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BJÖRN SCHULLER, Institute for Human-Machine Communication, TUM, Germany

Automatic affect recognition is important for the ability of future technical system to interact with us socially
in an intelligent way by understanding our current affective state. In recent years there has been a shift
in the field of affect recognition from “in the lab” experiments with acted data to “in the wild” experiments
with spontaneous and naturalistic data. Two major issues thereby are the proper segmentation of the input
and adequate description and modelling of affective states. The first issue is crucial for responsive, real-time
systems such as virtual agents and robots, where the latency of the analysis must be as small as possible.
To address this issue we introduce a novel method of incremental segmentation to be used in combination
with supra-segmental modelling For modelling of continuous affective states we use Long Short-Term Mem-
ory Recurrent Neural Networks, with which we can show an improvement in performance over standard
recurrent neural networks and feed forward neural networks as well as Support Vector Regression. For ex-
periments we use the SEMAINE database, which contains recordings of spontaneous and natural human to
Wizard-of-Oz conversations. The recordings are annotated continuously in time and magnitude with Feel-
Trace for five affective dimensions, namely activation, expectation, intensity, power/dominance, and valence.
To exploit dependencies between the five affective dimensions we investigate multi-task learning of all five
dimensions augmented with inter-rater standard deviation. We can show improvements for multi-task over
single task modelling. Correlation coefficients of up to 0.81 are obtained for the activation dimension and
up to 0.58 for the valence dimension. The performance for the remaining dimensions were found to be in
between that for activation and valence.
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1. INTRODUCTION
As the number of technical gadgets and electronic devices, which play a role in our ev-
eryday lives, constantly grows, intuitive and easy interaction becomes more and more
an essential factor. The way we interact with computers, service machines, and house-
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hold appliances, for example, is far from being as convenient as interacting with fel-
low humans. We spend unnecessary time by adapting to different user interfaces and
learning how to control devices. Often malfunction or non obvious functionality leads
to anger and frustration of users. Many people, especially elder ones, thus are afraid
of using modern computer technology.

A key in achieving faster, more intuitive interaction is to make machines understand
our intentions in a similar fashion as our human peers do. That is, there is a need for
socially intelligible machines, which robustly accept multi-modal and sometimes even
ambiguous input, and deduce the user’s intention based on, e. g., his/her verbal and
non-verbal behaviour, affective state, situational context, and background knowledge.
This article focuses on detecting the user’s affective state. Affect plays a major role in
human-machine interactions since it can be a very reliable indicator for inappropriate
machine responses and wrong-goings in the interaction, for example. Moreover, being
aware of the user’s affective state to a certain degree can enable virtual agents and
service robots to react more appropriately to the current situation.

While automatic emotion recognition (AER) from acted, emotionally prototypical
read speech gives results comparable to human performance (cf. [Burkhardt et al.
2005; Schuller et al. 2009c]) and thus seems to be solved, reliable affect recognition
in natural, changing environments from, spontaneous – and maybe also non-acted –
speech, in contrast, remains a challenge at present [Schuller et al. 2009b; Schuller
et al. 2010a]. There are numerous reasons why automatic recognition of spontaneous
emotions pose such a challenge. First, the spoken content in the natural utterances is
not fixed, which makes it harder, if not impossible, to train word dependent emotion
models as can be done for corpora like the Berlin Speech Emotion Database (EMO-
DB) [Burkhardt et al. 2005], for example. Next, the full continuum of possibly ex-
pressible emotions can occur and must be discriminated, i.e. fine grained differences
between often very similar and subjective non prototypical emotions must be handled.
This cannot be done by categorical modelling of emotions, instead an approach for con-
tinuous representation of affect in a dimensional space is usually chosen [Cowie et al.
2000; Douglas-Cowie et al. 2007a; Grimm et al. 2007a; Wöllmer et al. 2008]. Different
approaches, which try to mitigate the problmes of both categorical and dimensional
approaches are presented in [Mower et al. 2011] and [Mower and Narayanan 2011].
Both, the categorical labelling approach and the dimensional approach suffer from the
partly subjective nature of affect, i.e. large inter-subject variations in perceived affect
type and strength, which leads to moderate or low inter-labeller agreement. In the
past, segments with low inter labeller agreement were removed, yielding only proto-
typical emotions, which fitted the categories well. For spontaneous affective speech,
this approach seems not feasible, since a system “in the wild” has to deal exactly with
these ambiguous cases.

Another important issue for AER in natural environments is the segmentation of
the input. Especially for real-time interactive systems this is a crucial issue. AER
mostly deals with recognising emotion from large units of speech [Zeng et al. 2009],
e. g. complete sentences or fragments of sentences [Schuller et al. 2006; Wöllmer et al.
2008]. The fragments – in most cases – are pre-segmented and all results obtained
have the precondition of perfect segmentation. In reality perfect segmentation is not
possible. Moreover, the segments are quite long, which adds a considerable latency to
the recognition system, since the complete segment must be recorded before it can be
analysed and a prediction can be produced. Studies on the influence of the unit length
on recognition performance have been conducted in [Batliner et al. 2010] and [Mower
and Narayanan 2011]. The shortest feasible unit of analysis used was the word level.
To obtain a perfect segmentation in a live system for the word level is near to im-
possible and requires a full-blown ASR system running and consuming computational
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resources. Thus, we will investigate alternate methods of segmentation, which are in-
variant to segmentation errors, consider a sufficient amount of context, and can be
adapted to output emotions at any given rate.

All those aspects highlight how important it is to move forward in the field of robust
incremental affect recognition in natural environments. In this article we go beyond
the simple evaluation of features at the end of a speech turn as it is applied in various
conversational systems (e. g. [Streit et al. 2006]). We modify the existing turn-based
approach to an incremental supra-segmental approach (see section 2.3 for details on
the supra-segmental approach), and use a model (Long Short-Term Memory Recur-
rent Neural Networks, LSTM-RNN) that is able to utilise long-range dependencies
between consecutive segments. With the same network we move another step forward
and evaluate and discuss the potential of this method to predict trace-style dimen-
sional affect labels directly from low-level audio feature frames. In a multi-task learn-
ing set-up we estimate the confidence of the automatic predictions by training the
networks with inter-rater standard deviations as additional target, which also brings
a mutual benefit to the original single target. Further, we evaluate a novel method for
multi-dimensional affect recognition: a multi-task learning setup where five affective
dimensions and the corresponding inter-rater standard deviations are modelled by a
single network. In contrast to previous work ([Wöllmer et al. 2008; Eyben et al. 2010a]
), where only two affective dimensions, activation and valence, were used, we herein
evaluate performance for three additional affective dimensions, expectation, intensity,
and power. The use of these dimensions is motivated in more details in section 2.2.

The remainder of this paper is structured as follows: In the next section (2) we give
a more extensive overview on related work and challenges of automatic recognition of
natural, spontaneous affect from speech audio input. A large scale database of sponta-
neous affective interactions, which has been recorded in the course of the SEMAINE
project, is used for evaluations in this study. It is described in section 3. Our proposed
methods towards robust, low-latency, continuous multi-dimensional affect recognition,
which are based on multi-task learning with Long Short-Term Memory Recurrent Neu-
ral Networks, are introduced and described in section 4. The obtained evaluation re-
sults are discussed in section 5, and conclusions are drawn in section 6.

2. STATE-OF-THE-ART AND RELATED WORK
In the introduction three major issues were mentioned, which are crucial for emo-
tion recognition in real-world deployable applications. Related work and current ap-
proaches to these issues will be discussed throughout this section. 2.1 contrasts emo-
tion recognition experiments performed under highly restricted conditions with those
performed on real-world data, and highlights the challenges of the latter case. The cur-
rent state-of-the art in dimensional affect recognition is summarised in section 2.2, and
issues concerning the trade-off between the analysis segment length and the accuracy
and latency in an on-line system are discussed in 2.3.

2.1. Affect: ‘in the wild’ vs. ‘in the lab’
It is often believed that emotion recognition from speech is solved because numer-
ous publications in the past have reported high accuracies (above 80%) for Ekman’s
basic six emotions [Ekman and Friesen 1975], for example. Most of these have anal-
ysed read speech, where prototypical emotion categories were acted out. The most well
known and widely used such data-set is the Berlin Speech Emotion database (EMO-
DB) [Burkhardt et al. 2005]. Ambiguous sentences, with low inter-labeller agreement,
were removed from the data set resulting only in prototypical samples. These samples
can be identified with high accuracy with models trained on different data from the
same corpus [Vlasenko and Wendemuth 2007; Schuller et al. 2009c]. When performing
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cross-corpus experiments, even between corpora with acted and prototypical emotions,
accuracies drop significantly [Schuller et al. 2010c]. This shows that the models are
very corpus specific or even specific to the linguistic content. In the case of EMO-DB,
for example, only a small set of different sentences are spoken with different emotions.
The same sentences occur in test and training splits. Another reason for the perfor-
mance drop might be that practically no two corpora with exactly the same categories
exist. In [Schuller et al. 2010c] similar categories are mapped to related categories or a
binary grouping into positive and negative valence and high/low arousal. In this light,
the dimensional representation seems to be more universal when it comes to cross
corpus and cross domain experiments.

Recent work has tackled the challenge of automatically identifying natural affect. In
[Devillers et al. 2005], turns are assigned multiple targets (mixtures of emotion cate-
gories) based on a realistic affective speech data set with non acted speech. Schuller
et. al [Schuller et al. 2007a] also investigate the issue of emotion recognition on re-
alistic and non prototypical data. Recent INTERSPEECH challenges have attracted
great interest and advances in the field and demonstrated how challenging the matter
is [Schuller et al. 2009b; Schuller et al. 2010a; Schuller et al. 2010b; Schuller et al.
2011].

