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ABSTRACT

Robust structural andysistedniques are aucial for
the recogntion d handaritten mathematical for-
mulas. Therefore we integrated a novel probabili stic
structural clasgfication modue into a single-stage
semantic decoder, reaursivey taking relative symbad
(or symbd group) positions and sizes into accourt.
On the basis of Gausdan, dtatistically independent
distributions for the resulting features we obtained a
reliable structural assesanent measure which is st
aganst the correspondng symba classfication sco-
resin atop-down chart parsing scheme.

The fina recogntion system performs at a writer
specific accuracy of 95.0 %. Real-time inline pro-
cesdng is enabded dwe to anincremental breadth-
first search strategy.

1. INTRODUCTION

Online reaognition of handwritten mathematical for-
mulas basically requires three different problems to
be solved [1]: 1) segmentation of handwriting stro-
kes to symbd hypotheses, 2) handwritten symbd re-
cognition, and 3) structural analysis of 2D symbd
arrangements.

Clasdgcally, these tasks are performed step by step in
a battom-up multiple stage architedure, which may
imply the foll owing typical shortcomings:

* In the absence of higher level contextual infor-
mation, symbd independent segmentation rules
often falil.

e For similar reasons, symbd reaognition errors
ocaur due to missng higher level constraints or
due to precaling missegmentations.

* In case of segmentation and/or symbd reaogni-
tion errors, information is irretrievably lost at
the borderline to any foll ow-up structural analy-
Sis gage.

Our single-stage top-down clasdfication strategy

significantly reduces such obstacles by

« alowing for semantically consistent (sub-)hypo-
theses only,
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e incorporating semantic context into the syntac-
tic symbd and placement analysis processs,
and

e driving segmentation as an implicit asped of
symbd remgnition under contextual con-
straints.

Since we aim at an integrated system architedure
based on a Multimodd Probalbili stic Grammar [2], a
statistical measure for the structural contents of
handwritten input was the next important system
component to be implemented in this approach. This
paper describes the detailed properties of this gruc-
tural clasdfication module as well as its contribution
to the overall MAP classfier inside our probabili stic
chart parser.

2. OVERVIEW

The basic system components and their interactions
are displayed in Fig. 1. Esentialy, incrementa
first-last processng of the given handwritten input is
performed by cycling through the different chart
parser modules; hereby one ¢/cle @rresponds to ane
additionally processed handwriting stroke. Regard-
ing the general concept, espedally our syntactic-se-
mantic representations and their integration in a
chart parsing mechanism, we refer to [3]. As can be
seen from Fig. 1, an alternating evaluation of syntac-
tic-semantic, graphemic, and geometric knowledge
takes place
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Figure 1. Schematic system overview. For clarity,
only components addressed in this paper are shown.
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3. METHODS

This sdion presents the different parameters and
procedures that make up our structural analysis com-
ponent. After introducing our feature extraction
methods, we spedfy how the @rresponding prob-
ahili stic knowledge is gained and finally evaluated
during recognition.

3.1. Geometric Featur e Extraction

In order to oliain a reliable probabili stic geometric
model covering all the supported mathematical op-
erators [2], the first step is to find a proper set of
normalized geometric features that characterize the
positional relations between all the ocaurring hand-
written formula constituents.

3.1.1. Starting Point. Our top-down chart par-
ser systematically scans the search space by unfold-
ing Semartic Structures, i.e. hierarchic combina-
tions of semuns (semantic units) [3], as compact
representations of mathematical contents on the se-
mantic level. Every semun with its corresponding
type, value, and successor attributes refers to a cear-
tain mathematical operator or operand [2]. To com-
pare a given semantic hypothesis with the acquired
handwritten symbd sequence, the semantic hierar-
chy is mapped to a Syntactic Network consisting of
interconneded Syntactic Modues (SM) in which
writing order or symbd choice are modeled by tran-
sition or emisson processes, respectively.

