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ABSTRACT

3D building data is needed in many application areas. Besides the geometric description an increasing number
of applications also demand thematic information about acquired buildings. We present a concept for the
automatic extraction of buildings from aerial images. In contrast to other approaches generic building structures
both are geometrically reconstructed and semantically classified. A component-based, parameterized building
model is employed to control the reconstruction of buildings.

This paper describes how geometric and semantic knowledge of buildings is propagated through the different
aggregation levels of the building model. Furthermore, it is shown how rules and constraints are derived from
the model and exploited at each stage of the reconstruction process.

1 INTRODUCTION

3D bhuilding data play an important role for digital city
models and geoinformation systems, which are used
in numerous application areas: architecture, urban
planning, telecommunication and environmental in-
vestigations show an increasing need for up-to-date
3D building models. To reduce the cost of time-con-
suming manual data acquisition the automation of 3D
building reconstruction became an active research
area in recent years.

The quality requirements like accuracy, degree of ab-
straction, and actuality of the 3D building data to be
acquired in general depend on the application area.
Especially in GIS applications like urban planning not
only the geometric description of the buildings is nec-
essary, but also their semantic classification to facili-
tate thematic inquiries. Therefore, it is essential that
automatic building reconstruction procedures extract
both the geometric and semantic aspects of build-
ings.

Several research groups presently are working on 3D
building reconstruction and have demonstrated pro-
mising results. The work on automatic building recon-
struction reveals essentially two different approaches.
One employs a database of predefined buildings,
which are matched with the images to extract the cor-
responding building instances. The other utilizes a
general or prismatic polyhedral model, where build-
ings are reconstructed by geometric grouping of im-
age features. Whereas the former approaches yield

both geometrical and semantical 3D building informa-
tion, they are limited by their fixed number of prede-
fined buildings. In contrast, the generic model of the
latter approaches allow the representation of arbitrar-
ily shaped buildings, but provide no building specific
interpretation of the reconstructed polyhedrons.

Up to now only semiautomatic systems are able to
perform both geometric and semantic reconstruction
using generic scene descriptions (cf. [LLS95], [EG96],
[TDM96)).

In earlier articles (see [BKL195, FKL97, FKLT98]) we
have presented a concept for automatic building re-
construction which enables both the reconstruction
and the interpretation of generic building structures.
The employed building model is based on building
specific components that are combined in a flexible
way. Rules and constraints represent the building
specific knowledge. They are derived from the build-
ing model and guide respectively restrict the recon-
struction. In this paper we present these rules and
constraints in detail, and show how they are used and
exploited in the different stages of the reconstruction
process to ensure the reliable extraction and classifi-
cation of buildings.

2 DOMAIN SPECIFIC MODELING
2.1 Related Work

In the past ten years the development of concepts for
automatic building extraction has been a topic of ac-
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tive research. For an up-to-date overview of the differ-
ent approaches see the Ascona workshop proceed-
ings 1995 and 1997 [GKA95, GBH97], the SMATI97
workshop proceedings [FP97], and the special issue
of the CVIU journal on building extraction [FKL*98].

Although the proposed concepts differ wrt. to the type
of input data (e.g. digital elevation models and raster
images), their reconstruction strategy, and implemen-
tation, they can be compared by their employed build-
ing model. Following the line of Steinhage in [Ste98],
we basically classify the employed modeling schemes
into three categories:

Polyhedral models provide the most flexible approx-
imation for the representation of buildings. They pose
no constraints on the form of the objects and thus al-
low the representation of arbitrarily shaped buildings
with plane faces.

The use of general polyhedral descriptions is prob-
lematic, because of the missing semantic classifica-
tion of the objects and the object parts. To avoid the
reconstruction of impossible objects, building knowl-
edge has to be incorporated into the reconstruction
procedure, for instance, in form of heuristics and im-
plicit assumptions. This can be observed in the ap-
proaches of Bignone et. al. [BHFS96] and Frére et.
al. [HVFt97]. Both concepts are based on a poly-
hedral model. A bottom-up strategy is used, starting
with an initial image feature extraction, where fea-
tures are successively grouped to 3D roof patches
using photometric and chromatic attributes of image
regions with spatial edge geometry. Roof patches
then are grouped by an overall optimization accord-
ing to the simplicity, compactness, and complete-
ness of the resulting roof shape. To complete the
building shape, vertical walls are assumed. Hen-
ricsson et. al. [HB97] present impressive results of
their approach on some test data, but show no ex-
plicit modeling of building types or building specific
parameterizations. Due to the lack of further build-
ing specific modeling it cannot be decided wether a
reconstructed object is a building, a lorry or a dog-
house.

Another drawback of a general polyhedral model is,
that due to the absence of a more specific build-
ing modeling no predictions about occluded parts
can be made. Buildings can only be extracted com-
pletely, if every part is visible and is detectable by
the feature extraction process. Thus, this approach
will only give good results, when there are several
images from different viewpoints available and the
quality of the images is high.

Prismatic models can be seen as a special case of

polyhedral models. They allow the representation
of buildings with arbitrary ground plans, but are re-
stricted to vertical walls and flat roofs. They are
based on the assumption that the ground plan of a
flat roof house is congruent with the roof’s outline.

Prismatic models are used in a number of different
approaches: Nevatia et. al. [NP82, MN88, LHN95,
NLH97], Fua and Hanson [FH87], and Weidner et.
al. [WF95, Wei97]. Whereas the possible building
shape is restricted explicitly in these concepts, build-
ings are not further classified and have no specific
parameterization. In all cases the reconstruction strat-
egy is bottom-up, following mostly the principles of
perceptive grouping (cf. [Moh89]) to successively
construct geometrically — but not necessarily se-
mantically — more meaningful objects. Thus, pris-
matic models suffer from the same lack of building
specific knowledge as general polyhedral models.

Parameterized volumetric primitives are building
models with fixed topology and variable size. Mod-
eling buildings by volumetric primitives has several
particular advantages: because every building type
is explicitly modeled, their different forms of appear-
ance can be derived a priori. Second, even partially
occluded buildings can be fully reconstructed, and
third, the identification of an instance of a volumetric
primitive in the image implies its classification.
Parameterized volumetric primitives are employed by,
among others, McGlone and Shufelt [MS94], Jaynes
et. al. [JHR97], and Schutte et. al. [Sch96, SSH97].
All approaches use a hypothesize-and-verify strat-
egy, where building primitive instances are hypoth-
esized in a data-driven way, and then are verified
top-down according to the model. The major draw-
back of volumetric primitives is the lack of flexibility
wrt. to different building shapes, because only build-
ings can be detected, that are explicitly stored in the
model database.

Discussion: Whereas (prismatic) polyhedral models
allow the representation of buildings in a generic way,
they are too unspecific and do not take explicitly into
account constraints wrt. to the domain ’building’. Pa-
rameterized volumetric models instead represent a
semantically more meaningful modeling scheme, be-
cause building type specific parameters like width,
height, and length can be used to further restrict mod-
els to reasonable sizes. Unfortunately, they are re-
stricted to the detection of a small number of prede-
fined building types. To bridge the gap between both
approaches, we have developed a component-based
building model, which is described in the next section.

2.2 Building Model

To overcome the limitations of parameterized volu-
metric primitives with their fixed topology, we employ
a component-based modeling. Buildings with com-
plex topology can be constructed by connecting pa-
rameterized building part primitives in a generic way.

Each building part primitive is parameterized by its
own set of form parameters like roof height, building
width etc. A set of constraints is defined on these pa-



rameters, introducing further specific building knowl-
edge into our model. Simple constraints define upper
and lower bounds for valid parameter intervals. More
complex constraints relate parameters to others and
enforce geometric properties (i.e. roof slopes). Pa-
rameters keep their meaning during the aggregation
of building part primitives. Thus, a meaningful pa-
rameterization is maintained during the aggregation
process.

