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Abstract—From �rst principles, we show that two non-isotropic
radiators with a speci�c and uniquely determined far-�eld pattern
can be modeled consistently as two uncoupled isotropic radiators,
provided one is willing to accept a non-linear distortion of the
geometry. This shows that the, per se, non-physical model of un-
coupled isotrops can have physical meaning in correctly describ-
ing the behavior of special non-isotropic radiators. The necessary
distortion of geometry and its consequences are discussed.

I. Introduction

A model of a system of at least two radiators must take into
account the self- and mutual coupling of and between all radi-
ators, in order to be consistent with physical law [1]. Therefore,
considering two isotropic radiators as being uncoupled does
not correctly model the behavior of two real isotropic radia-
tors. Yet, such a model may still describe correctly the behav-
ior of a di�erent system: namely two non-isotropic radiators
cascaded with a lossless linear matching four-port. It turns out
that this is indeed possible, provided the far-�eld pattern of
the non-isotropic radiators is chosen properly. However, one
has to accept a certain discrepancy between the distances and
angles within the model of the uncoupled isotrops on the one
hand, and the real system of the non-isotropic and, of course,
coupled radiators, on the other.
It might be noted that the model of uncoupled isotrops is

widespread in signal processing and information theory (see,
e.g., [2]). Yet, that this model does not describe isotropic radia-
tors at all, but rather two non-isotropic radiators with distorted
geometry appears to have been overlooked. In the following,
we �rst summarize our key results before deriving them.

II. Main Results

Consider two non-isotropic radiators in free space as shown
in Figure 1. The radiated power Prad, and received power Prec
in a point P well in the far-�eld in direction θ are given by:

Prad ∼ i
H
AAiA , Prec ∼ ∣iTAa(θ)∣2, a(θ) = g(θ) [ 1

e−jkd cos θ
] .
(1)

Herein the superscripts T and H denote the transposition and
the complex conjugated transposition, respectively. Moreover,
iA = [iA,1 iA,2]T is the vector of complex excitation current
envelopes, and a(θ) the array steering vector, while d denotes
the separation between the two non-isotropic antennas, and∣g(θ)∣2 is their beam-pattern, which we assume depends on
θ only. As usual, k = 2π/λ denotes the wavenumber, with λ
being the wavelength. The real and symmetric matrix A is a
result of the mutual antenna coupling, and depends on the
beam-pattern ∣g(θ)∣2 and the distance d. Let us now assume
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Figure 1: Array of two non-isotropic radiators with lossless
decoupling 4-port, and point P in far-�eld.

that two ports of a loss-less linear decoupling four-port are
connected to the antennas’ excitation ports. By treating the
remaining two ports as the excitation ports of a virtual array
with complex excitation current envelopes i1 and i2, we can
show that (1) can be written equivalently as:

Prad ∼ i
Hi, Prec ∼ ∣iTa′(θ′)∣2 , a′(θ′) = [ 1

e−jkd
′cos θ ′ ] , (2)

where i = [i1 i2]T. Note that (2) describes two uncoupled and
isotropic radiators, which are placed a distance d′ apart, and
where the direction angle to the point P in the far-�eld is θ′,
for which holds the following non-linear relationship:

cos θ′ = 1

kd′
arg( e−jkd cos θ − ζ

1 − ζe−jkd cos θ ) , (3)

where ζ is only zero when d is an integer multiple of half the
wavelength, and otherwise is the non-zero root of

tan( 1 + ζ2
1 − ζ2 ⋅

kd

2
) + ζ + 1

ζ − 1
tan

kd

2
(4)

in the interval (−1, 1). Because θ′ must be real-valued, it fol-
lows from (3) that d′ cannot be allowed to be too small:

d′ ≥ τλ/2π, where 2 arctan(τ) = τ, and τ > 0, (5)

is necessary for θ′ to be real-valued for all real θ. Since τ > 2.33,
it follows that, in no circumstance, the distance d′ may drop
below 0.37λ. In other words, if d′ ≤ 0.37λ, there is no far-�eld
pattern ∣g(θ)∣2 to make (2) equivalent with (1). Thus, the right
far-�eld pattern ∣g(θ)∣2 either does not exist (when d′ is too
small), or otherwise, as it turns out, is uniquely given by:

∣g(θ)∣2 = 1 − ζ2

1 + ζ2
1 − ζ2

1 + ζ2 − 2ζ cos (kd cos θ) . (6)

In summary, two radiators with far-�eld patterns given by (6)
can be modeled as two uncoupled isotrops provided one obeys
the non-linear relationship (3) of geometric angles.
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III. Mutual Antenna Coupling

