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Abstract. In this paper, we present the findings of the Augmented Mul-
tiparty Interaction (AMI) investigation on the localization and tracking
of head positions in meetings. The focus of the study was to test and eval-
uate various multi-person tracking methods using a standardized data set
and evaluation methodology.

1 Introduction

One of the fundamental goals of the AMI project is to formally and consistently
evaluate tracking methods developed by AMI members using a standardized
data set and evaluation methodology. In a meeting room context, these tracking
methods must be robust to real-world conditions such as variation in object
appearance and pose, unrestricted motion, changing lighting conditions, and
the presence of multiple self-occluding objects. In this paper, we present an
evaluation methodology for gauging the effectiveness of various 2D multi-person
head tracking methods and provide an evaluation of the four tracking methods
developed under the AMI framework in the context of a meeting room scenario.

The rest of this paper is organized as follows. In section 2, we describe the
method of evaluation. In Section 3 we briefly describe each of the tracking meth-
ods. In Section 4 we present and discuss the results of the evaluation, and finally,
in Section 5 we provide some concluding remarks.

2 Evaluation Methodology

To objectively compare the tracking models, we must first define a common
evaluation procedure and agree upon a common data set. To this end, we have
adopted an evaluation procedure and set of performance measures as defined in
[1], and collected meeting-room video data (the AV16.7.ami data corpus).

2.1 Measures and Procedure

In [1], the task of evaluating tracker performance was broken into evaluating
two tasks: predicting the correct number and placement of objects in the scene
(referred to as configuration), and checking the consistency with which each
tracking result (or estimate, E) assigns identities a ground truth object (GT )
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Fig. 1. The four types of configuration errors.

over its lifetime (referred to as identification). Several metrics are defined below
to evaluate these tasks. Each of these measures depends on information derived
from the fundamental coverage test.
2.1.1 Coverage Test. The coverage test determines if a GT is being tracked by
an E , if a E is tracking a GT , and reports the quality of the tracking result. For
a given tracking estimate Ei and ground truth GT j , the coverage test measures
the overlap between the two areas using the F-measure Fi,j [2]

Fi,j =
2αi,jβi,j

αi,j + βi,j

αi,j =
|Ei ∩ GT j |

|GT j |
βi,j =

|Ei ∩ GT j |

|Ei|
(1)

where recall (α) and precision (β), are well-known information retrieval mea-
sures. If the overlap passes a fixed coverage threshold (Fi,j ≥ tc, tc = 0.33), then
it is determined that Ei is tracking GT j .
2.1.2 Configuration. In this context, configuration means the number, the
location, and the size of all objects in a frame of the scenario. The result of a
tracking approach is considered to be correctly configured if and only if exactly
one Ei is tracking each GT j . To identify all types of errors that may occur, four
configuration measures are defined:

– FN - False negative. A GT is not tracked by an E .
– FP - False positive. An E exists which is not tracking a GT .
– MT - Multiple trackers. More than one E is tracking a single GT . Each

excess E is counted as an MT error.
– MO - Multiple objects. An E is tracking multiple GT s. An MO error is

assigned for each excess GT .

An example of each error type is depicted in Fig. 1, where the GT s are marked
with green colored boxes, the Es with red and blue. To assess the overall con-
figuration, one can measure the difference between the number of GT s and the
number of Es.

– CD - Configuration distance. For a given frame,the difference between the
number of Es (N t

E) and GT s (N t
GT ) normalized by the number of GT s (N t

GT ).
Specifically,

CD =
N t

E − N t
GT

max(N t
GT

, 1)
(2)

2.1.3 Identification. In the field of tracking, identification implies the persis-
tent tracking of an GT by a particular E over time. Though several methods to
associate identities exist, we adopt an approach based on a ”majority rule” [1]. A
GT j is said to be identified by the Ei which passes the coverage test for the ma-
jority of its lifetime, and similarly Ei is said to identify the GT j which it passes



the coverage test for the majority of its lifetime (this implies that associations
between GT s and Es will not necessarily match).

