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ABSTRACT
For Gaussian distribution-acoustic models there exist many estab-

lished technologies for speaker adaptation. Contrary to that, there
are almost no well-functioning adaptation methods for hybrid sys-

tems, consisting of a combination of HMMs and neural networks.

In this paper, strategies are explored to adapt hybrid NN/HMM

systems based on the tied-posterior paradigm. We investigate the
retraining of selected important parts of the neural network and

a gradient based adaptation strategy for the HMM’s mixture co-

efficients based on maximizing the scaled likelihood. The paper

presents the following innovations: First it introduces one of the
first adaptation methods for hybrid systems where the HMM com-

ponent contributes significantly to the adaptation success. Second,

it presents a novel approach to the neural network’s adaptation,

based on the selection of suitable neurons for adaptation.
Results on the WSJ speaker adaptation test show the capability of

our methods to adapt to new speakers especially in case of adapting

the neural net and that both methods can be combined to achieve

additional improvement of the word error rate in most cases.

1. INTRODUCTION

Today’s automatic speech recognition systems are generally
trained to be speaker independent. Speaker independence is a

key feature to build commercial ASR systems, since no customer

wants to accomplish a complete training of acoustic models to get

a speaker dependent system. The latter often performs better, so
speaker adaptation was found to fill in the gap. Although not

as good as speaker-dependent models, an adapted system comes

close to speaker-dependent error rates with much less effort.

Well established techniques for speaker adaptation are maxi-
mum likelihood linear regression (MLLR) [1] and maximum a-

posteriori estimation (MAP) [2].

The MLLR approach is usually applied to Gaussian HMMs and

tries to estimate one or several matrices that rotate and shift the

distributions’ mean values to match the new speaker. Since MLLR
maximizes only the likelihood of each distribution separately, it

can be extended by a discriminative adaptation procedure called

scaled likelihood linear regression (SLLR) [3]. MAP adaptation

usually tries to incorporate a-priori knowledge about the parame-
ters in the training process resulting in adapted models that consist

of some combination of the base model parameters and trained pa-

rameters from the adaptation data.

When adapting hybrid NN/HMM systems the methods described

above are generally not applicable and new strategies have to be
developed. In [4] different techniques for adapting neural net-

works are compared, like retraining or adding new layers to the

network, in [5] additional speaker space units are added to the net-

work and trained maximizing the acoustic likelihood. The basic
technology explored in this paper is a hybrid NN/HMM acoustic

model with certain advantages compared to Gaussian models: the

easy extension of input context, the capability to model arbitrary

distributions and the discriminative training procedure. Using the
tied-posterior approach first presented in [6] to combine the neural

net (NN) and the hidden-Markov models we are able to combine

HMM-based adaptation algorithms with NN adaptation strategies.

In the following sections we introduce methods for adapting hy-
brid NN/HMM systems using the tied-posterior approach. First

we describe this hybrid system in section 2, then we present one

method for adapting the neural net in section 3 and one method for

adapting the HMMs in section 4. Results are given in section 5 for
supervised adaptation on the WSJ S3-C2 and WSJ S3-P0 speaker

adaptation tasks.

2. HYBRID ARCHITECTURE

The basic idea of this hybrid architecture is the combination of a

posterior probability estimator with HMMs. The network topol-

ogy suitable for this task is a fully-connected multi-layer percep-

tron with one hidden layer [7]. We incorporate additional context
frames by extending the input layer having an input feature vector

�x = (�f(t − m), . . . , �f(t), . . . , �f(t + m)). The system used here

contains 3 past frames and 3 future frames (m = 3). One frame

consists of a standard ASR feature vector with 39 components (12
MFCC plus energy and first order and second order derivatives),

resulting in an input layer size of 273. The weights are trained

with the back-propagation algorithm optimizing the training set’s

cross entropy, for the output nodes we use the softmax function as
non-linearity, the hidden nodes apply the sigmoid function.

