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Abstract. This work describes two video-based approaches for detect-
ing and classifying dynamic head-gestures. We compare a simple, fast,
and efficient rule-based algorithm with a powerful, robust, and flexible
stochastic implementation. In both realizations, the head is localized via
a combination of color- and shape-based segmentation. For a continuous
feature extraction, the rule-based approach uses a template-matching of
the nose bridge. In addition, the stochastic algorithm applies features
derived from the optical flow, and classifies them by a set of discrete
Hidden Markov Models. The rule-based implementation evaluates the
key-feature in a finite state machine. We extensively tested the systems
in two different application domains (VR desktop scenario vs. automo-
tive environment). Six different gestures can be classified with an overall
recognition rate of 93.7% (rule-based) and 97.3% (stochastic) in the VR
(92.6% and 95.5% in the automotive environment, respectively). Both
approaches work independently from the image background. Concerning
the stochastic concept, further gesture types can easily be implemented.

1 Introduction

The development of user interfaces has become a significant factor in the software
design process. Growing functional complexity and mostly restriction to purely
tactile interaction devices required extensive learning periods and adaptation
by the user to a high degree. To overcome these limitations, various interface
types and interaction paradigms have been introduced. Multimodal interfaces
currently resemble the latest step in this development. They enable the user to
freely choose among multiple input devices, provide essential means to resolve
recognition errors of individual components, and thus lead to systems that can
be worked with easily, effectively, and above all intuitively[1]. Moreover, besides
speech input, the use of gestures provides an interesting alternative for people
with certain disabilities. This contribution illustrates the design and the eval-
uation of a system component for a video-based recognition of dynamic head
gestures. The module is to be used as an integral part of an application invari-
ant multimodal architecture.
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1.1 Application Domains

Our overall research work focuses on the design of a generic platform for develop-
ing multimodal interfaces. Currently, the architectural concepts are being used in
two different application domains. The first project deals with the development
of a multimodal system for interacting with VRML browsers in a virtual-reality
(VR) desktop environment[2]. Hence the user can arbitrarily combine conven-
tional tactile devices with special VR hardware. As a key feature, (s)he can
interact via paradigms on a semantic higher level, i.e. natural speech as well as
dynamic hand or head gestures. The second project concentrates on the design of
intuitive and error-robust components of a multimodal interface for controlling
various infotainment and communication applications in an automotive field[3].
In both domains, the use of head gestures as an alternative or additional in-
put possibility has proved to be very helpful with regard to increased system
acceptance and the resolution of errors in the multimodal setup[4].

1.2 Related work

Many research groups have contributed significant work in the field of video-
based head gesture recognition. In a system developed by Morimoto[5], move-
ments in the facial plane are tracked by evaluating the temporal sequence of
image rotations. These parameters are processed by a dynamic vector quanti-
zation scheme to form the abstract input symbols of a discrete HMM which
can differentiate between four head gestures (yes, no, maybe and hello). Based
on the IBM PupilCam technology, Davis[6] proposed a real-time approach for
detecting user acknowledgments. Motion parameters are evaluated in a finite
state machine which incorporates individual timing parameters. Using optical
flow parameters as primary features, Tang|[7] applies a neural network to classify
ten different head gestures. The approach is quite robust with regard to different
background conditions. Tang obtained an average recognition rate of 89.2% on
an SGI workstation processing 30 frames per second.

1.3 System overview

Our system module for recognizing dynamic head gestures consists of four in-
dependent components: loading a single image (image grabbing), localizing the
head candidates (segmentation), calculating movements of key points in the fa-
cial plane and in adjacent regions (continuous feature extraction), and finally,
determining the type of the head gesture (classification).

The input image can be a frame of an MPEG stream, an isolated BMP image
of a stored sequence, or directly streamed in by a dedicated hardware device (in
our case a VideodLinux compatible grabbing card). Afterwards, the position
and the size of potential head candidates in the given image are calculated by a
color segmentation followed by a series of morphological filters. Additionally, we
apply a template matching algorithm to find the nose bridge. These two steps
are completed in the preprocessing which is identical for the two approaches.



On the basis of the segmentation result, the search space for the subsequent
frames is restricted. Both the position differences of the nose bridge and diverse
optical flow parameters are continuously stored in a feature vector. To determine
which gesture occurred at which point time, elements of this vector are evaluated
by a rule-based and a stochastic approach.

2 Preliminary Analysis

Before designing specific algorithms, we analyzed and categorized different types
of natural dynamic head movements and determined the set of recognizable
gestures. Hence we could benefit from the extensive video-material we collected
in numerous usability experiments in both domains.

2.1 Gesture Vocabulary

In general, the movement of the head can completely be described by a six
element vector denoting the three degrees of freedom with regard to translational
and rotational movements, respectively. As an important result of a dedicated
offline analysis of the video material, we found out that the majority of gestures
(96.4%) has exclusively been composed of purely rotational movements. Thus in
the approaches presented here, we exclusively consider head gestures that consist
of one or a combination of head rotations.