In this approach there arise two types of identification failures. The first type
(FIT) occurs when Ei suddenly stops tracking GT j and another Ek continues
tracking this ground truth. The second error type (FIO) results from swapping
the ground truth paths, i.e. Ei initially tracks GT j and subsequently changes to
track GT k.

– FIT - Falsely identified tracker. Occurs when a Ek which passed the coverage
test for GT j is not the identifying tracker, Ei.

– FIO - Falsely identified object. Occurs when a GT k which passed the cov-
erage test for Ei is not the identifying object, GT j .

Additionally, two purity measures are introduced to evaluate the degree of con-
sistency to associations between Es and GT s.

– OP - Object purity. If GT j is identified by Ei, then OP is the ratio of frames
in which GT j and Ei passed the coverage test (ni,j) to the overall number of
frames GT j exists (nj).

– TP - Tracker purity. If Ei identifies GT j , then TP is the ratio of frames in
which GT j and Ei passed the coverage test (nj,i) to the overall number of
frames Ei exists (ni).

2.1.4 Procedure. To evaluate the ability of each tracking model to correctly
predict the configuration and identification over diverse data sets, the above
measures are normalized by the instantaneous number of ground truth objects
and the total number of frames, T as shown.

——————————————————————————————
Evaluation procedure.

– for each frame
• perform the coverage test over all pairs of Es and GT s.
• compute configuration errors (FN,FP,MT,MO) and F-measure.

– associate E and GT pairs for identification.
– for each frame

• compute identification errors (FIT,FIO)
– compute and normalize TP, OP, CD, configuration and identification errors

FP =
1

T

T∑

t=1

FPt

max(N t
GT

, 1)
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1
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, 1)
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1
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1
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1
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Fig. 2. Examples from seq14 of the AV16.7.avi data corpus. Left: Typical meeting room
data with four participants (free to stand, sit, walk). Center: Participant heads near
the camera are not fully visible and often move in and out of the scene. Right: The
data set also contained challenging situations (large variations in head size, occlusions,
and blocked camera views). This frame was annotated with four head locations.

Table 1. Challenges in the AV16.7.ami data corpus test set.

seq01 seq02 seq03 seq08 seq09 seq12 seq13 seq14 seq16
L R L R L R L R L R L R L R L R L R

frames 1571 1196 5196 2483 1738 2584 2346 2938 2221
total # heads 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
frontal heads 1 1 1 1 1 1 2 0 2 0 3 0 3 0 2 2 4 2
rear heads 1 1 1 1 1 1 0 2 0 2 0 3 0 3 2 2 4 4

event: occlusion n n n n n n y n y y y y y y y y y n
event: camera blocked y y y y n n y y n y n y n y y y y y

event: sit down n n n n y y y y n n y y y y y y n n

2.2 Data Set

Testing was done using the AV16.7.ami corpus, which was specifically collected
to evaluate localization and tracking algorithms4. The corpus consists of 16 se-
quences of duration 1-4 minutes recorded from two camera angles. Half of the
corpus was designated as the training set, and half for testing. The sequences
depict up to four people in a meeting-room scenario performing common actions
such as sitting down, discussing around a table, etc (see Figure 2). Participants
acted according to a predefined agenda (they were told the order in which to
enter the room, sit, or pass each other), but the behavior of the subjects was oth-
erwise natural. The sequences contain many challenging phenomena for tracking
methods including person occlusion, cameras blocked by passing people, partial
views of backs of heads, and large variations in head size (see Table 1). The
corpus was annotated for head location for use in training and evaluation.

3 Tracking Models

Four head tracking models built within the AMI framework were applied to
the data corpus and evaluated as described in Section 2. These models include:
a trans-dimensional MCMC tracker developed at IDIAP, a probabilistic active
shape tracker developed at TUM, a KLT tracker developed at BRNO, and a

4 We are thankful to Bastien Crettol for his support with the collection, annotation,
and distribution of the AV16.7ami corpus, and to the participants for their time.



Table 2. Properties of the various head tracking approaches.

