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Abstract—We introduce the automatic determination of leadership emergence by acoustic and linguistic features in online speeches.

Full realism is provided by the varying and challenging acoustic conditions of the presented YouTube corpus of online available

speeches labeled by 10 raters and by processing that includes Long Short-Term Memory-based robust voice activity detection (VAD)

and automatic speech recognition (ASR) prior to feature extraction. We discuss cluster-preserving scaling of 10 original dimensions for

discrete and continuous task modeling, ground truth establishment, and appropriate feature extraction for this novel speaker trait

analysis paradigm. In extensive classification and regression runs, different temporal chunkings and optimal late fusion strategies

(LFSs) of feature streams are presented. In the result, achievers, charismatic speakers, and teamplayers can be recognized

significantly above chance level, reaching up to 72.5 percent accuracy on unseen test data.

Index Terms—Personality analysis, dimensional analysis, acoustic/linguistic fusion

Ç

1 INTRODUCTION

LEADERSHIP and followership belong to the foundations
of human society and without doubt the ability to

recognize leaders and followers can be considered to be a
vital aspect of human social competence. In evolutionary
history, leader-follower structures evolved as a coordi-
nated solution to challenges which could only be solved
through collective efforts. Nowadays, effective leadership
is still considered essential for professionals and organiza-
tions to foster productivity, financial revenue, customer
satisfaction, development of human resources, and in-
novations [1], [2].

For the purpose of this study, it is of particular interest to
determine which individuals are perceived as leaders. It has
been found that, generally, followers prefer leaders who are
perceived as both competent (acquiring resources for the
group) and benevolent (sharing resources with the group)
[3], [4]. In detail, prototypical leaders are often described by
characteristics such as decisiveness (making timely and well-
founded decisions), self-confidence (being able to face
adversity), vision (being inspiring and charismatic), integrity
(being upright, modest, and prioritizing group interest over

personal ambition), and diplomacy (solving conflicts and
integrating individuals into a team).

Along with many others, these traits are facets of the
individual personality. Research on personality has a long
tradition, leading to the now well-established Five-Factor
Model [5]. For analysis of personality traits in speech, which
is the focus of this paper, linguistic information has been
used widely because self-assessment and peer-assessment
of personality have mostly been conducted with the help of
lists of verbal descriptors. Subsequently, these have been
combined and condensed into descriptions of higher level
dimensions. Metalanguage prevailed, and object language,
i.e., the use of linguistic, phonetic, verbal, and nonverbal
markers in the speech of subjects, was less exploited. Scherer
[6] gives an overview of personality markers in speech and
pertinent literature; a more recent account of the state of the
art, especially on the automatic recognition of personality
with the help of speech and linguistic information, and
experimental results can be found in [7]. To refer to some
related studies: Laskowski et al. [8] characterize participants
roles in multiparty conversations; Rosenberg and Hirsch-
berg [9] deal with acoustic/prosodic and lexical correlates of
charismatic speech. Gregory and Gallagher [10] demon-
strate that US presidential election outcomes can be
predicted on the basis of spectral information beneath
0.5 kHz. Nass and Lee [11] experiment with computer-
synthesized speech expressing personality. In the field of
personality assessment from text, Argamon et al. [12] find
that the use of appraisal predicts neuroticism and that
function words are indicative of extraversion; furthermore,
Oberlander and Nowson [13] employ textual features for
personality classification of weblogs. In contrast, Moham-
madi et al. [14] propose purely acoustic features for
personality assessment in radio broadcasts and Metze
et al. [15] point out the opportunities for automatic
personality analysis in human-machine interaction.
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Building on those previous results, we propose a speech-
based system which can automatically determine leader-
ship emergence—i.e., whether speech from an individual is
perceived as leader-like—by means of linguistic evidence
from automatic speech recognition (ASR) in combination
with acoustic analysis. Such automatic systems could help
to avoid cost intensive observer ratings [16] in the context of
human resources, and enable automatic voice coaching.
Furthermore, we expect that the perceived “social compe-
tence” of robots and other technical systems can be further
advanced if we can make them understand which people
are leaders and which are followers, and adapt their
discourse and interaction strategies accordingly. Other
promising applications of automatically detecting leader-
ship qualities are found in the multimedia and entertain-
ment sector, e.g., by enhancing archives of online speeches
by “tags” indicating traits such as charisma, self-confidence,
or integrity, or synthesizing leader-like voices for avatars in
computer games.

In light of this broad application potential, we strive to
evaluate speech-based leadership recognition in real-life
settings. To this end, we collected the YouTube corpus, a
large corpus of online speeches from YouTube that were
annotated in 10 dimensions of leadership, such as charisma,
self-confidence, and diplomacy, by expert annotators
(Section 2). We comment on the issues of correlated
dimensions and annotation reliability (Sections 2.2 and
2.3), then move forward to concepts for fully automatic
analysis: In Section 2.4, we present our approach for robust
segmentation by long short-term memory recurrent neural
networks (LSTM-RNN) and the classification and regres-
sion tasks used for evaluation (Section 2.5). Methods for
acoustic-linguistic analysis by late fusion are outlined in
Section 3, briefly discussing the measures for their evalua-
tion in Section 4. Parameterization on the development set
and final evaluation on the test set of the YouTube corpus
are fleshed out in Section 5 before concluding in Section 6.

2 YOUTUBE CORPUS: A DATABASE OF ONLINE

SPEECHES

2.1 Data Collection

The YouTube corpus consists of 409 recordings, each about
one minute long, from 143 speeches available on YouTube
(143 male executives within the age range of about
20-75 years, mean = 51.1, standard deviation = 12.1). For
those nine speeches where either the exact date of the
speech or the speaker’s age could not be determined, age
was estimated by 10 annotators and the mean value of all
annotators was considered in further analyses. Moreover,
the speakers’ age was not related to any perceived leader-
ship dimension and could, therefore, not be considered as a
relevant confounding factor. While a minority of 22 speeches
(15.4 percent) seems to be read from a script, the remaining
speakers presented either without any notes or only based
on presentation slides. In addition, no differences in
perceived leadership characteristics were found when
comparing scripted and nonscripted speech.