2.2. Affect representation in a five dimensional space
Automatic dimensional affect recognition is still in an early stage [Grimm et al. 2007b;
Wöllmer et al. 2008; Schuller et al. 2009a; Gunes and Pantic 2010b; 2010a]. The most
commonly employed strategy is to reduce the dimensional emotion classification prob-
lem to a two-class problem (positive vs. negative or active vs. passive classification;
e.g., [Nicolaou et al. 2010; Schuller et al. 2009c; Wöllmer et al. 2010a]), a four-class
problem (classification into the quadrants of 2D V-A space; e.g., [Caridakis et al. 2006;
Fragopanagos and Taylor 2005; Glowinski et al. 2008; Ioannou et al. 2005]), or to auto-
matically identify clusters in the emotional space [Wöllmer et al. 2009; Lee et al. 2009;
Wöllmer et al. 2010b]. Introducing fixed clusters or categories brings up the problem
of ambiguity again. Instances originally rated with a dimensional label on or near to
the cluster boundary are much more likely to be assigned to the wrong cluster in the
evaluation step. The results are degraded because during evaluation it is generally
not distinguished between confusion of neighboring clusters and confusion between
clusters further apart in the dimensional space. A feasible solution is a regression
model which directly predicts the continuous values of the dimensions. Only very few
work on this topic exists so far: e.g., [Grimm et al. 2007a] uses Support Vector Re-
gression to predict affect in three dimensions (activation, valence, power/dominance),
[Wu et al. 2010a] attempts fusion of three methods: robust regression, support vector
regression, and locally linear re-construction, [Wöllmer et al. 2008] uses Long Short-
Term Memory neural networks and Support Vector Machines for Regression (SVR),
and the work presented in [Wöllmer et al. 2010b] utilises a Bidirectional Long Short-
Term Memory Neural Networks performing regression for emotion dimensions and
quantising the results into four quadrants (after training). Our previous work in [Ey-
ben et al. 2010a] also investigates a regression technique for continuous dimensional
affect recognition. Alternative methods to Support Vector Regression include linear
regression [Cohen et al. 2003], radial base function networks [Yee and Haykin 2001],
or standard feed-forward perceptron networks (standard neural networks). In the con-
text of emotion-related virtual agents Recurrent Neural Networks with Long Short-
Term Memory [Hochreiter and Schmidhuber 1997] have been suggested [Peters and
O’Sullivan 2002; Eyben et al. 2010a]. An approach incorporating body language for
recognition of continuous emotion states is reported in [Metallinou et al. 2011].
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However, all the previous approaches have reported results on no more than three
affect dimensions. With the availability of the SEMAINE database (cf. section 3), ex-
periments with two new and unexplored dimensions, expectation and intensity, are
possible. The choice of these dimensions is explained in [McKeown et al. 2010]. It is
based on psychological findings reported in [Fontaine et al. 2007]: there, the dimen-
sions activation, valence, expectation, and power, were obtained by a Principal Com-
ponent Analysis (PCA) applied to 144 hand assigned “emotion features” derived from
terms people use to describe emotional events. Activation indicates the level of arousal,
i. e., the level of active engagement or readiness for action, vs. passiveness as found in
contentment or boredom for example. On the valence dimension pleasant vs. unpleas-
ant emotions are contrasted, i. e., valence is an indication of how positive (pleasant)
or negative (unpleasant) the emotion is. The dimension ‘Power’ characterises whether
the emotion is related to a feeling of power and control or weakness. Pride and anger
are opposed to sadness and despair, for example. Expectation is a measure of unpre-
dictability vs. expectedness or familiarity. Surprise, fear, and disgust, for example, are
thus characterised by a low expectation value, while all other emotions, such as stress
and contempt, are associated with a higher expectation value as they occur in con-
texts more familiar to the subject. The fifth dimension (intensity), was added by the
creators of the database as an overall measure of perceived emotional intensity, i. e.,
the distance of the current sample from the centre of general neutrality, regardless on
which dimension.

The only other database so far, as known to the authors, that contains more than
three annotated dimensions is the CINEMO database [Schuller et al. 2010d]. One of
the first publications reporting on experiments with all of these five dimensions on
the SEMAINE database is [Gunes and Pantic 2010c], which focuses on dimensional
prediction of emotions from spontaneous conversational head gestures by mapping
the amount and direction of head motion, and occurrences of head nods and shakes
into activation, expectation, intensity, power and valence level of the observed sub-
ject using Support Vector Regression. All existing multi-dimensional affect recognition
approaches use a separate model for each dimension. However, dimensions are often
correlated to some extent (e. g. activation and intensity), thus a joint modelling might
boost performance.

When moving away from categorical affect recognition and classification methods
towards regression analysis of dimensional affect, we at first lose an important output
measure - the classifier’s confidence. Although Support Vector Regression models as
in [Chang and Lin 2001] do support probability estimates, this information is of lim-
ited practical use. So far, in closely related affect recognition literature – to the best
of our knowledge – no experiments on confidence estimation of regression predictions
have been reported. A technique for dimensional music mood prediction has been in-
troduced in [Schmidt and Kim ]. The authors use linear regression to estimate the
mood coordinates of a song excerpt in a 2D activation-valence space and the uncer-
tainty is thereby modelled as an additional regression target. For training the system
the authors collected a continuously annotated database through an on-line game in
which participants had to label the current mood of a song on a activation valence
map. They thereby competed against other players. Those players which labels were
most similar to their opponent’s labels were awarded the highest score. In this paper
we propose a similar attempt to estimate the confidence for speech affect by multi-
task learning with neural networks as regressors. The networks thereby model the
human inter-rater standard deviation of the training data along with the mean label.
The ideas of using multi-task learning also promises to boost performance for the main
task. The multi-task approach is also inspired by the work presented in [Steidl et al.
2009], where a similar technique is employed for estimating class confidences.
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2.3. The unit of analysis
As opposed to speech recognition, emotion recognition from isolated short-time audio
frames is virtually impossible: while single phonemes are highly correlated to a spe-
cific spectral representation in short signal windows, speech emotion is a phenomenon
observed over a longer time window (typically more than 1–2 seconds). Typical units of
analysis are complete sentences, sentence fragments (i. e. chunks, e. g. by syntactical
rules) or words [Steidl 2009]. The term ‘segment’ will be used in the ongoing referring
to a general unit of analysis. Finding the optimal unit of analysis is still an active area
of research [Schuller and Rigoll 2006; Schuller et al. 2007b; Schuller et al. 2008; Busso
et al. 2007; Mower and Narayanan 2011]. As stated in [Zeng et al. 2009], the segmen-
tation is one of the most important issues for real applications but has been “largely
unexplored so far”. An in-depth study on the effect of the analysis unit length can be
found in [Batliner et al. 2010].

Traditional audio feature extraction approaches are based on short-time spectral
analysis, where windows of typically 25 ms – in which the signal is assumed to be more
or less stationary – are used as low-level analysis frames. Features on this level are
referred to as low-level features or low-level descriptors (LLD). Classifying low-level
feature vectors directly and independently with respect to their emotional content is
not feasible, since emotion is mainly expressed by the evolution of these features over
a certain time period (e. g., prosody!). Thus, a context spanning multiple feature vec-
tors must be considered. To do so, the most widespread method is the mapping of the
sequence of LLD belonging to a segment to a single high dimensional vector by ap-
plying statistical functionals, such as mean and moment. This technique is referred to
as supra-segmental modelling. It enables mapping of sequences of variable length to
a vector of fixed dimensionality. Both classification (for affect classes) and regression
(affect dimensions) tasks can be solved by this approach, given suitable modelling,
e. g. Support-Vector-Machines (SVM) for classification and Support-Vector-Regression
(SVR) for regression. A major drawback of these approaches is that one complete input
fragment is required for analysis and only a single output can be produced at the end of
every input fragment, which is typically a sentence or part of sentence. Thus, true con-
tinuous output at a fixed rate in the second or sub-second region is not possible with
this approach, except by interpolation of the output from higher levels, which gives
no new information. Alternative approaches do not model the long range dependen-
cies on the feature level but instead use Hidden-Markov-Modelling. As feature vectors
the low-level descriptor frames are used (cf. e. g. [Schuller et al. 2003; Vlasenko et al.
2007]). Yet, these approaches also require the complete input fragment at hand to per-
form a best-path decoding. Moreover, they can only produce one discrete class output
per fragment and are therefore unsuited for dimensional emotion recognition.

For fully continuous emotion recognition we must ideally abandon the requirement
of defining a suitable unit of analysis, within which the emotional state is assumed as
quasi-stationary. Under ideal circumstances, only frame-wise features should be used,
the long range dependencies must be modelled by the classifier/regressor, and it should
be possible to obtain an output of the current state for every input frame. In section 4.1
we will present a classifier which meets all these requirements. We evaluate to what
extent such an approach is feasible, or whether a modified supra-segmental approach
is better.

3. THE SEMAINE DATABASE
The SEMAINE database [McKeown et al. 2010] was recorded to study natural so-
cial interaction that occurs in conversations between humans and the future genera-
tion of artificially intelligent agents, and to collect training data for such intelligent
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agents, especially the SEMAINE system. The database is freely available for scientific
research from http://semaine-db.eu. The scenario used for provoking emotionally
coloured, naturalistic interactions is the Sensitive Artificial Listener (SAL) scenario. It
involves a user interacting with emotionally stereotyped ‘characters’ whose responses
are stock phrases provoked by the user’s emotional state rather than the content of
what he/she says. The model is a style of interaction observed in chat shows and par-
ties, which aroused interest because it seems possible that a machine with some basic
emotional and conversational competence could sustain such a conversation, without
needing to be competent with fluent speech and language understanding.