Trans-MCMC Active Shape KLT Face Detector

Learned binary, color, skin color, skin color face/nonface
Models head shape shape weak classifiers

Initialization automatic automatic automatic automatic
Features background sub, motion detection, background sub, skin color,

silhouette, skin color, skin color, gabor
color head/shoulder shape local charact. wavelets

Mild Occ. robust robust robust robust
Severe Occ. semi-robust semi-robust sensitive sensitive

Identity yes yes yes no
Recovery swap, rebirth swap,rebirth rebirth

Comp. Exp. ∼1 frame/sec ∼3 frame/sec ∼20 frame/sec ∼0.2 frame/sec

face detector also developed at BRNO. Each model approached the problem of
head tracking differently, and it is noteworthy to list some of the qualitative
differences (see Table 2).

3.1 Method A: Trans-Dimensional MCMC Tracking

This model uses a multi-person tracking approach based on a hybrid Dy-
namic Bayesian Network that simultaneously infers the number of people in the
scene and their body and head locations in a joint state-space formulation that
is amenable for person interaction modeling [3]. The state contains a varying
number of interacting person models. Each person model moves and interacts
according to a dynamical model and a Markov Random Field (MRF) based in-
teraction model (which helps prevent multiple trackers from following the same
person). A person is modeled by two bounding boxes, one corresponding to the
body and one to the head. The bounding boxes are defined by image coordinates,
eccentricity, height, and rotation (head only).

3.1.1 Features. The overall observation model consists of a set of global ob-
servations combined with individual observations (used to localize the head of
each person). The global observation model automatically adjusts the number
of people in the scene by adding and removing them from the state. The global
features consists of binary and color measurements defined pixel-wise over the
entire image. The binary observations predict the multi-object configuration us-
ing an adaptive background subtraction scheme which separates the image into
foreground and background pixels. Training is done using switching Gaussian
Mixture Models (GMM)s on features that measure the overlap of the predicted
body locations with foreground and background pixels. These features are de-
fined in the precision-recall space of the foreground and background. When ob-
served values match these features well a high response is given. A global color
model is used to maintain object identity. The individual head observations also
make use of the background subtraction. A head silhouette model is constructed
from the training set by averaging the binary patches taken from known head
locations.

3.1.2 Inference Inference on the filtering distribution in our model is done by
trans-dimensional Markov Chain Monte Carlo (MCMC) sampling. Trans-MCMC
brings the following advantages: 1) because it can change the dimension of the
state, it can easily add or remove people from the scene, 2) it can efficiently
search high dimensional state spaces, and 3) it can help solve the problem of
normalizing the likelihoods of various objects by decomposing move types. A



proposed configuration is generated by first selecting a move type: birth of a
new object or rebirth of a dead object, death of an existing object, swap of two
object identities, update of the body parameters for one person, or update of the
head parameters for one person. After the state has been modified according to
the chosen move type, the likelihood of the proposed configuration is computed
from the observation model. The proposal is then accepted with a probability
proportional to the ratio of its likelihood to the likelihood of the previous state. If
the proposal is accepted, it is added to the Markov Chain, otherwise the previous
state is added. After the chain reaches sufficient length, the MAP estimate is
computed. For further details, see [3].

3.2 Method B: Probabilistic Active Shape Tracking

The core of this algorithm is a double-layered particle filter. The control
layer is responsible for the detection of new objects and for the allocation of
hypotheses / particle sets on different supposed objects. For this task, skin col-
ored blobs together with a simple motion detector serve as a basic indicator for
new possible objects and for the validation of existing tracks. In the basic layer,
the real measurement is executed to build a local probability distribution for
the existence of a head in the observed image region. A deformable model was
chosen to represent the human head allowing for nearly unrestricted movement.

3.2.1 Skincolor In order to extract skin colored regions in the image, the RGB-
color intensities are transformed into the normalized rg-chromatic color space.
Observing the rg-chroma space for the training material, the mean vector and
the covariance matrix have been computed, modeling a 2-dimensional Gaussian.
After a threshold operation, a binary mask indicates areas with skin colored
pixels. To avoid initialization of hypotheses on skin colored areas which obviously
do not indicate a head, the aspect ratios of all skin colored blobs are analyzed.
Blobs differing from the aspect ratio of a fitted bounding box will be rejected.