When there �ows an electric current with complex envelope
iA at the excitation port of a thin wire antenna, it excites, in
a point P well in the far-�eld, an electric �eld strength which
is proportional to ∣iA ⋅g(θ , ϕ)e−jkr/r∣ (see e.g., [3], page 135)
where r is the distance of P to the antenna (assumed large
compared to the wavelength and the size of the antenna) and
g(θ , ϕ) is an antenna-dependent function of the elevation and
azimuthal angles at which the antenna sees the point P. The
constant j is the imaginary unit, i.e. j2 = −1. In the following
we assume for simplicity, that g(θ , ϕ) = g(θ), so that there is
only dependence on one angle (θ). When two such antennas
are placed in the same orientation a distance d apart, and ex-
cited with possibly di�erent currents of complex envelopes iA,1
and iA,2, the resulting electric �eld is a superposition of the
two individual �elds. In the point P, the electric �eld strengthE is proportional to ∣iA,1 g(θ)e−jkr/r+ iA,2g(θ)e−jkr′/r′∣, where
r and r′ are the respective distances of P to the �rst and sec-
ond antenna. Thus,

E ∼ ∣g(θ)∣
r
⋅ ∣iA,1 + iA,2 r

r′
e−jk(r

′−r)∣ . (7)

When θ is de�ned as in Figure 1, then r′ ≈ r + d cos θ. Thus,
for r ≫ d there is r/r′ ≈ 1, and (7) turns into

E = α ∣g(θ)∣
r
⋅ ∣iA,1 + iA,2e−jkd cos θ ∣ = α ∣iTAa(θ)∣ /r, (8)

where we have introduced the antenna-speci�c constant factor
α, and the antenna excitation current vector iA = [iA,1 iA,2]T,
while the array steering vector a(θ) was already de�ned in (1).
Because the power density (power per unit area) in the far-
�eld is proportional to the square of the electric �eld strength
it holds for the power Prad which is radiated by the antenna:

Prad ∼ ∫
closed surface
around array
in far-field

E2dA. (9)

It is easiest to integrate over the surface of a sphere which
contains both antennas and which radius is large enough such
that its surface is well in the far-�eld. From (8) and (9) we
thus obtain

Prad ∼ iTAAi
∗
A , where A = ∫

π

0
a(θ)aH(θ) sin(θ)dθ , (10)

where ∗ denotes complex conjugation. Clearly, A = AH, so that
Prad is real-valued, as it must be. Thus, one can also write
Prad ∼ iHAA∗iA, or

Prad = R iHA [1 a
a 1
] iA , R > 0, (11)

with a properly chosen, real-valued and positive factor R > 0
of proportionality. By substituting the de�nition of a(θ) from
(1) into (10), it follows with the help of (11) that the mutual
coupling coe�cient, a, depends on the beam-pattern, ∣g(θ)∣2,

of the two individual antennas, as well as on their distance, d:

a =

π

∫
0

∣g(θ)∣2 cos (kd cos θ) sin(θ)dθ
π

∫
0

∣g(θ)∣2 sin(θ)dθ . (12)

Note that a is real-valued, and furthermore

−1 ≤ a ≤ 1, (13)

such that Prad ≥ 0 for every excitation vector iA is granted.

IV. Virtual Array of Uncoupled Isotrops

Now let us assume we connect the two ports of the antenna
array to two ports of a loss-less linear 4-port, which is de-
signed such that its other two ports then become electrically
decoupled and look like resistances of value R > 0. This setup
is shown in Figure 1. If we call i = [i1 i2]T the vector of the
port currents of these two decoupled ports, then the power
entering the 4-port through these two ports is given by:

Pin = R∣i1∣2 + R∣i2∣2 = R iH i. (14)

Since the 4-port is loss-less, this power must leave through the
other 2 ports and �ow into the antenna array. Assuming the
antennas have no heat-loss either, the power Pin is radiated:

Prad = Pin = R iH i = R iHA [1 a
a 1
] iA . (15)

This is a nice property, because the radiated power is propor-
tional to the squared Euclidean norm of i, for every distance
d of the antennas, and every beam pattern ∣g(θ)∣2. Because
the 4-port is linear, the relationship between i and iA is linear:

iA = Ti, (16)

where T ∈ CC2×2. Substituting (16) into (15), it follows that

T = [1 a
a 1
]−1/2Q , where QQH = QHQ = I2 . (17)

Recalling (8), the electric �eld strength in a point in the far-
�eld was given by E = α ∣iTAa(θ)∣ /r. Now it would be nice, if
the same electric �eld strength could be expressed by