In the recording scenario, the participants are asked to talk to each of the four emo-
tionally stereotyped characters in turn. These are Prudence, who is even-tempered and
sensible; Poppy, who is happy and always outgoing; Spike, who is angry and confronta-
tional; and Obadiah, who is depressive and sad. The study presented in this work is
based on the first part of the SEMAINE database, the Wizard-of-Oz part. In this part,
human operators pretended to be the artificial agents. This type of interaction is called
Solid-SAL. Because we assume that an automatic SAL agent has no language under-
standing, a few rules govern this type of interaction. The most important of these
is that the agent is not allowed to answer questions. However, the operators are in-
structed that the most important aspect of their task is to create a natural style of
conversation; strict adherence to the rules of a SAL engagement was secondary to a
conversational style that would produce a rich set of conversation-related behaviours
and therefore transgressions occasionally occur, however, only very rarly (roughly less
than 1–2% of sentences), most of the time due to subjects asking questions, and the
operator answering them.

Audiovisual recordings of the full Solid-SAL interactions exist of both the user and
the operator, each with a colour and greyscale frontal view camera and an additional
side view camera for the user. Collar and table microphone recordings were conducted
for both user and operator. The audio was recorded at 48 kHz with 24 bits per sample.
For research in audio-visual fusion on the feature level, the audio and video signals
were synchronised with an accuracy of 25 µs using the system developed by Lichte-
nauer et al. [Lichtenauer et al. 2010]. For this study we use only the audio portions,
specifically the user’s speech turns, of the Solid-SAL part of the database.

The Solid-SAL part of the database holds recordings of 20 trials of the SAL exper-
iment, split into over 100 character conversations of approximately 5 minutes each.
All recorded conversations have been fully transcribed and annotated for five affective
dimensions and partially annotated for 27 other dimensions, using trace style contin-
uous ratings (similar to FeelTrace [Cowie et al. 2000]). Thereby the annotators could
move a slider continuously in a given range while listening to the recording in order
to rate their current opinion regarding a single affective dimension at a time. The rat-
ings from the slider were sampled at a rate of 50 per second and with a granularity
of 0.001. The five core dimensions are those that psychological evidence suggests are
best suited to capture affective colouring in general [Fontaine et al. 2007]. They are
Valence, Activation, Power, Anticipation/Expectation with the addition of overall emo-
tional Intensity. We would like to note at this point that the dimension Intensity in the
SEMAINE database appears to be highly correlated with arousal (correlation coeffi-
cient of 0.67; see table V). We still decided to report results on this dimension, as it
has been chosen as fith dimension in the SEMAINE project and the annotations are
available in the SEMAINE database. However, the reader is to mind the high corre-
lation between these dimensions when interpreting the results. More details on these
dimensions are given in section 2.2. In total, trace style ratings for all five affective
dimensions exist from eight raters. However, at the time of writing not all raters had
rated all sessions, thus we chose to include only those sessions in our experiments
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Table I. Summary of the SEMAINE database statistics.

Subjects 21 ()
Characters 4 (Poppy, Spike, Obadiah, Prudence)
Recordning Sessions 57
User speech turns 2 189
User speech total time 5̃ hours

where the minimum number of raters was three. Moreover, categorical labels were as-
signed to segments in the database in a tag like manner. As they are not used in this
article, we refer the reader to [McKeown et al. 2010] for details.

The raters were all experienced psychology students and were all instructed about
the meaning of these dimensions. They were instructed to provide ratings for their
overall sense of where an individual at any instant in time should be placed along a
given dimension. They did this by watching the video and listening to the audio of one
recording session and adjusting the trace slider for one selected dimension accordingly
as the video went along. Corrections were not possible. The raters had to watch each
video once for every dimension that was annotated. It is important to note that the
judgements of the raters are based on the video and audio at the same time. Unfortu-
nately no separate ratings exist. Therefore we can expect certain regions in the ratings
to be more correlated to the audio and others more correlated to the video. Further de-
tails on the annotation guidelines can be found in [Douglas-Cowie et al. 2007b].

To obtain a single target value for each dimension, the values of the individual raters
were averaged. For all evaluations we use this mean label as target, which is referred
to as mean label or mean dimension label in the ongoing. In addition to this mean
label, the standard deviation of all 3–4 raters is computed as a inter-rater confidence
measure. In [Wöllmer et al. 2008], we performed a normalisation of the labels for each
rater before computing the average to compensate for inter rater scale mismatches and
offsets. In contrast to the SAL database, we did not observe large scale differences and
offsets for the SEMAINE database, and thus decided not to normalise the data.

In total there are 20 recordings with 3–4 sessions on average. After sorting out those
with two or less raters, 57 sessions remain. From these, 36 sessions are used for train-
ing, 14 sessions for evaluation, and 7 sessions as a development set. The sequence IDs
of the training sessions as used in the publicly available SEMAINE database are 34–
37, 40–43, 46–49, 58–61, 70–73, 76–79, 82–85, 88–91, and 94–97. Those of the devel-
opment set are 19–22, and 29–31, and those of the evaluation set are 13–16, 25–27, 52,
53, 55, and 64–67. In total there are 2 189 user speech turns. Table I gives a summary
of the corpus statistics. We ensured gender balance of the subjects in the evaluation
set by including sessions from four subjects in total, two males and two females. The
training, development, and evaluation sets are subject disjunctive, i.e. data from no
subject occurs in more than one set.

The training set contains 1 584 user speech turns, where a turn is defined as a con-
tinuous segment of user speech bounded either by initial or final silence or a segment
of operator speech. The turns have been manually annotated in the database. The
development set contains 169 user speech turns. Table II shows detailed statistics con-
cerning the distribution of the “ground truth” dimensional affect labels for all the user
speech turns in the training and development set of the SEMAINE database. The eval-
uation set contains 436 user speech turns. Table III shows detailed statistics concern-
ing the distribution of the “ground truth” dimensional affect labels for the evaluation
set only. The figures roughly correspond to those of the whole corpus, which shows that
the data in the test set reflects the overall conditions of the corpus relatively well.

Please note that the minimum values of the inter-rater standard deviation for each
dimension appear very close to zero in tables II, and III. In theory this indicates per-
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Table II. Statistics of the dimensional affect ratings for the joint training, and
development set of the SEMAINE corpus as used in this article. Five dimen-
sions A(ctivation), E(xpectation), I(ntensity), P(ower), V(alence). Mean of all
raters of the mean turn label (µ subscript), inter-rater standard deviation for
the mean turn label (σ subscript). Minimum/Maximum value, mean, and stan-
dard deviation of µ and σ for each dimension.

Dimension: Min. value Max. value Mean µ Std. deviation σ
Aµ -0.798 0.656 -0.043 0.222
Aσ 0.000 0.594 0.259 0.102
Eµ -0.769 0.604 -0.358 0.190
Eσ 0.000 0.720 0.223 0.127
Iµ -0.899 0.697 -0.144 0.188
Iσ 0.000 0.597 0.254 0.105
Pµ -0.747 0.749 0.417 0.189
Pσ 0.000 0.664 0.165 0.116
Vµ -0.965 0.887 0.040 0.320
Vσ 0.000 0.499 0.124 0.075

Table III. Statistics of the dimensional affect ratings for the evaluation set
of the SEMAINE corpus used in this article. Five dimensions A(ctivation),
E(xpectation), I(ntensity), P(ower), V(alence). Mean of all raters of the mean
turn label (µ subscript), standard deviation of the raters for the mean turn la-
bel (σ subscript). Minimum/Maximum value, mean, and standard deviation of
µ and σ for each dimension.

Dimension: Min. value Max. value Mean µ Std. deviation σ
Aµ -0.582 0.480 -0.027 0.250
Aσ 0.000 0.547 0.247 0.087
Eµ -0.730 0.441 -0.351 0.229
Eσ 0.000 0.773 0.254 0.140
Iµ -0.548 0.648 -0.118 0.270
Iσ 0.000 0.425 0.189 0.080
Pµ -0.350 0.718 0.339 0.237
Pσ 0.000 0.610 0.220 0.141
Vµ -0.715 0.659 0.008 0.321
Vσ 0.000 0.401 0.119 0.075

fect rater agreement at some points throughout the sessions. While this can happen at
random, we more likely attribute this to the fact that during the process of rating the
trace sliders were often initialised to the same value at the beginning of the session.
This remained for a few seconds until the raters decided to move the sliders to a dif-
ferent position. Therefore these low values are supposedly not a good indicator of the
actual minimal values of the inter-rater standard deviations.

Additionally, note that the dimension expectation was scaled from its original range
([0; 100]) according to equation 1 in order to be in the same range ([−1;+1]) as the other
four dimensions.

E∗ =
E

50
− 1.0 (1)

From table II we can see that for the training and development set the average
inter-rater standard deviation (σ subscript) for each turn is approximately 0.2 with
a maximum up to approximately 0.7. This highlights the issue of subjectivity of the
problem and the great variance among individual rater opinions, which is far more
pronuounced on some sentences than others. Moreover, the numbers show that there
are turns with higher rater agreement and turns with substantially lower agreement
(higher standard deviation) than the mean agreement.

Another method to asses global inter-rater agreement is to compute correlation co-
efficients between the rater’s labels. Table IV shows a pairwise correlation between
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Table IV. Correlation coefficients (CC) between raters for each of the five dimensions, computed
on the evaluation set sessions.. Correlations marked with ∗ are not statistically significant on a
level of p = 0.05 using a 2-tailed test.