With regard to the reference coordinate system shown in figure 1, six differ-
ent elementary head gestures could be observed: moving the head left and right
(rotation around the yaew-axis), up and down (rotations around the pitch-axis),
and bending the head left and right (rotation around the curlaxis). Addition-
ally, by combining basic movements, two compound gestures could be identified:
head nodding and head shaking. A detailed analysis of the gesture material re-
vealed that regarding the totality of rotations around the yaw-and the curkaxis,
only 3.6% of the movements were twist gestures. Against the background of our
application scenarios, this type of gestures can be neglected without a noticeable
loss of system usability.

Concerning the VR desktop scenario, head gestures have mainly been used
as alternative input possibility in case the hands of the user were busy with
operating certain tactile devices. Moreover, head gestures have been applied

Fig. 1. Rotational axes for the different head movements



unconsciously to emphasize commands given by speech [3][2]. Analyzing the
functional meaning of the observed head gestures, the purpose was to specify
directions of movements in the virtual world.

Where in the VR application domain, the user can absolutely concentrate on
the scene and the respective task, in the automotive environment, the primary
task of the user is to drive the car (i.e. to perform a driving task). Operating
the multimodal interface is the secondary task. The superposition of both tasks
massively biases the workload of the user. In the automotive test scenarios, head
gestures have mainly been applied to support yes/no-decisions in a dialog system,
e.g. to accept or deny an incoming phone call. Moreover, in selected cases, head
gestures were used to skip between individual audio tracks. In noisy fields, like
the car, recognition of speech is often error-prone. Moreover, tactile interaction
is usually coupled with a set of control glances at the display or special button
devices[8]. Hence in special cases, head gestures offer a highly effective input
alternative, as both hands can still be used to drive the car.

Since the recognition module is to be implemented in various contexts, we
define two sets of possible head gestures. The first set (GS1) contains all six
gestures mentioned above. The vocabulary of the second set (GS2) is designed
to exclusively support user acknowledgment decisions. Thus, we reduced it to
the gestures head nodding and head shaking.

2.2 Interaction time

To obtain quantitative results with regard to the interaction time of the individ-
ual gesture types and application scenarios, the video material has partly been
segmented manually. For each gesture, 15 samples of 12 users (VR environment)
and 15 samples of nine users (automotive environment) have been evaluated.
Table 1 summarizes the average length of the gestures in frames and seconds,
respectively. Interestingly, the compound gestures (shake and nod) had a signifi-
cant smaller execution time in the automotive environment, which per judgment
of the subjects, is due to an increased workload in the car (see section 2.1).

Table 1. Head-gesture interaction times in both domains

VR desktop Automotive
gesture |[frames|time][sec]|/frames|time]sec]
LEFT || 21.75| 0.87 23.25| 0.93
RIGHT || 19.75 | 0.79 23.50 | 0.94
UP 15.50 | 0.62 22.75| 0.91
DOWN || 17.48 | 0.70 23.30 | 0.93
NOD 40.03 | 1.60 27.25 | 1.09
SHAKE(| 39.09 1.56 28.00 1.12

|mean [[25.58 ] 1.02 [[24.67] 0.99 |




3 Preprocessing

Before describing the different classification approaches, we briefly compare com-
mon techniques and sketch the preliminary steps of the image processing. The
result of a successful segmentation process is a rectangle that characterizes the
position and the size of potential head candidates in the input image.

3.1 Comparing head segmentation approaches

Based on the excellent overview given in[9], we experimented with various tech-
niques. Since a fundamental requirement of our approach is real-time process-
ing capability, various methods cannot be used due to enormous running time
(e.g. Hough transformation and Eigenfaces). Localizing the eyes by checking for
user blinks has proved to be insufficient when the head is moved intensely. The
system could be initialized by an explicit twinkle without any kind of accom-
panying head motion, but this assumption would massively decrease the natu-
ralness and usability of the system. To purely use background recognition, the
image background would have to be separated from the moving foreground (the
head). In this case, the background would have to be static and the foreground
always dynamic, which does not hold for our application domains. Therefore,
we propose a color-based segmentation approach, because it is rotation- and
scale-invariant, and the calculation is very fast. Moreover, this method does not
require any kind of initialization, and has proved to be highly robust with regard
to arbitrary motion in the background.

3.2 Color-based segmentation

The individual steps of the segmentation process are visualized by the two se-
quences shown in figure 2. Given in the standard size of 382x288 pixels, the input
image is in standard RGB color format, with each channel composed of 8 bit
(figure 2(a)). To differentiate between skin color and background, the image is
converted to the YCbCr color space. Since different skin types mostly differ in
the luminance component and not with regard to the hue value, the Y-channel
can be neglected in the following. Concerning the CbCr-plane, skin colors only
cover a small fraction. For each of the color vectors, the probability of belonging
to human skin can be estimated.