As the approach of this study is to assess perceived
leadership dimensions based on voice characteristics, the

samples of the YouTube corpus were collected to represent
persons with significant leadership abilities. The functions of
the speakers can be summarized as follows: The vast
majority (89.5 percent, or 128 speeches) are taken from top
executives of “global players” (mostly derived from the
Forbes Global 2000 list in 2010). The remaining 15 speeches
are composed of leaders of nonprofit organizations (6),
entrepreneurs (5), university professors (3), and one football
team captain. Most speeches were derived from public
presentations such as introduction of new products (100 or
69.9 percent), outlining future prospects (19 or 13.3 percent),
or summarizing recent developments (11 or 7.7 percent). The
remaining 13 speeches include interviews and university
lectures. Although in [17] it has been shown that apart from
rather invariant speaker characteristics, different speech
settings and authorships of speeches affect linguistic
features, we did not explicitly control for such possible
confounders since our study does not aim at assessing
invariant personality traits, but rather at the subjective—and
possibly time variant—impression of leadership, which
should not be masked by these uncontrolled confounders.

In order to obtain a nearly equal amount of data per
speaker, not more than three recordings per speech were
extracted. These recordings will be subsequently referred to
as tracks. The speech signal was recorded with different
microphones and qualities, mainly with a 16 kHz sampling
rate. The recordings took place in lecture-rooms under
varying levels of noise and reverberation (microphone-to-
mouth distance > 0:3 m). The corpus was annotated by
10 raters (PhD students of psychology, five males, five
females) aged between 23 and 58 years (mean = 36.9).
Gender effects were controlled by Krippendorff’s � and
significance testing, but no significant effects could be
revealed. All raters had been formally trained to apply a
Likert scale on a standardized set of judging criteria and are
experienced both in leadership research and in rating of all
the dimensions which were used. First trainings were
conducted with the assistance of unambiguous samples
(negative and positive ones). This is considered sufficient
training since the ratings are supposed to represent intuitive
perception to gain the best possible external validity.

All rating dimensions were derived from the culturally
endorsed leadership (CLT) questionnaire [18], which is a
highly validated, commonly applied rating instrument (e.g.,
[19], [20]) and widely considered as the leading cross-
cultural leadership approach [21]. Each rater assigned an
integer value from 1 (“not at all”) to 5 (“very”) to each of
10 dimensions, for which the following associated descrip-
tors were given to the raters: charismatic (fascinating,
captivating, winsome), visionary (stimulating, future or-
iented, far-sighted), inspiring (positive, dynamic, building
confidence), upright (trustworthy, reliable, being of integ-
rity), team-integrating (integrative, informing, team build-
ing), nonmalicious (benevolent, smart, anticipating),
diplomatic (good negotiating, accomplishing best conditions,
effective), decisive (fast decisions, determined, stringent
argumentation), performing (improvement oriented, de-
manding excellence, active), and self-confident (professional,
not nervous, not submissive). The order of tracks was
randomized. In case the rater was unsure, he or she
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assigned a symbol for a missing value (? ). The validity of
the applied dimensions and rating instruments have been
proven in several studies [19], [22], [23], [24].

All ratings 2 f1; . . . ; 5g were mapped onto

C :¼ f�1;�0:5; 0; 0:5; 1g ð1Þ

by means of the linear mapping c 7! ðc� 3Þ=2, in order to
ensure compatibility of our results with the standard
representation of continuous dimensions, which mostly are
conceptualized as coordinate systems with an origin.

We now formally introduce the terms related to the
annotation. cdim

i;r 2 C shall denote the value for dimension
dim that rater r gave to track i. For each track i and
dimension dim, Rdim

i � f1; . . . ; 10g specifies the raters that
assigned a label to it, i.e., cdim

i;r 6¼? . Thus, for a dimension
dim and a track i, the mean rating can be defined as follows:

cdim
i ¼ 1

jRdim
i j

X
r2Rdim

i

cdim
i;r 2 ½�1;þ1�; ð2Þ

where cdim
i corresponds to the maximum likelihood estima-

tor of the true label of track i assuming that the rating of
each rater is corrupted by additive Gaussian noise [25].
Calculating the mean rating from the ordinal ratings
enables a quasi-continuous scale, taking into account that
leadership traits—similarly to personality—are best repre-
sented in continuous dimensions, while observer ratings are
typically performed on discrete valued ordinal scales.

The distributions of the mean ratings cdim
i for each

dimension dim are shown in Fig. 1 as a box-and-whisker
plot [26]: Boxes range from the first to the third quartile; all
instances i with cdim

i exceeding that range by more than
1.5 times the width of the box are considered outliers,
depicted by circles. While the mean rating distribution
shows a somewhat strong tendency toward the scale center,
a more in-depth analysis of the ratings yields that, on
average, a range of 3.8 (on the original Likert scale from 1 to
5), or 95 percent of the available rating scale, have been used.
In addition, at least 10 percent of all ratings are located at the
extrema, and these extreme ratings are evenly distributed

among the ratings of all raters. Finally, the low rate of
missing values in the ratings (0.9 percent or 36 of 4,090
ratings) provides indirect evidence for high rater confidence.
These missing values are not focused on certain samples or
dimensions but appear to be random.

2.2 Cover Dimensions

Table 1, considering only those tracks that were later
assigned to the training or development set (Section 2.4),
shows that the 10 dimensions annotated are more or less
correlated with each other, indicated by different gray
values: the darker, the higher correlated. Thus it seems
reasonable to assume some few, more basic dimensions. In
order to obtain such dimensions in a data-driven and
cluster-preserving way, we computed nonmetrical multi-
dimensional scaling (NMDS) solutions [27], based on this
correlation matrix. Using all 10 dimensions reveals that
nonmalicious is rather isolated from all other dimensions,
cf., the low correlation values in Table 1. We therefore
computed another 2D NMDS solution using all dimensions
but nonmalicious, yielding the representation depicted in
Fig. 2 with very good quality (stress ¼ 0:07, RSQ ¼ 0:98).
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Fig. 1. Visualization of the distribution of the mean rating (for each
dimension) across the instances as a box-and-whisker plot, with circles
indicating outliers.

Fig. 2. Configuration of the derived stimulus (euclidean distance model)
by nonmetrical multidimensional scaling on the interdimension correla-
tion matrix.