To obtain a similar range of value for all input nodes, a normaliza-

tion process introduced in [8] takes place:

x
(n)
i =

xi − xi√
σ2

xi

(1)

xi is the global mean value for input node i and σ2
xi

is the global

variance for this node.

The NN is trained to calculate phoneme probabilities. One output
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node computes the posterior probability Pr(j|�x) that phoneme

j has been observed given the (normalized) NN input vector �x.

The connection to the HMMs is given by the tied-posterior [6]
approach: All HMMs share the NN outputs using separate mix-

ture weights. The set-up is illustrated in figure 1 The probability
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Fig. 1. Tied-posterior architecture

density value needed for the output of HMM state Si is computed
according to the tied-posterior approach in [6]

p(�x|Si) ∝
J∑

j=1

cij · Pr(j|�x)

Pr(j)
(2)

where Pr(j|�x) is the posterior probability and cij is the mixture

coefficient connecting the posterior value Pr(j|�x) with the HMM

state Si.

The a-priori probabilities Pr(j) are known in advance and
can be computed from the training data.

3. ADAPTING THE NEURAL NET

In [4] several approaches for adapting neural networks are investi-

gated. Best results have been obtained by adding an additional in-
put layer to the NN to adapt the net to new data. Since we have an

input layer size of 273 we would have to estimate 2732 ≈ 75000
parameters which makes the introduction of an additional layer

nearly impossible. So we have tried another approach not investi-
gated in [4]: Instead of adding new layers we retrain a sub-set of

the hidden units. First we propagate the adaptation data through

the original network and select the hidden nodes with maximum

activity (see figure 2). Maximum activity is here defined as max-
imum variance (computed on the adaptation data), since hidden

nodes with a high variance transfer a larger amount of information

to the output layer. The number of hidden nodes to be selected

for adaptation is determined by comparing each node’s variance

with the maximum value obtained over all hidden nodes over all
adaptation data. Pruning takes place if the node’s variance is lower

than a given percentage of the maximum value. The number of se-

lected nodes after pruning is between 135 and 215 depending on

the adaptation data (with fixed pruning threshold for all speakers)
corresponding to a number of weights to be adapted between 6345

and 10105. In a second step, these nodes are retrained minimizing

the cross entropy between NN outputs and target values. The gra-

dient of weight wlj of one selected hidden node l to be minimized

.
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Fig. 2. Unit selection for retraining - filled circles denote selected

nodes, thick lines indicate weights to be retrained

is given as

∂E

∂wlj
=

T∑
t=1

J∑
j=1

(yj(t) − ŷj(t))zl(t) (3)

where yj(t) and ŷj(t) denote the network output and the target

value of neuron j and time frame t, respectively, wlj denote the
weight from hidden node l to output node j and zl(t) denotes

the activation of hidden node l. The weights are updated using a

standard gradient descent procedure with a momentum term. Tar-

get values are obtained from the reference transcription, the time
alignment has been done with the speaker-independent system.

The training is performed with a cross validation set (25% of the

adaptation data) where the frame error rate is computed after each

iteration. The computation is stopped after a fixed number of it-
erations and the net with the lowest frame error rate on the cross

validation data is taken.

4. ADAPTING THE HMMS

Starting from eq. 2, it is obvious that the HMMs can adjust the

likelihood by tuning their mixture coefficients cij . Therefore, we

look for a method to adapt the mixture coefficients and keep the

other parts (neural net, prior probabilities, HMM transition proba-
bilities) fixed.

Following [3] we would like to find the HMM parameter λ∗ that

maximizes the scaled likelihood

λ∗ = argmax
λ

{
p(X|W, λ)

p(X|λ)

}
, (4)

where W denotes a word sequence and X denotes a feature vector

sequence. To reduce the computational complexity we apply a

frame-wise computation and approximate p(�x(t)|λ) by

p(�x(t)|λ) ≈
∑

Si∈Q

p(Si)p(�x(t)|Si) (5)

In the log-domain we then have to maximize the scaled log-

likelihood

L =
T∑

t=1

log p(�x(t)|Sv(t))− log

⎛
⎝ ∑

Si∈Q

p(Si)p(�x(t)|Si)

⎞
⎠ (6)
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Sv(t) denotes one state of the Viterbi state sequence aligned from

the training data and Q denotes the set of all states. Using eq. 2

we could apply a unconstrained gradient ascent procedure, maxi-
mizing ∂L

∂cij
.