In detail, the proposed building model consists of a
four level part-of hierarchy (see fig. 1). It reflects dif-
ferent levels of semantic abstraction. The primitives
of each aggregation level are specialized by an is-
a hierarchy into subclasses. Building specific knowl-
edge and restrictions are propagated top-down from
the higher levels to the lower ones. To allow tight
coupling of 2D and 3D reconstruction processes, the
primitives on each level are coherently modeled in 2D

and 3D.
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Figure 1: Building model: Different semantic levels of
the part-of hierarchy are shown in vertical direction,
different levels of the is-a hierarchy in horizontal di-
rection (here shown only for the 3D side). The 2D
image model describes the expected appearance of
the building in the images.

The lowest level contains attributed features, namely
points, lines and regions. They establish the link to
a symbolic image description, that is derived from
the original raster images by a feature extraction pro-
cess. Attributes for lines and regions, for instance,
are the orientation classifications horizontal, vertical,
and oblique. Regions have an additional attribute de-
scribing their role: valid values among others are wall
and roof.

The next level consists of feature aggregates, which
are induced by points, lines and regions and contain
all their topological neighbours. They are subdivided
into corners, wings and faces. A corner, for exam-
ple, contains one point and all its adjacent lines and
regions.

The two top levels contain the already mentioned build-
ing parts and buildings. Building parts are composed

from feature aggregates.
sented by corner graphs.

Actually, they are repre-

3 STRATEGY

In a data-driven preprocessing step the aerial images
are segmented and features are extracted from them.
Regions of interest which are likely to contain buil-
dings are determined and all following steps focus on
these regions and the features contained in them.

The further process is strictly model-driven and fol-
lows the paradigm of hypothesize and verify. It can be
divided into three parts which use the building model
in different ways.

The transition from 2D image data to the 3D object
space is realized by the reconstruction of 3D vertices
from 2D image features. Classification transforms the
vertices into 3D corners.

The corners are used to index into the database of
parameterized building part primitives, which are in-
stantiated and aggregated into building hypotheses.

In order to verify the building hypotheses, they are
projected back into the images. The obtained 2D
views are matched with the image features using con-
straint solving techniques. Of all best matches the
most probable is determined and selected. A final
parameter estimation determines form and pose pa-
rameters.

A detailed descriptions of these three parts follows in
the next three sections.

4 3D CORNER RECONSTRUCTION

One crucial part within the complete reconstruction
process is to derive 3D object parts which serve as
an appropriate basis for the subsequent aggregation
process. For the transition into object space we use
the level feature aggregates, especially the building
components of type corner. The use of corners is
motivated by the following reasons:

Observability: The projections of corners into the im-
ages are image structures which show a high stabil-
ity against occlusions.

Structure: The topologic and structural properties of
corners are helpful for steering the search procedure
during the correspondence analysis and have the
advantage of using aggregates in contrast to single
features.

Interpretation: The richness of the observable geom-
etry and topology of the corners, especially in 3D
object space, is suitable for interpreting the observed
3D descriptions. The interpretation then can be used
for stabilization and verification.



Aggregation: The corner geometry as well as the cor-
ner semantics give powerful information for the sub-
sequent 3D aggregation process (cf. section 5.4)
and thus enables to use a generic model for 3D ag-
gregation.

The corner reconstruction process follows the hypo-
thesize and verify paradigm. Hypotheses are build up
mainly data-driven inferring the class membership of
the observed data to a corner class from analyzing
the observable geometric description. They repre-
sent model instances with fixed geometry, topology
and structure. Having built up the hypotheses, the
verification can be performed model-driven and ex-
ploits the class-specific constraints for evaluation and
for increasing the accuracy of the reconstruction.

The corner reconstruction is performed as a multi-
image procedure using all available image data si-
multaneously. The interior and exterior image orien-
tation is presumed to be known and is used for geo-
metrically restricting the search during the correspon-
dence analysis.

4.1 3D and 2D Corner Model

The level feature aggregates of our building hierarchy
distinguishes three different object types, namely cor-
ners C, wings W and faces S (cf. [FKLT98]), each of
them given by its geometric and topologic form de-
scription and its semantic description. They repre-
sent components of a general polyhedron which addi-
tionally are specified by building-specific geometrical,
topological and structural properties. In this context,
we restrict ourselves to describing corners because
wings and faces so far are of subsidiary importance
for our building reconstruction procedure.

3D Corner Model: Each corner C = (V,1)¢) is given
by its form description being a vertex V composed
from elements on the level features and its seman-
tic description by a class label ¢. The distinction of
corners from wings and faces is due to the structural
composition of the underlying feature aggregates.
Each corner C of order n is described by the corner
point P and each n lines L and regions F' that are
preliminarily open-ended in their spatial extension (cf.
fig. 2 a.) and thus represent plug elements for group-
ing and aggregating corners. The graph representa-
tion (cf. fig. 2 b.) expresses the topologic and struc-
tural description of a corner where the graph nodes
represent features and the graph arcs the adjacency
relations between them.

The building-specific part of the corner model, which
makes the difference of a building corner from a gen-
eral polyhedral corner depends on the corner spe-
cialization hierarchy, which divides corners into sub-
classes. The specialization depends as well on the

{ Ly Ry o

; L, |

“ Rs .
R,

a. “Ly

Figure 2. a. shows a corner represented by its com-
ponents points, lines and regions. b. shows the graph
representation of a corners.

corner topology as on its geometry. We use a two-
level specialization hierarchy. Each subclass implies
class dependent constraints @, onto the form de-
scription of the vertex v. On the first level of the spe-
cialization hierarchy we use unary constraints which
refer to single components of a corner. They espe-
cially restrict the corner components of type line to
building-specific qualitative attributes like being hor-
izontal, vertical or sloped. On the second level of
the specialization hierarchy we use binary constraints
which refer to the geometric relationship of pairs of
corner components and likewise restrict the corner
components of type region to building-specific attrib-
utes like being horizontal or vertical.

If no constraints are attached to the corner we call it
the unconstrained corner with class label ¢y, which is
identical to a polyhedral corner, that is a vertex V.

2D Corner Model The image model aims at de-
scribing object components coherent to the 3D mod-
eling to provide direct access from image observa-
tions to 3D objects and vice versa. The image rep-
resentation coherently uses components on the hier-
archy level features. Therefore we use an appropri-
ate feature extraction to derive a polymorphic sym-
bolic image description consisting of points, lines and
regions and their mutual neighborhood relations (cf.
[Fuc98]). The result is stored in a feature adjacency
graph analogous to the graph representation in object
space (cf. fig. 2 b.).

At the beginning of the corner reconstruction, the geo-
metric corner instances are unknown. As the geo-
metric variability of the appearance of the different
corner types is too large for an efficient represen-
tation in the image model we renounce integrating
the corner specialization into the image model. So
the image model is a vertex model, especially mod-
eling the topological and structural properties of the
appearance of a corner depending on its underlying
vertex.

Furthermore, due to the image characteristics and
the characteristics of the feature extraction procedure
(cf. [FLF94]), the observed symbolic image descrip-
tion in general differs from the ideal projection of the
corresponding 3D corner. Fig. 3 shows some typical
deviations of the observed vertices from their ideal



projection for the example of a corner of order n =
3. To take into account the uncertainties of the fea-
ture aggregates we therefore statistically formulate
the image model by a vertex classification model (cf.
[FKLT98]) which classifies feature aggregates being
vertices or non-vertices taking for reference the ideal
projection of a corner of order 3 (cf. fig 3a.).
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Figure 3: shows the extracted features (first row) and
features with a neighborhood relation to the corner
point (second row). a. shows the ideal projection of a
corner of order 3, b.-d. show possible appearances of
extracted image corners differing from the ideal pro-
jection.

4.2 Generation of 3D Corner Hypotheses

The corner reconstruction starts with the generation
of corner hypotheses and comprises the reconstruc-
tion of 3D vertices and their interpretation as 3D cor-
ners.

