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Chapter 1

Introduction

The fundamental physics of atoms, ions, and molecules is essentially governed by the
underlying electrostatic interactions. These are responsible for the existence of stable
atoms as well as for the characteristics of quantization and scattering phenomena on
microscopic and mesoscopic scales.

Nature’s simplest two-body system is constituted by the hydrogen atom, which is a
substantial component of macroscopic matter. The quantization of its binding energy was
partially described by the empirical Balmer formula [1] already in 1885 and can correctly
be derived either from the Bohr model or from quantum mechanics by explicitly solving
the Schrödinger equation [2]. The attractive Coulomb potential −C/r is responsible for
the binding of the negatively charged electron to the positively charged proton, i.e., the
formation of atomic hydrogen. The same concept holds for more complex atoms that
consist of a nucleus of charge number Z, with Z electrons attached to it.

Understanding the formation of microscopic matter was promoted significantly by the
famous gold foil experiment [3], which was performed by the group of Ernest Rutherford
in 1909. They were able to identify the Coulombic force of the atomic nuclei to be respon-
sible for the characteristic deflection pattern of α-particles that are scattered by a thin
gold foil. The famous Rutherford cross section for Coulombic scattering can theoretically
be reproduced under the assumption of heavy atomic nuclei of charge number Z. The
establishment of a rigorous quantum mechanical scattering theory for Coulombic poten-
tials has certainly been pushed by its prominence in atomic physics. The result for the
Rutherford cross section was first obtained from classical calculations which accidentally
give the same result that is obtained from fully quantum mechanical calculations (see,
e.g., Ref. [4]). The transition from a discrete set of bound states to a continuum of scat-
tering states around the dissociation threshold in the presence of an attractive Coulombic
potential tail is perfectly described within the framework of quantum defect theory [5, 6].

While the long-range Coulomb force governs the interaction between charged particles,
the interaction between two compound particles in the absence of net charges is, in general,
more complicated. Interatomic potentials have a characteristic long-range behavior that
is essentially described by van der Waals or London dispersion forces [7, 8] (in case that
relativistic retardation effects [9] are not considered). These play a predominant role when
the polarizabilities of the interacting partners are large, as is generally the case for atoms
or molecules. The long-range interaction energy between atomic partners can in general
be given in terms of a multipole expansion [10]. The interaction of the 2nA-pole moment

9



10 1. Introduction

of particle A with the 2nB -pole moment of particle B contributes to the total interaction
energy with a term proportional to r−n, with n = nA +nB + 1 [11]. While this holds true
for permanent polarizations, the induced polarizations contribute with a term proportional
to r−2n, according to second-order perturbation theory [12].

In contrast to Coulombic tails, these tail potentials do not support any physically
meaningful stationary solutions with vanishing flux density by themselves. In order to
support an elastic scattering process, the full interaction potential thus needs to deviate
from the singular form of its tail at small distances. In the short-range region the inter-
action potential is repulsive. In contrast to the tail part of the potential, its actual form
remains unknown in general. The bound-state spectra of these kinds of interaction po-
tentials also differ strongly from those of potentials with Coulombic tails; potentials that
vanish faster than −1/r2 asymptotically do not provide a Rydberg series of infinitly many
bound states, but support only a finite number of bound states of which the least bound,
in general, has a finite binding energy [4]. The quantization condition is then given by
nth − n = F (En), where F (E) is referred to as the quantization function [13] and nth is
the finite and generally noninteger threshold quantum number. The first but deficient ap-
proach to the correct form of the quantization function was given by the near-dissociation

expansion of LeRoy, Bernstein [14] and Stwalley [15].

In recent years, interatomic collisions in the low-energy regime have encountered a
sustained interest since their understanding is crucial for the creation and manipulation of
ultracold atomic samples that lay the foundation for a multitude of studies reaching from
Bose-Einstein condensation [16, 17] to atom lasers [18, 19], quantum simulators [20, 21],
and reams of further discoveries and applications such as controlled ultracold chemistry
[22, 23]. The physics of a trapped atomic quantum gas is crucially influenced by the funda-
mental two-body collisions between ground-state atoms in the ultracold regime. These ef-
fective interactions are mediated by the scattering length of the interaction potential which
is −C6/r

6 at long-range (induced dipole-dipole interaction). Properties of the quantum
gas may be manipulated by tuning the scattering length via magnetic or optical Feshbach
resonances [24–26].

The development of a rigorous scattering theory for actual short-range potentials (see,
e.g., Ref. [27–29]) was promoted by its applicability to scattering processes in nuclear
physics. Many concepts of the established theoretical framework for potential scattering
have been developed in this context. In 1947, Fermi and Marshall proposed the existence
of a scattering length to describe interference phenomena of slow neutrons [30] in the limit
of low collision energies. Later on, in 1949, Blatt and Jackson as well as Hans Bethe
applied the effective-range theory, which was originally developed by Julian Schwinger
[31], to nuclear scattering processes [32, 33].

Various studies have tried to overcome the difficulties that arise due to the lack of
physical reference wave functions for potentials that fall off faster than 1/r2 asymptotically
and are more singular than−1/r2 at the origin. The first comprehensive study of scattering
by a potential from this particular class was given by O’Malley, Spruch and Rosenberg [34,
35], who noticed the breakdown of the effective-range expansion for polarization induced
potentials that have attractive tails given by −C4/r

4, and presented a modified expansion
with adjusted scattering parameters. For general inverse-power potentials −Cα/r

α, with
α > 2, the leading-order terms of the expansion of the scattering phase shift were predicted
by Levy and Keller in 1963 [36]. An exhaustive number of recent studies (see Ref. [37] and
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references therein) exists which abuse the term quantum defect theory for their description
of collisional and bound-state properties of potentials with tails more singular than −1/r2;
the absence of defect-free physics, however, reduces the concept of a quantum defect to
absurdity. Nonetheless, their results are scientifically sound and have a wide range of
applicability [38, 39].