To simplify the color distribution, we use an approximation by the following
Gaussian function. For specifying the individual parameters, the mean value m
was calculated (where E denotes the expectation value):

. _ (Cr
m = E{z;} with ; = (Cb)

and the covariance matrix

C =E{(z: —m)(z: —m)"}
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Fig. 2. Individual steps of the segmentation process: the input image given in standard
RGB format with a size of 382x288 pixels (a), skin-color information coded in a gray-
value image (b), binarized image due to a certain threshold differentiating between
potential areas of skin-color and background (c), result of a sequence of morphological
filters to improve the segmentation result (d), final closing with a longish ellipse to
identify potential head candidates (e), and marking head regions in the original input
image (f).

on the basis of 42 random user skin samples ;. To filter out non skin-color
areas, the histogram of the CbCr part of the input image is multiplied with the
Gaussian distribution calculated by:

p(Cr,Cb) = exp[—0.5(x; — m)T C~! (z; — m)].

The resulting histogram is used to project the color image onto a gray-value
image (figure 2(b)), in which each skin color value is represented by a value
according to the probability specified by p(Cr, Cb). Afterwards, this gray-value
image is binarized differentiating between potential skin colors and background
(figure 2(c)). Moreover, we apply a sequence of morphological filters on the
binary image. First a closing with a small ellipse eliminates small particles that
have occurred due to noise. Then an opening with a medium-sized rectangle tries
to cover dark areas like in the eyes. For each blob, potentially occurring leaks
will be filled. These leaks can often be found near to the eyes. As they are not
skin-colored, they have a negative influence on the correct segmentation of the
whole face region. The result of the filter process is shown in figure 2(d). Finally,
a closing with a longish bigger ellipse removes all areas which do not have the
correct size (figure 2(e)). By a bounding box R around the best-fitting ellipse,
the position of the potential head candidate is specified (figure 2(f)).

3.3 Template matching

To further improve the quality of the segmentation result, we additionally apply
a template matching algorithm. Therefore, a striking, invariable region of interest
(ROI) in the facial plane has to be identified. A basic requirement for a robust
tracking of this ROI should be the independence of special faces. Taking the
center of the eyes as ROI results in misclassifications when the user blinks. In



this case, the eyes fuse with the rest of the face to one single blob. Moreover, the
mouth drops out as a potential ROI, since it changes its form during talking.
Therefore, we concentrate on the nose bridge as the key feature. For enlarging
the matching criteria, we use a symmetric template including the nose bridge,
the area of the eyes, and parts of the eye-brows.

For each of these head candidates, we calculate a measure of how good the
template matches the current image region R. This is done by determining the
match quality of the template and the input image column by column and row
by row. The result of this match depends both on the quality of the template
and the special kind of the matching algorithm. We use the standard gray-level
correlation

@)= Y v +uy+o),
(u,v)ER

where the template ¢(z,y) is defined over R and b(z, y) denotes the input image.
We relate the individual gray-values to the medium gray-value and normalize
them by their standard deviation. Using the gray-scale correlation instead of the
sum of absolute gray-scale differences, changes in the light conditions can easily
be handled. If the resulting match value is below a certain confidence measure
(by default set to 0.7), the head candidate will not be accepted as a potential
position of a head. If more than one candidate exceeds the threshold, the best
correlation candidate is taken for further processing. This can be seen in the
lower series of images in figure 2, where the right candidate is preferred.

The native segmentation phase is exited, if a head region is found. In subse-
quent phases, this head region is used for further calculation steps. In case the
area gets to small or no blob is found anymore, the search is extended to the
complete image. This principle guarantees an integral robust localization of the
head and a fast tracking of the head regions in the image.

4 A Bottom-Up Rule-Based Classification

The rule-based approach (RBA) is a simple and performant implementation.
Exclusively using one feature for classification, we could achieve considerable
high recognition rates under the test conditions described in section 6.

4.1 Continuous feature extraction

Based on the template matching outlined in section 3.3, we can establish a local
Cartesian coordinate system with its zero point in the lower left corner of the
rectangle R (see figure 2(f)). Let j be an integer indexing each frame F of a
video sequence. For the j-th frame F}, let the center of the template be denoted
by c;. Referring to the previous frame Fj_;, we can express the motion of the
nose bridge by the difference vector d; = ¢; — ¢;—1. This vector is transformed
into a polar representation using the absolute value ||d;||2 and the phase ¢. Let



d;1 be the z-component and d;» denote the y-component of d;, then the phase

can be calculated via
_Jo ,ifdjn =0
¥i= arctan(gj—’f) else

Using ¢; and ||d;||2, we can specify the direction and the speed of the head
motion for each frame. This forms the basis for the rule-based classification
algorithm.