TABLE 1
Correlation Matrix between Inter-Rater Mean of
the Original 10 Dimensions (Deci ¼ Decisive)



The four quadrants can be interpreted as representing
archetypal personalities of leaders: charismatics (first quad-
rant), achievers (second quadrant), diplomats (third quad-
rant), and teamplayers (fourth quadrant). Clustered
dimensions (ACHIEVER, CHARISMATIC, TEAMPLAYER)
were obtained by averaging the ratings for the dimension
in each cluster. The clustered dimensions can be recog-
nized within the prototypical leadership characteristics
mentioned in the introduction and can be roughly assigned
to the classical dimensions of task- versus people-oriented
leadership [28]. We will subsequently refer to the dimen-
sions ACHIEVER, CHARISMATIC, TEAMPLAYER, NONMA-

LICIOUS, and DIPLOMATIC as “cover dimensions,” denoted
by SMALL CAPS.

2.3 Assessment of Annotation Reliability

To measure the reliability of the annotation in the YouTube
corpus, we considered the average agreement of a single
rater with the mean rating. Taking into account the
presence of missing values, multiple raters, and the ordinal
scale of the rating, we decided for (weighted) � statistics
[29] and the correlation coefficient (CC) %. For reference, we
also provide unweighted (Cohen’s) and weighted �.
Weighted � and � (�1, �2, �1, and �2) use the absolute
value of disagreement, jcdim

r1
� cdim

r2
j, or its square as metrics

to better reflect ordinal dependencies. Note that all of these
measures are independent of the scaling of the ratings.

For the purpose of calculating Kappa and Alpha
statistics of a rater versus the mean rating, the mean rating
(2) is mapped onto the nearest value in C (1) through a
function IR! C given by

c 7! 1

2
2cþ 1

2

� �
:

The average agreement of the individual raters with the
inter-rater mean is shown in Table 2. Overall, despite the
high correlation of the dimensions, their reliability consider-
ably differs. Furthermore, for every single kind of measure,
the ACHIEVER cover dimension displays the highest average
rater agreement with the inter-rater mean. On the other side
of the scale, there is low agreement on the nonmalicious,
diplomatic, and team-integrating dimensions.

2.4 Automatic Segmentation: From Track to Chunk
Level

In this paper, we constrain ourselves to static classification
and regression using segment-wise features, which we will
describe in detail in Sections 3.1 and 3.2. As a result, there is
a need for adequate segmentation: Segment-wise analysis
can be applied to entire tracks, thus taking into account
long-range context, but arguably also losing information
about short-time variations of the features. Besides, a
smaller unit of analysis, termed chunk level in the following
discussion, can also be motivated from a machine learning
point of view since using chunk level features arguably
enables more stable classifier training due to the increased
number of instances and more meaningful functionals.
Then, a track level prediction—which is most important
considering possible applications—can be established by
fusing chunk level predictions, as discussed in Section 3.4.

Tracks were split into chunks through automatic voice
activity detection (VAD). Relying on VAD disposes of the
need for a ground truth transcription, which is required for
more elaborate schemes based on syntactic and prosodic
criteria [30], but is not available for a real-life system that is
applied “in the wild” to unknown data. We found in a
preliminary study on the training set that due to the
challenging acoustic conditions in the database, particularly
varying levels of reverberation and noise, a simple energy
threshold was not appropriate for segmentation due to
inaccurate recognition of speech pauses. Thus, we imple-
mented a VAD using the output of a Long Short-Term
Memory recurrent neural network [31]. LSTM-RNNs are
able to take into account arbitrary amounts of context from
earlier feature and prediction vectors; as a consequence,
they are able to adapt to instationary background noise, as
could be demonstrated, e.g., in [32].

We trained an LSTM-RNN on a modified version of the
TIMIT database: The recordings of the TIMIT training set
were split speaker-independently into training (3,326 utter-
ances) and validation set (370 utterances) and were overlaid
with noise (babble and street noise from the Aurora
database [33]) at signal-to-noise ratios from 0 to 30 dB after
adding silence of random length (0 to 2 seconds) at the
beginning and end. Twelve perceptual linear prediction
(PLP) features, along with first and second order regression
coefficients, were extracted using our open-source feature
extractor openSMILE [34]. The LSTM-RNN had one input
layer of size 36 (input feature vector size), one hidden layer
with 200 LSTM cells, and one output layer with one output
indicating the posterior voicing probability. From the
manually phone aligned transcripts, we generated a binary
voicing ground truth to be used as the target for network
training by mapping all phones to 1 and silence to 0.
Training was performed by gradient descent with early
stopping once the error on the validation set had not
decreased for more than 40 iterations. The correlation
coefficient between the voicing ground truth and the
posterior voicing probability output by the LSTM-RNN is
0.868, at a mean linear error (MLE) of 0.123, on the noisy data
created from the TIMIT test set, indicating robust segmenta-
tion in challenging conditions.

The trained network was applied to the audio tracks in the
YouTube corpus, and tracks were cut at pauses which were
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TABLE 2
Average Rater Agreement with the Inter-Rater Mean,

Measured by Correlation (%), Kappa, and Alpha Reliability

�1, �2, �1, and �2 are weighted versions of Kappa and Alpha (absolute/
squared label difference).



indicated by the output of the neural network as staying
below a threshold of 0.2 for longer than 500 ms. Finally, we
divided both tracks and chunks into a training (TR),
development (DE), and test set (TE). The partitioning was
chosen to strictly enforce speaker independence, as needed
in most real-life applications. For easy reproducibility, the
subdivision was performed by ordering the speaker IDs in
ascending numeric order and assigning the first 57
(� 40 percent) of the 143 speakers to the training, the next
43 (� 30 percent) to the development, and the remaining 43
(� 30 percent) to the test set. We found that this partitioning
also provides for stratification by speaker age. The resulting
number of tracks and chunks is shown in Table 3. Note that
we do not preselect “friendly” instances, such as instances
with a high rater agreement, for evaluation. Rather, in line
with recent studies in paralinguistic information retrieval
(e.g., [35]), our goal is to design a system that robustly
classifies all available data as needed for a system operating
“in the wild.”

2.5 Task Definition: Regression versus
Classification

As mentioned above, the mean rating per track, cdim
i ,

provides a natural target for regression in the feature space.
On the other hand, it can be argued that in practical
applications, for example, automatic tagging of audio
archives, an exact assessment is not required; rather, a
binary decision such as charismatic/noncharismatic is ade-
quate. Furthermore, the latest series of INTERSPEECH
Challenges dealing with recognition of speaker states and
traits from speech in real-life conditions have shown that
such tasks become robustly tractable when reduced to a
reasonably limited number of classes [36], [37], [38], [39].