E = α ∣iTa′(θ′)∣ /r, where a′(θ′) = γ [ 1

e−jkd
′cos θ ′ ] , (18)

where γ is a suitably chosen constant. Notice that the vector
a′ is the steering vector of an array of two isotropic radiators
which are spaced a distance d′ apart (which my be di�erent
from d). Moreover, the angle between the axis of this array of
isotrops and the radius vector to a point P in space is called
θ′, which may be di�erent from θ. Therefore, it is proper to
say that the decoupling 4-port presents us with a virtual array
of isotrops, that may require a distorted geometry in the sense
that the angle θ′ may be substantially di�erent from the angle
θ which we use for the real array of non-isotropic antennas in
Figure 1. Because of the action of the loss-less decoupling 4-
port, the two isotrops of this virtual array act as if uncoupled,
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independent of the value of the virtual distance d′, or even the
real distance d. In summary, we can say that the decoupling
network provides a virtual array which is mathematically ex-
actly described as an array of two uncoupled isotrops. In the
following we will see that this requires a special relationship
between the angles θ′ and θ, as well as a very speci�c beam-
pattern ∣g(θ)∣2 of the real individual antennas.

V. The Beampattern

Comparing (8) and (18), we see that iTAa(θ) = iTa′(θ′) must
hold (up to a unimodular factor, which one can absorb into
γ in (18)). With the help of (16) it therefore follows that

[ 1

e−jkd cos θ ] g(θ) = γT−T [ 1

e−jkd
′ cos θ ′ ] . (19)

To simplify the notation, let us de�ne:

φ = −kd cos θ , µ = −kd′cos θ′, φ, µ ∈ RR . (20)

Then, (19) is re-written as:

[ 1
e jφ
] g̃(φ) = [A B

C D
]

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
γT−T

[ 1
e jµ
] , (21)

where we have written the matrix γT−T in terms of its four
components (A, B, C, and D), and where

g̃(φ) = g (arccos (− φ/(kd))) . (22)

By dividing the second line of (21) by its �rst line, we see that:

∣C + De jµ
A+ Be jµ

∣ = 1, ∀µ ∈ RR . (23)

This must hold for every real-valued µ. Let us write

C + De jµ

A+ Be jµ
= C

A
⋅
1 + ηe jµ

1 + ξe jµ
, where η = D/C , ξ = B/A. (24)

In order that (23) can hold true, we must have

∣ 1 + ηe jµ
1 + ξe jµ

∣ = K = const, ∀µ ∈ RR ,

which can be written alternatively as:

1 + ∣η∣2 + 2∣η∣ cos(µ + angle(η)) =
K2 (1 + ∣ξ∣2 + 2∣ξ∣ cos(µ + angle(ξ))) , ∀µ ∈ RR .

(25)

Since the cosine terms on each side of the equality must cancel,
we must have angle(η) = angle(ξ), and ∣η∣ = K2 ∣ξ∣. Substitut-
ing these relationships into (25), we �nd that

K4
− K2 (1 + ∣η∣2) + ∣η∣2 = 0, (26)

must hold. This is a quadratic equation in K2, which yields the
two solutions: K2

1 = 1, and K2
2 = ∣η∣2. Recalling ∣η∣ = K2 ∣ξ∣, and

angle(η) = angle(ξ), there are, thus, two possible relationships
between η and ξ, such that (25) holds true: either η = ξ, or
η = 1/ξ∗. The �rst solution means that B/A = D/C. However,
this implies that the two rows of γT−T are linearly dependent.

Thus, γT−T cannot be inverted and the electric current trans-
formation matrix T is incomputable. Therefore, the only feasi-
ble solution is given by η = 1/ξ∗. Using this in (24) we �nd:

C + De jµ

A+ Be jµ
= C

Aξ∗
⋅
ξ∗ + e jµ

1 + ξe jµ
. (27)

As ∣ξ∗ + e jµ ∣/∣1 + ξe jµ ∣ = 1, for all µ, (23) requires:
C + De jµ

A+ Be jµ
= e jα ⋅ ξ∗ + e jµ

1 + ξe jµ
, where α ∈ RR , ξ ∈ CC . (28)

From this follows that

γT−T = A[ 1 ξ
ξ∗e jα e jα

] , where A ∈ CC (29)

is an arbitrary complex constant. Now let use de�ne:

ζ = ξ e−jα. (30)

Because ∣ζ ∣ = ∣ξ∣, the Gramian of (29) computes to

∣γ∣2T−TT−∗ = ∣A∣2 (1 + ∣ζ ∣2) [ 1 2ζ/(1+ ∣ζ ∣2)
2ζ∗/(1 + ∣ζ ∣2) 1

] .
(31)

On the other hand, from (17), we obtain

∣γ∣2T−TT−∗ = ∣γ∣2 [ 1 a
a 1
] . (32)

By comparing (31) with (32), it follows that

ζ ∈ RR , ∣γ∣2 = ∣A∣2 (1 + ζ2) , a = 2ζ

1 + ζ2
. (33)