4.2 Classification

The head movements are modeled by means of a finite state machine (FSM)
containing five motion states (up, down, left, right) and a non-motion state (idle).
By means of the scheme depicted in figure 3, a motion direction represented by
@, is assigned to a corresponding state of the recognizer. If 8 = 0°, the two-

180°

Fig. 3. The mapping scheme for the angle ¢ consists of four sectors (viewpoint: cam-
era). Their size can be varied by the aperture angle 6.

dimensional space is symmetrically partitioned into four motion sectors (from
the viewpoint of the camera). In test runs, we varied the partition types by
applying different values for . A detailed description is presented in section 6.

Table 2. Classification scheme for different head gestures (HGs) according to the type
and the number of changes in direction (CIDs)

[HG \ CID[[left—right[right—left[up—down[down—up]
NOD = = >1 >1
SHAKE >1 >1 - -
UuPp - - 1 -
DOWN - - - 1
LEFT 1 - - -
RIGHT - 1 - -




With each gesture being represented by a certain series of motion and non-
motion states, we can categorize the considered head gestures by their number
of temporally sequent direction changes of the head motion. Table 2 shows the
number and the type of direction changes for classification. Consequently, there
is a set of valid and invalid state transitions for each gesture (see figure 4).

- v 4

v

_— valid tranistions
- invalid transitions

Fig. 4. Overview over the different state transitions in RBA

Initially, the FSM is in the idle state. Once a motion is detected, i.e. there is a
change to a motion state, the recognition process is triggered. In a state history,
each state is stored with respect to the current frame. If a certain number w of
non-motion states is detected (the parameter w was adjusted in the evaluation
period, see section 6), the system automatically starts to classify the state se-
quence. For this purpose, the state history is clustered: first we mark all state
changes (i.e. transition states A to B with A # B). The type and the number
of identical states between two state changes are determined. If the number of
identical states between two state changes is less or equal two, these states are
erased from the state history. Given the state history presented in figure 5, the
up states in frames 6 and 7, as well as the down state in frame 8 will be erased
by this procedure. Thus we try to cope small outliers caused by inaccuracies of

state (|- left left left left left up up down left left left left left left left left left left ...
framefl0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ..

Fig. 5. Exemplary excerpt of the state history showing a set of up and down states
within a motion to the left

the movements. After this step, the motion history is checked for invalid state
transitions. If all transitions are valid, the statistics of the recognized direction
types and transitions are evaluated applying table 2 to obtain the resulting ges-
ture. On the other hand, if there are invalid state transitions (e.g. a set of left
states followed by up states), the recognition result is mapped to unknown.



4.3 Spotting

In the current approach, only a prototypical spotting algorithm is implemented.
Hence, we assume that gestures can be separated by a sequence w of idle states.
w must be larger than the number of idle states that appear, when the head goes
through the inflection points within a gesture. In our test sets, there has been
a maximum of three idle frames at the inflection points (see section 6.2). If the
gestures follow each other too fast, the RBA system is not able to distinguish
between them. As soon as any kind of movement is detected, the recognition
process is (re-)initialized. In current work, the FSM is being revised for a more
efficient spotting.

5 A Top-Down Stochastic Classification

5.1 Continuous feature extraction

The tracking module calculates the spacio-temporal movements of head candi-
dates in the image sequences and provides the basic data for the subsequent
classification process. Concerning the stochastic approach (STA), we apply a
hybrid combination of the Averaged Optical Flow (AOF) and the continuous
template matching of the nose bridge. Hence, the template matching is used to
estimate the position of the nose bridge in the tracked face region. The optical
flow calculates motion vectors of certain areas of interest in subsequent images.
The approach tries to find solutions to the known flow equation VI-v +1; = 0.
Hence, I = I(z,y,t) denotes the luminance, which depends of the local coor-
dinates z, y, and the time {. Moreover, v = (‘fi—‘:; %)T represents the vectored
velocity of the head movement. For calculating v, the standard Lucas-Kanade
algorithm[10] is used. For reasons of system performance, we apply this local
method instead of techniques operating on the whole image (e.g. the Horn-
Schunk algorithm). In common implementations, the AOF is usually computed
over a rectangle containing the whole head. Yet, we have found out that the
bounding box around the head region in itself is sometimes not sufficient for
adequate classification results. Concerning rotations of the head in the image
plane (yaw- and pitch-axis), the resulting bounding box does not change sig-
nificantly. This especially holds for segmentation results in which, for example,
the bounding box comprises areas of the chest). As can be seen in figure 6, the
bounding box enlarges to the area of the chest. A nod of this user could not
be detected, because the total movement is completely enclosed in the primary
rectangle. Thus, the result of the segmentation is only used to restrict the search
area for the extraction of the features.

