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Abstract: A new method for discretization of Gaussian random fields with on-
ly a small number of random variables in the representation is introduced. The 
method is based on the Karhunen-Loève (KL) expansion, which is optimal 
among series expansion methods with respect to the global mean square trun-
cation error. The resulting integral eigenvalue problem in the KL-expansion is 
discretized using a finite cell (FC) approach; i.e. the domain of computation is 
extended beyond the physical domain up to the boundaries of an embedding 
domain with a primitive geometrical shape. Higher order polynomials are used 
as FC shape functions. The approach is useful for random fields defined on 
domains with complex geometries since it shifts the problem from the mesh 
generation to the integration of discontinuous functions defined over a ficti-
tious domain. A suitable approach for numerical integration is described. The 
presented method is compared to the Expansion Optimal Linear Estimation 
(EOLE) method and to the finite element discretization of the KL-expansion 
with respect to the mean error variance and in terms of computational costs. On 
the one hand, the proposed approach shows an exponential rate of convergence 
in terms of the dimension of the matrix eigenvalue problem to solve for a fixed 
number of random variables. On the other hand, obtaining a solution for the 
random field approximation takes considerably longer than with the EOLE 
method. However, the generation of a realization of the random field represen-
tation with the finite cell approach is computationally more efficient than with 
EOLE. 

1 Introduction 

A stochastic analysis of structures in civil engineering often requires the mod-
eling of input parameters that vary randomly in space (e.g. load distributions 
or material parameters). This type of uncertainty is modeled by means of ran-
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dom fields. A random field represents a random quantity at each point of a 
continuous domain, and, thus, consists of an infinite number of random varia-
bles. For computational purposes, the random field has to be expressed using 
a finite number of random variables. This step is referred to as random field 
discretization.  

The efficiency of a random field discretization method depends on its ability 
to approximate the original random field accurately with a minimum number 
of random variables. Accuracy is to be defined with respect to a certain error 
measure such as the global mean square truncation error. It is advantageous to 
keep the number of random variables in the representation of the random field 
small, since it can have a considerable influence on the computational costs of 
a subsequent stochastic analysis. An example is finite element reliability 
analysis [2] where, for instance, a first-order reliability method (FORM) is 
employed to obtain an estimate of the failure probability of the investigated 
system. Another example is the spectral stochastic finite element method [4]. 
For this method, the size of the problem to solve is a function involving facto-
rials of the input random variables and, thus, the problem size increases dras-
tically with increasing number of random variables. An overview of random 
field discretization methods is given in [9]. 

The Karhunen-Loève (KL) expansion of random fields is optimal in the glob-
al mean square truncation error with respect to the number of random varia-
bles in the representation [5]. However, its analytical solution is available 
only for primitive geometries and for a few selected autocovariance functions. 
For complex-shaped geometries, a finite element based approach can be cho-
sen to approximate the solution of the KL expansion. However, this requires a 
spatial decomposition of the domain.  

The requirements to a good random field mesh are not the same as the re-
quirements to a good mesh of the corresponding mechanical system (see [9]). 
Consequently, two different meshes might be necessary. However, working 
with different meshes is a handicap in writing efficient algorithms for post-
processing the random field (e.g. evaluating the realization of the field at eve-
ry finite element Gauss-point). A possible remedy is to use the elements in the 
FE mesh as a basis for the random field mesh, and to adapt the mesh by either 
refining individual elements or by coalescing different elements. This ap-
proach becomes impractical for two- or three-dimensional problems if the 
physical domain is of complex geometrical shape. This includes domains with 
curved boundaries, domains with holes, and porous media. Therefore, mesh-
less approaches appear to be favorable on complex shaped domains.  
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The Expansion Optimal Linear Estimation (EOLE) method [6] does not re-
quire a mesh; the domain of the field is approximated by a number of points. 
Consequently, the shape of the physical domain is of minor importance, since 
the selection of points can be easily performed on a fictitious domain contain-
ing the actual physical domain, where all points outside of the physical do-
main are neglected. Another meshless approach [7] is to embed the physical 
domain in a larger domain of primitive geometrical shape. The KL expansion 
is then solved for the primitive domain, either analytically or numerically. 
However, the optimality of the KL expansion with respect to the mean square 
truncation error is lost in this approach since the expansion is solved on a do-
main that is larger than the actual physical domain.  