Initial form reconstruction of 3D vertices: By mul-
ti-image correspondence analysis we build an initial
form reconstruction of 3D vertices V', which pos-
sess the topologic and structural properties of cor-
ners as defined by the image model.

e Feature extraction and vertex selection: The first
step in reconstruction is the extraction of a symbolic
image description. Based on the extracted points,
lines and regions and their mutual neighborhood re-
lations we build vertices V% by point-induced 2D
aggregation analyzing the feature adjacency graph.
The selected vertices serve as a basis for the corre-
spondence analysis.

e Correspondence analysis of vertices: The corre-
spondence analysis starts with the selected vertices
and is formulated as search procedure which ex-
tends over three layers. In the first layer a most
promising vertex V?° in image i is selected for refer-
ence using a priority list of the 2D vertices by evalu-
ating their suitability for the correspondence analysis
and reconstruction. The evaluation is done by vertex
classification using the image model and consider-
ing the stability, uniqueness and structural richness
of a vertex. The second layer establishes a stereo
correspondence of vertices [V2°, V2] in the images i

i 0]
and j. In addition to the evaluation score of single
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Figure 4: a.) shows the epipolar constraint for the
corner point of a vertex pair. The corner point in im-
age I; is restricted to lie on the epipolar band around
the epipolar line defined by the point in image I;. b.)
and c.) show two examples of corresponding ver-
tices. The epipolar geometry restricts the matching of
the corner lines. Example b.) is unambiguous. Thus
three corner lines can be reconstructed. In example
c.) only one corner line can be reconstructed using
the line L;3 in image I;. Inimage I; the matching is
ambiguous and both lines L;» or L;3 can be taken for
correspondence leading to two different vertex alter-
natives.

vertices the structural similarity of matching candi-
dates which fulfill the epipolar constraints is incorpo-
rated. The third layer generates a multi-image corre-
spondence tuple [V?]. Epipolar geometry one again
gives restrictions of the search space.

e Transition to 3D vertices: Based on the correspon-
dence tuple [V?"], the transition to object space is
performed by a joint forward intersection of the cor-
responding image feature components points [P%]
and lines [L?°] of the vertex correspondence tuple
[V2] using all images i € I simultaneously. Epipolar
geometry once again defines geometric restrictions,
which facilitate the matching of the features.

Interpretation: For the 3D vertices we perform the
interpretation by class assignment of each vertex to
a corner classes given by the object model, which re-
sults in corner hypotheses. The interpretation is per-
formed in object space as the 3D information defines
stronger restrictions during the interpretation than in
2D. By geometric analysis each 3D vertex is assigned
to one or several alternative corner classes defined
by the 3D corner specialization hierarchy. The 3D ver-
tex classification is performed hierarchically by check-
ing possible class-specific constraints and inferring
the corresponding corner classes:

e Checking for unary constraints: We start check-
ing unary constraints on the first level of the corner
specialization hierarchy. We use qualitative line at-
tributes depending on the slope orientation with re-
spect to the corner point, given by the qualitative
geometric labels horizontal (h), vertical+ (v+),



vertical- (v-), oblique+ (o+) and oblique-(o-)
[Gul92].

Actually we specialize corners C of node degree 3.
We exclude meaningless corners like e.g. corners
with line attributes {(h), (b), (k) }, which make no
sense in the context of buildings and their function-
ality. Thus the first specialization level compounds
21 possible classes.

e Checking for binary constraints: Depending on un-
ary constraints that are identified as being satisfied
binary constraints are checked. Examples of binary
constraints are symmetry of two lines with respect
to the vertical or orthogonality of two lines. The
explicite definition of subclasses on this level is not
sensible as we cannot be capable to predefine it
without restricting the variability of buildings.

The set of identified constraints of each vertex are
related to a class label v resulting in a corner hy-
pothesis €% = (V32 4.0r). If no constraints are at-
tached to the corner we call it the unconstrained cor-
ner with the class label 1.

e Model based corner prediction: In general the ver-
tex observations may be incomplete. Therefore we
use the corner model on the one hand for predic-
tion of unobserved corner components due to miss-
ing or fragmented features, or missing feature ad-
jacency relations or on the other hand for predic-
tion of constraints. The prediction only can be per-
formed if the predicted instances are geometrically
defined by the model. E. g. if we observe a re-
constructed vertex of node degree 2 with line labels
(h) and (o-) with the two lines further fulfilling the
constraint orthogonal (h,o-), we perform a model
based prediction of a corner of order 3 of class (h,
o-,0-) where the line pair (o-,0-) fulfills the con-
straint vertical symmetry(o-,o-) as it occurs for
the gable corner of a gabled roof building with the
lines (o—,0-) spanning a vertical plane.
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Figure 5: Different corner types that are defined by
the building specific corner specialization hierarchy.

4.3 Verification of 3D Corners

In contrast to the mainly data-driven generation of

corner hypotheses the verification is performed model-
driven and profits from a strong model. On the one

hand the geometric model instances give approximate
values for further steps of the analysis. On the other

hand the class membership defines class-specific con-
straints that can be used for geometric stabilization

and for checking the conformity of data and model.

As each 3D vertex can be assigned to several corre-
sponding corner classes and thus leads to alternative
3D corners the verification has to resolve this ambi-
guity. Further on the verification is necessary to sus-
tain predicted corners possibly by additional obser-
vations to avoid blind prediction. Otherwise the pre-
dicted corners have to be rejected. In both cases the
knowledge of the model instances defines stronger
constraints than during the generation of corner hy-
potheses.

The verification of the corner hypotheses is performed
by statistical analysis and is formulated as an opti-
mization problem for finding the best interpretation ¢
of the data [V?], from all possible corner hypotheses.
Using bayes theorem, the optimization of the condi-
tional probabilities P(C. | [V?],) can be broken down
to

Q>
|

= argmax P(C. | [V®],)

x argmax P(VP), |COP(C) (1)

neglecting the denominator by normalization. Equa-
tion 1 clearly shows the influence of the model C: The
conditional probability P([v®], | C.) thereby evalu-
ates how good the corner instance fits the observed
image features of the vertex correspondence tuple
[V2)], and can be derived using the classical mod-
eling techniques of observation errors. The a priori
probability P(C.) gives information on the probability
distribution of the different corner classes.

For each corner hypotheses we perform a maximum
likelihood parameter estimation using all supporting
image features simultaneously.

The verification process is subdivided into the follow-
ing steps: a. the model-based selection of observa-
tions, b. the model-based form reconstruction of each
corner hypotheses and c. the optimization of the in-
terpretation.

Model-based selection of observations: Foreach
corner hypothesis the model instance defines approx-
imate values for the model-based reconstruction.
Thus the selection of matching features is done by
back-projecting the instantiated corner model into the
images and analyzing the deviations between the pro-
jected model and the symbolic image description.



That way we possibly get access to features which
were originally not contained in the selected vertices
and be able to partially bridge the incompleteness,
fragmentation and missing neighborhood relations of
the extracted symbolic image description.
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Figure 6: shows image features of type line and
point (left) which are used for the corner reconstruc-
tion (right) during the verification steps. They are
selected model-based by back-projection of the cor-
ner hypotheses into the images. Please note that
the matching features contain fragmented lines and
bridge missing feature adjacency relations to the ver-
tex points.

Model-based form reconstruction: For each hy-
pothesis, we estimate the geometric parameters by
a maximum likelihood parameter estimation using all
supporting image features simultaneously. The result
of the parameter estimation gives for each hypothe-
sis the optimal geometric reconstruction with the ex-
pected values E(y) of the observations depending
on the functional model E(y) = XAB with X%,
which defines the relation between the observations
y and the geometric parameters AB3. The parame-
ters B of each corner class ¢ depend on the class-
specific constraints ©,, and thus are predefined by
the model. Each corner C of order n in principle re-
quires 3+2-n geometric parameters 3 being the three
coordinates of the point vector z of the corner point p,,
and two parameters for each of the n corner line L,
being the direction angles \,, and the azimuth ¢,, (cf.
fig 7 a.). These parameters are reduced by the class
specific constraints (cf. fig 7 b.) For corner represen-
tation we actually store the n + 1 3D points being the
corner point P, and virtual points P, (x + r,) along
the corner line direction which are given by the nor-
malized direction vectors r;, determined from the an-
gle parameters of the corner line L. The estimation
uses multi-image point and line observations simulta-
neously.