We apply the AQF technique to detect rotational movements around the nose
bridge. Using the bounding box of the head, which results from the segmentation
process, too much information from the background might be included in the
calculation of the rectangles. This adulterates the results, if the bounding box
covers a very large field and there is too much motion in the background. In



Fig. 6. The result of this skin-color segmentation process is a bounding box that is
bigger than the primary head region and thus could, for example, not be used to
classify nod gestures (left picture). This was a direct result from the first closing with
an ellipse in the binary image (right picture).

our approach, we use the position of the nose bridge as an approximation for an
element on the vertical symmetry axis of the face. Thus we are able to separate
the face into a right and a left half. For each half of the face, we determine the
AOQF separately. Each region is marked with a square (see figure 6). By default,
the square size is 40x40 pixels. If the square ranges out of the head region, it
is scaled down. Thus the AQF is always calculated within the face region. As
an effect of the implementation, we get two competing outputs for the AOF for
each side of the face. Concerning the gesture sets GS; and G Ss, the AOF of the
left and the right side of the face make for almost identical results. Thus the two
redundant features are supposed to confirm each other.

There was also another motivation for computing the AOF within two sep-
arate face regions. Even though bend gestures (around the curl-axis) are not
part of the evaluated test sets G; and Ga, this approach holds strong potential
with regard to the recognition of those gestures. In this case, the speed vector
of the nose bridge would not be sufficient for a classification. Concerning these
curl-gestures, the vectors of the optical flow point into opposite directions up-
and downwards, respectively, which enables a classification of such gestures.

The nose bridge is used as an origin of the local coordinate system of the
rectangles bounding the face halves. In combination with the relative movement
of the nose bridge, we are able to distinguish between horizontal movements of
the user and head shaking itself. With horizontal movements, the AOF is zero,
as the offset generated by the movement is compensated by the offset of the local
coordinate system.

Ag a third feature, we use the difference vector of the nose bridge, just like in
RBA (see section 4.1). These three features provide the basis for the classification
process of STA to be described subsequently.

5.2 Classification

Modeling head gestures, a fundamental aspect is tolerance of small divergences
regarding the temporal run and the duration. In the field of stochastic ap-
proaches, Hidden Markov Models very well cope with molding on time variant
patterns. In addition, they show a robust behavior on small breaks during a



gesture, which are likely to appear when the head moves through the inflection
point within a gesture. In the current implementation, we use Discrete Hidden
Markov Models (DHMMSs) composed of five states for the classification of head
gestures. As mentioned in[11], DHMMs in general take more parameters, but
the calculation is easier in the recognition process. The generation of the dis-
crete symbols s1, sg, and sz that are fed into the DHMMSs can be split up into
two steps. First the optical flow and the arithmetic mean is computed over the
regions which are in close vicinity to the nose bridge. Then both vectors as well
as the speed vector of the nose bridge are discretized to integers between 0 and
5. Hence symbol 0 represents no movement. Symbols 1 to 4 are generated by ap-
plying the mapping scheme sketched in figure 3. These three feature symbols are
canonically coded into a final symbol, using the known formula s; + 555 + 52s3.
The classifier evaluates the symbol sequences and puts out a probability vector
for each DHMM. Finally, the result is returned in terms of an n-best list.

5.3 Spotting

In the current state of development, the recognition process is automatically
triggered, when any kind of head movement is detected. For this purpose, the
absolute value of difference vector of the nose bridge (see section 4.1) is evaluated.
If two head gestures directly follow one another, a number of five or more idle
frames must be detected between these two gestures to separate them. Otherwise,
the recognition process continues, which consequently leads to wrong results. The
improvement of the segmentation between single gestures is part of current work.
Hence we are about to implement a technique proposed by P. Morguet[12], which
applies an improved normalized Viterbi algorithm for a continuous observation
of the HMM output scores. This approach allows for integrated spotting and
clagsification at a time.

6 Evaluation

The recognition module system has been implemented on an Intel Pentium IV
machine with 512KByte cache and 1 GByte memory under the Linux operating
system (Kernel 2.4.20). We have evaluated both the time performance and the
recognition rates in the various domains. A single input frame is composed of an
RGB image with 288x384 pixels.

6.1 Test environment and procedure

Both RBA and STA have been evaluated in two different application domains.
One test series was run under optimized conditions in the computer-vision lab-
oratory of the institute. We shielded the test environment from glares of the
sun, and used a flicker-free light. The scene background was native consisting of
different objects. During the data collection, the test subjects sat on a chair in



front of a camera (distance 60cm). They had to interact in different VR desktop
scenarios, using head gestures of both test sets GS; and GSs.

In the second test series, we focused to evaluate head gestures under prefer-
ably realistic conditions. The test domain was an automotive environment in a
driving simulator. Driving the test car in the simulation, the trial participants
had to perform head gesture interaction with different in-car infotainment de-
vices. Yet, we did not consider any influences of artificial vibrancies or forces
implicated by bumps, curves, or braking. The camera, which had the same sam-
ple rate as in the VR desktop environment, was positioned on the dash board
over the steering wheel with an approximate distance of 45 cm. To simulate al-
ternating light conditions, we shaded the laboratory, and used a set of spotlights.