The finite cell (FC) method [8] is a fictitious domain approach, developed as 
an extension of the finite element method. Following this approach, the phys-
ical domain is embedded in elements of primitive geometrical shape. Higher 
order shape functions are of crucial importance for the applicability of the 
method because they yield a fast rate of convergence [8]. The finite cell 
method shifts the problem of complex geometries from the mesh generation 
to the integration.  

In this work, a finite cell like approach is utilized to discretize the spatial do-
main of the random field and, thus, to approximate the solution of the 
Karhunen-Loève expansion numerically. The proposed method inherits the 
efficiency of the KL expansion if the error in the numerical integration is neg-
ligible and if the eigenmodes of the KL expansion can be approximated well 
by the chosen shape functions. The presented method is compared to the 
EOLE method and to the finite element discretization of the KL-expansion. 
The proposed approach shows an exponential rate of convergence with re-
spect to the size of the matrix eigenvalue problem to solve. On the other hand, 
obtaining a solution for the random field approximation takes considerably 
longer than with the EOLE method. However, the generation of a realization 
of the random field representation with the finite cell approach is more effi-
cient in terms of computational cost than with EOLE. 

2 Discretization of random fields 

A continuous random field ),( xH  may be loosely defined as a random func-

tion that describes a random quantity at each point x  of a continuous do-
main dR , 0Nd .   is a coordinate in the sample space  , and 

),,( PF  is a complete probability space. If the random quantity attached to 
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each point x  is a random variable, the random field is said to be univariate or 
real-valued. If the random quantity is a random vector, the field is called mul-
tivariate. The dimension d  of a random field is the dimension of its topologi-
cal space  . One usually distinguishes between a one- and a 
multidimensional random field, the former one is also referred to as random 
process. The field is said to be Gaussian if the distribution of 

)),(,),,(( 1  nHH xx   is jointly Gaussian for any ),,( 1 nxx   and any  

0Nn . It is completely defined by its mean function Rx  :)(  and auto-

covariance function Rxx  :)',(Cov . In the following, we will restrict 

ourselves to continuous univariate multidimensional Gaussian random fields.  

The approximation )(ˆ H  of a continuous random field )(H  by a finite set of 

random variables  Mii ,,1),(   is referred to as random field discretiza-

tion. 

2.1 Error measures 

Different error measures are available to quantify the error resulting from the 
discretization of a random field. For a given outcome  , the truncation error 

)(H  is defined at position x  as the difference between the random field and 

its approximation: 

).,(ˆ),(),(  xxx HHH    (1) 

In the context of this work, we will assume that the mean function of the ap-
proximated random field can be modeled precisely, i.e.    xx    0),(E  H . 

In general, the truncation error can only be evaluated if the exact representa-
tion of the random field is known explicitly. This is usually not the case. In 
the following, an error estimator is introduced which circumvents this prob-
lem. )(x  is known as the error variance and has been commonly used in the 

literature; it is defined as: 
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where )(x  is the standard deviation function of the random field ),( xH . 

Pointwise measures are of little use when making a quantitative assessment of 
the quality of the overall random field approximation. Therefore, the follow-
ing global error norm  , known as the mean error variance, is used here: 
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
 

xx d)(




   (3) 

where  xd . Besides the mean error variance, other global error measures 

haven been used in the literature. For example, in [6] the supremum norm of 
the error variance was used to compare different random field discretization 
methods. It has been noted in [10] that different global error measures might 
favor different discretization methods. In this work, we will only investigate 
convergence with respect to the mean error variance. 

