Charakterisierung des Redoxsystems in Arabidopsis thaliana-Pflanzen mit gestörter NO-Homöostase

Christian Franz Holzmeister


Vorsitzende: Univ.-Prof. Dr. B. Poppenberger-Sieberer
Prüfer der Dissertation:
1. Univ.-Prof. Dr. J. Durner
2. Univ.-Prof. Dr. C. Schwechheimer

Die Dissertation wurde am 23.01.2013 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 27.05.2013 angenommen.
Aus dieser Arbeit hervorgegangene Veröffentlichungen:


Weitere Veröffentlichungen:

Inhaltsverzeichnis

Inhaltsverzeichnis.................................................................................................................. I
Zusammenfassung.................................................................................................................... VI
Summary.................................................................................................................................... VIII
Abkürzungsverzeichnis.......................................................................................................... X
Verzeichnis der Abbildungen und Tabellen......................................................................... XII

1. Einleitung ................................................................................................................................. 1

1.1. Stickstoffmonoxid................................................................................................................ 1

1.1.1. Funktionen von NO in Pflanzen...................................................................................... 1

1.1.1.1. Einfluss von NO auf die Pflanzenentwicklung und physiologische Prozesse.............. 1

1.1.1.2. Interaktion von NO und reaktiven Sauerstoffspezies.................................................. 2

1.1.1.3. Funktion von NO bei der Pathogenabwehr und Zelltod-Induktion ......................... 4

1.1.2. Biosynthese von NO in Pflanzen ..................................................................................... 6

1.1.3. Wirkungsweise und Signaltransduktion von NO in Pflanzen....................................... 7

1.1.4. Inaktivierung von NO in Pflanzen.................................................................................. 11

1.2. Alkohol-Dehydrogenasen.................................................................................................. 14

1.2.1. Klassifizierung von Alkohol-Dehydrogenasen.............................................................. 14

1.2.2. Bedeutung von Alkohol-Dehydrogenasen in Pflanzen................................................. 14

1.2.3. Die duale Funktion von Alkohol-Dehydrogenase 2 ..................................................... 15

1.2.4. Physiologische Rolle von GSNO-Reduktase unter Stressbedingungen...................... 17

1.3. Zielsetzung der Arbeit ....................................................................................................... 19

2. Material und Methoden ....................................................................................................... 21

2.1. Material ............................................................................................................................... 21

2.1.1. Pflanzenlinien................................................................................................................. 21

2.1.2. Bakterienstämmme ....................................................................................................... 21

2.1.3. Antibiotika .................................................................................................................... 22

2.1.4. Enzyme ......................................................................................................................... 22

2.1.5. Antikörper .................................................................................................................... 22

2.1.6. Reaktionssysteme (Kits) ............................................................................................. 23

2.1.7. Oligonukleotide .......................................................................................................... 23
Inhaltsverzeichnis

2.2.1. **Methoden** .................................................................................................................. 38
  2.2.1.1. Pflanzliche Methoden ............................................................................................... 38
  2.2.1.2. Anzuchtbedingungen ............................................................................................... 38
  2.2.1.3. Pflanzenaussaat auf Erde ........................................................................................ 38
  2.2.1.4. Pflanzenaussaat unter sterilen Bedingungen ......................................................... 38
  2.2.1.5. Behandlung mit Paraquat ....................................................................................... 38
  2.2.1.6. GUS-Färbung von Pflanzenmaterialien ................................................................. 39
  2.2.1.7. NBT-Färbung von Pflanzenmaterialien ................................................................. 39
  2.2.1.8. DAB-Färbung von Pflanzenmaterialien ................................................................. 39
  2.2.1.9. Mikroskopie und Fotografie ................................................................................... 40

2.2.2. **Mikrobiologische Methoden** .................................................................................... 40
  2.2.2.1. Herstellung kompetenter *E.coli*-Zellen ................................................................. 40
  2.2.2.2. Transformation kompetenter *E.coli*-Zellen .......................................................... 40
  2.2.2.3. Herstellung kompetenter *Agrobacterium tumefaciens*-Zellen ............................ 41
  2.2.2.4. Transformation kompetenter *Agrobacterium tumefaciens*-Zellen ....................... 41
  2.2.2.5. *Agrobacterium*-vermittelte Transformation von *Arabidopsis thaliana* ................. 41
  2.2.2.6. Bakterieninfektion von *Arabidopsis thaliana* ....................................................... 42

2.2.3. **Molekularbiologische Methoden** ............................................................................ 42
  2.2.3.1. Isolierung von Plasmid-DNA aus *E.coli* ............................................................... 42
  2.2.3.2. Isolierung von pflanzlicher RNA .......................................................................... 43
  2.2.3.3. Bestimmung der Nukleinsäure-Konzentration ..................................................... 43
  2.2.3.4. Elektrophoretische Auftrennung von Nukleinsäuren ........................................... 43
  2.2.3.5. Isolierung und Reinigung von DNA aus Agarosegelen ....................................... 44
  2.2.3.6. Enzymatischer Verdau von DNA ........................................................................ 44
  2.2.3.7. Sequenzierung von DNA ...................................................................................... 44
  2.2.3.8. Polymerase-Kettenreaktion (PCR) ....................................................................... 44
  2.2.3.9. Kolonie-Polymerase-Kettenreaktion ..................................................................... 45
  2.2.3.10. Reverse-Transkriptase (RT)-Polymerase-Kettenreaktion .................................... 46
  2.2.3.11. Quantitative Echtzeit (qRT)-Polymerase-Kettenreaktion .................................... 47
### Inhaltsverzeichnis

2.2.3.12. Klonierung von Superoxid-Dismutasen mit dem GATEWAY-System ............................................. 48
2.2.3.13. Klonierung des Promotor-Reportergerkonstruktes mit dem GATEWAY-System ..... 49
2.2.3.14. Klonierungsreaktionen für die Komplementierung mit dem GATEWAY-System .... 50
2.2.3.15. Zielgerichtete Mutagenese ........................................................................................................ 50
2.2.4. Biochemische Methoden .................................................................................................................. 51
2.2.4.1. Isolierung von Proteinen aus Pflanzenmaterial .............................................................................. 51
2.2.4.2. Bestimmung der Proteinkonzentration .......................................................................................... 52
2.2.4.3. 1D-gelektrophoretische Auftrennung von Proteinen ................................................................. 52
2.2.4.4. Probenvorbereitung für die 2D-Gelektrophorese ........................................................................ 53
2.2.4.5. Isoelektrische Fokussierung von Proteinen .................................................................................. 53
2.2.4.6. 2D-gelektrophoretische Auftrennung von Proteinen ................................................................. 54
2.2.4.7. Silber-Färbung von Proteinen auf 2D-Gelen ................................................................................. 54
2.2.4.8. Transfer von Proteinen mittels Western Blot ................................................................................ 54
2.2.4.9. Immunodetektion von Proteinen ................................................................................................. 55
2.2.4.10. Heterologe Testexpression und Reinigung von Histidin-Fusionsproteinen .................. 56
2.2.4.11. Heterologe Überexpression und Reinigung von Histidin-Fusionsproteinen ............... 56
2.2.4.12. Behandlung rekombinant hergestellter SODs mit NO-Donoren .............................................. 57
2.2.4.13. Bestimmung der Enzymaktivität von Superoxid-Dismutase ................................................. 58
2.2.4.14. Bestimmung der Enzymaktivität von GSNO-Reduktase .......................................................... 59
2.2.4.15. Bestimmung der Enzymaktivität von Glutathion-Reduktase ............................................... 59
2.2.4.16. Bestimmung der Enzymaktivität von Glutathion-Peroxidase ................................................ 60
2.2.4.17. Bestimmung der Enzymaktivität von Glutathion S-Transferase .............................................. 60
2.2.4.18. Bestimmung des Glutathion-Gehaltes ...................................................................................... 60
2.2.4.19. Bestimmung thiolhaltiger Komponenten des Glutathion-Stoffwechsels ................. 61
2.2.4.20. Gasphasen-Chemilumineszenz zur Bestimmung von NO-Metaboliten ....................... 62
2.2.5. Datenverarbeitung und computergestützte Auswertung ............................................................. 63
2.2.5.1. Digitalisierung und quantitative Auswertung von 2D-Gelen .................................................. 63
2.2.5.2. Massenspektrometrische Analyse von Proteinen ..................................................................... 63
3. Ergebnisse .................................................................................................................................................. 65
3.1. Molekulare Charakterisierung der gsnor Knock-out Linie ............................................................... 65
3.1.1. Die Struktur des GSNO-Reduktase Gens ...................................................................................... 65
3.1.2. Eigenschaften und Sequenzvergleich des GSNO-Reduktase Proteins .................................. 66
3.1.3. Überprüfung der T-DNA Insertion in der gsnor Knock-out Linie ............................................... 67
3.1.4. Genetische Komplementation der gsnor Knock-out Linie ........................................... 68
3.1.5. Quantitative Bestimmung von Stickstoffoxiden und Nitrosoverbindungen ............. 69
3.1.6. Analyse der gewebespezifischen Expression des GSNO-Reduktase Gens................. 70
3.2. Phänotypische Charakterisierung der gsnor Knock-out Linie ..................................... 72
3.2.1. Einfluss von GSNO-Reduktase auf Keimung und Wurzelwachstum................. 72
3.2.2. Einfluss von GSNO-Reduktase auf Blatt- und Sprossentwicklung ....................... 73
3.2.3. Einfluss von GSNO-Reduktase auf Blüten- und Schotenbildung ....................... 74
3.3. Untersuchung der biotischen Stressantwort der gsnor Knock-out Linie nach
Pathogeninfektion mittels quantitativer Proteomanalyse ........................................... 76
3.3.1. Rahmenbedingungen der differentiellen Proteomanalyse ..................................... 76
3.3.2. Quantitative Auswertung differenziell regulierter Proteine nach Infektion ............ 77
3.3.3. Massenspektrometrische Identifizierung differenziell regulierter Proteine ............ 78
3.3.4. Analyse von Proteinmustern und deren zeitliche Veränderung ............................ 78
3.3.5. Vergleich und funktionelle Klassifizierung der identifizierten Proteine ................ 81
3.4. Untersuchung der oxidativen Stressantwort der gsnor Knock-out Linie nach
Herbizidbehandlung mit Paraquat ................................................................................. 83
3.4.1. Vergleichende Untersuchung der Paraquat-Sensitivität ........................................ 83
3.4.2. Einfluss reduzierter und erhöhter NO-Gehalte auf Paraquattoleranz ................. 86
3.4.3. Auswirkung von Paraquat auf SOD-Aktivität und Superoxid-Akkumulation ....... 88
3.4.4. Einfluss von Paraquat auf den Glutathiongehalt und die Aktivität Glutathion-
abhängiger Enzyme ........................................................................................................ 90
3.4.5. Auswirkung reduzierter und erhöhter Glutathion-Gehalte auf Paraquattoleranz .... 93
3.4.6. Einfluss von NO-Begasung auf die Glutathion-Biosynthese ................................. 95
3.5. In-vitro Regulation der Aktivität von Superoxid-Dismutassen durch NO ............... 97
3.5.1. Analyse der Genexpression von Superoxid-Dismutassen ..................................... 97
3.5.2. Klonierung und rekombinante Expression von Superoxid-Dismutassen ............ 98
3.5.3. Überprüfung der heterolog hergestellten Superoxid-Dismutassen ...................... 101
3.5.4. In-vitro Regulation der SOD-Aktivität durch Behandlung mit NO-Donoren ........... 103
3.5.5. In-vitro Immunodetektion nitrierter Superoxid-Dismutassen ............................... 105
3.5.6. Massenspektrometrische Analyse nitrierter Tyrosinreste am Beispiel der MnSOD 106
3.5.7. In-silico Modellierung einer 3D-Struktur von MnSOD ......................................... 106
3.5.8. Strukturelle Bedeutung von Tyrosin 63 für die MnSOD-Aktivität ............................. 108
4. Diskussion ......................................................................................................................... 110
4.1. Der Verlust der GSNO-Reduktase Aktivität resultiert in einem pleiotropen Phänotyp und einer veränderten NO-Homöostase ......................................................... 110
4.2. Der Verlust der GSNO-Reduktase Aktivität hat keine Auswirkungen auf das Resistenzverhalten gegenüber Pseudomonas syringae ................................................ 114
4.3. Der Verlust der GSNO-Reduktase Aktivität führt zu einer veränderten Proteinexpression nach Pseudomonas syringae-Infektion ......................................................... 115
4.4. Der Verlust der GSNO-Reduktase Aktivität vermittelt Toleranz gegenüber Paraquat-induziertem oxidativen Stress .................................................................................. 118
4.5. Interpretationsmöglichkeiten in Bezug auf das induzierte antioxidative System in gsnor Knock-out Linien ........................................................................................................ 122
4.6. MnSOD als Zielprotein für die in-vitro Inhibierung durch Peroxynitrit und strukturelle Aspekte der Nitrierung von Tyrosin 63 ................................................................ 126
5. Literaturverzeichnis ........................................................................................................ 130
6. Anhang ............................................................................................................................... 150

Danksagung ......................................................................................................................... 174

Curriculum vitae .................................................................................................................. 176
Zusammenfassung

Stickstoffmonoxid (NO) ist ein gasförmiges Radikal, dessen Spezifität als endogenes Signalmolekül sowohl durch seine Synthese als auch seine Degradation determiniert ist. Eine Möglichkeit, die intrazelluläre NO-Konzentration zu kontrollieren, stellt der Abbau von S-Nitrosoglutathion (GSNO) durch das Enzym GSNO-Reduktase dar, welches somit nicht nur eine protektive Wirkung gegenüber nitrosativen Stressbedingungen garantiert, sondern auch einen entscheidenden Einfluss auf die NO-abhängige Signaltransduktion ausübt.

Im Rahmen dieser Arbeit sollte analysiert werden, welche Auswirkungen ein Verlust der GSNO-Reduktase Aktivität einerseits auf die Morphologie dieser Pflanzen und andererseits auf die Abwehrreaktion nach unterschiedlichen Stressbedingungen hat. Für die Untersuchungen standen Knock-out Pflanzen zur Verfügung, die aufgrund einer Insertionsmutagenese kein funktionsfähiges Genprodukt mehr herstellen können. Bei diesen Pflanzen konnte eine höhere Akkumulation von Nitrosothiolen und Nitrat gemessen werden, was eine entscheidende Rolle der GSNO-Reduktase für den NO-Stoffwechsel impliziert. Die Dysregulation der NO-Homöostase hatte einen pleiotropfen Phänotyp zur Folge, der den gesamten Lebenszyklus der gsnor Insertionslinie umfasste und in einem kurzwüchsigen und stark verzweigten Habitus resultierte. Die beobachteten Wachstumsdefekte korrelierten darüber hinaus mit den Ergebnissen der Promotor-GUS Studien, die eine konstitutive Expression des GSNO-Reduktase Gens vorzugsweise im vaskulären System aufzeigte. Die dramatischen morphologischen Veränderungen deuten somit darauf hin, dass GSNO-Reduktase und damit die Regulation der NO-Verfügbarkeit von elementarer Bedeutung für die gesamte Pflanzenentwicklung ist.

Um Hinweise auf die Funktion der GSNO-Reduktase bei der Pathogenabwehr zu erhalten, wurde sowohl die R-Gen vermittelte Resistenz als auch die Basisresistenz in Infektionsversuchen mit verschiedenen Pseudomonas syringae-Stämmen mittels Proteomanalyse studiert. Je nach Infektionstyp konnten sowohl in Wildtyp-Pflanzen als auch in gsnor Insertionslinien charakteristische Veränderungen nach avirulenter und virulenter Infektion auf Proteinebene festgestellt werden, die auf eine ähnliche Abwehrstrategie hindeuten. Allerdings traten auch deutliche Unterschiede hervor, was sich sowohl in der Anzahl als auch dem Übereinstimmungsgrad differenziell regulierter Proteine widerspiegelte und auf Variationen in der Abwehrantwort hindeutet. Eine universelle Bedeutung der GSNO-Reduktase für die biotische Stressantwort lässt sich anhand der erhobenen Daten allerdings
Zusammenfassung

nicht ableiten, zumal in den Mutanten auch keine Unterschiede hinsichtlich der Krankheitssymptome und der bakteriellen Vermehrungsraten beobachtet werden konnten.

Im Gegensatz dazu war der Verlust der GSNO-Reduktase Aktivität hingegen mit einer gesteigerten Toleranz gegenüber Paraquat-induziertem oxidativen Stress assoziiert. In diesem Zusammenhang konnte gezeigt werden, dass der Paraquat-tolerante Phänotyp der gsnor Insertionslinie auf einen Anstieg des Glutathion-Gehaltes bzw. einer Aktivitätszunahme Glutathion-abhängiger Enzyme zurückzuführen ist. NO scheint dabei über die Regulation des Glutathion-Stoffwechsels eine Stimulation des antioxidativen Systems zu induzieren, was in den transgenen Pflanzen aufgrund der erhöhten endogenen NO-Gehalte einen indirekten „Priming-Effekt“ zur Folge hat. Der positive Einfluss von NO und Glutathion auf die Herbizidverträglichkeit konnte dabei sowohl durch exogene Applikation als auch mit Hilfe von transgenen Pflanzen bestätigt werden. Zusammenfassend betrachtet wäre somit eine Rolle von GSNO-Reduktase als zellulärer Redox-Sensor denkbar, dass über die Regulation NO-abhängiger Signalwege Einfluss auf das Redoxsystem und damit auf die Akkumulation reaktiver Sauerstoffspezies nach oxidativer Stressexposition nehmen kann.

Nitric oxide (NO) is a gaseous radical whose specificity as an endogenous signaling molecule is determined both by its synthesis and degradation. One way to control intracellular NO levels is the breakdown of NO storage compound S-nitrosoglutathione (GSNO) by GSNO reductase, turning this enzyme into a key regulator of NO homeostasis, which not only protects from nitrosative stress but also exerts a balancing role in fine-tuning NO signaling.

The aim of this work was to shed light on the physiological importance of this enzyme for plant growth and development as well as defense responses against various stress treatments in Arabidopsis thaliana using a reverse genetic approach. Loss of GSNO reductase function caused an accumulation of total nitrosothiol and nitrate content indicating a crucial role of GSNO reductase for NO metabolism. As a consequence of this imbalance, gsnor knock-out mutants displayed a pleiotropic phenotype compromising the entire life cycle of these plants with semi-dwarfism and bushy growth as major detrimental habitus implications. The observed growth defects also correlated with results from promoter-GUS studies, which revealed a constitutive expression of GSNO reductase preferably in the vascular system throughout all stages of plant development. Hence, the dramatic morphological changes suggest that GSNO reductase and thus the regulation of NO availability seems to be critical for normal plant growth and development.

To investigate the function of GSNO reductase in disease resistance, both R-gene-mediated resistance and basal resistance was analyzed after infection with bacterial pathogen Pseudomonas syringae using a proteomic approach. Depending on the type of infection characteristic changes of protein regulation could be observed in both wildtype plants and gsnor knock-out mutants after treatment with aviolent and virulent Pseudomonas strains, indicating a similar defense strategy of both plant lines. On the other hand evaluation of proteomic data also revealed distinct differences between both lines, since the number and the common overlap of differently regulated proteins deviate significantly from each other, suggesting variations in the defense response. However, comparing both plant lines neither the virulent nor the avirulent infection resulted in different disease symptoms or bacterial growth rates between wildtype plants and gsnor mutants, demonstrating that the function of GSNO reductase in plant defense response shows some redundancy.
In contrast, loss of GSNO reductase activity was associated with an increased tolerance against paraquat-induced oxidative stress, which could be explained by elevated levels of glutathione and glutathione related enzymes measured in the transgenic plants. In this case the paraquat resistant phenotype of gsnor knock-out plants is probably the result of an indirect priming effect mediated by the NO dependent stimulation of the GSH related antioxidative system, since these plants exhibit constitutive higher NO levels compared to wildtype plants. The positive effect of NO and glutathione on counteracting excess oxidative damage triggered by paraquat could be confirmed both via exogenous treatment of wildtype plants with NO donors as well as transgenic plants with altered endogenous NO and glutathione levels. Based on these results, it would be conceivable that GSNO reductase acts as cellular redox sensor, which affects the antioxidative system and thus the accumulation of reactive oxygen species after oxidative stress exposure via regulation of NO-dependent signaling pathways.

To further elucidate the regulatory function of NO on the antioxidative system, the direct interaction of NO and superoxide dismutases was analyzed in more detail, since this class of enzymes belongs to the first line of defense against toxic ROS accumulation by detoxifying superoxide radicals. In this case several isoforms of recombinantly produced superoxide dismutases could be identified as new target proteins for NO-dependent posttranslational modifications in-vitro, because treatment with NO donor peroxynitrite resulted in a dose dependent inhibition of MnSOD, FeSOD3 and CZSOD3 by tyrosine nitration. However incubation with NO donor GSNO did not affect enzymatic activities indicating that S-nitrosylation obviously does not play a role in SOD regulation. Using MnSOD for further studies, in total nine different nitrated tyrosine residues were identified in peroxynitrite treated samples by mass spectrometry, while site-directed mutagenesis revealed tyrosine residue 63 as main regulatory nitration site rendering this mutated version significantly less sensitive to peroxynitrite treatment.
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH</td>
<td>Alkohol-Dehydrogenase</td>
</tr>
<tr>
<td>ADP, ATP</td>
<td>Adenosindiphosphat, Adenosintriphosphat</td>
</tr>
<tr>
<td>AP</td>
<td>Alkalische Phosphatase</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>BCIP</td>
<td>5-Bromo-4-Chloro-3-Indolylphosphat p-Toluidinsalz</td>
</tr>
<tr>
<td>cADPR</td>
<td>Zyklische ADP-Ribose</td>
</tr>
<tr>
<td>CDNA</td>
<td>(komplementäre) Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>CDNB</td>
<td>1-Chloro-2,4-Dinitrobenzol</td>
</tr>
<tr>
<td>cGMP</td>
<td>Zylisches Guanosinmonophosphat</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3-[(3-Cholaminpropyl)-Dimethylammonio]-1-Propansulfonat</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carboxy-terminal</td>
</tr>
<tr>
<td>Cys</td>
<td>Cystein</td>
</tr>
<tr>
<td>CZSOD</td>
<td>kupfer- und zinkhaltige Superoxid-Dismutase</td>
</tr>
<tr>
<td>DAB</td>
<td>Diaminobenzidin</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylidicarbonat</td>
</tr>
<tr>
<td>DIGE</td>
<td>Differentielle Gelelektrophorese</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleosidtriphosphat</td>
</tr>
<tr>
<td>DTNB</td>
<td>5,5'-Dithio-bis(2-Nitrobenzosäure)</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamin-Tetraessigsäure</td>
</tr>
<tr>
<td>FeSOD</td>
<td>eisenhaltige Superoxid-Dismutase</td>
</tr>
<tr>
<td>GA</td>
<td>Gibberellinsäure</td>
</tr>
<tr>
<td>GC</td>
<td>Guanylat-Zyklase</td>
</tr>
<tr>
<td>GFP</td>
<td>Grün fluoreszierendes Protein</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathion-Peroxidase</td>
</tr>
<tr>
<td>GR</td>
<td>Glutathion-Reduktase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathion</td>
</tr>
<tr>
<td>GSNOR</td>
<td>S-Nitrosoglutathion</td>
</tr>
<tr>
<td>GSSG</td>
<td>Glutathiondisulfid</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathion S-Transferase</td>
</tr>
<tr>
<td>GUS</td>
<td>ß-Glukuronidase</td>
</tr>
<tr>
<td>His</td>
<td>Histidin</td>
</tr>
<tr>
<td>HR</td>
<td>Hypersensitive Reaktion</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>HRP</td>
<td>Meerrettichperoxidase</td>
</tr>
<tr>
<td>IPG</td>
<td>Immobilisierter pH-Gradient</td>
</tr>
<tr>
<td>JA</td>
<td>Jasmonsäure</td>
</tr>
<tr>
<td>KBE</td>
<td>Kolonie bildende Einheiten</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>LC/MS</td>
<td>Flüssigchromatographie-gekoppelte Massenspektrometrie</td>
</tr>
<tr>
<td>MALDI-MS</td>
<td>„Matrix-Assisted-Laser-Desorption-Ionisation“-Massenspektrometrie</td>
</tr>
<tr>
<td>MES</td>
<td>2-Morpholinoethansulfonsäure-Monohydrat</td>
</tr>
<tr>
<td>MnSOD</td>
<td>Manganhaltige Superoxid-Dismutase</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>Nicotinamid-Adenin-Dinukleotid (oxidiert)</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nikotinamid-Adenin-Dinukleotidphosphat</td>
</tr>
<tr>
<td>Ni-NTA</td>
<td>Nickel-Nitriloacetat</td>
</tr>
<tr>
<td>NBT</td>
<td>4-Nitroblau-Tetrazoliumchlorid</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>NPR1</td>
<td>„Nonexpressor-of-Pathogenesis-Related-Genes1“</td>
</tr>
<tr>
<td>NR</td>
<td>Nitrat-Reduktase</td>
</tr>
<tr>
<td>N-terminal</td>
<td>Amino-terminal</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphatgepufferte Salzlösung</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PR1</td>
<td>„Pathogenesis-Related-Protein1“</td>
</tr>
<tr>
<td>PS I</td>
<td>Photosystem I</td>
</tr>
<tr>
<td>Pst-avir</td>
<td><em>Pseudomonas syringae pv tomato</em> DC3000 (avrRpt2)</td>
</tr>
<tr>
<td>Pst-vir</td>
<td><em>Pseudomonas syringae pv tomato</em> DC3000</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinilpyrrolidon</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>ROS</td>
<td>Reaktive Sauerstoffspezies</td>
</tr>
<tr>
<td>RT-qPCR</td>
<td>Quantitative Echtzeit-Polymerase Kettenreaktion</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transkriptase Polymerase Kettenreaktion</td>
</tr>
<tr>
<td>SA</td>
<td>Salicylsäure</td>
</tr>
<tr>
<td>SAR</td>
<td>Systemisch erworbene Resistenz</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese</td>
</tr>
<tr>
<td>SNAP</td>
<td>S-Nitroso-N-Acetylpenicillamin</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetat-EDTA-Puffer</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-Tetramethylendiamin</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl)-Aminomethan</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosin</td>
</tr>
<tr>
<td>Wt</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>X-Gluc</td>
<td>5-Brom-4-Chlor-3-Indolyl-β-D-Glukuronsäure</td>
</tr>
</tbody>
</table>
Verzeichnis der Abbildungen und Tabellen

Abbildungen

<table>
<thead>
<tr>
<th>Abb.</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb. 1</td>
<td>Interaktion von NO und reaktiven Sauerstoffspezies</td>
<td>4</td>
</tr>
<tr>
<td>Abb. 2</td>
<td>Übersicht der NO-Produktion und deren zelluläre Lokalisation in Pflanzen</td>
<td>7</td>
</tr>
<tr>
<td>Abb. 3</td>
<td>Möglichkeiten NO-abhängiger posttranslationaler Proteinmodifikationen.</td>
<td>9</td>
</tr>
<tr>
<td>Abb. 4</td>
<td>Darstellung der Inaktivierungsmöglichkeiten von NO</td>
<td>13</td>
</tr>
<tr>
<td>Abb. 5</td>
<td>Struktureller Aufbau des GSNO-Reduktase Gens</td>
<td>65</td>
</tr>
<tr>
<td>Abb. 6</td>
<td>Primärstruktur des GSNO-Reduktase Proteins in verschiedenen Spezies</td>
<td>67</td>
</tr>
<tr>
<td>Abb. 7</td>
<td>Verifikation der T-DNA Insertion</td>
<td>68</td>
</tr>
<tr>
<td>Abb. 8</td>
<td>Vergleich von Wt-Pflanze und komplementierter gsnor/GSNOR Linie</td>
<td>69</td>
</tr>
<tr>
<td>Abb. 9</td>
<td>Bestimmung von NO-Metaboliten</td>
<td>70</td>
</tr>
<tr>
<td>Abb. 10</td>
<td>Analyse der GUS-Expression unter Kontrolle des GSNO-Reduktase Promotors</td>
<td>71</td>
</tr>
<tr>
<td>Abb. 11</td>
<td>Phänotypische Unterschiede in der Samenmorphologie und Keimung</td>
<td>72</td>
</tr>
<tr>
<td>Abb. 12</td>
<td>Phänotypische Unterschiede in der Wurzelmorphologie</td>
<td>73</td>
</tr>
<tr>
<td>Abb. 13</td>
<td>Phänotypische Unterschiede in der vegetativen Entwicklung</td>
<td>74</td>
</tr>
<tr>
<td>Abb. 14</td>
<td>Phänotypische Unterschiede in der generativen Entwicklung</td>
<td>75</td>
</tr>
<tr>
<td>Abb. 15</td>
<td>Auftrennung der Proteinfraktion aus Blattmaterial von Arabidopsis thaliana</td>
<td>79</td>
</tr>
<tr>
<td>Abb. 16</td>
<td>Proteinregulation in Gelabschnitt 1 nach avirulenter Infektion</td>
<td>80</td>
</tr>
<tr>
<td>Abb. 17</td>
<td>Proteinregulation in Gelabschnitt 2 nach virulenter Infektion</td>
<td>81</td>
</tr>
<tr>
<td>Abb. 18</td>
<td>Funktionelle Klassifizierung identifizierter Proteine</td>
<td>81</td>
</tr>
<tr>
<td>Abb. 19</td>
<td>Vergleich der Abwehrreaktionen in beiden Linien</td>
<td>82</td>
</tr>
<tr>
<td>Abb. 20</td>
<td>Vergleich der Keimung in Gegenwart von Paraquat</td>
<td>84</td>
</tr>
<tr>
<td>Abb. 21</td>
<td>Vergleich der Schadwirkung nach Vakuuminfiltration von Paraquat</td>
<td>85</td>
</tr>
<tr>
<td>Abb. 22</td>
<td>Vergleich der Schadwirkung nach Sprühapplikation von Paraquat</td>
<td>86</td>
</tr>
<tr>
<td>Abb. 23</td>
<td>Keimungsanalyse verschiedener NO-Mutanten in Gegenwart von Paraquat</td>
<td>87</td>
</tr>
<tr>
<td>Abb. 24</td>
<td>Vergleich der Schadwirkung nach Vorbehandlung mit NO-Donor SNAP</td>
<td>88</td>
</tr>
<tr>
<td>Abb. 25</td>
<td>Gesamtaktivität von Superoxid-Dismutassen</td>
<td>89</td>
</tr>
<tr>
<td>Abb. 26</td>
<td>Superoxid-Akkumulation nach Sprühapplikation von Paraquat</td>
<td>90</td>
</tr>
<tr>
<td>Abb. 27</td>
<td>Aktivität von Glutathion-Peroxidase</td>
<td>90</td>
</tr>
<tr>
<td>Abb. 28</td>
<td>Wasserstoffperoxid-Akkumulation nach Sprühapplikation von Paraquat</td>
<td>91</td>
</tr>
<tr>
<td>Abb. 29</td>
<td>Bestimmung des Glutathion-Gehaltes</td>
<td>92</td>
</tr>
<tr>
<td>Abb. 30</td>
<td>Aktivität von Glutathion-Reduktase und Glutathion S-Transferase</td>
<td>93</td>
</tr>
<tr>
<td>Abb. 31</td>
<td>Keimungsvergleich auf Paraquat-haltigem Medium in Gegenwart von Glutathion</td>
<td>94</td>
</tr>
</tbody>
</table>
Verzeichnis der Abbildungen und Tabellen

Abb. 32: Keimungsanalyse verschiedener GSH-Mutanten in Gegenwart von Paraquat ............... 95
Abb. 33: Quantitative Analyse von Thiolverbindungen der Glutathionsynthese ....................... 96
Abb. 34: Analyse der Transkriptmengen von SOD-Isoformen mittels RT-qPCR ....................... 98
Abb. 35: Ergebnis der rekombinanten Produktion von Superoxid-Dismutasen hinsichtlich
Expressionsstärke und Löslichkeit ....................................................................................... 100
Abb. 36: Immunologischer Nachweis rekombinant produzierter SODs ..................................... 101
Abb. 37: Überprüfung der Enzymaktivität rekombinant produzierter SODs .............................. 102
Abb. 38: Einfluss der in-vitro Behandlung mit Peroxynitrit auf die Aktivität von SOD-
Isoformen .......................................................................................................................... 104
Abb. 39: Immunologischer Nachweis nitrierter Superoxid-Dismutasen .................................. 105
Abb. 40: 3D-Strukturmodell von MnSOD aus Arabidopsis thaliana ........................................ 107
Abb. 41: Einfluss der in-vitro Nitrierung auf die Aktivität von MnSOD Y63F ......................... 108
Abb. 42: Immunologischer Nachweis der nitrierten MnSOD Y63F-Variante ......................... 109
Abb. 43: Zusammenhang zwischen Paraquat und der in dieser Arbeit analysierten
Komponenten des Redoxsystems ......................................................................................... 122
Abb. 44: Modell zur Funktion von GSNO-Reduktase als Redox-Sensor ................................. 126
Abb. 45: Vergrößerter Ausschnitt des aktiven Zentrums von MnSOD ................................. 129

Tabellen

Tab. 1: Beispiele für charakterisierte Zielproteine mit NO-abhängiger Modifikation ............... 11
Tab. 2: Gesamtzahl differentiell produzierter Proteine in beiden Linien ................................. 77
Tab. 3: Nitrierte Tyrosinreste von MnSOD nach in-vitro Behandlung mit Peroxynitrit .......... 106
Tab. 4: Phänotypische Veränderungen in gsnor Knock-out Linien als Folge eines
beeinträchtigten Hormon-Haushalts .................................................................................... 113

Anhang Abbildungen

Anhang Abb. 1: 2D-Gelbild mit Auftrennung der Gesamtproteinfraktion aus Blattmaterial
von Wildtyp-Pflanzen nach Infektion mit Pst DC3000 (avrRpt2) ....................................... 156
Anhang Abb. 2: 2D-Gelbild mit Auftrennung der Gesamtproteinfraktion aus Blattmaterial
von Wildtyp-Pflanzen nach Infektion mit Pst DC3000 ..................................................... 162
Anhang Abb. 3: 2D-Gelbild mit Auftrennung der Gesamtproteinfraktion aus Blattmaterial
von gsnor Knock-out Linien nach Infektion mit Pst DC3000 (avrRpt2) ....................... 166
Anhang Abb. 4: 2D-Gelbild mit Auftrennung der Gesamtproteinfraktion aus Blattmaterial
von gsnor Insertionslinien nach Infektion mit Pst DC3000 .............................................. 170
Anhang Abb. 5: Paraquat-Toleranz von *gsnor* Knock-out Linien verschiedener Ökotypen .. 171
Anhang Abb. 6: Gesamtaktivität von Superoxid-Dismutasen.............................................. 171
Anhang Abb. 7: Ergebnis des Testscreenings hinsichtlich Expressionsstärke und Löslichkeit rekombinant hergestellter Superoxid-Dismutasen.................................................. 173
Anhang Abb. 8: Einfluss der *in-vitro* Behandlung mit GSNO auf die Aktivität von SOD-Isoformen .............................................................. 173

**Anhang Tabellen**

Anhang Tab. 1: Keimungsrate und Wachstumsparameter von Wurzeln in beiden Linien .... 150
Anhang Tab. 2: Wachstumsparameter von Sprossachsen in beiden Linien ...................... 150
Anhang Tab. 3: Wachstumsparameter von Schoten in beiden Linien ............................... 150
Anhang Tab. 4: Differentiell regulierte Proteine in Wildtyp-Pflanzen nach Infektion mit *Pst* DC3000 (avrRpt2)............................................................................................................ 151
Anhang Tab. 5: Differentiell regulierte Proteine in Wildtyp-Pflanzen nach Infektion mit *Pst* DC3000......................................................................................................................... 157
Anhang Tab. 6: Differentiell regulierte Proteine in *gsnor* Knock-out Linien nach Infektion mit *Pst* DC3000 (avrRpt2)........................................................................................................ 163
Anhang Tab. 7: Differentiell regulierte Proteine in *gsnor* Knock-out Linien nach Infektion mit *Pst* DC3000......................................................................................................................... 167
Einleitung

1. Einleitung

1.1. Stickstoffmonoxid


1.1.1. Funktionen von NO in Pflanzen

In Abhängigkeit von der zellulären Konzentration kann Stickstoffmonoxid einerseits regulatorische Funktionen übernehmen sowie andererseits zellschädigende Eigenschaften besitzen (Beligni und Lamattina, 1999), was im folgenden Kapitel an einigen Beispielen veranschaulicht werden soll. Der Wirkungsbereich von NO in pflanzlichen Systemen umfasst dabei nicht nur Wachstums- und Entwicklungsprozesse, sondern auch Signal- und Schutzfunktionen bei der durch biotische und abiotische Faktoren induzierten Stressantwort.

1.1.1.1. Einfluss von NO auf die Pflanzenentwicklung und physiologische Prozesse

Seit der Entdeckung von NO in Pflanzen sind mittlerweile zahlreiche physiologische Vorgänge bekannt, bei denen ein Einfluss von NO auf das Pflanzenwachstum während der gesamten Entwicklungsphase von der Keimung bis zur Samenproduktion nachgewiesen werden
Eine Einleitung

konnte. In diesem Zusammenhang wurde die Eigenschaft von NO als potentieller
Wachstumregulator auch in der Literatur bereits diskutiert (Beligni und Lamattina, 2001).
Zu den durch NO regulierten Prozessen zählen beispielsweise eine Verringerung der
Samendormanz (Bethke et al., 2004), Induktion der Samenkeimung (Beligni und Lamattina,
2000), Stimulation der Adventivwurzel-Bildung (Pagnussat et al., 2002) und Seitenwurzel-
Bildung (Correa-Aragunde et al., 2004), Regulation der gravitropen Wurzelkrümmung (Hu et
al., 2005), Hemmung der Hypokotyl- und Internodienbildung (Beligni und Lamattina, 2000),
Stimulation des Blattwachstum (Leshem und Haramaty, 1996), Unterdrückung der
Blütenbildung (He at al., 2004), Regulation des Pollenschlauch-Wachstums (Prado et al.,
2004), Verzögerung der Seneszenz (Leshem et al., 1998) und Beeinträchtigung der
Fruchtreifung (Leshem, 2000).
Des Weiteren konnte gezeigt werden, dass NO sowohl die photosynthetische Aktivität
(Takahashi und Yamasaki, 2002) als auch die Respiration (Zottini et al., 2002) negativ
beeinflusst, da es Bestandteile der chloroplastidären und mitochondrialen Elektronen-
Transportkette hemmt und damit auch eine effiziente ATP-Produktion verhindert. Der am
besten untersuchte Einfluss von NO ist vermutlich die Schließung von Spaltöffnungen
(Stomata) und damit die Regulation des Gasaus tausches bzw. der Transpiration, was in
Kombination mit dem Phytohormon Abszisinsäure vermittelt wird (García-Mata und
Lamattina, 2001, Neill et al., 2002). NO ist außerdem in der Lage, die zelluläre Eisen-
Verfügbarkeit und -Mobilisierung zu erhöhen, was mit einer gesteigerten Chlorophyll-
Synthese einhergeht (Graziano et al., 2002) und spielt darüber hinaus eine essentielle Rolle
bei der symbiontischen Stickstoff-Fixierung zwischen Leguminosen und Rhizobien (Baudouin
et al., 2006).

1.1.1.2. Interaktion von NO und reaktiven Sauerstoffspezies

NO ist aufgrund seines Radikalcharakters und seiner Fähigkeit der Membrandiffusion in der
Lage mit einer Vielzahl zellulärer Komponenten zu reagieren, wobei der Wirkungsbereich
angesichts der Reaktivität räumlich und zeitlich limitiert ist (Lancaster, 1997). Die
Halbwertszeit bzw. Stabilität von NO hängt dabei hauptsächlich vom Redoxstatus und der
zellulären Verfügbarkeit potentieller Reaktionspartner ab (Henry et al., 1997). Besonders
reaktive Sauerstoffspezies wie Superoxidanionen (O₂⁻), Wasserstoffperoxid (H₂O₂) und
Hydroxylradikale (OH⁻) sind prädestiniert für eine Interaktion mit NO, da sie einerseits unter
physiologischen Bedingungen permanent als Nebenprodukte von Stoffwechselprozessen
generiert werden und andererseits unter Stressbedingungen - analog zur NO-Synthese -
verstärkt akkumulieren (Gill und Tuteja., 2010).
Die wichtigste Interaktion zwischen NO und ROS beruht dabei auf der direkten Reaktion von NO mit O$_2^-$ zu Peroxynitrit (ONOO$^-$. Bei dieser Verbindung handelt es sich um ein starkes Oxidationsmittel, das mit einer Vielzahl anderer Moleküle (vor allem Tyrosinresten und Thiolgruppen von Proteinen) reagiert und zudem oxidative Schäden verursachen kann (Radi, 2004). Ungeachtet dessen konkurrieren NO und reaktive Sauerstoffspezies andererseits auch in ihrer Funktion als Signalmoleküle um potentielle Bindungsstellen, wobei vor allem redoxsensitive Thiolgruppen von Cysteinresten in den Blickpunkt rücken. Beispielsweise können Thiolgruppen durch ROS-Moleküle zu Disulfiden oder in mehreren Reaktionschritten irreversibel zu Sulfonsäuren oxidiert werden, während eine Reaktion mit NO zur Ausbildung von Nitrosothiolen führt (Spadaro et al., 2010). Eine antagonistische Wechselwirkung zwischen NO und ROS spielt vor allem bei der sexuellen Reproduktion im Rahmen der Interaktion von Pollenkörnern und Stigma eine wichtige Rolle. Es wird vermutet, dass eine Veränderung des ROS/NO-Verhältnisses eine entscheidende Funktion bei der Induktion des Pollenschlauch-Wachstums und damit bei der Bestäubung und Befruchtung einnimmt (McInnis et al., 2006, Zafra et al., 2010). Eine synergistische Wirkung von ROS und NO ist hingegen unter Stressbedingungen zu beobachten, z. B. bei Salzstress (Zhang et al., 2007, Tanou et al., 2009), Wassermangel (Filippou et al., 2011), Kältestress (Airaki et al., 2012) und der Immunantwort nach Pathogenbefall (Delledonne et al., 2001).

Um eine toxische Akkumulation reaktiver Sauerstoffspezies (ROS) und reaktiver Stickstoffspezies zu verhindern, haben Pflanzen ein antioxidatives Schutzsystem entwickelt, damit keine unkontrollierte Schädigung zellulärer Bestandteile wie Lipide und Nukleinsäuren oder irreversible Proteinmodifikationen stattfinden (Apel und Hirt, 2004.) Hierzu zählen unter anderem Superoxid-Dismutasen (SOD) zur Detoxifizierung von O$_2^-$ oder Katalasen und Peroxidasen für den Abbau von H$_2$O$_2$. Daneben existieren auch niedermolekulare Substanzen wie Ascorbat und Glutathion, die einerseits als Kosubstrate für Enzymreaktionen fungieren und andererseits auch nicht-enzymatisch mit Radikalen reagieren können (Alscher et al., 1997).

Interessanterweise ist NO in der Lage, die Bildung und Akkumulation reaktiver Sauerstoffspezies zu manipulieren und damit einen direkten Einfluss auf die Regulation der zellulären ROS-Homöostase zu nehmen. Beispielsweise konnte durch exogene NO-Behandlung eine Inhibierung antioxidativer Enzyme wie Katalase und Peroxidasen gezeigt werden (Ferrer und Ros Barceló, 1999, Clark et al., 2000), während die NO-abhängige Hemmung von NADPH-Oxidasen zu einer Blockierung der Superoxid- bzw. H$_2$O$_2$-Produktion führte (Yun et al., 2011).
Einleitung

In der Abb. 1 ist der Zusammenhang zwischen NO und reaktiven Sauerstoffspezies sowie die zellulären Auswirkungen der einzelnen Komponenten nochmals graphisch veranschaulicht.

Abb. 1: Interaktion von NO und reaktiven Sauerstoffspezies

Die Reaktion von NO und O$_2^-$ läuft nahezu diffusionskontrolliert ab, wobei Peroxynitrit gebildet wird, das sowohl Tyrosinreste von Proteinen nitriert aber auch als Oxidationsmittel mit Lipiden, Nukleinsäuren und Cysteinresten interagiert. NO reagiert hingegen primär mit Thiolgruppen von Proteinen, was zur Bildung von Nitrosothiolen führt. O$_2^-$ dient als Ausgangssubstrat für weitere reaktive Sauerstoffspezies, wobei neben der SOD-katalysierten Umsetzung bzw. der spontanen Dismutation zu H$_2$O$_2$ auch die Entstehung von OH$^-$ aus H$_2$O$_2$ im Rahmen der Fenton-Reaktion zu erwähnen ist. Um den Redoxstatus im Gleichgewicht zu halten bzw. eine oxidative Schädigung zellulärer Strukturen zu unterbinden, existieren verschiedene antioxidative Enzymsysteme und Antioxidantien, die an der Detoxifizierung von ROS-Molekülen beteiligt sind.


1.1.1.3. Funktion von NO bei der Pathogenabwehr und Zelltod-Induktion

Einleitung


Die wichtigste Bedeutung von NO im Rahmen der Immunantwort ist die Beteiligung bei der Entwicklung der hypersensitiven Reaktion (HR), wodurch es zum gezielten Absterben pflanzlicher Zellen am bzw. um den Infektionsort kommt und dadurch eine Vermehrung bzw. Ausbreitung eingedrungener Pathogene in intaktes Gewebe verhindert wird. In diesem Fall kann NO allerdings nicht alleine, sondern nur synergistisch zusammen mit reaktiven Sauerstoffspezies den programmierten Zelltod einleiten. Dabei scheint vor allem ein gleichzeitiger Anstieg von NO und ROS (insbesondere H2O2) bzw. ein ausbalanciertes Konzentrationsverhältnis essentiell zu sein, wohingegen die Zunahme einzelner Komponenten den Zelltod nicht hervorrufen kann (Delledonne et al., 2001, De Pinto et al., 2002). Aktuellere Untersuchungen in Tabakzellen und Arabidopsis-Pflanzen zeigen zudem, dass die Abwehrreaktion nach Pathogenbefall mit einer Akkumulation von Peroxynitrit einhergeht (Saito et al., 2006, Cecconi et al., 2009). Interessanterweise konnten in diesem Zusammenhang Peroxyredoxine, die unter Normalbedingungen an der Detoxifizierung von Peroxynitrit beteiligt sind, nach Pathogenbefall als Zielproteine für eine NO-abhängige Hemmung identifiziert werden, was eine Potentierung der durch Peroxynitrit verursachten Schäden zur Folge hatte (Romero-Puertas et al., 2007).
Einleitung

1.1.2. **Biosynthese von NO in Pflanzen**

Die Bildung von NO ist eng mit der Stickstoff-Assimilation und dem Stickstoff-Stoffwechsel in Pflanzen verbunden, wobei prinzipiell zwischen einem reduktiven und einem oxidativen Reaktionsprozess unterschieden wird.

Beim reduktiven Syntheseweg dienen anorganische Stickstoffverbindungen wie Nitrat und Nitrit als Ausgangssubstrate, die im Cytosol durch das Enzym Nitrat-Reduktase (NR) zu NO reduziert werden können (Yamasaki und Sakihama, 2000). Darüber hinaus konnte in Tabakwurzeln eine Nitrit-abhängige NO-Produktion durch das Enzym Nitrit:NO-Reduktase beobachtet werden, welches an der apoplastischen Seite der Plasmamembran lokalisiert ist (Stöhr et al., 2001). Als weitere wichtige NO-Quelle wird mittlerweile auch die Reduktion von Nitrit in den Plastiden angesehen, wobei in beiden Fällen eine Beteiligung der chloroplastidären bzw. mitochondrialen Elektronentransportkette an der NO-Bildung nachweisbar war (Jasid et al., 2006, Planchet et al., 2005). Neben der enzymatisch katalysierten Nitrit-Reduktion kann die Umwandlung von Nitrit in NO allerdings auch auf nicht-enzymatischen Prozessen beruhen, z.B. bei niedrigen pH-Werten im Apoplasten (Bethke et al., 2004) oder in Gegenwart von Carotinoiden (Cooney et al., 1994).


Des Weiteren können Polyamine, die ausgehend von Arginin oder Ornithin synthetisiert werden, als Ausgangssubstanzen für die NO-Synthese fungieren, was beispielsweise nach exogener Zugabe von Spermin oder Spermidin feststellbar war (Tun et al., 2006). Außerdem
konnte auch nach Applikation von Hydroxylaminen eine NO-Freisetzung detektiert werden (Rümer et al, 2009), wobei die physiologische Relevanz dieser Reaktion zumindest fragwürdig ist, da die Existenz dieser Substanz in Pflanzen bisher noch nicht bewiesen werden konnte. Eine Zusammenfassung der verschiedenen NO-Synthesereaktionen ist in Abb. 2 nochmals graphisch dargestellt.

**Abb. 2: Übersicht der NO-Produktion und deren zelluläre Lokalisation in Pflanzen**

Dargestellt ist eine schematische Illustration einer Pflanzenzelle mit verschiedenen Zellkompartimenten, bei denen bisher eine NO-Produktion in der Literatur beschrieben wurde. Schwarz Pfeile kennzeichnen reduktive Synthesewege bzw. rote Pfeile markieren oxidative Synthesewege, während ein Fragezeichen Reaktionen symbolisiert, bei denen bisher noch keine Enzymkandidaten eindeutig nachgewiesen werden konnten.