In both test environments, the gestures have been evaluated in an offline
analysis, using captured video sequences. In case subsequent gestures have been
made, they were not manually segmented in order to analyze system behavior
with respect to the prototypical spotting. For evaluating the recognition perfor-
mance of the system three parameters have been chosen: the recognition rate
(RR) measuring the percentage of correctly classified gestures, the false accept
rate (FAR) denoting the percentage of misclassified gestures or movements that
were misinterpreted as gestures, and the false reject rate (FRR) describing ges-
tures that have erroneously not been accepted as valid.

6.2 Rule-based approach

We used a total of 153 video sequences of ten different test subjects, and 120
sequences of eight subjects in the automotive environment. During the imple-
mentation of RBA, we found out that in the regions of the inflection point of
the head, a certain set of idle frames can appear. In the point of inflection, the
motion of the head and thus the absolute value ||d||2 is so small that the system
does not detect any movement. In some cases, this was misinterpreted as a com-
pletion of the gesture, and two motion sequences which are actually associated
were disjoined. On the other hand, RBA uses a sequence of idle frames for a
temporal segmentation of the gestures (see section 4.3). With a too large value,
subsequent gestures could not satisfactorily be separated (and consequently not
be recognized), unless there was an accordingly larger break between the ges-
tures. Thus, we tried to find a suitable threshold w at which the system assumes
a gesture has been completed. As can be seen in table 3, a good performance is
reached for w = 5. The reason is that the breaks at the inflection points within a

Table 3. Performance of RBA for different values of w concerning the test set GSi
(47 sequences, VR desktop environment)

w [[1[2]3]4[5[6]7]
RE_|[33.5]52.8]80.6]90.5/96.3]86.8] 75.8
FAR|[57.6/32.1]11.8] 0.3 | 0.2 | 5.7 |14.8
FRR|8.915.1]7.6|9.2|3.5|7.6 |94




gesture varied between one and three idle frames. Between subsequent gestures,
there has been an averaged number of 4.7 idle frames. The recognition rate gets
worse for w > 6, as now in most cases, the subsequent gesture can no longer
be separated. Results in the automotive domain did not significantly differ from
this realization.

In some scenarios, the gestures have not been made very exactly. Evaluat-
ing motion histories of horizontal head movements, it was remarkable that for a
short instant (1-2 frames), some test subjects made a motion which the system
classified as a vertical movement. In 18% of all test sets, we have observed this
motion sequence short before or after the head ran through its inflection point.
On the other hand, an according phenomenon has only occurred in 2% of the
evaluated vertical head movements. As mentioned in section 4.2, small outliers
can be erased from the state history. To further improve system behavior in this
regard, we enlarged the aperture of the horizontal mapping sectors by varying
the angle @ (see figure 3 in section 4.2) and studied the effect on the recognition
performance. Regarding gesture set GS1, we have got the recognition rates de-
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Fig. 7. Performance of RBA for different values of 8 (test set GS1, 27 sequences, VR
desktop environment)

picted in figure 7. This chart shows an explicit maximum of RR with a coeval
minimization of FRR for # = 10°. With other values of 8, either the horizontal or
the vertical sectors get too small. The evaluation of 8 in the automotive domain
confirmed these results.

Using the optimized parameter settings mentioned above, the recognition
performance for both gesture sets (GS; and GS.) dependent on the different
domains are presented in table 4. Concerning GS; and calculated over both
domains, in 38,4% of all error cases, there was a confusion of shake with left
or right or vice versa (29,7% confusion between nod with up or down). Thus
expectedly, the system showed a better RR for the reduced set GS3, where this
kind of misinterpretation was a priori impossible.



Table 4. Characteristic rates of RBA in both domains

| ||VR desktop||Automotive|

Gesture set||GS1| GS2 [|GS1| GS2
RR 92.0| 95.2 |[91.2| 94.0
FAR 6.5 1.1 23| 4.7
FRR 1.5 | 3.7 6.5 1.3

Considering all types of gestures, the RR is better in the VR desktop sce-
narios than in the automotive environment, where head movements often were
less distinct. This particularly happened in cases the subjects did not have a
frontal view into the camera. In 20 evaluated test sequences, the head of the test
participant was initially rotated by approximately 40°. Hence, RBA had major
problems in correctly classifying the gestures. Although the template matching
worked well, in a large number of frames, the movement vector d of the nose
bridge was close to zero, which was a straight consequence of the distortion of the
head movement. Thus a large set of idle states was detected, and consequently,
the gesture was erroneously rated complete.

6.3 Stochastic approach

The training corpus for the DHMMSs has consisted of 32 selected symbol se-
quences. It contained gestures of four persons of different skin colors and one
person wearing glasses. We have used the Baum-Welch method for the training.
The data for test and training has been strictly disjoint.