Thus, we additionally created binary classification tasks
for each dimension to discriminate between high- and low-
rated instances by binarizing the quasicontinuous mean
ratings in accordance with recent evaluation campaigns in
the field [39], [40]. Each instance i was assigned a “positive”
label (1) for dimension dim whenever cdim

i was below the
sample median of mean ratings ~cdim in the union of training
and development set, or a “negative” (0) label in case that
cdim
i < ~cdim. The choice of the sample median of means as

threshold binarizes the quasi-continuous rating given by the
mean ratings in a natural way, enforcing balanced training
with the union of training and development set—this
disposes of the need for upsampling or other techniques
that are often applied to prevent a classifier bias toward the
majority class. It is left to assign all instances i with cdim

i ¼
~cdim to either a positive or negative label; we simply chose
the option that minimizes class imbalance among the union

of training and development set. Note that our definition of
the classification problem does not guarantee a balanced
development or test set: In particular, the imbalance of the
test set—measured as the ratio of majority class over
minority class instances—is highest for NONMALICIOUS

(1.85), followed by DIPLOMATIC (1.29); in contrast, it is low
(< 1:2) for the three cover dimensions.

3 METHODS FOR AUTOMATIC ANALYSIS

Having defined concrete tasks for automatic analysis based
on the characteristics of the YouTube corpus, we now
proceed to describe how these can actually be solved. To
this end, we describe baseline methods for acoustic and
linguistic analysis, and propose an effective method to
combine these modalities by means of late fusion.

3.1 Acoustic Analysis: Relevant Low-Level
Descriptors (LLDs) and Functionals

Our approach to acoustic feature extraction includes
features reported in the literature as relevant in leader-
ship-related contexts, and at the same time relies on a
publicly available feature set for reproducibility. Thus, for
all experiments, the full, 1,582D feature set given for the
INTERSPEECH 2010 Paralinguistic Challenge [37] was
extracted. Features are obtained by extracting low-level
descriptors at 100 frames per second using window sizes
from 25 to 60 ms, then applying track- or chunk-wise
functionals (cf., Table 4) intended to capture time variation
in a single feature vector that is independent of the length of
the speech signal. Low-level descriptors include spectral
features (which were associated in [10] with election
outcomes), cepstral features (describing timbre of the voice,
which is relevant for likability [41]), prosodic features
including loudness and fundamental frequency (F0) that are
known to be related to extroversion [6] and charisma [9],
and, finally, voice quality features, including jitter and
shimmer, to characterize the “roughness” of the voice. The
LLDs are smoothed by moving average low-pass filtering
with a window length of three frames, and their first order
regression coefficients [42] are added.

This “brute-force” combination of LLDs and functionals
yields 16 zero information features which are discarded, e.g.,
minimum F0 (always zero). Finally, two single features, the
number of F0 onsets and turn duration, are added. These
indicate the number of voiced segments and the duration
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TABLE 3
YouTube Corpus: Train, Develop(ment), and Test Set, and
Corresponding Numbers of Instances (#) on Track (tr.) and

Chunk (ch.) Level as well as Number (#) of Chunks per Track;
Mean � Standard Deviation

TABLE 4
The Official 1,582D Acoustic Feature Set of the INTERSPEECH
2010 Paralinguistic Challenge: 38 Low-Level Descriptors with

Regression Coefficients, 21 Functionals. Abbreviations:
DDP: Difference of Difference of Periods,

LSP: Line Spectral Pairs, Q/A: Quadratic, Absolute
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between speech pauses. For straightforward reproducibility,
we use our open-source feature extractor openSMILE [34]
that also provided the features for the Challenge [37].

We verified the relevance of the extracted acoustic
features on the proposed evaluation database. The correla-
tion coefficient of selected features (LLDs and track-wise
functionals) with the mean rating across all instances as
well as their t-test score against the binary labels is shown in
Table 5. For achievers (Table 5a), we observe a higher
variation in speech in general, as indicated by the
importance of quartile range functionals. More specifically,
the change (deltas) in MFCC and LSP features, somewhat
corresponding to phonetic content, has wider range, which
can be interpreted as achievers varying their articulation
stronger. PCM loudness seems to be strongly associated
with achievers; interestingly, among the functionals of PCM
loudness, skewness shows strong negative correlation with
the mean achiever rating, probably indicating that achievers
make more targeted pauses (negative skewness of the
energy envelope). In contrast, rough voices (low maximum
voicing probability) characterize nonachievers somewhat,
as well as high kurtosis of loudness changes (i.e., presence
of sharp changes). Further, we observe that “standard”
functionals of PCM loudness such as standard deviation
and arithmetic mean show considerably lower correlation
with the ACHIEVER rating than the quartile range, which
can be due to the increased noise robustness of the latter.
Besides, while achievers generally seem to have higher

median F0 as expected, the dynamic range of their F0
(quartile range of deltas) is even more strongly associated
with the achiever ratings in our data. Finally, our findings
corroborate [10] since the 90 percent up level time of the
Mel frequency band 2, ranging from 166 to 341 Hz, is
correlated with the notion of achievers.

Second, regarding charismatics (Table 5b), we see on the
one hand a considerable overlap of relevant features with
the achievers, but correlations are lower, except for max-
imum voicing probability. While the correlation of F0 with
charisma is corroborated by Rosenberg and Hirschberg [9],
the lower correlations than for ACHIEVER generally indicate
that charismatic speech is a more multifaceted phenomenon
than “achiever” speech. In particular, we see that the mean
PCM loudness is much weaker correlated with charismatics
than with achievers.

Third, for the nonmalicious dimension (Table 5c), we
observe that only a few features are significantly correlated
with the ratings. However, these seem to characterize well
the nature of this dimension: Apparently, the presence of
“shrieking,” i.e., high F0, PCM loudness, voicing probability,
and jitter, is judged by the raters as a sign of maliciousness.
Finally, we see that some features are best suited to coarse
classification of the extremes, exhibiting high t-values but
lower CC values (e.g., median F0 for ACHIEVER), and
conversely, others enable fine-grained assessment, e.g.,
skewness of PCM loudness for ACHIEVER.