The last equation for a is going to play a key role later, because
it relates the logical parameter ζ with the physical parameter
a (the mutual coupling coe�cient). From (29), (30) and (33),
the electric current transformation matrix T follows as:

T = e jβ
√
1 + ζ2

1 − ζ2
[ 1 −ζe−jα

−ζ e−jα
] , where α, β, ζ ∈ RR . (34)

Note from (34) that the matrix T does not depend on the pa-
rameter A from (29). Therefore, we may set it to a convenient
value. It will become clear later that

A = 1√
1 + ζ2

, (35)

is a reasonable choice. With (33) this implies that

∣γ∣ = 1. (36)

With (29), (30) and (35), we can re-write (21) as:

[ 1
e jφ
] g̃(φ) = 1√

1 + ζ2
[1 ζ
ζ 1
] [ 1

e j(µ+α)
] , where α, ζ ∈ RR .

(37)
When we divide the second line of (37) by its �rst line, we
obtain: e jφ = (ζ + e j(µ+α))/(1 + ζe j(µ+α)). Thus,

e j(µ+α) = e jφ − ζ

1 − ζe jφ
. (38)
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Figure 2: Numerical solution of (42).

The �rst line of (37) therefore becomes:

g̃(φ) = 1√
1 + ζ2

⋅
1 − ζ2

1 − ζe jφ
. (39)

Recalling (20) and (22), it follows from (39):

∣g(θ)∣2 = 1 − ζ2

1 + ζ2
⋅

1 − ζ2

1 + ζ2 − 2ζ cos (kd cos θ) . (40)

This is the desired beam pattern of each of the real individual
antennas. It depends, besides on kd, on the logical parameter
ζ . It has the property that it does not change when ζ is replaced
by 1/ζ. This property will come in handy later and is a conse-
quence of our choosing the value of A according to (35). Now
let us substitute (40) into (12) and carry out the integrations.

a = 1 + ζ2

2ζ
+

(1 − ζ2) kd
4ζ arctan ( ζ+1ζ−1 tan

kd
2
) . (41)

Note that (41) does not depend on the speci�c choice of A
that we have made in (35). This is because A only enters as
a scaling factor into the beam-pattern ∣g(θ)∣2, and therefore
cancels out in (12). The result (41) is therefore independent of
our particular choice of A in (35). Now (41) is not the only
equation we have for a. In (33) we have already obtained an-
other one. By equating the right hand side of the right-most
equation in (33) with the right hand side of (41), we �nd the
key equation for obtaining the possible values for ζ :

tan( 1 + ζ2
1 − ζ2

⋅
kd

2
) + ζ + 1

ζ − 1
tan

kd

2
= 0. (42)

Because tan(−x) = − tan(x), it is true that replacing ζ by 1/ζ
in (42) leaves the equation unchanged. Consequently, if ζ is a
solution of (42), then so is also 1/ζ . Because the beam-pattern
(40) is also not changed by replacing ζ with 1/ζ , both solu-
tions for ζ are equivalent! Without loss of generality, we may
therefore restrict the range of ζ to:

−1 ≤ ζ ≤ 1. (43)

A trivial solution is ζ = 0. However, from (33) we see that this
implies that the mutual coupling coe�cient a = 0. In general,
however, the mutual coupling coe�cient is not going to be
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Figure 3: Beam-pattern of the real antennas.

zero, so that we need to look for another solution of (42) in
these cases. Fortunately, there exists another solution but it
appears to refuse analytical treatment, except in certain special
cases. For example, if kd = π/4, one �nds that ζ = 1/√2, ex-
actly. In general though, one must resort to numerical compu-
tation, the result of which is displayed in Figure 2 as a function
of the electrical distance d/λ between the two real antennas
(recall k = 2π/λ with λ being the wavelength). Note that ζ = 0
only happens when d is an integer multiple of half the wave-
length, or in the limit as d/λ→∞. As the electrical distance
between the real antennas approaches zero, the value of ζ ap-
proaches unity from below. For small values of kd, one can
�nd the asymptotic solution by guessing from Figure 2 that

ζ → 1 − kd/τ, as kd → 0, (44)

with a suitably chosen parameter τ which one �nds by substi-
tuting 1 − kd/τ for ζ in (42) and taking the limit kd → 0:

tan(τ/2)− τ = 0. (45)

Despite appearance, it is di�cult to solve for τ. Numerically,

τ = 2.33112237041442261366. . . . (46)

Figure 3 shows the beam-patterns ∣g(θ)∣2 which result from
using the solutions ζ from Figure 2 for di�erent distances d in
(40). For d being an integer multiple of half the wavelength,
the pattern is isotropic. A narrower spacing than half the wave-
length makes the beam-pattern peak in the front-�re direction
(θ = 90○). For larger spacing than λ/2, the beam-pattern have
got several peaks.
The directivity D of the beam-pattern is de�ned as the ratio

of the maximum value of ∣g(θ)∣2 and its average value over
the unit sphere:

