3rd Conference Active Safety through Driver Assistance

Safe, superior and comfortable driving -Market needs and solutions

Dr. Werner Struth - President, Chassis Systems Control

Chassis Systems Control

CC/P | 07.03.2008 | © Robert Bosch GmbH 2008. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Global trends

Legislation

- Safety legislation being tightened
- Enhanced passenger and pedestrian protection
- -> Safe driving

Politics & Environment

- "Global warming"
- Rising oil prices
- -> Energy efficiency

Technology

- Higher share of electronics/ software
- Driver assistance
- -> Superior driving

Chassis Systems Control

CC/P | 07.03.2008 | © Robert Bosch GmbH 2008. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Economy

- Steep growth in emerging markets
- -> Increased mobility
- Growing globalization
- -> Networks and standards growing

Society

- Ageing society
- Urbanization
- -> Comfortable driving

Consumer behavior

- Individualization
- -> Fun to drive

Accident research is used for evaluation and identification of vehicle motion systems on the way towards Vision Zero.

Chassis Systems Control

CC/P | 07.03.2008 | © Robert Bosch GmbH 2008. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Road safety in 2005 – a public health issue

	Registered motor vehicles [Mio]	Road accidents involving injuries [Mio]	Fatalities	Fatality risk per vehicle
	91.4	0.93	7,931	1 : 11,500
	268.2*	1.26	41,600	1: 6,400
	242.7	1.85	43,443	1: 5,600
	19.0	0.22	6,376	1: 3,000
*)	130.4	0.45	98,738	1: 1,300
	23.3	0.38	26,409	1: 880
۲	72.7*	0.44	94,968	1: 770

Sources: DfT- Transport Statistics GB 2006, IRTAD 2005, IATSS 2005, Yearbook 2005 Traffic Accidents China, Sindipeças 2006, DENATRAN 2005, Government of India: Department of road transport and highways 2007

Chassis Systems Control

CC/P | 07.03.2008 | © Robert Bosch GmbH 2008. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

* 2004

Evolution EU Road Fatalities 1990 - 2010

BOSC

CC/P | 07.03.2008 | © Robert Bosch GmbH 2008. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

Chassis Systems Control

CC/P | 07.03.2008 | © Robert Bosch GmbH 2008. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Chassis Systems Control

7

Safety functions - Examples

Side View Assist: US-based Blind Spot Detection

Monitoring of the adjacent and rear lanes
 Reduction of accident risk while changing lanes

Lane Departure Warning

→ Tracking the vehicle position within lane markings Early correction of driving mistakes

Night Vision and Night Vision Plus

→ Light detection with infrared sensitive camera Early recognition of possible dangers

Evasive Steering Support (ESS-T) → improve steerability and brake performance Optimal steering support to avoid collisions

Chassis Systems Control

ESS-T Function Description

BOSCH

Chassis Systems Control

Demonstration maneuver description

Test track plan

What the driver does:

- → Approaches the obstacle with a constant speed of 50 km/h
- Does not brake
- Performs an evasive maneuver to avoid the obstacle

What ESS-T does:

- Provides no support at all as long as the driver does not decide to perform an evasive maneuver
- Supports the driver during evasion by either:
 - Additional torque on the steering wheel (in case the driver has under-reacted)
 - **Corrective torque** on the steering wheel (in case the driver has over-reacted)

Chassis Systems Control

10

Demonstrations: over and under-reaction

1. Driver under-reacts (with ESS-T)

2. Driver over-reacts (with ESS-T)

→ ESS-T corrects the driver's insufficient input in case n°1 and the excessive reaction in case n°2. In both cases the right amount of steering torque is finally input. The obstacle is safely avoided.

Chassis Systems Control

CC/P | 07.03.2008 | © Robert Bosch GmbH 2008. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

1:

Demonstrations: over and under-reaction

1. Driver under-reacts (with ESS-T)

2. Driver over-reacts (with ESS-T)

→ ESS-T corrects the driver's insufficient input in case n°1 and the excessive reaction in case n°2. In both cases the right amount of steering torque is finally input. The obstacle is safely avoided.

Chassis Systems Control

Situation

- Potential rear-end collision
- Emergency braking is insufficient to avoid accident
 - Evasive maneuver must be undertaken
 - Driver inexperienced and stressed
- Driver likely over-reacts or under-reacts

Hazards

- Getting off road
- Incomplete manoeuvre (rear-end collision)
- High risk of even more severe crashes

ESS-T

- Optimal steering support to avoid front crashes
- Reduced risk of crashes and injuries

Chassis Systems Control

Chassis Systems Control

Semi-Autonomous Parking

Specifications

- Functional extension of Park Pilot and Parking Space Measurement
- Driver guided via HMI to follow a calculated trajectory
 - Coupled with steering angle sensor
 - Dynamic recalculation in case of false steering
- System consists of ECU and up to 10 ultrasound sensors (incl. 2 sensors with a detection range of approx. 4 m)

Customer benefits

- Easier and more convenient parallel parking
- Avoidance of long or unsuccessful parking attempts
- Available parking space is used more efficiently

Chassis Systems Control

Semi-Autonomous Parking

Park Steering Control

Chassis Systems Control

16

Chassis Systems Control

CC/P | 07.03.2008 | © Robert Bosch GmbH 2008. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Highlights of Vehicle Dynamics Management functions (VDM)

Dynamic Steering Torque Control (DST) → motivate the driver to more adequate steering *Improve the driver's steering reactions*

Dynamic Steering Angle Control (DSA)
improve yaw stability and straight running
Steering like a perfect driver

Dynamic Wheel Torque Control (DWT)
→ enhance agility, traction and stability
Emphasize the sporty characteristics of a vehicle

Dynamic Damper Force Control (DDF) → improve steerability and brake performance *Comfortable support for ESP*[®]

Chassis Systems Control

Principle of Dynamic Wheel Torque Control (DWT)

Comfortable interventions for improved agility without deceleration.

Chassis Systems Control

19

Dynamic Wheel Torque Control Reduced steering effort

Maneuver: 18 m slalom on high-µ at vehicle speed 55 kph Vehicle: Rear wheel drive vehicle of E segment, sporty ESP calibration

Significant agility improvements for quick steering wheel inputs

Chassis Systems Control

VDM Functional Integration of three Actuators

ESP[®] premium

DWT-D Dynamic Wheel Torque Control by Differential

Synergies between functions

- → Acceleration on split-µ
 - optimized traction by DWT-D
 - automatic counter-steering by new DSA function
- → Oversteering control w/ optimized distribution to actuators
 - increased intervention comfort
 - reduced brake interventions
 - reduced speed loss

Drive presentation at 2008 winter testing in Sweden

Chassis Systems Control

21

Multi Actuator Vehicle (MAV) Benefit: Optimal Distribution of Interventions

Significant speed and comfort benefit by networking ESP® + AFS + TV

Chassis Systems Control

22

Chassis Systems Control

CC/P | 07.03.2008 | © Robert Bosch GmbH 2008. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Vehicle Motion Management - VMM

Visions future networking of vehicle domains

BOSCH

Chassis Systems Control

Thank you very much for your attention

Chassis Systems Control