Optimization of reconstruction and interpretation:
The optimization of the corner reconstruction uses
ed. 1 which contains both the data-dependent part
P([V?], | C.) which is responsible for the optimal ge-
ometric reconstruction and the model-dependent part

a)

Figure 7: a. parametrization of an unconstrained cor-
ner line. b. parametrization of a corner of type gable
corner gable roof. The 3 + 2. n parameters 3 of
the "—corner are reduced to three coordinates of the
point vector « and two angle parameters « and «.

P(C.) which is responsible for the optimal semantic
reconstruction.

e Optimal geometric reconstruction: For optimization
of the geometric corner reconstruction, the evalua-
tion can be derived from the residuals é = y — g of
the optimal estimation ¢ = f(B) using the probability
density function p(y | B) = p([V®], | B) in case the
features exist and have been successfully matched

to the model.

1
(2m)"/2 (dets,,)'/?

ply | B) = (7262, € (2)

The evaluation depends on the squared sum of the

residuals = ATE;ylé of the estimation y = f(83).
n is the number of unknowns in 8 and X, is the

covariance matrix of the observations y.

e Optimal semantic reconstruction: The a priori prob-
ability P(c.) for the corner class ¢ can be obtained
empirically by learning (cf. [Eng97]) and can in prin-
ciple be integrated to evaluate the model dependent
influence on the result. Actually we prefer special-
ized corners ¢ from unconstrained corners v, and
assume equally distributed corner classes v .

4.4 Grouping of 3D Corners

The next step in reconstruction is to perform a 3D
grouping of corners. In contrast to the subsequent
3D aggregation, the grouping connects the corners
solely using the knowledge of the aggregation level
feature aggregates without using any building-specific
aggregation relations. The result of the grouping pro-
cess is a corner adjacency graph CAG, whereas the
graph nodes are classified and attributed corners and
the graph arcs denote a connection between corners,
possibly evaluated by its connection probability.

The grouping is performed in two steps:

e Qualitative compatibility: The first step in group-
ing is to check the qualitative compatibility of the
corner pairs which depends on the class specific
constraints of the corners. Therefore we postulated



the class compatibility of the corners and their com-
ponents stored in a class-connection-table. Due to
their class-specific constraints a corner of type eaves
corner gable roof can be connected to acorners
of type gable corner gable roof but not to a cor-
ners of type gable corner hip roof. On the fea-
ture level a corner line of type o+ can only be con-
nected to a line of type o-. As the class compatibility
of the corresponding corner components is partially
expressed by the corner classes itself why we first
check the corner classes and then the correspond-
ing feature classes.

¢ Quantitative compatibility: The class-compatibility
of corners is necessary but not sufficient for the group-
ing of corners. Therefore the second step in group-
ing is to check the quantitative compatibility of the
class-compatible corner pairs analysing the underly-
ing geometric corner instances. E. g. for connection
two lines of type horizontal have to be collinear,
two regions of type horizontal have to be coplanar.
The geometry can be statistically tested exploiting
the statistical properties of the features given by the
covariance matrix 3, of the estimated feature ge-
ometry g which results from the parameter estima-
tion while corner reconstruction (cf. [HLF99]).

During the 3D aggregation the corner adjacency
graph can be used to facilitate and focus the index-
ing into parameterized building parts (cf. chap. 5.4)
or building primitives (cf. [Lan99]).

Figure 8. shows the reconstructed corners and the
corner grouping. a.) wire frame representation of
the reconstructed corners. b.) corner connections of
class compatible corners denoted in black. c.) adja-
cency relations of the corners, which fulfill the class-
compatibility as well as the compatibility of th geome-
try. d.) representation of the corner adjacency graph
CAG. The graph arcs denote connectivity relations
between corners. The graph nodes denote corners
attributed by their class membership.

4.5 Results and Accuracy

The presented procedure for corner reconstruction
and interpretation for the time being aims at deliver-
ing an appropriate basis for reconstruction of generic
buildings by 3D aggregation of the corners using the
proposed hierarchical building model.

The corner reconstruction is tested with stereo image
data with 2—9 images overlap using image scales be-
tween 1 : 4000 up tol : 12000 and 10cm — 24cm pixel
size on ground. The achieved accuracy of the re-
constructed corner points is internally estimated with
oy, = oy = *3cm and o, = £5cm. The orienta-
tion accuracy of the corner main direction amounts
o, = 0.2 [deg] whereas the slope of the roof is deter-
mined with oy, = 1.3 [deg].

For testing the complete building reconstruction pro-
cedure we used the the international distributed data
set Avenches residential with scale 1 : 5000 which
was disposed for the Ascona workshop on Automatic
Extraction of Man-Made Objects from Aerial and
Space Imagery (cf. [GKA95], [MBS94]). The corner
reconstruction is performed using the grey level im-
ages with a pixel resolution of 12em. Altogether 56%
of the building corners were reconstructed and iden-
tified to have an adjacency relation to at least another
corner. 82% of these are correctly reconstructed and
18% are false corners. The correct and false recon-
structed corners are distributed with 72% to 10% and
4% to 14% onto the building-specific classes v and
the unconstrained corners of class 4. The recon-
structed corners are sufficient for aggregating the 11
buildings contained in the data set (cf. [FKLT98]).

For details concerning the 3D corner reconstruction
process we refer to [Lan99].

5 GENERATION OF BUILDING HYPOTHESES

This section describes the construction of building hy-
potheses for a given set of reconstructed corner ob-
servations. Furthermore, it is shown how 3D building
hypotheses are transformed into a parameterized 2D
view hierarchy, which allows a subsequent verifica-
tion.

5.1 Model

In our component-based building model, parameter-
ized building part primitives are instantiated and ag-
gregated to more complex building parts and finally
complete buildings. Instantiated primitives and ag-
gregations of them are referred to as building aggre-
gates. Each building aggregate is represented by a
graph of corners G = (C,R) where R C C x C'is a
adjacency relation on the set of corners C.



Each building part has one or more plug faces, by
which the building parts can be connected with each
other. A plug face f = (Cy,R) is a subgraph of G
consisting of one single loop of corners Cy C C. The
building model assigns a type to each plug face. Only
plug faces with compatible types may be connected
together. Thus the model reduces the number of con-
nectable building aggregates considerably. Building
parts with one plug face are called terminals, such
with two or more plug faces are called connectors
(see fig. 9).

Connectors:

Terminals:

Figure 9: Some examples of building part primitives.
Plug faces, which are used to connect them, are
drawn dashed.

The connection of two building aggregates to a new
aggregate reduces the set of plug faces. The two plug
faces taking part in the connection are removed and
do not belong to the newly generated aggregate. The
goal of the aggregation process is the generation of
a building aggregate with an empty set of plug faces.
Such aggregates are called closed, otherwise open.

The coordinates of each vertex of all corners in C are
parameterized by a set of pose parameters and a set
of form parameters. The four pose parameters deter-
mine the location and rotation about the vertical axis.
The reduction to one rotation parameter is imposed
by our knowledge of buildings, because other rota-
tions are seldomly observed. The form parameters
define features like slope of the roof, width and height
(see fig. 10). The coordinates may depend nonlin-
early on the parameters. If a parameter has an as-
signed value it is called fixed, otherwise it is called
free.

Ui T; Yi Zq

U1 w 0 0

, Vg w hg 0
|4-\ - U3 0 hs + h, 0
; vy | —w hg 0
. vs | —w 0 0

Figure 10: Parameterized description of a saddle roof
terminal. The table on the right shows the coordi-
nates of the vertices vy, ..., vs.

The parameterized coordinates are stored as sym-
bolical expressions to allow their adaption and mod-
ification during connections and the construction of

equation systems that are needed for computing pa-
rameter estimations.