Accordingly, it makes ®nse to look for geometric
features that can be alculated per semun so that 1)
the geometric contribution to our probabilistic das-
sification measure is gnocathly integrated in the
existing parsing mechanism, and 2) a robust con-
text-freeparameterization results.

3.1.2. Geometric Elements. In compliance
with our SM definition [3] we mnsider positional re-
lations between pairs of so-called geometric de-
ments belonging to a particular semun. Such an ele-
ment may either be one of the emitted handwritten
symbds or the entire handwritten subexpresson cor-
responding to ane of the semun spedfic semantic
succesrs. For example, the semun type SUM (sim-
ple addition) with its sngle symbd emisson (“+”"-
sign) and its two succesors (left and right addends)
requires three éement pairsto be processed.

For every pair of geometric dements 1) relative sym-
bd positions and 2) relative symbd sizes are extrac-
ted. Reaursive mntext-freegeometry processng is a-
chieved by merging relevant features derived from
inside a spedfic semun (element fusion); the result-
ing medial feature vedor is then passed back to the
semantic predecessor (cf. below).

3.1.3. Symbal Positions. To take local position-

a offsets between syntactically correlated geometric
edements into account, we first calculate symbd spe-
cific centers (X;,y; ) of their surrounding redangles

(X1 Xi2, Vi1, Yi2):

X :Xi1+/\x(xi2_xil); Vi:Yil*'/\y(Yiz‘Yil) D
Herein, A,,A,0]0,1] are weighting factors based
on expert knowledge. The final features Aé and An
for horizontal and vertical offset components result
by rescaling the pairwise center distances to the ar-
rent semun’s overall dimensions as ketched in Fig.
2. Thisimplies a range of feature values from -1 to
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Figure 2: Geometric feature clculation (positional
components) for the semun type “POW". The O
sign denotes the type spedfic overall semun center
(Eg. 3) which isreturned for reaursive processng. [
(T) components are regarded (disregarded) during
element fusion.

Finally, the overall semun center is determined as
follows (element fusion):

n

xs—z‘sx,x Z‘E"’ Vs = Z‘sy,yi Zsy, 3

The binary weights &,, & include type spedfic expert
knowledge in order to regard or disregard contributi-
ons from the different embedded geometric dements
(1 <i < n). For example, we suppressthe positional
contribution of the superscript term when merging
the geometric dements of an exponential expresson
(Fig. 2). As 90n as the semantic predecessor is pro-
cessed as described abowe, Xg and yg represent the
center coordinates of the crresponding successor-ty-
pe geometric dement.

3.1.4. Symbol Sizes. Although a considerable
portion of structural information is covered by sym-
bd placement properties, a rdiable and detailed
structural analysis must also take relative symbd si-



zes into acoount. Espedally nested expressons, e.g.
Xy, are usually written down by combining positio-
nal and scaling techniques. Again, we evaluate pairs
of geometric dements per semun, this time by com-
puting theratio o the arresponding symbd sizes g:

i =|095%; g =A(y2-vi1) (@)
J

As usual, expert knowledge serves to spedfy symbd
dependent weights Ag O [0,1] which conform to
common typing conventions. The speda value
Ag = 0 is used to exclude cetain critical symbds
(e.g. minus sgns) completely from scaling consid-
erations. Sincethe scaling range in typical handwrit-
ten formulasis below 5, these ratios are transformed
to a logarithmic scale of base 5; in this way the in-
teresting range of symbd sizes is mapped to a fea-
ture value range matching that of our positional fea-
tures (cf. Sec 3.2, Fig. 3). This convention makes
sure that positional and scaling properties have a
counterbalanced impact on the overal structura
classgfication measure (cf. Sec 3.3).

The medial symbd size inside the arrent semun is
given by:

n n
gs = ng,i gi ng,i ®)
= =

In analogy to Eq. 3, binary weights &, enable selec-
tive exclusion of irrdlevant geometric dements from
thisvalue. It isthen fed into the scaling feature mom-
putation for the predecessor semun as described in
Sec 3.1.3.