The present work deals with quantization and scattering in the presence of such long-
range interactions that can be described by an attractive tail potential Vtail(r) that falls
off faster than −1/r2 in the limit of large distances and is more singular than −1/r2 at
the origin. These potential tails occur whenever one of the colliding partners has zero net
charge. The topic of this thesis is essentially inspired by an idea that was first formulated
by Gribakin and Flambaum [40], who presented a parametrization of the scattering length
for potentials with inverse-power tails and suggested the possibility of finding a general
parametrization of the scattering phase shift. Against the background of previous works
[13, 41–43] that explicitly give correct quantization functions for this certain class of po-
tentials, this work shows, how — in the presence of singular attractive potential tails —
the bound-state spectra and the scattering properties are interdependent. A theoretical
framework is presented, which unifies previous approaches [13–15, 37, 40–42, 44] to scat-
tering and quantization in the presence of attractive potential tails that are more singular
than −1/r2. This is achieved via a strict separation of the effects that are due to the nature
of the long-range potential tail Vtail(r) from those effects that are due to the short-range
deviations of the full potential from the singular form of its tail.

Structure of the Present Thesis

The present thesis is organized as follows. Chapter 2 gives an overview of the theoretical
framework that is used in the present work. The concepts of scattering theory are presented
and the cross section for elastic scattering is derived; its connection to the scattering phase
shift is established. The WKB approximation is introduced, which provides analytical
accessibility of the wave function, whenever the criterion for its applicability is fulfilled.
The corresponding semiclassical wave function in the presence of classical turning points
is discussed.

In Chapter 3, the main concepts of the present thesis are developed. We identify
the tail part of the interaction potential which is subject to the description within the
framework of the WKB approximation. A convenient parametrization of the short-range
wave function is given, which provides a physically meaningful boundary condition for the
singular attractive potential tail that is used as a reference potential in order to reproduce
the long-range physics of the full interaction potential.

For energies below the dissociation threshold, the influence of the short-range part of
the potential enters the quantization rule via the threshold quantum number nth. The
influence of a tail potential that vanishes faster than −1/r2 asymptotically and is more
singular than −1/r2 at the origin is expressed in the quantization function. For energies
above the dissociation threshold, a parametrization of the s-wave phase shift is presented
that depends on the noninteger remainder ∆th of the threshold quantum number nth and
the properties of the tail potential. A connection to the properties of quantum reflection
is established, so that the scattering phase shift is expressed in terms of the physically
tangible properties of the tail potential. Threshold laws are given both for quantization
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and elastic scattering.
In Chapter 4, the formalism presented in Chapter 3 is applied to the particular class

of inverse-power tail potentials which play a major role in the interaction of atoms and
molecules with each other and with ions. An explicit expression for the quantization
function is presented for the particular case of a −1/r3 tail potential. The tail functions
that enter the formula for the scattering phase shift are derived for the class of inverse-
power tails. These are explicitly presented for reference potentials −1/rα with integer
values of α from three to six. The particularities of the threshold laws for elastic s-wave
scattering for different values of α are thoroughly discussed; especially for the case of an
inverse-cube tail potential, for which a finite scattering length does not exist.

Chapter 5 demonstrates the applicability of the formalism derived in the preceding
chapters to specific interaction potentials. The progression of near-threshold bound states
of the sodium dimer in particular electronic states is analyzed (Section 5.1) with the help of
the quantization function for inverse-cube tails. The advantages over the purely semiclas-
sical LeRoy-Bernstein quantization rule are exposed. Two different types of Lennard-Jones
potentials are analyzed with respect to the influence of the inverse-power tail potential on
the asymptotics of the wave function. The interdependence of the bound-state spectra and
the scattering properties is demonstrated by revealing the parameters that determine the
short-range wave function. For the case of an inverse-cube tail potential, the threshold law
for elastic scattering is verified. A strict separation of the effects due to the long-range tail
of the interaction is also achieved in the presence of a tail potential that is a superposition
of a −1/r4 term and a −1/r6 term. For a certain model potential the scattering phase
shift is analyzed from this point of view.

Chapter 6 summarizes the methods and results of the present thesis. The prospects of
further application are discussed in the context of atomic and molecular physics.



Chapter 2

Theoretical Framework

In this chapter, the general framework for quantization and scattering in the presence of
spherically symmetric two-body interaction potentials is presented. A general overview of
the concepts of scattering theory including the description of bound states is given. We
introduce a modified version of the WKB approximation that provides analytical access
to the wave function, which characterizes the corresponding two-body physics.

2.1 Scattering and Quantization

The well-established scattering theory for binary collisions (see, e.g., Refs. [27–29, 45–47])
is presented. Starting from the Hamiltonian of the reduced two-body system, the concept
of partial wave analysis is introduced, that provides an explicit method for calculating
the cross sections for elastic scattering and offers a simple picture for understanding the
existence of a discrete set of normalizable bound states, i.e., quantization.

2.1.1 Schrödinger equation and partial wave analysis

The nonrelativistic time evolution of a quantum state is governed by the Schrödinger

equation [2], which is

i~
∂

∂t
Ψ(r, t) = Ĥ(r, t)Ψ(r, t) (2.1)

in coordinate representation. The Hamiltonian Ĥ that characterizes the relative motion
of a two-particle system with reduced mass µ is given by

Ĥ =

(

− ~
2

2µ
∆ + V (r, t)

)

, (2.2)

where V (r, t) is the interaction energy, which depends on the relative position vector r
between the two particles, and could in general be time-dependent. For our purposes the
interaction potential V (r, t) ≡ V (r) is assumed not to depend on time, which allows us
to use the separation ansatz Ψ(r, t) = ψ(r) · f(t) that gives f(t) = exp (−iEt/~) for the
time-dependent part and the stationary Schrödinger equation

(

− ~
2

2µ
∆ + V (r)

)

ψ(r) = E ψ(r) (2.3)

13



14 2. Theoretical Framework

for the wave function ψ(r) that depends on the spatial coordinates. The energy value
E is the eigenvalue of the Hamiltonian (2.2) and therefore the amount of energy that is
associated with the relative motion of the two particles.