3.2.2 Particle filter The framework is based on an algorithm that uses fac-
tored sampling ([4], [5]), which provides simultaneous alternative hypotheses st

modeling the probability distribution wt at each time step t. Based on the ob-
servations zt, representing the image features, the aim is to track the position of
the persons throughout the posterior probability p(wt|z1:t). In most cases, there
is no functional representation available for this conditional probability, but it
can be derived by using Bayes’ rule, i.e. all hypotheses have to be evaluated on
the image data, described in Section 3.2.3.

3.2.3 Active shape model The shape of the head is exploited as an alternative
key feature for our tracking algorithm introduced in the previous section. Due to
the variations of the shape (caused by turning the head, for example), a flexible
head-shoulder model consisting of 20 landmark points based on the work of
Cootes et al. ([6], [7]) was chosen to represent the sihlouette of the head.

3.2.4 Control layer A hyper layer is introduced to control the allocation of
the different hypotheses sets, where each of these sets consists of a fixed num-
ber of hypotheses to represent exactly one object. The hyper layer is organized
similar to the basic particle filter described in Section 3.2.2, but here hypothe-
ses comprise complete hypotheses sets. After sampling and predicting, for each



hypothesis of the sets, the active shape model is run to obtain a weight. Due
to this measurement a weight for the hyper layer hypotheses can be computed
by summing up the quality scores of all basic layer hypotheses belonging to one
hypotheses set, normalized by the number of hypotheses in this set. Additionally
a skin color validation is used to verify the number of objects being tracked. For
the validation of the sets, the ratio between the area covered by the mean shape
and the corresponding skin blob, i.e. the mean blob with the smallest distance to
the mean shape, is computed. To allow some tolerance, especially for situations
like sitting down or occlusion where no skin color is available, the hyper layer
hypothesis weight is only updated if the ratio is less than a given threshold.

3.3 Method C: KLT Tracking

The method proposed in [11] is based on the public domain KLT feature
tracker [8], which uses an image pyramid in combination with Newton-Raphson
style minimization to efficiently find the most likely position of features in a
new image. Flocking behavior and color cues are modeled in this method. The
color cue is an RG color model which can be either predefined or trained when
an E is placed on an object. The color cue discards features whose color does
not match the expected object color. This color cue in combination with the
flock compactness criterion almost eliminates feature drift of background and
non-stationary objects in the scene. This method is also resistant to partial oc-
clusions. For head detection, it is assumed that faces correspond to ellipse-like
shapes with distinctive axis aspect ratios. The skin color analysis, background
subtraction, and con-nected component analysis are used to extract suitable ob-
jects for head detection. We designed methods based on progressive background
model improvement. The model improvement is done through accumulation of
RGB pixel values of current frame in model buffer. Only those pixels evalu-
ated as background are updated. The spatial component analysis by statistical
moment calculation is used to distinguish between the heads and other skin col-
ored human parts. Results of the background subtraction are used for tracker
initialization, not tracking itself, though it may be suitable even to do tracking.

3.4 Method D: Face Detector

The face detection and tracking method suggested in [10] is based on skin
color segmentation, face detection, and tracking which uses movement predic-
tion. Skin color blobs are obtained by connected component analysis and mor-
phological operations. A generalized skin color model is used to avoid hand
initialization. The Gaussian color model was trained from manually extracted
skin color areas for image segmentation. The face detection algorithm is then
applied only on the detected skin colored areas in order to increase the alo-
girthm speed. The detected skin colored objects, which are recognized as faces
are then tracked by using movement prediction. The face detector is based on
the weak classifier compound of a Gabor wavelet and a decision tree. Its out-
put determines ”probability” that the input image is a face. We constructed a
strong classifier as a linear combination of several weak classifiers issued from
AdaBoost algorithm (Viola&Jones) [9] and Gabor wavelets. The face detector
is trained on normalized face images (24x24 pixels) from MIT (the CBCL data
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Fig. 3. The F-Measure shows how tightly the estimated bounding boxes fit the ground
truth (when passing the coverage test, A = Trans-Dimensional MCMC, B = Proba-
bilistic Active Shape, C = KLT, D = Face Detection).

set containing 1500 face and 14000 non-face images), where simple rectangle im-
age/facial features are replaced by more complex Gabor wavelets. This method
is able to detect faces rotated along the depth axis and partially rotated along
the vertical/horizontal axis. This is possible because the resulting face detection
is performed above sub-sampled and rotated input image.