D = max
θ
∣g(θ)∣2

1
4π ∫

2π
ϕ=0 ∫

π
θ=0 ∣g(θ)∣2 sin(θ)dθdϕ . (47)

With ζ being a solution of (42) it can be shown that

D = max
θ
∣g(θ)∣2 . (48)

This shows once more that our choice of A in (35) is conve-
nient because it scales the beam-pattern just in the right way
to show the directivity in its maximum value.
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Figure 4: The minimum allowable separation d′min/λ of the
two virtual isotrops. In no circumstance can d′ be allowed to
be smaller than 0.371λ.

VI. Distorted Geometry

Now that we know the beam-pattern of the real antennas, let
us come back to the question of the relationship between the
elevation angle θ of the real array, and the virtual elevation
angle θ′ that we must use in (18) such that it yields the same
result as (8). We can �nd this relationship immediately when
we substitute (20) into (38) and solve for θ′:

θ′ = arccos( α

kd′
+

j

kd′
ln( e−jkd cos θ

− ζ

1 − ζe−jkd cos θ
)) , (49)

where α ∈ [−π, π]. Note that:

j ln( e−jkd cos θ
− ζ

1 − ζe−jkd cos θ
) = −angle( e−jkd cos θ

− ζ

1 − ζe−jkd cos θ
) ∈ [−π, π].

(50)

Because θ′ must be real-valued for all 0 ≤ θ < π, the argument
of the arccos function cannot be allowed to go beyond unity
in magnitude. Hence,

α +max
θ

j ln ( e−jkd cos θ−ζ
1−ζe−jkd cos θ

)
kd′

≤ 1, (51)

and also

α +min
θ

j ln ( e−jkd cos θ−ζ
1−ζe−jkd cos θ

)
kd′

≥ −1. (52)

For each angle θ there is another angle θ̃, for which the co-
sine function returns a value of the same magnitude but of
opposite sign. From (50) it is clear that changing the sign of
the cosine function results in a complex conjugation (for ζ
is real-valued) and thus in a change of the sign of the angle.
Therefore,

max
θ

j ln( e−jkd cos θ
− ζ

1 − ζe−jkd cos θ
) = −min

θ
j ln( e−jkd cos θ

− ζ

1 − ζe−jkd cos θ
) .
(53)

Using this result in (52) leads with the help of (51) to

kd′ ≥ ∣α∣ +max
θ

j ln( e−jkd cos θ
− ζ

1 − ζe−jkd cos θ
) . (54)
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Figure 5: The relationship between the elevation angles per-
ceived by the physical array and the virtual array for d = λ/8
and d′ = 3λ/8.
While the separation d′ of the virtual isotrops is a logical pa-
rameter that can be set rather freely and independently from
the separation d of the physical antennas, we see from (54)
that there is a minimum allowable separation of the virtual
isotrops. In order to have this minimum allowable separation
as small as possible, one should choose

α = 0, (55)

resulting in

kd′ ≥ max
θ

j ln( e−jkd cos θ
− ζ

1 − ζe−jkd cos θ
) , (56)

and

θ′ = arccos( j

kd′
ln( e−jkd cos θ

− ζ

1 − ζe−jkd cos θ
)) . (57)

Now it turns out that for kd ≥ π, the maximum in (56) is π,
such that then kd′ ≥ π. In the case kd < π, the maximum is
less than π and it occurs at θ = 0. In total, we �nd:

d′ ≥ d′min , (58)

where

d′min =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

j

k
ln( e−jkd − ζ

1 − ζe−jkd
) for kd < π,

π

k
for kd ≥ π.

(59)

The value of ζ which must be used depends on kd and can be
taken from Figure 2. Figure 4 shows the resulting minimum
allowable separation d′min/λ of the virtual isotrops as a func-
tion of the separation d/λ of the physical antennas. As long
as the physical antennas are spaced at least half a wavelength
apart, the virtual isotrops’ separation can be anything larger
than or equal to half a wavelength. However, as the physical
array becomes smaller than half a wavelength, we see that d′min

begins to drop monotonically approaching a �nite value as
d/λ → 0. This value is obtained by using (44) in (59) and then
taking the limit kd → 0:

lim
kd→0

j ln( e−jkd − 1 + kd/τ
1 − (1 − kd/τ)e−jkd ) = π − 2 arctan

1

τ
= τ. (60)
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The last equality follows with the help of (45) and the fact that
1/ tan(x) = tan(π/2 − x). Therefore, we obtain

lim
kd→0

d′min = τ

2π
λ ≈ 0.371λ. (61)

In any circumstance, the size d′ of the virtual array of isotrops
must stay above about 0.371λ, while the true physical array may
become arbitrarily small. Note that if one decides to make the
virtual array of isotrops nevertheless smaller than 0.371λ, then
some of the angles θ which the physical array sees would have
no real representation for the virtual array, because some real-
valued θ would be mapped by (57) to imaginary-valued θ′.