5.2 Operations

Four different types of are used for generation and
aggregation of the building aggregates:

Indexing provides the link between the corner ob-
servations and the building part primitives. For a
given corner observation an indexing operation se-
lects a building part primitive from a library that has a
matching corner, instantiates that primitive and gen-
erates by this a new building aggregate. Subsequent
invocations of indexing operations for the same cor-
ner observation yield different building aggregates
as long as there are corners of building part primi-
tives that have not yet been used in this process.
The classification of the corner observation as de-
scribed in section 4.2 is used to limit the number of
potential candidates for instantiation. Model corners
with a different classification from that of the given
corner observation are ignored.

Merging unifies two building aggregates A; and A,
which are instantiations of the same building part
primitive. This operation is necessary, because for n
corner observations that belong to the same building
part indexing operations generate n instantiations of
the same primitive instead of one. The set of plug
faces of the resulting aggregate is identical to that of
A; and A,.

Connection aggregates two building aggregates A,
and A, to a more complex aggregate A. The set of
plug faces is reduced by the two elements F; and F;
whose corners are to be connected with each other.
F; and F, must have the same type. With this condi-
tion the building model restricts the number of con-
nectable building aggregates.

During the connection process each corner of F; is
identified with one corner of F. In a gluing process,
both building aggregates are combined into the new
aggregate, such that each pair of identified corners
is replaced by a new corner having all of their edges.
By design of the plug faces these are exactly two
edges lying on a straight line. In a second step each
of these newly created corners is removed and their
adjoining edges are replaced by one new edge.
The following six steps describe the processing of
the parameters in detail. Pose and form parameters
are independent of each other so the pose parame-
ters can be ignored until the last step. For an exam-
ple refer to figure 11.

1. The connection is carried out in the coordinate
system of A,;. Both A; and A, are translated and
rotated such that the normal vector of the F; are
aligned with the z-axis, the origin of Fj lies in the
origin of the coordinate system and the origin of F,
lies on the positive z-Axis.



2. The set of form parameters P; of A; is divided into
the disjoint subsets P; = P; r U P, . The set P; p
contains all parameters that are referenced by ver-
tices of the plug face F;. The remaining parameters
of A; make up the set P, .

3. A new length parameter [ is introduced into P,
by translation of A, by the vector (1,0,0)”. If P,
already contains a parameter with that name [ has
to be renamed. This length parameter describes
the distance between the plug faces F; and F5. In
fig. 11 the origins of the two plug faces are depicted
as two discs. It is not chosen as a fixed value be-
cause different observations might be contradictory
about its value.

4. In order to build the set of form parameters P of
the resulting aggregate A the four sets of parame-
ters P, p, Pi r, P>, r and P,  are processed by the
following steps:

a) Though being of the same type F; and F, may

have different parameterizations. To cope with that
each plug face has two translation tables. One
translates its parameters into expressions over the
set of parameters of a generic parameterization of
the plug face type of the F;. The second translates
in the other direction.
With these tables the parameters of P,  are trans-
lated to expressions over the set Pr of parame-
ters of the plug face type. The parameters of Pp
are then mapped to expressions over the set P; .
In fig. 11 the parameters b, hy and h, of A, are
first mapped to b, hy and hs because F and A,
have the same parameterization. They are then
mapped to b, h and btan a of A; since the roof of
A; is described by its slope « instead of its height
like ho in AQ.

b) To avoid duplicate names, some of the parame-
ters in P, 7 may have to be renamed. In fig. 11,
parameter d of A, is renamed to d' in A;. The re-
sulting set is named P2’7F.

The set of parameters of the new building aggre-
gate AisP=P,  UP, pUP, .

5. All the renamings and translations of form parame-
ters in step 4 have to be propagated to all parameter
references of A; and A,, especially the vertex coor-
dinates. In fig. 11 the origin of the coordinate system
coincides, as stated above, with the origin of the plug
face of A, which is depicted by the left disc. Then
the point @ of A,, marked by a circle, has after the
connection the coordinates (I, h + btan a, 0)7.

6. The transformation back into the world coordinate
system reintroduces the pose parameters. It is done
by a following parameter estimation of form and
pose parameters which is described in section 5.3.

Prediction operations instantiate building part primi-
tives for which no observations exist, but which are
needed for the construction of a closed building hy-

h hs ho Translation
b b b

d’ d Renaming
d

| New

Figure 11: Connection of two hip roof terminals
A, and A,. The plug face type F is shown be-
tween them. The diagram shows how parameters are
mapped, renamed or introduced.

pothesis. It only instantiates building part primitives
if no other operation is executable. The new building
part is chosen so that two existing building aggre-
gates can be joined by it or that one open building
aggregate can be closed by it. This ensures, that a
prediction operation is carried out only as a last re-
sort and that some information of one ore two other
building aggregates can be used to guide the predic-
tion.

The connection itself is not done by this operation,
but by one or two subsequent connection operations.

5.3 Parameter Estimation

Each operation except the prediction operations is fol-
lowed by a parameter estimation which is also used
to verify that the newly created building aggregate
matches its associated corner observations well en-
ough. If a verification is not possible, the new building
aggregate is rejected.

In the previous section we have shown how building
aggregates are constructed at runtime. The draw-
back of this is, that it is not possible to set up the
equation system beforehand that represents the least
square optimization problem. Instead it is constructed
on demand every time a parameter estimation is re-
quired. The symbolic representation of the vertex co-
ordinates makes this possible.



Each vertex of a building aggregate has a z, y and z-
coordinate which is parameterized with respect to the
aggregates form parameters. The multiplication of
these vectors with the matrix that transforms the ag-
gregate into the world coordinate system introduces
the four pose parameters. Expressions of edge direc-
tions can be derived from the edges end points.

Therefore we have for every corner observation which
is assigned to one model corner three equations of
the corner point and three equations for every edge
of the corner. Equations that do not contain a param-
eter are removed. The resulting nonlinear equation
system describes a least squares parameter estima-
tion problem. It is solved with a standard Levenberg-
Marquardt algorithm with the only difference that it
operates symbolically on the equation system. Please
note, that also the derivatives used in the algortihm
are computed symbolically.

5.4 Aggregation Strategy

Building aggregates are connected to more complex
aggregates and finally to closed building hypotheses
in an iterated process. A priority queue holds all op-
erations not yet carried out. Initially it is filled with
all indexing operations. If after the execution of the
first operation in the queue the resulting building ag-
gregate is not rejected, new operations are created
which have the new aggregate as one argument and
are inserted into the queue. Because the execution
of the operations and the parameter estimations are
computationally expensive, and there exist an expo-
nential number of combinations of the building parts
with respect to the number of corner observations we
employ a heuristic to define the order of the opera-
tions inside the queue. The goal is to use as few op-
erations as possible to generate a building hypothesis
that explains the reconstructed corners.

Our construction principles for this ordering are:

S1 Indexing is performed before any aggregations or
mergings take place. This provides the starting point
for the algorithm.

S2 Aggregation is done depth first. This constructs
building aggregates with as much covered corner
observations as soon as possible.

S3 The growth of competing building aggregates shall
be as uniform as possible. This avoids having one
aggregate growing while others are neglected.

S4 Predictions take place only if necessary. Because
a prediction operation can not use a corner obser-
vation directly it has less information than the other
operations and therefore its results are more uncer-
tain.

These construction principles result in the following

ordering of the operations. Let m; and 7, be two op-
erations.

1. If 7y and 7> have different operation types, index-
ing operations come first, then merging, connection
and finally prediction operations (S1 and S4).

2. So m; and m, have the same operation type.

Indexing operations. If the operations belong to
different corner observations,

a) then the corner with less building part interpre-
tations is preferred (S2),

b) else the operation with an a priori better expect-
ed result is performed first (S2).