All correlations reported in Table 5 are significant at
the 0.001 level. In summary, we conclude that the
INTERSPEECH 2010 Paralinguistic Challenge feature set
is very well suited to capturing the features relevant for
leadership traits.

3.2 Automatic Linguistic Analysis

In addition to the acoustic features, we considered
linguistic features in the shape of bag-of-words (BoW)
vectors. To strictly enforce realism, we obtained these
features by ASR. An ASR engine was built on top of
HDecode [42], using 3 � ð12þ 1Þ PLP features along with
short-time energy and first and second order regression
coefficients in a hidden Markov model (HMM) framework.
Thirty-nine monophones and silence were represented in
three-state left-to-right HMMs with 16 Gaussian mixtures
(32 for silence). The initial monophone models with a
single Gaussian mixture were trained using four iterations
of embedded Baum-Welch re-estimation. After that, the
monophones were mapped to tied-state cross-word tri-
phone models with shared state transition probabilities.
Two Baum-Welch iterations were performed for reestima-
tion of the triphone models. Finally, the number of mixture
components of the triphone models was increased in
successive rounds of mixture doubling and reestimation
(four iterations in every round).

Since the investigated speeches unite characteristics of
both read and spontaneous speech, the training data for the
acoustic models consisted of the union of the Wall Street
Journal (WSJ) and Buckeye [43] corpora, using the segmenta-
tion described in [44] for the latter. Finally, a back-off trigram
language model was built from all the 778 transcripts of
public speeches available at the TED talks website1 as of
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TABLE 5
Feature Relevance: Selected Track-Wise Functionals of LLDs

by Correlation Coefficient with the Mean Rating
and t Statistic against the Binary Labels

for ACHIEVER, CHARISMATIC, and Nonmalicious

1. www.ted.com/talks.
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December 2010 (2.0 million words), in order to ensure good
adaptation of the language model to the target domain,
resulting in a vocabulary size of 30.6 K. To ensure
consistency between chunk and track level linguistic
features, decoding was first performed on the chunk level,
and transcriptions were concatenated to form a transcription
on track level.

Since, in a fully realistic setting, ground truth transcripts
of online speeches are generally not available, we primarily
evaluate the performance of the resulting BoW features
rather than measuring ASR performance directly in terms of
word accuracy. In fact, it has been shown that, e.g., text
classification is robust against ASR errors [45]. Still, to
complement our task-based evaluation of ASR, we obtained
a rough ASR performance estimate by manually transcrib-
ing a randomly selected subset of 30 speeches (spread
across training, development, and test set). The obtained
word accuracy in these speeches ranges from �20 to
52 percent, reflecting the challenge of the ASR task, which
we attribute mainly to the varying reverberant and partly
noisy acoustic conditions which lead to a considerable
amount of word insertion errors, and the spontaneous,
nonscripted speech. To mitigate the effect of the erroneous
ASR, we replaced all words whose confidence measure was
below a threshold of 10 percent of the average confidence
on the training and development set by a marker word (LC
for “low confidence”).

Finally, BoW vectors were generated from the words that
occurred in the ASR transcript of the training and
development set with a minimum term frequency of 3,
resulting in a BoW size of 859. Note that the BoW vectors
also include the frequencies of the LC word—this feature
could help in determining the “intelligibility” of a speech,
as good speakers are more likely to produce high acoustic
(and language model) likelihoods due to clarity in articula-
tion and syntax, aside from recording artifacts.

3.3 Training of Low-Level Classifiers

In line with the choice of acoustic and linguistic features
which have been thoroughly explored in paralinguistics
research, we relied on well-proven classifiers as well: We
opted for the setups used for the baselines of the
INTERSPEECH 2009 Emotion Challenge (2-class task)
and INTERSPEECH 2010 Paralinguistic Challenge (Affect
Subchallenge). A key part of our study will be to combine
the low-level classifiers by late fusion, as laid out in the
next section.

In particular, the binary low-level classifiers are support
vector machines (SVMs) with a linear kernel, trained using
the sequential minimal optimization (SMO) algorithm [46]
on normalized features. SVMs have been selected for
classification in this study as they are well suited to the
large acoustic and linguistic feature sets due to their
robustness against overfitting—their complexity does not
depend on the number of features; furthermore, linear SVM
are known to be well suited to classification by linguistic
features [47]. The complexity constant for the SMO training
algorithm was set to 1.0. For regression tasks, we used
unpruned REPTrees with 25 cycles in Random-Sub-Space
metalearning [48] (500 iterations, subspace size 5 percent).
Since this regression algorithm builds a large number of

regression trees, each on a small feature subspace, it is
suitable for high-dimensional feature spaces, and further-
more outperformed Support Vector Regression in a pre-
liminary experiment. To enforce transparency of results, all
experiments were based on the classifier implementations
found in the WEKA toolkit [49].

In the following, the decision of a low-level classifier
trained on acoustic features will be denoted by ddim

ac;chðiÞ and
ddim

ac;trðiÞ 2 f0; 1g for chunk and track level, respectively. For
classifiers trained on linguistic features, the notations
ddim

lng;chðiÞ and ddim
lng;trðiÞ will be used.

3.4 Late Asynchronous Acoustic/Linguistic Fusion

Based on the above low-level classifier setup, late fusion
strategies (LFSs) were designed, taking into account the
following: First, in the targeted application scenario, a
prediction for each track has to be deduced, which is also
the level that annotation was performed on; thus, it is
necessary to combine the chunk-level decisions onto track
level. There is a straightforward strategy for this: In case of
regression, we take the mean regressor output, while for the
classification tasks we perform a majority vote.

Second, and more interestingly, it is desired to integrate
acoustic and linguistic information. We opted for a late
(decision-level) fusion as this allows us to integrate the
fusion of chunk level decisions with the fusion of acoustic
and linguistic information. As it is not clear which unit of
analysis provides the best tradeoff between the predictive
power of features and providing enough data for the
classifier, we can let both the acoustic and linguistic
information be processed, each on chunk or track level,
independently or asynchronously, and derive for each
possible combination a decision function as shown below.
Thus, our fusion methods go beyond merging the outcomes
of two classifiers, each operating on the same data. We will
evaluate each type of strategy on the development as well as
the test set in Section 5.3.