Abkürzungen: NO₃⁻: Nitrat, NO₂⁻: Nitrit, NO: Stickstoffmonoxid, NR: Nitrat-Reduktase, Ni:NOR: Nitrit-NO-Reduktase, NOS: NO-Synthase ähnliche Reaktion, ET: Elektronentransportkette

### 1.1.3. Wirkungsweise und Signaltransduktion von NO in Pflanzen

Die biologische Wirkung von NO wird bestimmt durch seine Bildung auf der einen Seite und seine Inaktivierung auf der anderen Seite. In Analogie zum tierischen und menschlichen System wird dabei im Allgemeinen zwischen einem klassischen und einem nicht-klassischen Signalmechanismus unterschieden. Der klassische bzw. cGMP-abhängige Signalweg umfasst die durch NO-induzierte zelluläre Anreicherung des sekundären Botenstoffes cyclische Guanosinmonophosphat (cGMP) und die damit verbundene Generierung von „downstream“-Prozessen. Dazu zählt neben der Mobilisierung spezifischer Proteinkinasen vor allem die Aktivierung von cyclischer Adeninnukleotid-Ribose (cADPR), welche eine Freisetzung von Calcium-Ionen stimuliert und letztendlich eine Veränderung der Genexpression bewirkt. Als zentrales regulatorisches Element dieser Signalkaskade wurde in Säugetieren das Enzym Guanylat-Zyklase (GC) identifiziert, das als intrazellulärer Rezeptor
Einleitung

Für NO fungiert und nach dessen Anbindung die Umwandlung von Guanosintriphosphat (GTP) zu cGMP katalysiert (Wendehenne et al., 2001). In Pflanzen konnte ebenfalls eine Akkumulation von cGMP, cADPR und Calcium-Ionen im Zusammenhang mit der Abwehrreaktion (Durner et al., 1998, Klessig et al., 2000) und der Stomata-Schließung (García-Mata und Lamattina, 2002, Neill et al., 2002) nachgewiesen werden, was auf einen ähnlichen Reaktions-Mechanismus hindeutet. Microarray-Experimente zeigen zudem, dass NO die Expression einer Vielzahl von Genen beeinflussen kann (Huang et al., 2002), was vor allem unter Stressbedingungen deutlich wird (Zago et al., 2006, Ahlfors et al., 2009). Allerdings wurde jedoch bisher kein zur Guanylat-Zyklase homologes Protein in höheren Pflanzen gefunden, das durch NO aktiviert werden kann. Vor kurzem konnte allerdings in Arabidopsis thaliana eine Flavin-Monoxygenase mit GC-Aktivität (AtNOGC1) identifiziert werden, die eine NO sensitive Häm-Domäne besitzt und in-vitro die Bildung von cGMP katalysierte (Mulaudzi et al., 2011).

Der nicht-klassische oder cGMP-unabhängige Signalweg beschreibt die direkte Interaktion von NO mit Proteinen, was zu einer veränderten Aktivität oder Struktur der betroffenen Proteine führt. Zu diesen posttranslationalen Modifikationen zählt neben der NO-Interaktion mit Metall-Ionen (Metall-Nitrosylierung) und Tyrosinresten (Tyrosin-Nitrierung) vor allem die Wechselwirkung mit Cysteinresten (S-Nitrosylierung). Die Charakteristika der jeweiligen Reaktionsmechanismen sind in Abb. 3 in Form einer Übersichtsgraphik veranschaulicht.

Einleitung

Abb. 3: Möglichkeiten NO-abhängiger posttranslationaler Proteinmodifikationen

A) NO kann als Elektronendonor direkt mit Übergangsmetallen wie bspw. eisenhaltigen Hämgruppen reagieren, was als Metall-Nitrosylierung bezeichnet wird. B) Die Interaktion von NO mit \( O_2^- \) führt zur Bildung von \( \text{ONOO}^- \), das als Substrat für Nitrierungsprozesse dient. Die Bindung der Nitrogruppe erfolgt dabei in ortho-Position der Hydroxylgruppe des aromatischen Tyrosinringes. C) Durch Aufnahme bzw. Abgabe eines Elektrons entstehen aus NO die reaktiven Zwischenprodukte \( \text{NO}^- \) bzw. \( \text{NO}^+ \), die mit Thiolgruppen von Cysteinen reagieren können. Alternativ dazu ist die Bildung von S-Nitrosothiolen auch durch Wechselwirkung mit höheren Stickoxiden möglich, die aus der Reaktion von NO mit molekularem Sauerstoff hervorgehen.

Abkürzungen: NO: Stickstoffmonoxid, Me: Metall, \( O_2^- \): Superoxidanion, \( \text{ONOO}^- \): Peroxynitrit, \( e^- \): Elektron, \( O_2 \): molekularer Sauerstoff, \( \text{NO}^- \): Nitrosoniumion, \( \text{NO}^+ \): Nitrosylanion, \( \text{NO}_x \): Stickoxide

Als Tyrosin-Nitrierung (Abb. 3B) wird die Substitution eines Wasserstoffatoms durch eine Nitrogruppe (\( \text{NO}_2^- \)) in ortho-Position der Hydroxylgruppe des aromatischen Tyrosinringes beschrieben, was zur Ausbildung von 3-Nitrotyrosinen führt. Die durch Peroxynitrit-vermittelte Reaktion verringert dabei den pK\(_a\)-Wert um drei pH-Wertstufen und führt gleichzeitig zu einer Zunahme der Hydrophobizität des entsprechenden Tyrosinrestes (Radi, 2004). Die Nitrierung ist dabei nicht an die Existenz einer bestimmten Konsensus-Sequenz geknüpft, aber im Allgemeinen durch die räumliche Nähe zu sauren Aminosäuren oder die gut zugängliche Exponierung des aromatischen Ringes auf der Proteinoberfläche, bspw. innerhalb von Schlaufen-Strukturen, begünstigt (Bayden et al., 2011). Obwohl die Nitrierung als irreversibler Mechanismus angesehen wurde und im tierischen System zum Abbau des betroffenen Proteins führt, wird mittlerweile auch die Möglichkeit einer reversiblen Denitrierungsreaktion in Betracht gezogen (Souza et al., 2000, Abello et al., 2009). Möglicherweise hat diese posttranslationale Modifikation auch einen Einfluss auf Phosphorylierungsprozesse und damit auf die Signaltransduktion durch Proteinkinasen, da beide Reaktionen um Tyrosinreste als Bindungsstellen konkurrieren (Monteiro et al., 2008).
Einleitung

In Pflanzen ist bisher nur eine geringe Anzahl an Studien bekannt, die sich hauptsächlich mit dem Nachweis nitrierter Proteine auseinandersetzt. Dabei konnte sowohl unter Stressbedingungen, z.B. nach Pathogeninfektion (Cecconi et al., 2009), Salzstress (Valderrama et al., 2007, Tanou et al., 2012) oder Hitzestress (Chaki et al., 2009) als auch unter Normalbedingungen, z.B. in Keimlingen (Lozano-Juste et al., 2011) oder Chloroplasten (Galetskiy et al., 2011) von *Arabidopsis thaliana* eine Akkumulation nitrierter Proteine detektiert werden. Eine genauere Charakterisierung einzelner Proteine in Bezug auf die Lokalisation der Nitrierungsstelle sowie eine potentielle physiologische Bedeutung liegt momentan nur für die Enzyme Ferredoxin-NADP-Oxidoreduktase (Chaki et al., 2011), O-Acetylserinthiol-Lyase A1 (Alvarez et al., 2011) und Glutamin-Synthetase 1 (Melo et al., 2011) vor.

Unter **S-Nitrosylierung** (Abb. 3C) versteht man die kovalente Bindung von NO an das Schwefelatom von Cysteinresten, wodurch sog. S-Nitrosothiole entstehen. Die Interaktion von NO mit Thiolgruppen erfordert jedoch zunächst die zusätzliche Aufnahme bzw. Abgabe eines Elektrons, wodurch entweder das Nitrosylanion (NO⁻) oder das Nitrosoniumion (NO⁺) als reaktives Zwischenprodukt entsteht. Die Reduktion bzw. Oxidation von NO findet dabei bevorzugt in Gegenwart von eisenhaltigen Metalloproteinen statt (Stamler et al., 1992). Eine Nitrosylierung von Thiolgruppen kann allerdings auch durch höhere Stickoxide (NO₂, N₂O₃, N₂O₄) erfolgen, die bei der Autooxidation von NO mit molekularem Sauerstoff entstehen. Darüber hinaus kann NO in einer heterolytischen Reaktion von S-Nitrosothiolen abgespalten und auf nukleophile Thiolgruppen anderer Proteine übertragen werden, was als Transnitrosylierung bezeichnet wird (Hess et al., 2005).

werden (Jaffrey und Snyder, 2001). In Pflanzen sind mittlerweile mehrere Proteomstudien nach diesem Prinzip in unterschiedlichen Pflanzen und Zellkompartimenten sowie nach Stressbedingungen durchgeführt worden (zusammengefasst in Astier et al., 2011). Auf diese Weise konnten insgesamt mehr als 200 putative Protein kandidaten identifiziert werden, von denen allerdings bisher weniger als 10% einer detaillierten Analyse unterzogen wurden. Eine Auflistung einzelner Proteine, die im Zusammenhang mit einer NO-abhängigen posttranslationalen Modifikation genauer charakterisiert sind, ist in Tab. 1 nochmals zusammenfassend dargestellt.

Tab. 1: Beispiele für charakterisierte Zielproteine mit NO-abhängiger Modifikation
Abkürzungen: PTM: Posttranslationale Modifikation, Tyr: Tyrosin, Cys: Cystein

<table>
<thead>
<tr>
<th>PTM</th>
<th>Zie lprotein</th>
<th>Effekt</th>
<th>Interaktion</th>
<th>Organismus</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metall-Nitrosylierung</td>
<td>Hämoglobin</td>
<td>NO-Abbau</td>
<td>Häm-Gruppe</td>
<td>A.thaliana</td>
<td>Perazzoli et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Lipoxidase</td>
<td>Inhibierung</td>
<td>Eisen</td>
<td>Glycine max</td>
<td>Nelson, 1987</td>
</tr>
<tr>
<td></td>
<td>Cytochrom C-Oxidase</td>
<td>Inhibierung</td>
<td>Häm-Gruppe</td>
<td>Glycine max</td>
<td>Miller und Day, 1996</td>
</tr>
<tr>
<td></td>
<td>Aconitase</td>
<td>Inhibierung</td>
<td>Eisen</td>
<td>Nicotiana tabacum</td>
<td>Navarre et al., 2000</td>
</tr>
<tr>
<td></td>
<td>Katalase</td>
<td>Inhibierung</td>
<td>Häm-Gruppe</td>
<td>Nicotiana tabacum</td>
<td>Clark et al., 2000</td>
</tr>
<tr>
<td></td>
<td>Ascorbat-Peroxidase</td>
<td>Inhibierung</td>
<td>Häm-Gruppe</td>
<td>Nicotiana tabacum</td>
<td>Clark et al., 2000</td>
</tr>
<tr>
<td></td>
<td>NO-abhängige Guanylat-Zyklase</td>
<td>Aktivierung</td>
<td>Häm-Gruppe</td>
<td>A.thaliana</td>
<td>Mulauzdi et al., 2011</td>
</tr>
<tr>
<td>Tyrosin-Nitrierung</td>
<td>Ferredoxin-NADP-Oxido reductase</td>
<td>Inhibierung</td>
<td>?</td>
<td>Helianthus annuus</td>
<td>Chaki et al., 2011</td>
</tr>
<tr>
<td></td>
<td>O-Acetylsierlnithiol-Lyase</td>
<td>Inhibierung</td>
<td>Tyr-302</td>
<td>A.thaliana</td>
<td>Alvarez et al., 2011</td>
</tr>
<tr>
<td></td>
<td>Glutamin-Synthetase 1</td>
<td>Inhibierung</td>
<td>Tyr-167</td>
<td>Medicago truncatula</td>
<td>Meo et al., 2011</td>
</tr>
<tr>
<td>S-Nitrosylierung</td>
<td>Metacaspase</td>
<td>Inhibierung</td>
<td>Cys-147</td>
<td>A.thaliana</td>
<td>Belenghi et al., 2007</td>
</tr>
<tr>
<td></td>
<td>Peroxiredoxin II</td>
<td>Inhibierung</td>
<td>Cys-121</td>
<td>A.thaliana</td>
<td>Romero-Puertas et al., 2007</td>
</tr>
<tr>
<td></td>
<td>Methionin-Adenosytransferase 1</td>
<td>Inhibierung</td>
<td>Cys-114</td>
<td>A.thaliana</td>
<td>Lindermayr et al., 2006</td>
</tr>
<tr>
<td></td>
<td>Adenosintriphosphatase</td>
<td>Inhibierung</td>
<td>Cys-526</td>
<td>Nicotiana tabacum</td>
<td>Astier et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Rubisco</td>
<td>Inhibierung</td>
<td>?</td>
<td>Kalanchoe pinnata</td>
<td>Abat et al., 2008</td>
</tr>
<tr>
<td></td>
<td>Salicylsäure-bindendes Protein</td>
<td>Inhibierung</td>
<td>Cys-280</td>
<td>A.thaliana</td>
<td>Wang et al., 2009</td>
</tr>
<tr>
<td></td>
<td>Transkptionsfaktor MYB2</td>
<td>Inhibierung</td>
<td>Cys-53</td>
<td>A.thaliana</td>
<td>Sorpa et al., 2007</td>
</tr>
<tr>
<td></td>
<td>Transkptionsfaktor TGA1</td>
<td>Aktivierung</td>
<td>Cys-172, Cys-287</td>
<td>A.thaliana</td>
<td>Lindermayr et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Auxin Rezeptor TIR1</td>
<td>Aktivierung</td>
<td>Cys-140</td>
<td>A.thaliana</td>
<td>Tendle et al., 2012</td>
</tr>
<tr>
<td></td>
<td>NPR1</td>
<td>Inhibierung</td>
<td>Cys-156</td>
<td>A.thaliana</td>
<td>Tata et al., 2008</td>
</tr>
<tr>
<td></td>
<td>GADPH</td>
<td>Inhibierung</td>
<td>Cys-155, Cys-159</td>
<td>A.thaliana</td>
<td>Holtgreve et al., 2008</td>
</tr>
<tr>
<td></td>
<td>Glycin-Decarboxylase</td>
<td>Inhibierung</td>
<td>?</td>
<td>A.thaliana</td>
<td>Palmieri et al., 2010</td>
</tr>
<tr>
<td></td>
<td>NADPH-Oxidase</td>
<td>Inhibierung</td>
<td>Cys-890</td>
<td>A.thaliana</td>
<td>Yun et al., 2011</td>
</tr>
</tbody>
</table>

1.1.4. Inaktivierung von NO in Pflanzen
Um eine schädigende Akkumulation von NO zu vermeiden bzw. dessen Funktionalität als Signal molekül zu gewährleisten, ist die Pflanze in der Lage, diezelluläre NO-Konzentration über verschiedene Reaktionsprozesse zu kontrollieren, wobei generell zwischen enzymatischen und nicht-enzymatischen Mechanismen unterschieden wird.
Nicht-enzymatische Mechanismen resultieren aus der Reaktion von NO mit molekularem Sauerstoff und freien Radikalen wie Superoxidanionen \((O_2^-)\), was unter anderem zur Bildung von reaktiven Stickstoffspezies führt. Diese Detoxifizierungsprozesse finden vor allem in Mitochondrien und Chloroplasten statt, wo die entsprechenden Reaktionssubstrate im Rahmen von Stoffwechselvorgängen während der Photosynthese und der Respiration gebildet werden (Baudouin, 2011). Die Autooxidation von NO in Gegenwart von Sauerstoff läuft unter physiologischen Bedingungen verhältnismäßig langsam ab und spielt daher eher untergeordnete Rolle. Die dabei entstehenden höheren Stickoxide \((NO_2, N_2O_3, N_2O_4)\) reagieren entweder mit anderen Molekülen wie Aminen und Thiolen oder hydrolisieren im wässrigen Milieu zu den Endprodukten Nitrit \((NO_2^-)\) und Nitrat \((NO_3^-)\) (Hayat et al., 2010).

Im Gegensatz dazu läuft die Reaktion von NO mit Superoxidradikalen mit einer hohen Geschwindigkeit nahezu diffusionskontrolliert ab, wodurch Peroxynitrit \((ONOO^-)\) gebildet wird (Huie und Padmaja, 1993). Diese Verbindung wird im tierischen System als zytotoxisch eingestuft, da sie maßgeblich an der Induktion des programmierten Zelltodes (Apoptose) beteiligt ist (Pacher et al., 2007). In Pflanzen konnten hingegen auch bei hohen Konzentrationen keine Anzeichen des Zelltodprozesses beobachtet werden, was vermutlich auf die enzymatische Entgiftung von Peroxynitrit zu Nitrit durch Peroxyredoxine zurückzuführen ist (Sakamoto et al., 2003, Romero-Puertas et al., 2007). Allerdings ist Peroxynitrit nur im alkalischen Milieu stabil, während unter physiologischen pH-Bedingungen eine Protonierung zu peroxysalpetriger Säure \((ONOOH)\) stattfindet, die entweder durch Isomerisierung zu Nitrat \((NO_3^-)\) umgewandelt wird oder in Stickstoffdioxid \((NO_2)\) und Hydroxylradikale \((OH^-)\) zerfällt (Lamattina et al., 2003).

Einleitung

Der wichtigste Reaktionsmechanismus um eine schädigende NO-Akkumulation unter aeroben Bedingungen zu vermeiden, stellt die Interaktion von NO mit Glutathion dar, das aus den drei Aminosäuren Glutaminsäure, Cystein und Glycin gebildet wird und entweder in reduzierter Form (GSH) oder als Disulfid (GSSG) vorliegen kann. Aufgrund seiner Funktion als zelluläre Speicherform von redoxsensitivem Cystein und der hohen Konzentration im millimolaren Bereich, ist Glutathion als Antioxidans maßgeblich für die Aufrechterhaltung des Redoxstatus bzw. reduzierende Bedingungen im Cytosol verantwortlich (Noctor et al., 2011). Bei der Interaktion von NO mit Glutathion handelt es sich prinzipiell um eine Nitrosylierungsreaktion, die zur Bildung von S-Nitrosoglutathion (GSNO) führt. Diese Verbindung fungiert einerseits als intrazelluläre Speicher- und Transportform von NO, was dessen Stabilität bzw. Halbwertszeit verlängert, und andererseits als NO-Donor für Transnitrosylierungs-Prozesse (Stamler, 1994). In diesem Zusammenhang konnte z.B. gezeigt werden, dass nach exogener Applikation von GSNO eine deutliche Zunahme nitrosylierter Proteine in Pflanzen detektierbar war (Lindermayr et al., 2005). Der Abbau von GSNO erfolgt durch das Enzym GSNO-Reduktase, welches zur Klasse der Alkohol-Dehydrogenasen gehört und auf diese Weise einen enormen Einfluss auf die zelluläre NO-Verfügbarkeit bzw. die NO-abhängige Signaltransduktion nimmt (Liu et al., 2001). Eine Übersicht der verschiedenen Inaktivierungsmöglichkeiten von NO ist in Abb. 4 nochmals zusammenfassend dargestellt.

Abb. 4: Darstellung der Inaktivierungsmöglichkeiten von NO

1.2. Alkohol-Dehydrogenasen
Alkohol-Dehydrogenasen (ADH) kommen universell in allen prokaryotischen und eukaryotischen Lebewesen vor und katalysieren die reversible Umwandlung von Alkoholen zu Aldehyden oder Ketonen. Diese enzymatische Reaktion ist auf der einen Seite essentiell für den oxidativen Abbau alkoholischer Verbindungen, die endogen als Nebenprodukte von Stoffwechselvorgängen entstehen oder exogen in Form von Ethanol aufgenommen werden. Auf der anderen Seite bietet die Umkehrung dieser Reaktion vielen Mikroorganismen im Rahmen der alkoholischen Gärung aber auch eine Möglichkeit der Energiegewinnung und NAD-Regenerierung unter anaeroben Bedingungen.

1.2.1. Klassifizierung von Alkohol-Dehydrogenasen

1.2.2. Bedeutung von Alkohol-Dehydrogenasen in Pflanzen
In höheren Pflanzen konnten hauptsächlich mittelklassige Alkohol-Dehydrogenasen nachgewiesen werden, wobei es sich um eine relativ kleine Klasse bestehend aus zwei bis drei Isoenzymen handelt, die eine hohe Sequenzübereinstimmung aufweisen und vermutlich durch Genduplikation entstanden sind (Thompson et al., 2007). Die am häufigsten vorkommenden Alkohol-Dehydrogenasen in monokotylen und dikotylen Pflanzen sind ADH1 und ADH2, die sich hinsichtlich ihres Expressionsmusters unterscheiden. Während ADH1 vor
Einleitung

Allem in Pollen und Samen exprimiert wird, konnte ADH2 in verschiedenen Gewebetypen wie Wurzeln, Blättern und Spross identifiziert werden (Strommer et al., 2011). Die simultane Expression beider ADH-Gene ist insbesondere bei Sauerstoffmangel zu beobachten, bspw. unter hypoxischen Bedingungen in Wurzeln, wenn die Pflanze zur Energiegewinnung auf Fermentationsprozesse angewiesen ist (Dolferus et al., 1994, Mayne und Lea, 1994). Das bei der Glykolyse entstehende Pyruvat wird dabei zunächst durch CO$_2$-Abspaltung zu toxischem Acetaldehyd umgewandelt, welches im nächsten Schritt durch Alkohol-Dehydrogenasen zu Ethanol reduziert wird. Darüber hinaus konnte in einigen Pflanzenarten wie Gerste (Hanson et al., 1984), Tomate (Ingersoll et al., 1994), Kartoffel (Van Eldik et al., 1998) und Petunien (Garabagi und Strommer, 2004) die Existenz einer weiteren Alkohol-Dehydrogenase (ADH3) festgestellt werden, welche bevorzugt in männlichen und weiblichen Blütenorganen auftritt.


1.2.3. Die duale Funktion von Alkohol-Dehydrogenase 2

Das Enzym Alkohol-Dehydrogenase 2 wird aufgrund seiner Strukturhomologie bzw. der konservierten Aminosäuresequenz zwischen Mikroorganismen, Pflanzen und Säugetieren speziesübergreifend auch zu den Klasse 3 Alkohol-Dehydrogenasen gezählt (Duester et al., 1999). Im Gegensatz zu ADH1 besitzt ADH2 allerdings nur eine geringe Substrataffinität gegenüber kurzkettigen Alkoholen wie Methanol oder Ethanol und ist stattdessen primär für diezelluläre Metabolisierung von Formaldehyd verantwortlich (Lee et al., 2003). Formaldehyd ist einerseits unentbehrlich für die Synthese der Aminosäuren Glycin und Serin, wirkt aber gleichzeitig auch hochtoxisch, da es durch Reaktion mit Aminogruppen die Ausbildung von Schiffschen Basen und damit Protein- und DNA-Quervernetzungen induzieren kann (Staab et al., 2008). In Pflanzen entsteht Formaldehyd zusätzlich durch Oxidation von Methanol, das während der Hydrolyse von Pektin akkumuliert (Fall und Benson, 1996), sowie im Rahmen der Glyoxylat-Decarboxylierung (Prather und Sisler, 1972).
Einleitung

Der Abbau von Formaldehyd läuft in zwei Reaktionsschritten ab, wobei ADH2 in Gegenwart von NAD zunächst die Oxidation von S-Hydroxymethylglutathion (HMGSH) zu S-Formylglutathion katalysiert, welches im zweiten Schritt zu Format und Glutathion hydrolytisch gespalten wird. Das Substrat HMGSH entsteht dabei spontan durch Reaktion der polarisierten Carbonylgruppe von Formaldehyd mit der Thiolgruppe von Glutathion (Strittmatter und Ball, 1955). Der Nachweis, dass es sich bei Klasse 3 Alkohol-Dehydrogenasen um Glutathion-abhängige Formaldehy-Dehydrogenasen (FALDH) handelt, wurde erstmals in Ratten dokumentiert (Koivusalo et al., 1989) und ist mittlerweile auch in verschiedenen Pflanzenspezies wie Erbsen (Shafqat et al., 1996), Arabidopsis thaliana (Martínez et al., 1996), Mais (Fliegmann und Sandermann, 1997) und Reis (Dolferus et al., 1997) bestätigt. In transgenen Arabidopsis-Pflanzen mit erhöhter FALDH-Aktivität konnte zudem eine deutlich schnellere katalytische Umsetzung nach Formaldehyd-Stress im Vergleich zu Antisense-Linien mit reduzierter FALDH-Aktivität beobachtet werden, was sich auch in einem toleranteren Phänotyp widerspiegelte (Achkor et al., 2003). Des Weiteren zeigten Western Blot-Analysen mit Anti-FALDH-Antikörpern, dass das entsprechende Protein in allen Organen von Arabidopsis-Pflanzen vorkommt, wobei die Signalintensität in Wurzeln und Blättern am stärksten ausgeprägt war (Espunya et al., 2006).

Neben der ursprünglichen Bedeutung als Formaldehyd detoxifizierendes Enzym besitzt ADH2 allerdings auch eine wichtige Funktion hinsichtlich der Regulation der zellulären NO-Homöostase. Mit Hilfe von Aktivitätstests konnte erstmals gezeigt werden, dass isolierte Cytosolfraktionen aus Leberzellen von Ratten GSNO umsetzen können und das es sich bei dem enzymatisch aktiven Protein um eine Klasse 3 Alkohol-Dehydrogenase handelt (Jensen et al., 1998). Dieses Ergebnis wurde mittlerweile in verschiedenen Organismen wie E.coli, Hefe, Arabidopsis thaliana, Mäusen und menschlichen Zelllinien verifiziert und lässt einen evolutionär konservierten Reaktionsmechanismus vermuten (Liu et al., 2001). In Hefezellen konnte der Verlust der ADH2-Enzymaktivität beispielsweise durch Komplementation mit der homologen Isoform aus Arabidopsis thaliana kompensiert werden, was diese Hypothese bekräftigt (Sakamoto et al., 2002). Aufgrund der Tatsache, dass im Rahmen von kinetischen Studien eine deutlich höhere Substrataffinität von ADH2 gegenüber GSNO im Vergleich zu Formaldehyd gemessen wurde, wird dieser Umstand auch in der Namensgebung dieses Enzyms berücksichtigt und FALDH mittlerweile häufig als GSNO-Reduktase tituliert (Jensen et al., 1998, Liu et al., 2001). Der Abbau von GSNO durch GSNO-Reduktase ist ebenfalls ein zweistufiger Prozess, wobei zunächst unter NADH-Verbrauch das Zwischenprodukt S-Hydroxylaminoglutathion entsteht. Diese Verbindung wird anschließend einerseits bei
geringer GSH-Verfügbarkeit entweder spontan zu Glutathionsulfinsäure und Ammoniak umgewandelt oder reagiert andererseits mit GSH zu den Endprodukten Glutathiondisulfid und Hydroxylamin (Staab et al., 2009). Im Hinblick auf die NO-abhängige Signaltransduktion spielt das Enzym GSNO-Reduktase über die Regulation derzellulären GSNO-Konzentration somit vermutlich eine zentrale Rolle bei Nitrosylierungsreaktionen sowie als Schutzmechanismus gegenüber nitrosativen Stressbedingungen.

1.2.4. Physiologische Rolle von GSNO-Reduktase unter Stressbedingungen

In Pflanzen wurde die Bedeutung von GSNO-Reduktase bzw. die damit einhergehende Veränderung des NO-Metabolismus bisher in mehreren Veröffentlichungen vor allem im Zusammenhang mit unterschiedlichen abiotischen und biotischen Stressfaktoren untersucht. Studien zur Krankheitsresistenz ergaben, dass gsnor Knock-out Pflanzen einen anfälligeren Phänotyp nach Infektion mit verschiedenen avirulenten Pseudomonas syringae DC 3000-Stämmen im Vergleich zu Wildtyp-Pflanzen aufwiesen, was mit einer höheren Akkumulation von Nitrosothiolen (SNO) korrelierte. Darüber hinaus weisen diese Pflanzen signifikant niedrigere SA-Gehalte sowie eine zeitlich verzögerte und schwächere PR1-Expression auf (Feechan et al., 2005, Yun et al., 2011). Diese Daten stehen im Widerspruch zu Ergebnissen aus anderen Veröffentlichungen, die bspw. keine Unterschiede bei der SA-Konzentration zwischen Wildtyp-Pflanzen und Pflanzen mit reduzierter GSNO-Reduktase Expression beobachteten (Espunya et al., 2012). In Tabak und Arabidopsis thaliana war zudem ein Anstieg der Transkriptmenge und Proteinaktivität von GSNO-Reduktase nach SA-Behandlung detektierbar (Diaz et al., 2003). In Antisense-Linien mit reduzierter GSNO-Reduktase Expression konnten ebenfalls höhere SNO-Gehalte nachgewiesen werden, was aber nicht zu einer höheren Sensitivität nach Pseudomonas-Inokulation führte. Diese Pflanzen zeigten hingegen eine ausgeprägte Resistenz gegenüber Oomyceten, was auf eine gesteigerte Expression von PR1 und GST1 während des Infektionsverlaufs zurückzuführen war (Rustérucci et al., 2007). Untersuchungen in Sonnenblumenkeimlingen ergaben zudem, dass Mehltau-resistente Sorten konstitutiv höhere SNO- bzw. GSNO-Gehalte besitzen als anfällige Sorten und möglicherweise deshalb in der Lage sind, eine Ausbreitung der Infektion zu unterbinden (Chaki et al., 2009).

Auch wenn die verschiedenen Studien bisher kein einheitliches Modell ergeben, bestätigen die vorliegenden Ergebnisse, dass das Enzym GSNO-Reduktase eine zentrale Rolle bei der Pathogenabwehr einnimmt. Inwieweit eine pathogenspezifische Veränderung der NO-Homöostase die Krankheitsresistenz in unterschiedlichen Pflanzenspezies beeinträchtigt, ist momentan allerdings schwer zu interpretieren und bedarf weiterer Untersuchungen.
Einleitung


Auch durch Metallstress verursachte Änderungen der GSNO-Reduktase Aktivität wurden bereits im Detail analysiert und resultierten in unterschiedlichen Erkenntnissen. In Erbsenpflanzen, welche auf Cadmium-haltigem Medium angezogen wurden, konnte z.B. eine niedrigere GSNO-Reduktase Akkumulation sowohl auf Transkript- als auch auf Proteinebene festgestellt werden (Barroso et al., 2006). Demgegenüber zeigten Arabidopsis-Keimlinge nach Arsenbehandlung eine signifikante Zunahme der GSNO-Reduktase Aktivität, was mit der gleichzeitigen Abnahme der zellulären GSNO-Konzentration korrelierte (Leterrier et al., 2012).


1.3. Zielsetzung der Arbeit

In Pflanzen ist Stickstoffmonoxid als Signalmolekül an der Regulation einer Vielzahl zellulärer Vorgänge direkt oder indirekt beteiligt, was sowohl physiologische Prozesse als auch die Reaktion auf umweltbedingte Stressfaktoren einschließt. Die Verfügbarkeit von NO, welches intrazellulär größtenteils in gebundener Form als S-Nitrosoglutation (GSNO) vorliegt, wird primär durch das Enzym GSNO-Reduktase kontrolliert, das somit eine zentrale Rolle hinsichtlich der NO-abhängigen Signaltransduktion einnimmt.

Ziel der vorliegenden Arbeit ist es, mit Hilfe eines „reverse genetics“-Ansatzes die Bedeutung der GSNO-Reduktase für den pflanzlichen Metabolismus in Arabidopsis thaliana genauer zu charakterisieren. Für die Funktionsanalyse sollen zunächst die Auswirkungen des GSNO-Reduktase Verlustes auf das phänotypische Erscheinungsbild sowie den allgemeinen NO-Stoffwechsel in verschiedenen Entwicklungsstadien untersucht werden. Im letztgenannten Fall lassen sich anhand der quantitativen Bestimmung verschiedener NO-Metabolite mit Hilfe Ozon-basierter Gasphasen-Chemilumineszenz somit Rückschlüsse hinsichtlich der Rolle von GSNO-Reduktase für die zelluläre NO-Homöostase ableiten.


Ferner soll ermittelt werden, ob NO die Akkumulation reaktiver Sauerstoffspezies durch Interaktion mit antioxidativen Schutzenzymen direkt beeinträchtigen kann. Als Studienobjekt werden hierfür Superoxid-Dismutasen ausgewählt, die als erste Instanzen des Abwehrsystems gegenüber oxidativen Stressbedingungen fungieren und bereits als mögliche Zielproteine für NO-induzierte posttranslationale Modifikationen identifiziert werden konnten (Lindermayr et al., 2005). Ziel dieses Versuchs ist es daher, die einzelnen SOD-Isoformen rekombinant herzustellen und deren Enzymaktivität in-vitro nach Inkubation mit verschiedenen NO-Donoren zu testen bzw. potentielle NO-Bindungsstellen mittels Massenspektrometrie und zielgerichteter Mutagenese ausfindig zu machen.
2. Material und Methoden

2.1. Material

2.1.1. Pflanzenlinien

<table>
<thead>
<tr>
<th>Name</th>
<th>Ökotyp</th>
<th>Resistenz</th>
<th>Herkunft</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col-0 Wt</td>
<td>Columbia</td>
<td></td>
<td>Lehle Seeds</td>
<td>Round Rock, USA</td>
</tr>
<tr>
<td>WS Wt</td>
<td>Wassilewskija</td>
<td></td>
<td>Lehle Seeds</td>
<td>Round Rock, USA</td>
</tr>
<tr>
<td>gsnor (hot5-2)</td>
<td>Columbia</td>
<td>Sulfadiazin</td>
<td>Gabi-Kat 315D11</td>
<td>Feechan et al., 2005</td>
</tr>
<tr>
<td>gsnor</td>
<td>Wassilewskija</td>
<td></td>
<td>BASTA</td>
<td>INRA flag_298F11</td>
</tr>
<tr>
<td>GSNOR-AS</td>
<td>Columbia</td>
<td>Kanamycin</td>
<td>C. Martinez</td>
<td>Achkor et al., 2003</td>
</tr>
<tr>
<td>GSNOR-OE</td>
<td>Columbia</td>
<td>Kanamycin</td>
<td>C. Martinez</td>
<td>Achkor et al., 2003</td>
</tr>
<tr>
<td>cue1-1</td>
<td>Columbia</td>
<td>Kanamycin</td>
<td>SALK_007214</td>
<td>He et al., 2004</td>
</tr>
<tr>
<td>noa1</td>
<td>Columbia</td>
<td>Kanamycin</td>
<td>SALK_040661</td>
<td>Guo et al., 2003</td>
</tr>
<tr>
<td>cad2</td>
<td>Columbia</td>
<td>M. Wirtz</td>
<td>Moreau et al., 2008</td>
<td></td>
</tr>
<tr>
<td>SAT-OE</td>
<td>Columbia</td>
<td>Kanamycin</td>
<td>M. Wirtz</td>
<td>Freeman et al., 2004</td>
</tr>
</tbody>
</table>

2.1.2. Bakterienstämme

<table>
<thead>
<tr>
<th>Spezies</th>
<th>Stamm</th>
<th>Resistenz</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrobacterium tumefaciens</td>
<td>GV3101 (pMP90)</td>
<td>Gentamycin, Rifampicin</td>
<td>1)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>DH-5α</td>
<td></td>
<td>1)</td>
</tr>
<tr>
<td></td>
<td>Rosetta2 (DE3)</td>
<td>Carbenicillin, Chloramphenicol</td>
<td>2)</td>
</tr>
<tr>
<td></td>
<td>Rosetta2 (DE3) pLysS</td>
<td>Carbenicillin, Chloramphenicol</td>
<td>2)</td>
</tr>
<tr>
<td></td>
<td>BL21 (DE3) cc4</td>
<td>Carbenicillin, Chloramphenicol,</td>
<td>2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spectinomycin</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas syringae pv tomato DC3000</td>
<td>Rifampicin</td>
<td></td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>pv tomato DC3000 (avrRpt2)</td>
<td>Kanamycin, Rifampicin</td>
<td>3)</td>
</tr>
</tbody>
</table>

1) Institut für biochemische Pflanzenpathologie, HMGU, München
2) Institut für Strukturbiole, HMGU, München
3) Universität Fribourg, Department of Biology
Material und Methoden

2.1.3. Antibiotika

<table>
<thead>
<tr>
<th>Name</th>
<th>Stammlsg. (mg/ml)</th>
<th>Endkonz. (ug/ml)</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>100</td>
<td>100</td>
<td>Roche (Mannheim, D.)</td>
</tr>
<tr>
<td>Carbenicillin</td>
<td>100</td>
<td>100</td>
<td>Sigma (Deisenhofen, D.)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>33 (in Ethanol)</td>
<td>33</td>
<td>Roche (Mannheim, D.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 [für BL21 (DE3) cc4]</td>
<td></td>
</tr>
<tr>
<td>Gentamycin</td>
<td>25</td>
<td>25</td>
<td>Roche (Mannheim, D.)</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>50</td>
<td>50</td>
<td>Sigma (Deisenhofen, D.)</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>50 (in DMSO)</td>
<td>25 (für Pst DC3000)</td>
<td>Sigma (Deisenhofen, D.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 (für Agrobacterium)</td>
<td></td>
</tr>
<tr>
<td>Spectinomycin</td>
<td>50</td>
<td>100</td>
<td>Sigma (Deisenhofen, D.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 [für BL21 (DE3) cc4]</td>
<td></td>
</tr>
</tbody>
</table>

Alle Stammlösungen mit Ausnahme von Chloramphenicol und Rifampicin wurden mit Wasser angesetzt und bei -20 °C gelagert.

2.1.4. Enzyme

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNase I</td>
<td>Sigma (Deisenhofen, D.)</td>
</tr>
<tr>
<td>Glutathion-Reduktase aus Hefe, Nr.: 10105678001</td>
<td>Roche (Mannheim, D.)</td>
</tr>
<tr>
<td>iProof High Fidelity DNA Polymerase</td>
<td>BioRad (München, D.)</td>
</tr>
<tr>
<td>Lysozym aus Hühnereiweiß, Nr.: L-6876</td>
<td>Sigma (Deisenhofen, D.)</td>
</tr>
<tr>
<td>Phusion High Fidelity DNA Polymerase</td>
<td>New England Biolabs (Frankfurt, D.)</td>
</tr>
<tr>
<td>Taq DNA Polymerase</td>
<td>Agrobiogen (Hilgertshausen, D.)</td>
</tr>
<tr>
<td>Xanthin-Oxidase aus Kuhmilch, Nr.: X4376</td>
<td>Sigma (Deisenhofen, D.)</td>
</tr>
</tbody>
</table>

Alle verwendeten Restriktionsenzyme wurden von New England Biolabs (Frankfurt, D.) oder MBI Fermentas (St.Leon-Rot, D.) bezogen.

2.1.5. Antikörper

<table>
<thead>
<tr>
<th>Name</th>
<th>Verdi.stufe</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Primäre Antikörper</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Histidin (Maus, monoklonal)</td>
<td>1:1000</td>
<td>Calbiochem (Darmstadt, D.)</td>
</tr>
<tr>
<td>Anti-Nitrotyrosin (Ziege, monoklonal)</td>
<td>1:2000</td>
<td>Millipore (Schwalbach, D.)</td>
</tr>
<tr>
<td><strong>Sekundäre Antikörper</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Mouse IgG, AP-Konjugat</td>
<td>1:7500</td>
<td>Promega (Mannheim, D.)</td>
</tr>
<tr>
<td>Goat Anti-Mouse IgG, HRP-Konjugat</td>
<td>1:3000</td>
<td>Invitrogen (Darmstadt, D.)</td>
</tr>
</tbody>
</table>
2.1.6. Reaktionssysteme (Kits)

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute QPCR SYBR Green Mix, Nr.: AB-1322</td>
<td>Thermo Scientific (Rockford, USA)</td>
</tr>
<tr>
<td>CyDye Fluor Minimal Labelling Kit, Nr.: 25-8010-65</td>
<td>GE Healthcare (LittleChalfont, USA)</td>
</tr>
<tr>
<td>2D-Clean-Up Kit, Nr.: 80-6484-51</td>
<td>GE Healthcare (LittleChalfont, USA)</td>
</tr>
<tr>
<td>GATEWAY BP Clonase Enzymmix, Nr.: 11789-013</td>
<td>Invitrogen (Darmstadt, D.)</td>
</tr>
<tr>
<td>GATEWAY LR Clonase Enzymmix, Nr.: 11791-019</td>
<td>Invitrogen (Darmstadt, D.)</td>
</tr>
<tr>
<td>QIAquick Gel Extraction Kit, Nr.: 28704</td>
<td>Qiagen (Hilden, D.)</td>
</tr>
<tr>
<td>QIAprep Spin Miniprep Kit, Nr.: 27104</td>
<td>Qiagen (Hilden, D.)</td>
</tr>
<tr>
<td>QuantiTect Rev. Transcription Kit, Nr.: 205311</td>
<td>Qiagen (Hilden, D.)</td>
</tr>
<tr>
<td>RNeasy Plant Mini Kit, Nr.: 74904</td>
<td>Qiagen (Hilden, D.)</td>
</tr>
<tr>
<td>Superscript Reverse Transkriptase Kit, Nr.: 18064-014</td>
<td>Invitrogen (Darmstadt, D.)</td>
</tr>
<tr>
<td>West Pico Chemilumineszenz-Kit, Nr.: 34077</td>
<td>Thermo Scientific (Rockford, USA)</td>
</tr>
</tbody>
</table>

2.1.7. Oligonukleotide

Alle verwendeten Oligonukleotide wurden in lyophilisierter Form von Eurofins MWG Operon (Martinsried, D.) bezogen und als Stammlösungen mit Wasser auf eine Konzentration von 100 µM eingestellt bzw. bei -20 °C gelagert. Die Endkonzentration der Oligonukleotide in allen PCR-Ansätzen lag bei 10 µM.

<table>
<thead>
<tr>
<th>Name</th>
<th>ATG-Nummer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Primer zum Nachweis der GSNO-Reduktase Nukleotidsequenz mittels RT-PCR</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSNOR_for</td>
<td>At5g43940</td>
<td>5’- ATGGCGACTCAAGGTCAG - 3’</td>
</tr>
<tr>
<td>GSNOR_rev</td>
<td></td>
<td>5’- TCATTGCTGTTAGGAC - 3’</td>
</tr>
<tr>
<td><strong>Primer für Vervielfältigung von Superoxid-Dismutase Nukleotidsequenzen mittels RT-qPCR</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnSOD_for502</td>
<td>At3g10920</td>
<td>5’- GTTGACACAACGCAACTGCGTAG - 3’</td>
</tr>
<tr>
<td>MnSOD_rev621</td>
<td></td>
<td>5’- CTAGGGCCTCATATTGTGTTG - 3’</td>
</tr>
<tr>
<td>FeSOD1_for195</td>
<td>At4g25100</td>
<td>5’- CCACAGCAGCTACTCACAA - 3’</td>
</tr>
<tr>
<td>FeSOD1_rev317</td>
<td></td>
<td>5’- AGCTTTCGGATGTTTCTC - 3’</td>
</tr>
<tr>
<td>FeSOD2_for655</td>
<td>At5g51100</td>
<td>5’- TGTTGGATTATTCCACTCCCTCG - 3’</td>
</tr>
<tr>
<td>FeSOD2_rev774</td>
<td></td>
<td>5’- AGTTTCCCAGCACAAGCTT - 3’</td>
</tr>
<tr>
<td>FeSOD3_for323</td>
<td>At5g23310</td>
<td>5’- CATACCAACACGGAGATCCCT - 3’</td>
</tr>
<tr>
<td>FeSOD3_rev446</td>
<td></td>
<td>5’- TGCTCAAGAAGACCCTTTGG - 3’</td>
</tr>
<tr>
<td>CZSOD1_for233</td>
<td>At1g08830</td>
<td>5’- GACATGCTGTTAGCTAGCAA - 3’</td>
</tr>
<tr>
<td>CZSOD1_rev352</td>
<td></td>
<td>5’- CAACAACGACCTACCAACA - 3’</td>
</tr>
<tr>
<td>CZSOD2_for59</td>
<td>At2g28190</td>
<td>5’- CTCTTCCATACTTTCAA - 3’</td>
</tr>
<tr>
<td>CZSOD2_rev182</td>
<td></td>
<td>5’- ACAACTGTCAACCTTCGA - 3’</td>
</tr>
<tr>
<td>CZSOD3_for170</td>
<td>At5g18100</td>
<td>5’- ATACCAACAGGGCTGATCT - 3’</td>
</tr>
<tr>
<td>CZSOD3_rev289</td>
<td></td>
<td>5’- TGATCCTGCAAGAATGGTTC - 3’</td>
</tr>
</tbody>
</table>
### Material und Methoden

#### Primer für Vervielfältigung von Nukleotidsequenzen der Referenzgene

<table>
<thead>
<tr>
<th>Name</th>
<th>ATG-Nummer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktin2_for821</td>
<td>At3g18780</td>
<td>5’- TGGATCCACGAGACAACTTA - 3’</td>
</tr>
<tr>
<td>Aktin2_rev1102</td>
<td></td>
<td>5’- ttcttggaagattctggac - 3’</td>
</tr>
<tr>
<td>S16_for356</td>
<td>At2g09990</td>
<td>5’- TTACGCCCTCGTCAAGATAT - 3’</td>
</tr>
<tr>
<td>S16_rev541</td>
<td></td>
<td>5’- TCTGGTAACGAGACAGCAGC - 3’</td>
</tr>
<tr>
<td>Tubulin9_for</td>
<td>At4g20890</td>
<td>5’- GTACCTTGAAGCTGCTAATCCTA - 3’</td>
</tr>
<tr>
<td>Tubulin9_rev</td>
<td></td>
<td>5’- GTTCTGGACCTCATCATTGTC - 3’</td>
</tr>
<tr>
<td>Ubiquitin5_for369</td>
<td>At3g62250</td>
<td>5’- GATGGATCGGAAAGGTTGACAG - 3’</td>
</tr>
<tr>
<td>Ubiquitin5_rev536</td>
<td></td>
<td>5’- ATCTACCGCTACACGAGATCAG - 3’</td>
</tr>
</tbody>
</table>

#### Primer für Vervielfältigung von Superoxid-Dismutase Nukleotidsequenzen mittels RT-PCR

<table>
<thead>
<tr>
<th>Name</th>
<th>ATG-Nummer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnSOD_for</td>
<td></td>
<td>5’- ATGGCGTTCTGTTGATGAC - 3’</td>
</tr>
<tr>
<td>MnSOD_rev (mit Stopcodon)</td>
<td></td>
<td>5’- TCAGTTTTTCTCTTCTAAAC - 3’</td>
</tr>
<tr>
<td>MnSOD_rev (ohne Stopcodon)</td>
<td></td>
<td>5’- GTTGGGGCTCTCTCATAAAC - 3’</td>
</tr>
<tr>
<td>FeSOD1_for</td>
<td></td>
<td>5’- ATGGCGTTCTGTTGATGAC - 3’</td>
</tr>
<tr>
<td>FeSOD1_rev (mit Stopcodon)</td>
<td></td>
<td>5’- TCAGTTTTTCTCTTCTAAAC - 3’</td>
</tr>
<tr>
<td>FeSOD1_rev (ohne Stopcodon)</td>
<td></td>
<td>5’- GTTGGGGCTCTCTCATAAAC - 3’</td>
</tr>
<tr>
<td>FeSOD2_for</td>
<td></td>
<td>5’- ATGGCGTTCTGTTGATGAC - 3’</td>
</tr>
<tr>
<td>FeSOD2_rev (mit Stopcodon)</td>
<td></td>
<td>5’- TCAGTTTTTCTCTTCTAAAC - 3’</td>
</tr>
<tr>
<td>FeSOD2_rev (ohne Stopcodon)</td>
<td></td>
<td>5’- GTTGGGGCTCTCTCATAAAC - 3’</td>
</tr>
<tr>
<td>FeSOD3_for</td>
<td></td>
<td>5’- ATGGCGTTCTGTTGATGAC - 3’</td>
</tr>
<tr>
<td>FeSOD3_rev (mit Stopcodon)</td>
<td></td>
<td>5’- TCAGTTTTTCTCTTCTAAAC - 3’</td>
</tr>
<tr>
<td>FeSOD3_rev (ohne Stopcodon)</td>
<td></td>
<td>5’- GTTGGGGCTCTCTCATAAAC - 3’</td>
</tr>
<tr>
<td>CZSOD1_for</td>
<td></td>
<td>5’- ATGGCGTTCTGTTGATGAC - 3’</td>
</tr>
<tr>
<td>CZSOD1_rev (mit Stopcodon)</td>
<td></td>
<td>5’- TCAGTTTTTCTCTTCTAAAC - 3’</td>
</tr>
<tr>
<td>CZSOD1_rev (ohne Stopcodon)</td>
<td></td>
<td>5’- GTTGGGGCTCTCTCATAAAC - 3’</td>
</tr>
<tr>
<td>CZSOD2_for</td>
<td></td>
<td>5’- ATGGCGTTCTGTTGATGAC - 3’</td>
</tr>
<tr>
<td>CZSOD2_rev (mit Stopcodon)</td>
<td></td>
<td>5’- TCAGTTTTTCTCTTCTAAAC - 3’</td>
</tr>
<tr>
<td>CZSOD2_rev (ohne Stopcodon)</td>
<td></td>
<td>5’- GTTGGGGCTCTCTCATAAAC - 3’</td>
</tr>
<tr>
<td>CZSOD3_for</td>
<td></td>
<td>5’- ATGGCGTTCTGTTGATGAC - 3’</td>
</tr>
<tr>
<td>CZSOD3_rev (mit Stopcodon)</td>
<td></td>
<td>5’- TCAGTTTTTCTCTTCTAAAC - 3’</td>
</tr>
<tr>
<td>CZSOD3_rev (ohne Stopcodon)</td>
<td></td>
<td>5’- GTTGGGGCTCTCTCATAAAC - 3’</td>
</tr>
</tbody>
</table>