4 Evaluation

4.1 Method A: Trans-Dimensional MCMC Tracking

This method performed best when tracking frontal heads in the far field of
view (such as in sequences 01L,01R,02L, 02R,03L,08L,09L,13L,and 16R). Large
variations in head size proved to be problematic for the strong learned head-
size prior used in the body/head model. Method A exhibited a high quality of
tracking (see Figure 3) and produced a low FP rate, which can be attributed
to the body-head modeling. However, it reacted poorly to situations in which
the back of a participants head was close to the camera, as in the right pane
of Figure 2. Such situations attracted MT, MO, FP and FN errors as size-
constrained tracking estimates often wandered within the space occupied by the
back of the participants head.

Using the CD as a measure of overall configuration performance, Method
A was outperformed for cases with few participants, but performed better for
multiple participants. Typical causes of configuration errors included: MT and
MO errors caused by meeting participants in close proximity for long durations,
FN errors caused by heads near to the camera (the tracker often missed heads
partially in the scene and assigned several small Es to large heads directly in
front of the camera).

With regard to maintaining object identity, the model generally performed
well, with respectable rates of FIT and FIO. A general trend of TP > OP

indicates that GT s were often tracked by multiple Es, suggesting that tracking
estimates periodically died prematurely. This can be partially attributed to diffi-
culty adapting the body model when a person sits down. Typical causes of identi-
fication errors included: FIT and FIO errors from improper swapping/occlusion
handling, FIT and FIO errors caused by people entering and exiting the scene
or standing in close proximity to each other. The computational cost of this
model is high as implemented unoptimized in Matlab. However, MCMC particle



Table 3. Configuration Results. (A = Trans-Dimensional MCMC, B = Probabilistic Active Shape,
C = KLT, D = Face Detection)

FN FP MT MO CD

seq A B C D A B C D A B C D A B C D A B C D
01L .06 .28 .08 .08 .03 .23 0 0 0 0 0 0 0 0 0 0 .06 .08 .08 .07
01R .05 .39 .12 .06 .03 .27 .03 .02 .03 0 0 0 0 0 0 0 .23 .13 .13 .05
02L .02 .02 .02 0 .02 0 0 0 0 0 0 0 0 0 0 0 0 .02 .02 0
02R .14 .20 .14 .10 .44 .16 .04 .02 0 0 0 0 0 0 0 0 .31 .16 .14 .08
03L .22 .20 .11 .11 .09 .11 .06 0 0 0 0 0 0 0 0 0 .29 .14 .15 .11
03R .37 .25 .16 .10 .07 .13 .08 .23 0 0 0 0 0 0 0 0 .41 .12 .22 .27
08L .08 .27 .01 .46 .08 .01 .33 .04 .06 .01 0 0 0 0 0 0 .09 .14 .32 .42
08R .71 .72 .52 .69 .03 .10 .05 .23 0 0 0 0 0 0 0 0 .74 .62 .47 .52
09L .04 .18 .11 .16 .11 .25 .13 .19 .02 .03 0 0 0 0 0 .01 .08 .21 .09 .16
09R .27 .48 .49 - .08 .33 .31 - 0 0 0 - 0 0 0 - .21 .54 .27 -
12L .38 .51 .05 .28 .07 .35 .41 .01 0 .02 .01 0 0 0 .01 0 .43 .40 .37 .27
12R .70 - .75 .75 0 - .65 .02 0 - 0 0 0 - 0 0 .70 - .65 .73
13L .38 .71 .06 .72 .09 .28 .46 .16 .17 0 .01 0 0 0 .01 .01 .17 .54 .43 .20
13R .44 - .82 .46 .06 - .36 .08 .23 - 0 0 0 - 0 .01 .36 - .58 .66
14L .48 .67 .40 .46 .11 .30 .33 .22 .03 .01 0 0 0 0 0 0 .41 .43 .32 .31
14R .32 .71 .55 .54 .06 .31 .27 .30 .01 .04 0 0 0 0 0 0 .32 .41 .33 .27
16L .22 .67 .10 .07 .08 .22 .07 .24 .01 0 0 .01 0 0 0 .01 .22 .46 .08 .24
16R .08 - .21 - 0 - .14 - 0 - 0 - 0 - 0 - .08 - .20 -