Dimension: / Rater: R1-R3 R1-R5 R1-R6 R3-R5 R3-R6 R5-R6 Avg
A 0.655 0.552 0.541 0.667 0.494 0.495 0.567
E 0.331 0.116 0.216 0.394 0.233 0.212 0.250
I 0.694 0.635 0.401 0.696 0.576 0.535 0.590
P 0.306 0.172 0.217 0.452 0.064∗ 0.156 0.228
V 0.756 0.720 0.750 0.790 0.829 0.779 0.771

Table V. Correlations between the five dimensions
(CC), computed on the evaluation set sessions.. All
correlations, except for valence for dimension E) are
significant on a level of p = 0.05 based on a 2-tailed
test.

Dimension: E I P V
A -0.136 0.673 0.126 -0.125
E 0.132 -0.659 0.004
I -0.287 -0.496
P 0.220

four raters (R1,R3,R5,R6). The names of the raters are the same as those used in the
SEMAINE database, thus there are jumps in the rater ID numbers. The correlation
coefficients are reported for the evaluation set sessions, to enable direct comparison
of these results with the automatically obtained results in section 5. Notably, human
agreement is highest for valence and lowest for power (also referred to as dominance).
For machine based recognition it is commonly observed (and also found in this arti-
cle) that valence is one the most difficult dimension to predict correctly from acoustic
parameters alone. People, in many cases, rely on the meaning of the words in the sen-
tence to asses whether it has positive or negative valence. The acoustic parameters on
the other hand are very good indicators of arousal and intensity.

Given the fact that the inter rater correlations for Expectation and Power are very
low (roughly 0.25), we must question whether they provide a reliable ground truth
to train models on. While on the one hand it certainly is not overly reliable, there
is still some valid ground as some raters agree far better than others. This might
indicate that every rater might have judged the levels of these dimensions based on
different acoustic cues. Every one of them could be consistent with itself though. As the
approach presented in this article is in principle capable of modelling the behaviour of
every single rater, it will be part of follow up work to analyse the performance when
building and evaluating models for every single rater. Moreover, we decided to include
the results for the Power and Valence dimensions, despite the poor rater agreement on
these dimensions, to investigate the automatic classification performance in the multi-
target learning and to verify whether the ground truth provides some value or must
be regarded as invalid.

To better understand the relations between the five dimensions, table V shows the
inter-dimension correlation coefficients on the evaluation set. The most obvious corre-
lation can be seen between activation and intensity (0.673), which shows that a high
overall emotional intensity often occurs together with high arousal of the subject. Next,
we see that expectation and power are anti-correlated, i. e., a high value of expectation
is often associated with a low value power/control. An anti-correlation can also be ob-
served for intensity and valence, which means that negative emotions are expressed
with a higher intensity than positive emotions in the SEMAINE set. The remaining
emotion pairs can be considered as uncorrelated.
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4. PROPOSED APPROACH
To achieve the goal of incremental affect recognition in real-time we chose Long Short-
Term Memory (LSTM) Recurrent Neural Networks (RNN) as regressors. These neural
networks are able to successfully model long-term dependencies between inputs, which
makes them suitable for the supra-segmental approach as well as for the low-level
feature frame modelling. Moreover the networks, as any neural network, are able to
handle multi-dimensional target patterns enabling multi-task learning for estimation
of a confidence measure and true multi-dimensional affect prediction. While emotion
theory does not tell us explicitly that long look back ranges are necessary, our expe-
rience teaches us that in conversation as found in the SEMAINE data, for example,
emotion does on the one hand not change too rapidly and on the other hand is depen-
dent on the current context of the discussion (cf. also [Lee et al. 2009]). E. g., the four
SEMAINE characters are supposed to pull participants into a certain mood (one of the
four activation-valence quadrants for each of the characters). As the emotion of some
utterances (background noise, poor pronunciation, etc.) might be hard to classify from
acoustic features, previous and past utterances might be easier to identify and thus
help to clarify the more ambiguous cases in between.

The basic principles of LSTM-RNN are explained in 4.1. Next, we introduce the
acoustic features in 4.2, and describe the proposed method for incremental supra-
segmental modelling (section 4.3) as well as affect modelling on the timescale of low-
level feature frames (section 4.4). In the last part of this section, 4.5, we propose a
way of automatically predicting the confidence for the dimensional emotion predictions
based on multi-task learning of target labels and inter-rater agreement and describe
the multi-task learning of all five dimensions by one model.

4.1. Long Short-Term Memory Recurrent Neural Networks
As a well suited technique for on-line regression of emotion dimensions we consider
a specialised recurrent neural network (RNN) architecture called Long Short-Term
Memory (LSTM) RNN [Hochreiter and Schmidhuber 1997]. Traditional feed-forward
neural networks such as the multi-layer perceptron are not suitable for classifica-
tion of connected time series (especially the low-level feature modelling), as they are
static classifiers which classify data frame by frame without considering neighbour-
ing frames. In order to use neural networks for classification of connected time series,
recurrent networks can be used. There, one or more of the hidden network layers is
connected to itself. Thus, the network can learn to model past events by adjusting the
weights of the feed-back connection(s).

Analysis of the error flow in traditional recurrent neural nets resulted in the finding
that long time lags are inaccessible to existing RNN since the backpropagated error
either blows up or decays over time (vanishing gradient problem) [Hochreiter et al.
2001]. This led to the introduction of LSTM-RNN, which are able to store information
in linear memory cells over a longer period of time. An LSTM layer is composed of
recurrently connected memory blocks, each of which contains one or more recurrently
connected memory cells (cf. Fig. 1), along with three multiplicative ‘gate’ units: the
input, output, and forget gates.

The cell input is multiplied by the activation of the input gate, the cell output by
that of the output gate, and the previous cell values by the forget gate. Their effect
is to allow the network to store and retrieve information over long periods of time,
thereby giving access to long-range context information, which in turn is essential
when trying to recognise emotion on a frame level. A more detailed explanation of the
LSTM principle can be found in [Hochreiter and Schmidhuber 1997].
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Fig. 1. LSTM memory block consisting of one memory cell: the input, output, and forget gates collect ac-
tivations from inside and outside the block which control the cell through multiplicative units (depicted as
small circles); input, output, and forget gate scale input, output, and internal state respectively; g and h
denote activation functions; the recurrent connection of fixed weight 1.0 maintains the internal state.

In LSTM networks, standard feed-forward layers, standard recurrent layers, and
LSTM layers can be combined. Thus, a typical network using LSTM memory cells
consists of a standard feed-forward input layer with Ni units, where Ni is equal to
the number of input features, one or more LSTM (and optionally standard recurrent)
hidden layers consisting of 50-200 memory blocks containing 1-8 LSTM cells each,
and one feed-forward output layer with No units, where No is equal to the number of
desired output dimensions or classes.

A further extension of LSTM-RNN is the use of bidirectional networks (see Fig.
2), resulting in Bidirectional Long Short-Term Memory Recurrent Neural Networks
(BLSTM-RNN) [Schuster and Paliwal 1997]. This method is applied especially for
speech recognition tasks [Graves and Schmidhuber 2005; Fernandez et al. 2008], to
model anticipatory co-articulation effects. Thereby each hidden layer is duplicated,
while one layer processes the inputs forwards and the other backwards. This results
in twice the number of weights in the network, i.e., twice the number of parameters
to estimate during training. The two hidden layers are connected to the same output
layer, which is a standard feed-forward layer and serves the purpose of combining the
activations from the forward and the backward hidden layer(s).

One major drawback of this architecture is that the entire input sequence must be
available beforehand, which makes this architecture unsuitable for on-line classifica-
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tion. Therefore, we will not put our primary focus on this architecture, even though
we will show by a few exemplary results, that this bidirectional network architecture
in some cases yields better results than the unidirectional architecture (section 5). De-
tails on the configurations of the specific networks used for evaluations within this
work can be found in sections 4.3 and 4.4.

t

Output
Layer

Input
Layer

Hidden
Layer

Hidden
Layer

t+1

Output
Layer

Input
Layer

Hidden
Layer

Hidden
Layer

Fig. 2. Bidirectional Recurrent Neural Network.

LSTM-RNN and BLSTM-RNN can both be trained via standard backpropagation
through time (BPTT) [Werbos 1990]. A variant of the standard backpropagation algo-
rithm is Resilient Propagation (rProp) [Riedmiller and Braun 1993], where only the
sign of the error gradient is considered for network weight updates and not the ab-
solute value of the error multiplied by the learn rate. Resilient propagation produces
more stable results and thus has outperformed standard backpropagation on many
tasks especially with respect to the number of training iterations required. For affect
recognition no study exists which compares the two training algorithms, thus we in-
clude a comparison in this article. The error function used as an objective function
during training (BPTT and rProp) is the quadratic error regarding the output target
(the mean dimension label(s), and/or the inter-rater standard deviation). To avoid over-
fitting, the best networks are determined by evaluating the correlation coefficients on
the development set after each training iteration (epoch), and then choosing the net-
works which produce the highest correlation coefficient on the development/validation
set. The training process is aborted when no improvement over 20 consecutive epochs
is observed.

In contrast to the BLSTM-RNN which requires future speech frames, and is there-
fore more suited for off-line processing, the (unidirectional) LSTM-RNN can operate
in real-time at a real-time factor of 0.085 on an AMD Phenom 64 bit CPU at 2.2 GHz.
The asymptotic computational complexity of the LSTM network for recognition of un-
known data is O(n) with respect to both number of input samples and feature vector
dimensionality. Bidirectional networks have the same complexity (as they are from

ACM Transactions on Interactive Intelligent Systems, Vol. X, No. X, Article XX, Pub. date: November 2011.