Merging or connection operations. Let the build-
ing aggregates b; ; and b; » be the arguments of m;
resp. ms.

a) The operation 7; with the higher number of cor-
ner observations covered by b;; and b;» is per-
formed first (S2).

b) The operation 7; with the smaller difference in
corner observations covered by b; ; and b; » is per-
formed first (S3).

¢) Finally, the operations 7; are sorted according to
the sum of the evaluations of b; ; and b; ». Smaller
values first (S2).

Prediction operations. Prefer the operation with
the larger number of corner observations covered
by their arguments.

5.5 Example

For an example of the aggregation process refer to
figure 12. Six corners have been reconstructed from
the images (a). The indexing operations assign sev-
eral instances of building part primitives to each cor-
ner. Those with the best scores are shown in the
figure (b). Two merging operations combine the three
terminals in the front to one aggregate (c). The three
terminals and the one connector in the center are ag-
gregated in three connection operations to a closed
building hypotheses (d). Please note that there are
no corner observations at ground level, and therefore
the height parameter is undetermined. For visualiza-
tion a default value has been chosen.

5.6 Parameterized View Hierarchies

In order to verify the generated building hypothesis,
they are transformed into parameterized view hier-
archies. For each aerial image one parameterized
view hierarchy is generated. This hierarchical image
model is a modified aspect hierarchy [DPR92]. It con-
sists of four levels:

Level 1: This level contains all of the three dimen-
sional building hypotheses generated by the algo-
rithm described in section 5.4. Note that a building
hypothesis may still have undetermined parameters,
hence the name parameterized view hierarchy.



Figure 12: Aggregation: a) The reconstructed cor-
ners; b) Best fitting building aggregates after all in-
dexing steps; c) The three building aggregates in the
front are merged; d) Connection of these building ag-
gregate results in a closed building hypothesis.

Level 2: For each building hypothesis all topological-
ly different views are stored on this level. In contrast
to an aspect hierarchy, we assume a fixed eye posi-
tion defined by the known camera parameters of the
aerial images. ldeally this would lead to one view
per building hypothesis and image. But uncertainty
of the camera parameters and free parameters of
the building hypotheses make it necessary to do a
sampling of this parameter space, which may result
in more than one view.

Level 3: Each view is decomposed into its regions.
A region is either a (part of a) face projection or a
(part of a) shadow region.

Level 4: The lowest level consists of image features,
namely points, lines and regions, and their interrela-
tionships e.g. line parallelism.

The image model currently employed for hypothesis
verification utilizes a pinhole sensor model with weak
perspective projection of the visible object contours.
Knowledge about the date and time when the aerial
images were taken, the geographical position of the
building hypotheses, their geometrical appearance
and physical material of the different parts of a build-
ing allow the inclusion of lighting information. Cur-
rently we are investigating view representations which
employ a standard lighting model including ambient
and directed light and diffuse reflection. The analysis
of illumination and shadows allows the derivation of

3D object parameters and to test the consistency of
shadow-ground transitions and inter-surface intensity
ratios [Ste97].

6 VERIFICATION OF BUILDING HYPOTHESES

The previous processing step can produce different
possible 3D building hypotheses depending on the
ambiguity and the quality of the 3D corner observa-
tions. This is illustrated in figure 13. Furthermore, the

Figure 13: Generated building hypotheses for three
reconstructed roof corners. The corner on the bot-
tom right does not fit in completely with the T-shaped

building on the right. Thus, two more hypotheses
were generated neglecting the corner.

3D hypotheses are projected into the different pos-
sible 2D building views. Since free parameters may
remain in the hypotheses (e.g. the building width and
height in figure 13), the verification has to accomplish
two tasks: 1) From the different hypotheses select the
one which has most support in the image resp. reject
all hypotheses, if there cannot be found enough ev-
idence for any of them in the image. 2) Determine
the actual geometric extent of the 2D building views
in each image and estimate the unknown 3D building
parameters.

For the identification of the appropriate building view
the following circumstances have to be considered:

1.) Due to occlusions and noise it is likely that not
every part of a building view can be observed in the
image. For this reason, the verification will be done
on the lowest level of our building model hierarchy.
Building views are decomposed into point, line, and
region features.

2.) Because of possibly free parameters of the build-
ing views, the absolute coordinates and geometric
properties of image features (like e.g. line lengths,
area of regions) are not fixed in general. Above, due
to noise, shadows and low contrast the extracted im-
age features often are fragmented into smaller parts.



Therefore, no simple feature based matching, com-
paring the attributes of building view and image fea-
tures, can be done. Geometrical and topological re-
lations, however, are stable wrt. free building param-
eters. These relations are also more robust in case
of disturbances (for example, fragmented lines re-
main parallel). Therefore, the identification of an in-
stance of a building view in the image is done using
relational matching (cf. [HS93, V0s92]).

3.) The selection of the best fitting hypothesis resp.
the rejection of all hypotheses should be done in a
consistent and conclusive way. Therefore, the em-
ployed evaluation function for measuring the similar-
ity between a building view and the image data is
based on probability theory, which also provides an
objective interpretation of the reconstruction results.

4.) The evaluation function has to take into account
that building hypotheses both of the same and of
different complexity have to be compared (see fig-
ure 13). This is achieved by incorporating the com-
plexity of the building views into the evaluation func-
tion using the Minimum Description Length Principle
(MDL, cf. [Ris87]). The application of the MDL prin-
ciple requires optimally coded hypotheses. As an
approximation, a compact encoding scheme for the
relational representation of arbitrary building views
had to be developed.

The verification process is done in two steps: 1.) For
every building view find the best matching to the ex-
tracted image features (maximum likelihood estima-
tion). Reject every hypothesis for which too little ev-
idence was found in the image data. 2.) From all
remaining hypotheses determine the most probable
one (maximum a posteriori classification) and finally,
estimate the building parameters.

In the following, we first show which types of relations
are used for the relational representation of building
views. Then we describe the evaluation function for
measuring the similarity of relational structures and
explain how the needed probabilities are acquired.
Finally, it is shown how the evaluation function is ex-
tended to realize the MDL criterion.

6.1 Relational Representation of Building Views

The relational representation for 2D building views is
defined by a set of relations. The selection of the ap-
propriate relations is of utmost importance, because
of the following two considerations:

1.) The search for an instance of a building view is
done by finding the image structures having the max-
imum relational similarity with the building view. For
this task, the set of relations representing a build-
ing view has to be specific enough to discriminate
the image features that correspond to a building view
from image features of the background.

2.) Different building views must have different rela-
tional representations to allow unambigous classifi-
cation. This becomes particularly important for re-
sembling building views.

Furthermore, each type of relation has to satisfy the
following condition: As explained above, the geom-
etry of 2D building views may remain unfixed. The
relational representation of a building view, however,
should abstract from this variability and must remain
constant for every possible geometrical extent of this
building view. Therefore, the employed relations must
be stable within all possible geometric instantiations
of a given building view.

We have found out, that the following set of relations

meets these requirements (cf. [Kol99]):

Feature Adjacency: The feature adjacency relation
states that two image features have to be neigh-
boured. Due to the applied image model (cf. sec-
tion 4.1) only features of different type are assumed
to be neighboured, namely (point,line), (point,region),
and (line,region).

Line Parallelism: states that two line segments have
to be parallel. It is realized by computing the angle
difference between both lines and the test wether it
is smaller than a given threshold value.

Collinearity: This relation defines that a line and a
point feature will be considered collinear, iff the dis-
tance between the point and the straight line going
through the line segment is below a given threshold.

Lines on the same side: The Same_Side_Lines
(SSL) relation constrains two line segments to lie in
the same halfplane that is defined by the straight line
going through a third line segment. Because this is
a rather unusual relation, it is illustrated in figure 14.
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Figure 14: Definition of the (ternary) Same_Side_Line
relation. Left: Three line segments Ly, Ly and L,y
satisfy the Same_Side_Lines relation, iff L; and L,
lie in the same half plane that is spanned by the line
running through L,.r. Right: All Same_Side_Lines re-
lations of the top view of a saddle roof (Ly,..., Ly
denote the lines).

e

Distinctness of Features: This relation states that
two different building view features have to be as-
signed different extracted image features. This rela-
tion is generated for all pairs of features of a building
view.