Table 4. Identification Results. (A = Trans-Dimensional MCMC, B = Probabilistic Active Shape,
C = KLT, D = Face Detection)

FIT FIO TP OP

A B C D A B C D A B C D A B C D
seq01L 0 0 0 0 .02 0 0 0 .64 .06 .13 1 .74 .05 .74 .73
seq01R 0 0 0 0 .11 0 .16 .03 .54 .19 .33 .83 .73 .14 .72 .79
seq02L 0 0 0 0 0 0 0 .02 .50 1 .33 1 .88 .88 .89 .88
seq02R 0 0 0 0 0 0 .41 .10 .20 .58 .30 1 .67 .52 .67 .52
seq03L 0 0 0 0 .06 0 .01 0 .29 .70 .50 1 .38 .56 .73 .74
seq03R 0 0 0 0 .04 0 .02 .14 .63 .66 .90 1 .21 .51 .63 .53
seq08L .03 .20 0 0 .09 .35 .01 .14 .80 .40 .18 1 .56 .34 .98 .64
seq08R 0 0 0 0 .03 0 .01 0 .83 .24 .20 .93 .02 .05 .17 .06
seq09L .16 .13 0 .03 .40 .35 .06 .41 .65 .51 .38 .84 .49 .38 .54 .29
seq09R 0 0 0 - .11 0 0 - .75 .17 0 - .22 .02 0 -
seq12L .09 .16 .03 .08 .24 .23 .03 .05 .75 .39 .39 .83 .43 .24 .93 .04
seq12R 0 - 0 0 .01 - 0 .01 1 - .04 .82 .04 - .09 .41
seq13L .37 .17 .04 .07 .28 0 .06 .26 .69 .17 .54 .96 .51 .23 .72 .12
seq13R .01 - 0 .01 .33 - .02 .07 .83 - .05 .91 .31 - .06 .42
seq14L .04 .07 0 .01 .05 .12 .04 .17 .76 .35 .28 .86 .40 .13 .53 .29
seq14R .21 .06 0 0 .27 .13 .04 .22 .65 .41 .15 1 .37 .13 .26 .37
seq16L .02 .07 0 .03 .04 0 .05 .37 .84 .37 .34 .93 .56 .13 .50 .37
seq16R .05 - 0 - .18 - .02 - .95 - .12 - .46 - .40 -

filters have proven to be more efficient than SMC methods for searching large
spaces, such as the joint state-space of a multi-object configuration. An example
of trans-dimensional MCMC tracker output can be seen in Figure 5.

4.2 Method B: Probabilistic Active Shape Tracking

Results for the Active Shape Tracker appear in Tables 3 & 4. Note that for
results obtained by the Active Shape Tracker, persons appearing in the test set
were not used for training.

Especially for the 1-person scenarios (Sequences 1, 2 and 3) very precise track-
ing results have been obtained, as demonstrated by very small error measures
FN and FP accompanied by high TP and OP . In scenes with more partici-
pants the amount of challenges like occlusion and blocking of a camera raises.
The experiments have confirmed one advantage of the proposed ASM-tracking
approach: since the gradient image is the basis for the adaption of the shape, par-



tial occlusions only have a very weak influence on the tracking output. In Figure
5, frames showing the robustness of our method are presented. At the beginning
of the occlusion the shape fit quality of the occluded person decreases. This is
due to the occlusion of a large number of landmark points along the shape. Once
enough of the head is visible again, the shape recovers and continues tracking.

While partial occlusions can be handled quite well, challenges like a sudden
appearance of the back of a head near a camera (as in the right pane of Fig. 2)
pose a problem. Movements next to the camera occur very fast and due to the
skin color region corresponding to the neck, the tracker initializes hypotheses at
too small a scale. The shape cannot adapt to the real size of the head in the
remaining time. For these situations, most of the back heads appearing next to
the camera remain untracked and lead to an increase of both FN and FP .