#### Primer zur GATEWAY-Klonierung von Superoxid-Dismutase Nukleotidsequenzen

<table>
<thead>
<tr>
<th>Name</th>
<th>ATG-Nummer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>attB1_MnSOD_for (mit Stopcodon)</td>
<td></td>
<td>5’- GGGGACAGTTTTGGTTGAAAAAGCAGGGCTTC ATGGCGATTCTGTTGATGAC - 3’</td>
</tr>
<tr>
<td>attB2_MnSOD_rev (mit Stopcodon)</td>
<td></td>
<td>5’- GGGGACACTTTTTGTACAAGAAGACTTGGTC TAAGTTTCTCTTCTCTACAAACC - 3’</td>
</tr>
<tr>
<td>attB1_MnSOD_for (ohne Stopcodon)</td>
<td></td>
<td>5’- GGGGACAGTTTTGGTTGAAAAAGCAGGGCTTC ATGGCGATTCTGTTGATGAC - 3’</td>
</tr>
<tr>
<td>attB2_MnSOD_rev (ohne Stopcodon)</td>
<td></td>
<td>5’- GGGGACAGTTTTGGTTGAAAAAGCAGGGCTTC ATGGCGATTCTGTTGATGAC - 3’</td>
</tr>
<tr>
<td>Name</td>
<td>Sequenz</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>attB1_FeSOD1_for (mit Stopcodon)</td>
<td>5′'- GGGACAAAGTTTGTACAAAAAAGCAGGCTTC ATGGCGTCTGTCGAAGTGTCTG - 3′</td>
<td></td>
</tr>
<tr>
<td>attB2_FeSOD1_rev (mit Stopcodon)</td>
<td>5′'- GGGGACCACTTTTGTAACAAAAAACGAGGCTTC TTAACAGCAGCAAGCCTTGG - 3′</td>
<td></td>
</tr>
<tr>
<td>attB1_FeSOD1_for (ohne Stopcodon)</td>
<td>5′'- GGGACAAAGTTTGTACAAAAAAGCAGGCTTC GAAGAAATAGAGCATGCGTCTCAGGCT - 3′</td>
<td></td>
</tr>
<tr>
<td>attB2_FeSOD1_rev (ohne Stopcodon)</td>
<td>5′'- GGGGACCACTTTTGTAACAAAAAACGAGGCTTC GCAGAAGCAGCGCTTGCA - 3′</td>
<td></td>
</tr>
<tr>
<td>attB1_FeSOD2_for (mit Stopcodon)</td>
<td>5′'- GGGGACCAAGTTTGTACAAAAAAGCAGGCTTC CATGATGAATGTTGCAGTGACAG - 3′</td>
<td></td>
</tr>
<tr>
<td>attB2_FeSOD2_rev (mit Stopcodon)</td>
<td>5′'- GGGGACCACTTTTGTAACAAAAAACGAGGCTTC GTTCAACCTAGATACATCGAT - 3′</td>
<td></td>
</tr>
<tr>
<td>attB1_FeSOD2_for (ohne Stopcodon)</td>
<td>5′'- GGGGACCAAGTTTGTACAAAAAAGCAGGCTTC GAAGAAATAGAGCATGCGTCTCAGGCT - 3′</td>
<td></td>
</tr>
<tr>
<td>attB2_FeSOD2_rev (ohne Stopcodon)</td>
<td>5′'- GGGGACCACTTTTGTAACAAAAAACGAGGCTTC GCAGAAGCAGCGCTTGCA - 3′</td>
<td></td>
</tr>
<tr>
<td>attB1_FeSOD3_for (mit Stopcodon)</td>
<td>5′'- GGGGACCAAGTTTGTACAAAAAAGCAGGCTTC CATGAGTTCTTGTGTTGTGACG - 3′</td>
<td></td>
</tr>
<tr>
<td>attB2_FeSOD3_rev (mit Stopcodon)</td>
<td>5′'- GGGGACCACTTTTGTAACAAAAAACGAGGCTTC GTTCAACCTAGATACATCGAT - 3′</td>
<td></td>
</tr>
<tr>
<td>attB1_FeSOD3_for (ohne Stopcodon)</td>
<td>5′'- GGGGACCAAGTTTGTACAAAAAAGCAGGCTTC GAAGAAATAGAGCATGCGTCTCAGGCT - 3′</td>
<td></td>
</tr>
<tr>
<td>attB2_FeSOD3_rev (ohne Stopcodon)</td>
<td>5′'- GGGGACCACTTTTGTAACAAAAAACGAGGCTTC GCAGAAGCAGCGCTTGCA - 3′</td>
<td></td>
</tr>
<tr>
<td>attB1_CZSOD1_for (mit Stopcodon)</td>
<td>5′'- GGGGACCAAGTTTGTACAAAAAAGCAGGCTTC CATGATGAATGTTGCAGTGACAG - 3′</td>
<td></td>
</tr>
<tr>
<td>attB2_CZSOD1_rev (mit Stopcodon)</td>
<td>5′'- GGGGACCACTTTTGTAACAAAAAACGAGGCTTC GTTCAACCTAGATACATCGAT - 3′</td>
<td></td>
</tr>
<tr>
<td>attB1_CZSOD1_for (ohne Stopcodon)</td>
<td>5′'- GGGGACCAAGTTTGTACAAAAAAGCAGGCTTC GAAGAAATAGAGCATGCGTCTCAGGCT - 3′</td>
<td></td>
</tr>
<tr>
<td>attB2_CZSOD1_rev (ohne Stopcodon)</td>
<td>5′'- GGGGACCACTTTTGTAACAAAAAACGAGGCTTC GCAGAAGCAGCGCTTGCA - 3′</td>
<td></td>
</tr>
<tr>
<td>attB1_CZSOD2_for (mit Stopcodon)</td>
<td>5′'- GGGGACCAAGTTTGTACAAAAAAGCAGGCTTC CATGATGAATGTTGCAGTGACAG - 3′</td>
<td></td>
</tr>
<tr>
<td>attB2_CZSOD2_rev (mit Stopcodon)</td>
<td>5′'- GGGGACCACTTTTGTAACAAAAAACGAGGCTTC GTTCAACCTAGATACATCGAT - 3′</td>
<td></td>
</tr>
<tr>
<td>attB1_CZSOD2_for (ohne Stopcodon)</td>
<td>5′'- GGGGACCAAGTTTGTACAAAAAAGCAGGCTTC GAAGAAATAGAGCATGCGTCTCAGGCT - 3′</td>
<td></td>
</tr>
<tr>
<td>attB2_CZSOD2_rev (ohne Stopcodon)</td>
<td>5′'- GGGGACCACTTTTGTAACAAAAAACGAGGCTTC GCAGAAGCAGCGCTTGCA - 3′</td>
<td></td>
</tr>
</tbody>
</table>
**Material und Methoden**

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>attB1_CZSOD3_for (mit Stopcodon)</td>
<td>5’-GGGACAAGTTTGTACAAAAAAGCAGGCTTC ATGGGAAGTCTCCTAGAGGAAATC - 3’</td>
</tr>
<tr>
<td>attB2_CZSOD3_rev (mit Stopcodon)</td>
<td>5’-GGGGACCATTTTGTAACAAAAGCTGGGTC CTATAGTTTAGCAGCCAGAT - 3’</td>
</tr>
<tr>
<td>attB1_CZSOD3_for (ohne Stopcodon)</td>
<td>5’-GGGACAAGTTTGTACAAAAAAGCAGGCTTC GAAAGAAGCTGGGTC - 3’</td>
</tr>
<tr>
<td>attB2_CZSOD3_rev (ohne Stopcodon)</td>
<td>5’-GGGGACCATTTTGTAACAAAAGCTGGGTC TAGTTTAGCAGCCAGAT - 3’</td>
</tr>
</tbody>
</table>

**Primer zur Sequenzierung von GATEWAY-Vektoren**

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDONR221 M13_for (MediGX)</td>
<td>5’-TGTAACGCAGGCACTATTGCTAGCCAGAT - 3’</td>
</tr>
<tr>
<td>pDONR221 M13_rev (MediGX)</td>
<td>5’-GGAAACAGCTTAGCCAGAT - 3’</td>
</tr>
<tr>
<td>pDEST17_for</td>
<td>5’-TTAATACGACTCACTATAGGG - 3’</td>
</tr>
<tr>
<td>pDEST17_rev</td>
<td>5’-CTTTGATGAGCCTCGA - 3’</td>
</tr>
<tr>
<td>pDEST42_for</td>
<td>5’-TTAATACGACTCACTATAGGG - 3’</td>
</tr>
<tr>
<td>pDEST42_rev</td>
<td>5’-GTTAGGGATAGGCTTACC - 3’</td>
</tr>
</tbody>
</table>

**Primer für Kolonie-PCR**

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>attB1_for</td>
<td>5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTC - 3’</td>
</tr>
<tr>
<td>attB2_rev</td>
<td>5’-GGGGACCATTTTGTAACAAAAGCTGGGTC - 3’</td>
</tr>
</tbody>
</table>

**Primer für zielgerichtete Mutagenese der Mn-SOD Nukleotidsequenz**

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnSODY63F_for</td>
<td>5’-CATCCACCAGGCTTGTGTTGACTAATTAC - 3’</td>
</tr>
<tr>
<td>MnSODY63F_rev</td>
<td>5’-GTAATTTAGAAAAGCTGGTGAT - 3’</td>
</tr>
</tbody>
</table>

### 2.1.8. Vektoren

<table>
<thead>
<tr>
<th>Name</th>
<th>Selektion</th>
<th>Herkunft</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDONR221</td>
<td>Kanamycin</td>
<td>Invitrogen (Darmstadt, D.)</td>
<td>GATEWAY-Klonierungsvektor</td>
</tr>
<tr>
<td>pDEST17</td>
<td>Ampicillin</td>
<td>Invitrogen (Darmstadt, D.)</td>
<td>GATEWAY-Expressionsvektor</td>
</tr>
<tr>
<td>pDEST17:MnSOD</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von MnSOD mit N-term. His_{6}-Tag</td>
</tr>
<tr>
<td>pDEST17:FeSOD1</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von FeSOD1 mit N-term. His_{6}-Tag</td>
</tr>
<tr>
<td>pDEST17:FeSOD2</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von FeSOD2 mit N-term. His_{6}-Tag</td>
</tr>
<tr>
<td>pDEST17:FeSOD2</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von FeSOD2 mit N-term. His_{6}-Tag</td>
</tr>
<tr>
<td>Name</td>
<td>Selektion</td>
<td>Herkunft</td>
<td>Verwendung</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>pDEST17:FeSOD3</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von FeSOD3 mit N-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pDEST17:CZSOD1</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von CZSOD1 mit N-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pDEST17:CZSOD2</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von CZSOD2 mit N-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pDEST17:CZSOD3</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von CZSOD3 mit N-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pDEST42:</td>
<td>Ampicillin</td>
<td>Invitrogen (Darmstadt, D.)</td>
<td>GATEWAY-Expressionsvektor</td>
</tr>
<tr>
<td>pDEST42:MnSOD</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von MnSOD mit C-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pDEST42:FeSOD1</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von FeSOD1 mit C-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pDEST42:FeSOD2</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von FeSOD2 mit C-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pDEST42:FeSOD3</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von FeSOD3 mit C-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pDEST42:CZSOD1</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von CZSOD1 mit C-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pDEST42:CZSOD2</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von CZSOD2 mit C-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pDEST42:CZSOD3</td>
<td>Ampicillin</td>
<td>vorliegende Arbeit</td>
<td>Rekombinante Produktion von CZSOD3 mit C-term. His$_6$-Tag</td>
</tr>
<tr>
<td>pAlligator2(-35S)</td>
<td>Fluoreszenz</td>
<td>A. Schäffner, BIOP</td>
<td>GATEWAY-Expressionsvektor ohne 35S-Promotor</td>
</tr>
<tr>
<td>pAlligator2: proGSNOR::GSNOR</td>
<td>Fluoreszenz</td>
<td>vorliegende Arbeit</td>
<td>Agrotransformation für genetische Komplementation</td>
</tr>
<tr>
<td>pBGWFS7</td>
<td>BASTA</td>
<td>Universität Gent, Belgien</td>
<td>GATEWAY-Expressionsvektor</td>
</tr>
<tr>
<td>pBGWFS7: proGSNOR::GUS</td>
<td>BASTA</td>
<td>vorliegende Arbeit</td>
<td>Agrotransformation für Expressionsstudien</td>
</tr>
</tbody>
</table>

Material und Methoden
2.1.9. **Medien, Puffersysteme und Lösungen**


<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Medien</strong></td>
<td></td>
</tr>
<tr>
<td>King´s B-Medium</td>
<td>2% (w/v) Trypton (Duchefa, Haarlem, Holland)</td>
</tr>
<tr>
<td></td>
<td>1% (v/v) Glycerin</td>
</tr>
<tr>
<td></td>
<td>0,15% (w/v) K₂HPO₄</td>
</tr>
<tr>
<td></td>
<td>0,15% (w/v) MgSO₄</td>
</tr>
<tr>
<td></td>
<td>pH-Wert auf 7,2 einstellen, 1,5% (w/v) Agar für Festmedien</td>
</tr>
<tr>
<td>LB-Medium</td>
<td>1% (w/v) Trypton</td>
</tr>
<tr>
<td></td>
<td>0,5% (w/v) Hefe-Extrakt (Duchefa, Haarlem, Holland)</td>
</tr>
<tr>
<td></td>
<td>0,5% (w/v) NaCl</td>
</tr>
<tr>
<td></td>
<td>pH-Wert auf 7,2 einstellen</td>
</tr>
<tr>
<td></td>
<td>1,5% (w/v) Agar für Festmedien</td>
</tr>
<tr>
<td>Transformationspuffer1 (TFB1)</td>
<td>100 mM RbCl</td>
</tr>
<tr>
<td></td>
<td>50 mM MnCl₂</td>
</tr>
<tr>
<td></td>
<td>30 mM C₂H₃KO₂</td>
</tr>
<tr>
<td></td>
<td>10 mM CaCl₂</td>
</tr>
<tr>
<td></td>
<td>15% (v/v) Glycerin</td>
</tr>
<tr>
<td></td>
<td>pH-Wert mit Essigsäure auf 5,8 einstellen</td>
</tr>
<tr>
<td>Transformationspuffer2 (TFB2)</td>
<td>10 mM MOPS</td>
</tr>
<tr>
<td></td>
<td>75 mM CaCl₂</td>
</tr>
<tr>
<td></td>
<td>10 mM RbCl</td>
</tr>
<tr>
<td></td>
<td>15% (v/v) Glycerin</td>
</tr>
<tr>
<td></td>
<td>pH-Wert mit KOH auf 6,5 einstellen</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoinduktionsmedium</td>
<td>960 ml ZY-Medium</td>
</tr>
<tr>
<td></td>
<td>1% (w/v) Trypton</td>
</tr>
<tr>
<td></td>
<td>0,5% (w/v) Hefeeextrakt</td>
</tr>
<tr>
<td></td>
<td>2 mM MgSO₄</td>
</tr>
<tr>
<td></td>
<td>20 ml 50 x M</td>
</tr>
<tr>
<td></td>
<td>50 mM NH₄Cl</td>
</tr>
<tr>
<td></td>
<td>25 mM Na₃H₂PO₄</td>
</tr>
<tr>
<td></td>
<td>25 mM KH₂PO₄</td>
</tr>
<tr>
<td></td>
<td>5 mM Na₂SO₄</td>
</tr>
<tr>
<td></td>
<td>20 ml 50 x 5052</td>
</tr>
<tr>
<td></td>
<td>0,5% (w/v) Glycerin</td>
</tr>
<tr>
<td></td>
<td>0,2% (w/v) α-Laktose</td>
</tr>
<tr>
<td></td>
<td>0,05% (w/v) Glukose</td>
</tr>
<tr>
<td></td>
<td>0,2 ml 1000 x</td>
</tr>
<tr>
<td></td>
<td>50 mM FeCl₃</td>
</tr>
<tr>
<td>Spurenelemente</td>
<td>20 mM CaCl₂</td>
</tr>
<tr>
<td></td>
<td>10 mM MnCl₂</td>
</tr>
<tr>
<td></td>
<td>10 mM ZnSO₄</td>
</tr>
<tr>
<td></td>
<td>2 mM CoCl₂</td>
</tr>
<tr>
<td></td>
<td>2 mM CuCl₂</td>
</tr>
<tr>
<td></td>
<td>2 mM NiCl₂</td>
</tr>
<tr>
<td></td>
<td>2 mM Na₂MO₄</td>
</tr>
<tr>
<td></td>
<td>2 mM Na₂SeO₃</td>
</tr>
<tr>
<td></td>
<td>2 mM H₃BO₃</td>
</tr>
<tr>
<td>MS-Medium</td>
<td>1% (w/v) Saccharose</td>
</tr>
<tr>
<td></td>
<td>0,22% MS-Medium M5519</td>
</tr>
<tr>
<td></td>
<td>pH-Wert auf 5,8 einstellen, 0,5% (w/v) Gelrite für Festmedien</td>
</tr>
<tr>
<td>RB-Medium</td>
<td>1% (w/v) Trypton</td>
</tr>
<tr>
<td></td>
<td>0,5% (w/v) Hefe-Extrakt</td>
</tr>
<tr>
<td></td>
<td>0,5% (w/v) NaCl</td>
</tr>
<tr>
<td></td>
<td>0,2 % (v/v) 1 M NaOH</td>
</tr>
</tbody>
</table>

**Puffersysteme für gelektrophoretische Auftrennung von Nukleinsäuren**

<table>
<thead>
<tr>
<th>Puffer</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 x TAE-Laupuffer</td>
<td>2 M Tris</td>
</tr>
<tr>
<td></td>
<td>50 mM EDTA</td>
</tr>
<tr>
<td></td>
<td>5,7% (v/v) Eisessig</td>
</tr>
<tr>
<td>Tris-EDTA(TE)-Puffer</td>
<td>10 mM Tris-HCl (pH 8,0)</td>
</tr>
<tr>
<td></td>
<td>1 mM EDTA (pH 8,0)</td>
</tr>
<tr>
<td>10 x RNA-Ladepuffer</td>
<td>10 mM EDTA (pH 8,0)</td>
</tr>
<tr>
<td></td>
<td>50% (v/v) Glycerin</td>
</tr>
<tr>
<td></td>
<td>0,25% (w/v) Bromphenolblau</td>
</tr>
<tr>
<td></td>
<td>0,25% (w/v) Xylen Cyanol FF</td>
</tr>
</tbody>
</table>
### Material und Methoden

<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
</table>
| 5 x DNA-Probenpuffer | 30% (v/v) Glycerin  
1 x TAE-Puffer  
0,4% Orange G |

**Puffersysteme für Extraktion von homogenisiertem Pflanzenmaterial**

Extraktion für 2D-Gelelektrophorese  
100 mM Tris  
10 mM EDTA (pH 8,0)  
1 mM MgCl₂  
1 mM Ascorbinsäure  
<pH-Wert auf 8,0 einstellen und 0,07% (v/v) ß-Mercaptoethanol vor Gebrauch zugeben</p>

Extraktion für Stickoxid-Bestimmung  
1 x PBS-Puffer (pH 7,4)  
137 mM NaCl  
4,3 mM Na₂HPO₄  
2,7 mM KCl  
1,47 mM KH₂PO₄  
10 mM N-Ethylmaleinimid  
2,5 mM EDTA (pH 8,0)

Extraktion für Aktivitätsbestimmung des GSNO-Reduktase-Enzyms  
100 mM Tris-HCl (pH 7,5)  
2 mM DTT  
0,1 mM EDTA (pH 8,0)  
10% (v/v) Glycerin  
0,2% TritonX100

Extraktion für Aktivitätsbestimmung von antioxidativen Enzymen  
50 mM Kaliumphosphat-Puffer (pH 7,8)  
0,1 mM EDTA (pH 8,0)  
0,5% TritonX100  
0,5% PVP-40

**Puffersysteme für 1D-gelelektrophoretische Auftrennung von Proteinen**

1 x SDS-Probenpuffer  
100 mM Tris-HCl (pH 6,8)  
4% (w/v) SDS  
0,01% (w/v) Bromphenolblau  
2 mM DTT  
10% (v/v) Glycerin

Trenngelpuffer  
1,5 M Tris-HCl (pH 8,8)  
0,4% (w/v) SDS

Sammelgelpuffer  
0,5 M Tris-HCl (pH 6,8)  
0,4% (w/v) SDS
### Material und Methoden

<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x Laufpuffer</td>
<td>2 M Glycin</td>
</tr>
<tr>
<td></td>
<td>250 mM Tris</td>
</tr>
<tr>
<td></td>
<td>1% (w/v) SDS</td>
</tr>
<tr>
<td><strong>Puffersysteme für isoelektrische Fokussierung von Proteinen</strong></td>
<td></td>
</tr>
<tr>
<td>Labellingpuffer für</td>
<td>7 M Harnstoff</td>
</tr>
<tr>
<td>Protein-Solubilisierung</td>
<td>2 M Thioharnstoff</td>
</tr>
<tr>
<td></td>
<td>20 mM Tris</td>
</tr>
<tr>
<td></td>
<td>4% (w/v) CHAPS</td>
</tr>
<tr>
<td></td>
<td>pH-Wert auf 8,5 einstellen</td>
</tr>
<tr>
<td>2 x Lysispuffer für</td>
<td>7 M Harnstoff</td>
</tr>
<tr>
<td>Denaturierung markierter</td>
<td>2 M Thioharnstoff</td>
</tr>
<tr>
<td>Proteine</td>
<td>4% (w/v) CHAPS</td>
</tr>
<tr>
<td></td>
<td>2% (v/v) IPG-Puffer, pH 3-11 NL</td>
</tr>
<tr>
<td></td>
<td>2% (w/v) DTT</td>
</tr>
<tr>
<td></td>
<td>0,04% (w/v) Bromphenolblau</td>
</tr>
<tr>
<td>Rehydrierungspuffer für</td>
<td>7 M Harnstoff</td>
</tr>
<tr>
<td>Quellung von Gelstreifen</td>
<td>2 M Thioharnstoff</td>
</tr>
<tr>
<td></td>
<td>2% (w/v) CHAPS</td>
</tr>
<tr>
<td></td>
<td>0,8% (w/v) DTT</td>
</tr>
<tr>
<td></td>
<td>0,5% (v/v) IPG-Puffer, pH 3-11 NL</td>
</tr>
<tr>
<td></td>
<td>0,002% (w/v) Bromphenolblau</td>
</tr>
<tr>
<td><strong>Puffersysteme für 2D-gelelektrophoretische Auftrennung von Proteinen</strong></td>
<td></td>
</tr>
<tr>
<td>Äquilibrierungspuffer für</td>
<td>6 M Harnstoff</td>
</tr>
<tr>
<td>IEF-Gelstreifen</td>
<td>50 mM Tris-HCL (pH 8,8)</td>
</tr>
<tr>
<td></td>
<td>30% (v/v) Glycerin</td>
</tr>
<tr>
<td></td>
<td>2% (w/v) SDS</td>
</tr>
<tr>
<td></td>
<td>0,002% (w/v) Bromphenolblau</td>
</tr>
<tr>
<td>Gellösung für Proteingele</td>
<td>375 mM Tris-HCl (pH 8,8)</td>
</tr>
<tr>
<td></td>
<td>12,5% (v/v) Rotiphorese-Acrylamidlösung</td>
</tr>
<tr>
<td></td>
<td>0,1% (v/v) SDS</td>
</tr>
<tr>
<td></td>
<td>0,1% (w/v) APS</td>
</tr>
<tr>
<td></td>
<td>0,03% (v/v) TEMED</td>
</tr>
<tr>
<td>Agaroselösung zum Überschichten von</td>
<td>192 mM Glycin</td>
</tr>
<tr>
<td>Proteingelen</td>
<td>25 mM Tris</td>
</tr>
<tr>
<td></td>
<td>0,5% (w/v) Agarose</td>
</tr>
<tr>
<td></td>
<td>0,1% (w/v) SDS</td>
</tr>
</tbody>
</table>
### Lösungen zur Anfärbung von Proteinen

<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
</table>
| **Coomassie-Färbelösung**| 40% (v/v) Methanol  
10% (v/v) Essigsäure  
0,1% (w/v) Coomassie G250 |
| **Coomassie-Entfärbelösung** | 40% (v/v) Methanol  
10% (v/v) Essigsäure |
| **Silber-Färbelösungen** | Fixierlösung  
50% (v/v) Methanol  
12% (v/v) Essigsäure  
0,2% (v/v) Formaldehyd |
|                          | Färbelösung  
12 mM AgNO3  
0,3% (v/v) Formaldehyd |
|                          | Entwicklungslösung  
0,57 M Na2CO3  
0,02 mM Na2S2O3  
0,2% (v/v) Formaldehyd |
| **Ponceau-S-Färbelösung** | 0,5% (w/v) Ponceau-S  
1% (v/v) Essigsäure |

### Puffersysteme und Lösungen für Transfer und Immunodetektion von Proteinen

<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
</table>
| **Transferpuffer**       | 192 mM Glycin  
25 mM Tris  
20% (v/v) Methanol  
0,4% (w/v) SDS |
| **Tris gepufferte Saline(TBS)-Puffer** | 150 mM NaCl  
10 mM Tris (pH 7,4)  
1 mM MgCl2 |
| **TBS-T-Puffer**         | 0,5% (v/v) Tween20 in TBS-Puffer |
| **Blockierungspuffer**   | 1% (w/v) BSA (Serva, Heidelberg, D.)  
1% (w/v) Magermilchpulver (Fluka, Buchs, D.)  
in TBS-T-Puffer lösen |
| **Alkalische Phosphatase(AP)-Puffer** | 100 mM Tris (pH 9,5)  
100 mM NaCl  
5 mM MgCl2 |
| **AP-Entwicklungspuffer**| 0,33% (v/v) NBT  
0,33% (v/v) BCIP  
vor Gebrauch in AP-Puffer lösen |
| **NBT-Lösung**           | 10% (w/v) NBT in 70% (v/v) DMF |
# Material und Methoden

### Name | Zusammensetzung
---|---
BCIP-Lösung | 5% (w/v) BCIP in 100% (v/v) DMF
Meerrettichperoxidase (HRP)-Entwicklungslösung | 50% (v/v) Peroxid-Lösung (Thermo Scientific, Rockford, USA)
 | 50% (v/v) Luminol-Lösung (Thermo Scientific, Rockford, USA)

### Puffersysteme für Aufschluss und Reinigung rekombinanter Proteine

<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer A</td>
<td>300 mM NaCl</td>
</tr>
<tr>
<td>50 mM Tris-HCl (pH 8,0)</td>
<td></td>
</tr>
<tr>
<td>20 mM Imidazol</td>
<td></td>
</tr>
<tr>
<td>0,02% (v/v) Thioglycerin, (SantaCruzBiotech., Santa Cruz, USA)</td>
<td></td>
</tr>
</tbody>
</table>
| Lysis-Puffer B für Zellaufschluss | 10 mM MgSO$_4$
 | 1 mM Protease-Inhibitor AEBSF |
 | 1 mg/ml Lysozym |
 | 0,2 µg/ml DNase I |
 | in Puffer A lösen |
| Waschpuffer (1) | 1 M NaCl in Puffer A |
| Waschpuffer (2) | 20 mM Imidazol in Puffer A |
| Elutionspuffer | 300 mM Imidazol in Puffer A |

### Puffersysteme für Enzymtests

<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSNO-Reduktase-Reaktionspuffer</td>
<td>1 M Tris (pH 8,0)</td>
</tr>
<tr>
<td>0,5 mM EDTA (pH 8,0)</td>
<td></td>
</tr>
<tr>
<td>0,2 mM NADH</td>
<td></td>
</tr>
<tr>
<td>Glutathion-Reduktase-Reaktionspuffer</td>
<td>100 mM Kaliumphosphat-Puffer (pH 7,8)</td>
</tr>
<tr>
<td>1 mM EDTA (pH 8,0)</td>
<td></td>
</tr>
<tr>
<td>0,2 mM NADPH</td>
<td></td>
</tr>
<tr>
<td>Glutathion S-Transferase-Reaktionspuffer</td>
<td>100 mM Kaliumphosphat-Puffer (pH 7,8)</td>
</tr>
<tr>
<td>1 mM CDNB (in 80% (v/v) Ethanol)</td>
<td></td>
</tr>
<tr>
<td>SOD-Reaktionspuffer</td>
<td>50 mM Natriumcarbonat-Puffer (pH 10,2)</td>
</tr>
<tr>
<td>0,1 mM EDTA (pH 8,0)</td>
<td></td>
</tr>
<tr>
<td>25 µM NBT</td>
<td></td>
</tr>
<tr>
<td>0,1 mM Xanthin (in 1 M NaOH)</td>
<td></td>
</tr>
<tr>
<td>Glutathion-Peroxidase-Reaktionspuffer</td>
<td>100 mM Kaliumphosphat-Puffer (pH 7,8)</td>
</tr>
<tr>
<td>1 mM EDTA (pH 8,0)</td>
<td></td>
</tr>
<tr>
<td>0,4 mM NADPH</td>
<td></td>
</tr>
<tr>
<td>0,3 U/ml Glutathion-Reduktase</td>
<td></td>
</tr>
</tbody>
</table>
### Material und Methoden

<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOD-Reaktionspuffer (2)</td>
<td>50 mM Kaliumphosphat-Puffer (pH 7,8)</td>
</tr>
<tr>
<td></td>
<td>0,1 mM EDTA (pH 8,0)</td>
</tr>
<tr>
<td></td>
<td>50 µM Xanthin</td>
</tr>
<tr>
<td></td>
<td>10 µM Cytochrom C</td>
</tr>
<tr>
<td></td>
<td>pH-Wert auf 7,8 einstellen</td>
</tr>
<tr>
<td>Puffersysteme für Glutathion- und NO-Messung</td>
<td></td>
</tr>
<tr>
<td>Glutathion-Puffer</td>
<td>0,2 M NaH₂PO₄ (pH 7,5)</td>
</tr>
<tr>
<td></td>
<td>10 mM EDTA (pH 8,0)</td>
</tr>
<tr>
<td></td>
<td>0,8 mM NADPH</td>
</tr>
<tr>
<td></td>
<td>1 mM DTNB (in DMSO)</td>
</tr>
<tr>
<td>Reduktionslösung für Nitritbestimmung</td>
<td>1,1% (w/v) Kaliumiodid</td>
</tr>
<tr>
<td></td>
<td>0,7% (w/v) Iod</td>
</tr>
<tr>
<td></td>
<td>78% (v/v) Essigsäure</td>
</tr>
<tr>
<td></td>
<td>22% (v/v) Wasser</td>
</tr>
<tr>
<td>Reduktionslösung für Nitratbestimmung</td>
<td>0,8% (w/v) VCl₃ in 1M HCl</td>
</tr>
<tr>
<td>Puffersysteme für Anfärbung von Pflanzenmaterial</td>
<td></td>
</tr>
<tr>
<td>GUS-Färbe-Buffer</td>
<td>Fixierpuffer</td>
</tr>
<tr>
<td></td>
<td>50 mM Na-Phosphat-Puffer (pH 7,0)</td>
</tr>
<tr>
<td></td>
<td>0,05% (v/v) TritonX100</td>
</tr>
<tr>
<td></td>
<td>0,5% (v/v) Formaldehyd</td>
</tr>
<tr>
<td></td>
<td>Färbe-Buffer</td>
</tr>
<tr>
<td></td>
<td>50 mM Na-Phosphat-Puffer (pH 7,0)</td>
</tr>
<tr>
<td></td>
<td>0,1% (v/v) TritonX100</td>
</tr>
<tr>
<td></td>
<td>1 mM C₆FeK₄N₆</td>
</tr>
<tr>
<td></td>
<td>1 mM C₆FeK₃N₆</td>
</tr>
<tr>
<td></td>
<td>1 mM X-Gluc in DMSO</td>
</tr>
<tr>
<td>Wasserstoffperoxid-Färbe-Buffer</td>
<td>MES-Puffer (pH 6,5)</td>
</tr>
<tr>
<td></td>
<td>0,1% (w/v) DAB</td>
</tr>
<tr>
<td>Superoxid-Färbe-Buffer</td>
<td>50 mM Kaliumphosphat-Puffer (pH 6,4)</td>
</tr>
<tr>
<td></td>
<td>10 mM NaN₃</td>
</tr>
<tr>
<td></td>
<td>0,1% (w/v) NBT</td>
</tr>
</tbody>
</table>
### 2.1.10. Computerprogramme und Webseiten

<table>
<thead>
<tr>
<th>Name</th>
<th>Verwendung</th>
<th>Hersteller/Webseite</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Programme</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BioEdit 7.13</td>
<td>Sequenzüberprüfung</td>
<td>Abbott Laboratories (Chicago, USA)</td>
</tr>
<tr>
<td>CellP</td>
<td>Mikroskopaufnahmen</td>
<td>Olympus (Hamburg, D.)</td>
</tr>
<tr>
<td>DeCyder 2D 6.5</td>
<td>Analyse von 2D-Bildern</td>
<td>Amersham Biosciences (Freiburg, D.)</td>
</tr>
<tr>
<td>Ettan IPGphor 3</td>
<td>Isoelektr. Fokussierung</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>7500 Fast System</td>
<td>Auswertung RT-qPCR</td>
<td>Applied Biosystems (Carlsbad, USA)</td>
</tr>
<tr>
<td>GeNorm</td>
<td>Normalisierung RT-qPCR</td>
<td>Universität Gent (Belgien)</td>
</tr>
<tr>
<td>GPS Explorer 3.6</td>
<td>Auswertung MALDI/MS-Daten</td>
<td>Applied Biosystems (Carlsbad)</td>
</tr>
<tr>
<td>ImageJ 1.46</td>
<td>Wurzel-Vermessungen</td>
<td>NIH (Bethesda, USA)</td>
</tr>
<tr>
<td>ImageQuant 5.2</td>
<td>Darstellung von 2D-Bildern</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>LinRegPCR</td>
<td>Effizienzberechnung RT-qPCR</td>
<td>HFRC (Amsterdam, Holland)</td>
</tr>
<tr>
<td>Mascot</td>
<td>Proteinidentifizierung</td>
<td>Cancer Research Technology</td>
</tr>
<tr>
<td>NO Analysis Software 3.2</td>
<td>Auswertung NO-Messungen</td>
<td>Analytix (Boldon, Großbritanien)</td>
</tr>
<tr>
<td>Primer Express 3.0</td>
<td>Primer-Design RT-qPCR</td>
<td>Applied Biosystems (Carlsbad, USA)</td>
</tr>
<tr>
<td>PyMOL 1.5</td>
<td>3D-Darstellung von Proteinen</td>
<td>DeLano Scientific (Palo Alto, USA)</td>
</tr>
<tr>
<td>Scaffold 3.0</td>
<td>Auswertung LC/MS-Daten</td>
<td>Proteome Software (Portland, USA)</td>
</tr>
<tr>
<td>Typhoon Scanner 5</td>
<td>Digitalisierung von 2D-Gelen</td>
<td>Amersham Biosciences (Freiburg, D.)</td>
</tr>
<tr>
<td><strong>Webseiten</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWISSMODEL</td>
<td>Proteinmodellierung</td>
<td><a href="http://www.swissmodel.expasy.org">www.swissmodel.expasy.org</a></td>
</tr>
<tr>
<td>SwissProt</td>
<td>Datenbankrecherche</td>
<td><a href="http://www.expasy.org/sprot">www.expasy.org/sprot</a></td>
</tr>
<tr>
<td>TAIR</td>
<td>Datenbankrecherche</td>
<td><a href="http://www.arabidopsis.org">www.arabidopsis.org</a></td>
</tr>
<tr>
<td>TargetP</td>
<td>Identifizierung Signalpeptide</td>
<td><a href="http://www.cbs.dtu.dk/services/TargetP">www.cbs.dtu.dk/services/TargetP</a></td>
</tr>
</tbody>
</table>

### 2.1.11. Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econo-Pac Chromatographie-Säulen (20 ml)</td>
<td>BioRad (München, D.)</td>
</tr>
<tr>
<td>DryStrip Gelstreifen, 24 cm, pH 3-11 NL</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>Integrid Petrischalen mit Gitternetz</td>
<td>Becton Dickinson GmbH (Heidelberg, D.)</td>
</tr>
</tbody>
</table>
### Material und Methoden

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro Bio-Spin Chromatographie-Säulen (2 ml)</td>
<td>BioRad (München, D.)</td>
</tr>
<tr>
<td>Mikrowellplatte 96-fach</td>
<td>Greiner Bio-One (Frickenhausen, D.)</td>
</tr>
<tr>
<td>Mikrowellplatte Thermo-Fast AB-1100</td>
<td>Thermo Scientific (Rockford, USA)</td>
</tr>
<tr>
<td>Multiflor Anzuchtpaletten</td>
<td>Teku (Lohne)</td>
</tr>
<tr>
<td>Nitrozellulosemembran Protran BA 85</td>
<td>Whatman (Dassel)</td>
</tr>
<tr>
<td>Nylonmembran (71 µm)</td>
<td>Versedag (Kempen, D.)</td>
</tr>
<tr>
<td>Petrischalen zwei- und dreigeteilt</td>
<td>Greiner Bio-One (Frickenhausen, D.)</td>
</tr>
<tr>
<td>Petrischalen quadratisch</td>
<td>Greiner Bio-One (Frickenhausen, D.)</td>
</tr>
<tr>
<td>Probentaschen für IEF</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>PS halbmikro Einmalküvetten</td>
<td>Brandt GmbH (Wertheim, D.)</td>
</tr>
<tr>
<td>Röntgenfilm Hyperfilm ECL</td>
<td>Amersham Biosciences (Freiburg, D.)</td>
</tr>
<tr>
<td>Sephadex G-25M PD-10 Säulen</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>Sprühdose EcoSpray</td>
<td>Labo Chimie France (Meyleur, Frankreich)</td>
</tr>
<tr>
<td>Zeba Spin Entsalzungssäulen (0,5 ml)</td>
<td>Pierce Biotechnology (Rockford, USA)</td>
</tr>
</tbody>
</table>

### Gerätschaften

<table>
<thead>
<tr>
<th>Name</th>
<th>Modell</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoklaven</td>
<td>Evo 150</td>
<td>MediTech (Norderstedt, D.)</td>
</tr>
<tr>
<td></td>
<td>HV 50</td>
<td>HMC (Tüssling, D.)</td>
</tr>
<tr>
<td>Brutschränke</td>
<td>Fricoll 111</td>
<td>Memmert (Schwabach, D.)</td>
</tr>
<tr>
<td></td>
<td>BM 500</td>
<td>Memmert (Schwabach, D.)</td>
</tr>
<tr>
<td>Elektroblotter</td>
<td>Milliblot-Graphit-System</td>
<td>Millipore (Schwalbach, D.)</td>
</tr>
<tr>
<td>Elektrophorese-Netzteile</td>
<td>EPS 601</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td></td>
<td>Power Pack P25</td>
<td>Biometra (Göttingen, D.)</td>
</tr>
<tr>
<td>Elektrophorese-Systeme</td>
<td>SE 250 Mighty Small II</td>
<td>Hoefer (San Francisco, USA)</td>
</tr>
<tr>
<td></td>
<td>Ettan DALTsix</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>Elektroporator</td>
<td>Gene Pulser</td>
<td>BioRad (München, D.)</td>
</tr>
<tr>
<td>Geldokumentationssystem</td>
<td>Gel-Doc 2000</td>
<td>BioRad (München, D.)</td>
</tr>
<tr>
<td>Gelgießstand</td>
<td>Ettan DALTsix</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>Name</td>
<td>Modell</td>
<td>Hersteller</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Homogenisatoren</td>
<td>Hochdrucksystem M110L</td>
<td>Microfluidics (Newton, USA)</td>
</tr>
<tr>
<td></td>
<td>Ultraschallsystem HD2200</td>
<td>Bandelin (Berlin, D.)</td>
</tr>
<tr>
<td>IEF-Apparatur</td>
<td>Ettan IPGphor3</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>Kamera</td>
<td>D300</td>
<td>Nikon (Tokio, Japan)</td>
</tr>
<tr>
<td>Keramikhalterung mit Elektrodenset</td>
<td>Ettan IPGphor</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>Mikroskope</td>
<td>BX61</td>
<td>Olympus (Hamburg, D.)</td>
</tr>
<tr>
<td></td>
<td>Axioskop</td>
<td>Carl Zeiss (Jena, D.)</td>
</tr>
<tr>
<td>NO-Analysator</td>
<td>Sievers 280i</td>
<td>Analytix (Boldon, Großbritanien)</td>
</tr>
<tr>
<td>pH-Elektrode</td>
<td>InLab Routine</td>
<td>Mettler Toledo (Gießen, D.)</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>pH 523</td>
<td>WTW (Weilheim, D.)</td>
</tr>
<tr>
<td>Präzisionswaagen</td>
<td>KB 100-3</td>
<td>Kern &amp; Sohn (Balingen, D.)</td>
</tr>
<tr>
<td></td>
<td>A 210</td>
<td>Sartorius (Göttingen, D.)</td>
</tr>
<tr>
<td>Rehydratisierungskassette</td>
<td>Immobiline DryStrip</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>Reinstwasseranlage</td>
<td>Ultra Clear Direct</td>
<td>SG (Barsbüttel, D.)</td>
</tr>
<tr>
<td>Scanner</td>
<td>Typhoon 9400</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td></td>
<td>Perfection 3170</td>
<td>Epson (Meerbusch, D.)</td>
</tr>
<tr>
<td>Schüttler</td>
<td>Innova 4340</td>
<td>NewBrunswickScientific (Edison, USA)</td>
</tr>
<tr>
<td>Spektrophotometer</td>
<td>Ultrospec 3100 Pro</td>
<td>Amersham Biosciences (Freiburg, D.)</td>
</tr>
<tr>
<td></td>
<td>NanoDrop ND 1000</td>
<td>NanoDropTechnologies (Wilmington)</td>
</tr>
<tr>
<td></td>
<td>GENios Plate Reader</td>
<td>Tecan (Crailsheim, D.)</td>
</tr>
<tr>
<td>Thermocycler</td>
<td>PTC 200</td>
<td>BioRad (München, D.)</td>
</tr>
<tr>
<td></td>
<td>7500 Real-Time PCR</td>
<td>Applied Biosystem (Carlsbad, USA)</td>
</tr>
<tr>
<td>Thermomixer</td>
<td>Compact 5436</td>
<td>Eppendorf (Hamburg, D.)</td>
</tr>
<tr>
<td>UV-Tisch</td>
<td>Transilluminator</td>
<td>Fröbel Labortechnik (Lindau, D.)</td>
</tr>
<tr>
<td>Vakuumpumpe</td>
<td>Trivac D2,5 E</td>
<td>Leybold Vakuum (Köln, D.)</td>
</tr>
<tr>
<td>Wasserthermostat</td>
<td>MultiTemp III</td>
<td>GE Healthcare (Little Chalfont, USA)</td>
</tr>
<tr>
<td>Zentrifugen</td>
<td>Rotanta 460R</td>
<td>Hettich (Baech, D.)</td>
</tr>
<tr>
<td></td>
<td>Kühlzentrifuge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5417R Kühlzentrifuge</td>
<td>Eppendorf (Hamburg, D.)</td>
</tr>
<tr>
<td></td>
<td>Sorvall Evolution RC</td>
<td>Thermo Scientific (Rockford, USA)</td>
</tr>
</tbody>
</table>
2.2. Methoden

2.2.1. Pflanzliche Methoden

2.2.1.1. Anzuchtbedingungen

In der vorliegenden Arbeit standen verschiedene Arabidopsis thaliana-Linien der Ökotypen Columbia (Col-0) und Wassilewskija (WS) als Versuchspflanzen zur Verfügung. Die Kultivierung der Pflanzen erfolgte tagsüber bei 20° C bzw. nachts bei 18° C unter Langtagbedingungen (16 h Licht/8 h Dunkelheit) bei einer relativen Luftfeuchte von 60%. Die Lichtintensität während der Photoperiode betrug 70 µmol s\(^{-1}\) m\(^{-2}\). Die Samen wurden entweder auf Erde oder MS-Medium verteilt und für zwei Tage zur Vernalisation bei 4° C im Dunkeln aufbewahrt, bevor sie unter den jeweiligen Bedingungen angezogen wurden.

2.2.1.2. Pflanzenaussaat auf Erde

Für Infektionsexperimente, RT-qPCR-Analysen sowie molekulare und phänotypische Untersuchungen wurde Anzuchterde (Floraton 1, Floragard) im Verhältnis 4:1 mit Quarzsand vermischt, mit Wasser angefeuchtet und jeweils fünf Samen mit Hilfe eines Zahnstochers auf mit Erde gefüllten Kunststoffschalen (Multiflorpaletten, Teku) abgelegt. In den ersten Anzuchttagen nach der Stratifikation wurden durchsichtige Plastikhauben über den Schalen platziert, um eine hohe Luftfeuchtigkeit für optimale Keimungsvoraussetzungen zu generieren.

2.2.1.3. Pflanzenaussaat unter sterilen Bedingungen


2.2.1.4. Behandlung mit Paraquat

Die Anwendung von Paraquat (Methylviologen Dichlorid-Hydrat, Sigma) erfolgte in unterschiedlichen Konzentrationsstufen sowie durch verschiedene Verfahren und wurde hierfür in deionisiertem Wasser gelöst. Um den Einfluss von Paraquat auf das Keimungsverhalten von Pflanzen zu testen, wurde das MS-Medium mit steril filtrierter Paraquatlösung versetzt und
Material und Methoden

das Pflanzenwachstum nach sechs Tagen dokumentiert. Für die Infiltration von sterilen Keimlingen wurde mehrmals ein Vakuum für ca. 10 sec angelegt, überschüssige Paraquatlösung durch mehrmaliges Waschen mit Wasser entfernt und die Veränderungen nach 24 h Belichtungszeit beobachtet. Im Falle der Sprühapplikation wurden 2 ml der jeweiligen Paraquatlösung mit Hilfe einer Spritzdose (EcoSpray, Labo Chimie France) als feiner Sprühnebel auf die Keimlinge verteilt, um eine möglichst gleichmäßige Benetzung der Blattfläche zu erzielen und die Symptomausprägungen nach 48 h Belichtungszeit erfasst.

2.2.1.5. **GUS-Färbung von Pflanzengewebe**

Bei dieser Farbreaktion wird das Substrat 5-Bromo-4-Chloro-3-Indolyl-D-Glukuronid (X-Gluc) durch ß-Glukuronidase zu Brom-4-Chlor-Indol umgesetzt, welches zu einem blauen Indigofarbstoff dimerisiert. Hierfür wurde das zu untersuchende Pflanzenmaterial zunächst unter Verwendung einer Vakuumpumpe mehrmals für 10 sec mit Fixierpuffer infiltriert, 30 min bei Raumtemperatur inkubiert und dann dreimal mit 500 mM Na-Phosphatpuffer (pH 7,0) gewaschen. Anschließend wurden die Proben mit Färbepeffer versetzt, für 1 h bei 37° C im Wasserbad aufbewahrt und die Reaktion durch Waschen mit 70% Ethanol gestoppt. Die Entfärbung des Pflanzenmaterials erfolgte daraufhin in 70% Ethanol bei 80° C im Wasserbad.

2.2.1.6. **NBT-Färbung von Pflanzengewebe**


2.2.1.7. **DAB-Färbung von Pflanzengewebe**


Material und Methoden

2.2.1.8. Mikroskopie und Fotografie

Die mikroskopischen Untersuchungen von Pflanzenmaterial wie Quer- und Längsschnitte oder vergrößerte Detailaufnahmen wurden mit Hilfe des BX61-Mikroskops der Firma Olympus durchgeführt, wobei jeweils fünf bis zehn Pflanzen für die jeweilige Analyse herangezogen wurden. Für die Anfärbung zellulose- bzw. ligninhaltiger Zellen wurden die Schnitte zuvor mit Astra Blau (Sigma, D.) bzw. Safranin (Sigma, D.) versetzt.


2.2.2. Mikrobiologische Methoden

2.2.2.1. Herstellung kompetenter *E.coli*-Zellen

Zur Herstellung chemisch-kompetenter Zellen wurde 2,5 ml RB-Medium mit einer Kolonie angeimpft und bei 37° C über Nacht bei 200 g inkubiert. Die gesamte Übernachtkultur wurde anschließend auf 250 ml RB-Medium mit 20 mM MgSO₄ überimpft und bis zu einer OD₅₉₀ von 0,4 bis 0,6 bei 37° C unter konstantem Schütteln angezogen. Nach 5-minütiger Zentrifugation bei 2.500 g und 4° C wurde der Überstand vollständig entfernt und das Sediment in 100 ml eisgekühltem TFB1-Puffer resuspendiert. Es folgte eine Inkubation auf Eis für 5 min sowie ein weiterer Zentrifugationsschritt, bevor das Sediment in 10 ml vorgekühltem TFB2-Puffer aufgenommen wurde. Im Anschluss an eine 60-minütige Lagerung der Suspension auf Eis wurden die Zellen zu je 50 µl aliquotiert, in flüssigem Stickstoff eingefroren und bei -80° C aufbewahrt.

2.2.2.2. Transformation kompetenter *E.coli*-Zellen

Für die Hitzeschock-Transformation wurden 50 µl Aliquots der kompetenten *E.coli*-Zellen auf Eis aufgetaut, mit 80 ng bis 100 ng Plasmid-DNA versetzt und für 30 min auf Eis inkubiert. Zur Aufnahme der Plasmid-DNA wurden die Zellen im Wasserbad für 30 sec einer Temperatur von 42° C ausgesetzt und der Ansatz danach für 2 min auf Eis gestellt. Nach Zugabe von 450 µl LB-Medium wurden die Zellen für 1 h bei 37° C unter konstantem Schütteln kultiviert, die Bakteriensuspension kurz abzentrifugiert und das Zellpellet in 100 µl LB-Medium resuspendiert. Die Selektion transformierter Zellen erfolgte durch Ausplattieren des Ansatzes auf LB-Festmedium mit den entsprechenden Antibiotika und Inkubation bei 37° C über Nacht.
2.2.2.3. Herstellung kompetenter Agrobacterium tumefaciens-Zellen

Für die Erzeugung elektrokompetenter Zellen wurde 2 ml LB-Medium mit einer Kolonie angeimpft und bei 28° C über Nacht unter konstantem Schütteln inkubiert. Nach Überimpfung der Vorkultur auf 300 ml LB-Medium folgte eine mehrstündige Kultivierung bei 28° C bis eine OD₆₀₀ zwischen 0,5 bis 0,7 vorlag. Im Anschluss wurde die Bakteriensuspension zunächst für 30 min auf Eis gekühlt, 20 min bei 4° C bzw. 20 g zentrifugiert und das Zell sediment in 125 ml eisgekühltem Wasser resuspendiert. Nach 30-minütiger Aufbewahrung auf Eis und erneuter Zentrifugation bzw. Pellet-Resuspendierung wurden die Zellen nochmals für 60 min auf Eis inkubiert und zentrifugiert. Im letzten Schritt wurde die Bakterien schließlich in 3 ml eisgekühltem 15% (v/v) Glycerin aufgenommen und in 50 µl Aliquots aufgeteilt, die sofort in flüssigem Stickstoff eingefroren bzw. bei -80° C aufbewahrt wurden.