2.2 Karhunen-Loève expansion 

The KL-expansion is a series expansion method for the representation of a 
random field. The expansion is based on the spectral decomposition of the 
covariance function of the field. It states that a random field can be represent-
ed exactly by the following expansion: 







1

)()(),(
i

iiiH  xxx   (4) 

where )(x  is the mean function of the field, i  are independent standard 

normal random variables, and i , )(xi  are the eigenvalues and eigenfunc-

tions of the covariance kernel obtained from solving the integral eigenvalue 
problem: 

)('d)',Cov()( xxxxx iii 


   (5) 

The eigenfunctions are by definition orthonormal, i.e. ijji   xxx d )( )( , 

where ij  is the Kronecker delta. 

2.2.1 Truncated Karhunen-Loève expansion 

The truncated KL-expansion is obtained by arranging the eigenvalues and ei-
genfunctions in a descending series with respect to the magnitude of the ei-
genvalues, and truncating the ordered expansion after M  terms. The truncated 
KL-expansion does no longer represent the random field )(xH  exactly, but 

provides an approximation )(
~

xH  of the field. Hence, the truncated KL-

expansion is a random field discretization method. The discretized random 
field is written as: 
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



M

i
iiiH

1

)()(),(
~  xxx   (6) 

An important property of the truncated KL-expansion is that the global mean 
square error is minimized with respect to any other complete basis of )(2 L  

[5].  

2.2.2 Error variance  

For the truncated KL-expansion, the error variance can be expressed as [9]: 

)(
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1)(
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2.3 Finite element approximation of the KL-expansion 

The KL-expansion involves solving the integral eigenvalue problem given in 
equation 5. Equation 5 can be solved analytically only for a few covariance 
functions and geometries (see [5]). Therefore, for general problems with arbi-
trary geometries and covariance functions, a numerical approach is necessary. 
This involves a spatial discretization of the integral eigenvalue problem. Ob-
viously, this introduces yet another approximation to the representation of the 
random field. The obtained eigenvalues i̂  and eigenfunctions )(ˆ xi  are, 

therefore, approximations to the eigenvalues i  and eigenfunctions )(xi  of 

the analytical solution of the KL-expansion. The approximation of the random 
field can be expressed as: 





M

i
iiiH

1

)(ˆˆ)(),(ˆ  xxx   (8) 

In the finite element approximation of the KL-expansion (in the following 
referred to as FE-KL method), the eigenfunctions are approximated as: 





N

n
in

i
ni Nd

1

T  )()()(ˆ dxNxx   (9) 

where N  is the number of shape functions, )()( 2 LN n x are the global shape 

functions forming a basis in a chosen sub-space of the set of all Lebesgue 
square-integrable functions on  ,  and Ri

nd  are the coordinates of the ith 

eigenfunction in the basis formed by all shape functions. )(T xN  is a vector 

function of x  with elements )(xnN , and id  is a vector containing the coeffi-
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cients i
nd . It is important to note that the eigenfunctions are by definition or-

thonormal and, therefore, the vectors id  have to be scaled appropriately.  

The approximation of the integral eigenvalue problem defined in equation 5 
by means of equation 9 introduces an error term, denoted )(xi

N . The coeffi-

cients of the vectors id  are selected such that the error term )(xi
N  becomes 

orthogonal to the space spanned by the shape functions. A solution to this 
problem is given by the matrix eigenvalue problem: 

iii MdBd ̂   (10)

The coefficients knB  of the matrix B  are defined as: 

 
 


x x

xxxxxx d 'd )',Cov()'( )(
'

nkkn NNB   (11)

The coefficients knM  of the matrix M  are defined as: 





x

xxx d )( )( nkkn NNM   (12)

The error variance of the FE-KL approach can be expressed as [1]: 

)(

' )'(ˆ)',Cov()(ˆ2)(ˆˆ
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  (13)

In case of a constant standard deviation   within the domain of the field, the 
mean error variance reduces to (compare [1]): 








M

i
i

1
2

ˆ1
1 


   (14)

2.4 Finite cell approximation of the KL-expansion 

The finite cell method [8] was developed as an extension to the finite element 
method for the solution of linear elasticity problems. Let dR  be the do-
main of interest and dR*  a geometrically simpler domain with * . 
The geometrically simpler domain *  is called primitive domain, and the 
original domain   is called physical domain. Furthermore, let the shape func-
tions )()( *2*  LN n x  form a basis of a subspace in )( *2 L . We are searching a 

solution of the integral equation defined on  , and approximate it with func-
tions defined on * . 