The explicit time dependence of the Schrödinger equation is thereby eliminated in
Eq. (2.3). However, the stationary Schrödinger equation (2.3) is still a partial differential
equation including all three spatial coordinates. Finding solutions to this kind of equation
is a highly nontrivial problem; but it can, under given circumstances, be further simplified.

For typical interatomic two-body potentials — as considered in this work — the poten-
tial energy V (r) ≡ V (r) usually depends only on the internuclear separation r = |r| and
not on the orientation of the two colliding particles. In this case the rotational invariance
gives rise to further separability of the system. The spherical symmetry naturally leads
to the ansatz

ψ(r) =
ul(r)

r
Yl,m(θ, φ) , (2.4)

where the Yl,m(θ, φ) are the spherical harmonics that are the eigenstates of the angular

momentum operators L̂2 and Lz to the eigenvalues l(l + 1)~2 and m~ respectively. With
the Laplacian given in spherical coordinates

∆ =
∂2

∂r2
+

2

r

∂

∂r
− L̂2

r2~2
(2.5)

we arrive at the radial Schrödinger equation

(

− ~
2

2µ

d2

dr2
+
l(l + 1)~2

2µr2
+ V (r)

)

ul(r) = E ul(r) , (2.6)

which is an ordinary second-order differential equation for any angular momentum quan-
tum number l. It has the same form as the full stationary Schrödinger equation for a
one-dimensional system with the effective potential

Veff(r) =
l(l + 1)~2

2µr2
+ V (r) (2.7)

in each partial wave. Equation (2.6) can easily be solved — at least numerically — for a
given boundary condition. For a particular potential V (r), the radial Schrödinger equation
(2.6) might also be solvable with analytical methods. These cases are, however, very rare.

When the Laplacian (2.5) is applied to the 1/r term in the wave function (2.4), an
additional term proportional to δ(r)/r is obtained in the radial Schrödinger equation (2.6),
which is in contrast to its one dimensional analog. The existence of that term requires
any physically meaningful radial wave function to be zero at the origin.1 The radial wave
function ureg

l (r) that solves Eq. (2.6) and fulfills

1For the cases studied in this work, this discussion is in principle unnecessary for our purposes, since
normalizability already requires relation (2.8) to be fulfilled for the solutions of (2.6) in typical interatomic
potentials that have a singular repulsive core.
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lim
r→0

ureg
l (r)

r
= const , |const| <∞ (2.8)

is referred to as the regular solution to the radial Schrödinger equation (2.6). Solutions to
(2.6) other than the regular solution are referred to as irregular solutions.

Equation (2.8) fixes the boundary condition on the inner side of the interaction region.
Depending on the peculiarities of the interaction potential V (r) and the energy E, these
solutions might be subject to further constraints that lead to normalizable solutions only
for a discrete set of energies, i.e., quantization.

The interaction energy usually vanishes in the limit of large internuclear separations.
In that case the regular solutions for energies above the potential threshold at E = 0
form a continuum of states and describe the free-particle motion at large distances. This
enables the formulation of a scattering process. Interaction potentials that do not allow
for the unambiguous identification of the regular solution (2.8) can neither provide for the
existence of a spectrum of normalizable bound states, nor do they support a purely elastic
scattering process.

2.1.2 Cross sections and the scattering wave function

The main purpose of scattering theory is the calculation of cross sections that contain all
the information relevant for the description of a scattering process.

For a spherically symmetric, local interaction potential that vanishes faster than 1/r2

asymptotically, a solution to the stationary Schrödinger equation (2.3) for asymptotically
free motion in three spatial dimensions can be chosen to fulfill

ψ(r)
r→∞∼ eikz + f(θ)

eikr

r
, (2.9)

i.e., the wave function can — at large distance from the center of the interaction poten-
tial — be split up into an incident plane wave traveling in positive z-direction and an
outgoing spherical, scattered wave that is modulated by the scattering amplitude f(θ).
All information about the scattering process inside of the interaction region is contained
in this complex amplitude. In Eq. (2.9) the quantity k =

√
2µE/~ is the wave number

associated with the asymptotically free motion. Given that the interaction potential is
spherically symmetric, the wave function ψ(r) obeys a cylindrical symmetry around the
incident beam axis and the scattering amplitude f(θ) defined in Eq. (2.9) depends only
on the polar scattering angle θ, rather than on the full solid angle Ω, which additionally
contains the azimuth angle.

The outgoing flux passing through a surface segment dA = r2dΩ (r/r) that is suffi-
ciently far off the scattering center at the polar angle θ can be determined using only the
second term in Eq. (2.9)2

joutdA =
~

2iµ
(ψ∗∇ψ − ψ∇ψ∗) dA =

~k

µ
|f(θ)|2 dΩ , (2.10)

2In fact, interference terms exist. These need to be regarded for the rigorous derivation of the Optical

Theorem σ = 4π/k Im[f(θ = 0)] (see, e.g., Ref. [45]).
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while the incident flux density is — considering only the first term in Eq. (2.9) — given
by ~k/µ. The differential cross section is defined as

dσ

dΩ
=

scattered flux per unit solid angle

incident flux per unit area
. (2.11)

For the scattering process that is described by the wave function defined in Eq. (2.9), this
yields

dσ

dΩ
= |f(θ)|2 . (2.12)

To actually determine the scattering amplitude and thereby also the physically relevant
cross sections, the scattering wave function can — very similar to Eq. (2.4) of the previous
section — be expanded in the complete set of eigenfunctions of the operator L̂2, which
are now given by the Legendre polynomials Pl(cos θ)

ψ(r) =
∞∑

l=0

Bl
ul(r)

r
Pl(cos θ) , (2.13)

with the energy-dependent coefficients Bl chosen such that Eq. (2.9) is fulfilled. Insert-
ing this form into the stationary Schrödinger equation (2.3), multiplying the result with
Pl′(cos θ) and integrating over the polar angle, we find that each of the ul(r) is required
to fulfill the radial Schrödinger equation (2.6) as given in the previous section.