For the sake of clarity, we constrain the following
discussion to classification, as regression on chunk level
delivered unsatisfactory performance in our first experi-
ments on the development set (Section 5.1, Table 6); yet, the
methodology can be easily extended to regression or
classification with confidences. First, the decision function
for track i when fusing acoustic information on chunk level
and linguistic information on track level is defined by

ddim
1 ðiÞ ¼

1

1þ �1
�1d

dim
lng;trðiÞ þ

1

jCHðiÞj
X

j2CHðiÞ
ddim

ac;chðjÞ

2
4

3
5; ð3Þ

where CHðiÞ is the set of chunks that track i consists of. The
fused class decision is then 1 if and only if ddim

1 ðiÞ > 0:5. Note
that the parameter �1 roughly resembles the weight factor
that is commonly used in ASR to premultiply language
model likelihoods when total acoustic and linguistic like-
lihoods are calculated. Precisely, �1 is the weight that the
linguistic classifier decision is given with respect to the
majority vote among acoustic, chunk-level classifiers. If
�1 ¼ 0, the class decision is equal to decision by majority vote
among chunk level acoustic classifiers. Conversely to (3)
above, acoustic information on track level and linguistic
information on chunk level is fused by
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ddim
2 ðiÞ ¼

1

1þ �2
ddim

ac;trðiÞ þ
�2

jCHðiÞj
X

j2CHðiÞ
ddim

lng;chðjÞ

2
4

3
5; ð4Þ

where �2 is the weight of the linguistic majority vote with
respect to the acoustic classifier decision on track level.
Finally, considering both types of information on chunk level
results in

ddim
3 ðiÞ ¼

1

1þ �3

1

jCHðiÞj
X

j2CHðiÞ
ddim

ac;chðjÞ þ �3d
dim
lng;chðiÞ

� �2
4

3
5:
ð5Þ

The decision resulting from ddim
3 corresponds to a weighted

majority vote on all chunks, where the weight of any
linguistic decision with respect to any acoustic decision is
given by �3.

Note that if one assumes hard class decisions (0 or 1) for
ddim

lng;tr, �1 should be chosen � 1 since otherwise the outcome
ddim

1 ðiÞ (3) will be equal to the decision of the linguistic
classifier; conversely, for LFS2 (4), �2 	 1 if ddim

ac;tr is a hard
class decision.

4 EVALUATION MEASURES AND SIGNIFICANCES

4.1 Performance of Classification and Regression

Before discussing the performance of automatic analysis in
detail, let us first clarify employed performance measures.
Our primary evaluation measure for classification is un-
weighted average recall (UAR) which is tailored to imbal-
anced problems—remember that the test set is imbalanced
for some dimensions and optimizing on accuracy may
introduce a bias towards picking the majority class. For the
two-class problems considered in this study, this measure
simply reads

UAR ¼ Recall of Class 000 þ Recall of Class 010

2
:

UAR has been the competition measure of the INTER-
SPEECH 2009-2012 Challenges dealing with paralinguistic
phenomena [36], [37], [38], [39]. We additionally consider
conventional accuracy for reference.

For evaluation of regression tasks, we rely on correlation
coefficient between the outputs of the regression function
and the corresponding target values and mean linear error,
which is the expected absolute difference. The CC is a scale-
independent measure that quantifies whether a high rating
results in high prediction and vice versa, while the MLE is
the expected absolute deviation of the prediction from the
mean rating, thus being scale-dependent and penalizing
overshooting as well as underestimation. These are stan-
dard evaluation measures in recognition of paralinguistic
information from speech (cf., the INTERSPEECH 2010
Paralinguistic Challenge’s Affect Subchallenge [37]) and
machine learning in general [50]. While our goal is to
recognize how well-automated predictions reflect the best
possible consensus of annotators derived from their ratings,
the evaluation by CC with the mean rating can also be
interpreted from a different perspective: The CC of the
prediction and the mean rating is equivalent to the expected
CC of the prediction and any individual rater, assuming that
the mean rating has the same standard deviation as any

individual rating—the latter could be trivially established
by scaling.

4.2 Significance Testing for Classification

Statistical significance testing is especially desirable in our
case: It is necessary to evaluate whether automatic classifi-
cation of leadership traits from speech, arguably a challen-
ging task, performs significantly better than chance. Thus,
we evaluate significance of performance differences for
binary classification in terms of weighted accuracy using a
correlated proportions test [51]. It is based on the assump-
tion that the accuracy difference between a classifier A and a
baseline B with accuracies pa and pb is a normally
distributed random variable with mean pa � pb and var-
iance 2pð1� pÞ=S, where p ¼ ðpa þ pbÞ=2 and S is the
number of instances of the test set. We use a one-tailed
test, i.e., the null hypothesis (H0) is that pa � pb or,
informally, A is not better than the baseline B. To model
comparison with chance level accuracy, pb is set to 0.5. In
Fig. 3, we show how large the accuracy improvement of A
with respect to B must be on the test set on track level (117
instances) or chunk level (1,272 instances) to reject H0 at
either the 0.05, 0.01, or 0.001 level: The required accuracy
improvement is given by the intersection of the vertical line
corresponding to the baseline accuracy and the curve
corresponding to the level of significance.

This test allows us to easily assess the significance of any
difference in accuracy encountered throughout analysis;
yet, results of this test should only be interpreted as a
heuristic measure since the estimates of pa and pb on the test
set are not independent [51]. Furthermore, it is not
straightforward to measure significance of differences in
unweighted accuracy. Caution must be exercised when
applying the above-mentioned significance tests to results
on chunk level as the required assumption of statistical
independence among samples is not necessarily given;
while in ASR one often assumes that results of a recognition
algorithm on parts separated by speech pauses are
independent of each other [52], it is not clear that this is
also the case for recognition of speech traits that arguably
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Fig. 3. Lines of significant absolute accuracy improvements for different

levels of significance (0.001, 0.01, or 0.05), for experiments on the test

set of the YouTube corpus, on track level (sample size S ¼ 117) or

chunk level (S ¼ 1;272). Vertical line: chance level accuracy (0.5).
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evolve slowly over time. Note that we do not correct for
repeated measurements, as it was suggested already in [53]
to use significance not in the inferential meaning but as a
sort of descriptive device—a more objective measure of
differences worth being discussed.