Figure 5 shows an example of the angle transformation (57)
which is obtained from setting d = λ/8, and d′ = 3λ/8. Note
that the angles θ ∈ {0, 90○, 180○} are mapped onto themselves.
Yet, two lines which make an angle of ∆θ = 10○ around θ = 90○
from the physical array’s point of view, will make an almost
twice as large angle of ∆θ′ ≈ 19○ from the viewpoint of the vir-
tual array of isotrops. This follows from the higher than unity
slope of θ′ with respect to θ around θ = 90○, as is apparent
in Figure 5. On the other hand, if the physical array sees the
same angle spread of ∆θ = 10○ centered around θ = 160○, the
virtual array of isotrops will now see a much smaller angle
spread of about ∆θ′ ≈ 6.2○which is centered around θ′ ≈ 168○.
This means that the virtual array of isotrops faces a distorted
geometrical situation compared to the real physical array. Both
the angle spreads and the center angles are substantially dif-
ferent for the physical and the virtual array.

VII. Summary and Discussion

We have started with an array of two physical non-isotropic
antennas which are separated by a distance d and each have a
very speci�c beam-pattern given in (40), and which we repeat
for convenience:

∣g(θ)∣2 = 1 − ζ2

1 + ζ2
⋅

1 − ζ2

1 + ζ2 − 2ζ cos (kd cos θ) . (62)

The factor ζ also depends on d and has to be chosen according
to Figure 2. Examples of the resulting beam-patterns are dis-
played in Figure 3. Due to their spatial proximity the antennas
experience electromagnetic mutual coupling. This leads to the
fact that the radiated power is computed according to (11) as

Prad = R iHA [1 a
a 1
] iA , R > 0,

where the mutual coupling coe�cient, a, depends both on the
separation d and the beam-pattern ∣g(θ)∣2 of the antennas,
and is given explicitly in (12). The electric �eld strength E in
a point in the far-�eld and the received power is given by (8):

E = α ∣iTAa(θ)∣ /r, Prec ∼ ∣iTAa(θ)∣2 , (63)

where the last equation assumes that the received power is
proportional to the square of the electric �eld strength, as it
usually is in the far-�eld. The array steering vector a(θ) is
de�ned in (1) as

a(θ) = g(θ) [ 1

e−jkd cos θ
] .

Now the antenna excitation ports are decoupled by means of
a loss-less linear decoupling 4-port. Calling i the excitation
current vector at the decoupled ports, the radiated power is
now given by (15) as

Prad = R iH i. (64)

Moreover, the electric �eld strength and received power can
be given equivalently to (63) as

E = α ∣iTa′(θ′)∣ /r, Prec ∼ ∣iTa′(θ′)∣2 , (65)

where the new steering vector is given from (18) and (36) as:

a′(θ′) = [ 1

e−jkd
′ cos θ ′ ] . (66)

The equations (64), (65) and (66) describe a virtual array of
two uncoupled isotropic radiators separated by the distance d′.
However, in order that (65) is indeed identical with (63) one
must accept a non-linear distortion of the geometry between
the physical and the virtual array according to (57):

θ′ = arccos( j

kd′
ln( e−jkd cos θ

− ζ

1 − ζe−jkd cos θ
)) .

The factor ζ is the same as the one used in the beam-pattern
(62) and must be taken according to Figure 2. The e�ect of ge-
ometric distortion is visualized in Figure 5. One consequence
of this unavoidable distortion of geometry is that in every cir-
cumstance, the distance d′ of the virtual array of uncoupled
isotrops must be chosen larger than or at least equal to a well-
de�ned lower limit:

d′ ≥ τ

2π
λ ≈ 0.371λ. (67)