The regular and an irregular solution to the potential-free radial Schrödinger equation

(

− ~
2

2µ

d2

dr2
+
l(l + 1)~2

2µr2

)

vl(r) = E vl(r) (2.14)

that describe the free relative motion, are given by

v
(s)
l (r) = kr jl(kr)

r→∞∼ sin (kr − lπ/2) (2.15)

and

v
(c)
l (r) = −kr nl(kr)

r→∞∼ cos (kr − lπ/2) (2.16)

for each value of l, where the jl(x) are the spherical Bessel function of lth order and
the nl(x) are the corresponding spherical Neumann functions (see, e.g., Refs. [4, 48]).
Therefore, the regular solution to the radial Schrödinger equation with an interaction
potential vanishing faster than 1/r2 asymptotically can — in the limit of large distances
— be written as a linear combination of the two solutions (2.15) and (2.16)

ureg
l (r)

r→∞∼ cos δl kr jl(kr)− sin δl kr nl(kr) . (2.17)

We can choose this specific normalization of the regular solution without any loss of
generality, since the coefficients Bl in Eq. (2.13) are still to be determined. In the limit
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of even larger distances where the influence of the centrifugal potential is also negligible,
the regular solution can — according to Eqs. (2.15) and (2.16) — be written as

ureg
l (r)

r→∞∼ sin (kr − lπ/2 + δl) . (2.18)

Due to the asymptotic form (2.18) of the regular solution, the quantity δl is referred to as
the energy-dependent scattering phase shift in the lth partial wave.

By comparing the partial wave expansion (2.13) to the scattering wave function (2.9)
in an expanded form, i.e., substituting the relations

eikz =
∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ) (2.19)

and

f(θ) =
∞∑

l=0

flPl(cos θ) , (2.20)

with the partial wave amplitudes fl, expressions for the corresponding expansion coeffi-
cients are found. By comparing only the coefficients of the incoming parts of the wave
functions, we obtain

Bl =
1

k
(2l + 1)ileiδl . (2.21)

Using this identity, we find

fl =
1

2ik
(2l + 1)

(

e2iδl − 1
)

=
1

k
(2l + 1)eiδl sin δl (2.22)

for the partial wave amplitudes from comparing only the outgoing parts of the wave
function. We can now establish a relation between the scattering amplitude and the
partial wave phase shifts just by inserting into Eq. (2.20)

f(θ) =
∞∑

l=0

1

2ik
(2l + 1)

(

e2iδl − 1
)

Pl(cos θ) , (2.23)

which can immediately be used to calculate the differential cross section via relation (2.12).
The total energy-dependent cross section can be given by integrating the expression (2.12)
over the full solid angle

σ =

∫ 2π

0
dφ

∫ π

0
sin θdθ |f(θ)|2 = 2π

∫ π

0
sin θdθ |f(θ)|2 . (2.24)

With the orthogonality relation of the Legendre polynomials [48], the expression (2.24)
can easily be evaluated

σ =
∞∑

l=0

σl =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl , (2.25)
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defining the partial cross sections σl = 4π/k2(2l + 1) sin2 δl.

In order to obtain all information about the scattering process, it is thus sufficient to
determine the phase shift in each partial wave. However, this in principle requires the
accurate knowledge of the interaction potential V (r) in all of coordinate space, i.e., both
at large and at small distances.

For potentials falling off faster than 1/r2 the phase shift vanishes in the limit of large l,
when the centrifugal term dominates the effective potential (2.7). This defines a termina-
tion criterion for the summation in Eq. (2.25). The number of partial waves contributing
to the total cross section increases, the higher the collision energy.

2.2 The WKB approximation

In the present section, we focus on the derivation of the semiclassical wave function in the
framework of the Wentzel-Kramers-Brillouin (WKB) approximation [49–51]. This method
was originally formulated by Jeffreys [52] as a general approximation for solutions to
ordinary second-order differential equations before the Schrödinger equation was originally
stated [2]. It offers a convenient parametrization of the exact wave function in regions of
coordinate space where the criterion for its applicability is well fulfilled.

2.2.1 The semiclassical wave function

We start from the radial Schrödinger equation (2.6) rewritten as

(

d2

dr2
+

2µ

~2
[E − Veff(r)]

)

u(r) = 0 . (2.26)

For the solutions of this equation, we formulate the ansatz

u(r) = exp

(
i

~
S(r)

)

, (2.27)

which immediately leads to the differential equation

S′(r)2 − i~S′′(r) = p(r)2 (2.28)

for the quantity S(r), which has the dimension of an action. The local classical momentum

p(r) is given by

p(r) =
√

2µ [E − Veff(r)] . (2.29)

We are not appending the index l to the occurring quantities, but one should keep in mind
that the present formalism is valid for both zero and for nonzero angular momentum.

Equation (2.28) is still exact; it can be considered a one-dimensional Hamilton-Jacobi
equation [53] for the quantum mechanical action S(r) and could have been an alternative
starting point of our considerations.

Expanding the quantum mechanical action in orders of ~/i

S(r) = S0(r) +
~

i
S1(r) +

(
~

i

)2

S2(r) + · · · (2.30)
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is particularly convenient in the case that characteristic actions of the system are very large
compared to the reduced Planck constant ~. Inserting this expansion into the Hamilton-
Jacobi equation (2.28) yields

p(r)2 − (S′
0

)2
+ i~

(

S′′
0 + 2S′

0S
′
1

)

+ ~
2
(

S′′
1 + 2S′

0S
′
2 +

(

S′
1

)2
)

+ · · · = 0 . (2.31)

This differential equation can be solved for all orders of ~ sequentially. For the zeroth-order
terms in ~, we find

S′
0(r) = ±p(r) ⇒ S0(r) = ±

∫

p(r)dr . (2.32)

With this result, the differential equation for the first-order terms in Eq. (2.31) is

S1(r)′ = − S′′
0 (r)

2S′
0(r)

= − p
′(r)

2p(r)
. (2.33)

The solution for S1(r) can thus be given by

S1(r) = −1

2
ln p(r) . (2.34)

While, in principle, more terms of the expansion (2.30) could be taken into account,
considering only the contributions S0(r) and S1(r) in that expansion yields a very simple
form of a possible approximate solution to the radial Schrödinger equation (2.26)

uWKB(r) =
C1

√

p(r)
exp

(
i

~

∫ r

r0

p(r′)dr′

)

+
C2

√

p(r)
exp

(

− i
~

∫ r

r0

p(r′)dr′

)

. (2.35)

The reference point r0 can, in principle, be chosen at an arbitrary distance. The coefficients
C1, C2 can be chosen such that the wave function fulfills a desired boundary conditions.