4.3 Significance-Based Evaluation Measure for
Regression

Given the distribution of the regression targets (mean rating

cdim
i ) as shown in Fig. 1, it must be taken into account that

the MLE itself is insufficient when comparing the results

achieved for different dimensions as the range of possible

target values for the test data varies considerably. Further-

more, given the cumulation of annotated targets around the

mean, it can be assumed that a regression function will be

biased toward predicting the mean across the training data.

Thus, we decided to use a paired t-test for comparing the

trained regression function to a “dummy” reference, that is,

a constant function that always predicts the arithmetic

mean of the dimension computed from training and

development data. In that case, a one-tailed t-test is used,

with the null hypothesis (H0) assuming that the mean

difference between the linear errors of the regression

function and the dummy is greater or equal to zero. Thus,

the error probability for rejecting H0 is a judgment of

whether the achieved MLE is significantly lower than the

one resulting from “always predicting the mean.”

5 EXPERIMENTAL RESULTS

5.1 Acoustic and Linguistic Analysis: Degrees of
Freedom and Performances

In order to design the system for automatic analysis of

speeches that serves for the final evaluation on the test set,

we first performed an extensive evaluation on the devel-

opment set: The degrees of freedom comprise the kind of

target variable (continuous or nominal), the features

(acoustic or linguistic), and the unit of analysis (track level,

chunk level, aggregation of chunk level results).

Results for acoustic features and regression on the mean
rating are shown in Table 6a. It can be seen that on track
level, a notable CC of 0.435 and 0.463 is achieved for the
ACHIEVER and CHARISMATIC dimensions, respectively;
this is on the order of magnitude of the best results obtained
for interest detection from speech in the INTERSPEECH
2010 Paralinguistic Challenge [37]. Yet, the CC for the other
dimensions (NON-MALICIOUS, DIPLOMATIC, and TEAM-

PLAYER) is considerably lower; for DIPLOMATIC, there is no
significant correlation (0.097, p > 0:05). Regarding the MLE,
it is again only for the ACHIEVER and CHARISMATIC

dimensions that the regressor significantly (p < 0:01; p <
0:05) outperforms the dummy prediction. Comparing the
MLE between dimensions, it is interesting that the MLE
assumes the two of its absolute highest values (0.225, 0.217)
for the ACHIEVER and CHARISMATIC dimensions; how-
ever, the results of the significance test suggest that this
phenomenon can be entirely attributed to the high varia-
bility of the ratings on those dimensions as opposed to the
low variability for the other dimensions (see also Fig. 1). In
comparison, regression on chunk level seemingly delivers
lower CC and higher MLE; still, for the ACHIEVER

dimension, the MLE is significantly better than the one of
the dummy. Furthermore, it seems that the mean of chunk
level results does not deliver better predictions than the
track level regression in terms of CC and MLE, for all
dimensions, which can probably be attributed to the
generally unsatisfactory performance on chunk level.

Next, binary classification on acoustic features is
evaluated in Table 6c. The results mirror the ones for
regression to some extent: For instance, better-than-chance
accuracy is achieved on the ACHIEVER dimension on track
level, and performance is lower (yet not significantly) on
chunk level. Interestingly, for the NON-MALICIOUS dimen-
sion, results are now significantly above chance level
(61.6 percent accuracy, p < 0:05) when performing a
majority vote among chunk level classification results.

For linguistic features, we shortly summarize the results
as follows: Regression (Table 6b) overall delivers lower CC
than for acoustic features on track level; still, the MLE is
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TABLE 6
Results on the Development Set by Regression/Classification Using Either Acoustic or Linguistic Features

The significance of MLE w.r.t. dummy prediction; significance of accuracy (Acc.) w.r.t. chance (
: p < 0:05, �: p < 0:01, � � : p < 0:001).
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significantly better than the dummy for three of five
dimensions (DIPLOMATIC, ACHIEVER, TEAMPLAYER). On
chunk leve,l the MLE even passes the significance test for
all five dimensions; still, for the reasons mentioned in
Section 4.2, it is disputable whether this cannot simply be
attributed to artifacts of statistical dependence: Indeed, the
track level MLE of averaged chunk level results remains
insignificant for three of five dimensions. Concerning
classification by linguistic features (Table 6d), the only
dimension where performance significantly exceeds chance
level is—again—ACHIEVER.

Overall, it is hard to derive a concise conclusion from the
results on the development set as they are very mixed: In
particular, it is not possible to rule out a certain choice of
features (acoustic or linguistic) or unit of analysis (track or
chunk level). If any, a noticeable tendency is that the
recognition of achievers is promising, delivering better-
than-chance accuracy or correlation in 8 of the 12 scenarios
considered so far. Since we aim at a general strategy for
combined acoustic and linguistic analysis that is largely
independent of the type of (low-level) classifier and its
parameters and because the optimal choice of unit of
analysis remains unclear, we now move on to discussing
late fusion of acoustic and linguistic features using all three
strategies presented in Section 3.4 and their optimization on
the development set.

5.2 Development of Late Fusion Strategies

In particular, we optimize the linguistic stream weight for
binary classification on track level by LFS 1-3 on the
unweighted accuracy on the development set. The range of
possible parameters was determined by the considerations
in Section 3.4: For LFS1, �1 was chosen from f 1

10 ;
2
10 ; . . . ;

9
10 ; 1g; since LFS2 is the “inverse” of LFS1, �2 for LFS2 was
chosen from f1; 10

9 ;
10
8 ; . . . ; 10

2 ; 10g; finally, the union of these
parameter sets was the set of possible values for �3.

The most noticeable improvement over the acoustic and
linguistic baselines is achieved when considering late fusion
of chunk level decisions (LFS3): In case of the charismatic
dimension, all parameter values improve the UAR over the
baselines (54.5 and 53.5 percent UAR, respectively), with a
maximum of 62.9 percent UAR (64.0 percent accuracy)
obtained at �3 ¼ 10

8 . Thus, in that case, the fused result is
observed significantly above chance level accuracy
(p < 0:05).

The overall performance of the late fusion binary
classifiers on the development set is shown in Table 7a;
all in all, it is very motivating: In short, for four of the five
dimensions considered for evaluation, i.e., all except

DIPLOMATIC, the line of significant accuracy (60.3 percent
accuracy) is crossed by at least one of the fusion strategies.
In terms of average UAR across the five dimensions, LFS2
(58.9 percent) falls slightly behind LFS1 (61.3 percent) and
LFS3 (61.0 percent); still, neither of the corresponding
accuracy differences is statistically significant, which is why
we proceed to evaluate each LFS on the test set.