XX:14 F. Eyben et al.

Table VI. Feature set A (SEMAINE system, release 3.0 and 3.1). 47 low-level descriptors, 20 functionals.

Low-level descriptors Functionals
Intensity, Loudness, RMS & LOG energy Max. and min. value
F0, prob. of voicing Range (Max-Min)
MFCC 0–12 Relative position of max. and min. in turn
RASTA-PLP 0–7 Arithmetic mean
log. Mel-Freq. bands 1–14 Linear regression (slope, offset, quadratic/linear error)
95% spectral roll-off point Standard deviation, Skewness, Kurtosis
Spectral flux, entropy, and variance % of values > a · range+min, a ∈ {0.25, 0.50, 0.75, 0.90}
Zero-crossing rate % of values < a · range+min, a ∈ {0.50}

% of rising/falling values

that point of view nothing else than two unidirectional networks together), but cannot
be used in an on-line system without significant modifications because they require the
end of a sequence (a 5 minute recording session in our case) before they can process
the sequence.

4.2. Acoustic feature sets
There is no universally best feature set for affect recognition, and the task and data
used is new and quite unexplored by the community. On other databases and tasks
many publications exist tackling the issue of feature relevance: [Oudeyer 2003] gives a
general overview on the topic, [Vogt and Andre 2005] compares a broad range of feature
sets for acted vs. spontaneous emotions, [Wu et al. 2010b] investigates different types
of acoustic features and finds that Mel-Frequency Cepstral Coefficients are among the
most relevant feautres, and [Batliner et al. 2011] presents a quite general, large scale
study contudcted by people from multiple sites aimed at finding relevant features.

As this article is not dealing with finding the best feature set for affect recognition,
we use a standard feature set, namely the one we had provided as the official baseline
set for the INTERSPEECH 2010 Paralinguistic Challenge. We refer to this as set B
in the ongoing, and show in comparison to the feature set we have assembled for the
SEMAINE demonstrator system (referred to as set A in the ongoing), that the choice of
the feature set nonetheless is important because set B is outperformed by set A. This
indicates that a more in depth investigation of the influence of individual features has
to be performed in dedicated studies in the future.

Our feature extraction follows the general two step approach of low-level audio fea-
ture extraction followed by subsequent application of functionals to the low-level de-
scriptor (LLD) contours. The low-level audio features are extracted from 25 ms win-
dows at a rate of 10 ms for all features except the F0 features, which are extracted
from 50 ms frames at the same rate. The low-level contours are smoothed with a mov-
ing average filter of length 3 frames. LLD contours are either used directly as input
to an LSTM-RNN as described in section 4.4, or functionals are computed from incre-
mental segments as described in section 4.3. All features have been extracted with our
open-source feature extractor openSMILE [Eyben et al. 2010b].

A list of low-level features of set A and functionals applied for the supra-segmental
modelling are given in table VI. There are 47 low-level descriptors and 20 functionals
applied to all low-level descriptors and their 47 first order delta coefficients system-
atically. As two additional features, the number of voiced regions and the segment
duration in seconds are considered. In total this results in 1 882 acoustic features in
set A.

Feature setB consists of 1 582 features. The core is the set of 34 low-level descriptors,
their 34 delta coefficients multiplied by 21 functionals (1 428 features) as listed in table
VII. For the low-level descriptors raw F0, jitter, δ jitter, shimmer, the same functionals
except for range and the 1% percentile (which resemble always 0, i. e., identical to the
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Table VII. Feature set B (INTERSPEECH 2010 paralinguistic Challenge). 34 low-level descrip-
tors, 21 functionals.

Low-level descriptors Functionals
Loudness 1% and 99% percentile
F0 envelope, prob. of voicing Range (1% - 99% percentile)
MFCC 0–14 Relative position of max. and min. in turn
Line Spectral Frequencies 1–8 Arithmetic mean
log. Mel-Freq. bands 1–8 Linear regression (slope, offset, quadratic/linear error)

Standard deviation, Skewness, Kurtosis
Quartiles 1–3, inter quartile ranges
% of values > 0.75 · range+min
% of values > 0.90 · range+min

99% percentile value, or these LLD when unvoiced segments are present) are applied,
resulting in an additional 4 ·2 ·19 = 152 features. The number of voiced regions and the
segment duration are added as two extra functionals, resulting in the total number of
1 582 features.

Since training of the LSTM network with a large number of inputs (2–5 k) gives
poorer performance in contrast to related work based on Support Vector Machines
(see section 5), we applied a correlation based feature sub-set selection (CFS) to the
training set to determine five dimension specific feature selections for each of the two
sets. The development and evaluation data is not used in the feature selection process.
The CFS algorithm evaluates the worth of each subset of attributes by considering
the individual ability of each feature to predict the class or numeric label along with
the degree of redundancy between the features. Subsets of features which are highly
correlated with the target while having low cross-correlations are preferred. For details
please refer to [Hall 1998]. In order to compare results of single task learning to multi-
task learning, we compute all results on the joint set of selections for all dimensions,
as described in section 4.5.

For feature set A out of 1 882 features, 43 features remain for activation, 46 features
for expectation, 23 features for intensity, 34 features for power, and 40 features for
valence. For feature set B out of 1 582 features, 38 features remain for activation,
39 features for expectation, 30 features for intensity, 32 features for power, and 28
features for valence. A precise description of these features is difficult to make, as
including the full list of selected features for each dimension would be too lengthy. We
thus summarise the most frequently occurring low-level descriptors for each dimension
in order of their frequency of occurrence (set B only):

— Activation: MFCC (16), log. Mel frequency bands (9), LSP frequencies (5), loudness
(4), jitter (2).

— Expectation: MFCC (18), F0 (7), LSP frequencies (7), loudness (3), log. Mel fre-
quency bands (2)

— Intensity: MFCC (11), loudness (7), LSP frequencies (6) log. Mel frequency bands (5)
— Power: MFCC (24), log. Mel frequency bands (3), LSP frequencies (3), F0 (2)
— Valence: MFCC (14), LSP frequencies (7), log. Mel frequency bands (4)

We see that MFCC are always the most frequently selected features (also supported
by [Wu et al. 2010b]), which we must partially account to the fact that MFCC make up
a large portion of the original set. Besides MFCC we can, however, see some variations
in selected features among the five dimensions: for activation mostly spectral band
energies, format frequencies (related to LSP frequencies), and loudness seem to be
important, while for expectation F0 plays a major role, which seems logical when con-
sidering that surprise is the primary emotion category with a low value of expectation;
for intensity we see a similar picture as for activation with a slight tendency that loud-
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ness seems more important than for activation; for power mostly MFCC based features
are selected, which might indicate that the subject’s dominance is reflected mainly by
the way of articulation and less by prosody; valence seems to be characterised best by
a mixture of MFCC und LSP based features.

The computational complexity of the low-level feature extraction with respect to the
number of input frames is always linear (O(n)) due to the fact that the descriptors are
computed in a single pass on audio signal frames of fixed length. Some might object
and say that the required FFT runs at O(n log n), however “n” in this case is the frame
size (which is a constant). When assessing the complexity of the feature extraction, “n”
refers to the number of frames in the input sequence. Thus, the complexity of the FFT
can be seen as a constant factor, and the overall feature extraction algorithm scales
linearly. The complexity of the functionals is also linear with respect to the number
of segments (5 second windows in this case, see section 4.3), when the length of the
segments is constant. The complexity of the functionals computation with respect to
the segment length is linear for all functionals except the percentiles. The algorithm
to compute these uses Quicksort, which has a worst case complexity of O(n2), and an
average complexity of O(n log n). This means that feature set B can be computed with
O(n log n) wrt. the segment size (linear wrt. all other parameters), and feature set A
can be computed with linear complexity wrt. all parameters. The average realtime
factor for the complete feature set A on an AMD 64-bit CPU at 2.2 GHz is 0.13.

4.3. Incremental supra-segmental modelling
To enable output of emotion predictions at constant time intervals, independent of
word or phrase level segmentation issues, we decided for a simple, yet powerful in-
cremental segmentation scheme for the supra segmental approach. As basic unit a
speech turn is assumed, which is defined from the point in time where the subject
starts talking till the point where the person stops and another person starts talking,
or the end of the recording session is encountered. In the SEMAINE database these
turns are manually labelled (cf. section 3), however in a live system a voice activity
detector - optinally in conjunction with a speaker diarisation system – can be used in-
stead, which works satisfyingly if tuned properly. The approach sub-divides the user’s
speech turns into overlapping segments with a fixed maximum length. The first seg-
ment ranges from t = 0 s to t = 1 s with t = 0 s marking the beginning of the user’s
speech turn. Should the user’s speech turn be smaller than one second the first and
only segment ends not at t = 1 s but at t = LT with LT being the length of the turn.
For longer turns, the second segment ranges from t = 0 s to t = 2 s. This is repeated
up to the fifth segment from t = 0 s to t = 5 s. From this point on the segments are
kept constant at a length of 5 s and shifted to the right at one second intervals, i. e.,
the sixth segment ranges from t = 1 s to t = 6 s. This procedure is now repeated until
the end of the turn is reached. The choice of the segment shift of one second is to some
extent arbitrary, and the approach can be used to generate outputs at virtually any
granularity, to match the needs of the application. However, as the amount of overlap
increases, the predictions for the two segments will naturally be more similar.