2.2.2 Conditions of validity

While it is obvious, that the WKB wave function will be a good approximation to an
exact solution of the radial Schrödinger equation in the semiclassical limit, i.e., when ~

becomes very small compared to the typical actions of the considered system, one rather
wants to have a more sophisticated measure of the quality of the WKB approximation. A
reliable criterion for the validity of the WKB approximation can be found by comparing
the relation

u′′
WKB

(r) +
p(r)2

~2
uWKB(r)−

(

3

4

p′(r)2

p(r)2
− p′′(r)

2p(r)

)

uWKB(r) = 0 (2.36)

obtained by explicit evaluation of the second derivative of the WKB wave function (2.35) to
the original Schrödinger equation (2.26). Relation (2.36) resembles the original Schrödinger
equation whenever the third term on the left-hand side can be neglected in comparison
to the second term; the wave function uWKB(r) will then be a good approximation to the
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exact solution u(r). We define the dimensionless quantality function by the ratio of both
terms

QE(r) = ~
2

(

3

4

p′(r)2

p(r)4
− p′′(r)

2p(r)3

)

. (2.37)

Whenever the absolute value of the quantality function (2.37) becomes very small com-
pared to unity

|QE(r)| ≪ 1 , (2.38)

the exact wave function can, with good accuracy, be described by a WKB wave (cf.
Ref. [54]). It becomes obvious that the accuracy of the WKB approximation is a local
property of the Schrödinger equation. To emphasize that the quantality function also
depends on the system’s energy, the index E is attached to its primary definition (2.37).
In a given potential we can now — depending on the system’s energy — identify spatial
regions of WKB validity via the criterion (2.38).

2.2.3 Presence of classical turning points

One particular weakness of the WKB approximation is its breakdown in the vicinity of
classical turning points. Having a closer look at the WKB wave function (2.35), one finds
that the amplitude, which is proportional to the inverse square root of the local classical
momentum, diverges at a classical turning point rctp where p(rctp) = 0, while the exact
wave function just has an inflection point u′′(rctp) = 0 according to Eq. (2.26). The
root of the local classical momentum is also reflected by the divergence of the quantality
function (2.37) at rctp. This circumstance complicates the procedure of connecting the
wave functions from different spatial regions that are separated by a classical turning
point.

One classical turning point and the connection problem

The existence of one classical turning point distinguishes two regions in coordinate space.
One is the classically allowed region, where the curvature of the quantum mechanical wave
function has a sign opposite to that of the wave function itself, which reflects the fact that
p(r)2 > 0, and leads to the typical oscillatory behavior of the wave function. The other is
the classically forbidden region, where the wave function’s curvature has the same sign as
the wave function itself. Therefore, the wave function is required to tend to zero in this
region to prevent the probability density from diverging.

Consider two distinct regions of WKB validity separated by a quantal region around
one classical turning point. In the classically forbidden region the local classical momen-
tum, as defined in Eq. (2.29), is purely imaginary. Inserting this local classical momentum
into the expression (2.35) for the wave function in the classically forbidden region of WKB
validity gives

uWKB(r) ∝ 1
√

|p(r)| exp

(

−1

~

∣
∣
∣
∣
∣

∫ r

rctp

p(r′)dr′

∣
∣
∣
∣
∣

)

, (2.39)

which is the real-valued solution that vanishes in the classically forbidden region. Choosing
the classical turning point rctp as point of reference is very convenient in order not to obtain
an additional phase factor that is just due to the change of sign of p2(r).
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In the classically allowed region, where the local classical momentum p(r) is real-
valued, the two contributions to the WKB wave function in Eq. (2.35) can be identified
with inward and outward traveling waves. This identification offers the possibility of
describing a reflection process, which is — in this case — characterized by a complex
reflection amplitude exp(iφ) with an absolute value of unity. The WKB wave function in
the classically allowed region, related to the classical turning point, can then be given by
the real-valued expression

uWKB(r) ∝ 1
√

p(r)
cos

(

1

~

∣
∣
∣
∣
∣

∫ r

rctp

p(r′)dr′

∣
∣
∣
∣
∣
− φ

2

)

. (2.40)

This wave function oscillates with a position-dependent wave number p(r)/~. The reflec-
tion phase φ can be considered to be the phase loss due to the wave function penetrating
the classically forbidden region.

Whenever there are two distinct regions of WKB validity separated by a quantal region
around one classical turning point, we need to fix the normalization constant N and the
phase φ of the WKB wave function (2.40) in the classically allowed region of coordinate
space, so that it matches the physical solution of the Schrödinger equation. This is referred
to as the connection problem and can in general be formulated as

1
√

|p(r)| exp

(

−1

~

∣
∣
∣
∣
∣

∫ r

rctp

p(r′)dr′

∣
∣
∣
∣
∣

)

↔ N
√

p(r)
cos

(

1

~

∣
∣
∣
∣
∣

∫ r

rctp

p(r′)dr′

∣
∣
∣
∣
∣
− φ

2

)

. (2.41)

In early works that deal with the WKB approximation, the connection problem is
commonly solved for the particular case of a linear potential. In that case, there are exact
solutions to the quasi one-dimensional Schrödinger equation that can be given in terms
of Airy functions (cf. Ref. [55]) and the connection problem can be solved by comparing
to the exact solution that is proportional to the Airy function Ai and vanishes in the
classically forbidden region. This gives

φ ≡ π

2
and N ≡ 2 . (2.42)

This is considered to be the semiclassical value for the reflection phase, because it particu-
larly applies when the semiclassical limit is achieved locally, i.e., when there is an interval
Ictp symmetric around the classical turning point with | ∫

Ictp
p(r)dr| ≫ ~π, small enough,

so that the potential can still be assumed to be linear V (r) ≈ V (rctp) + V ′(rctp)(r − rctp)
for all r ∈ Ictp. This formulation is essentially equivalent to connecting the solutions
(2.40) and (2.39) on a path around rctp in the complex plane [53, 55, 56], which also gives
the result of Eq. (2.42).