To ensure that the new coefficients still obey the constraints cij ≥
0 and

∑J
j=1 cij = 1, we introduce a transformation

cij =
exp(wij)∑K

k=1 exp(wik)
(7)

and compute the gradient with respect to wij :

∂L

∂wij
=

T∑
t=1

δSv(t) i
cij (Pr(j|�x(t)) − p(�x(t)|Si))

p(�x(t)|Si)
−

Pr(Si)cij (Pr(j|�x(t)) − p(�x(t)|Si))∑
Sk∈Q Pr(Sk)p(�x(t)|Sk)

(8)

(δSv(t) i denotes the Kronecker delta)
The a-priori probability Pr(Si) is approximated from the

adaptation data by computing the relative frequencies of each state.

The gradient ascent is initialized by wij = log cij that re-

sults in the speaker independent model parameters as initial val-
ues. To keep the number of parameters small, we stick to context-

independent monophone models. The phoneme set consists of 45

phonemes plus 2 silence models (sil and sp) resulting in 47 pos-

terior probabilities and 47 HMMs. The training procedure is per-
formed for a fixed number of iterations. A part of the training set

(25%) is kept apart and used for cross validation. After the number

of iterations has passed the best weight vector on the cross valida-

tion set is taken. The criterion to determine the performance on the
cross validation set is the phoneme error rate. In case that less than

2 occurrences of one HMM appear in the adaptation data, the orig-

inal speaker adaptation model is copied and no adaptation takes

places for this model.

5. EXPERIMENTS

The evaluation has been performed on the WSJ S3-C2 test and

WSJ S3-P0 test [9] designed for speaker adaptation with native
and non-native speakers, respectively. Both tests contain a train-

ing set with 10 speakers and 40 sentences each and a test set with

between 20 and 43 test utterances per speaker. For all experiments

we have used the bigram language model from the WSJ0 database
and a dictionary with 5000 words (corresponding to the WSJ hub

2 task). The speaker independent model has been computed using

the 7240 sentences from the hub 2 training set. Every 10ms a new

frame is shifted in the NN’s input layer and the phoneme posterior
probability is computed. To observe just the effect of the algo-

rithms presented in sections 3 and 4, the mean and variance values

used for feature normalization are not changed with the adaptation

data, the mean and variance values from the speaker independent

system are used. For the same reason (and to prevent bad a-priori
estimates from a small amount of data) we do not modify the a-
priori probabilities Pr(j) that have been computed on the large

WSJ hub 2 set.

The adapted system has the same number of parameters as the
speaker independent system: The neural net is only retrained and

the new mixture coefficients cij (see section 4) are recalculated af-

ter the adaptation is finished. So there is no loss of computation

speed in the adapted system. Tables 1 and 2 show results using

Speaker WER SI NN adapt. HMM adapt.
4OA 5.47% 6.51% 4.43%
4OB 7.46% 5.97% 7.46%

4OC 10.22% 8.98% 10.22%

4OD 10.38% 9.43% 12.26%

4OE 16.22% 14.71% 14.71%
4OF 30.06% 26.69% 29.75%
4OG 5.41% 6.31% 5.41%

4OH 22.14% 20.10% 22.65%

4OI 11.11% 10.89% 12.00%

4OJ 34.64% 28.91% 35.94%

mean 15.31% 13.85% 15.48%

Table 1. WSJ S3-C2 Adaptation results (word error rate) with

either NN or HMM adapted compared to the speaker independent
baseline error rate (native speakers)