STA has intensely been evaluated in both domains. To get a usable basis
of comparison, we have fed exactly the same sequences into the STA system.
In tables 5 to 6, the recognition results can be seen. Similar to RBA, in both
domains, there has been a strong affinity between direction related gestures (up,
down, nod, and left, right, shake, respectively). This effect has been aggravated,
when the gestures are made very quickly. Then the resulting symbol sequence
corresponding to the gesture has contained too few elements, so no good match
for an DHMM has been found. Particularly, the very good recognition rates for
the reduced set Gs have been due to the training corpus containing a great
variety of gestures of different durations.

In some cases, blinking or even moving the pupils have had a negative impact
on the computation of the AOF, which has consequently lead to misclassifica-
tions. Moreover, we have observed that the AOF is more likely to be error-prone
to bad light conditions than the template matching algorithm and the feature
extracted from it.

With regard to inexact head movements, which were mentioned in section
6.2, STA has shown a very robust behavior. Concerning the test set in which the
head of the subject was initially rotated by 40°, in 73.2% of all cases the gesture
has been classified correctly.



Table 5. Recognition rates of the STA approach with regard to gesture set GS; in
the VR desktop environment (left table) and in the automotive environment (right
table). In the first column, G stands for the actual head gesture, and in the first row,
H denotes the HMM modeling this head gesture.

|G \ H]| Up [Down]Left [Right[Shake[Nod| |G \ H|| Up [Down|Left [Right|Shake|Nod |
Up |[96.3] 0.4 | 0.1 ]| 0.1 | 06 |25 Up ||95.2| 1.2 |03 ]| 03| 0.2 |28
Down|| 0.5 |96.1|02 | 0.2 | 02 | 2.8 ||[Down| 1.9 |94.5|04 | 0.3 | 0.1 |28
Left || 0.2 | 0.1 |98.0| 0.8 | 0.8 | 0.1 Left || 0.2 | 0.6 (95.0/ 2.2 | 1.1 | 0.9
Right|| 0.1 | 0.1 | 0.5|96.6| 1.9 |08 ||Right|| 0.5 | 0.7 | 1.2 |94.2| 3.1 | 0.3
Shake|| 0.1 | 0.3 | 14| 1.0 |97.0| 0.2 ||Shake|| 0.3 | 0.3 | 2.2 | 2.5 |93.9| 0.8
Nod |[1.3] 25 (01| 03| 02 |95.6/| Nod || 15| 30 |05 | 0.2 | 0.6 |94.2

Table 6. Recognition rates of the STA approach with regard to gesture set GSz in
the VR desktop environment (left table) and in the automotive environment (right
table). In the first column, G stands for the actual head gesture, and in the first row,
H denotes the HMM modeling this head gesture.

|G \ HJ[Shake|Nod | |G \ HJ[Shake|Nod|
Shake || 98.2 | 2.2 Shake || 96.8 | 3.9
Nod 1.8 |97.8 Nod 3.2 [96.1

6.4 Benchmarking

The test set for evaluating the time performance of the individual system mod-
ules is composed of 54 video sequences of eight different users, each containing
a single head gesture. The sequences differ in the number of head candidates,
the size of the head region and the background environment. We have collected
the following time data: basic image operations (I10), like scaling and converting,
head localization (HL), optical flow (OF), template matching (TM), and loading
of an image (IL). Table 7 (left) summarizes the results.

All values are given in microseconds (usec). Thereby, the total time (TT) is
the average time that is needed for the complete calculation cycle of a single
frame. In general, it is not necessarily the sum of the individual times, since
individual modules (e.g. template matching) potentially run multiple times per
cycle. The values for both domains do not differ significantly.

On average, we obtained a total running time of about 18msec, which cor-
responds to 55 images per second. The time for displaying the image makes up
additional 10msec based on the OpenCV system functions. The time for final
classification (concerning both approaches) is below 1msec and thus not explic-
itly mentioned. Thus both implementations definitely meet real-time conditions
on standard state-of-the-art hardware.

A more detailed evaluation of the HL is given in table 7 (right), specifying
the morphological operations for the first closing with the ellipse (MO;), the
elimination of small particles (MOs), the padding of the eye region (MQOs3), es-
timating the skin color (SC), calculating the head blob (HB) and, finally, the
morphological operation for closing leaks in the resulting blobs (MQy). Again,



Table 7. Results of the benchmarking for components of a cycle (left) and for the head
localization (right). All time data is represented in usec.

IO |HL |OF |TM| IL || TT MO1|MO2|MOs|SC|HB|MO,
VR ||2912] 956 | 998 |2321|6591||17627 VR | 320 | 105 | 90 |96 |105| 198
CAR/||3010{1085|1004(3325|6954||19475 CAR|| 385 | 139 | 103 |85 [134]| 210

these values are specified in microseconds. In both domains, the quota of the first
closing (M O,) requires about 34 % of the whole time for the head localization.