It is obvious that this condition is by no means well fulfilled in general cases. In general
problems we can assume the reflection phase to be a function of the energy φ = φ(E). This
generalization of the conventional WKB theory has been developed in Refs. [57, 58] and
can be adapted for the theoretical treatment of various problems in quantum mechanics
(see Ref. [54]).
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Two classical turning points and quantization

The appropriate choice of the reflection phase fixes the correct boundary condition for the
wave function (2.40) in the classically allowed region of WKB validity. This becomes cru-
cial in case that there are two classical turning points rin(E) < rout(E) that separate such
a region from two classically forbidden regions at r < rin(E) and r > rout(E) respectively.
In this constellation we expect a discrete set of physically allowed energies En at which the
corresponding exact wave functions can appropriately be normalized. The normalizability
is ensured when the wave function can be described by the WKB wave function (2.39)
in the classically forbidden regions. From this requirement the phase losses φin(E) and
φout(E) can be determined by solving the connection problem at both classical turning
points. With these phases, the wave function in the classically allowed region of WKB
validity can — according to Eq. (2.40) — be given in either of the following two forms

uin(r) ∝ 1
√

p(r)
cos

(

1

~

∫ r

rin(E)
pE(r′) dr′ − φin(E)

2

)

, (2.43)

uout(r) ∝
1

√

p(r)
cos

(

1

~

∫ rout(E)

r
pE(r′) dr′ − φout(E)

2

)

. (2.44)

The index E is assigned to the local classical momentum to emphasize its dependence on
the energy, according to Eq. (2.29). Equation (2.43) relates the wave function to the inner
classical turning point rin(E), while Eq. (2.44) gives the wave function with reference to
the outer classical turning point rout(E).

In the region of WKB validity, the wave functions (2.43) and (2.44) need to be identical
except for a factor of −1, which is essentially equivalent to requiring the arguments of the
cosine functions to differ exactly by an integer multiple of π. This leads to the condition

1

~

∫ rout(En)

rin(En)
pEn(r) dr = nπ +

φin(En)

2
+
φout(En)

2
, (2.45)

which is only fulfilled for a discrete set of energies En. This condition for the energy eigen-
values of the hamiltonian can be regarded as a generalized form of the Bohr-Sommerfeld

quantization rule (cf. Ref. [53]). With the convention chosen in (2.45), the energy of the
ground state is referred to as E0. The existence of an ever so small region of WKB validity
characterized by the criterion (2.38) in between the two classical turning points enables
the determination of the reflection phases φin(E) and φout(E) [54, 58, 59], with which the
quantization condition (2.45) is exact.



Chapter 3

Tail-based formulation of
quantization and scattering

A formulation of quantization (E < 0) and scattering (E > 0) is derived, which is appli-
cable to potentials V (r) that have attractive tails Vtail(r) that vanish to E = 0 faster than
1/r2 at large distances and are more singular than −1/r2 at short distances. For many
physically relevant systems, the tail part of the interaction potential is well-known, while
its short-range part remains unknown in general.

The modified WKB approximation is used in order to offer a convenient parametriza-
tion of the short-range effects. This parametrization provides a boundary condition for the
solutions in the reference potential Vtail(r), reproducing the correct long-range behavior of
the corresponding exact solution as obtained with the full interaction potential V (r). For
near-threshold energies, both the quantization and the scattering properties can thus be
derived solely from the tail potential with only one or few short-range parameters reflecting
the deviation of the full potential from the singular form of its tail at short distances.

We particularly focus on the case of s waves, but point out that the framework pre-
sented is very general in principle and can be applied to higher partial waves without
any major restrictions. Parts of the results presented in this chapter have already been
published (Refs. [60, 61]).

3.1 Representation of the regular solution

in the short-range region

The regular solution to the radial Schrödinger equation (2.6) in the short-range region of
a given potential should be insensitive to the actual position of the dissociation threshold;
its appropriate representation is the key to the description of scattering and quantization
phenomena on the same footing.

We consider the case of interaction potentials V (r) that have attractive tails Vtail(r)
that are more singular than −1/r2 at the origin and vanish faster than 1/r2 asymptotically.
For a potential that is more singular than −1/r2 at the origin, the WKB approximation
becomes increasingly accurate for decreasing r and is actually exact in the limit r → 0
(see, e.g., Refs. [4, 54]). This kind of potential does not provide for the unambiguous iden-
tification of a regular solution (2.8) by itself; full interaction potentials are thus assumed

23
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Figure 3.1: Typical form of interaction potentials considered in the present work. The solid line
represents the full potential V (r), while the dashed line follows its attractive tail Vtail(r), which
vanishes faster than 1/r2 at large distances and is more singular than −1/r2 at the origin. The
full potential deviates from the singular form of its tail only at short distances. The shaded area
indicates the inner region where the WKB approximation is valid. For near-threshold energies this
region extends to distances where the full potential is well described by its tail.

to deviate from the singular form of the corresponding singular tail potential Vtail(r) at
short distances. In the case that the tail potential Vtail(r) dominates the full interaction
potential down to distances that are small compared to its characteristic length scales, the
full interaction potential V (r) is deep and a region of WKB validity exists, in which the
solutions of the Schrödinger equation can be expressed as real-valued WKB wave functions
and the full potential can still safely be approximated by its tail.