The spatial decomposition of the problem is performed on the primitive do-
main *  (this is illustrated in figure 1). Since *  is by definition of primitive 
geometrical shape (e.g. a hyperrectangle), the meshing of the domain is a triv-
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In the context of this work, the number of Gauss-points used on the respective 
levels of the tree is decreased with an increasing level. This is contrary to the 
approach presented in [8] and [3], where all sub-cells were integrated with a 
full number of Gauss-points. However, in the cut-cells the function to inte-
grate is discontinuous and, therefore, cannot be approximated well using  
polynomials. Moreover, the influence area of the individual Gauss-points is 
not directly observable and not necessarily accumulated around the corre-
sponding point. 

 

Figure 2. Staggered Gaussian integration: mesh for integration on a cut finite cell. 

Assuming the integration error is small enough, )(x  and   can be comput-

ed according to equation 13 and 14, respectively. 

2.5 EOLE method 

The EOLE method [6] is a series expansion method that is based on an opti-
mal linear estimation using discrete points of the field and carries out a spec-
tral decomposition of the covariance matrix χχΣ  corresponding to these 

points. The coefficients of the covariance matrix are defined as 
   jiij

 ,CovχχΣ  with },2,1{, Nji  , where each i  is a random variable 

associated with a point ix .  

The points ix  are used to discretize the domain   of the random field 

pointwise. Consequently, the domain is represented approximately by a finite 
number of points and no finite element mesh is required. The distribution of 
the points ix  has an influence on the random field approximation, especially 

if the field is approximated by a minimal number of points.  

The random field representation in case of the EOLE method writes: 


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T
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where i  and T
iΦ  are the M  largest eigenvalues and their corresponding ei-

genvectors of the covariance matrix χχΣ , the i  are independent standard 

normal random variables; )(xΣχX  is a vector function whose coefficients are 

defined as    xxxΣχX ,Cov)( jj
  with  Nj ,,2,1  . The EOLE method mini-

mizes the mean square error pointwise given values of the random field at the 
set of points  Nxxx ,,, 21  . For the EOLE method, the error variance can be 

expressed as [6]: 

 

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M

i i

T
i

1

2

2

)(

)(

1
1)(




xΣΦ

x
x χX

  (19)

3 Numerical convergence study 

The convergence behavior of the proposed finite cell approach with respect to 
the mean error variance is investigated by means of a numerical example. The 
random field is modeled for a squared domain with a circular hole in its cen-
ter. The length of a side of the square is four and the diameter of the circular 
hole is two, as shown in figure 3. The Gaussian random field has a constant 
mean value and standard deviation of 31030   and 3106  , respectively.  

 
Figure 3. Domain used for the numerical convergence study. 

Three different types of correlation coefficient functions are considered: 
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The correlation lengths A , B  and C  used in the numerical study were cho-

sen such that the reference mean error variances ref ,  are close to ten percent 

for 100 random variables in the expansion. This reference value is the error 
from the truncation of the KL-expansion and was calculated with a uniform 
10x10 finite cell mesh and a maximum polynomial order of the shape func-
tions of ten. The so obtained reference value was verified with a uniform 
14x14 finite cell mesh and a maximum polynomial order of eight. The applied 
correlation lengths and their corresponding reference mean error variances are  

3325.0A , 08.1B , 725.0C , 099781.0Aref, ,  , 099853.0Bref, ,   and 

09953.0Cref, ,  . The correlation coefficient functions corresponding to the 

chosen correlation lengths are depicted in figure 4. 

 
Figure 4. Plot of the investigated correlation coefficient functions. 