In order to search for an instance of a building view in
the image, each view is transformed to its relational
description. Since building hypotheses are gener-
ated at runtime, the relational representation for each
building view is derived dynamically, too. For a more
detailed explanation refer to [Kol98, Kol99].

6.2 Relational Matching of a Building View with
the Extracted Image Features

Finding a relational matching between a building view
and the extracted image features amounts to the
search for an assignment of appropriate image fea-
tures to the features of the building view, such that
the image features satisfy the same relations that are
given between the building view's features.

This task defines a combinatorial problem and is com-
putationally hard to solve (see [HS79]). Thus, effi-
cient search techniques have to be applied to find the
best matching. We employ constraint solving tech-
niques — but with a special extension: Standard con-
straint solving methods [Mes89] demand that every
object part is observable and extracted by the image
segmentation, and that every constraint can be sat-
isfied. They fall, if only one of these conditions does
not hold. Due to occlusions, noise and segmenta-
tion errors this happens rather often. Therefore, the
standard constraint techniques were extended to al-
low the explicit handling of unobserved features and
constraint violations. These operational aspects are
explained in detail in [Kol98, KPC99]. In the follow-
ing, we will focus on the description of the evaluation
function, being used to measure the similarity of an
inexact matching between a building view hypothesis
and the extracted image features.

In literature several evaluation functions for measur-
ing the similarity resp. difference between two rela-
tional descriptions have been proposed (see [SH85,
BK88, V0s92]). Following the line of Boyer and Kak
[BK88] and Vosselman [Vos92] we employ an evalua-
tion function that is based on information theory. Re-
lational matching can be regarded as a communica-
tion problem, where the first relational description D,
is transmitted over a discrete, noisy communication
channel and is received as a somewhat distorted de-
scription D,. The similarity between the transmitted
structure D; and the received structure D- is mea-
sured by the mutual information I(D; ; D-) of both
structures. The mutual information is a measure for
the true information content that is transmitted over
the noisy channel (cf. [Ing71]).

Since a matching h assigns image features (on the
transmitter side) to features of the building view (on
the receiver side), it defines a channel. Vosselman
showed that finding the assignment h (the best chan-
nel) with the maximum mutual information is equal
to maximizing P(h|Dy, D), which means that h is

the most likely matching for the given relational struc-
tures.

Building views are represented by sets of relations.
Therefore, the mutual information between the build-
ing view and the image features is defined by the sum
of the mutual information of every single relation:

I,(Hypoth. ; Image) = Z In(rm; h(rm))  (3)
rm EHyp.

h(r,) means relation r,,(h(a,),...,h(a,)) between
the image features that are assigned by the match-
ing h. ai,...,a, denote the features of the building
view that are related by r,,. In the following h(ry,) will
be referred to as r;, denoting that this is a relation be-
tween extracted image features. Using this notation,
the mutual information for a relation on features of the
building view and the image is defined as

P(rilrm)
P(r;)

The conditional probability P(r;|r,,) models the char-
acteristics of the observation process. For instance,
probability P(r; = truelr,, = true) expresses the
chances that if relation r,, is true in the building view
it can also be observed between the corresponding
features in the image. Actually, we estimate these
probabilities from manually trained matchings. The a
priori probability P(r;) for observing image relation r;
can be derived from the a priori probability P(r,,) by
applying Jeffrey’s rule of total probability, getting

g, Plrilr)
23 Prirh) - Py

I(r;; rm) = log, [Bit]. 4)

I(ri; rm) [Bit]. (5)

Since every relation can only be true or false, the a
priori probability P(r,,) has the two values P(r,, =
true) and P(r,, = false). Hence, the conditional
probability P(r;|ry,) is given by a 2x2 table. Tables 1
and 2 show an example for the computation of the
mutual information.

T'm P(rm) P(ri|rm) rm = true ry, = false
true 0.17 r; = true 0.67 0.01
false 0.83 r; = false 0.33 0.99

Table 1: Example for a priori probabilities for building
view relation r,,, (left) and conditional probabilities of
image relation r; wrt. building view relation r,, (right).

I(ri;rm) rm = true Ty = false
r; = true 2.45 —-3.61
r; = false —-1.41 0.17

Table 2: Resulting mutual information calculated from
the probabilities shown in table 1 using equation 5.

From this example one can see that if the relation is
true in the building view and also holds for the cor-
responding image features, the matching will be sup-
ported by 2.45bit. Otherwise, if the relation cannot
be observed on the assigned image features, the re-
lation contradicts the matching by 1.41bit. In case



that one incident feature cannot be observed in the
image the relation is rated 0, because then it is unde-
fined and cannot support or contradict a matching.

In the following two sections it is described how the a
priori probabilities P(r,,) and the conditional proba-
bilities P(r;|r,,) are derived. Because of the different
likely visibility of roof parts and walls, relations are
subdivided into roof and wall relations having their
own probability distributions. A roof feature is either
a roof region or a line resp. a point that is incident
to a roof region. The information, which regions are
roof regions, is derived from the building model. Ev-
ery relation that is incident exclusively to roof features
belongs to the set of roof relations, otherwise to the
set of wall relations. For the sake of simplicity this
distinction is omitted in the following.

Computation of the a priori probabilities. P(r,)
expresses the probability that a relation between its
incident features is true for a given building view. It
is computed for each relation type from the ratio of
the number |R},| of existing relations r,, € R}, and
the number of possible relations |R,,| of the building
view:

1Bl

| B

1— P(ry,, =true). (6)

P(ry, = true)
P(ry,, = false) =

The number of possible relations is bounded by the
cardinality of the relation type. For a given set of
model features M the cardinality of an n-ary relation
R, over M is in the general case |R,,| = |M|", be-
cause every feature can be in relation to every other
(including itself). The number of possible relations
reduces, if the relation is symmetric or reflexive. For
example, if one line L is parallel to another line Lo,
[|(L1, L) represents the same relation as ||(Lo, Ly ).
Table 3 shows the properties and cardinalities of the
different employed relations.

Relation R, Arity| Properties Cardinality | R |
FAG(Line,Point) 2 Jirrefl., asymm. |L|-|P|
FAG(Region,Line) | 2 [irrefl., asymm. |F|-|L|
FAG(Region,Point)| 2 [irrefl., asymm. |F|-|P|
Line_parallelism 2 |refl., sym., transitive w
Collinearity 2 [irrefl., asymm. |L|-|P|
Same_Side_Lines | 3 |irrefl,, arg. 2 & 3 sym. w
#(Points) 2 [irrefl., symm. w
#(Lines) 2 |irrefl,, symm. W
#(Regions) 2 [irrefl,, symm. w

Table 3: Properties and cardinalities of the employed
relations. |P|, |L| and |F| denote the number of
points, lines, and regions of the building view. FAG
means the feature adjacency relation and # the dis-
tinctness relation.

Training of the conditional probabilities. The con-
ditional probability P(r;|r,) expresses the chances
that a model relation r,, can be observed between
corresponding features in the image. It is a measure
of the stability resp. robustness for each type of rela-
tions wrt. to noise and disturbing effects of the image
segmentation.

The probabilities are estimated from training matches
by building the ratios of the number of relations |R; |
that hold in the image and the number of given rela-
tions in the corresponding building views | R} |, where
|RF| < |R;|. Forinstance, P(r; = true|r,, = true) is
estimated by

+
| Bon

Since relations are only distinguished into true or false,
P(r;|ry,) is given as a 2x2-matrix for every relation
type (cf. table 1).

P(r; = true|ry, = true)

6.3 Finding the Most Probable Model

In the previous section it was shown how the most
likely matching between one building view and the
extracted image features is determined. The maxi-
mization of the mutual information always results in a
matching — indepent of the true resemblance of the
hypothesis and the image data. Therefore, a statis-
tical test is defined on the expected amount of infor-
mation needed for a reliable matching, ruling out all
definitely wrong hypotheses (for details see [Kol99,
Vos92)).