2.2.2.4. Transformation kompetenter Agrobacterium tumefaciens-Zellen


2.2.2.5. Agrobacterium-vermittelte Transformation von Arabidopsis thaliana

Die Transformation erfolgte nach der „floral dip“-Methode, welche auf der Vakuuminfiltration unreifer Blütenstände von Arabidopsis-Pflanzen mit einer Suspension kompetenter Agrobacterium tumefaciens-Zellen basiert. Hierfür wurde zunächst 3 ml LB-Medium mit einer Kolonie des Agrobacterium-Stammes, welcher zuvor mit den entsprechenden Plasmid-Konstrukten transformiert wurde, angeimpft und über Nacht bei 28° C inkubiert. Nach Überimpfung der Vorkultur auf 300 ml LB-Medium folgte eine erneute Kultivierung bei 28 °C über Nacht unter konstantem Schütteln bis eine OD₆₀₀ zwischen 1,4 bis 1,6 vorlag. Die Bakteriensuspension wurde anschließend durch Zentrifugation für 15 min bei 2.500 g und 4° C pelletiert, das Zellsediment in 10 ml einer 5% (w/v) Saccharoselösung...
inklusive 0,05% (v/v) Silwet L-77 (Lehle Seeds, Round Rock) aufgenommen und im gleichen Medium auf eine OD_{600} von 0,8 verdünnt. Die gesamten Blütenstände der zu transformierenden Arabidopsis-Pflanzen wurden dann für ca. 10 sec in das Infiltrationsmedium eingetaucht und die Pflanzen im Anschluss mit einer Plastikhaube abgedeckt, um eine hohe Luftfeuchtigkeit zu gewährleisten. Nach zwei Tagen wurde die Abdeckung entfernt und die Pflanzen unter Langtagbedingungen bis zur Samenreife kultiviert. Die Selektion transformierter Samen erfolgte in Abhängigkeit des verwendeten Vektors entweder mittels Fluoreszenz (pAlligator2) oder BASTA-Resistenz (pB2GW7).

2.2.2.6. Bakterieninfektion von Arabidopsis thaliana

Für die Proteomanalyse mit infiziertem Pflanzenmaterial wurden die beiden Bakterienstämme Pseudomonas syringae DC3000 und Pseudomonas syringae DC3000 (avrRpt2) ausgehend von Glycerinkulturen auf King’s B-Festmedium mit den entsprechenden Antibiotika ausgestrichen und zwei Tage bei 28° C inkubiert. Danach wurde 3 ml LB-Medium mit einer Kolonie angeimpft und über Nacht bei 28° C unter konstantem Schütteln angezogen. Die Bakteriensuspension wurde anschließend durch Zentrifugation für 10 min bei 3.500 g und 4° C pelletiert, das Zellsediment in 3 ml einer 10 mM MgCl₂-Lösung aufgenommen und im gleichen Medium zusammen mit 0,0001% (v/v) Silwet L-77 auf eine OD_{600} von 0,002 eingestellt. Dieser Wert entsprach in etwa einer Bakterienkonzentration von 1x10⁶ Kolonie bildenden Einheiten pro ml Infiltrationslösung. Die bakterielle Infektion mittels Vakuuminfiltration erfolgte schließlich unter Verwendung von sieben Wochen alten Arabidopsis-Pflanzen, welche zuvor für 24 h unter einer Plastikhaube aufbewahrt wurden, um durch hohe Luftfeuchtigkeit eine erhöhte Stomata-Öffnung zu erzielen. Im Anschluss an die Inokulation wurden die Pflanzen bis zur Ernte des infizierten Blattmaterials bei hoher Luftfeuchtigkeit aufbewahrt, was die Entwicklung von Krankheitssymptomen unterstützte.

2.2.3. Molekularbiologische Methoden

2.2.3.1. Isolierung von Plasmid-DNA aus E.coli

2.2.3.2. Isolierung von pflanzlicher RNA


2.2.3.3. Bestimmung der Nukleinsäure-Konzentration

Die Quantifizierung von DNA und RNA wurde durch photometrische Absorptionsmessung bei einer Wellenlänge von 260 nm und 280 nm bestimmt. Die Messungen erfolgten hierbei am NanoDrop ND-1000 der Firma NanoDrop Technologies, wobei jeweils ein Probenvolumen von 1,5 µl aufgetragen und die Konzentration gegen Wasser als Leerwert berechnet wurde. Eine Verunreinigung der Probe mit Proteinen wird dabei über den Quotienten der Absorptionen bei 260 nm und 280 nm ermittelt, wobei die Idealwerte für DNA bei 1,8 und für RNA bei 2,0 liegen sollten. Zusätzlich ergibt der Quotient der Absorptionen bei 230 nm und 260 nm Auskunft über Verunreinigungen durch Phenole oder Polysaccharide, wobei das Verhältnis für einen adäquaten Reinheitsgrad mindestens einen Wert von 2 ergeben sollte.

2.2.3.4. Elektrophoretische Auftrennung von Nukleinsäuren

Die Auftrennung von Nukleinsäuren und PCR-Amplifikaten für analytische und préparative Zwecke erfolgte in 1% (w/v) Agarose-Gelen mit 0,5 µg/ml Ethidiumbromid-Zusatz in Gegenwart von 1x TAE-Puffer. Zu untersuchende Proben wurden 5:1 mit DNA-Ladepuffer bzw. 1:10 mit RNA-Ladepuffer vermischt, zusammen mit 10 µl eines DNA-Größenmarkers (GeneRuler 1 kb, Fermentas) bzw. RNA-Größenmarkers (Puc 100 bp, Fermentas) auf das Gel aufgetragen und bei 120 Volt für 30 min aufgetrennt. Die anschließende Visualisierung separierter Nukleinsäuren erfolgte durch Fluoreszenzemission des interkalierenden Ethidiumbromids unter UV-Licht und wurde mit Hilfe des Geldokumentationssystems Gel-Doc 2000 der Firma BioRad erfasst.
2.2.3.5. Isolierung und Reinigung von DNA aus Agarosegelen

Für eine weitere Verwendung von PCR-Amplifikaten in Klonierungsansätzen wurden einzelne DNA-Banden nach Sichtbarmachung durch UV-Licht unter Verwendung eines Skalpels mitsamt der Agarose aus dem Gel ausgeschnitten. Die anschließende Isolierung der DNA aus dem Gel erfolgte mit dem QIAquick Gel Extraction Kit der Firma Qiagen und wurde entsprechend den Herstellerangaben durchgeführt. Der Erfolg der durchgeführten Aufreinigung wurde durch ein analytisches Agarosegel überprüft.

2.2.3.6. Enzymatischer Verdau von DNA


2.2.3.7. Sequenzierung von DNA


2.2.3.8. Polymerase-Kettenreaktion (PCR)

Die Polymerase-Kettenreaktion wurde zur enzymatischen Vervielfältigung spezifischer DNA-Abschnitte aus einer längeren, doppelsträngigen DNA-Sequenz *in-vitro* verwendet. Dabei wurden zwei sequenzspezifische Oligonukleotide (in *sense*- und *antisense*-Orientierung) eingesetzt, die den zu amplifizierenden DNA-Bereich flankierten. Durch einen sich wiederholenden Zyklus aus DNA-Denaturierung, Primer-Hybridisierung und Nukleotid-Elongation der generierten Einzelstränge in Gegenwart einer Phusion High-Fidelity DNA-Polymerase der
Firma New England BioLabs wurde eine exponentielle Vervielfältigung der jeweiligen DNA-Fragmente erzielt. Ein standardmäßiger Reaktionsansatz bestand aus folgender Zusammensetzung:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Eingesetztes Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x Reaktionspuffer</td>
<td>2 µl</td>
</tr>
<tr>
<td>2 mM dNTP</td>
<td>1 µl</td>
</tr>
<tr>
<td>10 µM Primer_for</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>10 µM Primer_rev</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>DNA-Polymerase</td>
<td>0,1 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>20 ng</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>ad 10 µl</td>
</tr>
</tbody>
</table>

Alle PCR-Reaktionen wurden in einem Thermocycler PTC-200 der Firma BioRad durchgeführt und analog der aufgelisteten Programm-Parameter realisiert. Der Ergebnis der PCR wurde anschließend durch ein analytisches Agarosegel überprüft.

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Dauer</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>98° C</td>
<td>30 sec</td>
<td>1</td>
</tr>
<tr>
<td>98° C</td>
<td>10 sec</td>
<td>35</td>
</tr>
<tr>
<td>55° C</td>
<td>20 sec</td>
<td>35</td>
</tr>
<tr>
<td>72° C</td>
<td>30 sec</td>
<td>35</td>
</tr>
<tr>
<td>72° C</td>
<td>10 min</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2.3.9. **Kolonie-Polymerase-Kettenreaktion**

Um positive Klone nach E.coli-Transformationen zu identifizieren, die das gewünschte Kandidatengen nach Klonierungsreaktionen enthielten, wurde eine Kolonie-PCR durchgeführt. Für diese PCR-Reaktion wurden Primer eingesetzt, die entlang den homologen Rekombinationsstellen der verwendeten Vektorsysteme hybridisierten und somit das inserierte Kandidatengen flankierten. Dementsprechend erhielt man im Falle des erfolgreichen Einbaus des klonierten Fragments Amplifikate mit der jeweiligen Größe des Kandidatengens, die durch Auftrennung in einem 1% (w/v) Agarosegel nachgewiesen werden konnten. Als PCR-Ansatz wurden folgende Komponenten in Form eines Mastermixes für mehrere Reaktionen bereitgestellt:
Material und Methoden

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Eingesetztes Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x Reaktionspuffer</td>
<td>2 µl</td>
</tr>
<tr>
<td>2 mM dNTP</td>
<td>2 µl</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>1,2 µl</td>
</tr>
<tr>
<td>10 µM attB1_for</td>
<td>1 µl</td>
</tr>
<tr>
<td>10 µM attB2_rev</td>
<td>1 µl</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>0,1 µl</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>Add 20 µl</td>
</tr>
</tbody>
</table>

Mit Hilfe eines sterilen Zahnstochers wurde von einer Kolonie Zellmaterial entnommen und jeweils in einen Reaktionsansatz eingetaucht. Während der anschließenden PCR wurde in der Denaturierungsphase die DNA aus den Bakterien freigesetzt und stand zur Amplifikation zur Verfügung. Die Kolonie-PCR wurde mit dem folgenden Programm durchgeführt:

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Dauer</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>94°C</td>
<td>2 min</td>
<td>1</td>
</tr>
<tr>
<td>94°C</td>
<td>30 sec</td>
<td>39</td>
</tr>
<tr>
<td>50°C</td>
<td>30 sec</td>
<td>39</td>
</tr>
<tr>
<td>72°C</td>
<td>1 min</td>
<td>39</td>
</tr>
<tr>
<td>72°C</td>
<td>5 min</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2.3.10. Reverse-Transkriptase(RT)-Polymerase-Kettenreaktion

Als Ausgangsmaterial für Klonierungsreaktionen sowie zur Transkriptüberprüfung von Insertionslinien erfolgte die Synthese von cDNA ausgehend von isolierter pflanzlicher RNA mit Hilfe des SuperScript II First Strand Synthesis Kits der Firma Invitrogen. Als Ausgangsmaterial wurde jeweils 1 µg RNA eingesetzt und nach den Angaben des Herstellers in cDNA umgeschrieben, wobei für jede Probe zusätzlich eine Negativkontrolle ohne Enzymzugabe durchgeführt wurde. Für den allgemeinen Reaktionsansatz wurden folgende Komponenten verwendet:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Eingesetztes Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x Reaktionspuffer</td>
<td>4 µl</td>
</tr>
<tr>
<td>20 mM dNTP</td>
<td>1 µl</td>
</tr>
<tr>
<td>Oligo (dT)15 (Promega)</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>0,1 M DDT</td>
<td>2 µl</td>
</tr>
<tr>
<td>RibuLock (Fermentas)</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNA</td>
<td>1 µg</td>
</tr>
<tr>
<td>DEPC-H₂O</td>
<td>ad 20 µl</td>
</tr>
</tbody>
</table>
Nach 10-minütiger Inkubation des Ansatzes bei RT und Zugabe von 1 µl Reverse Transkriptase Superscript II, welche zuvor 1:1 mit 1x Reaktionspuffer verdünnt wurde, erfolgte die cDNA-Synthese unter folgenden PCR-Bedingungen:

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>42° C</td>
<td>30 min</td>
</tr>
<tr>
<td>50° C</td>
<td>40 min</td>
</tr>
<tr>
<td>95° C</td>
<td>5 min</td>
</tr>
</tbody>
</table>

Die Qualität der synthetisierten cDNA wurde anschließend in einer weiteren PCR mit Hilfe von Tubulin-Primern und 1 µl cDNA analog der Vorgehensweise unter 2.2.3.8 untersucht. Die folgende Auftrennung des gesamten Ansatzes in einem 1% (w/v) Agarosegel sollte im Falle einer erfolgreichen cDNA-Synthese in einer einzigen Bande resultieren, welche in der Negativkontrolle nicht nachgewiesen werden kann.

2.2.3.11. Quantitative Echtzeit(qRT)-Polymerase-Kettenreaktion

Diese Methode basiert auf dem Prinzip der herkömmlichen PCR, wobei dem Reaktionsansatz der Farbstoff SYBR Green zugesetzt wird, der mit Doppelstrang-DNA einen fluoreszierenden Komplex eingeht und Licht bei einer Wellenlänge von 521 nm emittiert. Diese Fluoreszenz-Emission nimmt bei jedem Temperaturzyklus proportional zum entstandenen PCR-Produkt zu, so dass der Anstieg der Fluoreszenz als Maß für die Quantifizierung herangezogen werden kann.

Im ersten Schritt wurde RNA aus Blattmaterial von Arabidopsis-Pflanzen wie unter Punkt 2.2.3.2 beschrieben, isoliert und unter Verwendung des QuantiTect Reverse Transcription-Kits der Firma Qiagen nach Herstellerangaben in cDNA umgeschrieben. Dieses System bietet den Vorteil, dass Verunreinigungen der Probe durch genomische DNA, die während der RNA-Extraktion nicht vollständig entfernt werden konnte, zuverlässig eliminiert werden.

Als Ausgangsmaterial wurde jeweils 1 µg RNA eingesetzt und der Erfolg der cDNA-Synthese wie unter Punkt 2.2.3.10 in einem analytischen Agarosegel mit Tubulin-Primern überprüft. Für die PCR-Reaktion wurden genspezifische Primerpaare mit Hilfe der Software Primer Express der Firma Applied Biosystems konstruiert, wobei die Sequenzen so gewählt wurden, dass diese eine Exon-Intron-Grenze überspannen und maximal ein Amplifikat von 120 Basenpaaren erzielen (siehe 2.1.7). Alle Nukleotidsequenzen wurden zusätzlich auf mögliche Homologien mit dem Blast-Server der NCBI-Datenbank untersucht und hinsichtlich ihrer Spezifität mit verschiedenen cDNA-Verdünnungsstufen überprüft. Ein Reaktionsansatz setzte sich wie folgt zusammen:
Material und Methoden

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Eingesetztes Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x SYBR Green Mastermix</td>
<td>10 µl</td>
</tr>
<tr>
<td>10 mM Primer_for</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>10 mM Primer_rev</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>DNA (1:20-Verd.)</td>
<td>4 µl</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

Der Ansatz wurde in einer 96-Mikrowellplatte der Firma Thermo Scientific vorgelegt und die PCR-Reaktion inklusive Schmelzkurvenanalyse in einem 7500 Real-Time PCR-Thermocycler der Firma Applied Biosystem analog des aufgelisteten Temperaturprofils durchgeführt.

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Dauer</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>95° C</td>
<td>15 min</td>
<td>1</td>
</tr>
<tr>
<td>95° C</td>
<td>15 sec</td>
<td>40</td>
</tr>
<tr>
<td>55° C</td>
<td>35 sec</td>
<td>40</td>
</tr>
<tr>
<td>72° C</td>
<td>45 sec</td>
<td>40</td>
</tr>
</tbody>
</table>

Schmelzkurvenanalyse

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Dauer</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>95° C</td>
<td>15 sec</td>
<td>1</td>
</tr>
<tr>
<td>60° C</td>
<td>1 min</td>
<td>1</td>
</tr>
<tr>
<td>95° C</td>
<td>15 sec</td>
<td>1</td>
</tr>
</tbody>
</table>


2.2.3.12. Klonierung von Superoxid-Dismutasen mit dem GATEWAY-System

Für die Klonierung von Nukleotidsequenzen wurde wie in Kapitel 2.2.3.2 und 2.2.3.10 beschrieben, zunächst RNA aus Blattmaterial isoliert und in cDNA umgeschrieben. Im nächsten Schritt wurden die Nukleotidsequenzen mit Primern amplifiziert, welche an den
Enden eine spezifische Rekombinations-Erkennungssequenz (sog. att-Bereiche) enthielten und die PCR-Produkte nach der Auftrennung aus dem Gel isoliert. Es folgte eine erste Rekombinations-Reaktion (BP-Reaktion), bei der die DNA-Fragmente mit Hilfe des GATEWAY BP Clonase Enzymmix-Kits der Firma Invitrogen nach Angaben des Herstellers in den Donorvektor pDONR221 integriert wurden. Ein Reaktionsansatz bestand aus folgender Zusammensetzung:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Eingesetztes Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP-Puffer</td>
<td>1 µl</td>
</tr>
<tr>
<td>Clonase</td>
<td>1 µl</td>
</tr>
<tr>
<td>pDONR221</td>
<td>80 ng</td>
</tr>
<tr>
<td>DNA</td>
<td>80-100 ng</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>ad 5 µl</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Komponente</th>
<th>Eingesetztes Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR-Puffer</td>
<td>1 µl</td>
</tr>
<tr>
<td>Clonase</td>
<td>1 µl</td>
</tr>
<tr>
<td>pDEST17 bzw. pDEST42</td>
<td>80 ng</td>
</tr>
<tr>
<td>DNA</td>
<td>80-100 ng</td>
</tr>
</tbody>
</table>

Anschließend wurde nach dem gleichen Prinzip vorgegangen wie nach der BP-Reaktion, allerdings beruhte die Selektion positiver Klone auf Ampicillinresistenz.

2.2.3.13. Klonierung des Promotor-Reportergenkonstrukttes mit dem GATEWAY-System

Für die Untersuchung der gewebespezifischen Expression des GSNO-Reduktase Gens wurde eine 2.000 bp große, putative Promotorsequenz „upstream“ vom ATG-Startcodon mittels PCR amplifiziert und analog der Vorgehensweise in Kapitel 2.2.3.12 in den Donorvektor
Material und Methoden


2.2.3.14. Klonierungsreaktionen für die Komplementation mit dem GATEWAY-System


2.2.3.15. Zielgerichtete Mutagenese

Die zielgerichtete Mutagenese erfolgte analog dem Protokoll des QuickChange Site-Directed Mutagenesis Kit der Firma Stratagene, wobei die synthetisierten Primer mindestens 12 korrekte Basenpaarungen „up- und downstream“ der Mutation aufwiesen. Als Ausgangsprodukt für die Mutations-Reaktion wurde der Donorvektor pDONR221 mit korrekter Mn-SOD-Sequenz verwendet. Der Reaktionsansatz enthielt im Vergleich zum Standardprotokoll unter 2.2.3.8 folgende Änderungen:
Material und Methoden

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Eingesetztes Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x Reaktionspuffer</td>
<td>4 µl</td>
</tr>
<tr>
<td>2 mM dNTP</td>
<td>2 µl</td>
</tr>
<tr>
<td>10 µM Primer_for</td>
<td>1 µl</td>
</tr>
<tr>
<td>10 µM Primer_rev</td>
<td>1 µl</td>
</tr>
<tr>
<td>DNA-Polymerase</td>
<td>0,2 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>600 ng</td>
</tr>
</tbody>
</table>

Aufgrund der Verwendung einer iProof-DNA Polymerase der Firma BioRad und der Amplifikation des gesamten Vektors wurden die PCR-Bedingungen wie folgt angepasst:

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Dauer</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>98° C</td>
<td>1 min</td>
<td>1</td>
</tr>
<tr>
<td>98° C</td>
<td>25 sec</td>
<td>20</td>
</tr>
<tr>
<td>55° C</td>
<td>25 sec</td>
<td>20</td>
</tr>
<tr>
<td>72° C</td>
<td>6 min</td>
<td>20</td>
</tr>
<tr>
<td>72° C</td>
<td>10 min</td>
<td>1</td>
</tr>
</tbody>
</table>

Im nächsten Schritt wurde ein Teil des Ansatzes zur Qualitätsüberprüfung auf einem 1% (w/v) Agarosegel aufgetrennt und das restliche Probenvolumen für 3 h bei 37° C mit dem Restrikionsenzym DpnI verdaut, um methylierte und somit unmutierte DNA-Stränge zu zerstören. Nach *E. coli*-Transformation wurde anschließend von fünf Klonen die Plasmid-DNA isoliert und durch Sequenzierung auf das Vorhandensein der Mutation hin überprüft.

2.2.4. Biochemische Methoden

2.2.4.1. Isolierung von Proteinen aus Pflanzenmaterial

Für die Proteomanalyse nach *Pseudomonas*-Infiltration erfolgte die Extraktion von Gesamtprotein aus dem Blattmaterial von sieben Wochen alten *Arabidopsis*-Pflanzen, während für die Bestimmung von Enzymaktivitäten Pflanzenmaterial von zwei Wochen alten Keimlingen verwendet wurden, die unter sterilen Bedingungen auf ½MS-Medium mit oder ohne Zugabe von Paraquat heranwuchsen. Um genügend Ausgangsmaterial für Untersuchungen zu erhalten, wurden in diesem Fall mindestens 100 Keimlinge zu einer biologischen Wiederholung vereint.

Die Isolierung der Proteine erfolgte ausgehend von tiefgefrorenem Pflanzenmaterial, das zunächst in flüssigem Stickstoff fein zermahlen wurde. Je nach Versuch wurden im nächsten Schritt 0,1 g bis 1 g des Pulvers mit zwei Volumeneinheiten Extraktionspuffer versetzt, kurz durchmischt und das Homogenat zweimal für 15 min bei 25.000 g und 4° C zentrifugiert.

2.2.4.2. Bestimmung der Proteinkonzentration

Die quantitative Ermittlung des Proteingehaltes erfolgte nach der Bradford-Methode und beruht auf der Komplexbildung von Proteinen mit dem Farbstoff Coomassie-Brilliantblau G-250, was eine Verschiebung des Absorptionsmaximums von 465 nm zu 595 nm zur Folge hat. Die Proteinkonzentration wurde über eine Eichgerade berechnet, die parallel zu den gemessenen Proben mit Rinderserumalbumin im Konzentrationsbereich von 0,1 mg/ml bis 1 mg/ml erstellt wurde.

2.2.4.3. 1D-gelektrophoretische Auftrennung von Proteinen

Die Auftrennung von Proteinen nach ihrem Molekulargewicht erfolgte gemäß dem diskontinuierlichen System nach Laemmli (Laemmli, 1970) und wurde in vertikalen Elektrophoresekammern der Firma Hoefer durchgeführt. Bei dieser Methode werden die Proteine zunächst in einem 4% (v/v) Sammelgel aufkonzentriert und danach in einem 12% (v/v) Trenngel separiert. Ein standardmäßig verwendetes Polyacrylamidgel bestand aus folgender Zusammensetzung:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>8% Stopfgel</th>
<th>12% Trenngel</th>
<th>4% Sammelgel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddH₂O</td>
<td>575 µl</td>
<td>1,67 ml</td>
<td>781 µl</td>
</tr>
<tr>
<td>Trenngel-Puffer</td>
<td>625 µl</td>
<td>1,25 ml</td>
<td></td>
</tr>
<tr>
<td>Sammelgel-Puffer</td>
<td></td>
<td></td>
<td>390 µl</td>
</tr>
<tr>
<td>10% (v/v) SDS</td>
<td>25 µl</td>
<td>50 µl</td>
<td>15,6 µl</td>
</tr>
<tr>
<td>37,5% (v/v) Acrylamid</td>
<td>1,25 ml</td>
<td>2 ml</td>
<td>313 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>6,25 µl</td>
<td>2,5 µl</td>
<td>6,25 µl</td>
</tr>
<tr>
<td>APS</td>
<td>18,75 µl</td>
<td>25 µl</td>
<td>12,5 µl</td>
</tr>
</tbody>
</table>

Die Proben (1 µg bis 5 µg rekombinantes Protein bzw. 5 µl der verschiedenen Aufreinigungsfractionen - siehe Kap. 2.2.4.10 und 2.2.4.11) wurden mit SDS-Probenpuffer vermischt, 15 min bei 95°C denaturiert und anschließend in 1x Laufpuffer für 60 min bei einer konstanten Stromstärke von 25 mA aufgetrennt. Als Größenmarker zum Vergleich der Molekulargewichte wurden jeweils 10 µl der Page Ruler Prestained Protein Ladder (Fermentas) oder
Material und Methoden

Precision Plus Protein Standard (BioRad) eingesetzt. Zur Anfärbung der einzelnen Protein- 
banden wurde das Gel über Nacht in Coomassie-Färbelösung inkubiert und danach 
mindestens 2 h in Entfärbelösung eingebettet bis nur noch ein minimales Hintergrundsignal 
vorhanden war.

2.2.4.4. Probenvorbereitung für die 2D-Gelelektrophorese

Um die Proben vor der Auftrennung mittels differentieller 2D-Gelelektrophorese von 
Verunreinigungen wie Lipiden oder Nukleinsäuren zu befreien, wurden jeweils 50 µg Protein 
unter Verwendung des 2D-Clean-Up Kits der Firma GE Healthcare nach Herstellerangaben 
ausgefällt. Nach 20-minütiger Zentrifugation bei 25.000 g bzw. 4° C wurde das Sediment 
zunächst kurz bei RT getrocknet, in 25 µl Labelling-Puffer resuspendiert und für 1 h bei RT 
inkubiert. Zusätzlich wurde von allen zu untersuchenden Proben ein Gesamtpool als interner 
Standard erstellt und wie oben beschrieben in Form von 50 µg-Aliquots präzipitiert. 
Anschließend wurden die Proteinkonzen unter Verwendung des Minimal-Labelling-Kits der 
Firma GE Healthcare mit drei verschiedenen Fluoreszenzfarbstoffen (Cy2, Cy3 und Cy5) 
markiert, wobei interne Standardproben mit dem Cy2-Farbstoff bzw. zu analysierende 
Proben wahlweise mit Cy3- oder Cy5-Farbstoffen versetzt wurden. Die lyophilisierten 
Farbstoffe wurden hierfür nach Herstellerangaben in DMF auf eine Konzentration von 400 
pmol/µl verdünnt und pro µg Proteinlysat 8 pmol Farbstoff eingesetzt. Nach 30-minütiger 
Inkubation auf Eis wurde die Reaktion durch Zugabe von 1 µl 10 mM Lysin und erneuter 
Aufbewahrung der Proben für 15 min auf Eis gestoppt. Für analytische 2D-Gele wurden 
anschließend jeweils zwei Proteinproben mit einer internen Standardprobe im Verhältnis 
1:1:1 vereint und durch Zugabe von Lysis-Puffer auf ein Endvolumen von 150 µl eingestellt.

2.2.4.5. Isoelektrische Fokussierung von Proteinen

Für die Auftrennung der Proteine nach ihrem isoelektrischen Punkt (1. Dimension) wurden 
icht lineare Gelstreifen mit immobilisiertem pH-Gradienten verwendet, welche einen pH-
Bereich von 3 bis 11 und eine Länge von 24 cm besaßen. Die IPG-Streifen wurden über Nacht 
bei RT in 340 µl Rehydrierungspuffer rehydriert, die Proben in Beladungstaschen appliziert 
und der Kontakt zwischen Gelstreifen und Elektroden mit feuchtem Filterpapier realisiert. 
Die isoelektrische Fokussierung erfolgte in einer Ettan IPGphor3-Apparatur der Firma GE 
Healthcare nach Hersteller-Protokoll und wurde mit Hilfe der Ettan IPGphor3 Control 
Software dokumentiert, wobei ein mehrstufiges Programm mit steigender Spannung 
durchlaufen wurde:
### Material und Methoden

<table>
<thead>
<tr>
<th>Ablauf</th>
<th>Spannung</th>
<th>Dauer</th>
<th>Voltstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe</td>
<td>150 V</td>
<td>3 h</td>
<td>450 Vh</td>
</tr>
<tr>
<td>Stufe</td>
<td>300 V</td>
<td>3 h</td>
<td>900 Vh</td>
</tr>
<tr>
<td>Gradient</td>
<td>1.000 V</td>
<td>6 h</td>
<td>3.900 Vh</td>
</tr>
<tr>
<td>Gradient</td>
<td>10.000 V</td>
<td>3 h</td>
<td>16.500 Vh</td>
</tr>
<tr>
<td>Stufe</td>
<td>10.000 V</td>
<td>3 h</td>
<td>30.000 Vh</td>
</tr>
</tbody>
</table>

#### 2.2.4.6. 2D-gelektrophoretische Auftrennung von Proteinen

Bevor die Proteine in der 2. Dimension nach ihrem Molekulargewicht aufgetrennt werden konnten, wurden die Gelstreifen in einem zweistufigen Prozess zunächst für 15 min in Äquilibrierungspuffer mit 1% (w/v) DTT reduziert und anschließend für 15 min in Äquilibrierungspuffer mit 2,5% (w/v) Iodoacetamid alkyliert. Für die vertikale SDS-PAGE wurden Gele mit einer Größe von 25 cm x 21 cm hergestellt, die eine Acrylamid-Konzentration von 12,5% enthielten und über Nacht bei RT auspolymerisiert. Die Gelstreifen wurden auf den SDS-Gelen platziert und vor der Fixierung mit 0,5% (w/v) Agaroselösung 15 µl Proteinstandard auf ein kleines Filterpapier seitlich der Streifen aufgetragen. Der Lauf erfolgte in einer Ettan DALTsix Elektrophorese-Apparatur der Firma GE Healthcare nach Angaben des Herstellers bei 12° C mit einer Stromstärke von 15 mA pro Gel über einen Zeitraum von 16 h bis 18 h.

#### 2.2.4.7. Silber-Färbung von Proteinen auf 2D-Gelen

Zur Visualisierung der aufgetrennten Proteine auf 2D-Gelen bzw. für das manuelle Ausstanzen einzelner Proteine aus préparativen Gelen mit 300 µg Proteinprobe wurde eine Silberfärbung nach Shevchenko (Shevchenko et al., 1996) durchgeführt. Hierfür wurden die Gele mindestens 1 h in Fixierlösung eingebettet, dann drei Mal für 20 min mit 50% (v/v) Ethanol gewaschen und für 90 sec in 0,8 mM Na$_2$S$_2$O$_3$-Lösung inkubiert. Nach zweimaligem Waschen mit Wasser für jeweils 1 min wurden die Gele für 25 min mit Silber-Färbelösung imprägniert und danach erneut mehrmals mit Wasser gespült. Durch Zugabe von Entwicklungslösung wurden die Silberionen von alkalischem Formaldehyd zu elementarem Silber reduziert, was in einer grau-schwarzen Anfärbung der Proteine resultierte. Die Dauer der Entwicklung wurde dabei nach visuellem Eindruck bis zur gewünschten Intensität der Proteinspots durchgeführt und dann durch Überführung der Gele in Fixierlösung gestoppt.

#### 2.2.4.8. Transfer von Proteinen mittels Western Blot

Für den selektiven Nachweis bestimmter Proteine mittels Antikörper-gekoppelter Detektion wurden die aufgetrennten Proteine nach der SDS-PAGE unter Verwendung einer Milliblot-

2.2.4.9. Immunodetektion von Proteinen

2.2.4.10. Heterologe Testexpression und Reinigung von Histidin-Fusionsproteinen


2.2.4.11. Heterologe Überexpression und Reinigung von Histidin-Fusionsproteinen

Für die Überexpression wurden die Bakterienstämme ausgewählt, welche für jedes zu produzierende Protein das beste Expressionsergebnis lieferten und zunächst jeweils Vorkulturen in 50 ml LB-Medium bei 37° C über Nacht hergestellt. Nach 25-minütiger
Zentrifugation bei 4° C wurde das Bakterienpellet in 40 ml LB-Medium gelöst, jeweils 2 l Autoinduktionsmedium angeimpft und die Kultur bis zu einer OD₆₀₀ von 2 bei 37° C angezogen bzw. anschließend über Nacht bei 20° C kultiviert. Nach 16 h bis 18 h wurden die Expressionskulturen durch Zentrifugation bei 3.500 g bzw. 4° C für 30 min pelletiert, jeweils in 160 ml Lysis-Puffer B resuspendiert und aufgrund der großen Volumina unter Verwendung des Hochdruckhomogenisators M110L der Firma Microfluidics sowie des Ultraschallhomogenisators HD2200 der Firma Bandelin nach Herstellerangaben aufgeschlossen. Das erhaltene Zelllysat wurde anschließend für 1 h bei 25.000 g und 4° C zentrifugiert. Für die Aufreinigung wurde abhängig von der Expressionsstärke im Vorversuch zwischen 0,5 ml und 1 ml Ni-NTA-Agarose in Econo-Pac–Säulen der Firma BioRad vorgelegt und je einmal mit 15 ml Wasser gewaschen bzw. mit 15 ml Puffer A äquilibrirt. Im nächsten Schritt wurde der gesamte Überstand zweimal hintereinander auf die Säule appliziert und danach mehrmals mit Puffer A gespült, um unspezifische Proteinanbindungen zu entfernen. Nach zwei weiteren Inkubationsschritten mit 15 ml Waschpuffer 1 und 2 folgten je drei Elutionsstufen mit 5 ml Elutionspuffer bei 1 ml Matrixeinsatz bzw. 3 ml Puffer bei 0,5 ml Matrixeinsatz.

2.2.4.12. Behandlung rekombinant hergestellter SODs mit NO-Donoren

Für in-vitro Studien wurden zunächst bestimmte Komponenten wie Imidazol oder Thioglycerin, die während des Reinigungsprozesses der rekombinanten Proteine verwendet wurden, mit Hilfe der Gelfiltration entfernt, um eventuelle Störeffekte auszuschließen. Hierfür erfolgte eine Umpufferung der gereinigten Eluate der verschiedenen SOD-Isoformen unter Verwendung von Zeba Spin Entsatzungssäulen der Firma Pierce Biotechnology gemäß der Herstelleranweisung in 50 mM Kaliumphosphatpuffer (pH 8,0).

Für die Untersuchung, ob Superoxid-Dismutase durch S-Nitrosylierung in ihrer Aktivität beeinträchtigt werden, wurden die Isoformen in verschiedenen Konzentrationsstufen (0,25 mM und 0,5 mM) mit dem NO-Donor GSNO (Enzo Life Sciences, Lörrach, D.) versetzt und für 20 min bei RT im Dunkeln inkubiert. Parallel hierzu wurden die Proteine zudem in Gegenwart von 5 mM DTT mit GSNO behandelt, was eine effektive Nitrosylierung unterbindet und als Negativkontrolle zusätzlich mit lichtinaktiviertem GSNO versetzt.

Für die Untersuchung, ob Superoxid-Dismutase durch Nitrierung in ihrer Aktivität beeinträchtigt werden, wurden die Isoformen in verschiedenen Konzentrationsstufen (0,1 mM bis 1 mM) mit dem NO-Donor Peroxynitrit (Calbiochem, Darmstadt, D.) inkubiert. Aufgrund der hohen Instabilität dieses Moleküls war es erforderlich, vor jeder Behandlung die Zerfallsrate der eingefrorenen Stammlösungen nach Herstellerangaben im Spektrophotometer bei einer Wellenlänge von 302 nm zu bestimmen. Im Gegensatz zur oben
erwähnten DTT-Behandlung wurde in diesem Fall der Nitrierungs-Hemmstoff Urat sowie lichtinaktiviertes Peroxynitrit als Negativkontrolle verwendet. Um die verschiedenen NO-Donoren bzw. deren Hemmstoffe für den anschließenden Aktivitätstest wieder aus dem Reaktionsansatz zu beseitigen, erfolgte ein weiterer Entsalthgeschritt mit umgepufferten Zeba Spin-Säulen.

2.2.4.13. Bestimmung der Enzymaktivität von Superoxid-Dismutase

Für eine qualitative Bestimmung der SOD-Aktivität wurde die Reduktion von Nitroblautetrazoliumchlorid zu blauem Formazan in Gegenwart von Superoxidradikalen detektiert, die mit Hilfe des Xanthin-Xanthinoxidase-Systems generiert wurden. Aktive Superoxid-Dismutasen inhibieren die Formazan-Bildung und damit die Blaufärbung des Reaktionsansatzes durch Abbau der Superoxidradikale zu Wasserstoffperoxid, was bei einer Wellenlänge von 570 nm verfolgt werden kann. Ein Vorteil dieses Tests besteht darin, dass die Messung nicht durch verschiedene chemische Hemmstoffe beeinträchtigt wird, die eine Unterscheidung der einzelnen SOD-Isoformen ermöglichen.

Die Messungen erfolgten in einem Testvolumen von 1 ml, wobei zunächst jeweils 10 µg der gereinigten Eluatfraktion mit 545 µl SOD-Reaktionspuffer 1 sowie 395 µl Wasser vermischt und die Reaktion dann durch Zugabe von 50 µl 3,5 µM Xanthin-Oxidase gestartet wurde. Die anschließende Detektion der Extinktionsabnahme erfolgte alle 10 sec über einen Zeitraum von 5 min und wurde mit Hilfe des Spektrophotometers Ultrospec 3100 Pro der Firma Amersham Biosciences durchgeführt. Parallel hierzu wurden ebenfalls Aliquots aller Proteineinulote für 15 min bei 95° C denaturiert, um einen internen Kontrollwert für die ungehemmte NBT-Reduktion zu generieren. Für die Identifizierung einzelner SOD-Isoformen wurden Aliquots aller eisenhaltigen SODs mit 0,5 M H2O2-Lösung, CZSOD-Eluate mit 3 mM NaCN-Lösung bzw. die manganhaltige SOD mit beiden Hemmstoffen versetzt und die Ansätze vor der Messung für 1 h bei RT inkubiert. Als Maß für die qualitative Enzymaktivität wurde in diesem Fall die Bildung von Formazan relativ zum internen Kontrollwert in Prozentangaben wiedergegeben.

Für eine quantitative Bestimmung der SOD-Aktivität und die Untersuchung der NO-abhängigen Hemmung von rekombinant produzierten Superoxid-Dismutasen wurde die Reduktion von Cytochrom C (Fe3+) zu Cytochrom C (Fe2+) in Gegenwart von Superoxidradikalen detektiert. Die Rotfärbung des Reaktionsansatzes bzw. die Extinktionszunahme kann photometrisch bei einer Wellenlänge von 550 nm verfolgt werden und wird durch Superoxid-Dismutasen inhibiert. Zur Untersuchung der SOD-Gesamtaktivität wurde 0,5 g Blattmaterial von vier Wochen alten Pflanzen bzw. 0,1 g Material von zwei Wochen alten

2.2.4.14. Bestimmung der Enzymaktivität von GSNO-Reduktase

Für die Untersuchung der GSNO-Reduktase-Aktivität wurde 0,5 g Blattmaterial von vier Wochen alten Pflanzen wie in Kapitel 2.2.4.1 beschrieben, mit 1 ml Extraktionspuffer aufgeschlossen und der Überstand für den Messansatz verwendet. In diesem Fall wurde der Abbau von GSNO indirekt über die Oxidation von Kosubstrat NADH zu NAD⁺ photometrisch bei einer Wellenlänge von 340 nm verfolgt. Die Messungen erfolgten in einem Testvolumen von 1 ml, wobei zwischen 130 µg und 160 µg Protein des Probenextraktes mit 875 µl GSNO-Reduktase-Reaktionspuffer vermischt und die Reaktion dann durch Zugabe von 100 µl 4 mM GSNO gestartet wurde. Die Detektion der Extinktionsabnahme erfolgte alle 20 sec über einen Zeitraum von 10 min. Die GSNO-Reduktase-Aktivität wurde in Katal angegeben und auf den Proteingehalt der jeweiligen Probe bezogen. Ein Katal ist in diesem Zusammenhang definiert als die Enzymmenge, die ein Mol Substrat pro Sekunde umsetzt.

2.2.4.15. Bestimmung der Enzymaktivität von Glutathion-Reduktase

2.2.4.16. Bestimmung der Enzymaktivität von Glutathion-Peroxidase

Das verwendete Testprinzip basiert auf einem gekoppelten Enzymsystem, bei dem Glutathion-Peroxidase die Umsetzung von Wasserstoffperoxid zu Wasser in Gegenwart von Glutathion katalysiert. Das dabei entstehende Glutathiondisulfid wird in einem zweiten Reaktionsschritt mit Hilfe der Glutathion-Reduktase unter NADPH-Verbrauch wieder in Glutathion überführt, was photometrisch bei einer Wellenlänge von 340 nm detektiert werden kann. Für den Messansatz wurde 0,1 g gemörsertes Material von zwei Wochen alten Keimlingen mit 0,2 ml Extraktionspuffer aufgeschlossen und zwischen 20 µg und 30 µg Protein des Probeneextraktes in einem Reaktionsvolumen von 1 ml mit Glutathion-Peroxidase-Reaktionspuffer vermischt. Nach 5-minütiger Inkubationszeit bei RT wurde die Reaktion durch Zugabe von 15 µl 0,1% (v/v) H₂O₂-Lösung gestartet und die Extinktionsabnahme alle 10 sec über einen Zeitraum von 5 min gemessen. Die Berechnung der Enzymaktivität erfolgte analog zu der in Kapitel 2.2.4.14. beschriebenen Vorgehensweise.

2.2.4.17. Bestimmung der Enzymaktivität von Glutathion S-Transferase

Glutathion S-Transferasen katalysieren die Reaktion zwischen elektrophilen, hydrophoben Substanzen und reduziertem Glutathion. In diesem Versuchsansatz wurde das artifizielle Substrat 1-Chlor-2,4-Dinitrobenzol (CDNB) eingesetzt und das resultierende Glutathion-CDNB-Konjugat direkt photometrisch bei einer Wellenlänge von 340 nm nachgewiesen. Für die Messung wurde 0,1 g gemörsertes Material von zwei Wochen alten Keimlingen mit 0,2 ml Extraktionspuffer aufgeschlossen und zwischen 50 µg und 60 µg Protein des Probeneextraktes in einem Reaktionsvolumen von 1 ml mit Glutathion S-Transferase-Reaktionspuffer vermischt. Anschließend wird die Reaktion durch Zugabe von 100 µl 10 mM Glutathion gestartet und die Absorptionszunahme alle 10 sec über einen Zeitraum von 5 min gemessen. Die Berechnung der Enzymaktivität erfolgte analog zu der in Kapitel 2.2.4.14. beschriebenen Vorgehensweise.

2.2.4.18. Bestimmung des Glutathion-Gehaltes

Material und Methoden

des Kofaktors NADPH wieder in Glutathion umgewandelt, welches erneut mit DTNB reagieren kann. Für die Messungen wurden jeweils 0,1 g pulverisiertes Pflanzenmaterial in 1 ml 0,2 M HCl extrahiert und die Proben für 10 min bei 25.000 g bzw. 4° C zentrifugiert. Anschließend wurden 0,5 ml des Überstandes mit 50 µl 0,2 M NaH₂PO₄ (pH 5,6) versetzt und mit 0,2 M NaOH auf einen pH-Wert zwischen 5,0 und 6,0 eingestellt. Zur Bestimmung des Gesamtglutathion-Gehaltes wurden im nächsten Schritt jeweils 120 µl Glutathion-Pufferlösung mit 50 µl Wasser in Vertiefungen einer 96-Mikrowellplatte der Firma Greiner-Bio-One vorgelegt, mit 20 µl neutralisiertem Extrakt vermischt und die Reaktion durch Zugabe von 0,2 Unit Glutathion-Reduktase gestartet. Die anschließende Detektion der Absorptionszunahme bei 412 nm erfolgte alle 25 sec über einen Zeitraum von 5 min und wurde mit Hilfe des Spektrophotometers GENios der Firma Tecan durchgeführt. Die Konzentrationsbestimmung wurde schließlich durch Vergleich mit einer Eichgeraden aus bekannten GSH-Standards ermittelt. Für die Quantifizierung des GSSG-Gehaltes wurden vor der Messung 200 µl des neutralisierten Extraktes mit 1 µl 2-Vinylpyridin für 30 min bei RT inkubiert, um reduziertes Glutathion durch Derivatisierung aus dem Ansatz zu entfernen. Nach 15-minütiger Zentrifugation bei 25.000 g wurden 40 µl der vorbehandelten Proben mit 120 µl Glutathion-Pufferlösung und 30 µl Wasser vermischt und die Reaktion durch Zugabe von 0,2 Unit Glutathion-Reduktase nach den gleichen Parametern wie oben gestartet. Parallel hierzu wurde ebenfalls eine Kalibrierungskurve mit verschiedenen GSSG-Konzentrationen erstellt. Die finale Konzentration an reduziertem Glutathion wurde rechnerisch ermittelt, indem von dem gemessenen Gesamt-Glutathiongehalt die doppelte Menge an Glutathiondisulfid subtrahiert wurde.

2.2.4.19. Bestimmung thiolhaltiger Komponenten des Glutathion-Stoffwechsels

Um den Einfluss von NO-Begasung auf die Glutathion-Biosynthese zu untersuchen, wurden thiolhaltige Ausgangs-, Zwischen- und Abbauprodukte des Glutathion-Stoffwechsels in vier Wochen alten Pflanzen analysiert. Hierfür wurden die Pflanzen in einem Glasesexikkator platziert, gasförmiges NO bis zu einer Konzentration von 80 ppm eingeleitet und die Pflanzen anschließend 20 min lang inkubiert. Nach 1 h Regenerationszeit wurde das behandelte Blattmaterial in flüssigem Stickstoff tiefgefroren und für die anschließenden Analysen eingesetzt. Die NO-Begasungsexperimente erfolgten am Institut für biochemische Pflanzenpathologie in der Arbeitsgruppe von Dr. Christian Lindermayr, während die quantitative Bestimmung einzelner Komponenten des Glutathion-Stoffwechsels von Dr. Markus Wirtz an der Universität Heidelberg durchgeführt wurde.
2.2.4.20. Gasphasen-Chemilumineszenz zur Bestimmung von NO-Metaboliten


Die Bestimmung des Nitratgehaltes erfolgte analog der oben beschriebenen Vorgehensweise mit geringfügigen Veränderungen. Die Probenlösungen wurden vor der Applikation 1:10.000 (Blattextrakte) bzw. 1:1.000 (Spross- und Blütenextrakte) mit bidestilliertem Wasser verdünnt und enthaltenes Nitrat mit Hilfe einer 90° C heißen, vanadiumhaltigen Reaktionslösung reduziert. Das freigesetzte NO wurde zusätzlich durch eine 1 M NaOH-Lösung geleitet, um höhere Stickoxide abzufangen und die anschließende Quantifizierung über eine Eichgerade mit verschiedenen Nitratstandard-Konzentrationen ermittelt.
2.2.5. Datenverarbeitung und computergestützte Auswertung

2.2.5.1. Digitalisierung und quantitative Auswertung von 2D-Gelen


Die quantitative Analyse der Gelbilder wurde unter Verwendung des Programms DeCyder 6.5 der Firma GE Healthcare durchgeführt. Im ersten Schritt wurden die einzelnen Gelbilder prozessiert, d.h. eine bestimmte Anzahl an Proteinspots für die Verarbeitung festgelegt (in der Regel 2.500) und deren Eigenschaften hinsichtlich Spotfläche, -höhe und -steigung erfasst. Im zweiten Schritt wurden die detektierten Spotmuster auf verschiedenen Gelen miteinander verglichen. Die Spotausrichtung bzw. -überlagerung war allerdings teilweise fehlerbehaftet und erforderte ein manuelles Nacheditieren, bei dem Referenzproteine auf verschiedenen Gelen einander zugeordnet werden mussten. Die statistische Analyse erfolgte auf Grundlage des verwendeten internen Standards, da er sämtliche Spotinformationen aus dem Gesamtexperiment enthielt und daher auf allen Gelen zur Spotquantifizierung durch Normalisierung zwischen den einzelnen Gelen verwendet werden konnte.

2.2.5.2. Massenspektrometrische Analyse von Proteinen


Der Nachweis nitrierter Aminosäuren nach Peroxynitrit-Behandlung von rekombinant hergestellter MnSOD (siehe Kapitel 2.2.4.12) erfolgte aufgrund der höheren Sensitivität ausschließlich mit dem LTQ-Orbitrap-Massenspektrometer. Bei den Auswahlkriterien für den verwendeten Suchalgorithmus wurde allerdings nur eine Nitrierung von Tyrosin- und Tryptophanresten als variable Modifikation angegeben.
3. Ergebnisse

3.1. Molekulare Charakterisierung der gsnor Knock-out Linie

3.1.1. Die Struktur des GSNO-Reduktase Gens


Eine Übersicht der Exon/Intron-Struktur sowie die Lokalisation verschiedener T-DNA Insertionen bzw. Punktmutationen innerhalb der GSNO-Reduktase Sequenz, die zu einem Funktionsverlust des Genprodukts führen, ist in Abb. 5 dargestellt.

Abb. 5: Struktureller Aufbau des GSNO-Reduktase Gens

3.1.2. Eigenschaften und Sequenzvergleich des GSNO-Reduktase Proteins

Das GSNO-Reduktase Protein setzt sich aus 391 Aminosäuren zusammen und besitzt ein Molekulargewicht von 42 kDa, wobei der isoelektrische Punkt bei einem pH-Wert von 6,9 erreicht wird. Das Protein liegt im nativen Zustand als Homodimer vor und enthält neben einer Koenzym (NADH)-Domäne und der Substrat (GSNO)-Bindetasche zusätzlich zwei Bindungsstellen für Zinkatome, welche einerseits für die katalytische Aktivität sowie andererseits für die strukturelle Stabilität benötigt werden.