5.3 Evaluation on Test Set

For the final evaluation of our fusion strategies on the test
set, we retrained the low-level classifiers on the union of the
training and development sets and used the fusion weights
determined on the development set for fusing the predic-
tions on the test set. Our results are shown in Table 7b: It is
striking that LFS1 performs especially well on the test set,
boosting the accuracy to over 72 percent UAR and accuracy
for the ACHIEVER dimension, also exhibiting remarkable
performance for CHARISMATIC (67.3 percent UAR/66.7 per-
cent accuracy), and above-chance accuracy for TEAM-

PLAYER (62.4 percent UAR/62.5 percent accuracy). On the
other hand, LFS2 and LFS3 fall considerably behind LFS1 on
the test set—for LFS2, even significantly in some cases—
which deserves some further investigation. An important
difference of LFS1 with respect to LFS2 and LFS3 is that the
linguistic stream weight is smaller than one for LFS1, while
it is greater than or equal to one for LFS2 and LFS3. Thus, an
explanation could be that linguistic features perform worse
on the test set: This hypothesis, however, can be rejected by
comparing the performance of the majority vote among
linguistic, chunk-level classifiers on the development as
opposed to the test set. There, only statistically insignificant
differences in the order of 1 percent UAR could be found.
Thus, we hypothesize that the reason for the high
performance of LFS1 is based on increased predictive
ability of the acoustic features; indeed, we can provide
evidence for this by the results of binary classification on
purely acoustic features, which are shown in Table 8. The
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TABLE 7
Evaluation of Track Level Analysis on the Development and Test Set by Late Acoustic + Linguistic Fusion

LFS1: Chunk level acoustic, track level linguistic features. LFS2: Track level acoustic, chunk level linguistic features. LFS3: Chunk level acoustic,
chunk level linguistic features. �1; �2; �3: Linguistic weights according to (3) through (5) optimized on the development set. Significance of accuracy
(Acc.) w.r.t. chance (
: p < 0:05, �: p < 0:01, � � : p < 0:001).

TABLE 8
Binary Classification on the Test Set by Acoustic Features:
Track and Chunk Level, and Track Level by Maj(ority) Vote

Significance of accuracy (Acc.) w.r.t. chance (
: p < 0:05, �: p < 0:01,
� � : p < 0:001).
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majority vote among chunk level acoustic classifiers is
comparable in performance to LFS1—thus, on the test set,
the benefit of adding linguistic information seems to be
smaller.

The remarkable performance of acoustic features on the
test set led us to another experiment, to investigate whether
the test set is easier to classify by acoustic features or the
benefit stems from the additional training instances of the
development set. To this end, we evaluated the perfor-
mance of the very same low-level acoustic classifiers that
were used for classifying the development set on the test
set. It turned out that their performance was clearly below
the one of classifiers trained on training and development
set (Table 8): For majority vote among chunks and on
average across the five dimensions, the UAR was 60.1
percent, as opposed to 63.5 percent when training with both
the training and development sets. For the ACHIEVER

dimension, the difference in accuracy (61.5 percent versus
71.8 percent) is even significant with p < 0:05. This provides
evidence that the acoustic features in development and test
set are “more compatible” than in the training and test set.

5.4 Discussion and Outlook

In summary, we have demonstrated that fused acoustic and
linguistic information delivers remarkable accuracy in
recognizing different facets of leadership in a real-life audio
archive. Particularly promising results have been accom-
plished for the ACHIEVER dimension: Here, the binary
decision by late fusion achieved over 72 percent un-
weighted accuracy on the test set and was always
significantly above chance level for both the development
and test set and all late fusion strategies. Still, it is notable
that the performance on the test set does not always
increase by taking into account linguistic features—while
this can be attributed to challenging conditions for ASR, it is
somewhat surprising, as previous findings suggest that text
classification based on ASR is robust even against high
word error rates [45]. Finally, it is important to point out
that since we deal with signal level speech analysis, not text
classification, the performance of our linguistic features
does not allow definite conclusions as to whether linguistics
are an important factor in determination of leadership
emergence. On a related note, we believe that the proposed
YouTube corpus will be an interesting testbed for evalua-
tion of adaptive, robust ASR technologies in future research
as the speech is corrupted by essentially unknown noise
and reverberation.

A strong focus has been laid in this study on fusion
strategies that are independent of the architecture of the low-
level classifier: We even proposed a high-level classification
paradigm that allows asynchronous decisions to be fused to
be able to take into account classifier decisions from different
units of analysis (track or chunk level). In fact, it has been
exactly a strategy for late fusion of track level linguistic and
chunk level acoustic classifiers that prevailed on both, the
development and the test set. Naturally, this still leaves room
for improvement on the classifier level: In fact, it would be a
natural extension to investigate other classifiers besides
SVM, especially those that provide a meaningful confidence
measure for late decision fusion. Finally, directions of future
research can also be accounted for on the feature level: For
instance, detection of nonlinguistic vocalizations (such as

filled pauses) could be integrated into the BoW vectors or

considered as a separate chunk or track level stream. The

same holds for the voice activity curve as output by the

LSTM-VAD, whose shape could be an interesting track level

feature that indicates speaking style.

6 CONCLUSIONS

We have introduced the challenging task of automatic
determination of leadership emergence in online speeches.
Furthermore, we have proposed a system that allows robust
automatic recognition of achievers, charismatic speakers,
and teamplayers in full realism, that is, using automatic
voice activity detection and speech recognition prior to
feature extraction. By using the real-life YouTube corpus for
evaluation, we have demonstrated that our approach
generalizes over a large variety of acoustic conditions.
Among the dimensions of leadership that were considered,
highest accuracy on unseen test data (72.5 percent) is
reached in recognizing achievers. This result is somehow
expected since ACHIEVER is 1) among the dimensions that
are best correlated with the acoustic features considered,
and 2) the leadership trait with the highest agreement
among professional human assessors, which naturally
creates more reliable training and test labels for machine
learning, but also indicates that this leadership trait is
particularly evident in speech.

In future work, we will integrate strategies for unsuper-
vised learning on unlabeled speech data collected from
online sources in order to iteratively improve automatic
speech recognition as well as acoustic-linguistic recognition
of leadership traits.
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