By applying this method 7 313 turn segments are created from the 1 584 turns in
the training set, 1 330 turn segments from the 436 turns in the evaluation set, and
981 turn segments from the 169 turns in the development set. At first the benefit of
LSTM-RNN may not seem obvious because the task seems to be a straight forward
regression task where the feature vectors for each turn segment can be treated inde-
pendently. While this is true on the one hand, on the other hand there are temporal
dependencies due to the overlap of the segments and the slow changing nature of af-
fect. These dependencies are exploited by LSTM-RNN, which a comparison to standard
RNN, feedforward NN, and SVR shows in section 5. A complete session, i. e., a unit last-
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Table VIII. (B)LSTM-RNN topologies for incremental supra-
segmental affect prediction. All networks have two LSTM
hidden layers.

Topology ID Bidirectional Cells in hidden layers
T1 no 140, 40
T1b yes 70, 20
T2 no 100, 20
T2b yes 50,10
T3 no 40, 20
T3b yes 20,10

ing approximately 5 minutes, where the one user talks to exactly one agent character,
is thereby considered as one sequence, i. e., an entity which is presented to the network
as a connected sequence of inputs. No context is considered across session boundaries.

For each turn segment we evaluate the performance based on acoustic features (Set
A, cf. section 4.2). The acoustic feature vectors are standardised to have zero mean and
unit variance based on statistics collected from the data in the training set.

Six different LSTM-RNN topologies, reflecting differently sized networks, and uni-
directional vs. bidirectional networks – detailed in table VIII – are investigated. The
selection has been made based on our experience in [Eyben et al. 2010a]. However,
in contrast to [Eyben et al. 2010a] we decided to make the hidden layers in the uni-
directional networks twice the size of those in the bidirectional networks, in order to
ensure the same number of weights (parameters) in related uni-directional and bidi-
rectional networks. We would like to note that the choice of topologies is by no means
meant to be complete and does not substitute a full search over a larger space of net-
work sizes. As this article is not about finding the optimal network topology, we re-
strict the search to three topologies in order to get a first impression of how large the
influence of the network topology is on the performance of multi-dimensional affect
recognition using the SEMAINE data.

During training of the networks Gaussian white noise with standard deviation of 0.3
was added to the input features of the training data. This is a measure to improve the
generalisation capabilities of neural networks (cf. e. g. [Fernandez et al. 2008; Graves
et al. 2005]). It leads to generally longer training times (more epochs), however avoids
over optimising on the training data, and thus improves performance on the evaluation
and development sets, especially for small databases.

When training neural networks with a gradient descent weight update algorithm, an
initial set of weights needs to be chosen, which is unequal to zero. Usually a random
initial set of weights is chosen. This makes such kind of training algorithms prone
to converge in local minima (of the error target function), depending on the chosen
initialisation. A common solution to reduce the influence of the initial weights is to
train N networks with different initialisations for exactly the same problem and take
the average of the N output activations. For all experiments reported in this article
N = 5 runs with random seeds 0− 4 for the pseudo-random number generator used to
create the initial network weights were performed.

4.4. Low-level feature modelling
Findings in [Eyben et al. 2010a] suggest that LSTM-RNN are in principle capable of
predicting affect directly from low-level feature descriptors. Although the main focus
of this article should be on the proposed incremental supra-segmental approach we
compare the supra-segmental approach to the low-level feature based modelling using
the same networks as for the supra-segmental approach. In the case of this low-level
feature modelling, the full user speech turns are treated as one sequence. No context
is considered across user turns, due to numeric problems in the training algorithms
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when handling long sequences, as would be the case when treating a whole session as
one sequence. A single topology consisting of two LSTM hidden layers with 140 and
40 units (T2), is used. In preliminary experiments larger topologies were investigated.
However, due to the rather small data-set (in the light of a such complex learning
task) larger networks did not lead to any increase in performance. The network of
choice is a uni-directional network, since bidirectional networks would not achieve the
goal of low-latency output. Bidirectional networks require the whole input sequence
(in our case, one user speech turn) to be present beforehand. We evaluate both types of
network though, to asses the performance difference between them.

As the performance of this approach shows that this technology has some potential,
but still falls far behind the performance of the supra segmental approach, we did at
this point not investigate it in more detail. Much more work in the future in this di-
rection is required, especially in improving the LSTM-RNN training algorithm and/or
investigating other neural network architectures, such as echo state networks, and
pooling together or averaging features over a short time segments which have a length
that falls between that of the supra-segmental approach (5 seconds) and the low-level
frame based approach (25 ms).

4.5. Multi-task learning
The main novelty of this article is the investigation of multi-task learning with LSTM-
RNN for prediction of dimensional affect. Previous work of the authors has investi-
gated single target learning for two affective dimensions only ([Eyben et al. 2010a]).
Multi-task learning is no different from single task learning, except for the topology of
the output layer of the network: for prediction of one continuous dimension an output
layer with a single linear summation unit is used; for multi-task / multi-target learn-
ing the number of linear summation units in the output layer matches the number
of targets (2, 5, or 10 in our case). In this article two aspects are investigated: first,
instead of training one network for every affect dimension, a single network with five
output nodes is used to predict all five dimensions; second, the variance of the four
raters’ labels – serving as a confidence measure for the dimensional rating – is pre-
sented to the network as a second target in addition to the mean of the four raters’
labels. Thus – in theory – the network should learn to predict a confidence measure for
its output based on the observed input features. Additionally the implicit presentation
of the rater agreement information during training might help the network to be able
to better predict the dimensional label as the network could learn to give less weight
to more ambiguous training samples, which may improve overall results. In total four
configurations of multi-task learning are investigated: a single target (rater mean for
each dimension), two targets (rater mean and inter-rater standard deviation for each
dimension), five targets (rater mean for all five dimensions), and ten targets (rater
mean and inter-rater standard deviation for all five dimensions).

A caveat when performing multi-task learning is the selection of relevant features.
For single task learning we selected relevant acoustic features for each affect dimen-
sion individually with CFS. Instead of adapting the CFS algorithm to be multi-target
capable by averaging of the correlations of each feature with all target labels, we de-
cided to use the joint feature set, i. e., the union of the CFS reduced feature sets for all
dimensions. This leaves 156 relevant features for feature set A, and 138 for set B. Both
numbers are below the sum of the number of features in the respective reduced feature
sets (186 and 167), which indicates a small overlap of the reduced features sets, i. e.,
features that are relevant for more than one dimension.

For feature set A, features that are selected for at least 3 dimensions are the skew-
ness of the second MFCC (all four dimensions), the temporal percentage of the regions
of rising voicing probability, and the linear error of quadratic regression approximation
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of the contour of the 13-th log. Mel-frequency band. Including these three, there are
26 features that are selected for at least two dimensions. The most common low-level
descriptors among these are the voicing probability, F0, spectral flux, spectral entropy,
MFCC 2 and 6, and the 95% spectral roll-off point.

For feature set B, features that are selected for at least 3 dimensions are the skew-
ness of the third MFCC (all four dimensions), the temporal percentage where the 7-th
MFCC is above 75% of its range, and the range of first to second quartile of the 6-th line
spectral frequency, as well as the second quartile of the 7-th line spectral frequency.
Including these three, there are 24 features that are selected for at least two dimen-
sions. The most common low-level descriptors among these are the loudness, 0-th and
6-th line spectral frequency, and MFCC 10, as well as the voicing probability.

Please note, as previously mentioned, we conduct all experiments, for single task
and multi-task learning on the joint feature set to ensure comparability of results and
eliminate the influence of different feature sets.

5. EVALUATION AND EXPERIMENTAL RESULTS
Extensive results of the evaluations of the incremental supra segmental modelling are
presented and discussed in this section. The supra-segmental approach is compared
to the low-level feature modelling approach. As measure of evaluation we report the
correlation coefficient (CC) between the automatic predictions and the ground truth
labels (mean label of raters), as suggested in [Schuller et al. 2010b] and applied in
[Eyben et al. 2011] and [Eyben et al. 2010a].

A large number of results has been obtained for all the runs evaluating the per-
formance for the five affective dimensions with 12 (B)LSTM topologies and 2 RNN as
well as 2 NN topologies, two acoustic feature sets, and 3 multi-task learning set-ups vs.
single task learning. In total results for 640 individual runs were computed. Each indi-
vidual result was produced by training 5 networks with different initial weights on the
same data, and averaging the output activations over those 5 networks. This is done
to lessen the influence of the training converging into local minima and make results
more stable. To give a meaningful and informative summary of the individual results
we report averaged results in terms of average correlation coefficients over various con-
figurations. In particular average correlation coefficients for each topology (table XI),
each feature set (table XII), and each multi-/single-task learning variant (table XIII)
are given. The overall best individual results are shown in table IX. A comparison to
related approaches is given in table X. The related methods include Support-Vector Re-
gression (SVR), standard feedforward neural networks (NN), and standard recurrent
neural networks (RNN), both having the same size as the T1 LSTM-RNN: two hidden
layers with 140 and 40 summation units (sigmoid transfer function), respectively.

Networks trained with resilient propagation are marked with the r subscript (i. e.,
T2r is a topology T2 network trained with resilient propagation). All other networks
were trained with backpropagation through time. We see a clear trend, which is well
known throughout the literature (e. g. [Grimm et al. 2007a; Eyben et al. 2010a]), that
the valence (V) dimension performs worst, while activation (A) performs best. The new
dimensions expectation (E), intensity (I), and power (P) perform medium well, in terms
of CC. We decided to base our analysis on correlation coefficient as the evaluation
metric only, as the only other commonly used metrics Mean-Squared Error (MSE) and
the Mean Linear Error (MLE) are disturbed by scaling and bias in the neural network
outputs. This is based on our experience from [Eyben et al. 2010a] where we showed
that the outputs of the neural networks are often correlated to the targets, but show a
bias and/or scaling. We thus prefer the correlation coefficient as measure of choice.