Ein Vergleich der Aminosäurenabfolge des GSNO-Reduktase Proteins aus *Arabidopsis thaliana* mit homologen Sequenzen aus verschiedenen Organismen wie Bakterien, Pflanzen und Säugetieren ergab Übereinstimmungswerte im Bereich von 60% bis 90%. Die höchsten Sequenzidentitäten wurden dabei erwartungsgemäß bei näher verwandten höheren Nutzpflanzenarten wie Mais und Reis gefunden (ca. 90%), während die Ähnlichkeit bei Prokaryoten (60%) und Säugetieren (64% - 68%) deutlich geringer ausfällt. In Abb. 6 ist das Ergebnis des linearen Sequenzvergleiches des GSNO-Reduktase Proteins graphisch abgebildet.
Abb. 6: Primärstruktur des GSNO-Reduktase Proteins in verschiedenen Spezies


Auffällig ist, dass vor allem bestimmte Aminosäuren hoch konserviert sind, welche für die Koordination der beiden Zinkatome sowie für die Ausbildung des aktiven Zentrums bzw. der Koenzym-Bindedämme verantwortlich sind. Die ausgeprägte Sequenzidentität innerhalb spezifischer Abschnitte lässt in diesem Zusammenhang vermutlich auf einen ähnlichen katalytischen Reaktionsmechanismus bzw. auf einen gemeinsamen evolutionären Ursprung schließen.

3.1.3. Überprüfung der T-DNA Insertion in der gsnor Knock-out Linie


Da in Abwesenheit des entsprechenden mRNA-Amplifikats auch kein funktionsfähiges Protein entstehen kann, wurde im nächsten Schritt zusätzlich ein Enzymtest mit Blattrohextrakten von Wildtyp-Pflanzen und gsnor Insertionslinien durchgeführt. Hierfür wurde die GSNO-Reduktase Aktivität bzw. der Abbau von S-Nitrosoglutathion (GSNO) indirekt über die Oxidation von Koenzym NADH zu NAD⁺ photometrisch anhand der Absorptionsabnahme bei einer Wellenlänge von 340 nm verfolgt (Abb. 7B). Im Vergleich zu Wildtyp-Pflanzen konnte bei der gsnor Knock-out Linie eine Reduktion der Enzymaktivität um mehr als 90% festgestellt werden, was mit den Daten der Transkriptamplifizierung übereinstimmte.
Ergebnisse

Abb. 7: Verifikation der T-DNA Insertion
B) Photometrische Bestimmung der GSNO-Reduktase Aktivität in beiden Pflanzenlinien. Für die Berechnung wurden die Ergebnisse von drei unabhängigen biologischen Wiederholungen verwendet, in die Einheit Katal umgerechnet und auf den Proteingehalt der Proben bezogen. Signifikante Unterschiede zwischen beiden Linien sind bei einem p-Wert ≤0,01 mit ** gekennzeichnet.

3.1.4. Genetische Komplementation der gsnor Knock-out Linie

3.1.5. Quantitative Bestimmung von Stickstoffoxiden und Nitrosoverbindungen


Bei dieser Messreihe konnten mehr als doppelt so hohe Werte hinsichtlich des Gehaltes an Nitrosothiolen und Nitrat in allen untersuchten Gewebeextrakten von gsnor Insertionslinien im Vergleich zu Wildtyp-Pflanzen gemessen werden (Abb. 9). Überraschenderweise waren bei der Bestimmung der Nitrit-Konzentrationen hingegen keine signifikanten Unterschiede zwischen beiden Linien feststellbar. Unter Berücksichtigung der gewebespezifischen Verteilung der verschiedenen NO-Spezies, konnte die höchste Akkumulationsrate von Nitrosothiolen und Nitrit in Sprossextrakten beider Linien beobachtet werden, während Nitrat hauptsächlich in Blattproben vorhanden war. Von allen untersuchten NO-Metaboliten
ergab die Messung der Nitratkonzentration dabei mit Abstand die höchsten Werte, während der Gehalt an Nitrosothiolen im picomolaren Bereich und damit knapp oberhalb des Detektionslimits des NO-Analysators lag. Insgesamt betrachtet deuten diese Ergebnisse darauf hin, dass das Enzym GSNO-Reduktase offensichtlich eine entscheidende Funktion hinsichtlich der Regulation des endogenen NO-Stoffwechsels besitzt.

Abb. 9: Bestimmung von NO-Metaboliten
Blatt-, Spross- und Blütenproben wurden separat geerntet und die Konzentration von Nitrosothiolen (A), Nitrit (B) und Nitrat (C) bestimmt. Schwarze Balken repräsentieren Wildtyp-Pflanzen und weiße Balken gsnor Knock-out Linien. Alle Messungen beruhten auf der Verwendung von Pflanzenmaterial aus drei biologischen Replikaten und zwei technischen Wiederholungen. Signifikante Unterschiede sind bei einem p-Wert ≤0,01 mit ** gekennzeichnet.

3.1.6. Analyse der gewebespezifischen Expression des GSNO-Reduktase Gens
Ergebnisse


Abb. 10: Analyse der GUS-Expression unter Kontrolle des GSNO-Reduktase Promotors
A) 10 Tage alter Keimling mit vergrößerter Aufnahme des Sprossmeristems, Primärwurzel, Seitenwurzelanlage und Wurzelspitze (Teilstrich rot: 0,5 mm, Teilstrich schwarz: 0,1 mm).
B) Rosette einer vier Wochen alten Pflanze mit Nahaufnahme eines Blattes (Teilstrich 0,5 cm).
C) Blütenstand einer sechs Wochen alten Pflanze mit detaillierter Vergrößerung einer einzelnen Blüte und Schote (Teilstrich 0,5 cm).
3.2. Phänotypische Charakterisierung der *gsnor* Knock-out Linie

In diesem Kapitel wurde die gesamte Pflanzenentwicklung von *gsnor* Insertionslinien hinsichtlich morphologischer Auffälligkeiten und Veränderungen im Vergleich zu Wildtyp-Pflanzen analysiert. Da ein Ausschalten des GSNO-Reduktase Gens gravierende Auswirkungen auf das Erscheinungsbild dieser Pflanzen hatte, wurde die Vielseitigkeit des beobachteten Phänotyps separat während Keimung, vegetativem Wachstum und Reproduktion im Detail dokumentiert.

3.2.1. Einfluss von GSNO-Reduktase auf Keimung und Wurzelwachstum


![Abb. 11: Phänotypische Unterschiede in der Samenmorphologie und Keimung](image)

A) Vergleich reifer Samen von *gsnor* Knock-out Linien und Wildtyp-Pflanzen (Teilstrich 1 mm).
B) Vergleich der Keimung von vier Tage alten Pflanzen auf MS-Medium (Teilstrich 1 mm).

Bei der Betrachtung der Wurzelmorphologie war zudem auffällig, dass *gsnor* Insertionslinien im Vergleich zu Wildtyp-Pflanzen eine starke Beeinträchtigung der Primärwurzelbildung sowie eine verringerte Seitenwurzelentwicklung zeigten (Abb. 12).
Ergebnisse

Abb. 12: Phänotypische Unterschiede in der Wurzelmorphologie
Vergleich der Wurzellängen von 14 Tage alten Keimlingen unter sterilen Anzuchtbedingungen auf MS-Medium (Teilstrich 1 cm).

Weiterhin konnte ebenfalls eine deutliche Einschränkung in Bezug auf die Hypokotyl-Entwicklung gegenüber Wildtyp-Pflanzen ermittelt werden. In Tab. 1 im Anhang sind ausgewählte Messdaten in Bezug auf unterschiedliche Keimungs- und Wachstumsparameter von zehn Tage alten Keimlingen beider Linien nochmals vergleichend gegenüber gestellt.

3.2.2. Einfluss von GSNO-Reduktase auf Blatt- und Sprossentwicklung
Zellschichten auch eine geringere Anzahl von Leitbündeln bei *gsnor* Knock-out Pflanzen beobachtet werden (Abb. 13D).

In Tab. 2 im Anhang sind ausgewählte Messdaten hinsichtlich unterschiedlicher vegetativer Wachstumsparameter von sieben Wochen alten Pflanzen beider Linien nochmals vergleichend gegenübergestellt.

**Abb. 13: Phänotypische Unterschiede in der vegetativen Entwicklung**

A) Vergleich des Habitus von sieben Wochen alten Pflanzen.
B) Vergleich der Rosettengröße von drei Wochen alten Pflanzen mit vergrößerter Aufnahme eines Blattraumschnittes (Teilstrich 1 mm).
C) Vergleich eines Sprossblattes von sieben Wochen alten Pflanzen (Teilstrich 1 mm).
D) Querschnittpräparate von sieben Wochen alten Sprossachsen mit detaillierter Vergrößerung eines Sprossauausschnittes. Ligninhaltige Zellschichten sind rot eingefärbt, während zellulosehaltige Zellen durch eine Blaufärbung gekennzeichnet sind (Teilstrich 0,1 mm).

### 3.2.3. Einfluss von GSNO-Reduktase auf Blüten- und Schotenbildung

Auch während der gesamten Phase der Blüten- und Samenbildung war eine erhebliche zeitliche Verzögerung des Entwicklungsprozesses bei *gsnor* Knock-out Linien zu verzeichnen. Nach zehn Wochen Kultivierung konnten bei Wildtyp-Pflanzen bereits deutliche Anzeichen der Seneszenz bezüglich Blattverfärbungen und Samenreifung festgestellt werden, während
Ergebnisse

Abb. 14: Phänotypische Unterschiede in der generativen Entwicklung
A) Vergleich des Habitus von zehn Wochen alten Pflanzen.
B) Vergleich der Infloreszenz von sieben Wochen alten Pflanzen mit Nahaufnahme einer préparierten Blüte ohne Petalen (Teilstrich 1 mm).
C) Vergleich unreifer Schoten von neun Wochen alten Pflanzen (Teilstrich 1 cm).

Insgesamt betrachtet deuten die multiplen Veränderungen des phänotypischen Erscheinungsbildes darauf hin, dass das Enzym GSNO-Reduktase und damit die Regulation der endogenen NO-Homöostase eine bedeutende Funktion für die gesamte Pflanzenentwicklung besitzt. Um zusätzliche Erkenntnisse im Hinblick auf die Rolle von GSNO-Reduktase in physiologischen Prozessen zu gewinnen, wurden im nächsten Schritt die Auswirkungen verschiedener Stressbedingungen auf den Stoffwechsel analysiert.
3.3. Untersuchung der biotischen Stressantwort der gsnor Knock-out Linie nach Pathogeninfektion mittels quantitativer Proteomanalyse

Im Rahmen dieses Versuchs sollte anhand des Pathosystems *Arabidopsis thaliana-Pseudomonas syringae* ermittelt werden, ob gsnor Insertionslinien ein unterschiedliches Resistenzverhalten nach kompatibler und inkompatibler Interaktion im Vergleich zu Wildtyp-Pflanzen aufweisen. Unter Berücksichtigung der Tatsache, dass NO als Signalmolekül eine wichtige Funktion bei der Pathogenabwehr spielt (Delledonne et al., 1998, Durner et al., 1998) und der NO Stoffwechsel von gsnor Knock-out Linien erheblich beeinträchtigt ist, konnten in Vorarbeiten überraschenderweise keine Unterschiede hinsichtlich der Krankheitssymptome und der bakterieller Vermehrungsrate zwischen beiden Linien beobachtet werden. Um zu überprüfen, ob beide Linien möglicherweise unterschiedlich Abwehrstrategien nutzen, die in einem ähnlichen Resistenzverhalten resultieren, wurden im nächsten Experiment potentielle Unterschiede der Abwehrreaktion auf Proteinebene untersucht.

3.3.1. Rahmenbedingungen der differenziellen Proteomanalyse

3.3.2. Quantitative Auswertung differentiell regulierter Proteine nach Infektion

Die statistische Analyse erfolgte auf Grundlage des verwendeten internen Standards, da er sämtliche Spotinformationen aus dem Gesamtexperiment enthielt und daher zur Spotquantifizierung auf den einzelnen Gelen verwendet werden konnte. Um eine signifikante Aussage hinsichtlich Veränderungen auf Proteinebene zwischen avirulenter bzw. virulenter Behandlung im Vergleich zu unbehandelten Kontrollpflanzen über den Zeitverlauf zu erhalten, wurde eine zweifaktorielle Varianzanalyse für jede Pflanzenlinie durchgeführt. Proteinkandidaten für die Massenspektrometrie wurden als signifikant reguliert bewertet, wenn die Intensitätsänderung bei einer Signifikanzschwelle von $p \leq 0,01$ mindestens um den Faktor $\pm 2$ erhöht bzw. erniedrigt war und die entsprechenden Spots auf allen zu untersuchenden Gelen vorhanden waren. Eine detaillierte Auflistung aller detektierten Proteine sowie deren Lokalisation auf den Gelen ist im Anhang (Tab. 4-7 bzw. Abb. 1-4) einzusehen. Ein Überblick über die Gesamtzahl der differentiell produzierten Proteine, die nach avirulenter bzw. virulenter Infektion in beiden Linien akkumulierten und den oben erwähnten Kriterien entsprachen, ist in Tab. 2 gezeigt.

<table>
<thead>
<tr>
<th>Behandlung</th>
<th>Anzahl differentiell regulierter Proteine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 h</td>
</tr>
<tr>
<td><strong>Wildtyp</strong></td>
<td></td>
</tr>
<tr>
<td>$Pst$ DC3000 (avrRpt2)</td>
<td>0</td>
</tr>
<tr>
<td>$Pst$ DC3000</td>
<td>0</td>
</tr>
<tr>
<td><strong>gsnor</strong></td>
<td></td>
</tr>
<tr>
<td>$Pst$ DC3000 (avrRpt2)</td>
<td>0</td>
</tr>
<tr>
<td>$Pst$ DC3000</td>
<td>0</td>
</tr>
</tbody>
</table>

Bei Betrachtung der Daten wird deutlich, dass beide Pflanzenlinien keine signifikanten Veränderungen auf Proteinebene hinsichtlich der beiden frühen Zeitpunkte zeigten. Erst 24 h bzw. vor allem 48 h nach avirulenter und virulenter Infektion war ein erheblicher Anstieg differentiell produzierter Proteine zu verzeichnen, wobei die Anzahl der Proteine, die
verstärkt produziert werden, deutlich überwog. Auffällig war zudem, dass in beiden Linien 24 h nach inkompatibler Interaktion mehr regulierte Proteine vorlagen im Vergleich zur kompatiblen Infektion. Unterschiede in der Proteinproduktion zwischen beiden Pflanzen-Linien waren hauptsächlich nach avirulenter Infektion zu beobachten. Bei Wildtyp-Pflanzen war vor allem nach 48 h eine deutlich höhere Menge an regulierten Proteinen feststellbar im Vergleich zu *gsnor* Knock-out Linien, während sich die Anzahl differenziell produzierter Proteine nach virulenter Infektion zwischen den Linien hinsichtlich der untersuchten Zeitpunkte kaum unterschied.

3.3.3. Massenspektrometrische Identifizierung differenziell regulierter Proteine


3.3.4. Analyse von Proteinmustern und deren zeitliche Veränderung

Bei Gegenüberstellung der Proteommuster bzw. bei Betrachtung der Lokalisation differenziell regulierter Proteine in den Gelen, fielen in beiden Linien bestimmte Regionen auf, die nach avirulenter bzw. nach virulenter Interaktion eine deutliche Veränderung auf Proteinebene zeigten. Um einen Gesamteindruck hinsichtlich der Proteinauftrennung zu
Ergebnisse

erhalten, ist in Abb. 15 eine repräsentative Darstellung eines aufgetrennten Homogenats löslicher Blattproteine gezeigt und exemplarisch zwei interessante Gelbereiche markiert.

Abb. 15: Auftrennung der Proteinfraktion aus Blattmaterial von Arabidopsis thaliana


Diese Gelabschnitte sind in Wildtyp-Pflanzen und gsnor Insertionslinien identisch und auch die identifizierten Proteine in diesen Bereichen weisen eine gewisse Übereinstimmung auf, was auf eine charakteristische Abwehrantwort je nach Infektionstypus schließen lässt. Nach avirulenter Infektion konnte beispielsweise eine Gelregion im pH-Bereich zwischen 5,7 und 6,7 mit einer Molekülmasse von 20 kDa bis 26 kDa lokalisiert werden, in der vor allem verschiedene Isoformen von Glutathion S-Transferasen verstärkt akkumulierten. Eine erhöhte Produktion dieser Proteine war bereits nach 24 h detektierbar, wobei nur noch geringe Veränderungen im Vergleich zum 48 h Zeitpunkt auftraten. Im Gegensatz dazu konnten Variationen in der Proteinsynthese nach virulenter Infektion hauptsächlich im
sauren pH-Bereich zwischen 4,5 und 5,5 und einer Molekülmasse von 35 kDa bis 55 kDa festgestellt werden. Interessanterweise handelte es sich dabei zum Großteil um Proteine, die in metabolische Stoffwechselvorgänge involviert sind und eine reduzierte Akkumulation zeigten. Eine deutliche Änderung der Regulation konnte in diesem Fall allerdings erst 48 h nach der Infektion beobachtet werden. Die Bereiche sind in den nachfolgenden Abb. 16 und Abb. 17 vergrößert dargestellt und sollen auftretende Unterschiede in der zeitabhängigen Regulation der Proteine nach avirulenter Infektion (Abschnitt 1) und virulenter Infektion (Abschnitt 2) in beiden Linien verdeutlichen.

Abb. 16: Proteinregulation in Gelabschnitt 1 nach avirulenter Infektion
Nebeneinander dargestellt sind die gleichen Gelabschnitte der verschiedenen Behandlungszeitpunkte 6 h, 24 h und 48 h nach Infektion mit Pst DC3000 (avrRpt2) in Wildtyp-Pflanzen und gsnor Knock-out Linien. Rot markiert sind Proteine, deren Abundanz mindestens um den Faktor 2 erhöht war, während grün umrandete Proteine mindestens eine um den Faktor 2 reduzierte Produktion aufwiesen.
Ergebnisse

Abb. 17: Proteinregulation in Gelabschnitt 2 nach virulenter Infektion
Nebeneinander dargestellt sind die gleichen Gelabschnitte der verschiedenen Behandlungszeitpunkte 6 h, 24 h und 48 h nach Infektion mit Pst DC3000 in Wildtyp-Pflanzen und gsnor Knock-out Linien. Rot markiert sind Proteine, deren Abundanz mindestens um den Faktor 2 erhöht war, während grün umrandete Proteine mindestens eine um den Faktor 2 reduzierte Produktion aufwiesen.

3.3.5. Vergleich und funktionelle Klassifizierung der identifizierten Proteine
Um einen detaillierten Eindruck zu erhalten, welche physiologischen Prozesse in beiden Pflanzenlinien speziell nach avirulenter und virulenter Infektion beeinträchtigt wurden, erfolgte eine Zuordnung aller identifizierten Proteine in verschiedene Kategorien mit Hilfe der Arabidopsis thaliana Datenbank TAIR. Aus Gründen der besseren Übersicht wurde für jedes Protein nur der Kandidat mit dem höchsten Score-Wert berücksichtigt. Eine detaillierte Auflistung aller differentiell regulierten Proteine in beiden Linien ist im Anhang (Tab. 4-7) einzusehen. In der folgenden Abb. 18 sind die prozentualen Anteile der verschiedenen Kategorien in Bezug auf die Gesamtzahl aller identifizierten Proteine nach avirulenter Behandlung (Abb. 18A) bzw. virulenter Behandlung (Abb. 18B) dargestellt.

Abb. 18: Funktionelle Klassifizierung identifizierter Proteine
Dargestellt ist die Einteilung differentiell regulierter Proteine von Wildtyp-Pflanzen und gsnor Knock-out Linien nach avirulenter Infektion (A) und virulenter Infektion (B) hinsichtlich ihrer Beteiligung an physiologischen Prozessen. Die Anzahl der Proteine und die Anteile der verschiedenen Kategorien in Bezug auf die Gesamtzahl sind sowohl als absolute Zahlen als auch in Prozent wiedergegeben.

Nach inkompatibler Interaktion war auffällig, dass etwa ein Drittel aller identifizierten Proteine in beiden Linien eine differentielle Produktion im Zusammenhang mit der Stressantwort zeigten. Dabei handelte es sich vor allem um eine verstärkte Synthese von


Abb. 19: Vergleich der Abwehrreaktionen in beiden Linien
Die Venn-Diagramme veranschaulichen die Verteilung der differentiell regulierten Proteine nach avirulenter Infektion (A) bzw. virulenter Infektion (B) in Wildtyp-Pflanzen und gsnor Knock-out Linien. Der Überschneidungsbereich beider Kreise gibt dabei die Menge an Proteinen mit identischer Regulation zwischen beiden Linien an.
Ergebnisse


Um zu überprüfen, ob eine Beeinträchtigung der NO-Homöostase möglicherweise einen Einfluss auf das Resistenzverhalten nach abiotischer Stressbehandlung hat, wurde im nächsten Schritt die Sensitivität beider Linien gegenüber Xenobiotika analysiert. Vor allem das Herbizid Paraquat ist aufgrund seiner ROS-induzierenden Wirkung geeignet, um die Auswirkungen von oxidativer Stressexposition auf das Redoxsystem zu untersuchen.

3.4. Untersuchung der oxidativen Stressantwort der $gsnor$ Knock-out Linie nach Herbizidbehandlung mit Paraquat

Im Rahmen dieses Experiments sollte anhand der phänotypischen Schadausprägung sowie durch Charakterisierung des antioxidativen Systems herausgefunden werden, ob $gsnor$ Insertionslinien eine unterschiedliche Toleranzausprägung nach Paraquatbehandlung im Vergleich zu Wildtyp-Pflanzen zeigen. Paraquat ist ein Kontakttherbizid, welches den Elektronentransport vom Photosystem I auf die Ferredoxin-abhängige NADPH-Reduktase i

3.4.1. Vergleichende Untersuchung der Paraquat-Sensitivität

In diesem Fall konnte bei Wildtyp-Pflanzen bereits bei der niedrigsten Paraquat-Konzentration eine massive Beeinträchtigung sowohl bei der Keimung als auch beim Wachstum beobachtet werden, während der Keimungsprozess bei den höheren Dosierungsstufen vollständig inhibiert wurde. Im Gegensatz dazu war bei gsnor Insertionslinien eine konzentrationsabhängige Hemmung der Pflanzenentwicklung zu beobachten, wobei eine mindestens 10-fach höhere Toleranzschwelle im Vergleich zu Wildtyp-Pflanzen festgestellt werden konnte. Eine geringere Sensitivität hinsichtlich der Keimung auf Paraquat-haltiges Medium konnte dabei nicht nur bei gsnor Insertionslinien des Ökotyps Wassilewskija, sondern auch bei der entsprechenden Knock-out Linie des Ökotyps Columbia-0 entdeckt werden (siehe Anhang Abb. 5).

Aufgrund der Tatsache, dass gsnor Knock-out Linien eine deutliche Beeinträchtigung der gesamten Wurzelentwicklung zeigten, könnte der Paraquat-tolerante Phänotyp möglicherweise auf eine reduzierte Aufnahme des Herbizids im Vergleich zu Wildtyp-Pflanzen zurückzuführen sein. Um dieser Frage nachzugehen, wurden im nächsten Versuch verschiedene
Paraquat-Konzentrationen mit Hilfe einer Vakuumpumpe direkt in sechs Tage alte Keimlinge beider Linien infiltriert und das Schadausmaß nach 24 h Belichtung dokumentiert (Abb. 21)

Abb. 21: Vergleich der Schadwirkung nach Vakuuminfiltration von Paraquat
Dargestellt sind sechs Tage alte Keimlinge von Wildtyp-Pflanzen und gsnor Insertionslinien, die unter Sterilbedingungen angezogen und mit unterschiedlichen Paraquat-Konzentrationen vakuuminfiltriert wurden. Nach 24 h Belichtungsdauer wurde das Ausmaß des Schadpotentials photographisch dokumentiert (Teilstrich 0,5 cm). Die Kontrollbehandlung wurde an Stelle der Paraquatlösung mit Wasser durchgeführt.

Abb. 22: Vergleich der Schadwirkung nach Sprühapplikation von Paraquat


3.4.2. Einfluss reduzierter und erhöhter NO-Gehalte auf Paraquattoleranz

Um zu überprüfen, ob der Paraquat-tolerante Phänotyp der gsnor Knock-out Linie auf die Veränderung der NO-Homöostase in diesen Pflanzen zurückzuführen ist, wurde im nächsten Schritt die Auswirkung von endogener und exogener Modifikation des NO-Gehaltes auf die Paraquat-Sensitivität analysiert.

Zu diesem Zweck wurden zunächst verschiedene Pflanzenlinien, die ebenfalls durch genetische Manipulation in ihrem NO-Metabolismus beeinträchtigt sind, in Keimungsversuchen mit verschiedenen Paraquat-Konzentrationen analog der Vorgehensweise in Kapitel 3.4.1 getestet (Abb. 23). Dabei handelte es sich einerseits um Pflanzen, die in der Literatur bereits im Zusammenhang mit einem erhöhten NO-Gehalt beschrieben wurden und somit eine vergleichbare Referenz zu gsnor Insertionslinien darstellen. Hierfür wurde neben einer Antisense-Linie mit reduzierter GSNO-Reduktase-Aktivität (Achkor et al., 2003) zusätzlich eine cue1-Mutante (underexpressed chlorophyll a/b binding protein) verwendet,
bei der das Gen, welches für den Phosphoenolpyruvat-Phosphat-Translokator der inneren plastidären Hülle codiert, durch T-DNA Insertion inaktiviert wurde (He et al., 2004).

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Kontrolle</th>
<th>1 µM Paraquat</th>
<th>0,25 µM Paraquat</th>
</tr>
</thead>
<tbody>
<tr>
<td>cue1-1 (Col-0)</td>
<td>NO↑ NO↓</td>
<td>NO↑ NO↓</td>
<td>NO↑ NO↓</td>
</tr>
<tr>
<td>noa1 (Col-0)</td>
<td>NO↑ NO↓</td>
<td>NO↑ NO↓</td>
<td>NO↑ NO↓</td>
</tr>
<tr>
<td>Wt (Col-0)</td>
<td>NO↑ NO↓</td>
<td>NO↑ NO↓</td>
<td>NO↑ NO↓</td>
</tr>
</tbody>
</table>

Abb. 23: Keimungsanalyse verschiedener NO-Mutanten in Gegenwart von Paraquat


In Anbetracht der Tatsache, dass NO offenbar eine entscheidende Rolle hinsichtlich der Ausprägung eines Paraquat-toleranten Phänotyps spielt, sollte im nächsten Schritt geklärt werden, ob auch durch eine artifizielle Steigerung des NO-Gehalts eine geringere Sensitivität gegenüber Paraquat in Wildtyp-Pflanzen induziert werden kann. Für diesen Versuch wurden zehn Tage alte Keimlinge, die unter Sterilbedingungen angezogen wurden, im Abstand von...
Ergebnisse

5 h zweimal mit 500 µM des NO-Donors SNAP besprüht und anschließend verschiedene Paraquat-Konzentrationen vakuuminfiltriert. Nach 24 h Belichtungszeit konnte auch in diesem Fall eine höhere Toleranzschwelle der mit SNAP vorbehandelten Keimlinge im Vergleich zu unbehandelten Pflanzen beobachtet werden (Abb. 24). Vor allem bei den Dosierungsstufen 0,25 µM und 0,5 µM Paraquat war ein deutlich geringeres Ausmaß im Hinblick auf das Ausbleichen des photosynthetisch aktiven Gewebes sichtbar.

Abb. 24: Vergleich der Schadwirkung nach Vorbehandlung mit NO-Donor SNAP
Dargestellt sind zehn Tage alte Keimlinge von Wildtyp-Pflanzen, die ohne Vorbehandlung (linke Seite) bzw. nach Vorbehandlung mit 500 µM SNAP (rechte Seite) mit unterschiedlichen Paraquat-Konzentrationen vakuuminfiltriert wurden. Nach 24 h Belichtungsdauer wurde das Ausmaß des Schadpotentials photographisch dokumentiert (Teilstrich 1 cm). Die Kontrollbehandlung wurde an Stelle der Paraquatlösung mit Wasser durchgeführt.

Um einen Einblick in den Mechanismus zu erhalten, inwieweit NO die Toleranz gegenüber Paraquat auf molekularer Ebene positiv beeinflussen kann, wurde in den folgenden Experimenten das antioxidative Potential von Wildtyp-Pflanzen und gsnor Knock-out Linien vor und nach Herbizid-Behandlung genauer charakterisiert.

3.4.3. Auswirkung von Paraquat auf SOD-Aktivität und Superoxid-Akkumulation
Der Effekt von Paraquat auf Veränderungen des antioxidativen Systems erfolgte zunächst durch Bestimmung der Gesamtaktivität von Superoxid-Dismutassen (SOD). Diese Proteinklasse ist in der Lage die durch Paraquat induzierte Bildung von Superoxidradikalen auf enzymatischem Weg zu Wasserstoffperoxid umzusetzen. Als Ausgangsmaterial wurden 14 Tage alte Wildtyp-Pflanzen und gsnor Insertionslinien, die auf MS-Medium mit und ohne
Ergebnisse

0,5 µm Paraquat kultiviert wurden, verwendet. Die anschließende Quantifizierung erfolgte indirekt durch Hemmung der Cytochrom C-Reduktion, was spektrophotometrisch bei einer Wellenlänge von 550 nm verfolgt werden konnte. Erstaunlicherweise konnte bei gsnor Knock-out Linien bereits unter normalen, ungestressten Bedingungen eine um etwa 25% reduzierte SOD-Aktivität im Vergleich zu Wildtyp-Pflanzen gemessen werden. Unter Paraquatieinfluss nahm die SOD-Aktivität in beiden Linien hingegen um ca. 50% zu, verblieb im Falle der Mutanten jedoch auf einem signifikant niedrigeren Niveau (Abb. 25).

Eine detaillierte Betrachtung von Superoxid-Dismutasen in Bezug auf die Regulation einzelner Isoformen bzw. ein möglicher Erklärungsansatz für die geringere enzymatische Gesamtaktivität in gsnor Insertionslinien wird in Kapitel 3.5 dargestellt.

Ergebnisse

Abb. 26: Superoxid-Akkumulation nach Sprühapplikation von Paraquat

3.4.4. Einfluss von Paraquat auf den Glutathiongehalt und die Aktivität Glutathion-abhängiger Enzyme
Da Superoxidradikale auch spontan zu Wasserstoffperoxid dismutieren können und diese Spezies aufgrund ihrer Stabilität bzw. ihrer Fähigkeit der Membrandiffusion eine zellschädigendere Wirkung besitzen, wurde im nächsten Schritt die Detoxifizierung von H₂O₂ zu H₂O durch Glutathion-Peroxidasen (GPx) analysiert. Analog der Versuchsbeschreibung in Kapitel 3.4.3 wurde die Enzymaktivität in beiden Linien, die auf Medium mit und ohne Paraquat aufgezogen wurden, indirekt durch Messung der Extinktionsabnahme bei einer Wellenlänge von 340 nm im Spektrophotometer quantifiziert (Abb. 27).

Abb. 27: Aktivität von Glutathion-Peroxidase
Pflanzen beider Linien wurden auf MS-Medium ohne bzw. mit 0,5 µM Paraquat angezogen. Schwarze Balken repräsentieren Wildtyp-Pflanzen und weiße Balken gsnor Knock-out Linien. Für die Berechnung der Enzymaktivität wurden die Ergebnisse von drei biologischen Replikaten verwendet, in Katal umgerechnet und auf den Protein gehalt der Probe bezogen. Signifikante Unterschiede zwischen beiden Linien sind bei einem p-Wert ≤0,01 mit ** gekennzeichnet.

Ergebnisse

zu verzeichnen, wobei Wildtyp-Pflanzen eine vierfach höhere Anreicherung bzw. gsnor Knock-out Linien eine dreifache Akkumulation im Vergleich zum Grundzustand aufwiesen.

Abb. 29: Bestimmung des Glutathion-Gehaltes
Pflanzen beider Linien wurden auf MS-Medium ohne bzw. mit 0,5 µM Paraquat angezogen. Schwarze Balken repräsentieren Wildtyp-Pflanzen und weiße Balken gsnor Knock-out Linien. Für die Berechnung des Glutathion-Gehaltes (A) bzw. des Glutathiondisulfid-Gehaltes (B) wurden die Ergebnisse von drei biologischen Replikaten verwendet und auf das Frischgewicht der Probe bezogen. Signifikante Unterschiede zwischen beiden Linien sind bei einem p-Wert ≤0,01 mit ** gekennzeichnet.


Wie Abb. 30A zu entnehmen ist, war auch bei dieser Messreihe im Grundzustand eine signifikante Erhöhung der Glutathion-Reduktase-Aktivität um ca. 20% bei gsnor Knock-out Linien zu verzeichnen. Dieser Unterschied zu Wildtyp-Pflanzen war auch nach Wachstum auf Paraquat-haltigem Medium bei den Mutanten feststellbar, wobei in beiden Linien eine vergleichbare Zunahme der Enzymaktivität um etwa 20% beobachtet wurde.
Ergebnisse

Abb. 30: Aktivität von Glutathion-Reduktase und Glutathion S-Transferase

Pflanzen beider Linien wurden auf MS-Medium ohne bzw. mit 0,5 µM Paraquat angezogen. Schwarze Balken repräsentieren Wildtyp-Pflanzen und weiße Balken gsnor Knock-out Linien. Für die Berechnung der Enzymaktivitäten wurden jeweils die Ergebnisse von drei biologischen Replikaten verwendet, in die Einheit Katal umgerechnet und auf den Proteingehalt der jeweiligen Proben bezogen. Signifikante Unterschiede zwischen beiden Linien sind bei einem p-Wert ≤0,01 mit ** gekennzeichnet.


3.4.5. Auswirkung reduzierter und erhöhter Glutathion-Gehalte auf Paraquat-toleranz

Um der Frage nachzugehen, ob möglicherweise der konstitutiv erhöhte Glutathion-Gehalt und damit indirekt die gesteigerte Aktivität Glutathion-abhängiger Enzyme für den Paraquat-toleranten Pänotyp von gsnor Insertionslinien verantwortlich ist, wurden anschließend die Folgen von endogener und exogener Veränderung der Glutathion-Konzentration im Hinblick auf die Paraquat-Sensitivität untersucht.

In diesem Zusammenhang sollte zunächst getestet werden, ob durch eine artifizielle Erhöhung des Glutathion-Gehaltes ebenfalls eine Zunahme der Herbizidtoleranz in Wildtyp-Pflanzen erzielt werden kann. Hierfür wurden Samen beider Linien auf Paraquat-haltigem
Medium ausgesät, welches zusätzlich 100 µM Glutathion bzw. 100 µM Glutathiondisulfid enthielt und die Entwicklung der Pflanzen nach sechs Tagen photographisch dokumentiert (Abb. 31). Erstaunlicherweise konnte sowohl nach GSH- als auch nach GSSG-Zugabe ein Wachstum von Wildtyp-Pflanzen unter Paraquateinfluss beobachtet werden, während bei gsnor Knock-out Linien hingegen kein zusätzlicher Effekt zu verzeichnen war.

Abb. 31: Keimungsvergleich auf Paraquat-haltigem Medium in Gegenwart von Glutathion
In den Abbildungen der oberen Bildhälfte wurden Wildtyp-Pflanzen und gsnor Knock-out Linien in Gegenwart von 1 µM Paraquat angezogen und die Pflanzenentwicklung sechs Tage nach der Aussaat dokumentiert. Rot markierte Bereiche kennzeichnen das Wachstum von Wt-Pflanzen in Gegenwart von 100 µM GSH bzw. 100 µM GSSG. In der unteren Bildhälfte ist die Entwicklung beider Linien nach Kontrollbehandlung dargestellt, wobei das Medium an Stelle der Paraquatlösung mit Wasser versetzt wurde.

Um auszuschließen, dass der beobachtete Phänotyp nicht auf eine Immobilisierung von Paraquat durch Wechselwirkung mit GSH bzw. GSSG zurückzuführen ist, wurden im nächsten Versuch zwei verschiedene Pflanzenlinien, die ebenfalls durch genetische Manipulationen in ihrem Glutathion-Metabolismus beeinträchtigt sind, in Keimungsversuchen mit verschiedenen Paraquat-Konzentrationen getestet. Dabei handelte es sich einerseits um eine Überexpressionslinie, bei der durch verstärkte Produktion des Serinacetyl-Transferase (SAT)-Proteins eine Steigerung der Cystein-Synthese erzielt wird, was in einem zweifachen Anstieg des Glutathion-Gehaltes resultiert (Freeman et al., 2004). Im Gegensatz dazu wurde zudem die cad2-Mutante (cadmium sensitive mutant) mit einem um ca. 30% reduzierten Glutathion-Gehalt verwendet, bei der das Gen, welches für die γ-Glutamylcystein-Synthetase und damit den ersten Schritt der Glutathion-Biosynthese codiert, inaktiviert wurde (Howden et al., 1995).

Bei Beobachtung der Pflanzenentwicklung in Gegenwart von Paraquat konnte festgestellt werden, dass die SAT-Überexpressionslinie mit einem gesteigerten endogenen Glutathion-Gehalt eine deutlich höhere Toleranzschwelle gegenüber dem Herbizid zeigte (Abb. 32).
Darüber hinaus scheinen Pflanzen mit reduziertem Glutathion-Gehalt bei der niedrigsten Konzentrationsstufe einen etwas anfälligeren Phänotyp zu besitzen als Wildtyp-Pflanzen.

**Abb. 32: Keimungsanalyse verschiedener GSH-Mutanten in Gegenwart von Paraquat**

### 3.4.6. Einfluss von NO-Begasung auf die Glutathion-Biosynthese
Ergebnisse

Abb. 33: Quantitative Analyse von Thiolverbindungen der Glutathionsynthese

Vier Wochen alte Pflanzen beider Linien wurden ohne bzw. mit 80 ppm NO begast und der Gehalt an Cystein (A), γ-Glutamylcystein (B) und Glutathion (C) pro g Frischgewicht bestimmt. Die Quantifizierung erfolgte mit jeweils drei bis vier Pflanzen von jeder Linie, wobei jede Pflanze als ein biologisches Replikat gewertet wurde. Schwarze Balken repräsentieren Wildtyp-Pflanzen und weiße Balken gsnor Knock-out Linien. Signifikante Unterschiede sind bei einem p-Wert ≤0,05 mit * bzw. p ≤0,01 mit ** gekennzeichnet.

Die Begasung der Pflanzen mit NO führte in beiden Linien zu einem signifikanten Anstieg aller gemessenen Thiolverbindungen des Glutathion-Stoffwechsels, wobei die Zunahmeraten, außer im Falle von γ-Glutamylcystein, in gsnor Insertionslinien höher ausfielen im Vergleich zu Wildtyp-Pflanzen. Darüber hinaus konnten bereits in unbehandelten Pflanzenproben annähernd doppelt so hohe Werte hinsichtlich der Cystein-Konzentration sowie des Gesamtglutathion-Gehaltes in den Mutanten gemessen werden, was im letzteren Fall mit den Ergebnissen aus Kapitel 3.4.4 (Abb. 29) übereinstimmte.

Zusammenfassend betrachtet lässt sich somit die Aussage formulieren, dass eine Erhöhung des Glutathion-Gehaltes und die damit verbundene Aktivierung Glutathion-abhängiger Enzyme primär für die Paraquattoleranz in gsnor Insertionslinien verantwortlich ist. NO scheint dabei indirekt über die Regulation des Glutathion-Stoffwechsels einen positiven
Ergebnisse


3.5. In-vitro Regulation der Aktivität von Superoxid-Dismutasen durch NO


3.5.1. Analyse der Genexpression von Superoxid-Dismutasen

Um die Ergebnisse des SOD-Enzymtests von 14 Tage alten, unter Sterilbedingungen angezogenen Keimlingen zu bestätigen, wurde der Versuch mit vier Wochen alten, auf Erde kultivierten Wildtyp-Pflanzen und gsnor Insertionslinien analog der in Kapitel 3.4.3 beschriebenen Vorgehensweise wiederholt, wobei allerdings keine Paraquat-Behandlung stattfand. Unter diesen Bedingungen konnte ebenfalls die gleiche Tendenz wie im Keimlingsstadium beobachtet werden, wenngleich die Gesamtaktivität in beiden Pflanzenlinien etwas höher ausfiel (siehe Anhang Abb. 6).

Unter Berücksichtigung der Möglichkeit, dass die reduzierte Gesamtaktivität von Superoxid-Dismutasen in gsnor Insertionslinien gegebenenfalls auf eine verminderte Genexpression einzelner Isoformen zurückzuführen sein kann, wurden zunächst potentielle Veränderungen der relativen Transkriptmengen in beiden Linien mittels quantitativer Echtzeit-PCR (qPCR)
ermittelt. Für die Analyse wurde RNA aus vier Wochen alten Wildtyp-Pflanzen und gsnor Knock-out Linien isoliert und die Expression der Zielgene in Relation zu den beiden stabilen Referenzgenen Ubiquitin und S16 erfasst.

Wie der Abb. 34 zu entnehmen ist, konnte bei vier von sieben Genen eine leichte Erhöhung der Transkriptmenge in gsnor Insertionslinien festgestellt werden, die im Falle der beiden Isoformen FeSOD2 und CZSOD2 als signifikant induziert bewertet wurde. Im Gegensatz dazu zeigten sowohl MnSOD als auch FeSOD1 eine geringere Genexpression im Vergleich zu Wildtyp-Pflanzen, während bei der Isoform FeSOD3 kein Unterschied detektiert werden konnte. Interessanterweise scheint die Gesamtexpression aller untersuchten Zielgene in den Mutanten sogar etwas höher auszufallen, wobei keine Rückschlüsse auf die Expressionstärke einzelner Isoformen gezogen werden kann. Diese Resultate verdeutlichen, dass die reduzierte SOD-Gesamtaktivität in gsnor Knock-out Linien nicht auf einer limitierten Transkriptakkumulation basiert, sondern einzelne Isoformen offenbar auf posttranskriptioneller oder posttranslationaler Ebene reguliert werden.

Abb. 34: Analyse der Transkriptmengen von SOD-Isoformen mittels RT-qPCR

3.5.2. Klonierung und rekombinante Expression von Superoxid-Dismutasetasen
Für die Analyse einer posttranslationalen Regulation von Superoxid-Dismutasetasen durch NO mussten die einzelnen Isoformen zunächst kloniert und heterolog produziert werden, bevor die gereinigten Proteine im Rahmen von in-vitro Studien getestet werden konnten. Für die Konstruktion von Expressionsplasmiden wurde das GATEWAY-System verwendet, das einen

Für die Klonierung wurden die einzelnen Sequenzen der Superoxid-Dismutasen jeweils mit und ohne Stopcodon vervielfältigt, um eine variable Produktion von C- und N-terminalen Fusionsproteinen zu gewährleisten. Im Sonderfall der CzSOD2 wurde die Sequenz am N-Terminus nach Überprüfung mit dem Programm TargetP zusätzlich um 180 Basenpaare verkürzt, da es sich hierbei um ein konserviertes Signalpeptid handelt, welches für die chloroplastidäre Lokalisation verantwortlich ist. Jede SOD-Isoform wurde anschließend in die beiden Expressionsvektoren pDEST17 mit N-terminalen Histidin-Hexapeptid und pDEST42 mit C-terminalen Histidin-Hexapeptid überführt, wobei der Tag für die spätere Aufreinigung der produzierten Proteine benötigt wird. Die verschiedenen Plasmide wurden im nächsten Schritt vorerst einer Testexpression unterzogen und in die verschiedenen E.coli-Stämme BL21 sowie in zwei Varianten des Rosetta-Stamms (R und RS) transformiert. Auf diese Weise sollte für jedes Protein ein geeignetes bakterielles Produktionssystem ermittelt werden, das eine optimale Synthese hinsichtlich Expressionsstärke und Löslichkeit gewährleistet.

Im Genom aller drei Stämme ist ein DE3-Fragment des Bakteriophagen λ enthalten. Dieses Fragment codiert für eine T7 RNA-Polymerase, die unter Kontrolle eines induzierbaren lacUV5-Promotors steht und die Produktion des Fusionsproteins durch Anbindung an den T7-Promotor der Expressionsplasmide ermöglicht. Ein pLysS-Plasmid in Rosetta-Variante RS codiert zudem für ein T7-Lysozym, dessen Expression die Aktivität der T7 RNA-Polymerase inhibiert und somit eine basale Transkriptionsrate unterbindet. Beide Rosetta-Stämme tragen außerdem ein pRARE-Plasmid, welches spezifische tRNAs für in E.coli selten benötigte Codons bereitstellt und damit die Expression eukaryontischer Gene erleichtert. Der Vorteil des BL21-Stammes hingegen besteht darin, dass zusätzlich bestimmte bakterielle Chaperone hergestellt werden, die eine korrekte Faltung der produzierten Proteine unterstützen. Somit lässt sich die Ausbeute löslicher Proteine durch Verhinderung von Aggregatbildungen erhöhen. Nach dem Aufschluss und der Isolierung der rekombinanten Proteine wurden Probenaliquots der unterschiedlichen Reinigungsschritte für jedes produzierte Protein mittels SDS-PAGE auf die Anwesenheit der Zielproteine analysiert. Die Ergebnisse dieses Vorversuchs für die verschiedenen rekombinant hergestellten Superoxid-Dismutasen
Ergebnisse

inklusive den verwendeten Bakterienstämmen und der Position des Histidin-Tags ist im Anhang einzusehen (Anhang Abb. 7).

Um den Anteil der löslichen Proteinfraktion zu steigern und eine ausreichende Proteinausbeute für spätere Enzymtests zu generieren, wurde das gesamte Produktionssystem im nächsten Schritt auf eine préparative Größenordnung ausgeweitet. Hierfür wurden, basierend auf den Ergebnissen der Testscreenings die Bakterienstämme ausgewählt, welche für jedes Protein das beste Expressionsresultat lieferten und die Kulturen in einen zwei Liter Maßstab angezogen. Durch die Volumenerhöhung konnte eine deutliche Produktionssteigerung aller löslichen Proteinfraktionen erzielt werden (Abb. 35).

<table>
<thead>
<tr>
<th>MnSOD</th>
<th>FeSOD1</th>
<th>FeSOD2</th>
<th>FeSOD3</th>
<th>CzsOD1</th>
<th>CzsOD2</th>
<th>CzsOD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-His₆</td>
<td>N-His₆</td>
<td>N-His₆</td>
<td>C-His₆</td>
<td>N-His₆</td>
<td>N-His₆</td>
<td>N-His₆</td>
</tr>
<tr>
<td>RS-Stamm</td>
<td>R-Stamm</td>
<td>BL21-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 35: Ergebnis der rekombinanten Produktion von Superoxid-Dismutasen hinsichtlich Expressionsstärke und Löslichkeit

Dargestellt ist ein Überblick der Produktionskulturen, die in Abhängigkeit der verwendeten Bakterienstämmme (BL=BL21 DE3, R=Rosetta DE3, RS=Rosetta DE3 pLysS) und der Position der Histidin-Hexapeptide (N=N-terminaler Tag, C=C-terminaler Tag) die besten Expressionsergebnisse lieferten. Probenaliquots der verschiedenen Reinigungsschritte (L=Lysat, Ü=Überstand, E=Eluat) wurden in einer eindimensionalen SDS-PAGE aufgetrennt, wobei die schwarzen Pfeile die Anreicherung der löslichen Fraktion der einzelnen rekombinant hergestellten Proteine im Gel markieren. Auf der linken Seite sind zur Größenabschätzung die relativen Molekülmassen in kDa angegeben.

Eine hohe Akkumulationsrate war vor allem bei MnSOD, FeSOD1, CzsOD1 und CzsOD2 zu verzeichnen, während bei FeSOD2 und FeSOD3 bzw. CzsOD3 eine deutlich geringere Anreicherung beobachtet wurde, was vermutlich auf die zellulären Lokalisation in Chloroplasten bzw. Peroxisomen zurückzuführen ist. Bei diesen Kulturen war zudem ein höheres Maß an Verunreinigung in Form von Fremdbanden erkennbar.
3.5.3. Überprüfung der heterolog hergestellten Superoxid-Dismutasen


Abb. 36: Immunologischer Nachweis rekombinant produzierter SODs


Im nächsten Schritt wurde untersucht, ob die produzierten Superoxid-Dismutasen in einem nativen Zustand vorliegen, was im Hinblick auf die anschließende Verwendung für in-vitro Untersuchungen von zentraler Bedeutung ist. Die Bestimmung der Aktivität erfolgte indirekt durch Messung der NBT-Reduktion zu blauem Formazan, was spektrophotometrisch bei einer Wellenlänge von 570 nm verfolgt werden konnte. Ein Vorteil dieses Tests besteht darin, dass die Messung nicht durch verschiedene chemische Hemmstoffe beeinträchtigt wird, die eine Unterscheidung der SOD-Isoformen ermöglichen (Kliebenstein et al., 1998). Für diesen Versuch wurden zunächst Aliquots der gereinigten Proteine mittels Hitzedenaturierung inaktiviert, um einen internen Kontrollwert für die ungehemmte NBT-Reduktion zu generieren. Bei Zugabe der verschiedenen unbehandelten Proteinfraktionen
konnte in allen Fällen eine deutliche Inhibierung der Formazan-Bildung im Vergleich zum Kontrollwert gemessen werden, was die enzymatische Aktivität aller produzierten Superoxid-Dismutasen bestätigte (Abb. 37).

Abb. 37: Überprüfung der Enzymaktivität rekombinant produzierter SODs
Dargestellt ist die Hemmung der Formazan-Bildung von MnSOD (A), FeSODs (B) und CZSODs (C) vor und nach Hitzeinaktivierung. Für eine Unterscheidung der Isoformen wurde eine selektive Vorbehandlung der Proteine mit H₂O₂ und NaCN durchgeführt. Als Maß für die Enzymaktivität wurde die Bildung von Formazan relativ zum internen Kontrollwert nach Inaktivierung in Prozent angegeben.