3.2. Parameterization

For every given geometric dement pair (i,j) the
abowe features yidd 3-dimensional feature vedors
[ = <Aé&j, Anij, ¢;>. The pairwise feature distribu-
tions as observed in a writer spedfic training corpus
(cf. Sec 3.4) are displayed in Fig. 3 for some typi-
cally competing mathematical functions. On the
whale, the structural classes to be discriminated ap-
pear to be rather well-separated. Furthermore, the
plots indicate that single Gaussans should be suffi-
cient for modelli ng the different components.

To parameterize our structural classfier, we dedded
to asaume statistical independence between the three
feature veaor components for the foll owing reasons:

e Thefeature distributions do not significantly re-
veal statistical coupling effeds,

e including covariances in our parameter sets
would require inappropriately large training
corpora per writer, and
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Figure 3: Pairwise geometric feature distributions
for sdeded semun types. product (PROD), sub-
/superscript (POW), subtraction (SUM), and fraction
(FRAC). The two-digit numbers (12, 13, 23) refer to
the different pairs of geometric dements.

e even by using our inline processng scheme, a
statistically independent implementation would
not reach real-time performance

Thus a number of at most 3(n*-n) model parameters,
i.e. 3 arithmetic means plus 3 standard deviations
per geometric dement pair, must be etimated for
every supported semantic type (n geometric de-
ments).

3.3. Classification M easure

Since our chart parser incrementally rates hypothe-
ses by adding up neglog scores derived from prob-
abilistic measures, it is graightforward to define our
structural classfication score as the exponent of the
respedive Gaussan PDFs. The A¢ contribution (and
analogically those for An and ¢ ) for a pair (i,j) of
geometric dements then reads:

2
SRSl s R

Wi and ¢; denote the Gaussan mean or standard
deviation, respedively, for dement pair (i,j). The
total structural score for asemun S results by sum-
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Figure 4: Test formula samples and results. The dashed circles point out deficiently recognized aress.

ming over all features and geometric dement pairs
asfollows:

B0) = N D% S(Bij(AE) +B”_(A'7) +Bij(z)) 8)
i

By exponentiating the number of actually included
dement pair scores (bracketed coefficient term)
with a so-called structural complexty weight * o,
the structural contribution to the overall hypothesis
score @an be adjusted to that from the symbd reag-
nition level: On the basis of around 2000symbd and
structure scores from our test formula corpus we de-
rived an optimum value of ar =1.25 for this empi-
rical constant; the majority of bath types of scoresis
then located inside the mmmon value interval
[0,10Q.

At the same time — since ar =1 — the structural
scores from different semun types are well-balanced
against each other by being rescaled acoording to the
number of scored geometric dement pairs.

3.4. Training

For awriter spedfic evaluation we trained our struc-
tural classfication layer using merely a corpus of 16
realistic handwritten formulas taken from [4]. In
parallel we etracted a reference base of symbd pat-
terns for our extended DTW symbd reaognition lay-
e [3]; for a better coverage of the supported symbd
inventory we added another record for any favoured
writing style of every symbd from our al phabet.

! Increasing this parameter upvalues gructurally more
complex hypotheses (corresponding to a higher total num-
ber of geometric element pairs).

4. RESULTS & CONCLUSIONS

The reagnition results in terms of 8 independent
test formulas are shown in Fig. 4. Defining the rec-
ognition acauracy R as the overall quota of correc
tly classfied symbds plus dructural constituents, we
obtain avalueof R=950% .

Summing up we have shown that a single-stage
probabili stic approach including geometric-structu-
ral properties is capable of robustly deading hand-
written mathematical formulas. Our compact writer
spedfic prototype runs under real-time onditions
whil e utili zing a strokewise inline processng sche-
me. Although it seems that even small training cor-
pora yield suitable structural model parameters, it
should be examined to which extent the system be-
nefits from larger data pods. Moreover, we aim at
implementing a writer independent version as well
as a refined alignment between the different invol-
ved classfication layers.
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