To conclude the verification step, it has to be deter-
mined which of the remaining building views will be
the most probable one. This is problematical, be-
cause in general the building views have not the same
complexity and thus may be represented by a differ-
ent number of relations. The maximum achievable
mutual information between the building views and
the image data increases with the complexity of a hy-
pothesis. Therefore, the matching scores (maximum
mutual information) of different hypotheses are not di-
rectly comparable.

To overcome this difficulty we employ the Minimum
Description Length Principle (MDL) which was intro-
duced by Rissanen in [Ris87]. The MDL criterion bal-
ances between the goodness of fit between hypothe-
sis and data on the one hand and the complexity of
the hypothesis on the other hand. In [Kol99] we show
that the matching scores between building views and
image data can be normalized, if from each score the
complexity of the corresponding building view is sub-
tracted. The complexity of a building view is mea-
sured by the size of the bit string that is needed to
fully encode the view. If the encoding scheme is opti-
mal in the sense that it achieves the minimum length,
due to the MDL principle the hypothesis with the high-
est score after subtraction of its coding length is the
most probable explanation of the data.



The mutual information between building view and
image data is defined by the mutual information of
the relations. Thus, a compact coding scheme for the
relational representation of building views is needed
as an approximation for the optimal encoding.

Coding of relational building views. Relational
structures can be represented by (hyper) graphs. In-
stead of using standard data structures for the encod-
ing of graphs like adjacency matrices and adjacency
lists (cf. [AHU87]), we apply a more efficient encod-
ing scheme that is inspired by the work of Cook and
Holder from the field of machine learning about au-
tomatic substructure discovery [CH94]. Permutation
series are used to encode the corresponding adja-
cency matrix of a given graph. Each row of the ad-
jacency matrix can be seen as a bit string of fixed
length n. When all rows are appended, we get one
string of length n? consisting of k£ 1's and n? — k 0’s.

Since there exist exactly (’f) different possibilities to
place the k 1's on the bit string, and these combina-
tions may be enumerated by an algorithm, we simply
store the number of 1's and the number of the permu-
tation to represent the graph. Thus, the coding length
is given by

n2

L(Graph) = logy(n + 1) + log, ( E > [Bit]. (8)

Graphs can be encoded even more compact if the
underlying relations possess structural properties like
symmetry, reflexivity, and transitivity (cf. table 3 on
page 15). In case of a symmetrical relation the adja-
cency matrix of the corresponding graph is mirrored
at the main diagonal. Therefore, it is sufficient to en-
code only the entries on one side of the diagonal. For
transitive relations, adjacent nodes in the correspond-
ing graph form cliques, that can be sparsed to mini-
mal spanning trees, reducing the number of 1's. To
restore the original structure, one only has to com-
pute the transitive closure of the encoded graph.

For the encoding of the relational representation of
building views not only the structural properties of
the different relations have to be considered, but also
the interdependencies of the relations. For instance,
the feature adjacency relation between regions and
points can be derived from the feature adjacency re-
lations between regions and lines in conjunction with
the feature adjacency relation between lines and
points. Thus, the former must not be included in the
calculation of the overall coding length.

Furthermore, only structures that lead to codes with
variable length have to be considered. Model infor-
mation with a constant coding length such as the num-
ber of points, lines, and regions of a building view
are the same for all different building views and can
be neglected in the classification. Table 4 shows the
different types of coding lengths that are taken into

account for the computation of the total code length
of building views. A more detailed explanation of the
coding scheme is given in [Kol99].

No. of points | P| 9 14 19
No. of lines | L| 12 21 27
No. of regions | F| 4 8 9
No. of relations

|FAG(region,line)| 17 34 42
|[FAG(line,point)| 24 42 54
|Line_parallelism| 11 30 53
|Same_Side_Lines| 17 34 38
QFac(region,line) 46.00 123.00 160.14
QEac(ine,point) 76.08 159.91 229.39
Qparallel 35.58 70.99 107.50
QssL 4.09 5.09 22.16
€2|r00f regions| 2.00 3.00 3.17
Total coding length 2 163.75 361.99 522.36

Table 4: Coding lengths for three building views of dif-
ferent complexity seen from the same perspective. All
coding lengths are given in Bit. As expected, the cod-
ing length increases with the complexity of the build-
ing view.

Example. Figure 15 on the next page shows an ex-
ample for the relational matching and classification
applied to a portion of an aerial image showing a
L-shaped hip roof house. Three hypotheses were
generated (simple, L-shaped, and T-shaped hip roof
house). The mutual information and the assigned im-
age features of the best matchings for all three build-
ing views are shown. As expected, the mutual infor-
mation increase as the building views become more
complex. On the bottom row one can see that the
subtraction of the coding length correctly normalises
the matching scores. The minimal distance between
the highest total score and the others is about 40 bits,
indicating a clear decision for the (correct) L-shaped
hip roof building hypothesis.

6.4 Final Parameter Estimation

A building hypothesis is successfully verified, when
not all generated hypotheses were rejected. In this
case the most probable building view is selected from
each image. The determined matchings assign ex-
tracted image features to the features of the building
views, fixing the possibly unknown geometric extents
of the 2D views. In order to estimate the parameters
of the underlying 3D building hypothesis, the obser-
vations (assigned extracted image features) for each
image are inserted into the building view specific pro-
jection equations, resulting in one nonlinear equation
system. Finally, the 3D building parameters are esti-
mated simultaneously using the same procedure as
described in section 5.3 on page 10.



Hypotheses (2D building views)

best R
matching h
I; (Hypot.; image) 85.2 224.24 237.56
Q 107.31 206.09 325.19
I, —Q —22.11 18.15 —87.63

Figure 15: Identification of the most probable model
for the given image. Each column shows a building
hypothesis, the extracted image features (highlighted
wrt. the best matching), the mutual information of the
best matching, the coding length of the building view,
and the final rating. As can be seen from the bottom
row, even from very noisy data the L-shaped hypoth-
esis correctly is selected.

7 CONCLUSIONS

In this paper we have shown how complex buildings
are automatically reconstructed from aerial images
using a component-based building model. The recon-
structed buildings are represented by parameterized
components, which beside the determined geometric
shape and location contain also the information about
the building type and the corresponding parameters.

The hierarchical structure of the building model re-
flects the four levels of semantic abstraction. It en-
ables the stepwise interpretation of the initially ex-
tracted image features. The coherent modeling in 2D
and 3D allows the verification of hypotheses at any
aggregation level.

Building specific knowledge is used in all stages of
the analysis to reduce the search space for hypo-
thesis generation, to rate the matchings between data
and model, and to increase the accuracy of the geo-
metric reconstruction. The most important benefits
wrt. the three main steps of the reconstruction pro-
cess are:

e The transition from image space to object space is
restricted to building corner types. Only corners that
actually appear as a part of an existing building part
primitive will be reconstructed.

e The construction of aggregates is restricted to sen-

sible building structures and sizes by the building
specific aggregation relations resp. parameter con-
straints.

¢ Building specific constraints of generated building
hypotheses are propagated down to the lowest level

of our hierarchy and are used to perform the rela-
tional matching of building view features with the im-
age features during the final verification. The knowl-
edge about the interdependence of different relation
types is taken into account to accomplish a compact
encoding of relational representations of building hy-
potheses, thus making the application of the MDL
principle for classification feasible.

The presented concept has been implemented and
shows promising results in suburban areas. It was
successfully applied to the international data set
which was distributed from the ETH Zirich for the
Ascona Workshop 1995 on Automatic Extraction of
Man-Made Objects from Aerial and Space Imagery
(cf. [GKA95, MBS94]). All buildings in the images
could be reconstructed. In contrast to other approach-
es, the type and the specific parameters like height,
roof height, width and length even of the complex
buildings were determined. The detailed results are
given in [FKL*98].
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