Zur Unterscheidung der verschiedenen metallhaltigen SOD-Isoformen wurden Aliquots der FeSODs mit einer H₂O₂-Lösung vorbehandelt, was zu einer selektiven Hemmung dieser Proteine führte. Folglich konnte erneut ein Anstieg der Formazan-Bildung beobachtet werden, der annähernd das Niveau des ungehemmten Kontrollwertes erreichte. Analog dazu bewirkte die Inkubation der CZSODs mit NaCN-Lösung eine Inhibierung der Aktivitäten, was ebenfalls eine Zunahme der Formazan-Akkumulation hervorrief. Im Gegensatz dazu wurde die Aktivität der MnSOD weder durch H₂O₂- noch durch NaCN-Behandlung negativ beeinträchtigt. In diesem Fall konnte keine Veränderung der Formazan-Bildung im Vergleich zur unbehandelten Fraktion ermittelt werden.
3.5.4. *In-vitro* Regulation der SOD-Aktivität durch Behandlung mit NO-Donoren


Für die Untersuchung der Aktivitätsveränderung durch S-Nitrosylierung wurden die Proteine mit dem NO-Donor Nitrosoglutathion (GSNO) exponiert, wobei nur Superoxid-Dismutasen berücksichtigt wurden, die Cysteinreste innerhalb ihrer Aminosäuresequenz aufwiesen (MnSOD, FeSOD3, CZSOD1-3). Dabei konnte weder nach Inkubation mit 0,25 mM noch mit 0,5 mM GSNO ein Aktivitätsunterschied im Vergleich zur Kontrollbehandlung bei allen getesteten Isoformen festgestellt werden (siehe Anhang Abb. 8).

Für die Analyse der Aktivitätsbeeinträchtigung durch Nitrierung wurden die einzelnen Isoformen in verschiedenen Konzentrationssstufen von 0,1 mM bis 1 mM mit dem NO-Donor Peroxynitrit inkubiert und analog der oben beschriebenen Vorgehensweise getestet. Parallel hierzu wurden die Proteine in Gegenwart von 100 µM Urate mit Peroxynitrit behandelt, was eine Nitrierung effektiv unterbindet und zudem zerfallenes Peroxynitrit als Negativkontrolle verwendet. Auch hier wurden nur SODs überprüft, die nitrierbare Tyrosinreste besitzen, weshalb die Isoformen CZSOD1 und CZSOD2 in den folgenden Abbildungen nicht berücksichtigt wurden.

Wie in Abb. 38 dargestellt, konnte bei MnSOD, FeSOD3 und CZSOD3 eine konzentrationsabhängige Inhibierung der Enzymaktivitäten durch Peroxynitrit beobachtet werden, während die beiden Isoformen FeSOD1 und FeSOD2 keine Veränderungen im Vergleich zur Kontrollbehandlung zeigten. Der Effekt der Enzymhemmung war am stärksten bei MnSOD ausgeprägt, da bereits bei Verwendung von 500 µM des Nitrierungs-Agens eine nahezu vollständige Hemmung detektiert werden konnte. Im Gegensatz dazu mussten bei den anderen beiden Kandidaten deutlich höherer Peroxynitrit-Konzentrationen eingesetzt werden, wobei auch bei der maximal eingesetzten Dosierungsstufe noch eine Restaktivität von 30% bis 35% zu verzeichnen war. Durch Inkubation mit dem Hemmstoff Urate konnte die negative Auswirkung der Peroxynitrit-Behandlung wieder aufgehoben werden, was die Spezifität der Nitrierungsreaktion verdeutlicht.
Ergebnisse

Abb. 38: Einfluss der in-vitro Behandlung mit Peroxynitrit auf die Aktivität von SOD-Isoformen

Rekombinant produzierte FeSOD1 (A), FeSOD2 (B), MnSOD (C), FeSOD3 (D) und CZSOD3 (E) wurden mit verschiedenen Peroxynitrit-Konzentrationen behandelt und nach 20-minütiger Inkubation im Dunkeln die Aktivität der einzelnen Isoformen bestimmt (Schwarze Sternchen: Kontrollbehandlung mit inaktiviertem Peroxynitrit, schwarze Kästchen: Peroxynitrit-Behandlung, weiße Kästchen: Peroxynitrit-Behandlung in Gegenwart von 100 µM Urat). Veränderungen der enzymatischen Kapazität wurden dabei in Relation zur Negativkontrolle mit lichtinaktiviertem Peroxynitrit in Prozentangaben dargestellt. Werte für die Standardabweichungen basieren auf der Verwendung von drei unabhängigen technischen Messwiederholungen jeder Probe. Signifikante Unterschiede im Vergleich zur Kontrollbehandlung sind bei einem p-Wert ≤0,01 mit ** gekennzeichnet.
3.5.5. **In-vitro Immunodetektion nitrierter Superoxid-Dismutasen**


![Table](image)

**Abb. 39: Immunologischer Nachweis nitrierter Superoxid-Dismutasen**


Angesichts der Tatsache, dass alle drei SOD-Kandidaten mehrere Tyrosinerste innerhalb ihrer Aminosäuresequenz aufweisen, die als potentielle Nitrierungsstellen in Frage kommen, sollte im nächsten Schritt ermittelt werden, welcher Tyrosinrest für den Aktivitätsverlust der einzelnen Isoformen verantwortlich ist. Da die Enzymaktivität der MnSOD-Isoform auch bei Verwendung geringer Peroxynitrit-Konzentrationen am stärksten gehemmt werden konnte im Vergleich zu den anderen beiden SOD-Isoformen, sollte in den folgenden Experimenten die Identifizierung von Tyrosinmodifikationen am Beispiel der MnSOD-Isoform im Detail untersucht werden.
3.5.6. Massenspektrometrische Analyse nitrierter Tyrosinreste am Beispiel der MnSOD

Für den Nachweis nitrierter Tyrosinreste wurden 20 ng des rekombinanten MnSOD-Proteins mit 500 µM Peroxynitrit behandelt und die Peptidfragmente nach tryptischem Verdau mit Hilfe eines LTQ-Orbitrap Massenspektrometers analysiert. Dabei wurde speziell nach Modifikationen von Tyrosinresten mit einer Massenabweichung von 45 Da gesucht, was der molekularen Masse einer zusätzlichen Nitrogruppe entspricht. Für die statistische Auswertung der Ergebnisse wurde ein Score-Wert ≥25 als Signifikanzschwelle herangezogen. In diesem Zusammenhang konnten insgesamt neun verschiedene Tyrosinreste als Nitrierungsstellen identifiziert werden (Tab. 3).

Tab. 3: Nitrierte Tyrosinreste von MnSOD nach in-vitro Behandlung mit Peroxynitrit


<table>
<thead>
<tr>
<th>Identifizierte Peptid-Sequenzen</th>
<th>Score-Wert</th>
<th>Theoret. Masse</th>
<th>Beobacht. Masse</th>
<th>Ladung</th>
<th>Modifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KHHQAYVTNY⁶⁷NNALEQLDQAVNKG</td>
<td>76</td>
<td>2.614</td>
<td>1.308</td>
<td>2</td>
<td>Nitro (+45)</td>
</tr>
<tr>
<td>KHHQAY⁶⁵VTNYNNALEQLDQAVNKGDASTVVKL</td>
<td>70</td>
<td>3.372</td>
<td>0.844</td>
<td>4</td>
<td>Nitro (+45)</td>
</tr>
<tr>
<td>KGGLVPLYGIDVWEHAY¹⁸⁶YLQYKN</td>
<td>48</td>
<td>2.551</td>
<td>1.277</td>
<td>2</td>
<td>Nitro (+45)</td>
</tr>
<tr>
<td>KGGLVPLYGIDVWEHAY¹⁹⁹LQYKN</td>
<td>45</td>
<td>2.551</td>
<td>1.277</td>
<td>2</td>
<td>Nitro (+45)</td>
</tr>
<tr>
<td>KGGLVPLYGIDVWEHAYYLQY²⁰⁵KN</td>
<td>42</td>
<td>2.551</td>
<td>1.277</td>
<td>2</td>
<td>Nitro (+45)</td>
</tr>
<tr>
<td>RGIQTFTLPDLPYDY⁴⁰GALEPAISGEIMQIHQKH</td>
<td>39</td>
<td>3.627</td>
<td>1.210</td>
<td>3</td>
<td>Nitro (+45)</td>
</tr>
<tr>
<td>RGIQTFTLPDLPY³⁸DYGATEPAISGEIMQIHQKH</td>
<td>38</td>
<td>3.627</td>
<td>0.908</td>
<td>4</td>
<td>Nitro (+45)</td>
</tr>
<tr>
<td>KVNWKY²²ASEVYEKE</td>
<td>27</td>
<td>1.673</td>
<td>0.837</td>
<td>2</td>
<td>Nitro (+45)</td>
</tr>
<tr>
<td>KNVRPEY²⁰⁹LKN</td>
<td>26</td>
<td>1.063</td>
<td>0.532</td>
<td>2</td>
<td>Nitro (+45)</td>
</tr>
</tbody>
</table>

3.5.7. In-silico Modellierung einer 3D-Struktur von MnSOD

Um herauszufinden, ob die Aktivitätsinhibierung der MnSOD-Isoform aufgrund multipler Tyrosin-Nitrierung und einer damit verbundenen Konformationsänderung zustande kommt oder möglicherweise auf der Modifikation eines bestimmten Tyrosinrestes beruht, wurde zunächst die räumliche Anordnung der identifizierten Nitrierungsstellen innerhalb der Tertiärstruktur überprüft. Da bisher noch keine röntgenkristallographische Analyse der MnSOD aus Arabidopsis thaliana vorliegt, wurde basierend auf der bekannten Aminosäuresequenz mit Hilfe des Programms SWISSMODEL eine dreidimensionale Modellvorhersage

**Abb. 40: 3D-Strukturmodell von MnSOD aus Arabidopsis thaliana**


Dabei ist auffällig, dass nur die Tyrosinreste Tyr 63, Tyr 198, Tyr 209 in unmittelbarer Nähe des aktiven Zentrums lokalisiert sind, während die restlichen sechs Nitrierungsstellen eine Entfernung von zum Teil deutlich mehr als 10 Ångström aufweisen. Vor allem der Tyrosinrest 63, der in einer Distanz von nur 5,3 Ångström von der Substrat-Bindetasche entfernt liegt,
Ergebnisse

könte nach Reaktion mit Peroxynitrit möglicherweise eine entscheidende Rolle hinsichtlich der Aktivitätshemmung der MnSOD spielen.

3.5.8. Strukturelle Bedeutung von Tyrosin 63 für die MnSOD-Aktivität

Ausgehend von den Erkenntnissen der Strukturanalyse bzw. der räumlichen Lokalisation des Tyrosinrests 63 erschien es sinnvoll, die strukturelle Bedeutung dieser Nitrierungsstelle genauer zu charakterisieren. In diesem Zusammenhang sollte daher die Auswirkung einer Aminosäure-Substitution und die damit verbundende Verhinderung einer Nitrierung an der Position 63 im Hinblick auf die Enzymaktivität nach Peroxynitrit-Behandlung untersucht werden. Zu diesem Zweck wurde die Aminosäure Tyrosin durch gezielte Einführung einer Punktmutation innerhalb der MnSOD-Sequenz gegen Phenylalanin ausgetauscht und die mutierte Variante in Analogie zu den bereits beschriebenen Vorgehensweise in Kapitel 3.5.2 rekloniert, heterolog exprimiert und aufgereinigt. Nach erfolgreicher Überprüfung der enzymatischen Aktivität wurde die rekombinant produzierte MnSOD Y63F-Variante nach dem gleichen Verfahren wie in Kapitel 3.5.4 mit unterschiedlichen Peroxynitrit-Konzentrationen behandelt und anschließend die Auswirkung der Nitrierung auf die Enzymfunktion getestet. Auch in diesem Fall war eine konzentrationsabhängige Aktivitätsinhibierung erkennbar, wobei die mutierte Version allerdings eine deutlich geringere Sensitivität im Vergleich zur normalen MnSOD-Isoform zeigte (Abb. 41).

Abb. 41: Einfluss der in-vitro Nitrierung auf die Aktivität von MnSOD Y63F

Rekombinant produzierte MnSOD (A) und die mutierte MnSOD Y63F-Variante (B) wurden mit verschiedenen Peroxynitrit-Konzentrationen vorbehandelt und die Aktivität beider Isoformen bestimmt (schwarze Balken). Parallel hierzu wurden die Proteine in Gegenwart von 100 µM Urat mit Peroxynitrit behandelt, was die Nitrierung unterbindet (graue Balken). Veränderungen der Aktivität wurden in Relation zur Negativkontrolle mit lichtinaktiviertem Peroxynitrit in Prozent angegeben. Die Standardabweichungen basieren auf der Verwendung von drei technischen Messwiederholungen jeder Probe. Signifikante Unterschiede im Vergleich zur Negativkontrolle sind bei einem p-Wert ≤0,01 mit ** gekennzeichnet.
Während bei 100 µM Peroxynitrit keine Beeinträchtigung der Enzymfunktion mehr festgestellt werden konnte, war bei 500 µM Peroxynitrit maximal eine 30%-ige Inaktivierung detektierbar. Um das Ergebnis des Enzymtests zu bestätigen, wurden die beiden Isoformen MnSOD und MnSOD Y63F nach Peroxynitrit-Behandlung zusätzlich einem Western Blot mit Anti-Nitrotyrosin-Antikörpern unterzogen. Erwartungsgemäß konnte auch bei der mutierten Variante ein deutlich schwächeres, konzentrationsabhängiges Signal detektiert werden im Vergleich zu normalen MnSOD-Version, was auf ein geringeres Ausmaß der Nitrierung hindeutet (Abb. 42).

Abb. 42: Immunologischer Nachweis der nitrierten MnSOD Y63F-Variante

Als Fazit dieser Untersuchung lässt sich festhalten, dass insgesamt drei Isoformen (MnSOD, FeSOD3 und CZSOD3) als neue Kandidaten für eine in-vitro Regulation durch NO-abhängige postranslationale Proteinmodifikationen identifiziert werden konnten. Nach Inkubation mit dem NO-Donor Peroxynitrit war in diesem Zusammenhang eine konzentrationsabhängige Inhibierung der Enzymaktivitäten durch Nitrierung beobachtbar, während nach Behandlung mit GSNO bei allen rekombinant hergestellten Superoxid-Dismutasen keine Inaktivierung durch Nitrosylierung festgestellt werden konnte. Am Beispiel der MnSOD konnte zudem mittels Massenspektrometrie und zielgerichteter Mutagenese gezeigt werden, dass speziell der Tyrosinrest 63 als Nitrierungsstelle maßgeblich für den beobachteten Aktivitätsverlust verantwortlich ist.
4. Diskussion

Die physiologische Wirkung von NO in Pflanzen ist vielfältig und wird im Allgemeinen durch seine Bildung und seinen Abbau bestimmt, wobei vor allem dem Enzym GSNO-Reduktase eine zentrale Bedeutung innerhalb des NO-Stoffwechsels zukommt. Durch Abbau von GSNO reguliert es sowohl die zelluläre Verfügbarkeit von NO als auch indirekt die Veränderung von Enzymaktivitäten durch posttranslationale Modifikationen und übt damit einen entscheidenden Einfluss auf das NO-abhängige Signalnetzwerk aus.


4.1. Der Verlust der GSNO-Reduktase Aktivität resultiert in einem pleiotrophen Phänotyp und einer veränderten NO-Homöostase

Die Bedeutung von NO für das Pflanzenwachstum wurde bereits in mehreren Publikationen untersucht, wobei hauptsächlich die Auswirkungen exogener NO-Applikation auf einzelne Entwicklungsprozesse beschrieben wurden (Gouvêa et al., 1997, Leshem et al., 1998, Beligni und Lamattina, 2000). Veränderungen des endogenen NO-Status ermöglichen es hingegen den direkten Langzeiteffekt von NO auf den gesamten Habitus einer Pflanze in unterschiedlichen Wachstumsstadien *in-vivo* zu erfassen bzw. die Interaktion mit anderen Signalmolekülen und Stoffwechselkomponenten im Detail zu studieren.

Die Verwendung der gsnor Insertionslinie bietet sich in diesem Zusammenhang als probates Untersuchungsobjekt an, da ein Verlust der GSNO-Reduktase Aktivität zu einer höheren Akkumulation derzellulären NO-Speicherform GSNO und nitrosylierten Proteinen führt (Feechan et al., 2005, Rustérucci et al., 2007). Diese Ergebnisse konnten mit Hilfe Ozonabhängiger Gasphasen-Chemilumineszenz bestätigt und zusätzlich in unterschiedlichen Gewebetypen wie Spross- und Blütenmaterial gemessen werden (Abb. 9). Mit der gleichen Methode wurden auch Nitrit- und Nitrat-Gehalte quantifiziert, um Rückschlüsse auf weitere Modifikationen des allgemeinen NO-Stoffwechsels zu erhalten. Interessanterweise war in
gsnor-Knock-out Linien analog zum Nitrosothiolgehalt ebenfalls eine mehr als doppelt so hohe Nitratanreicherung im Vergleich zu Wildtyp-Pflanzen zu beobachten, was möglicherweise auf eine Verbindung zwischen Protein-Nitrosylie rung und Nitratassimilation hindeutet (Lee et al., 2008). Da beide Pflanzen unter den gleichen Anzuchtbedingungen kultiviert wurden, weisen die Unterschiede vermutlich auf eine veränderte Aufnahme, Synthese oder Degradation von Nitrat hin. In diesem Zusammenhang wäre bspw. eine NO-abhängige Inhibierung des Nitrat-Reduktase-Enzmys in gsnor Knock-out Linien denkbar, was vor kurzem auch nach exogener NO-Behandlung in Weizenblättern nachgewiesen werden konnte (Rosales et al., 2011). Andererseits könnte die Nitrat-Akkumulation auch auf eine erhöhte Hämaglobin-Enzymaktivität zurückzuführen sein, die als Dioxygenasen eine Oxidation von NO zu Nitrat katalysieren (Igamberdiev und Hill, 2004) und auf diese Weise gegebenenfalls den Verlust der GSNO-Reduktase Aktivität kompensieren. Angesichts der Tatsache, dass der hohe Nitrat-Gehalt in gsnor Knock-out Linien vor allem in Blattmaterial bzw. in geringerem Umfang in Spross- und Blü tengewebe detektiert wurde, kann darüber hinaus auch eine Beeinträchtigung des akropedalen Nitrattransports durch NO nicht ausgeschlossen werden.

Die Verschiebung der NO-Homöostase bzw. der damit verbundene nitrosative Stress in gsnor Knock-out Linien resultiert in einem pleiotrophen Phänotyp, der sowohl die Keimung als auch das vegetative Wachstum und die Reproduktion umfasst (Abb. 11-14). Die morphologischen Veränderungen korrelierten dabei mit den Untersuchungen der GSNO-Reduktase Promotoraktivität, da dieses Gen während der gesamten Entwicklungsphase in unterschiedlichen Gewebetypen und Pflanzenorganen konstitutiv exprimiert wird (Abb. 10). In diesem Zusammenhang ist besonders die ubiquitäre Lokalisation von GSNO-Reduktase im Vaskulärsystem zu erwähnen, was auf eine potentielle Rolle von GSNO als Signalmolekül schließen lässt und bereits in Bezug auf die SAR-Etablierung (Rustérucci et al., 2007) und die systemische Wundreaktion (Espunya et al., 2012) postuliert wurde. Da auch der Transport von Phytohormonen über das vaskuläre System erfolgt, liegt die Vermutung nahe, dass die phänotypischen Unterschiede auf einer Wechselwirkung von NO mit dem hormonellen Signalnetzwerk basieren.

Die auffälligste morphologische Anomalie stellt der Verlust der Apikaldominanz in gsnor Insertionslinien dar, was sich in einem kurzwüchsigen und stark verzweigten Phänotyp äußert und auf eine Beeinträchtigung der Auxin-Produktion oder eine eingeschränkte Mobilisierung dieses Hormons hindeutet. Als Beleg für diese Hypothese könnte die starke Expression des GSNO-Reduktase Gens und damit eine strikte Regulation der NO-Verfügbarkeit innerhalb des Sprossapikalmeristems angesehen werden (Abb. 10A), was als
Hauptsyntheseort von Auxin gilt (Normanly, 1997). Darüber hinaus scheint zudem der polare Auxin-Transport von der Sprossspitze in die Wurzeln, welcher über sog. PIN-Proteine reguliert wird, eine hohe Sensitivität gegenüber NO aufzuweisen bzw. durch Nitrosylierung von PIN1 blockiert zu werden (Fernández-Marcos et al., 2011). Im Hinblick auf die Dysregulation der NO-Homöostase in den gsnor Knock-out Linien könnte eine NO-abhängige Inhibierung der gewebespezifischen Auxin-Verteilung somit auch als Ursache für die drastische Hemmung des Primärwurzelwachstums und der Seitenwurzelausbildung interpretiert werden (Abb. 12). Transgene Linien mit eingeschränkter Auxinsynthese (Tian und Reed, 1999) oder reduziertem Auxintransport (Reed et al., 1998) zeigen bspw. eine ähnliche Veränderung der Wurzelmorphologie. Eine weitere Bestätigung dieser Annahme liefert zudem der Nachweis, dass eine exogene NO-Applikation das Primärwurzelwachstum in Tomatenkeimlingen unterbinden kann (Correa-Aragunde et al., 2004). Allerdings ist dieser Vorgang mit der gleichzeitigen Stimulierung der Seitenwurzelentwicklung verbunden, was hingegen bei der Mutante nicht festgestellt werden konnte.


Weitere phänotypische Auffälligkeiten im Vergleich zu Wildtyp-Pflanzen sind beim Übergang in die generative Phase und der Fertilität zu verzeichnen, was sich vor allem durch eine verzögerte Blühinduktion bemerkbar macht und auch in anderen transgengen Pflanzen mit höherem endogenen NO-Gehalt nachgewiesen wurde (He et al., 2004). Der Übergang in die generative Phase wird durch mehrere Faktoren bestimmt und neben der Photoperiode auch durch das Hormon Gibberellinsäure (GA) gesteuert (Mouradov et al., 2002). Transgene Pflanzen mit gestörter GA-Synthese oder GA-Signaltransduktion weisen z. B. einen späteren Blühzeitpunkt auf (Wilson et al., 1992), was möglicherweise auch durch die NO-abhängige Hemmung von Zielproteinen des GA-Stoffwechsels in gsnor Knock-out Linien ausgelöst
werden könnte. Für diese Hypothese spricht zudem die erhebliche geringere Schotengröße (Abb. 14C) sowie die beeinträchtigte Samenentwicklung - zwei Prozesse, die maßgeblich durch GA reguliert werden (Singh et al., 2002). Die reduzierte Samenanzahl pro Schote könnte hingegen auch auf die abnormale Blütenmorphologie zurückzuführen sein, da die Staubblätter deutlich verkürzt sind bzw. sich unterhalb der Narbe befinden und damit keine effektive Selbstbefruchtung möglich ist (Abb. 14B).

Des Weiteren konnte bei gsnor Insertionslinien eine deutliche Retardation der Blattseneszenz festgestellt werden (Abb. 14A), was vermutlich mit einer Beeinträchtigung des Ethylen-Haushalts zusammenhängt, da dieses Hormon maßgeblich an der Induktion des Alterungsprozesses beteiligt ist (Grbić und Bleecker, 1995). NO steht in einem antagonistischen Verhältnis zu Ethylen und besitzt eine Seneszenz-verzögernde Wirkung, was sowohl nach NO-Behandlung (Leshem et al, 1998) als auch bei transgenen Pflanzen mit verändertem NO-Gehalt nachweisbar war (Guo und Crawford, 2005, Mishina et al., 2007). Eine Erklärung für dieses Phänomen ist mit großer Wahrscheinlichkeit auf die NO-abhängige Inaktivierung des Enzym Methionin-S-Adenosyltransferase zurückzuführen, wodurch weniger Ausgangs-substrat für die Ethylenproduktion zur Verfügung steht (Lindermayr et al., 2006).

Eine Übersicht der morphologischen Veränderungen in gsnor Knock-out Linien sowie ein möglicher Zusammenhang mit den an diesen Prozessen beteiligten Phytohormonen ist in der Abb. 4 nochmals kurz zusammengefasst.

**Tab. 4: Phänotypische Veränderungen in gsnor Knock-out Linien als Folge eines beeinträchtigten Hormon-Haushalts**

Dargestellt ist eine Auflistung aller morphologischen Auffälligkeiten, die in gsnor Insertionslinien während des gesamten Entwicklungsverlaufs im Vergleich zu Wildtyp-Pflanzen beobachtet wurden und auf eine potentielle Interaktion zwischen NO und dem hormonellen Signalnetzwerk hindeuten.

<table>
<thead>
<tr>
<th>Phänotyp. Unterschiede</th>
<th>Hormon-Beteiligung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingeschränkte Keimungsrate/Dormanz</td>
<td>Abscisinsäure</td>
</tr>
<tr>
<td>Zeitlich verzögerte Keimung</td>
<td>Gibberellinsäure</td>
</tr>
<tr>
<td>Reduziertes Wurzelwachstum</td>
<td>Auxin</td>
</tr>
<tr>
<td>Verlust der Apikaldominanz</td>
<td>Auxin</td>
</tr>
<tr>
<td>Ausbildung mehrerer Sprossachsen und Seitentriebe</td>
<td>Cytokinin</td>
</tr>
<tr>
<td>Retardation der Blattseneszenz</td>
<td>Ethylen</td>
</tr>
<tr>
<td>Verzögerte Blühinduktion</td>
<td>Gibberellinsäure</td>
</tr>
<tr>
<td>Reduzierte Schotenlänge und Samenanzahl</td>
<td>Gibberellinsäure</td>
</tr>
</tbody>
</table>
4.2. Der Verlust der GSNO-Reduktase Aktivität hat keine Auswirkungen auf das Resistenzverhalten gegenüber *Pseudomonas syringae*


Diskussion

die Experimente verschiedene Ökotypen (Columbia-0 bzw. Wassilewskija in dieser Arbeit) verwendet wurden. Genetische Variationen zwischen einzelnen Akzessionen wurden allerdings im Zusammenhang mit einer differenzierten Abwehrantwort nach verschiedenen abiotischen und biotischen Stressbedingungen bereits in der Literatur beschrieben (Kover und Schaal, 2002, Li et al., 2006, Katori et al., 2010). Pflanzen des Ökotyps Columbia-O reagieren bspw. deutlich sensitiver auf Infektion mit Pst DC3000 (avrRpt2) als Wassilewskija-Pflanzen, was sich auch in einer geringen Übereinstimmung differenziell regulierter Gene widerspiegelte (Van Poecke et al., 2007). Darüber hinaus erfolgte die Infektion der Pflanzen auf unterschiedliche Weise und mit verschiedenen Konzentrationen (Spritzeninjektion einzelner Blätter mit $10^5$ KBE/ml bzw. Vakuuminfiltration der gesamten Pflanze mit $10^6$ KBE/ml in dieser Arbeit). Die Wahl der Behandlungsmethode hat allerdings einen erheblichen Einfluss auf die Ausbildung von Krankheitssymptomen und die Vermehrung innerhalb des Blattgewebes (Zipfel et al., 2004). In diesem Zusammenhang begünstigt die Vakuuminfiltration den Infektionsverlauf vermutlich zugunsten des Pathogens, da die gesamte Pflanze mit einer hohen Bakteriendichte quasi überschwemmt wird (Sun et al., 2006). Dies könnte möglicherweise auch der Grund sein, weshalb die Unterschiede im Resistenzverhalten zwischen Wildtyp-Pflanzen und gsnor Knock-out Linien nicht mehr deutlich hervortreten.

Detaillierte Untersuchungen, welche Auswirkungen ein Verlust der GSNO-Reduktase Aktivität auf die Genexpression oder Proteinregulation nach Pseudomonas-Infektion hat, liegen bisher nicht vor. Mittels Proteomanalyse sollten daher neue Erkenntnisse im Hinblick auf potentielle Unterschiede der Proteinregulation sowohl zwischen beiden Linien als auch in Bezug auf die pathogenspezifische Abwehrantwort gewonnen werden.

4.3. Der Verlust der GSNO-Reduktase Aktivität führt zu einer veränderten Proteinexpression nach Pseudomonas syringae-Infektion

Nach Pseudomonas-Infektion wurden in Blattproben von Wildtyp-Pflanzen und gsnor Knock-out Linien mit Hilfe der differentiellen Gelelektrophorese insgesamt 58 Proteine nach inkompatibler bzw. 66 Proteine nach kompatibler Interaktion identifiziert, deren Abundanz sich während des Infektionsverlaufs mindestens um den Faktor $\pm 2$ veränderte (Tab. 2). Die quantitative Auswertung ergab, dass ein deutlicher Anstieg differentiell regulierter Proteine erst 24 h nach der jeweiligen Behandlung in beiden Linien auftrat. In anderen Studien konnten hingegen auch zu einem früheren Zeitpunkt bereits signifikante Unterschiede nach avirulenter bzw. virulenter Pseudomonas-Infektion detektiert werden, wobei allerdings nur Veränderungen in der Spotintensität und keine quantitativen Werte erfasst wurden (Jones et
Diskussion


Insgesamt betrachtet lässt sich aus den erhobenen Daten schlussfolgern, dass beide Linien einerseits eine ähnliche Abwehrstrategie auf Proteinebene offenbaren, bspw. in Bezug auf Veränderungen der Proteinregulation innerhalb bestimmter Gelregionen nach avirulenter (Abb. 16) bzw. virulenter (Abb. 17) Infektion. Andererseits konnten aber auch deutliche Abweichungen hinsichtlich der identifizierten Proteinkandidaten festgestellt werden, was auf Variationen in der Abwehrreaktion hindeutet (Abb. 19). Im Folgenden werden charakteristische Unterschiede und Übereinstimmungen in Wildtyp-Pflanzen und gsnor Insertionslinien anhand einzelner Beispiele kurz erläutert und im Zusammenhang mit der Pathogenabwehr diskutiert.

Die inkompatible Interaktion war in beiden Linien durch eine starke Akkumulation der GST-Isoformen 1, 2 und 8 gekennzeichnet, die zur Phi-Klasse gehören und zudem in verschiedenen posttranslationalen Modifikationen vorkamen. Alle drei Isoformen besitzen Glutathion-Peroxidase-Aktivität, wobei GST2 und GST8 zusätzlich an der Detoxifizierung von Lipidhydroperoxiden beteiligt sind, die durch Wechselwirkung von ROS mit Zellmembranen entstehen (Wagner et al., 2002). In der Literatur ist eine Induktion der GST-Akkumulation als Marker für die generelle Abwehrantwort nach Pathogenbefall sowohl auf Transkriptebene (Maleck et al., 2000) und Proteinebene (Jones et al., 2004, Asano et al., 2012) als auch nach Elicitorbehandlung in Arabidopsis-Zellkulturen (Chivasa et al., 2006) beschrieben. In diesem Zusammenhang spielen GSTs womöglich eine Rolle bei der Regulation des zellulären Redoxstatus, indem sie die Entwicklung des Zelltodes während der HR einschränken.
Diskussion


Der auffälligste Unterschied zwischen beiden Linien war hingegen bei der Regulation des Photosynthese-Prozesses feststellbar, da nur in Wildtyp-Pflanzen eine deutliche Reprimierung chloroplastidärer Proteine wie Ferredoxin-Thioredoxin-Reduktase (FTR) und verschiedener Untereinheiten von Ribulose 1,5-bisphosphat-Carboxylase (RuBisCO) vorlag. FTR katalysiert den Elektronentransport von Ferredoxin auf Thioredoxin und ist an der Aktivierung verschiedener photosynthetischer Zielenzyme wie RuBisCO-Aktivase (Zhang und Portis, 1999) oder Fruktose-1,6-Bisphosphatase (Ruelland und Miginiac-Maslow, 1999) beteiligt, die beide ebenfalls eine reduzierte Abundanz nach avirulenten Infektion aufwiesen. Eine Einschränkung der photosynthetischen Aktivität nach Pathogenbefall wurde auch in anderen Studien beobachtet (Scharte et al., 2005, Bonfig et al., 2006) und ist mittlerweile als typische Reaktion der Pflanze bei der Umstellung vom primären zum abwehrinduzierten Stoffwechsel etabliert (Berger et al., 2007). In diesem Zusammenhang scheinen gsnoR Knock-out Linien für eine effiziente Abwehrreaktion hingegen nicht auf eine Restriktion des Photosynthese-Systems angewiesen zu sein.

Diskussion


Ein deutlicher Unterschied zwischen beiden Linien ist hingegen bei der Regulation der Peptidyl-prolyl cis-trans Isomerase (PPI) zu beobachten, die in Wildtyp-Pflanzen eine fast 20-fache Akkumulation aufweist und an der korrekten Proteinfaltung beteiligt ist. Darüber hinaus ist dieses Protein als Interaktionspartner sowohl bei der Regulation der Cystein-Biosynthese (Dominguez-Solis et al., 2008) als auch der Aktivierung von Peroxiredoxinen (Laxa et al., 2007) involviert. Eine Akkumulation von PPI nach Pathogenbehandlung wurde bereits in verschiedenen Pflanzenspezies auf Proteinebene (Campo et al., 2004, Kaur et al., 2011) beschrieben, wobei allerdings unklar bleibt, ob PPI aktiv durch die Pflanze oder aufgrund der gezielten Manipulation der Abwehrreaktion durch das Pathogen induziert wird (Coaker et al., 2005). Darüber hinaus ist in Wildtyp-Pflanzen die Produktion eines luminalen Bindeproteins (BIP1) erhöht, welches die Faltung und Sekretion von Abwehrproteinen bei der SAR-Ausbildung erleichtert (Wang et al., 2005).


4.4. Der Verlust der GSNO-Reduktase Aktivität vermittelt Toleranz gegenüber Paraquat-induziertem oxidativen Stress

Der Begriff oxidativer Stress bezeichnet das Ungleichgewicht zwischen der Erzeugung und Entgiftung reaktiver Sauerstoffspezies bzw. beschreibt die Situation, wenn die zelluläre ROS-Generierung die antioxidative Kapazität vorübergehend übersteigt (Alscher et al., 1997). Eine Änderung der ROS-Homöostase und die damit verbundene Verschiebung des Redoxstatus wird primär durch äußere Umwelteinflüsse induziert und ist in diesem Zusammenhang bereits nach verschiedenen abiotischen und biotischen Stressbehandlungen beobachtet worden (zusammengefasst in Mittler, 2002). In der vorliegenden Arbeit wurde das Bipyridium-Herbizid Paraquat als ROS-induzierendes Agens verwendet, dessen Wirkort sich
Diskussion


Unter Verwendung verschiedener Behandlungsmethoden konnte in gsnor Insertionslinien eine deutlich geringere Anfälligkeit gegenüber verschiedenen Paraquat-Konzentrationen im Vergleich zu Wildtyp-Pflanzen festgestellt werden (Abb. 20, Abb. 21, Abb. 22), was mit den Beobachtungen einer anderen Arbeitsgruppe übereinstimmt (Chen et al., 2009). Die Toleranzausprägung ist dabei mit großer Wahrscheinlichkeit auf die Veränderung derzellulären NO-Homöostase zurückzuführen, da sowohl weitere transgene Pflanzen mit erhöhtem endogenen NO-Gehalt (Abb. 23) als auch Wildtyp-Pflanzen, die mit dem NO-Donor SNAP vorbehandelt wurden (Abb. 24), eine geringere Sensitivität aufwiesen. Ein protektiver Effekt von NO gegenüber Paraquat-induziertem oxidativen Stress wurde in diesem Zusammenhang auch in Kartoffel und Reis nach exogener Donor-Applikation beschrieben (Beligni und Lamattina, 1999, Hung et al., 2002).

Die durch NO vermittelte Schutzfunktion in gsnor Insertionslinien könnte in diesem Fall möglicherweise auf der Reaktion von NO mit Alkoxy- und Peroxid-Radikalen beruhen, die im Rahmen der Lipidperoxidation durch Interaktion von Hydroxylradikalen mit Fettsäuren entstehen. Auf diese Weise wird die durch Fettsäure-Radikale ausgelöste Kettenreaktion der oxidativen Degradation von Lipiden unterbunden (Lipton et al., 1993, Wink et al., 1995). Andererseits ist NO aufgrund seines Radikalcharakters auch in der Lage direkt mit Superoxidradikalen zu reagieren und damit die Bildung weiterer ROS-Spezies zu unterbinden, wodurch dem Molekül selbst eine Funktion als Antioxidans eingeräumt wird (Kanner et al., 1991, Wink et al., 2003). Die Rolle von NO als Radikalfänger könnte in diesem Kontext auch die Unterdrückung des Zelltodprozesses erklären, der in gsnor Knock-out Linien nach Paraquat-Behandlung beobachtet wurde (Chen et al., 2009), da für dessen Induktion ein ausbalanciertes Verhältnis zwischen NO, O₂⁻ und H₂O₂ essentiell ist (Delledonne et al., 2001). Allerdings war weder in dieser Arbeit noch bei Chen (Chen et al., 2009) eine Veränderung der Superoxid-Akkumulation in gsnor Insertionslinien nach Paraquat-Applikation im Vergleich zu Wildtyp-Pflanzen erkennbar (Abb. 26).
Im Gegensatz dazu konnte hingegen eine deutlich geringere Anreicherung von H$_2$O$_2$ in den Mutanten festgestellt werden (Abb. 28), was vermutlich auf die verstärkte Induktion von Glutathion-Peroxidasen (Abb. 27) zurückzuführen ist. Glutathion-Peroxidasen (GPx) schützen die Zellen vor ROS-induziertem oxidativen Stress, indem sie die Glutathion-abhängige Reduktion von organischen Hydroperoxiden, Lipidperoxiden und Wasserstoffperoxid katalysieren (Ursini et al., 1995). In *Arabidopsis thaliana* existieren sieben Isoformen, die in unterschiedlichen zellulären Kompartimenten lokalisiert sind (Rodriguez Milla et al., 2003), wobei vor allem den beiden chloroplastidären Isoformen eine wichtige Funktion bei der Abwehr von oxidativem Stress eingeräumt wird (Chang et al., 2009). Durch Überexpression einzelner GPx-Isoformen aus artfremden Organismen konnte zudem eine höherer Toleranz gegenüber Paraquat in *Arabidopsis thaliana* (Gaber et al., 2006) oder Tabak (Yoshimura et al., 2004) erzielt werden.


et al., 2004) bzw. durch Überexpression einzelner SOD-Isoformen induziert werden kann (Gupta et al., 1993, Slooten et al., 1995, Van Camp et al., 1996). Als Grund für die eingeschränkte SOD-Aktivität in gsnor Insertionslinien ist höchstwahrscheinlich eine NO-abhängigen Inaktivierung einzelner SOD-Isoformen anzuführen, was mit Hilfe von in-vitro Tests am rekombinanten Protein bestätigt werden konnte (Abb. 38).


Eine Zusammenfassung aller durchgeführten Analysen zur Charakterisierung des antioxidativen Systems nach Paraquat-Behandlung ist in der Abb. 43 nochmals graphisch veranschaulicht.

**Abb. 43: Zusammenhang zwischen Paraquat und der in dieser Arbeit analysierten Komponenten des Redoxsystems**


**4.5. Interpretationsmöglichkeiten in Bezug auf das induzierte antioxidative System in gsnor Knock-out Linien**


Eine weitere Möglichkeit die Aktivierung des antioxidativen Systems in gsnor Insertionslinien zu erklären, könnte in der Veränderung der zellulären NO-Homöostase dieser Pflanzen begründet liegen. Der Verlust der GSNO-Reduktase Aktivität und die damit verbundene Zunahme des endogenen NO-Gehaltes führt zu einer verstärkten Glutathion-Akkumulation,
was auch nach Begasung mit NO in Wildtyp-Pflanzen beobachtet werden konnte (Abb. 33). Angesichts der Tatsache, dass mit Cystein und γ-Glutamylcystein auch die thiolhaltigen Ausgangs- und Zwischenprodukte des Glutathion-Stoffwechsels zunahmen, scheint NO eine Induktion der gesamten Glutathion-Biosynthese zu verursachen. Da der GSH-Gehalt in den Mutanten zusätzlich zu den bereits erhöhten Werten nach NO-Begasung ansteigt, liegt die Vermutung nahe, dass es sich bei dieser Reaktion möglicherweise um einen Schutzmechanismus gegenüber toxischen NO-Konzentrationen handelt. Eine Aktivierung der Glutathion-Synthese nach exogener Behandlung mit den NO-Donoren GSNO und SNP konnte darüber hinaus auch in Wurzeln von Medicago truncatula (Innocenti et al., 2007) und Maisblättern (Mello et al., 2012) nachgewiesen werden. In beiden Fällen war eine deutliche Expressionssteigerung der Gene γ-Glutamylcystein-Synthetase und Glutathion-Synthetase detektierbar, was auf eine transkriptionelle Regulation der Glutathion-Bildung durch NO hindeutet.

Die Akkumulation von Wasserstoffperoxid nach Stressexposition ist ebenfalls mit einer Zunahme der Glutathion-Gehalte verbunden, wobei dieser Effekt allerdings nur durch endogen produziertes H₂O₂ zustande kommt (Vanacker et al., 2000, Queval et al., 2009, Queval et al., 2011). Die exogene H₂O₂-Zufuhr hat hingegen keinen Einfluss auf die Transkriptrate der an der Glutathion-Biosynthese beteiligten Gene (Xiang und Oliver, 1998). Da der zugrundeliegende Reaktionsmechanismus der Glutathion-Anreicherung durch H₂O₂ bisher nicht geklärt ist, wäre in diesem Zusammenhang prinzipiell das Modell einer H₂O₂-induzierten NO-Produktion zur Stimulation der Glutathion-Synthese denkbar. In der Literatur ist ein Anstieg der NO-Gehalte als unmittelbare Folge der H₂O₂-Produktion bei einer Vielzahl zellulärer Prozesse wie der Stomata-Schließung (He et al., 2005, Bright et al., 2006), Cytoskelett-Dynamik (Yao et al., 2012), Aktivierung der MAP-Kinase Signaltransduktion (Zhang et al., 2007, Wang et al., 2010) oder dem Zelltodprozess (Lin et al., 2012) beschrieben.

Eine direkte und schnelle Veränderung der NO-Homöostase wäre beispielsweise durch die H₂O₂-abhängige Hemmung des GSNO-Reduktase Enzyms zu erzielen, was bereits mit Hilfe von in-vitro Experimenten am rekombinanten Protein in der Arbeitsgruppe von Dr. Christian Lindermayr demonstriert und vor kurzem auch in-vivo nachgewiesen werden konnte (Bai et al., 2012). Die mit der Akkumulation von GSNO verbundene Erhöhung des endogenen NO-Status führt konsequenterweise zu einer Induktion NO-abhängiger Signalwege, was unter anderem eine Stimulation der GSH-Synthese und damit vermutlich auch eine Aktivitätssteigerung Glutathion-abhängiger Enzyme hervorruft (Abb. 44). Auf diese Weise wird einerseits eine progressive ROS-Anreicherung verhindert und andererseits das durch
Diskussion

oxidativen Stress entstanden Ungleichgewicht des Redoxsystems behoben bzw. wieder reduzierende Verhältnisse initiiert. Eine Funktion von NO als Stimulus für die Induktion der oxidativen Stressabwehr ist in diesem Zusammenhang bei vielen ROS-induzierenden Umwelteinflüssen wie Metallstress (Hsu und Kao, 2004, Wang und Yang, 2005), Salzstress (Zhao et al., 2007, Xuexia et al., 2011), Hitzestress (Song et al., 2006), Trockenstress (García-Mata und Lamattina, 2001), Lichtstress (Xu et al., 2010), UV-Bestrahlung (Shi et al., 2005) oder Verwundung (Lin et al., 2011) beschrieben.

Darüber hinaus hätte die \( \text{H}_2\text{O}_2 \)-abhängige Hemmung des GSNO-Reduktase-Enzyms, dessen zelluläre Lokalisation aufgrund eines fehlenden Transitpeptids primär im Cytosol vermutet wird, einen unmittelbaren Anstieg der Nitrosothiol-Gehalte zur Folge, da GSNO als Donormolekül für Nitrosylierungs-Reaktionen fungiert. In diesem Zusammenhang könnte die NO-abhängige Interaktion mit Cysteinresten von Proteinen auch als eine Art Schutzfunktion angesehen werden, um eine irreversible, oxidative Modifikation von Proteinen durch ROS-Moleküle zu verhindern (Spadaro et al., 2010). Durch Nitrosylie run von NADPH-Oxidasuren und der damit verbundenen Hemmung der Enzymaktivität, ist NO allerdings auch in der Lage, direkt die endogene Synthese von \( \text{O}_2^- \) und damit auch die Bildung von \( \text{H}_2\text{O}_2 \) zu unterbinden (Yun et al., 2011). Membranständige NADPH-Oxidasen werden als wichtigste Quelle für endogen produziertes \( \text{H}_2\text{O}_2 \) nach Stressexposition angesehen (Perdov und Van Breusegem, 2012), wobei \( \text{H}_2\text{O}_2 \) vermutlich durch Aquaporine aus dem Apolasten in das Cytosol transportiert wird (Biernert et al., 2007, Dynowski et al., 2008). Darüber hinaus kann \( \text{H}_2\text{O}_2 \) allerdings auch durch Membrandiffusion auf das Cytosol übergreifen, was am Beispiel von Chloroplasten nach Belichtung gezeigt werden konnte (Mubarakshina et al., 2010).

Das Modell zur Wechselwirkung zwischen \( \text{H}_2\text{O}_2 \) und NO lässt sich prinzipiell als generelle Reaktion auf abiotische oder biotische Stressbedingungen übertragen (Abb. 44). Das Enzym GSNO-Reduktase würde in diesem Kontext die Funktion eines intrazellulären Redox-Schalters erfüllen, dessen Inhibierung nach oxidativem Stress eine NO-abhängige Signalkaskade auslöst, die einer Akkumulation von reaktiven Sauerstoffspezies entgegenwirkt und damit eine überproportionale Schädigung zellulärer Schäden unterbindet. Unter diesem Gesichtspunkt ist der Paraquat-tolerante Phänotyp der gsnor Insertionslinie vermutlich primär als indirekter „Priming“-Effekt des antioxidativen Systems zu betrachten, der als Folge der erhöhten NO-Homöostase in den transgenen Pflanzen ausgelöst wird.
Diskussion

Abb. 44: Modell zur Funktion von GSNO-Reduktase als Redox-Sensor

Die in dieser Arbeit gewonnenen Daten in Kombination mit Information aus der Literatur deuten darauf hin, dass eine stressbedingte Akkumulation von \( \text{H}_2\text{O}_2 \) für die Induktion NO-abhängiger Signalwege verantwortlich ist, welche wiederrum einer oxidativen Schädigung durch reaktive Sauerstoffspezies entgegenwirken. Eine Inhibierung des GSNO-Reduktase Enzyms und die damit verbundene Akkumulation von GSNO stellt in diesem Zusammenhang ein effizientes regulatorisches Element dar, um eine rasche Erhöhung des endogenen NO-Status zu erzielen. (GS)NO kann dabei einerseits indirekt über die Stimulation der Glutathion-Biosynthese und Glutathion-assoziiert Enzyme eine Aktivierung des antioxidativen Systems bewirken oder andererseits direkt durch Hemmung von NADPH-Oxidassen die endogene Produktion von \( \text{O}_2^- \) untermittelt. Schwarze Pfeile kennzeichnen einen stimulierenden Effekt, während rote Pfeile einen hemmenden Einfluss symbolisieren.