For the convergence study, the following relative error is defined: 

ref ,

ref ,N ,

Nrel,










   (23)

where N ,  is the mean error variance for a given size N of the matrix eigen-

value problem to solve. 

The errors obtained by the finite cell approximation of the KL-expansion 
(FC), the finite element approximation of the KL-expansion using linear 
shape functions (hFEM), and the EOLE method are shown in figure 5. For the 
FC-approach, a uniform 2x2 finite cell mesh is used. The size N of the matrix 
eigenvalue problem to solve  is  increased  by increasing  the  maximum poly- 
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(a) convergence (Type A) (b) convergence (Type B) 

 
(c) convergence (Type C) 

Figure 5. Convergence in the relative error w.r.t. the size of the size of the problem. 

 
Figure 6. Time needed to converge to a certain relative error. (Type A) 
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nomial order of the shape functions. The maximum polynomial order in each 
coordinate direction is the same. For the hFEM-approach, the actual physical 
domain is meshed using four node quadrilateral elements. The problem size N 
is increased by refining the mesh. In case of the EOLE-method, the problem 
size N is equivalent to the total number of points used to discretize the field. 
The points were distributed uniformly over the domain. 

The plots (a), (b) and (c) in figure 5 show the relative error defined in equa-
tion 23 for an increasing size N of the matrix eigenvalue problem to solve. 
The FC-approach shows an exponential rate of convergence for all three types 
of correlation coefficient functions. The convergence rate of the hFEM-
method and the EOLE method is approximately linear in the log-log plots. 
The EOLE-method converges faster than the hFEM-method for the correla-
tion coefficient function of type A. For the correlation coefficient functions of 
type B and C, the hFEM-method converges faster than the EOLE-method.  

Figure 6 shows the time needed for the methods to converge to a certain rela-
tive error for the correlation coefficient function of type A. To obtain a rea-
sonably well converged solution, the FC-approach needs considerably more 
time than the hFEM-method and the EOLE-method. For this particular corre-
lation coefficient function, the EOLE-method solves the problem around one 
order of magnitude faster than the hFEM-method. 

In a next study, the time required to evaluate a realization of the random field 
at a given position x is analyzed. This is of importance when the random field 
is used as input to finite element reliability analysis, because a realization of 
the field has to be evaluated at every finite element Gauss-point. In case of the 
hFEM-approach, the time needed to evaluate a realization of the random field 
at one position x does not depend on the mesh, because the number of shape 
functions per element remains constant. Consequently, it remains constant 
with increasing N. This time is denoted hFEMt  in the following. On the other 

hand, the time needed to obtain a realization depends in case of the FC-
approach on the maximum polynomial degree of the shape functions, and for 
the EOLE-method on the number of points used to discretize the domain. 

In the log-log plot depicted in figure 7, the time needed to obtain a realization 
of the random field is weighted by hFEMt  and plotted in terms of the relative 

error defined in equation 23. A correlation coefficient function of type A was 
employed to generate the plot. It is shown that a realization of the random 
field can be computed several times faster with the FC-approach than with the 
EOLE-method.  
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Figure 7. Time needed to compute a realization of the random field. Comparison between 
FC-approach and EOLE-method. Time is given relative to the time needed with the hFEM-
method. 

4 Summary and Conclusion 

The proposed FC-approach exhibits an exponential rate of convergence with 
respect to the mean error variance. However, it is relatively expensive to 
compute a random field approximation. This effect will be even more severe 
for three-dimensional problems. On the other hand, compared to the EOLE- 
method, the proposed approach is computationally very efficient in obtaining 
a random field realization. This is advantageous, if many realizations of the 
random field have to be generated. 

Compared to the hFEM method, the proposed approach is computationally 
more expensive in obtaining a random field realization. Therefore, for do-
mains which are meshed with a linear finite element mesh that is fine enough 
to represent the correlation structure of the random field reasonably well, the 
hFEM-method is to be preferred. However, the FC-approach is useful for 
problems that do not require a mesh on the physical domain, e.g. meshless 
approaches or FC methods. 
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