖1 ≤ ǫ

VIII. ALGORITHMIC SOLUTION

Based on the duality of Section VI, the balancing formula-

tion (7) can be equivalently formulated in the dual MAC

max
β,p≥0

β s.t.: 1
Tp ≤ Ptx

p ≥ diag(γ(β))I(p)
(15)

with the interference function I(p) introduced in (14) and

γ(β) = [2βτ1 − 1, . . . , 2βτK − 1]T. Note that the rates are

balanced in (15). Hence, the algorithmic solution for SINR

balancing from [6], [7] is not applicable.

As has already been mentioned in Section V, (15) can be

solved with the help of the QoS optimization (8) that leads to

min
p≥0

1
Tp s.t.: p ≥ diag(γ(β))I(p) (16)

in the dual MAC. For example, based on the observation (9), a

bisection may be performed on β. The bisection is converged

when (16) has the given transmit power Ptx as its optimum.

Instead, we focus on (iterative) approaches for directly solv-

ing (15). To this end, we remark that all balancing constraints

and the power constraint are jointly active in the optimal point

(β⋆,p⋆), i.e.,

1
Tp⋆ = Ptx and (17a)

p⋆ = diag(γ(β⋆))I(p⋆). (17b)

Due to the monotonicity property of I(p) together with the

scalability property (cf. Axioms A2 and A3, respectively), the

(vector) constraint in (16) is always active. Moreover, since

(16) and (15) are inverse problems, this is also true for the

rate balancing problem, which results in (17a) and (17b).

Unfortunately, there exist no closed-form expressions for

the tuples (β,p) jointly satisfying (17a) and (17b). However,

the naturally arising fixed point iteration

p(n) = diag(γ(β))I(p(n−1)) (18)

was proven in [8] to globally converge to the unique fixed

point. Existence of such a fixed point is ensured for any

β > 0 with p(n−1) ≥ diag(γ(β))I(p(n−1)). Then, the

sequence {p(n)} is monotonically decreasing. This motivates

the procedure given in Algorithm 1.

Note that the procedure in Algorithm 1 converges. In the

first step, the balancing factor β(n) is chosen as the maximum

feasible one for the given power allocation. Then, a fixed point

step according to (18) is performed that reduces the transmit



power, i.e., p̃ ≤ p(n−1), while p̃ ≥ diag(γ(β(n)))I(p̃)
still holds. By normalizing the power allocation to use full

transmit power, the (≥) becomes a strict inequality. Thus, the

balancing factor will be increased in the following step, i.e.,

β(n+1) ≥ β(n). That is, the balancing factor β is increased

(or remains constant) in each iteration. Furthermore, as its

value is bounded above by β⋆, convergence is ensured. Being

converged, the duality result of Section VI can be used to

compute the optimizers of (7).

Simulations have shown that Algorithm 1 requires a large

number of iterations until convergence in many scenarios.

Therefore, we used the iteration proposed in [7] for the fixed

point step instead (due to its faster convergence [18]). To this

end, we reformulate (13) in matrix-vector notation, i.e.,

Z(p,F ) = Ψ (F )p+ ξ(F )

with ξ(F ) = [ξ1, . . . , ξK ]T, ξk = ‖fk‖22/|fH
k b̂k|2, and

[Ψ (F )]k,ℓ =
1

∣

∣fH
k b̂k

∣

∣

2

{

fH
k Cb̃k

fk ℓ = k

fH
k Cb̃ℓ

fk +
∣

∣fH
k b̂ℓ

∣

∣

2
else.

We have diag(γ)(Ψ (F )p+ξ(F ) = p in the optimum of (16).

Rearranging this equation, leads to the fixed point iteration

p(n) =
(

IK − diag(γ)(Ψ (F )
)−1

diag(γ)(F ),

where F = [fopt,1(p
(n−1)), . . . ,fopt,K(p(n−1))]. As shown in

[7], this iteration leads also to an decreasing sequence {p(n)}
and converges to the unique fixed point when starting a tuple

(β(0),p(0)) that is feasible for (16).