The best results from the 640 runs and the respective configurations are shown in
table IX. For all dimensions except activation the best result is obtained with a bi-
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Table IX. Best results (CC) for the mean rater label obtained with given configu-
rations (topology, feature set, multi-/single-target learning). Multi-target learning: 2
targets (dimension mean, and inter-rater variance), 5 targets (means of all 5 di-
mensions), 10 targets (means and inter-rater variances of all 5 dimensions). If the
best result is obtained with a bi-directional network, the best uni-directional result is
shown in () brackets. b: Bi-directional network; resilient propagation: r subscript.

Dimension Feature Set Topology Num. targets CC
A A T3 2 0.812
E B T2br (T3r) 10 0.624 (0.592)
I A T1br (T3) 10 0.673 (0.656)
P A T1br (T2r) 5 0.670 (0.621)
V B T3r 1 0.576

directional network. Best unidirectional networks are approx. 0.02 to 0.07 behind the
B-LSTM. Concerning topologies there is no clear trend apparent from this table. Re-
silient propagation as training algorithm leads to better networks in slightly more
cases. Feature set A wins in most cases, except for expectation and valence. Compar-
ing the best results obtained with (B)LSTM networks in table IX with the average
correlation between the human raters on the test set in table IV, we can see that the
automatic system actually outperforms the human performance for all dimensions ex-
cept valence. This is mostly in line with the findings reported in [Eyben et al. 2011].
Valence has the best agreement among human raters but is most difficult to predict
for the automatic system relying on acoustic cues only. A lot of valence information
is carried by the linguistic content and the context of an utterance. Given the low
human agreement of the dimensions Expectation and Power, the results of automatic
recognition seem very good, which is surprising, but seems to show that the average
of the human ratings does provide a ground truth which is correlated to some acoustic
properties and thus more valid than one would assume from the high rater ambiguity.

Table X. Comparison of LSTM-RNN to Support-Vector Regression (SVR),
feedforward neutral networks (NN), and standard recurrent neural net-
works (RNN). Mean rater label CC. Topology T2r , single target (mean of
each affective dimension), feature set B. LSTM-RNN, RNN, and NN have
the same number of hidden units in 2 hidden layers and are all trained
with resilient propagation (topology T2r). Best result marked in boldface
font.

Dimension LSTM (CC) RNN (CC) NN (CC) SVR (CC)
A 0.757 0.725 0.709 0.653
E 0.549 0.302 -0.029 0.190
I 0.579 0.518 0.461 0.503
P 0.520 0.511 0.361 0.367
V 0.454 0.172 0.035 -0.085

A comparison of LSTM-RNN to other related neural networks is shown in table X.
The RNN and NN have the same number of hidden units in two hidden layers as the
LSTM-RNN. Support Vector Regression has been trained with the sequential mini-
mal optimisation (SMO) algorithm using the WEKA toolkit [Witten and Frank 2005].
Thereby a linear kernel function was used and the complexity parameter c was chosen
as 1.0. In all five cases the LSTM outperforms the other methods. For activation, inten-
sity, and power the performance of LSTM and standard RNN can be seen as identical,
indicating that long term context is not of great importance, whereas for expectation
and valence the LSTM significantly outperform the RNN and especially the NN, which
is an indicator for the importance of long-term context here. Except for intensity and
expectation the performance of SVR is behind NN. The performance of NN is always
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behind that of RNN. For intensity RNN, NN, and SVR all yield a CC of 0.5, which is
roughly 0.07 behind the CC obtained with LSTM.

Table XI. Average mean rater label CC per topology. CC averaged
over both feature sets and all five affective dimensions. CC-1: CC
averaged over single target runs (dimension mean as target); CC-
10: CC averaged over multi-target runs (mean and inter-rater vari-
ance of all five dimensions as targets). Bottom part: feedforward and
standard recurrent neural network topologies trained with backprop-
agation through time and resilient propagation (r subscript). b: Bi-
directional network.

Dimension CC-1 CC-10
T1 0.513 0.530
T1b 0.543 0.552
T1r 0.551 0.585
T1br 0.583 0.590
T2 0.506 0.501
T2b 0.512 0.523
T2r 0.524 0.544
T2br 0.566 0.582
T3 0.526 0.481
T3b 0.499 0.500
T3r 0.577 0.564
T3br 0.583 0.563
T2nn 0.368 0.430
T2rnn 0.475 0.458
T2nnr 0.368 0.387
T2rnnr 0.462 0.433

In order to find out which topology performs best, we averaged results over all di-
mensions and feature sets. The results can be seen in table XI. No clearly best per-
forming topology can be identified, as all topologies achieve an average CC close to
0.5. The topology T1br is marginally the best. Since T1 is the largest network size, this
suggests that bigger networks are to be preferred, but at the same time the signif-
icantly smaller networks (T3) do not perform too bad, especially when trained with
resilient propagation. A very clear trend among all topologies is visible indicating that
networks trained with resilient propagation perform better than those trained with
backpropagation through time. Bidirectional networks (even though they have exactly
the same amount of parameters as the corresponding uni-directional networks) per-
form better among all three topologies. Table XI confirms what was already discussed
above, namely that the NN and RNN networks perform worse than the LSTM net-
works. This again shows that LSTM brings a benefit for the task of dimensional affect
recognition. A final observation we can make from table XI is that the larger topolo-
gies (T1 and T2) perform better for multi-task learning and the smaller topology (T3)
performs better for single task learning, which is to be expected, as generally speaking
a model for multi-task learning must be able to hold more parameters.

Overall, the differences between the topologies are not very large. From this finding
we can assume that a further, more fine grained investigation of further topologies is
not necessary and/or will not yield to any significant improvement over the current
results. For future studies the most interesting experiment in this respect is to further
reduce the network size to find the point where performance significantly drops, and
thus determine a minimal network size for the task.

The fact that most best results were obtained with feature set A (table IX), can
be confirmed in table XII, where the averaged result per feature set is shown. These
results were obtained by averaging all individual results (single and multi-task, all
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Table XII. Average result for each feature set (CC), averaged
over all LSTM topologies and all five affective dimensions.

Feature Set A B
CC 0.535 0.519

topologies) for each feature set. Although the difference between the two feature sets
is not great, feature set A yields a by 0.01 higher average CC. However, we have to
interpret this fact with care, as feature set A is the larger set of both (156 features
vs. 138 features), and it is a general trend that more features perform better than
fewer up to the point where data sparseness becomes an issue. We can confirm this
trend when looking explicitly at results of single task learning obtained on the per
dimension feature selections (cf. section 4.2) as opposed to the union of per dimension
feature sets (table XIII). The smaller feature set, but the one that should be optimised
for each dimension – in theory –, shows a by 0.04 lower CC for single task learning,
and a by 0.08 lower CC for 2-task learning (target and inter-rater variance).

A similar difference in performance can be seen for single-task vs. multi-task learn-
ing. Table XIII shows the results for the four cases of a) single task learning of each
dimension individually, b) two task learning of each dimension and corresponding
inter-rater standard deviation as a confidence measure, c) multi-task learning of all
5 dimensions, and d) multi-task learning of all 5 dimensions and corresponding inter-
rater standard deviations. Including the inter-rater standard deviation improves the
results marginally (CC 0.01), while multi-task learning of all five dimensions does
not seem to have a great effect on average (individual cases differ). The winning way
of modelling 5 continuous affective dimensions is by modelling all 5 dimensions and
the corresponding inter-rater standard deviations in a single network. A possible ex-
planation for the fact that inter-rater standard deviation improves results more for
multi-dimension learning could be that the uncertainty information added by all di-
mensions helps the network. This hypothesis is further undermined by the fact that
the best correlation coefficients for prediction of the inter-rater standard deviations
have been obtained with single dimension learning and not multi-dimension learning.
These results are shown in table XIV. The uncertainty of intensity and power seem to
be most easily predictable. For the other dimensions the prediction of the uncertainty
is fairly poor.

Table XIII. Average CC evaluated for the mean rater label (over
all dimensions, topologies, and feature sets) for various num-
ber of targets: CC-1: CC averaged over all single target runs
(dimension mean as target); CC-2: CC averaged over all sin-
gle target runs (dimension and inter-rater variance as target);
CC-5: CC averaged over multi-target runs (mean of all five di-
mensions as targets); CC-10: CC averaged over multi-target
runs (mean and inter-rater variance of all five dimensions as
targets). Results shown in () brackets are results achieved with
an individual feature selection per dimension, the other results
are those obtained on the same feature set as the multi-task
results.

CC
CC-1 0.529 (0.487)
CC-2 0.533 (0.447)
CC-5 0.529
CC-10 0.543

Thus, concluding, to use the predicted inter-rater standard deviation as an actual
confidence measure for all dimensions more work is required to optimise this pre-
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diction. However, with the multi-task approach presented herein, it is beneficial to
include the inter-rater standard deviation in order to improve the prediction of the
primary target, the mean label for each dimension.

Table XIV. Best result obtained for prediction of inter-
rater standard deviation. All results obtained with 2-target
learning (mean and standard deviation of raters for each
dimension). b: Bi-directional network; resilient propaga-
tion: r subscript.