We remark that this constraint on the separation of the vir-
tual isotrops opens up a path to a novel explanation of the
mutual coupling e�ects on multi-antenna system performance.
Recently, it was shown that the presence of mutual coupling
in compact antenna arrays can lead to surprisingly good multi-
streaming capabilities [4], [5], high diversity [6] and a large
region of achievable rates in a Gaussian multiple access sce-
nario [7], despite the close proximity of the antennas inside
the arrays. Using the just developed model of a virtual array of
uncoupled isotrops, it is easy to understand these results quali-
tatively. At �rst, one does not have to worry about mutual cou-
pling, for the virtual array’s isotrops are uncoupled. However,
because of (67) we see that the aperture d′ of our virtual array
must be quite substantial even though the real physical array
which it models might be arbitrarily compact. The relatively
large size d′ ≥ 0.371λ of the virtual array makes it understand-
able that multi-streaming, diversity and multi-user operations
may well be carried out perfectly despite the compact antenna
spacing of the real physical system which is being modeled. In
other words, the developed model of a virtual array of uncou-
pled isotrops provides a novel geometrical interpretation of the
e�ect of mutual antenna coupling by representing the latter by
constraints on the virtual antenna separation and by a certain
distortion of geometrical angles.
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Let us now look into an illustrative example. The physical
array’s antennas should be placed the distance d = λ/8 apart:

d = λ/8 Ð→ ζ = 1/√2.
Using this value for ζ in (62), we obtain the beam-pattern that
each of the physical antennas must have:

∣g(θ)∣2 = 1

9 − 6
√
2 cos ( π

4
cos θ) .

The pattern has its maximum in front-�re direction (θ = π/2).
Its value equals the directivity

D = 1

9 − 6
√
2
≈ 1.94,

or 2.88dB. Hence, each of the individual physical antennas
must produce a 1.94 times larger power density in the front-
�re direction, than an isotropic radiator would if it radiated
the same power. On the other hand, in the end-�re direction
(θ ∈ {0, π}) exactly 1/3 of the power density is generated com-
pared to isotropically radiating the same power, that is, about
4.77dB less. Using the value ζ = 1/√2 in (33), we obtain for
the mutual coupling coe�cient a = 2√2/3 ≈ 0.943. Now let us
turn to the virtual array of uncoupled isotrops, which is ac-
cessed by the two decoupled ports of the decoupling 4-port.
Setting β = π/2, we obtain with (55), (16) and (34) the electric
current transformation:

[ iA,1
iA,2
] = j [

√
6 −
√
3

−
√
3
√
6
][ i1

i2
] .

If we make i2 = 0, then iA,1 = j√6i1, and iA,2 = −j√3i1, such
that both physical antennas are driven with di�erent currents.
Together with the carefully chosen beam-pattern of the indi-
vidual physical antennas, this results in an exact isotropic radi-
ation. Driving only one of the decoupled ports with a non-zero
current, results in isotropic radiation. This follows immediately
from (65) and (66). What is the spacing of the virtual anten-
nas? From (59), we see that d′min = 3⁄8 λ. We choose for our
virtual array of isotrops this minimum separation

d′ = 3λ

8
.

Note that the real physical array is then exactly 3 times smaller
than our virtual array of uncoupled isotrops. The virtual array,
however, not just has di�erent size from the physical array, it
also has a distorted geometry, because it perceives the angles
di�erently than the physical array. The mapping between the
physical array’s elevation angle θ, and the virtual array’s eleva-
tion angle θ′ can be evaluated from (57). Figure 5 shows this
relationship. The virtual array is more sensitive for directions
around the front-�re, because

dθ′

dθ
∣
θ=π/2

= 1

9 − 6
√
2
≈ 1.94.

It is interesting enough, that this is exactly the same number
as the maximum directivity of each individual element of the

physical array. In the end-�re direction, the virtual array is
less sensitive:

dθ′

dθ
∣
θ=0

= 1√
3
≈ 0.577.

A small angle-spread in the real-world is perceived by the vir-
tual array by the factor 1.94 larger when it comes from the
front-�re direction, while the same angle-spread in the real-
world is perceived by the factor

√
3 smaller by the virtual

array when it comes from the end-�re direction. This is why
there is an unavoidable distortion of the geometric picture of
the propagation channel. Let us now try to excite the virtual
array. For example, we choose:

i = [
√
3

j
√
6
]A.

The decoupling 4-port converts this into the excitation of the
physical array:

iA = 3A [(1 + j)
√
2

−2 − j
] .

How much power is radiated?

Prad = R iH i = R iHA [1 2
√
2/3

2
√
2/3 1

] iA = R ⋅ 9A2.

Now let us see how much electric �eld strength is produced
in a distance r in the far-�eld in the direction θ = 45○, as seen
by the physical array. From the virtual array’s point of view,
the angle is θ′ ≈ 29.14○. The virtual array’s steering vector then
becomes:

a′(29.14○) = [ 1

e−j(3π/4) cos 29.14
○ ] ≈ [ 1

e−j2.05798
] .

The square of the electric �eld strength then computes as

E2 = ∣α∣2 ∣iTa′(29.14○)∣2 /r2 ≈ 16.5∣α∣2/r2 .
Calculating the same thing from the physical array’s viewpoint,
we need to now the steering vector in the direction θ = 45○:
∣g(45○)∣2 ≈ 0.55867, a(45○) ≈ [ 1

e−j(π/4) cos 45
○ ]√0.55867.