Unfortunately, above algorithm is still slow in the high

SNR regime. Therefore, we adopt also the fixed point iteration

of [19, Section III.]. Based on the discussion above and the

requirements in (17a) and (17b), when we adapt β in each step

of the fixed point iteration in (18) such that 1Tp(n) = Ptx is

fulfilled, the power constraint will be fulfilled after conver-

gence and the target based rate constraints will be satisfied

with equality as required. That is, the resulting β will be the

global optimum of (15). With the right hand side of (18), this

sum power requirement for the update rule can be written as

1
T diag(γ(β))I(p(n−1))− Ptx = 0. (19)

This implicit requirement, gives us the alternative update

rule for the balancing factor, i.e., β can be chosen as the

single positive real root of (19) in each iteration, e.g., via the

Newton-Raphson method (e.g., see [20]). The resulting two

step procedure is shown in Algorithm 2.

Note that Algorithm 2 has shown to have a much faster con-

vergence speed, independent of the considered SNR regime.

However, unlike for Algorithm 1, the sequence {β(n)} has a

non-monotonic behavior and may even lie above the optimal

β⋆ for some iterations n.

IX. NUMERICAL RESULTS

For a numerical verification of the achieved performance

with erroneous receiver CSI, we performed numerical sim-

ulations for a system with K = 4 users, N = 4 antennas

Algorithm 2 Rate Balancing

Require: p(0) > 0 with 1
Tp(0) = Ptx, n = 0

1: repeat

2: n← n+ 1 increase iteration counter

3: β(n) = max{β ∈ R : 1T diag(γ(β))I(p(n−1)) = Ptx}
find balancing factor

4: p(n) = diag(γ(β(n)))I(p(n−1)) fixed point step

5: until ‖p(n) − p(n−1)‖1 ≤ ǫ

at the transmitter, and relative rate targets τ1 = τ3 = 1
and τ2 = τ4 = 2. For the simulations, channel realiza-

tions hk, k ∈ {1, . . . , 4} were generated from the zero-

mean complex Gaussian distribution with identity covariance

matrices Chk
= IN . The channel estimates ĥk and the channel

error covariances Ch̃k
were determined via MMSE channel

estimation from noisy pilot-based training observations of the

channel realizations. For the pilot-based training, the same

transmit power Ptx was used as for the data transmission.

In Fig. 1, the average of the achieved optimal common

balancing level β⋆ is plotted versus the SNR Ptxσ
−2, with

σ2
1 = · · · = σ2

4 = σ2. For the figure, we used 1000 channel

realizations and calculated the channel estimates for each

realization. Then, the optimal common balancing levels for

perfect CSI and erroneous CSI were determined by switching

to the dual MAC and applying Algorithms 1 and 2. Finally,

we averaged over the results of β⋆ for drawing the perfect and

the erroneous CSI curves.

In the figure, two observations can be made. First, the

erroneous CSI curves lie close to the perfect CSI curves over

the whole SNR range. The difference between the respective

balancing factors is approximately only 0.5. Second, the slopes

of all curves seem to be the same at high SNR. This effect

stems from the dependence of the training SNR on the data

SNR.

In Fig. 2, the achievable average rate regions are drawn for

the SNR values 0dB, 15dB, and 30dB in a two user system

with N = 2 transmit antennas. For 0dB SNR, erroneous

receiver CSI suffers from both, high noise during data trans-

mission and channel estimation. Thus, its average rate region

boundary is far below the perfect CSI boundary. The shape of

rate region boundaries explain why time-sharing between the

single-user points would be optimal. With increasing SNR, the

relative distance between the perfect and erroneous CSI rate

region boundaries decreases. Moreover, there appears some

locally convex part around the bisecting line. Therefore, no

time-sharing is necessary for sum rate maximization.
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