In general, for multi-person meetings, FN and FP tend to raise with the
number of people, indicating that a growing number of Es is not assigned to
any GT object. One step to solve this problem could be to train the variations
allowed by the shape model specifically on some of the occurring movements.
Nevertheless, the low numbers of FIT and FIO for all sequences show that
there is nearly no problem in following the track of a fixed person. Since our
framework is based on statistical techniques, only an averaged frame rate can be
declared, which is approximately 3 fps (non-optimized).

4.3 Method C: KLT Tracking Method

The KLT method is the only method of the four which operates, as imple-
mented, at a speed close to real-time. It tracks detected objects with high speed
and accuracy. This comes at the expense of a high FP rate, as hands are of-
ten misinterpreted as heads. FP could be reduced using additional topological
knowledge about the scene and temporal correspondence, or by using some face
detector. The situations in which the back of participants head is visible are
not detected properly. MT errors occur when the detected area is larger than is
specified for a head. Also, FN errors are caused by situations where the head
lacks a signficatant amount of skin color, one of the important detected features.
Some FIT errors are caused by tracker re-initialization, which is performed after
an object is stationary for more than 10 frames to prevent tracking of the back-
ground. The KLT tracking algorithm with head detection runs at approximately
17 frames per second on an Athlon 64 3500+ for a two-person sequence.

4.4 Method D: Face Detector

The face detector is based purely on skin color detection and only gives good
results for certain lighting conditions. Skin-colored segments of the background
pose a problem for the face detector, and the FN increases as the detector strug-
gles with non-frontal faces. Poor FIT rates are caused by Es often terminating,
followed by a new detection. The size of training data set showed to be enough,
but better a better way to deal with Adaboost overfitting is required.

4.5 Summary

The trans-dimensional MCMC tracker maintains identities well and boasts
a high quality of tracking, but suffers from a high computational cost and lower
CD for 1 & 2 person scenarios. The Active Shape tracking method is most robust
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Fig. 4. Mean CD, TP , and OP computed over the entire test set. (A = Trans-Dimensional MCMC,
B = Probabilistic Active Shape, C = KLT, D = Face Detection).

to occlusion and performs well in the 1 & 2 person scenarios, but also suffers from
high cost and degraded performance with 3 & 4 people. The KLT tracker provides
good results at high processing rates, which makes this algorithm most suitable
for real-time applications. On the other hand, the face detection algorithm gives
precise positions of the faces at the expense of algorithm speed, sensitivity to
lighting conditions, and dependence on frontal faces.

5 Conclusion
The AV16.7.ami corpus contains many difficult real-life scenarios which remain
challenging for state-of-the-art tracking models. The results presented are valu-
able as they represent the first evaluation of methods for multi-person tracking
in meetings using a common data set in the context of the AMI project.
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8. M. Kölsch and M. Turk, “Fast 2D Hand Tracking With Flocks and Multi Cue
Integration”, Department of Computer Science, University of California, 2005.

9. J. Viola and M. Jones, “Robust Real-time Object Detection”, Technical Report
2001/01, Com-paq CRL, February 2001.

10. I. Potucek, S. Sumec, M. Spanel, “Participant activity detection by hands and
face move-ment tracking in the meeting room”, Computer Graphics International
(CGI), Los Alamitos, 2004.

11. M. Hradis, R. Juranek, “Real-time Tracking of Participants in Meeting Video”,
Proceedings of CESCG, Wien, 2006.



Probabilistic Active Shape Trans-Dimensional MCMC Face Detector

Fig. 5. Tracker output on the AV16.7.ami data corpus. Left Column: The Active Shape Tracker fits
the head-shoulder contour (black shape) to the image data and thus determines the object. These
frames contain a lot of challenges such as partial occlusion and dense clutter in the background.
Nevertheless, the tracking output (light gray rectangles) and the number of identified tracks are
precise. Center Column: The trans-dimensional MCMC tracker makes use of binary features to
track bodies, maintain identity, and localize the head. This sequence shows the ability of the tracker
to add and remove objects from the scene. Right Column: Results for the face detection method.