Figure 3.1 shows a typical interaction potential that is considered in this work (solid
line) together with its tail (dashed line), which fulfills the preconditions for the present
treatment, i.e., it vanishes faster than 1/r2 asymptotically and it is more singular than
−1/r2 at the origin. The shaded area indicates the inner region of WKB validity. For
near-threshold energies this region extends to distances where the full potential V (r) is
well approximated by its tail Vtail(r).

Based on the recognition of the existence of such a region of WKB validity in deep po-
tentials with tails that are more singular than−1/r2 at the origin, a tail-based parametriza-
tion of the regular solution at short distances is derived. In the inner WKB region, the
exact regular solution ureg(r) can be expressed in terms of a conventional WKB wave
function with the inner classical turning point rin(E) as point of reference [cf. Eq. (2.43)]

ureg(r) ∝ 1
√

pE(r)
cos

(

1

~

∫ r

rin(E)
pE(r′)dr′ − φin

2

)

. (3.1)

The inner reflection phase φin is in general not a constant but depends on the energy
(see Section 2.2). In the short-range region where expression (3.1) is valid, it contains no
information about the existence of a potential threshold and is thus valid for both positive
and negative energies, without any restrictions.
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Relating the WKB representation (3.1) of the exact wave function to a reference point
rE in the outer tail region of the potential, the regular solution can, in the inner region of
WKB validity, be given as

ureg(r) ∝ 1
√

pE(r)
sin

(
1

~

∫ r

rE

pE(r′)dr′ − φsr

)

. (3.2)

The reference point rE can, in general, be chosen to be energy-dependent. Since the
present expression (3.2) just paraphrases Eq. (3.1), it also is insensitive to the actual
position of the threshold energy.

The short-range phase φsr in (3.2) accounts for the shift of the reference point and
contains all the influence of the short-range part of the potential. In order to relate this
phase to a physically meaningful quantity that is intuitively accessible, we compare the
arguments of the sine and cosine functions in Eqs. (3.2) and (3.1), which gives

φsr =
φin(E)

2
− π

2
− 1

~

∫ rE

rin(E)
pE(r)dr . (3.3)

To compensate for the phase accumulated by shifting the reference point from the inner
short-range region to the outer tail region of the potential, we make use of the generalized
Bohr-Sommerfeld quantization rule (2.45) exactly at threshold (E = 0)

1

~

∫ ∞

rin(0)
p0(r)dr = nthπ +

φin(0)

2
+
φout(0)

2
, (3.4)

where φout(0) is the threshold value of the outer reflection phase [54]. The threshold form
(3.4) of the modified Bohr-Sommerfeld quantization rule (2.45) introduces the threshold

quantum number nth, which is, by definition, a quantity that reflects the full potential. It
is the hypothetical quantum number at E = 0 and is therefore not necessarily an integer.
However, its integer part ⌊nth⌋ coincides with the quantum number of the least bound
state in the potential well. The introduction of the threshold quantum number dates back
to the works of LeRoy, Bernstein [14] and Stwalley [15] in 1970.

Having defined the threshold quantum number nth via relation (3.4), we can give the
short-range phase in the form

φsr = −nthπ −
φout(0)

2
− π

2
+
φin(E)− φin(0)

2

+
1

~

(
∫ ∞

rE

p0(r)dr +

∫ rE

rin(0)
p0(r)dr −

∫ rE

rin(E)
pE(r)dr

)

. (3.5)

Obviously, the difference φin(E) − φin(0) is a smooth function of energy vanishing at
threshold. The three integrals in Eq. (3.5) can be approximated — up to a small correction
of the order E — by replacing the full potential V (r) by its tail Vtail(r)

1

~

∫
∞

rE

ptail
0 (r)dr − 1

~

∫ rE

0

[

ptail
E (r)− ptail

0 (r)
]

dr , (3.6)
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where ptail
E (r) is the local classical momentum (2.29) obtained with Vtail(r) alone. Thus,

φsr =− nthπ −
φout(0)

2
− π

2
+

1

~

∫
∞

rE

ptail
0 (r)dr

− 1

~

∫ rE

0

[

ptail
E (r)− ptail

0 (r)
]

dr +O(E) . (3.7)

With the substitution V (r)→ Vtail(r) the exact regular solution in the short-range region
(3.2) is solely related to the tail potential and can be written as

ureg(r) ∝ 1
√

ptail
E (r)

sin

(
1

~

∫ r

rE

ptail
E (r′)dr′ − ξt + [∆th + γ(E)] π

)

, (3.8)

where the threshold quantum number nth has been replaced by its remainder ∆th =
nth − ⌊nth⌋. The additional energy-dependent phase ξt can easily be calculated from the
potential tail alone

ξt = −φout(0)

2
− π

2
+

1

~

∫
∞

rE

ptail
0 (r)dr

+
1

~

∫ rE

0

[

ptail
0 (r)− ptail

E (r)
]

dr . (3.9)

For reasons of convenience, the reference point rE is chosen to be defined by Vtail(rE) =
−|E| so that it only depends on the absolute value of the energy (rE = r−E) and coincides
with the classical tuning point for small negative energies. With this choice, the integrals
in Eq. (3.9) take finite values for each energy.

Short-range effects are parametrized via ∆th + γ(E); they enter the tail-based repre-
sentation (3.8) of the regular solution only via the remainder ∆th that is a property of the
full potential at the dissociation threshold and a small short-range correction

γ(E) = γsrE +O(E2) , (3.10)

which is a smooth and small function of the energy accounting for the higher-order terms
in Eq. (3.7). For near-threshold energies, it can well be approximated by its first-order
term γsrE, or might even be completely negligible. The representation (3.8) is valid for
the energy range, for which the full potential V (r) is well approximated by its tail Vtail(r)
down to the energy-dependent distance rE , that, by construction, includes the threshold
energy (E = 0). Deviations at higher energies can be absorbed in the higher-order terms
of the short range correction γ(E).