Speaker WER SI NN adapt. HMM adapt.
4ND 36.23% 30.69% 33.58%
4NE 37.80% 28.48% 29.27%
4NF 35.96% 23.45% 31.09%
4NH 34.25% 23.20% 26.38%
4NI 21.21% 25.04% 20.94%
4NJ 22.97% 12.31% 20.05%
4NK 21.98% 15.73% 16.64%
4NL 17.40% 12.38% 14.09%
4NM 36.94% 33.28% 33.12%
4NN 36.71% 31.93% 36.43%
mean 30.15% 23.65% 26.16%

Table 2. WSJ S3-P0 adaptation results (word error rate) with ei-

ther NN or HMM adapted compared to the speaker independent

baseline error rate (non-native speakers)

neural net adaptation and HMM adaptation on their own compar-

ing the word error rate with the unadapted speaker-independent

baseline system.

Tables 3 and 4 give the result of the two-step adaptation. First

the neural net is adapted using the method presented in section 3,
then the Markov models are adapted using the adapted NN with

the technique described in section 4.

Discussing the results one can observe a significant improve-

ment applying the NN adaptation for both sets. The HMM adapta-

tion on its own performs well with non-native speakers but worse
with the native-speaker set. The two-stage adaptation (NN adap-

tation first, then HMM adaptation) improves the system’s overall

performance on both tests.

It is clear that the HMM adaptation algorithm has difficulties to re-
cover from completely wrong phoneme probabilities delivered by

the NN. On the other hand, if the NN delivers several candidates

for the correct class (with nearly equal probabilities), the HMM

adaptation procedure amplifies the correct one.

6. CONCLUSION

An algorithm for adapting hybrid NN/HMM acoustic models

is presented. The models are based on the tied-posterior ap-

proach where one NN estimating phoneme posterior probabilities
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Speaker WER SI NN and HMM adapt.
4OA 5.47% 7.03% (0.29)

4OB 7.46% 5.72% (-0.23)

4OC 10.22% 8.98% (-0.12)

4OD 10.38% 8.02% (-0.23)

4OE 16.22% 15.02% (-0.07)

4OF 30.06% 26.69% (-0.11)

4OG 5.41% 5.71% (0.06)

4OH 22.14% 17.81% (-0.20)

4OI 11.11% 11.11% (0.00)

4OJ 34.64% 28.91% (-0.17)

mean 15.31% 13.50% (-0.12)

Table 3. WSJ S3-C2 Adaptation results (word error rate) with NN

and HMM adapted compared to the speaker independent baseline
error rate (numbers in brackets denote the relative deviation)

Speaker WER SI NN and HMM adapt.
4ND 36.23% 24.15% (-0.33)

4NE 37.80% 28.61% (-0.24)

4NF 35.96% 23.45% (-0.35)

4NH 34.25% 21.69% (-0.37)

4NI 21.21% 20.33% (-0.04)

4NJ 22.97% 12.31% (-0.46)

4NK 21.98% 31.00% (-0.41)

4NL 17.40% 11.76% (-0.32)

4NM 36.94% 23.89% (-0.35)

4NN 36.71% 30.80% (-0.16)

mean 30.15% 21.00% (-0.30)

Table 4. WSJ S3-P0 Adaptation results (word error rate) with NN
and HMM adapted compared to the speaker independent baseline

error rate (numbers in brackets denote the relative deviation)

is shared by all HMMs. With this architecture it is possible to

adapt the NN and the HMM in two separate steps. The NN is

adapted by retraining a part of the output layer with a standard
gradient descent procedure, the exact number of parameters is se-

lected by the hidden node’s variance. The HMM’s mixture coeffi-

cients are adapted using a gradient based strategy maximizing the

scaled likelihood. Experiments performed using the WSJ speaker
adaptation test with native and non-native speakers show an im-

provement in the word error rate. Future research includes the im-

plementation of Eigenvoices and MAP-based adaptation strategies

for HMM adaptation and improved selection mechanisms for the
retraining of the neural net.
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