6.5 Comparative Discussion

Each of the discussed implementations offers individual advantages due to differ-
ent points of view. RBA is a fast implementation which, considering its simplicity,
has very good recognition results in the reduced gesture set GSz. Thus in both
domains, it is predestinated for low-cost implementations or the use in dialogs
with decision questions. As it hardly takes processing power, an application in a
low CPU resource environment, like the automobile, appears to be very interest-
ing. The individual rules of RBA are hard-coded in an implicit knowledge base,
thus it is strictly limited to the given gesture vocabulary. At any time, STA can
be trained offline with arbitrary additional sets of gesture models of different
domains. An extension of RBA to other gesture types is rather expensive, as the
FSM has to be completely revised and updated. In this context, the tracking of
only a single feature might be problematic in some applications. For example,
gestures that are generated by rotations around the curl-axis (which we excluded
from our test set) can hardly be recognized by RBA, since during curl-rotations,
the position of the nose bridge hardly changes. Hence the architecture of STA
has great potential for an easy extension of the vocabulary, as we separately
evaluate the optical flow in the left and right part of the face (see section 5.1).

The segmentation algorithm was absolutely stable concerning moving objects
in the background or scenarios with more than one potential head candidate.
In the VR field, the template matching algorithm worked extremely robust. In
98.9% of all test sets, the nose bridge has been found correctly. Both the RBA
and the STA system were mainly developed in the VR environment. Using the
same template in the car, the rates for the matching have been slightly worse,
as the template matching algorithm is not scale-invariant with respect to larger
distance changes in z-direction (depth dimension). Moreover, the difficult light
conditions in the automotive environment contributed to an aggravation of the
RR. In 97.4% of all automotive test sets, the template matching algorithm has
been localized.

Regarding person independence, both approaches are extremely robust against
different skin color types, persons wearing glasses, ear- or nose-jewelry. Yet, both
systems have major difficulties categorizing head gestures of persons with strong
hair-growth covering the nose-bridge or subjects having a full beard. In this case,
either the head localization or the template matching algorithm, which forms the



basis for the feature extraction, does no longer work properly. Moreover, the op-
tical flow delivers too many diametrically opposed or divergent direction vectors
which leads to unemployable results, especially in the automotive environment,
where difficult light conditions negatively contribute to this effect. Hence STA
detected direction changes which were actually not made. This lead to the fact
that gestures, like left or right were wrongly interpreted as shake.

If test subjects do not sit directly in front of the camera, but have their
head slightly turned, STA is again more stable. Hence the optical flow of one
half of the face still delivers a movement direction. From the viewpoint of the
camera, the motion of the nose bridge is no longer recognizable. Thus the dif-
ference vector d (key feature of RBA) is close to zero, and consequently, the
system detects idle frames. RBA is more error-prone to inexplicit and indistinct
gestures than STA. In the current implementation, RBA has only a set of rigid
rules by which the system is able to overcome smaller inaccuracies in the head
movements (see section 4.2). Individual nuances of motion phases can hardly be
covered unless massively blowing up the code book of the rules. The latter, in
fact, would noticeably deteriorate system performance. On the other hand, STA
is highly adaptable to both specific conditions and individual users. It has better
recognition results than RBA, if gestures are made very quickly or clipped. In
this regard, the implementation again benefits from the flexibility of DHMMs to
time variant patterns and the broad corpus by which it has been trained.

7 Ongoing and Future Work

The systems presented here are in an intermediate state of development and thus
are subject to additional changes. As mentioned above, especially the HMM ap-
proach can be enhanced with regard to recognizing further sets of head gestures.
Hence we concentrate on the implementation of gestures which are generated by
rotations around the curl-axis.

As the head gesture recognition unit is to be used as part of a multimodal
system, two ways of processing the recognizer output are researched. In a current
approach, the head gesture recognition unit is to be coupled with a natural speech
recognizer[13], using an early feature fusion. This allows for further improvement
of the overall recognition rates and benefits from the fact that many user inputs
(especially confirmation and negation) are temporally overlapping[14].

In a late semantic fusion approach based on a client-server architecture[3],
the outputs of the recognizers are combined in a central integration unit. Apply-
ing context knowledge, the integrator can dynamically vary the vocabulary of
the head gesture recognizer via a TCP/IP socket-based communication. E.g., if
a yes-no answer is expected in a system dialogue the system could instruct the
recognizer to load configuration GSs, as other input does not make sense in this
system context. By this, we expect a remarkable improvement of the recognition
rate and time performance.
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Conclusions

Head gestures offer strong potential for an intuitive, efficient, and robust human-
machine communication. They are an easy and helpful input unit, especially in
environments, where tactile interaction is difficult or error-prone (like in the
automobile). We discussed two differently motivated approaches. The strongly
limited rule-based implementation allows for satisfactory categorization of head
gestures. It is predestinated for the evaluation of yes-no dialogs in environments,
where CPU-resources are low. On the other hand, the HMM-oriented stochastic
approach has excellent means to robustly recognize even inaccurate head move-
ments, and can easily be enhanced for recognizing further types of gestures.
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