4.6. MnSOD als Zielprotein für die \textit{in-vitro} Inhibierung durch Peroxynitrit und strukturelle Aspekte der Nitrierung von Tyrosin 63

Mn-Superoxid-Dismutassen sind antioxidative Schutzenzyme und ubiquitär in aeroben Organismen vorhanden, die auf die Verfügbarkeit von molekularem Sauerstoff für die Energiegewinnung im Rahmen der Zellatmung angewiesen sind. Dieser in den Mitochondrien stattfindende Prozess führt neben der ATP-Gewinnung auch zur Bildung von Superoxidradikalen, da \( \text{O}_2^- \)-Moleküle als alternative Elektronenakzeptoren entlang der Atmungskette fungieren (Navrot et al., 2007). MnSOD ist als einziger Bestandteil des antioxidativen Systems in Mitochondrien in der Lage, eine enzymatische Umsetzung des unter physiologischen Bedingungen als auch bei oxidativem Stress entstehenden Superoxidanions zu katalysieren. Zwar können \( \text{O}_2^- \)-Radikale in wässrigen Medien auch spontan mit einer Rate von \( 2 \times 10^5 \text{ M}^{-1}\text{sec}^{-1} \) zu \( \text{H}_2\text{O}_2 \) disproportionieren (Fridovich, 1983), aber in Gegenwart von Superoxid-Dismutassen wird diese Reaktion um den Faktor \( 10^4 \) beschleunigt (Scandalios, 1993). Der Mechanismus der Disproportionierung basiert dabei auf einem zweistufigen Reaktionsprozess, bei dem das gebundene Metallion im ersten Schritt durch ein Superoxidanion reduziert wird und im zweiten Schritt durch Abgabe eines

Die Regulation der MnSOD-Aktivität ist in Pflanzen bisher kaum untersucht. In isolierten Mitochondrien-Fraktionen aus Kartoffel und Reis wurde dieses Enzym unter anderem zwar als Zielprotein für Phosphorylierungs- und Oxidationsprozesse identifiziert, aber eine potentielle Auswirkung auf die Aktivitätsänderung nicht weiter analysiert (Bykova et al., 2003, Kristensen et al., 2004). In der vorliegenden Arbeit konnte erstmals eine NO-abhängige Inhibierung der Enzymaktivität von MnSOD in Pflanzen nach in-vitro Behandlung mit Peroxynitrit gezeigt werden (Abb. 38C), das als Donor für Nitrierungsreaktionen fungiert (Radi et al., 2004). Die Zugabe von 500 µM Peroxynitrit resultierte in einer nahezu vollständigen Inaktivierung des Enzmys, was auch in früheren in-vitro Studien mit der humanen MnSOD (Mac-Millan-Crow et al., 1998) bzw. der MnSOD aus E.coli (Surmeli et al., 2010) gezeigt werden konnte und auf einen konservierten Reaktionsmechanismus hindeutet. Da bereits in Gegenwart von 100 µM Peroxynitrit eine 30%-ige Hemmung detektierbar war, spricht die hohe Sensitivität der MnSOD dafür, dass eine Nitrierung vermutlich auch in-vivo stattfindet, zumal die Produktion von Peroxynitrit unter
physiologischen Bedingungen auf 50-100 µM geschätzt wird (Szabó et al., 2007). Die reduzierte SOD-Gesamtaktivität in gsnor Knock-out Linien mit höherem endogenem NO-Gehalt könnte in diesem Zusammenhang als zusätzliches Indiz für diese Hypothese angesehen werden (Abb. 25). Die konzentrationsabhängige Abnahme der Enzymaktivität war gleichzeitig mit einer verstärkten Nitrotyrosin-Akkumulation verknüpft (Abb. 39), was allgemein als Indikator für eine posttranslationale Modifikation durch Nitrierung angesehen wird (Van der Vliet et al., 1996). Die Spezifität dieser Reaktion konnte zusätzlich durch Zugabe von Urait demonstriert werden, dass als Radikalfänger mit Peroxynitrit reagiert (Squadrito et al., 2000) und die Inhibierung von MnSOD bzw. die Akkumulation nitrierter Tyrosinreste auch noch bei einem fünffachen molaren Überschuss des NO-Donors effizient verhindert. Angesichts der Tatsache, dass Peroxynitrit allerdings auch Thiolgruppen oxidieren kann (Quijano et al., 1997) und dessen artifizielle Herstellung auf Wasserstoffperoxid als Ausgangssubstrat basiert, kann eine Enzymhemmung durch oxidative Reaktionsprozesse nicht vollständig ausgeschlossen werden. Demgegenüber kann hingegen die Möglichkeit einer Inaktivierung von MnSOD durch Nitrosylierung oder Glutathionylierung vernachlässigt werden, da keine Veränderung nach Inkubation mit dem NO-Donor GSNO messbar war (Anhang Abb. 8). Diese Beobachtung stimmt zudem mit einer früheren Veröffentlichung aus der Arbeitsgruppe von Prof. Dr. Jörg Durner überein, bei der MnSOD nicht als nitrosyierte Zielprotein in isolierten Mitochondrien-Fraktionen identifiziert werden konnte (Palmieri et al., 2010).

Mittels Massenspektrometrie konnten insgesamt neun verschiedene Tyrosinreste als Nitrierungsstellen detektiert werden (Tab. 3), wobei vor allem eine Modifikation des Tyrosinrests 63 für die Aktivitätshemmung der MnSOD verantwortlich zu sein scheint. Durch Aminosäure-Substitution an dieser Stelle gegen Phenylalanin konnte der Einfluss der Nitrierung auf die Enzym-Inhibierung deutlich reduziert werden (Abb. 41), was sich auch in einer eingeschränkten Nitrotyrosin-Anreicherung widerspiegelte (Abb. 42). Die Tatsache, dass die mutierte Variante jedoch weiterhin eine geringe Sensitivität gegenüber Peroxynitrit aufwies, was durch Inkubation mit dem Hemmstoff Urait wieder aufgehoben werden konnte, deutet darauf hin, dass noch weitere Tyrosinreste an diesem Prozess zu einem gewissen Grad beteiligt sind. Die zentrale Bedeutung von Tyrosin 63 für die Inaktivierung der MnSOD durch Nitrierung konnte auch bei der humanen Isoform nachgewiesen werden, wobei diese hochkonservierte Aminosäure in diesem Fall als Tyrosin 34 bezeichnet wird (Mac-Millan-Crow et al., 1998, Yamakura et al., 1998).

**Abb. 45: Vergrößerter Ausschnitt des aktiven Zentrums von MnSOD**


Abkürzungen: Tyr: Tyrosin, His: Histidin, Asp: Aspartat, ONOO⁻: Peroxynitrit
5. Literaturverzeichnis


Babbs C., Pham J., Coolbaugh R.: Lethal hydroxyl radical production in paraquat-treated plants, Plant Physiology, 90, S.: 1267-1270, 1989


De Pinto M., Tommasi F., De Gara L.: Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells, Plant Physiology, 130, S.: 698-708, 2002


Ferrer M. und Ros Barceló A.: Differential effects of nitric oxide on peroxidase and H$_2$O$_2$ production by the xylem of Zinnia elegans, Plant, Cell and Environment, 22, S.: 891-897, 1999


Ford P.: Reactions of NO and nitrite with heme models and proteins, Inorganic Chemistry, 49, S.: 6226-6239, 2010


Fujibe T., Saji H., Arakawa K., Yabe N., Takeuchi Y., Yamamoto K.: A methyl viologen-resistant mutant of *Arabidopsis*, which is allelic to ozone-sensitive *rcd1*, is tolerant to supplemental ultraviolet-B irradiation, Plant Physiology, 134, S.: 275-285, 2004


Graziano M., Beligni M., Lamattina L.: Nitric oxide improves internal iron availability in plants, Plant Physiology, 130, S.: 1852-1859, 2002


Guo F. und Crawford N.: Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence, Plant Cell, 17, S.: 3436-3450, 2005

Guo P., Cao Y., Li Z., Zhao B.: Role of an endogenous nitric oxide burst in the resistance of wheat to stripe rust, Plant, Cell and Environment, 27, S.: 473-477, 2004


Hsu Y. und Kao C.: Cadmium toxicity is reduced by nitric oxide in rice leaves, Plant Growth Regulation, 42, S.: 227-238, 2004


Jones A., Thomas V., Bennett M., Mansfield J., Grant M.: Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae, Plant Physiology, 142, S.: 1603-1620, 2006


Leshem Y., Wills R., Ku V.: Evidence for the function of the free radical gas nitric oxide (NO•) as an endogenous maturation and senescence regulating factor in higher plants, Plant Physiology and Biochemistry, 11, S.: 825-833, 1998


Miller A.: Superoxide dismutases: Active sites that save, but a protein that kills, Current Opinion in Chemical Biology, 8, S.: 162-168, 2004


Nomura K., Melotto M., He S.: Suppression of host defense in compatible plant-Pseudomonas syringae interactions, Current Opinion in Plant Biology, 8, S.: 361-368, 2005


Schöll F., Biesgen C., Müssig C., Altmann T., Weiler E.: 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis, Planta, 210, S.: 979-984, 2000


Stamler J., Toone E., Lipton S., Sucher N.: (S)NO signals: Translocation, regulation and a consensus motif, Neuron, 18, S.: 691-696, 1997


Tada Y., Mori T., Shinogi T., Yao N., Takahashi S., Betsuyaku S., Sakamoto M., Park P., Nakayashiki H., Tosa Y., Mayama S.: Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat, Molecular Plant Microbe Interactions, 17, S.: 245-253, 2004


Van Baarlen P., Staats M., Van Kan J.: Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica, Molecular Plant Pathology, 5, S.: 559-574, 2004


Vanacker H., Carver T., Foyer C.: Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction, Plant Physiology, 123, S.: 1289-3100, 2000


Xiang C. und Oliver D.: Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis, Plant Cell, 10, S.: 1539-1550, 1998


6. Anhang

**Anhang Tab. 1: Keimungsraten und Wachstumsparameter von Wurzeln in beiden Linien**

Dargestellt sind Mittelwerte mit Standardabweichungen von sieben Tage alten Keimlingen auf Erde (n=100)(1) bzw. zehn Tage alten Keimlingen auf MS-Medium (n=30)(2). Signifikante Unterschiede zwischen gsnor Knock-out Linie n und Wildtyp-Pflanzen sind bei einem p-Wert ≤0,01 mit ** gekennzeichnet. Alle Längenmessungen wurden mit Hilfe des Programmes ImageJ durchgeführt.

<table>
<thead>
<tr>
<th>Phänotyp</th>
<th>gsnor</th>
<th>Wildtyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keimungsraten (in %)(1)</td>
<td>64,50**</td>
<td>95,50</td>
</tr>
<tr>
<td>Länge Primärwurzel (in cm)(2)</td>
<td>1,86±0,47**</td>
<td>4,74±0,63</td>
</tr>
<tr>
<td>Länge Seitenwurzeln (in cm)(2)</td>
<td>0,30±0,21**</td>
<td>2,26±0,82</td>
</tr>
<tr>
<td>Anzahl Seitenwurzeln²</td>
<td>1,50±0,51**</td>
<td>6,50±1,31</td>
</tr>
<tr>
<td>Länge Hypokotyl (in cm)(2)</td>
<td>0,16±0,02**</td>
<td>0,26±0,03</td>
</tr>
</tbody>
</table>

**Anhang Tab. 2: Wachstumsparameter von Sprossachsen in beiden Linien**


<table>
<thead>
<tr>
<th>Phänotyp</th>
<th>gsnor</th>
<th>Wildtyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflanzenhöhe (in cm)(1)</td>
<td>8,25±0,72**</td>
<td>34,20±4,05</td>
</tr>
<tr>
<td>Anzahl Sprossachsen¹</td>
<td>7,60±0,97**</td>
<td>1,80±0,79</td>
</tr>
<tr>
<td>Anzahl Leitbündel²</td>
<td>9**</td>
<td>8</td>
</tr>
<tr>
<td>Größenverhältnis Rindenparenchym zu Sklerenchym (in µm)(²)</td>
<td>46,45±5,21</td>
<td>41,53±2,86</td>
</tr>
<tr>
<td>zu Sklerenchym (in µm)²</td>
<td>50,90±3,55**</td>
<td>91,89±6,11</td>
</tr>
<tr>
<td>Länge Parenchymzellen (in µm)(³)</td>
<td>73,76±16,58**</td>
<td>169,75±36,79</td>
</tr>
</tbody>
</table>

**Anhang Tab. 3: Wachstumsparameter von Schoten in beiden Linien**


<table>
<thead>
<tr>
<th>Phänotyp</th>
<th>gsnor</th>
<th>Wildtyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge Schoten (in cm)(1)</td>
<td>0,98±0,04</td>
<td>1,78±0,10</td>
</tr>
<tr>
<td>Anzahl Schoten¹</td>
<td>150,70±22,65</td>
<td>77,40±6,64</td>
</tr>
</tbody>
</table>
### Anhang Tab. 4: Differenziell regulierte Proteine in Wildtyp-Pflanzen nach Infektion mit *Pst DC3000* (*avrRpt2*)

Dargestellt sind alle identifizierten Proteine, die nach avirulenter Behandlung mit *Pst DC3000* (*avrRpt2*) eine mindestens um den Faktor 2 erhöhte bzw. erniedrigte Produktion im Vergleich zur Kontrollbehandlung mit 10 mM MgCl₂ aufwiesen. Die Berechnung des Regulationsfaktors sowie die statistische Auswertung erfolgte unter Verwendung des Software-Programmes DeCyder und basierte auf drei unabhängigen biologischen Wiederholungen für jeden untersuchten Zeitpunkt. Proteinkandidaten wurden mit Hilfe eines MALDI-TOF/TOF Massenspektrometers oder LTQ-OrbitrapXL Massenspektrometers analysiert und die einzelnen Massenspektrogramme mit der *Arabidopsis thaliana* Datenbank TAIR9 sowie der Datenbank SwissProt verglichen.

### Proteine von *Arabidopsis thaliana*

<table>
<thead>
<tr>
<th>Proteinname (1)</th>
<th>Spot-Nummer (2)</th>
<th>Akzessions-Nummer (3)</th>
<th>Masse / pI (4)</th>
<th>Mascot Score (5)</th>
<th>Regulation (6)</th>
<th>ANOVA-Auswertung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peptid-anzahl</td>
<td>Seq.-überlin.</td>
<td>Protein Score</td>
<td>3 h</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 (GSTF6)</td>
<td>1 (a)</td>
<td>AT1G02930</td>
<td>23471 / 5,80</td>
<td>13</td>
<td>62</td>
<td>559</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>9</td>
<td>44</td>
<td>389</td>
<td>1,07</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 (GSTF6)</td>
<td>2 (a)</td>
<td>AT1G02920</td>
<td>23471 / 5,80</td>
<td>12</td>
<td>62</td>
<td>514</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td>AT1G02930</td>
<td>23471 / 5,80</td>
<td>8</td>
<td>44</td>
<td>343</td>
<td>1,16</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td>3 (a)</td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>8</td>
<td>30</td>
<td>73</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF6)</td>
<td>AT1G02930</td>
<td>23471 / 5,80</td>
<td>8</td>
<td>32</td>
<td>72</td>
<td>1,13</td>
</tr>
<tr>
<td>DSBA-Oxidoreduktase</td>
<td>4 (a)</td>
<td>AT5G38900</td>
<td>24260 / 6,34</td>
<td>9</td>
<td>43</td>
<td>383</td>
</tr>
<tr>
<td>Glutathion S-Transferase 2</td>
<td>5 (b)</td>
<td>AT4G02520</td>
<td>24114 / 5,92</td>
<td>10</td>
<td>43</td>
<td>354</td>
</tr>
<tr>
<td>20 kDa luminales Thylakoidprotein</td>
<td>AT3G56650</td>
<td>28476 / 9,30</td>
<td>6</td>
<td>25</td>
<td>240</td>
<td>-1,01</td>
</tr>
<tr>
<td>Pyrroloidin-Carboxylat-Peptidase</td>
<td>AT1G56700</td>
<td>24316 / 5,98</td>
<td>5</td>
<td>22</td>
<td>240</td>
<td>-1,01</td>
</tr>
<tr>
<td>Eisen Superoxid-Dismutase (FeSOD1)</td>
<td>AT4G25100</td>
<td>23776 / 6,06</td>
<td>6</td>
<td>24</td>
<td>234</td>
<td>-1,01</td>
</tr>
<tr>
<td>Glykoxid-Hydrolase</td>
<td>AT4G25100</td>
<td>108276 / 6,01</td>
<td>4</td>
<td>3</td>
<td>214</td>
<td>-1,01</td>
</tr>
<tr>
<td>Quinol-Reduktase</td>
<td>AT4G27270</td>
<td>21778 / 6,08</td>
<td>3</td>
<td>15</td>
<td>109</td>
<td>-1,01</td>
</tr>
<tr>
<td>Chaperonin 20</td>
<td>AT5G20720</td>
<td>26785 / 8,86</td>
<td>3</td>
<td>17</td>
<td>109</td>
<td>-1,01</td>
</tr>
<tr>
<td>Photosystem II, P-1-Untereinheit (PSBP-1)</td>
<td>AT1G06680</td>
<td>28249 / 6,90</td>
<td>3</td>
<td>13</td>
<td>93</td>
<td>-1,01</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>5</td>
<td>12</td>
<td>84</td>
<td>-1,01</td>
</tr>
<tr>
<td>Glutathion S-Transferase 2</td>
<td>6 (a)</td>
<td>AT4G02520</td>
<td>24114 / 5,92</td>
<td>5</td>
<td>21</td>
<td>87</td>
</tr>
<tr>
<td>Peptid-Methionin sulfoxid-Reduktase, putativ</td>
<td>AT4G25130</td>
<td>28968 / 8,96</td>
<td>4</td>
<td>15</td>
<td>63</td>
<td>-1,01</td>
</tr>
<tr>
<td>Seneszenz-assoziertes Gen (SAG13)</td>
<td>AT2G29350</td>
<td>29144 / 5,64</td>
<td>6</td>
<td>25</td>
<td>153</td>
<td>1,27</td>
</tr>
<tr>
<td>Tropinon-Reduktase, putativ</td>
<td>AT2G29290</td>
<td>28730 / 5,31</td>
<td>4</td>
<td>12</td>
<td>100</td>
<td>1,27</td>
</tr>
<tr>
<td>3-Dehydroquinat-Synthase, putativ</td>
<td>AT5G66120</td>
<td>48319 / 7,05</td>
<td>15</td>
<td>32</td>
<td>467</td>
<td>1,23</td>
</tr>
</tbody>
</table>
Anhang

<table>
<thead>
<tr>
<th>Proteinname</th>
<th>Spot-Nummer</th>
<th>Akzessions-Nummer</th>
<th>Masse / pI</th>
<th>Mascot Score</th>
<th>Regulation</th>
<th>ANOVA-Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Villin 4</td>
<td>AT4G30160</td>
<td>109829 / 5,83</td>
<td>12</td>
<td>11</td>
<td>399</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Aldo/Keto-Reduktase</td>
<td>AT1G04420</td>
<td>46683 / 8,70</td>
<td>11</td>
<td>25</td>
<td>367</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Pyruvat-Dehydrogenase E1 α</td>
<td>AT1G01090</td>
<td>47600 / 7,16</td>
<td>9</td>
<td>18</td>
<td>272</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Indol-3-Acetonitril-Nitrilase (Nit1)</td>
<td>AT3G44310</td>
<td>38527 / 5,84</td>
<td>5</td>
<td>15</td>
<td>153</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Osmose-abhängiges Protein (LOS1)</td>
<td>AT1G56070</td>
<td>94743 / 5,89</td>
<td>5</td>
<td>6</td>
<td>136</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Fruktose-Bisphosphat-Aldolase, putativ</td>
<td>AT3G52930</td>
<td>38858 / 6,05</td>
<td>5</td>
<td>10</td>
<td>128</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Katalase 3</td>
<td>AT1G20620</td>
<td>57059 / 7,31</td>
<td>3</td>
<td>6</td>
<td>93</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Dihydroorotat-Dehydrogenase</td>
<td>AT3G17810</td>
<td>47216 / 6,37</td>
<td>4</td>
<td>13</td>
<td>92</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>RuBisCO, große Untereinheit</td>
<td>ATCG00490</td>
<td>53435 / 5,88</td>
<td>3</td>
<td>7</td>
<td>91</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Osmose-abhängiges Protein (LOS2)</td>
<td>AT2G36530</td>
<td>47974 / 5,54</td>
<td>3</td>
<td>7</td>
<td>82</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Aminotransferase (Klasse1)</td>
<td>AT1G80360</td>
<td>44132 / 5,97</td>
<td>2</td>
<td>5</td>
<td>78</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Glutamat-Dehydrogenase 2</td>
<td>AT5G07440</td>
<td>45013 / 6,07</td>
<td>4</td>
<td>10</td>
<td>72</td>
<td>1,23 1,14 1,05 4,71</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>7</td>
<td>25</td>
<td>287</td>
<td>1,52 1,01 2,34 4,58</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 (GSTF6)</td>
<td>AT1G02930</td>
<td>23471 / 5,80</td>
<td>6</td>
<td>22</td>
<td>244</td>
<td>1,52 1,01 2,34 4,58</td>
</tr>
<tr>
<td>Glutathion S-Transferase 2</td>
<td>AT5G07440</td>
<td>45012 / 6,07</td>
<td>14</td>
<td>40</td>
<td>574</td>
<td>1,26 1,06 2,24 4,07</td>
</tr>
<tr>
<td>Glutathion S-Transferase 2</td>
<td>AT5G18170</td>
<td>44781 / 6,38</td>
<td>7</td>
<td>20</td>
<td>79</td>
<td>1,26 1,06 2,24 4,07</td>
</tr>
<tr>
<td>TolB-Protein</td>
<td>AT4G01870</td>
<td>73112 / 5,64</td>
<td>19</td>
<td>43</td>
<td>314</td>
<td>1,26 1,03 2,76 3,82</td>
</tr>
<tr>
<td>Acyl-Koenzym A Oxidase 1</td>
<td>AT4G17670</td>
<td>74996 / 5,78</td>
<td>16</td>
<td>27</td>
<td>160</td>
<td>1,05 -1,01 2,00 3,39</td>
</tr>
<tr>
<td>Glutathion S-Transferase 2</td>
<td>AT4G02520</td>
<td>24114 / 5,92</td>
<td>9</td>
<td>48</td>
<td>234</td>
<td>1,15 1,23 2,29 3,34</td>
</tr>
<tr>
<td>Glutathion S-Transferase 16 (GSTF3)</td>
<td>AT2G02930</td>
<td>24106 / 6,25</td>
<td>5</td>
<td>24</td>
<td>95</td>
<td>1,15 1,23 2,29 3,34</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>6</td>
<td>23</td>
<td>95</td>
<td>1,15 1,23 2,29 3,34</td>
</tr>
<tr>
<td>Glutathion S-Transferase 9 (GSTF7)</td>
<td>AT2G38060</td>
<td>18667 / 6,06</td>
<td>3</td>
<td>22</td>
<td>95</td>
<td>1,15 1,23 2,29 3,34</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 (GSTF6)</td>
<td>AT1G02930</td>
<td>23471 / 5,80</td>
<td>4</td>
<td>18</td>
<td>77</td>
<td>1,15 1,23 2,29 3,34</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>11</td>
<td>45</td>
<td>509</td>
<td>1,12 1,04 2,04 3,17</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 (GSTF6)</td>
<td>AT1G02930</td>
<td>23471 / 5,80</td>
<td>6</td>
<td>20</td>
<td>303</td>
<td>1,12 1,04 2,04 3,17</td>
</tr>
<tr>
<td>Glutathion S-Transferase 2</td>
<td>AT4G02520</td>
<td>24114 / 5,92</td>
<td>10</td>
<td>51</td>
<td>440</td>
<td>1,10 1,07 2,43 3,17</td>
</tr>
<tr>
<td>Glutathion S-Transferase 16 (GSTF3)</td>
<td>AT2G02930</td>
<td>24106 / 6,25</td>
<td>6</td>
<td>27</td>
<td>207</td>
<td>1,10 1,07 2,43 3,17</td>
</tr>
<tr>
<td>Glutathion S-Transferase 8</td>
<td>AT2G47730</td>
<td>29270 / 8,50</td>
<td>4</td>
<td>14</td>
<td>60</td>
<td>1,10 1,07 2,43 3,17</td>
</tr>
<tr>
<td>Proteinname</td>
<td>Spot-Nummer</td>
<td>Akzessions-Nummer</td>
<td>Masse / pI</td>
<td>Mascot Score</td>
<td>Regulation</td>
<td>ANOVA-Auswertung</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peptidanzahl</td>
<td>3 h</td>
<td>6 h</td>
</tr>
<tr>
<td>Flavodoxin-ähnliche Quinon-Reduktase 1</td>
<td>16 a</td>
<td>AT5G54500</td>
<td>21782 / 5,96</td>
<td>8</td>
<td>59</td>
<td>307</td>
</tr>
<tr>
<td>Quinon-Reduktase</td>
<td>AT4G27270</td>
<td></td>
<td>21778 / 6,08</td>
<td>4</td>
<td>24</td>
<td>260</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 (GSTF6)</td>
<td>AT1G02930</td>
<td></td>
<td>23471 / 5,80</td>
<td>5</td>
<td>25</td>
<td>67</td>
</tr>
<tr>
<td>Kationenbindende Hydrolase</td>
<td>AT4G16260</td>
<td></td>
<td>37745 / 6,43</td>
<td>10</td>
<td>40</td>
<td>128</td>
</tr>
<tr>
<td>NAD-Malat-Dehydrogenase 1</td>
<td>AT2G22780</td>
<td></td>
<td>37841 / 8,11</td>
<td>7</td>
<td>21</td>
<td>95</td>
</tr>
<tr>
<td>2OG-Fe(II)-Oxygenase</td>
<td>AT2G38240</td>
<td></td>
<td>39942 / 8,67</td>
<td>8</td>
<td>22</td>
<td>80</td>
</tr>
<tr>
<td>Pyruvat-Orthophosphat-Dikinase</td>
<td>AT4G15530</td>
<td></td>
<td>93948 / 5,25</td>
<td>23</td>
<td>24</td>
<td>223</td>
</tr>
<tr>
<td>Aminopeptidase M1</td>
<td>AT4G33090</td>
<td></td>
<td>98744 / 5,34</td>
<td>19</td>
<td>21</td>
<td>157</td>
</tr>
<tr>
<td>Abwehrprotein, putativ</td>
<td>AT4G30530</td>
<td></td>
<td>28653 / 5,46</td>
<td>8</td>
<td>26</td>
<td>67</td>
</tr>
<tr>
<td>Pyruvat-Orthophosphat-Dikinase</td>
<td>AT4G15530</td>
<td></td>
<td>93948 / 5,25</td>
<td>25</td>
<td>32</td>
<td>343</td>
</tr>
<tr>
<td>Aminopeptidase M1</td>
<td>AT4G33090</td>
<td></td>
<td>98744 / 5,34</td>
<td>22</td>
<td>26</td>
<td>220</td>
</tr>
<tr>
<td>20S Proteasom, β-Untereinheit F1</td>
<td>AT3G60820</td>
<td></td>
<td>24856 / 6,95</td>
<td>11</td>
<td>60</td>
<td>324</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td>AT1G02930</td>
<td></td>
<td>23583 / 6,14</td>
<td>9</td>
<td>32</td>
<td>120</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 G (GSTF6)</td>
<td>AT1G02930</td>
<td></td>
<td>23471 / 5,80</td>
<td>7</td>
<td>25</td>
<td>98</td>
</tr>
<tr>
<td>Glutathion S-Transferase 2</td>
<td>AT4G02520</td>
<td></td>
<td>24114 / 5,92</td>
<td>9</td>
<td>39</td>
<td>72</td>
</tr>
<tr>
<td>Glutathion S-Transferase 9 (GSTF7)</td>
<td>AT2G30860</td>
<td></td>
<td>18667 / 6,06</td>
<td>3</td>
<td>21</td>
<td>59</td>
</tr>
<tr>
<td>Glutathion-Peroxidase 2</td>
<td>AT2G31570</td>
<td></td>
<td>19104 / 5,60</td>
<td>9</td>
<td>49</td>
<td>188</td>
</tr>
<tr>
<td>Glutathion S-Transferase 19</td>
<td>AT1G78380</td>
<td></td>
<td>25691 / 5,80</td>
<td>10</td>
<td>34</td>
<td>177</td>
</tr>
<tr>
<td>Acyl-Koenzym A Oxidase 1</td>
<td>AT4G16760</td>
<td></td>
<td>74996 / 7,58</td>
<td>16</td>
<td>28</td>
<td>109</td>
</tr>
<tr>
<td>Glutathion S-Transferase 2 G</td>
<td>AT4G02520</td>
<td></td>
<td>24114 / 5,92</td>
<td>9</td>
<td>48</td>
<td>171</td>
</tr>
<tr>
<td>Carboanhydrase 1</td>
<td>AT3G01500</td>
<td></td>
<td>29827 / 5,54</td>
<td>10</td>
<td>38</td>
<td>86</td>
</tr>
<tr>
<td>Uridylat-Kinase (PYR6)</td>
<td>AT5G26667</td>
<td></td>
<td>22582 / 5,79</td>
<td>5</td>
<td>24</td>
<td>178</td>
</tr>
<tr>
<td>Germin 3</td>
<td>AT5G20630</td>
<td></td>
<td>21993 / 6,26</td>
<td>3</td>
<td>25</td>
<td>82</td>
</tr>
<tr>
<td>Ferredoxin/Thioredoxin-Reduktase (FRA1)</td>
<td>AT5G23440</td>
<td></td>
<td>19983 / 8,74</td>
<td>5</td>
<td>30</td>
<td>194</td>
</tr>
<tr>
<td>Peroxiredoxin 2, putativ</td>
<td>AT3G52960</td>
<td></td>
<td>24783 / 9,12</td>
<td>5</td>
<td>23</td>
<td>191</td>
</tr>
<tr>
<td>Ferredoxin/Thioredoxin-Reduktase (FRA2)</td>
<td>AT5G08410</td>
<td></td>
<td>20248 / 9,00</td>
<td>8</td>
<td>23</td>
<td>185</td>
</tr>
<tr>
<td>RuBisCO, große Untereinheit</td>
<td>ATCG00490</td>
<td></td>
<td>53435 / 5,88</td>
<td>2</td>
<td>5</td>
<td>117</td>
</tr>
<tr>
<td>RuBisCO, kleine Untereinheit 2B</td>
<td>AT5G38420</td>
<td></td>
<td>20622 / 7,59</td>
<td>10</td>
<td>50</td>
<td>410</td>
</tr>
</tbody>
</table>
### Anhang

<table>
<thead>
<tr>
<th>Proteinname (1)</th>
<th>Spot-Nummer (2)</th>
<th>Akzessions-Nummer (3)</th>
<th>Masse / pI (4)</th>
<th>Mascot Score (5)</th>
<th>Regulation (6)</th>
<th>ANOVA-Auswertung (7)</th>
</tr>
</thead>
</table>
|                 |                |                       |                | Peptidanzahl | Seq.
|                 |                |                       |                | überein. | Protein | Score | 3 h | 6 h | 24 h | 48 h | Pzt | DC3000 | Zeit | Interaktion |
| RuBisCO, kleine Untereinheit 3B | ATSG38410 | 20556 / 8,22 | 9 | 54 | 396 | -1,13 | -1,20 | -1,53 | -2,03 | * | * |
| RuBisCO, kleine Untereinheit 1A | AT1G67090 | 20488 / 7,59 | 10 | 55 | 390 | -1,13 | -1,20 | -1,53 | -2,03 | * | * |
| RuBisCO, kleine Untereinheit 1B | ATSG38430 | 20558 / 7,59 | 8 | 40 | 383 | -1,13 | -1,20 | -1,53 | -2,03 | * | * |
| Ferredoxin-unabhängige Glutamat-Synthase 1 | ATSG04140 | 178066 / 5,94 | 39 | 27 | 466 | -1,18 | -1,07 | -1,25 | -2,07 | * | * |
| Glutamat-Synthase 2 | AT2G41220 | 178951 / 6,57 | 14 | 10 | 80 | -1,18 | -1,07 | -1,25 | -2,07 | * | * |
| Fruktose-1,6-Bisphosphatase, putativ | AT3G54050 | 45590 / 5,25 | 12 | 33 | 547 | -1,01 | 1,11 | -1,26 | -2,13 | * | * |
| RuBisCO, kleine Untereinheit 2B | ATSG38420 | 20622 / 7,59 | 9 | 57 | 263 | -1,07 | -1,12 | -1,40 | -2,21 | * | * |
| RuBisCO, kleine Untereinheit 1A | ATSG38410 | 20556 / 8,22 | 8 | 52 | 248 | -1,07 | -1,12 | -1,40 | -2,21 | * | * |
| RuBisCO, kleine Untereinheit 1B | ATSG38430 | 20558 / 7,59 | 7 | 37 | 236 | -1,07 | -1,12 | -1,40 | -2,21 | * | * |
| Fruktose-1,6-Bisphosphatase, putativ | AT3G54050 | 45590 / 5,25 | 11 | 29 | 265 | 1,01 | 1,11 | -1,27 | -2,23 | * | * |
| Glutamat-1-Semialdehyd-Aminomutase 2 | AT3G48730 | 50452 / 7,01 | 12 | 34 | 268 | -1,17 | -1,08 | -1,67 | -2,32 | * | ** |
| Glutamat-1-Semialdehyd-Aminomutase 1 | ATSG63570 | 50737 / 6,43 | 7 | 21 | 208 | -1,17 | -1,08 | -1,67 | -2,32 | * | ** |
| RuBisCO, kleine Untereinheit 1A | AT1G67090 | 20488 / 7,59 | 6 | 33 | 116 | -1,06 | -1,18 | -1,52 | -2,41 | * | * |
| RuBisCO, kleine Untereinheit 2B | ATSG38420 | 20622 / 7,59 | 6 | 37 | 81 | -1,06 | -1,18 | -1,52 | -2,41 | * | * |
| RuBisCO, kleine Untereinheit 1B | ATSG38430 | 20558 / 7,59 | 5 | 28 | 70 | -1,06 | -1,18 | -1,52 | -2,41 | * | * |
| RuBisCO, kleine Untereinheit 3B | ATSG38410 | 20556 / 8,22 | 5 | 32 | 69 | -1,06 | -1,18 | -1,52 | -2,41 | * | * |
| CbbY-Protein | ATSG45170 | 41171 / 8,03 | 9 | 32 | 456 | -1,58 | -1,18 | -1,49 | -2,41 | * | * |
| Nukleotid-Rhamnose-Synthase-Re duktase | AT1G63000 | 33861 / 5,73 | 4 | 15 | 178 | -1,58 | -1,18 | -1,49 | -2,41 | * | * |
| Zyklase-Protein | AT4G35220 | 30083 / 5,64 | 5 | 18 | 172 | -1,58 | -1,18 | -1,49 | -2,41 | * | * |
| Serin-Carboxypeptidase | AT2G72920 | 52005 / 5,64 | 2 | 6 | 129 | -1,58 | -1,18 | -1,49 | -2,41 | * | * |
| 30S ribosomales Protein, putativ | ATSG24490 | 35120 / 6,30 | 4 | 9 | 89 | -1,58 | -1,18 | -1,49 | -2,41 | * | * |
| RuBisCO, große Untereinheit | ATCG00490 | 53435 / 5,88 | 14 | 43 | 465 | -1,06 | 1,09 | -1,41 | -2,81 | * | * |

**Anmerkungen:**

1. *: Anzeichen für starke Signifikanz
2. **: Anzeichen für mittlere Signifikanz
3. \( * \): Anzeichen für geringe Signifikanz

**Zeitpunkte:**

- 6 h
- 24 h
- 48 h
<table>
<thead>
<tr>
<th>Proteinname (1)</th>
<th>Spot-Nummer (2)</th>
<th>Akzessions-Nummer (3)</th>
<th>Masse / pI (4)</th>
<th>Mascot Score (5)</th>
<th>Regulation (6)</th>
<th>ANOVA-Auswertung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RuBisCO-Activase</td>
<td>39*</td>
<td>AT2G39730</td>
<td>52347 / 5,87</td>
<td>22</td>
<td>59</td>
<td>614</td>
</tr>
</tbody>
</table>

(1) Identifizierte Proteine von *Arabidopsis thaliana* oder *Pst DC3000* (avrRpt2). Multiple Identifizierungen einzelner Proteinspots sind nach der Höhe des Score-Wertes angeordnet.

(2) Spotnummer auf 2D-Gelbildaufnahme in Anhang Abb. 1. Proteinidentifizierungen erfolgten entweder durch MALDI TOF/TOF (a) oder LC-MS/MS (b).

(3) Akzessionsnummer der TAIR-Datenbank (c) bzw. SwissProt-Datenbank (d).

(4) Werte für Molekulargewichte in Da und isoelektrischen Punkt (pi).


(6) Veränderung der Proteinregulation zu vier verschiedenen Zeitpunkten nach der Infektion mit *Pst DC3000* (avrRpt2) im Vergleich zur Kontrollbehandlung. Proteine, bei denen mindestens eine um den Faktor 1,5 erhöhte Produktion nachgewiesen werden konnte, sind je nach Regulationsstärke in verschiedenen Rottönen wiedergegeben. Proteine, die mindestens eine um den Faktor 1,5 verminderte Produktion zeigten, sind in verschiedenen Grünschattierungen markiert.

(7) Signifikanzwerte der zweifaktoriellen ANOVA-Auswertung für den Infektionsfaktor, den Zeitfaktor und den Interaktionsfaktor (*: p ≤ 0,05; **: p ≤ 0,01).

Legende zur farbigen Markierung:

**Regulationsfaktor:** 10,0 - 20,0, 5,0 - 10,0, 2,0 - 5,0, 1,5 - 2,0, -1,5 - -2,0, -2,0 - -5,0, -5,0 - -10,0
Anhang Abb. 1: 2D-Gelbild mit Auftrennung der Gesamtproteinfraction aus Blattmaterial von Wildtyp-Pflanzen nach Infektion mit *Pst* DC3000 (avrRpt2)

Einzelne Proteine, die 48 h nach der Infektion mindestens eine um den Faktor ±2 differentielle Regulation im Vergleich zur Kontrollbehandlung zeigten, sind rot markiert und entsprechend der Auflistung in Anhang Tab. 4 mit Nummern versehen.
Anhang Tab. 5: Differentiell regulierte Proteine in Wildtyp-Pflanzen nach Infektion mit Pst DC3000

Dargestellt sind alle identifizierten Proteine, die nach virulenter Behandlung mit Pst DC3000 eine mindestens um den Faktor 2 erhöhte bzw. erniedrigte Produktion im Vergleich zur Kontrollbehandlung mit 10 mM MgCl₂ aufwiesen. Die Berechnung des Regulationsfaktors sowie die statistische Auswertung erfolgte unter Verwendung des Software-Programmes DeCyder und basierte auf drei unabhängigen biologischen Wiederholungen für jeden untersuchten Zeitpunkt. Proteinkandidaten wurden mit Hilfe eines MALDI-TOF/TOF Massenspektrometers oder LTQ-OrbitrapXL Massenspektrometers analysiert und die einzelnen Massenspektrogramme mit der Arabidopsis thaliana Datenbank TAIR9 sowie der Datenbank SwissProt verglichen.

<table>
<thead>
<tr>
<th>Proteinnamen</th>
<th>Spot-Nummer (1)</th>
<th>Akzessions-Nummer (2)</th>
<th>Masse / pI (4)</th>
<th>Mascot Score (5)</th>
<th>Regulation (6)</th>
<th>ANOVA-Auswertung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peptidyl-prolyl cis-trans Isomerase</td>
<td>AT3G62030</td>
<td>28532 / 8,83</td>
<td>4</td>
<td>15</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>ADP-Ribosylierungsfaktor A1B</td>
<td>AT5G14670</td>
<td>21578 / 6,43</td>
<td>3</td>
<td>20</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Unbekanntes Protein</td>
<td>AT1G09310</td>
<td>20049 / 5,37</td>
<td>3</td>
<td>17</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Glutathion-Peroxidase 6</td>
<td>AT4G11600</td>
<td>25739 / 9,98</td>
<td>2</td>
<td>9</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Photosystem II, P-1-Untereinheit (PSBP-1)</td>
<td>AT1G06680</td>
<td>28249 / 6,90</td>
<td>2</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>3-Dehydroquinat-Synthase, putativ</td>
<td>AT5G66120</td>
<td>48319 / 7,05</td>
<td>15</td>
<td>32</td>
<td>467</td>
</tr>
<tr>
<td></td>
<td>Villin 4</td>
<td>AT4G30160</td>
<td>109829 / 5,83</td>
<td>12</td>
<td>11</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>Aldo/Keto-Reduktase</td>
<td>AT1G04420</td>
<td>46683 / 8,70</td>
<td>11</td>
<td>25</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>Pyruvat-Dehydrogenase E1 α</td>
<td>AT1G01090</td>
<td>47600 / 7,16</td>
<td>9</td>
<td>18</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Indol-3-Acetonitril-Nitrilase (Nin1)</td>
<td>AT3G44310</td>
<td>38527 / 5,84</td>
<td>5</td>
<td>15</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Osmose-abhängiges Protein (LOS1)</td>
<td>AT1G56070</td>
<td>94743 / 5,89</td>
<td>5</td>
<td>6</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Fruktose-Bispophosphat-Aldolase, putativ</td>
<td>AT3G52930</td>
<td>38858 / 6,05</td>
<td>5</td>
<td>10</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Katalase 3</td>
<td>AT1G20620</td>
<td>57059 / 7,31</td>
<td>3</td>
<td>6</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Dihydroorotat-Dehydrogenase</td>
<td>AT3G17810</td>
<td>47216 / 6,37</td>
<td>4</td>
<td>13</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>RuBisCO, große Untereinheit</td>
<td>ATCG00490</td>
<td>53435 / 5,88</td>
<td>3</td>
<td>7</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Osmose-abhängiges Protein (LOS2)</td>
<td>AT2G36530</td>
<td>47974 / 5,54</td>
<td>3</td>
<td>7</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Aminotransferase (Klasse1)</td>
<td>AT1G80360</td>
<td>44132 / 5,97</td>
<td>2</td>
<td>5</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Glutamat-Dehydrogenase 2</td>
<td>AT5G0440</td>
<td>45013 / 6,07</td>
<td>4</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Peptidyl-prolyl cis-trans Isomerase</td>
<td>AT3G62030</td>
<td>28532 / 8,83</td>
<td>7</td>
<td>28</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Phosphoribulokinase (PRK)</td>
<td>AT1G32060</td>
<td>44721 / 5,71</td>
<td>2</td>
<td>6</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>β-Hydroxyacetyl-ACP-Dehydratase, putativ</td>
<td>AT2G22303</td>
<td>24340 / 8,61</td>
<td>3</td>
<td>15</td>
<td>90</td>
</tr>
</tbody>
</table>
## Anhang