Then the square of the electric �eld strength computes as

E2 = ∣α∣2 ∣iTAa(45○)∣2 /r2 ≈ 16.5∣α∣2/r2 .
As it should, the result is the same as when computed from
the virtual array’s point of view.

VIII. The Loss-LessDecoupling 4-Port

Up to now it was just assumed that a loss-less 4-port really
exists, which will produce the right electric current transfor-
mation matrix T from (34), which becomes with (55):

T = e jβ
√
1 + ζ2

1 − ζ2
[ 1 −ζ
−ζ 1

] , (68)

where β ∈ RR, and ζ is taken from Figure 2. Furthermore, it
has to decouple the physical antenna array’s excitation ports
such that they look as individual resistors of value R. The
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ports of the physical antenna array can be described by their
impedance matrix ZA , such that

uA = ZA iA , (69)

where uA is the vector of the voltages that appear across the
physical array’s excitation ports. Assuming the antennas are
loss-less, the power which enters the antenna excitation ports
is radiated, hence:

Prad = Re{uH
A iA} = iHA Re{ZA} iA . (70)

This comes about because antennas are reciprocal which re-
quires that ZA = ZT

A . Comparing (70) with (11) it follows that

Re{ZA} = R [1 a
a 1
] , (71)

where a is the mutual coupling coe�cient. Let the decoupling
4-port also be described by an impedance matrix:

[ u
uA
] = j[A BT

B C
] [ i

−iA
] , (72)

where u and i are voltage and current vectors of the two de-
coupled ports, and the matrices A, B and C are real-valued,
with A and C also being symmetric. Thus, the decoupling 4-
port is reciprocal and lossless [8]. From (69) and the second
row of (72) we have with iA = Ti that

T = j (ZA + jC)−1B. (73)

Now let us choose

C = −Im{ZA} , B = bRe{ZA}1/2 , (74)

where b ∈ RR ⋅√V/A, is a constant to be determined. Substi-
tuting (74) into (73), we �nd:

T
2 = −b2Re{ZA}−1 = −b2

R

1

1 − a2
[ 1 −a
−a 1

] , (75)

where the last equality comes with the help of (71). With the
right-most term of (33) it follows:

T
2 = −b2

R

1 + ζ2

(1 − ζ2)2 [1 + ζ
2
−2ζ

−2ζ 1 + ζ2
] . (76)

On the other hand, from (68) we must have

T
2 = e2jβ 1 + ζ2

(1 − ζ2)2 [1 + ζ
2
−2ζ

−2ζ 1 + ζ2
] . (77)

Comparing (76) with (77) then shows that

e2jβ = −b2
R
, (78)

must hold true. Because b2 and R are real-valued and non-
negative, it follows

β = ±π/2, b = ±√R. (79)

Thus,

T = ±j
√
1 + ζ2

1 − ζ2
[ 1 −ζ
−ζ 1

] . (80)

From the �rst line of (72) and iA = Ti, it follows with (73)
that

u = (jA+ BT (ZA + jC)−1B) i. (81)

Substituting (74) with b = ±√R from (79) then yields

u = (jA + R I) i, (82)

where I is the identity matrix. In order to obtain u = Ri, and
thereby ensure that the ports are decoupled, all we have to do
is to set:

A = O, (83)

where O denotes the all zeros matrix. Therefore, with A = O,
B = ±√RRe{ZA}1/2, and C = −Im{ZA}, the parameters of the
reciprocal and loss-less matching 4-port are de�ned. It imple-
ments both the desired electric current transformation matrix
(80), and decouples the output ports making them look like
positive resistances of value R.

IX. Conclusion

We have analyzed to what extent the model of an array of two
uncoupled isotropic radiators can make physical sense. This is
indeed possible in the sense of a virtual antenna array which
is obtained from a real physical array and a loss-less decou-
pling network. For this to work out, it is necessary that 1) the
antennas of the real physical array are not isotrops at all, but
have a carefully chosen beam-pattern which we have derived
in closed-form, 2) the model distance between the antennas
of the virtual array is chosen large enough so that it is kept
above a well-de�ned lower bound of about 0.371 times the
wavelength, and 3) one has to accept a distortion of the geom-
etry between the real physical array and the virtual array of
uncoupled isotrops, which leads to a non-linear relationship
between the geometrical angles that are observed by the phys-
ical and the virtual array, respectively. These constraints on
separation and distortion of angles makes for a novel geomet-
rical representation of the e�ect of mutual antenna coupling.
This geometrical representation makes it easy to qualitatively
understand the e�ect of mutual coupling on multi-streaming,
diversity and multi-user performance of compact antenna ra-
dio communication systems.
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