Dimension Feature Set Topology CC
A A T3br 0.241
E B T1 0.306
I B T3br 0.237
P A T3b 0.412
V A T2b 0.125

In order to justify the use and feasibility of any sort of classifier/regressor on the
SEMAINE data for dimensional affect recognition, we have computed the correlation
coefficients between three functionals of the low-level acoustic features loudness and
F0 and the mean labels for the five dimensions on the evaluation set. The three func-
tionals are mean, maximum, and standard deviation within a segment. The segments
are the same (overlapping) segments as used in our proposed incremental supra-
segmental approach. Table XV shows these correlation coefficients. The result is very
interesting, as for some features and the dimensions activation and intensity very
high CC are obtained, while for the other three dimensions no significant correlation
can be reported. The maximum loudness per segment yields a correlation coefficient of
0.65 with the activation dimension. This is above the average human rater agreement
(0.57) but below the best result obtained with LSTM (0.81), thus justifying the use of
LSTM. Further, the finding is in line with the result of the feature selection (section
4.2), which revealed loudness related features highly relevant for activation and inten-
sity. For loudness the maximum loudness per segment seems to be better correlated to
activation and intensity, while for F0, the mean F0 per segment shows a stronger cor-
relation. A small correlation between the expectation dimension and the F0 standard
deviation (0.2) is observed.

Table XV. Correlation of loudness and F0 with the five dimensional la-
bels (mean of raters). Statistics mean, maximum, and standard deviation
computed over the incremental (5 second) segments.

[CC] max. loudness mean. loudness stddev. loudness
A 0.65 0.63 0.60
E 0.06 -0.03 0.10
I 0.57 0.49 0.52
P -0.00 0.11 -0.03
V 0.16 -0.12 -0.12

max. F0 mean. F0 stddev. F0

A 0.39 0.50 0.22
E 0.09 0.18 0.20
I 0.33 0.49 0.26
P -0.08 -0.15 -0.18
V -0.04 -0.09 0.01

Besides looking at the correlation coefficients, the best way to judge the actual per-
formance of the networks and to analyse what is actually happening to the outputs,
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Fig. 3. Plots of predictions for the configurations that gave the best results for activation (top), expectation
(middle) and power (bottom) (table IX). The thick (blue) line is the result of the automatic prediction, the
thin (green) line is the ground truth (mean of raters). On the x-axis all segments in the evaluation set are
arranged in chronological order.

is to take a look at the plots shown Fig. 3. They show the actual network outputs ob-
tained with the networks that gave the best results as shown in IX. All user turns
are concatenated and the gaps created by operator turns in between are not shown in
order to keep the plot clean and easy to read.

The results for the low-level feature based modelling of affective dimensions are
given in table XVI. The correlations obtained with this approach are very low com-
pared to the supra-segmental approach and the simple feature to label correlation
presented in table XV. Thus, we conclude that at present the supra-segmental mod-
elling should be the preference and the low-level modelling needs more investigation
and improvements. No clear trend showing a best configuration can be seen from ta-
ble XVI, and the performance for activation, for example, shows very high variance
(CC 0.082 to 0.560), which might be an indication of instabilities of the training algo-
rithms in the case of this complex task. Therefore, besides optimising network topology
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Table XVI. LLD-level modelling of mean rater label for 3 dimen-
sions. Results obtained with LSTM, topology T1, resilient prop-
agation (rp) or backpropagation through time (bptt) for train-
ing. Dimensions A(ctivation), E(xpectation), V(alence). Corre-
lation coefficient averaged over 5 network trainings with differ-
ent initial weights (same procedure as for the supra-segmental
results). Uni- and bi-directional LSTM (LSTM/BLSTM). Single
task (1-dim) learning compared to multi-task learning (5-dim).

Configuration A E V
1-dim learning (LSTM-rp) 0.082 0.355 -0.006

1-dim learning (BLSTM-rp) 0.123 0.323 0.003
1-dim learning (BLSTM-bptt) 0.271 0.279 0.090

5-dim learning (LSTM-rp) 0.560 0.110 0.116
5-dim learning (BLSTM-rp) 0.469 0.056 0.295

5-dim learning (BLSTM-bptt) 0.378 0.056 0.296

in future work, using other training algorithms, such as the Extended Kalman Filter
(EKF) training [Pérez-Ortiz et al. 2003] might seem promising in this respect.

6. CONCLUSIONS
We have presented a novel incremental segmentation scheme for supra-segmental
modelling of multi-dimensional affect from acoustic cues, which is suitable for low-
latency, spontaneous and naturalistic affect estimation in realistic environments. The
approach uses Long Short-Term Memory recurrent neural networks for multi-task
modelling. This article is the first to investigate the joint learning of affective dimen-
sions. Various network topologies were compared, including bidirectional and unidi-
rectional networks. Due to the incremental output during a user’s speech turn the
approach is suitable for use in real virtual agents and robots. The SEMAINE database
is used for experiments, which contains spontaneous and natural interactions of hu-
mans with four emotionally stereotypical Wizard-of-Oz characters. Five affective di-
mensions are annotated in this database and correlation coefficients of up to 0.81 for
activation, 0.62 for expectation, 0.67 for intensity, 0.67 for power, and 0.58 for valence
are reported. Thereby LSTM outperformed standard recurrent neural networks, feed
forward neural networks, and Support Vector Regression by 0.1 average correlation co-
efficient. No clear tendency towards an optimal network topology was found, however,
standard backpropagation trained networks were found to yield inferior correlation
coefficient but produce outputs more in the proper range than networks trained by
resilient propagation, which in turn yield a higher correlation coefficient. Considering
that resilient propagation only uses the sign of the error function for weight updates
this result is explicable.

Further, we have suggested a novel approach for estimating confidences of contin-
uous dimensional affect predictions by multi-task learning of the mean of the raters
along with the standard deviation of the raters. When learning the standard deviations
and the means of all five dimension with one network, a benefit can be shown which
is attributed to the additional labels of inter-rater standard deviation. The prediction
of the confidences by themselves is feasible for some configurations, but requires far
more tuning and a more in depth study in order to advance the method to a state where
reliable confidences can be obtained.

Concluding, we can say that realistic, natural affect recognition is getting towards
a state where it can be used in real-world intelligent affective systems. Future work
shall encompass the investigation of alternate, and more stable training algorithms for
the LSTM networks, such as Extended Kalman Filter training. Moreover, the fusion of
acoustic and linguistic features, which was proven successful, especially for valence, in
[Eyben et al. 2010a], shall be combined with the herein presented approach of multi-
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task learning. Next, the fusion of multi-task learning of acoustic and linguistic cues
together with visual features will be investigated, leading to audiovisual affect recog-
nition.

REFERENCES
BATLINER, A., SEPPI, D., STEIDL, S., AND SCHULLER, B. 2010. Segmenting into adequate units for auto-

matic recognition of emotion-related episodes: a speech-based approach. Advances in Human Computer
Interaction (AHCI), Special Issue on ”Emotion-Aware Natural Interaction”, Hindawi Publishing Corpo-
ration 2010, article ID 782802, 15 pages.

BATLINER, A., STEIDL, S., SCHULLER, B., SEPPI, D., VOGT, T., WAGNER, J., DEVILLERS, L., VIDRASCU,
L., KESSOUS, V. A. L., AND AMIR, N. 2011. Whodunnit – searching for the most important feature
types signalling emotion-related user states in speech. Computer Speech and Language 25, 1.

BURKHARDT, F., PAESCHKE, A., ROLFES, M., SENDLMEIER, W., AND WEISS, B. 2005. A database of ger-
man emotional speech. In Proceedings Interspeech 2005, Lissabon, Portugal. 1517–1520.

BUSSO, C., LEE, S., AND NARAYANAN, S. S. 2007. Using neutral speech models for emotional speech anal-
ysis. In Proceedings of INTERSPEECH 2007, Antwerp, Belgium. ISCA, 2225–2228.

CARIDAKIS, G., MALATESTA, L., KESSOUS, L., AMIR, N., RAOUZAIOU, A., AND KARPOUZIS, K. 2006. Mod-
eling naturalistic affective states via facial and vocal expressions recognition. In Proc. of ACM Int. Conf.
on Multimodal Interfaces. 146–154.

CHANG, C.-C. AND LIN, C.-J. 2001. LibSVM: a library for support vector machines. Software available at
urlhttp://www.csie.ntu.edu.tw/ cjlin/libsvm.

COHEN, J., COHEN, P., WEST, S. G., AND AIKEN, L. S. 2003. Applied multiple regression/correlation anal-
ysis for the behavioral sciences 2 Ed. Lawrence Erlbaum Associates, Hillsdale, NJ.

COWIE, R., DOUGLAS-COWIE, E., SAVVIDOU, S., MCMAHON, E., SAWEY, M., AND SCHRÖDER, M. 2000.
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WÖLLMER, M., SCHULLER, B., EYBEN, F., AND RIGOLL, G. 2010b. Combining long short-term memory
and dynamic bayesian networks for incremental emotion-sensitive artificial listening. IEEE Journal of
Selected Topics in Signal Processing 4, 5, 867–881.

WU, D., PARSONS, T., MOWER, E., AND NARAYANAN, S. S. 2010a. Speech emotion estimation in 3d space.
In Proceedings of ICME 2010, Singapore. IEEE, 737–742.

WU, D., PARSONS, T., AND NARAYANAN, S. S. 2010b. Acoustic feature analysis in speech emotion primitives
estimation. In In Proceedings of INTERSPEECH 2010, Makuhari, Japan. ISCA, 785–788.

YEE, P. V. AND HAYKIN, S. 2001. Regularized Radial Basis Function Networks: Theory and Applications.
John Wiley.

ZENG, Z., PANTIC, M., ROISMAN, G. I., AND HUANG, T. 2009. A Survey of Affect Recognition Methods:
Audio, Visual, and Spontaneous Expressions. IEEE Transactions on Pattern Analysis and Machine In-
telligence 31, 1, 39–58.

ACM Transactions on Interactive Intelligent Systems, Vol. X, No. X, Article XX, Pub. date: November 2011.