<table>
<thead>
<tr>
<th>Proteinname (1)</th>
<th>Spot-Nummer (2)</th>
<th>Akzessions-Nummer (3)</th>
<th>Masse / pI (4)</th>
<th>Mascot Score (5)</th>
<th>Regulation (6)</th>
<th>ANOVA-Auswertung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrodoxin-NADP-Oxidoreduktase 2</td>
<td>7 a</td>
<td>AT1G20020 c</td>
<td>41484 / 8,51</td>
<td>11 25 457</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>Indol-3-Acetonitril-Nitrilase (Nit1)</td>
<td></td>
<td>AT3G44310 c</td>
<td>38527 / 5,84</td>
<td>9 34 406</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>NADPH-abhängige Thioredoxin-Reduktase</td>
<td></td>
<td>AT2G17420 c</td>
<td>40217 / 6,26</td>
<td>7 24 256</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>Malat-Dehydrogenase</td>
<td></td>
<td>AT1G53240 c</td>
<td>36010 / 5,84</td>
<td>2 7 123</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>Sulfittransferase 17</td>
<td></td>
<td>AT1G18590 c</td>
<td>40115 / 6,04</td>
<td>4 6 92</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>1-Phosphatidylinositol-Phosphodiesterase</td>
<td></td>
<td>AT4G34920 c</td>
<td>36720 / 5,68</td>
<td>2 7 81</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>Curculin-ähnliches Lektin</td>
<td></td>
<td>AT1G78820 c</td>
<td>51246 / 8,75</td>
<td>3 7 79</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>Unbekanntes Protein</td>
<td></td>
<td>AT3G29450 c</td>
<td>60629 / 8,64</td>
<td>7 5 76</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>RuBisCO, große Untereinheit</td>
<td></td>
<td>ATCG00490 c</td>
<td>53435 / 5,88</td>
<td>2 4 71</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>Leucin-reiche Proteinkinase, putativ</td>
<td></td>
<td>AT3G02880 c</td>
<td>68167 / 8,60</td>
<td>3 4 63</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>Fruktosamin-Kinase</td>
<td></td>
<td>AT3G61080 c</td>
<td>36733 / 6,51</td>
<td>3 9 62</td>
<td>1,74 1,02 1,29 5,30</td>
<td>* * **</td>
</tr>
<tr>
<td>Jasmonat-abhängiges Protein 1</td>
<td>8 a</td>
<td>AT3G16470 c</td>
<td>48524 / 5,12</td>
<td>19 49 557</td>
<td>-1,42 -1,06 3,17 4,76</td>
<td>* * *</td>
</tr>
<tr>
<td>Coronatin-induziertes Protein 1</td>
<td>9 a</td>
<td>AT4G23600 c</td>
<td>47408 / 5,89</td>
<td>19 56 505</td>
<td>-1,17 1,13 2,63 4,17</td>
<td>* * *</td>
</tr>
<tr>
<td>β-Glukosidase 18</td>
<td>11 a</td>
<td>AT1G52400 c</td>
<td>60877 / 6,74</td>
<td>13 33 108</td>
<td>-1,44 1,23 2,87 3,63</td>
<td>* * *</td>
</tr>
<tr>
<td>12-Oxo-Phytodienoat-Reduktase</td>
<td>12 a</td>
<td>AT2G06050 c</td>
<td>42893 / 7,71</td>
<td>16 56 378</td>
<td>1,03 1,01 2,38 3,06</td>
<td>* * *</td>
</tr>
<tr>
<td>β-Glukosidase 18</td>
<td>13 a</td>
<td>AT1G52400 c</td>
<td>60877 / 6,74</td>
<td>9 24 343</td>
<td>-1,18 1,14 3,99 3,06</td>
<td>* * *</td>
</tr>
<tr>
<td>Indol-3-Acetonitril-Nitrilase (Nit1)</td>
<td>14 a</td>
<td>AT3G44310 c</td>
<td>38527 / 5,84</td>
<td>10 28 427</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>Aminotransferase 3</td>
<td></td>
<td>AT3G49680 c</td>
<td>45343 / 8,33</td>
<td>9 22 325</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>Mitogen-aktivierte Proteinkinase 4</td>
<td></td>
<td>AT4G01370 c</td>
<td>43281 / 5,74</td>
<td>10 22 254</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>Glycerat-Dehydrogenase</td>
<td></td>
<td>AT1G68010 c</td>
<td>42449 / 6,68</td>
<td>7 16 185</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>Cathepsin-ähnliche Cystein-Protease, putativ</td>
<td></td>
<td>AT4G01610 c</td>
<td>40247 / 5,79</td>
<td>5 15 153</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>RuBisCO, große Untereinheit</td>
<td></td>
<td>ATCG00490 c</td>
<td>53435 / 5,88</td>
<td>5 9 137</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>Uroporphyrinogen-Decarboxylase (HEME1)</td>
<td></td>
<td>AT3G14930 c</td>
<td>46681 / 6,64</td>
<td>6 14 124</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>Unbekanntes Protein</td>
<td></td>
<td>AT5G25770 c</td>
<td>40951 / 5,91</td>
<td>4 11 114</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>Fruktose-Bisphosphat-Aldolase, putativ</td>
<td></td>
<td>AT3G52930 c</td>
<td>38858 / 6,05</td>
<td>2 5 91</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>Epithio-spezifisches Protein</td>
<td></td>
<td>AT1G54040 c</td>
<td>37042 / 5,56</td>
<td>5 11 67</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>ATP-Synthase, β-Untereinheit</td>
<td></td>
<td>ATCG00480 c</td>
<td>53957 / 5,38</td>
<td>2 4 66</td>
<td>-1,15 -1,02 1,17 2,65</td>
<td>* * *</td>
</tr>
<tr>
<td>β-Glukosidase 18</td>
<td>15 a</td>
<td>AT1G52400 c</td>
<td>60877 / 6,74</td>
<td>11 29 70</td>
<td>-1,29 1,23 1,86 2,54</td>
<td>* * *</td>
</tr>
<tr>
<td>Proteinname</td>
<td>Spot-Nummer</td>
<td>Akzessions-Nummer</td>
<td>Masse / pi</td>
<td>Mascot Score</td>
<td>Regulation</td>
<td>ANOVA-Auswertung</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zeit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peptid-anzahl</td>
<td>Seq.-über ein.</td>
<td>Protein Score</td>
</tr>
<tr>
<td>Jasmonat-abhängiges Protein 1</td>
<td>16&lt;sup&gt;a&lt;/sup&gt;</td>
<td>AT3G16470&lt;sup&gt;c&lt;/sup&gt;</td>
<td>48524 / 5,12</td>
<td>18</td>
<td>61</td>
<td>396</td>
</tr>
<tr>
<td>Coronatin-induziertes Protein 1</td>
<td>17&lt;sup&gt;b&lt;/sup&gt;</td>
<td>AT4G23600&lt;sup&gt;c&lt;/sup&gt;</td>
<td>47408 / 5,89</td>
<td>10</td>
<td>33</td>
<td>72</td>
</tr>
<tr>
<td>ATP-Synthase, β-Untereinheit</td>
<td>17&lt;sup&gt;b&lt;/sup&gt;</td>
<td>ATCG00480&lt;sup&gt;c&lt;/sup&gt;</td>
<td>53957 / 5,38</td>
<td>7</td>
<td>8</td>
<td>317</td>
</tr>
<tr>
<td>RuBisCO, kleine Untereinheit 1A</td>
<td></td>
<td>AT1G67090&lt;sup&gt;c&lt;/sup&gt;</td>
<td>20488 / 7,59</td>
<td>7</td>
<td>30</td>
<td>279</td>
</tr>
<tr>
<td>Thioredoxin O1</td>
<td></td>
<td>AT2G35010&lt;sup&gt;c&lt;/sup&gt;</td>
<td>21349 / 9,45</td>
<td>4</td>
<td>22</td>
<td>233</td>
</tr>
<tr>
<td>Thioredoxin 3</td>
<td></td>
<td>AT5G42980&lt;sup&gt;c&lt;/sup&gt;</td>
<td>13272 / 5,06</td>
<td>4</td>
<td>38</td>
<td>191</td>
</tr>
<tr>
<td>RuBisCO, kleine Untereinheit 2B</td>
<td></td>
<td>AT5G38420&lt;sup&gt;c&lt;/sup&gt;</td>
<td>20622 / 7,59</td>
<td>7</td>
<td>30</td>
<td>172</td>
</tr>
<tr>
<td>15 kDa luminales Thylakoidprotein</td>
<td></td>
<td>AT2G44920&lt;sup&gt;c&lt;/sup&gt;</td>
<td>24106 / 7,55</td>
<td>2</td>
<td>11</td>
<td>126</td>
</tr>
<tr>
<td>Photosystem II, O-2-Untereinheit (PSBO-2)</td>
<td></td>
<td>AT3G50820&lt;sup&gt;c&lt;/sup&gt;</td>
<td>35226 / 5,92</td>
<td>2</td>
<td>12</td>
<td>126</td>
</tr>
<tr>
<td>Glutaredoxin</td>
<td></td>
<td>AT2G02070&lt;sup&gt;c&lt;/sup&gt;</td>
<td>19341 / 8,37</td>
<td>2</td>
<td>15</td>
<td>103</td>
</tr>
<tr>
<td>Glyoxalase 3</td>
<td></td>
<td>AT1G53580&lt;sup&gt;c&lt;/sup&gt;</td>
<td>32483 / 6,50</td>
<td>2</td>
<td>7</td>
<td>98</td>
</tr>
<tr>
<td>Triosephosphat-Isomerase</td>
<td></td>
<td>AT3G55440&lt;sup&gt;c&lt;/sup&gt;</td>
<td>27380 / 5,39</td>
<td>2</td>
<td>10</td>
<td>67</td>
</tr>
<tr>
<td>Ribosomales Protein 12-A</td>
<td></td>
<td>AT3G27830&lt;sup&gt;c&lt;/sup&gt;</td>
<td>20063 / 5,51</td>
<td>2</td>
<td>10</td>
<td>52</td>
</tr>
<tr>
<td>Luminales Bindungsprotein (BiP1)</td>
<td>18&lt;sup&gt;a&lt;/sup&gt;</td>
<td>AT5G28540&lt;sup&gt;c&lt;/sup&gt;</td>
<td>73869 / 5,08</td>
<td>21</td>
<td>33</td>
<td>162</td>
</tr>
<tr>
<td>Luminales Bindungsprotein (BiP2)</td>
<td></td>
<td>AT5G42020&lt;sup&gt;c&lt;/sup&gt;</td>
<td>73801 / 5,11</td>
<td>18</td>
<td>27</td>
<td>144</td>
</tr>
<tr>
<td>Thioglukosid-Glucohydrolase 1</td>
<td></td>
<td>AT5G26000&lt;sup&gt;c&lt;/sup&gt;</td>
<td>61664 / 5,61</td>
<td>6</td>
<td>12</td>
<td>88</td>
</tr>
<tr>
<td>β-Glukosidase 18</td>
<td>19&lt;sup&gt;a&lt;/sup&gt;</td>
<td>AT1G52400&lt;sup&gt;c&lt;/sup&gt;</td>
<td>60877 / 6,74</td>
<td>12</td>
<td>35</td>
<td>74</td>
</tr>
<tr>
<td>Photosystem II, O-2-Untereinheit (PSBO-2)</td>
<td>20&lt;sup&gt;a&lt;/sup&gt;</td>
<td>AT3G50820&lt;sup&gt;c&lt;/sup&gt;</td>
<td>35226 / 5,92</td>
<td>11</td>
<td>43</td>
<td>109</td>
</tr>
<tr>
<td>Haloacid-Dehalogenase-ähnliche Hydrolase</td>
<td></td>
<td>AT3G48402&lt;sup&gt;c&lt;/sup&gt;</td>
<td>34680 / 8,31</td>
<td>11</td>
<td>40</td>
<td>101</td>
</tr>
<tr>
<td>Cobalamin-unabhängige Methionin-Synthase</td>
<td>21&lt;sup&gt;a&lt;/sup&gt;</td>
<td>AT5G17920&lt;sup&gt;c&lt;/sup&gt;</td>
<td>84646 / 6,09</td>
<td>10</td>
<td>15</td>
<td>248</td>
</tr>
<tr>
<td>Methionin-Synthase 2 (ATMS2)</td>
<td></td>
<td>AT3G03780&lt;sup&gt;c&lt;/sup&gt;</td>
<td>84873 / 6,09</td>
<td>6</td>
<td>9</td>
<td>133</td>
</tr>
<tr>
<td>Phosphoribulokinase (PRK)</td>
<td>22&lt;sup&gt;a&lt;/sup&gt;</td>
<td>AT1G32060&lt;sup&gt;c&lt;/sup&gt;</td>
<td>44721 / 5,71</td>
<td>19</td>
<td>69</td>
<td>455</td>
</tr>
<tr>
<td>Fruktose-1,6-Bisphosphatase, putativ</td>
<td>23&lt;sup&gt;a&lt;/sup&gt;</td>
<td>AT3G54050&lt;sup&gt;c&lt;/sup&gt;</td>
<td>45590 / 5,25</td>
<td>11</td>
<td>29</td>
<td>265</td>
</tr>
<tr>
<td>Ferredoxin-abhängige Glutamat-Synthase 1</td>
<td>24&lt;sup&gt;a&lt;/sup&gt;</td>
<td>AT5G04140&lt;sup&gt;c&lt;/sup&gt;</td>
<td>178066 / 5,94</td>
<td>35</td>
<td>27</td>
<td>262</td>
</tr>
<tr>
<td>Patellin 2</td>
<td>25&lt;sup&gt;b&lt;/sup&gt;</td>
<td>AT1G22530&lt;sup&gt;c&lt;/sup&gt;</td>
<td>76019 / 4,92</td>
<td>10</td>
<td>16</td>
<td>437</td>
</tr>
<tr>
<td>Aminotransferase (Klasse4)</td>
<td></td>
<td>AT5G72410&lt;sup&gt;c&lt;/sup&gt;</td>
<td>63369 / 5,97</td>
<td>10</td>
<td>20</td>
<td>422</td>
</tr>
<tr>
<td>RuBisCO, große Untereinheit</td>
<td></td>
<td>ATCG00490&lt;sup&gt;c&lt;/sup&gt;</td>
<td>53435 / 5,88</td>
<td>11</td>
<td>20</td>
<td>383</td>
</tr>
<tr>
<td>Malat-Oxidoreduktase, putativ</td>
<td></td>
<td>AT4G00570&lt;sup&gt;c&lt;/sup&gt;</td>
<td>67111 / 6,62</td>
<td>11</td>
<td>18</td>
<td>333</td>
</tr>
<tr>
<td>Proteinname (1)</td>
<td>Spot-Nummer (2)</td>
<td>Akzessions-Nummer (3)</td>
<td>Masse / pI (4)</td>
<td>Mascot Score (5)</td>
<td>Regulation (6)</td>
<td>ANOVA-Auswertung (7)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Leucin-reiches Protein</td>
<td>AT3G15410 c</td>
<td>64634 / 6,02</td>
<td>9 15 307 -1,15 -1,08 1,07 -2,14</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tRNA-Synthetase (Klasse2)</td>
<td>AT3G62120 c</td>
<td>61344 / 6,09</td>
<td>7 14 294 -1,15 -1,08 1,07 -2,14</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoacyl-tRNA-Ligase</td>
<td>AT2G31170 c</td>
<td>64387 / 6,75</td>
<td>6 11 220 -1,15 -1,08 1,07 -2,14</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glukose-6-Phosphat-Dehydrogenase 6</td>
<td>AT5G40760 c</td>
<td>59422 / 6,03</td>
<td>7 14 192 -1,15 -1,08 1,07 -2,14</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpur-saure Phosphatase 12</td>
<td>AT2G72190 c</td>
<td>54374 / 5,98</td>
<td>2 5 184 -1,15 -1,08 1,07 -2,14</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutathion-Reduktase</td>
<td>AT3G54660 c</td>
<td>61327 / 7,97</td>
<td>3 6 122 -1,15 -1,08 1,07 -2,14</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlCARFT/IMPCHase Bienza</td>
<td>AT2G35040 c</td>
<td>65436 / 6,46</td>
<td>4 6 105 -1,15 -1,08 1,07 -2,14</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Pyrrolin-5-Carboxylat-Dehydrogenase</td>
<td>AT5G62530 c</td>
<td>62190 / 6,26</td>
<td>2 4 105 -1,15 -1,08 1,07 -2,14</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruktose-Biphosphat-Aldolase, putativ</td>
<td>AT2G1330 c</td>
<td>43075 / 6,18</td>
<td>16 45 377 1,10 -1,01 -1,19 -2,26</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruktose-Biphosphat-Aldolase, putativ</td>
<td>AT4G38970 c</td>
<td>43132 / 6,78</td>
<td>153 43 1681 1,06 1,04 -1,16 -2,32</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RuBisCO-Activase</td>
<td>AT2G39730 c</td>
<td>52347 / 5,87</td>
<td>11 24 354 1,06 1,04 -1,16 -2,32</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serin-typische Endopeptidase</td>
<td>AT3G27925 c</td>
<td>46816 / 6,00</td>
<td>9 15 292 1,06 1,04 -1,16 -2,32</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktin 7</td>
<td>AT5G09810 c</td>
<td>41937 / 5,31</td>
<td>7 19 255 1,06 1,04 -1,16 -2,32</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartat-Carbamoyltransferase</td>
<td>AT3G20330 c</td>
<td>43424 / 6,21</td>
<td>10 11 185 1,06 1,04 -1,16 -2,32</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stammschleife-bindendes Protein</td>
<td>AT3G63140 c</td>
<td>44074 / 8,54</td>
<td>10 19 167 1,06 1,04 -1,16 -2,32</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversibel glykosylierbares Polypeptid 1</td>
<td>AT3G02230 c</td>
<td>41116 / 5,61</td>
<td>3 10 146 1,06 1,04 -1,16 -2,32</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arginase, putativ</td>
<td>AT4G08870 c</td>
<td>38071 / 5,90</td>
<td>3 11 135 1,06 1,04 -1,16 -2,32</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrat-Kinase</td>
<td>AT5G19150 c</td>
<td>39815 / 6,61</td>
<td>3 12 125 1,06 1,04 -1,16 -2,32</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unbekanntes Protein</td>
<td>AT5G41970 c</td>
<td>42558 / 5,88</td>
<td>2 5 67 1,06 1,04 -1,16 -2,32</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferredoxin-abhängige Glutamat-Synthase 1</td>
<td>AT5G04140 c</td>
<td>178066 / 5,94</td>
<td>39 27 446 -1,04 -1,17 -1,18 -2,50</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamat-Synthase 2</td>
<td>AT2G41220 c</td>
<td>178951 / 5,57</td>
<td>14 10 80 -1,04 -1,17 -1,18 -2,50</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamin-Synthetase 2</td>
<td>AT5G35630 c</td>
<td>47780 / 6,43</td>
<td>17 57 507 1,01 -1,08 -1,22 -2,62</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamat-Ammonium-Ligase</td>
<td>AT1G66200 c</td>
<td>39297 / 5,14</td>
<td>3 8 107 1,01 -1,08 -1,22 -2,62</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktin 7</td>
<td>AT5G09810 c</td>
<td>41937 / 5,31</td>
<td>12 46 90 1,01 -1,08 -1,22 -2,62</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serin-Transhydroxymethyl-Transferase 1</td>
<td>AT4G37930 c</td>
<td>57535 / 8,13</td>
<td>13 24 108 1,04 -1,10 -1,20 -2,74</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamin 1 (THI1)</td>
<td>AT5G47770 c</td>
<td>36755 / 5,82</td>
<td>11 42 190 -1,18 -1,02 -1,38 -3,06</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RuBisCO-Activase</td>
<td>AT2G39730 c</td>
<td>52347 / 5,87</td>
<td>22 59 614 1,09 -1,02 -1,38 -4,63</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Anhang

<table>
<thead>
<tr>
<th>Proteinname (1)</th>
<th>Spot-Nummer (2)</th>
<th>Akzessions-Nummer (3)</th>
<th>Masse / pI (4)</th>
<th>Mascot Score (5)</th>
<th>Regulation (6)</th>
<th>ANOVA-Auswertung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pst-anzahl Seq.-</td>
<td>3 h 6 h 24 h 48 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>überein. Protein</td>
<td></td>
<td>Pst DC3000 Zeit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Score</td>
<td></td>
<td>Interaktion</td>
</tr>
</tbody>
</table>

### Proteine von *Pst DC3000*

<table>
<thead>
<tr>
<th>Unbekanntes Protein</th>
<th>5 a</th>
<th>Q87V70 d</th>
<th>20621 / 6,59</th>
<th>7</th>
<th>56</th>
<th>562</th>
<th>1,66</th>
<th>-1,35</th>
<th>1,86</th>
<th>9,85</th>
<th>*</th>
<th>*</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoenolpyruvat-Carboxylase</td>
<td>6 b</td>
<td>Q886R9 d</td>
<td>97987 / 5,57</td>
<td>23</td>
<td>33</td>
<td>738</td>
<td>-1,40</td>
<td>-1,04</td>
<td>2,16</td>
<td>5,68</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Elongationsfaktor Ts</td>
<td>10 a</td>
<td>Q886P2 d</td>
<td>30620 / 5,41</td>
<td>14</td>
<td>50</td>
<td>568</td>
<td>1,71</td>
<td>1,32</td>
<td>1,12</td>
<td>3,89</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
</tbody>
</table>

(1) Identifizierte Proteine von *Arabidopsis thaliana* oder *Pst DC3000*. Multiple Identifikationen einzelner Proteinspots sind nach der Höhe des Score-Wertes angeordnet.

(2) Spotnummer auf 2D-Gelbildaufnahme in Anhang Abb. 2. Proteinidentifikationen erfolgten entweder durch MALDI TOF/TOF (a) oder LC-MS/MS (b).

(3) Akzessionsnummer der TAIR-Datenbank (c) bzw. SwissProt-Datenbank (d).

(4) Werte für Molekulargewichte in Da und isoelektrischen Punkt (pI).


(6) Veränderung der Proteinregulation zu vier verschiedenen Zeitpunkten nach der Infektion mit *Pst DC3000* im Vergleich zur Kontrollbehandlung. Proteine, bei denen mindestens eine um den Faktor 1,5 erhöhte Produktion nachgewiesen werden konnte, sind je nach Regulationsstärke in verschiedenen Rottönen wiedergegeben. Proteine, die mindestens eine um den Faktor 1,5 verminderte Produktion zeigten, sind in verschiedenen Grünschattierungen markiert.

(7) Signifikanzwerte der zweifaktoriellen ANOVA-Auswertung für den Infektionsfaktor, den Zeitfaktor und den Interaktionsfaktor (*: p ≤0,05; **: p ≤0,01).

Legende zur farbigen Markierung:

**Regulationsfaktor:** 10,0 - 20,0 | 5,0 - 10,0 | 2,0 - 5,0 | 1,5 - 2,0 | -1,5 - -2,0 | -2,0 - -5,0 | -5,0 - -10,0

161
Anhang Abb. 2: 2D-Gelbild mit Auftrennung der Gesamtproteinfraction aus Blattmaterial von Wildtyp-Pflanzen nach Infektion mit *Pst* DC3000

Einzelne Proteine, die 48 h nach der Infektion mindestens eine um den Faktor ±2 differentielle Regulation im Vergleich zur Kontrollbehandlung zeigten, sind rot markiert und entsprechend der Auflistung in Anhang Tab. 5 mit Nummern versehen.
## Anhang Tab. 6: Differentiell regulierte Proteine in gsnor Knock-out Linien nach Infektion mit Pst DC3000 (avrRpt2)

Dargestellt sind alle identifizierten Proteine, die nach avirulenter Behandlung mit Pst DC3000 (avrRpt2) eine mindestens um den Faktor 2 erhöhte bzw. erniedrigte Produktion im Vergleich zur Kontrollbehandlung mit 10 mM MgCl₂ aufwiesen. Die Berechnung des Regulationsfaktors sowie die statistische Auswertung erfolgte unter Verwendung des Software-Programmes DeCyder und basierte auf drei unabhängigen biologischen Wiederholungen für jeden untersuchten Zeitpunkt. Proteinkandidaten wurden mit Hilfe eines MALDI-TOF/TOF Massenspektrometers oder LTQ-OrbitrapXL Massenspektrometer analysiert und die einzelnen Massenspektrogramme mit der Arabidopsis thaliana Datenbank TAIR9 sowie der Datenbank SwissProt verglichen.

<table>
<thead>
<tr>
<th>Proteinname von Arabidopsis thaliana</th>
<th>Spot-Nummer</th>
<th>Akzessions-Nummer</th>
<th>Masse / pI</th>
<th>Mascot Score</th>
<th>Regulation</th>
<th>ANOVA-Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pst DC3000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>avrRpt2</td>
</tr>
<tr>
<td>Glutathion S-Transferase 2</td>
<td>1 b</td>
<td>AT4G02520</td>
<td>24114 / 5,92</td>
<td>10</td>
<td>43</td>
<td>354</td>
</tr>
<tr>
<td>20 kDa luminales Thylakoidprotein</td>
<td></td>
<td>AT3G56650</td>
<td>28726 / 9,30</td>
<td>6</td>
<td>25</td>
<td>240</td>
</tr>
<tr>
<td>Pyrroolidon-Carboxylat-Peptidase</td>
<td></td>
<td>AT1G56700</td>
<td>24316 / 5,98</td>
<td>5</td>
<td>22</td>
<td>240</td>
</tr>
<tr>
<td>Eisen Superoxid-Dismutase (FeSOD 1)</td>
<td></td>
<td>AT4G25100</td>
<td>23776 / 6,06</td>
<td>6</td>
<td>24</td>
<td>234</td>
</tr>
<tr>
<td>Glykosid-Hydrolase</td>
<td></td>
<td>AT4G25100</td>
<td>108276 / 6,01</td>
<td>4</td>
<td>3</td>
<td>214</td>
</tr>
<tr>
<td>Quinon-Reduktase</td>
<td></td>
<td>AT4G27270</td>
<td>21778 / 6,08</td>
<td>3</td>
<td>15</td>
<td>109</td>
</tr>
<tr>
<td>Chaperonin 20</td>
<td></td>
<td>AT5G20707</td>
<td>26785 / 8,86</td>
<td>3</td>
<td>17</td>
<td>109</td>
</tr>
<tr>
<td>Photosystem II, P-1-Untereinheit (PSBP-1)</td>
<td></td>
<td>AT1G06680</td>
<td>28249 / 9,30</td>
<td>3</td>
<td>13</td>
<td>93</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td></td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>5</td>
<td>12</td>
<td>84</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 (GSTF6)</td>
<td>2 a</td>
<td>AT1G02930</td>
<td>23471 / 5,92</td>
<td>13</td>
<td>62</td>
<td>559</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td></td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>9</td>
<td>44</td>
<td>389</td>
</tr>
<tr>
<td>Glutamat-Dehydrogenase 2</td>
<td>3 a</td>
<td>AT5G07440</td>
<td>45013 / 6,07</td>
<td>14</td>
<td>40</td>
<td>574</td>
</tr>
<tr>
<td>Glutamat-Dehydrogenase 1</td>
<td></td>
<td>AT5G18170</td>
<td>44781 / 6,38</td>
<td>7</td>
<td>20</td>
<td>79</td>
</tr>
<tr>
<td>ATP-Synthase, α-Untereinheit</td>
<td>4 a</td>
<td>ATCG00120</td>
<td>55351 / 5,19</td>
<td>11</td>
<td>27</td>
<td>69</td>
</tr>
<tr>
<td>Glutathion S-Transferase 2</td>
<td>5 a</td>
<td>AT4G02520</td>
<td>24114 / 5,92</td>
<td>5</td>
<td>21</td>
<td>87</td>
</tr>
<tr>
<td>Methioninsulfioxid-Reduktase, putativ</td>
<td></td>
<td>AT4G25130</td>
<td>28968 / 8,96</td>
<td>4</td>
<td>15</td>
<td>63</td>
</tr>
<tr>
<td>Leguminosen-Lektin</td>
<td>6 a</td>
<td>AT3G15356</td>
<td>29788 / 8,91</td>
<td>9</td>
<td>36</td>
<td>107</td>
</tr>
<tr>
<td>Leguminosen-Lektin</td>
<td>7 a</td>
<td>AT3G16530</td>
<td>30547 / 6,97</td>
<td>8</td>
<td>29</td>
<td>101</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td></td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>7</td>
<td>25</td>
<td>287</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 (GSTF6)</td>
<td>8 a</td>
<td>AT1G02930</td>
<td>23471 / 5,80</td>
<td>6</td>
<td>22</td>
<td>244</td>
</tr>
<tr>
<td>Proteinname</td>
<td>Spot-Nummer</td>
<td>Akzessions-Nummer</td>
<td>Masse / pl</td>
<td>Mascot Score</td>
<td>Regulation</td>
<td>ANOVA-Auswertung</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leguminosen-Lektin</td>
<td>9 a</td>
<td>AT3G15356</td>
<td>29788 / 8,91</td>
<td>9</td>
<td>39</td>
<td>159</td>
</tr>
<tr>
<td>Acyl-Koenzym A Oxidase 1</td>
<td>10 b</td>
<td>AT4G16760</td>
<td>74996 / 7,58</td>
<td>16</td>
<td>27</td>
<td>160</td>
</tr>
<tr>
<td>TolB-Protein</td>
<td>11 b</td>
<td>AT4G01870</td>
<td>73112 / 5,64</td>
<td>19</td>
<td>43</td>
<td>314</td>
</tr>
<tr>
<td>Mutase-Protein</td>
<td>12 b</td>
<td>AT1G21440</td>
<td>36512 / 6,67</td>
<td>13</td>
<td>48</td>
<td>286</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td>13 b</td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>11</td>
<td>45</td>
<td>509</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 (GSTF6)</td>
<td>14 b</td>
<td>AT1G02930</td>
<td>23471 / 5,80</td>
<td>12</td>
<td>62</td>
<td>514</td>
</tr>
<tr>
<td>Glutathion S-Transferase 11 (GSTF8)</td>
<td>15 b</td>
<td>AT1G02920</td>
<td>23583 / 6,14</td>
<td>8</td>
<td>44</td>
<td>343</td>
</tr>
<tr>
<td>Glutathion-Peroxidase 2</td>
<td>16 b</td>
<td>AT2G31570</td>
<td>19104 / 5,60</td>
<td>9</td>
<td>49</td>
<td>188</td>
</tr>
<tr>
<td>Flavodoxin-ähnliche Quinon-Reduktase 1</td>
<td>17 b</td>
<td>AT5G54500</td>
<td>21782 / 5,96</td>
<td>8</td>
<td>59</td>
<td>307</td>
</tr>
<tr>
<td>Quinon-Reduktase</td>
<td></td>
<td>AT4G22770</td>
<td>21778 / 6,08</td>
<td>4</td>
<td>24</td>
<td>260</td>
</tr>
<tr>
<td>Glutathion S-Transferase 1 (GSTF6)</td>
<td></td>
<td>AT1G02930</td>
<td>23471 / 5,80</td>
<td>5</td>
<td>25</td>
<td>67</td>
</tr>
<tr>
<td>Pyruvat-Orthophosphat-Dikinase</td>
<td>18 b</td>
<td>AT4G15530</td>
<td>93948 / 5,25</td>
<td>25</td>
<td>32</td>
<td>343</td>
</tr>
<tr>
<td>Aminopeptidase M1</td>
<td>19 b</td>
<td>AT4G33090</td>
<td>98744 / 5,34</td>
<td>22</td>
<td>26</td>
<td>220</td>
</tr>
<tr>
<td>Germin 3</td>
<td>20 b</td>
<td>AT5G20630</td>
<td>21993 / 6,26</td>
<td>4</td>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>Thiamin 4 (THI4)</td>
<td>21 b</td>
<td>AT5G54770</td>
<td>36755 / 5,82</td>
<td>6</td>
<td>26</td>
<td>94</td>
</tr>
</tbody>
</table>

(1) Identifizierte Proteine von *Arabidopsis thaliana* oder Pst DC3000 (avrRpt2). Multiple Identifizierungen einzelner Proteinspots sind nach der Höhe des Score-Wertes angeordnet.

(2) Spotnummer auf 2D-Gelbildaufnahme in Anhang Abb. 3. Proteinidentifizierungen erfolgten entweder durch MALDI TOF/TOF (a) oder LC-MS/MS (b).

(3) Akzessionsnummer der TAIR-Datenbank (c) bzw. SwissProt-Datenbank (d).

(4) Werte für Molekulargewichte in Da und isoelektrischen Punkt (pI).

(6) Veränderung der Proteinregulation zu vier verschiedenen Zeitpunkten nach der Infektion mit Pst DC3000 (avrRpt2) im Vergleich zur Kontrollbehandlung. Proteine, bei denen mindestens eine um den Faktor 1,5 erhöhte Produktion nachgewiesen werden konnte, sind je nach Regulationsstärke in verschiedenen Rottönen wiedergegeben. Proteine, die mindestens eine um den Faktor 1,5 verminderte Produktion zeigten, sind in verschiedenen Grünschattierungen markiert.

(7) Signifikanzwerte der zweifaktoriellen ANOVA-Auswertung für den Infektionsfaktor, den Zeitfaktor und den Interaktionsfaktor (*: p ≤ 0,05; **: p ≤ 0,01).

Legende zur farbigen Markierung:

Regulationsfaktor: 10,0 - 20,0 | 5,0 - 10,0 | 2,0 - 5,0 | 1,5 - 2,0 | -1,5 - -2,0 | -2,0 - -5,0 | -5,0 - -10,0
Anhang Abb. 3: 2D-Gelbild mit Auftrennung der Gesamtproteinfraktion aus Blattmaterial von *gsnor* Knock-out Linien nach Infektion mit *Pst* DC3000 (avrRpt2)

Einzeln Proteine, die 48 h nach der Infektion mindestens eine um den Faktor ±2 differentielle Regulation im Vergleich zur Kontrollbehandlung zeigten, sind rot markiert und entsprechend der Auflistung in Anhang Tab. 6 mit Nummern versehen.
Anhang Tab. 7: Differenziell regulierte Proteine in gsnor Knock-out Linien nach Infektion mit Pst DC3000

Dargestellt sind alle identifizierten Proteine, die nach virulenter Behandlung mit Pst DC3000 eine mindestens um den Faktor 2 erhöhte bzw. erniedrigte Produktion im Vergleich zur Kontrollbehandlung mit 10 mM MgCl₂ aufwiesen. Die Berechnung des Regulationsfaktors sowie die statistische Auswertung erfolgte unter Verwendung des Software-Programmes DeCyder und basierte auf drei unabhängigen biologischen Wiederholungen für jeden untersuchten Zeitpunkt. Proteinkandidaten wurden mit Hilfe eines MALDI-TOF/TOF Massenspektrometers oder LTQ-OrbitrapXL Massenspektrometers analysiert und die einzelnen Massenspektrogramme mit der Arabidopsis thaliana Datenbank TAIR9 sowie der Datenbank SwissProt verglichen.

<table>
<thead>
<tr>
<th>Proteinnname (1)</th>
<th>Spot- Nummer (2)</th>
<th>Akzessions- Nummer (3)</th>
<th>Masse / pI (4)</th>
<th>Mascot Score (5)</th>
<th>Regulation (6)</th>
<th>ANOVA-Auswertung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nummer</td>
<td></td>
<td></td>
<td></td>
<td>3 h</td>
<td>6 h</td>
</tr>
<tr>
<td>ATP-Synthase, α-Untereinheit</td>
<td>2 a</td>
<td>ATCG00120 c</td>
<td>55351 / 5,19</td>
<td>11</td>
<td>27</td>
<td>69</td>
</tr>
<tr>
<td>3-Dehydroquinat-Synthase, putativ</td>
<td>3 b</td>
<td>AT5G66120 c</td>
<td>48319 / 7,05</td>
<td>15</td>
<td>32</td>
<td>467</td>
</tr>
<tr>
<td>Villin 4</td>
<td></td>
<td>AT4G30160 c</td>
<td>109829 / 5,83</td>
<td>12</td>
<td>11</td>
<td>399</td>
</tr>
<tr>
<td>Alclo/Keto-Reduktase</td>
<td></td>
<td>AT1G04420 c</td>
<td>46683 / 8,70</td>
<td>11</td>
<td>25</td>
<td>367</td>
</tr>
<tr>
<td>Pyruvat-Dehydrogenase E1 α</td>
<td></td>
<td>AT1G01090 c</td>
<td>47600 / 7,16</td>
<td>9</td>
<td>18</td>
<td>272</td>
</tr>
<tr>
<td>Indol-3-Acetoniitril-Nitrilase (Nito1)</td>
<td></td>
<td>AT3G44310 c</td>
<td>38527 / 5,84</td>
<td>5</td>
<td>15</td>
<td>153</td>
</tr>
<tr>
<td>Osmose-abhängiges Protein (LOS1)</td>
<td></td>
<td>AT1G56070 c</td>
<td>94743 / 5,89</td>
<td>5</td>
<td>6</td>
<td>136</td>
</tr>
<tr>
<td>Fruktose-Bisphosphat-Aldolase, putativ</td>
<td></td>
<td>AT3G52930 c</td>
<td>38858 / 6,05</td>
<td>5</td>
<td>10</td>
<td>128</td>
</tr>
<tr>
<td>Katalase</td>
<td></td>
<td>AT1G20620 c</td>
<td>57059 / 7,31</td>
<td>3</td>
<td>6</td>
<td>93</td>
</tr>
<tr>
<td>Dihydroorotat-Dehydrogenase</td>
<td></td>
<td>AT3G17810 c</td>
<td>47216 / 6,37</td>
<td>4</td>
<td>13</td>
<td>92</td>
</tr>
<tr>
<td>RuBisCO, große Untereinheit</td>
<td></td>
<td>ATCG00490 c</td>
<td>53435 / 5,88</td>
<td>3</td>
<td>7</td>
<td>91</td>
</tr>
<tr>
<td>Osmose-abhängiges Protein (LOS2)</td>
<td></td>
<td>AT2G36530 c</td>
<td>47974 / 5,54</td>
<td>3</td>
<td>7</td>
<td>82</td>
</tr>
<tr>
<td>Aminotransferase (Klasse1)</td>
<td></td>
<td>AT1G03630 c</td>
<td>44132 / 5,97</td>
<td>2</td>
<td>5</td>
<td>78</td>
</tr>
<tr>
<td>Glutamat-Dehydrogenase 2</td>
<td></td>
<td>AT5G7440 c</td>
<td>45013 / 6,07</td>
<td>4</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td>ß-Glukosidase 18</td>
<td>5 a</td>
<td>AT1G52400 c</td>
<td>60877 / 6,74</td>
<td>14</td>
<td>35</td>
<td>226</td>
</tr>
<tr>
<td>RuBisCO, große Untereinheit</td>
<td>6 a</td>
<td>ATCG00490 c</td>
<td>53435 / 5,88</td>
<td>12</td>
<td>30</td>
<td>77</td>
</tr>
<tr>
<td>Fruktose-Bisphosphat-Aldolase, putativ</td>
<td>7 b</td>
<td>AT4G38970 c</td>
<td>43132 / 6,78</td>
<td>15</td>
<td>25</td>
<td>655</td>
</tr>
<tr>
<td>Serine-transhydroxy-Methyltransferase 1</td>
<td></td>
<td>AT4G37930 c</td>
<td>57535 / 8,13</td>
<td>10</td>
<td>15</td>
<td>328</td>
</tr>
<tr>
<td>Peptidyl-prolyl cis-trans- Isomerase (ROC4)</td>
<td></td>
<td>AT3G62030 c</td>
<td>28208 / 8,83</td>
<td>4</td>
<td>15</td>
<td>114</td>
</tr>
<tr>
<td>Vegetatives Speicherprotein 1</td>
<td>9 a</td>
<td>AT5G24780 c</td>
<td>30357 / 5,49</td>
<td>3</td>
<td>10</td>
<td>78</td>
</tr>
<tr>
<td>RuBisCO, große Untereinheit</td>
<td>10 a</td>
<td>ATCG00490 c</td>
<td>53435 / 5,88</td>
<td>21</td>
<td>54</td>
<td>274</td>
</tr>
<tr>
<td>Proteinname</td>
<td>Spot-Nummer</td>
<td>Akzessions-Nummer</td>
<td>Masse / pI</td>
<td>Mascot Score</td>
<td>Regulation</td>
<td>ANOVA-Auswertung</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Mutase-Protein</td>
<td>11</td>
<td>AT1G21440</td>
<td>36512 / 6,67</td>
<td>13 48 286 1,05 1,02 1,11 1,13 1,05</td>
<td>3,51</td>
<td>* * *</td>
</tr>
<tr>
<td>Coronatin-induziertes Protein 1</td>
<td>12</td>
<td>AT4G23600</td>
<td>47408 / 5,89</td>
<td>19 56 505 1,02 1,05 2,42 3,43</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>β-Glukosidase 18</td>
<td>13</td>
<td>AT1G52400</td>
<td>60877 / 6,74</td>
<td>13 33 108 0,91 0,96 1,03 0,97 1,01</td>
<td>3,23</td>
<td>* * *</td>
</tr>
<tr>
<td>Jasmonat-abhängiges Protein 1</td>
<td>14</td>
<td>AT3G16470</td>
<td>48524 / 5,12</td>
<td>19 49 557 0,99 1,03 2,29 3,14</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>12-Oxo-Phytodienoat-Reduktase</td>
<td>15</td>
<td>AT2G06500</td>
<td>42893 / 7,71</td>
<td>16 56 378 1,24 1,17 2,10 2,76</td>
<td>* * **</td>
<td></td>
</tr>
<tr>
<td>β-Glukosidase 18</td>
<td>19</td>
<td>AT1G52400</td>
<td>60877 / 6,74</td>
<td>9 24 343 1,04 1,02 3,35 2,46</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Dehydroascorbat-Reduktase</td>
<td>20</td>
<td>AT1G19570</td>
<td>23554 / 5,56</td>
<td>8 57 305 1,01 1,13 1,61 2,37</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Dehydroascorbat-Reduktase, putativ</td>
<td></td>
<td>AT1G19550</td>
<td>17165 / 5,58</td>
<td>4 32 99 1,10 1,13 1,61 2,37</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Coronatin-induziertes Protein 2</td>
<td>21</td>
<td>AT4G23600</td>
<td>47408 / 5,89</td>
<td>19 67 449 1,19 1,54 1,51 2,34</td>
<td>* *</td>
<td></td>
</tr>
<tr>
<td>Glutamin-Synthetase 2</td>
<td>22</td>
<td>AT5G35630</td>
<td>47780 / 6,43</td>
<td>19 59 550 1,32 1,15 1,77 2,19</td>
<td>* *</td>
<td></td>
</tr>
<tr>
<td>Glutamat-Ammonium-Ligase</td>
<td></td>
<td>AT1G66200</td>
<td>39297 / 5,14</td>
<td>4 13 122 1,32 1,15 1,77 2,19</td>
<td>* *</td>
<td></td>
</tr>
<tr>
<td>Thioglykosid-Glukohydrolase 1</td>
<td>23</td>
<td>AT5G26000</td>
<td>61664 / 6,61</td>
<td>13 26 383 1,10 1,10 1,30 2,23</td>
<td>* *</td>
<td></td>
</tr>
<tr>
<td>Transketolase, putativ</td>
<td></td>
<td>AT3G60750</td>
<td>80374 / 5,94</td>
<td>15 24 200 0,99 1,01 1,30 2,23</td>
<td>* *</td>
<td></td>
</tr>
<tr>
<td>Thiamin-Pyrophosphokinase 1</td>
<td>24</td>
<td>AT1G02880</td>
<td>30145 / 5,31</td>
<td>6 43 67 1,05 1,20 1,40 2,24</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Thioglykosid-Glukohydrolase 1</td>
<td>25</td>
<td>AT5G26000</td>
<td>61664 / 5,61</td>
<td>13 23 87 1,00 1,06 1,30 2,23</td>
<td>* *</td>
<td></td>
</tr>
<tr>
<td>Dienelacton-Hydrolase</td>
<td></td>
<td>AT3G23570</td>
<td>26742 / 5,28</td>
<td>6 32 93 1,05 1,20 1,40 2,24</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Xyloglukan-Endotransglykosylase, putativ</td>
<td>26</td>
<td>AT4G37800</td>
<td>34002 / 7,00</td>
<td>9 35 90 1,00 1,27 1,43 2,65</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Glutamin-Synthetase 2</td>
<td>27</td>
<td>AT5G35630</td>
<td>47780 / 6,43</td>
<td>17 57 507 1,05 1,07 1,45 2,72</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Glutamat-Ammonium-Ligase</td>
<td></td>
<td>AT1G66200</td>
<td>39297 / 5,14</td>
<td>3 8 107 1,05 1,07 1,45 2,72</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Aktin 7</td>
<td></td>
<td>AT5G09810</td>
<td>41937 / 5,31</td>
<td>12 46 90 1,05 1,07 1,45 2,72</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Eukaryotischer Initiationsfaktor 4A2</td>
<td>28</td>
<td>AT1G54270</td>
<td>47075 / 5,45</td>
<td>10 28 99 1,14 1,02 1,33 2,76</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Phosphoenolpyruvat-Cardboxylase 2</td>
<td>29</td>
<td>AT2G42600</td>
<td>110312 / 5,57</td>
<td>30 37 223 1,08 1,22 1,32 2,89</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Phosphoglycerat-Kinase 1</td>
<td>30</td>
<td>AT3G12780</td>
<td>50195 / 5,91</td>
<td>19 59 732 1,03 1,08 1,20 3,11</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Phosphoglycerat-Kinase, putativ</td>
<td></td>
<td>AT1G56190</td>
<td>42703 / 5,39</td>
<td>13 48 541 1,03 1,08 1,20 3,11</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>ATP-Synthase, β-Untereinheit</td>
<td></td>
<td>ATCG00480</td>
<td>53957 / 5,38</td>
<td>15 46 139 0,93 1,03 1,20 3,11</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Malat-Dehydrogenase</td>
<td>31</td>
<td>AT5G58330</td>
<td>48712 / 5,81</td>
<td>14 49 250 1,10 1,00 1,61 3,92</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Glutamin-Synthetase 2</td>
<td>32</td>
<td>AT5G35630</td>
<td>47780 / 6,43</td>
<td>9 36 79 1,10 1,00 1,61 3,92</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>RuBisCO-Activase</td>
<td>33</td>
<td>AT2G39730</td>
<td>52347 / 5,87</td>
<td>22 59 614 1,01 1,24 1,64 4,15</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Proteinname (1)</td>
<td>Spot- Numer (2)</td>
<td>Akzessions- Numer (3)</td>
<td>Masse / pl (4)</td>
<td>Mascot Score (5)</td>
<td>Regulation (6)</td>
<td>ANOVA-Auswertung (7)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalamin-unabhängige Methionin-Synthase</td>
<td>33 a</td>
<td>AT5G17920 c</td>
<td>84646 / 6,09</td>
<td>11 24 133</td>
<td>1,41 -1,03 -1,19 4,37</td>
<td>* * *</td>
</tr>
<tr>
<td>Methionin-Synthase 2 (ATMS2)</td>
<td>AT3G03780 c</td>
<td>84873 / 6,09</td>
<td>8 18 85</td>
<td>1,41 -1,03 -1,19 -4,37</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>RuBisCO-Activase</td>
<td>34 a</td>
<td>AT2G39730 c</td>
<td>52347 / 5,87</td>
<td>20 58 457 1,03 -1,19 -1,63 4,62</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Proteine von Pst DC3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unbekanntes Protein</td>
<td>1 d</td>
<td>Q87V70 d</td>
<td>20621 / 6,59</td>
<td>7 56 562 -1,10 -1,06 1,22 9,38</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Phosphoenolpyruvat-Carboxylase</td>
<td>4 b</td>
<td>Q886R9 d</td>
<td>97987 / 5,57</td>
<td>23 33 738 -1,04 1,14 2,16 5,32</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>60 kDa Chaperonin</td>
<td>8 a</td>
<td>Q87X14 d</td>
<td>57163 / 5,06</td>
<td>15 41 254 1,15 1,17 1,43 3,62</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Polyribonukleotid-Nukleotidyltransferase</td>
<td>16 a</td>
<td>Q87WQ8 d</td>
<td>75108 / 5,20</td>
<td>10 19 76 1,34 1,01 1,23 2,76</td>
<td>* * *</td>
<td></td>
</tr>
<tr>
<td>Elongationsfaktor G</td>
<td>17 a</td>
<td>Q889X4 d</td>
<td>77406 / 5,25</td>
<td>17 32 292 1,41 1,09 1,26 2,74</td>
<td>* * **</td>
<td></td>
</tr>
<tr>
<td>Katalase-Peroxidase</td>
<td>Q87WL6 d</td>
<td>82746 / 5,26</td>
<td>12 17 140 1,41 1,09 1,26 2,74</td>
<td>* * **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketolacid-Reduktioxidemase</td>
<td>18 a</td>
<td>Q887N4 d</td>
<td>36589 / 5,38</td>
<td>17 69 557 1,03 -1,02 1,17 2,69</td>
<td>* * *</td>
<td></td>
</tr>
</tbody>
</table>

(1) Identifizierte Proteine von *Arabidopsis thaliana* oder Pst DC3000. Multiple Identifizierungen einzelner Proteinspots sind nach der Höhe des Score-Wertes angeordnet.

(2) Spotnummer auf 2D-Gelbildaufnahme in Anhang Abb. 4. Proteinidentifizierungen erfolgten entweder durch MALDI TOF/TOF (a) oder LC-MS/MS (b).

(3) Akzessionsnummer der TAIR-Datenbank (c) bzw. SwissProt-Datenbank (d).

(4) Werte für Molekulargewichte in Da und isoelektrischen Punkt (pl).


(6) Veränderung der Proteinregulation zu vier verschiedenen Zeitpunkten nach der Infektion mit Pst DC3000 im Vergleich zur Kontrollbehandlung. Proteine, bei denen mindestens eine um den Faktor 1,5 erhöhte Produktion nachgewiesen werden konnte, sind je nach Regulationsstärke in verschiedenen Rottönen wiedergegeben. Proteine, die mindestens eine um den Faktor 1,5 verminderte Produktion zeigten, sind in verschiedenen Grünschattierungen markiert.

(7) Signifikanzwerte der zweifaktoriellen ANOVA-Auswertung für den Infektionsfaktor, den Zeitfaktor und den Interaktionsfaktor (*: p ≤0,05; **: p ≤0,01).

Legende zur farbigen Markierung:

Regulationsfaktor: 

| 10,0 - 20,0 | 5,0 - 10,0 | 2,0 - 5,0 | 1,5 - 2,0 | -1,5 - -2,0 | -2,0 - -5,0 | -5,0 - -10,0 |
Einzelne Proteine, die 48 h nach der Infektion mindestens eine um den Faktor ±2 differentielle Regulation im Vergleich zur Kontrollbehandlung zeigten, sind rot markiert und entsprechend der Auflistung in Anhang Tab. 7 mit Nummern versehen.

Anhang Abb. 4: 2D-Gelbild mit Auftrennung der Gesamtproteinfraktion aus Blattmaterial von gsnor Insertionslinien nach Infektion mit Pst DC3000
Anhang Abb. 5: Paraquat-Toleranz von gsnor Knock-out Linien verschiedener Ökotypen

Anhang Abb. 6: Gesamtaktivität von Superoxid-Dismutasen
Pflanzen beider Linien wurden auf Erde angezogen, wobei schwarze Balken Wildtyp-Pflanzen und weiße Balken gsnor Knock-out Linien repräsentieren. Für die Berechnung der Enzymaktivität wurden die Ergebnisse von drei biologischen Replikaten verwendet, in Unit umgerechnet und auf den Proteingehalt der Probe bezogen. Signifikante Unterschiede zwischen beiden Linien sind bei einem p-Wert ≤0,01 mit ** gekennzeichnet.
<table>
<thead>
<tr>
<th>Anhang</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MnSOD</th>
<th>MnSOD</th>
<th>FeSOD1</th>
<th>FeSOD1</th>
<th>FeSOD2</th>
<th>FeSOD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-His$_a$</td>
<td>N-His$_a$</td>
<td>N-His$_a$</td>
<td>N-His$_a$</td>
<td>N-His$_a$</td>
<td>N-His$_a$</td>
</tr>
<tr>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FeSOD2</th>
<th>FeSOD3</th>
<th>FeSOD3</th>
<th>CZSOD1</th>
<th>CZSOD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-His$_b$</td>
<td>C-His$_b$</td>
<td>C-His$_b$</td>
<td>C-His$_b$</td>
<td>C-His$_b$</td>
</tr>
<tr>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MnSOD</th>
<th>FeSOD1</th>
<th>FeSOD1</th>
<th>MnSOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-His$_c$</td>
<td>N-His$_c$</td>
<td>C-His$_c$</td>
<td>C-His$_c$</td>
</tr>
<tr>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
<td>R-Stamm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CZSOD1</th>
<th>CZSOD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-His$_c$</td>
<td>C-His$_c$</td>
</tr>
<tr>
<td>R-Stamm</td>
<td>R-Stamm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MnSOD</th>
<th>FeSOD1</th>
<th>FeSOD2</th>
<th>FeSOD3</th>
<th>FeSOD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-His$_c$</td>
<td>N-His$_c$</td>
<td>N-His$_c$</td>
<td>N-His$_c$</td>
<td>N-His$_c$</td>
</tr>
<tr>
<td>BL21</td>
<td>BL21</td>
<td>BL21</td>
<td>BL21</td>
<td></td>
</tr>
</tbody>
</table>
Anhang Abb. 7: Ergebnis des Testscreenings hinsichtlich Expressionsstärke und Löslichkeit rekombinant hergestellter Superoxid-Dismutasen

Dargestellt ist ein Überblick der Expressionskulturen, die in Abhängigkeit der verwendeten Bakterienstämme (BL=BL21 DE3, R=Rosetta DE3, RS=Rosetta DE3 pLysS) und der Position der Histidin-Hexapeptide (N=N-terminaler Tag, C=C-terminaler Tag) mit den einzelnen SOD-Isoformen durchgeführt wurden. Probenaliquots der verschiedenen Reinigungsschritte (L=Lysat, Ü=Überstand, E=Eluat) wurden in einer eindimensionalen SDS-PAGE aufgetrennt, wobei der rote Bereich die Lokalisation der einzelnen rekombinant hergestellten Proteine im Gel markiert. Auf der linken Seite sind zur Größenabschätzung die relativen Molekülmassen in kDa angegeben.

Anhang Abb. 8: Einfluss der in-vitro Behandlung mit GSNO auf die Aktivität von SOD-Isoformen

Danksagung

Zunächst danke ich meinem Doktorvater Prof. Dr. Jörg Durner für die Möglichkeit am Institut für biochemische Pflanzenpathologie die Doktorarbeit anfertigen zu können sowie für die Bereitstellung der hervorragenden Arbeitsbedingungen. Seine Bereitschaft, mir Freiraum für eigene Ideen einzuräumen und sein Entgegenkommen bei all den mit einer Doktorarbeit einhergehenden Problemen haben eine erfolgreiche Anfertigung dieser Dissertation sehr erleichtert.

Des Weiteren möchte ich mich bei meinem Zweitgutachter Prof. Dr. Claus Schwechheimer und der Vorsitzenden der Prüfungskommission Prof. Dr. Brigitte Poppenberger-Sieberer für die Begutachtung meiner Arbeit und die Organisation des Disputationverfahrens bedanken.

Mein besonderer Dank gilt Herrn Dr. Christian Lindermayr für die Vergabe des interessanten Promotionsthemas und die fachliche Betreuung der Arbeit sowie die kritische Durchsicht des Manuskripts. Seine Ratschläge und seine Diskussionsbereitschaft haben wesentlich zum Gelingen der vorliegenden Arbeit beigetragen.

Ferner möchte ich mich herzlichst bei allen Kooperationspartnern am Helmholtz Zentrum München für die produktive Zusammenarbeit und den wissenschaftlichen Erfahrungsaustausch bedanken - insbesondere bei Dr. Arie Geerlof vom Institut für Strukturbiologie für die Hilfe bei der rekombinannten Proteinproduktion sowie bei Dr. Hakan Sarioglu von der Core Facility Proteomics für alle durchgeführten massenspektrometrischen Analysen.

Darüber hinaus danke ich allen ehemaligen und aktuellen Kollegen bzw. Kolleginnen am Institut für eine harmonische Arbeitsatmosphäre, durch die die langen Tage im Labor immer wieder ein bisschen leichter und angenehmer wurden. Dabei möchte ich zwei Menschen besonders hervorheben: Dr. Frank Gaupels war durch seine wertvollen fachlichen Anregungen und Anleitungen eine unerlässliche Stütze, ohne dessen Hilfe diese Dissertation in ihrer jetzigen Form nicht vorliegen würde. Einen großen Beitrag zum Gelingen dieser Arbeit verdanke ich auch Frau Birgit Geist, die mir bei allen molekularbiologischen Techniken mit Rat und Tat zur Seite gestanden hat.

An dieser Stelle auch ein Dank an Elke Mattes für die Mitarbeit bei den Klonierungsarbeiten zur zielgerichteten Mutagenese und an Lucia Gößl für die Hilfe bei den histochemischen Färbermethoden.
Ein herzliches Dankeschön möchte ich in diesem Zusammenhang auch meinen langjährigen Freunden und Bekannten aussprechen, die mir immer wieder klar gemacht haben, dass es eine Welt außerhalb des Labors gibt.


Curriculum vitae

Name
Christian Holzmeister

Anschrift
Karl-Theodor-Straße 84,
80803 München

Geburtsdatum
22.07.1981

Geburtsort
Lohr am Main

Familienstand
ledig

Promotion
seit 01/2009
Helmholtz Zentrum München (TU München)
Institut für biochemische Pflanzenpathologie
Dissertationstitel:
„Charakterisierung des Redoxsystems in Arabidopsis thaliana-
Pflanzen mit gestörter NO-Homöostase“

Hochschulstudium
10/2003 – 09/2008
Studium der Agrarbiologie an der Universität Hohenheim
Abschluss: Diplom-Agrarbiologe (Dipl.-Agr.-Biol.)
Diplomarbeit am Helmholtz Zentrum München,
Institut für biochemische Pflanzenpathologie
Titel: „Proteomanalyse von Arabidopsis thaliana Insertions-
linien mit gestörter NO-Homöostase nach Pathogenbefall“

Studium der Chemie an der Universität Stuttgart

Zivildienst
09/2001 – 06/2002
Krankenhaus für Psychiatrie und Neurologie des Bezirks
Unterfranken, Lohr am Main

Schulausbildung
09/1992 – 06/2001
Franz-Ludwig-von-Erthal Gymnasium, Lohr am Main
Allgemeine Hochschulreife
Konferenzteilnahmen

Christian Holzmeister, Jörg Durner, Christian Lindermayr
„Proteomics of defense response in Arabidopsis plants with impaired nitric oxide homeostasis“, 3th International Plant NO Club 2010, Olmütz, Tschechien, Posterpreis

Christian Holzmeister, Hakan Sarioglu, Jörg Durner, Christian Lindermayr
„Differential proteome analysis of wildtype Arabidopsis thaliana and plants with impaired NO-homeostasis“; 10th International Conference on Reactive Oxygen and Nitrogen Species in Plants 2011, Budapest, Ungarn, Poster

Veröffentlichungen

Holzmeister C., Fröhlich A., Sarioglu H., Bauer N., Durner J., Lindermayr C.

Fröhlich A., Gaupels F., Sarioglu H., Holzmeister C., Spannagl M., Durner J., Lindermayr C.

„Nitric oxide mediates paraquat tolerance in Arabidopsis thaliana via upregulation of glutathione pool and glutathione-associated enzymes“, Publikation in Vorbereitung

„Inhibition of Arabidopsis manganese superoxide dismutase by peroxynitrite-mediated tyrosine nitration“, Publikation in Vorbereitung