Figure 3.2 illustrates the exact regular solution (dashed line) in a given potential at an
arbitrary near-threshold energy together with its WKB representation (3.1) (dotted line),
which diverges at the inner classical turning point, and the tail-based representation (3.8)
(solid line). With the correct choice of ∆th, all three wave functions are identical in the
inner region (shaded area) where both the WKB approximation is valid and the potential
essentially equals its tail.

The representation (3.8) of the regular solution is very convenient, since it permits
the formulation of a boundary condition in the limit r → 0 for a solution in the reference
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Figure 3.2: Different representations of the regular solution at an arbitrary near-threshold energy
in the short-range region of a potential that fulfills the required preconditions of the present
treatment. The dashed line shows the exact form of the regular solution. In the shaded area that
represents the region where both the WKB approximation is valid and the full potential is well
described by its tail, it is essentially equal to both the WKB wave with the full potential (dotted
line) as given by Eq. (3.1) and the tail-based form of Eq. (3.8) depicted by the solid line.

potential Vtail(r) that exactly resembles the regular solution as obtained with the full
interaction potential V (r) in the inner region of WKB validity and at all distances beyond.

For a known interaction potential V (r), the actual value of the threshold quantum
number nth and its remainder ∆th may be estimated, according to Eq. (3.4), by explicitly
evaluating the outer reflection phase φout(0) with the tail potential only [see Eq. (3.12)
below] and assuming the inner reflection phase to be φin(0) ≈ π/2 which is the semiclassical
convention (2.42) and is appropriate for a deep potential well with a steep repulsive core
(cf. Section 2.2.3).

3.2 Formulation for bound states

Interaction potentials with attractive tails that fall off faster than −1/r2 support at most a
finite number of bound states [4]. This is in contrast to the situation in the presence of truly
long-range potential tails, such as for Coulombic tails, where there are countably infinitely
many bound states that form a Rydberg series converging to the threshold energy. For the
potential tails considered in the present work, a different type of quantization condition
applies, which is derived in the following. It is shown how, in the presence of a singular
attractive potential tail, its influence on the bound-state spectrum is separated from short-
range effects.

3.2.1 Quantization function

Below the dissociation threshold (E < 0), all physically relevant wave functions are square
integrable bound states. To ensure normalizability, we pick the solutions of the radial
Schrödinger equation (2.6) that vanish exponentially in the outer asymptotic region as
reference. Since the tail of the interaction potential is assumed to vanish faster than 1/r2



28 3. Tail-based formulation

asymptotically, these solutions fulfill the bound-state boundary condition

u(−)(r)
r→∞∼ exp(−κr) , (3.11)

where κ =
√−2µE/~ is the asymptotic inverse penetration depth into the outer classically

forbidden region at energies below the dissociation threshold (E = 0). In the inner region
of the tail potential, these solutions (3.11) can, for any energy below the dissociation
threshold, accurately be represented by WKB waves

u(−)(r)
r→0∝ 1

√

ptail
E (r)

cos

(
1

~

∫ rE

r
ptail

E (r′)dr′ − φout(E)

2

)

, (3.12)

where rE is, according to its definition, just the outer classical turning point and φout(E)
is the corresponding energy-dependent outer reflection phase [cf. Eq. (2.40)].

In order to reproduce the correct bound-state energies of the full potential by using
solutions of the Schrödinger equation including only the potential tail, the asymptotically
vanishing solution (3.11) is matched to the tail-based regular solution (3.8) that, for near-
threshold energies, resembles the exact regular solution with the full potential in the inner
tail-region of WKB validity. The corresponding matching condition requires the sine in
(3.8) and the cosine in (3.12) to be identical up to a factor of −1. This is fulfilled whenever

nthπ + γ(E) − ξt −
φout(E)

2
− π

2
!
= nπ , (3.13)

where n is an integer. Rephrasing this condition for the corresponding energy eigenvalue
En yields

nth − n = F (En) , (3.14)

which defines the quantization function F (E) that — together with the threshold quan-
tum number nth — describes the bound-state energies in a given potential well. This
quantization function can — for potentials with singular tails — naturally be split up

F (E) = Ftail(E) + Fsr(E) (3.15)

into its tail part Ftail(E) which can, with the explicit form (3.9) of the phase ξt, be given
as

Ftail(E) =
Stail(0) − Stail(E)

π~
− φout(0)− φout(E)

2π
, (3.16)

and its short-range part Fsr(E) = −γ(E), that reflects all approximations that have been
made in the derivation of the short-range solution (3.8). The short-range part Fsr(E)
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of the quantization function is thus determined by short-range effects only. The action
integrals in Eq. (3.16) correspond to the actions for classical motion in the tail potential

Stail(E) =

∫ rE

0
ptail

E (r)dr . (3.17)

Due to the distinct singularity of the potential tail at the origin, both action integrals in
Eq. (3.16) diverge, but their difference remains finite [cf. Eq. (3.9)].

If we had assumed the outer reflection phase to be independent of the energy, we would
have arrived at a purely semiclassical quantization function

FNDE
tail (E) =

1

π~
[Stail(0)− Stail(E)] , (3.18)

which is equivalent to the well-established near-dissociation expansion of LeRoy, Bernstein
[14] and Stwalley [15]. In contrast to the exact formulation (3.16), the LeRoy-Bernstein
quantization function (3.18) obscures the anticlassical nature of near-threshold properties
for potentials with attractive tails falling off faster than −1/r2 [4].

3.2.2 Limiting expansions

In order to yield the correct quantization function (3.16), the purely semiclassical LeRoy-
Bernstein quantization function (3.18) needs to be provided with an additional term that
contains the outer reflection phase φout [cf. Eq. (3.16)]. This outer reflection phase is,
as discussed in Section 2.2.3, energy-dependent in general; it is expected to deviate all
the more from its semiclassical value of π/2 the closer the energy is to the dissociation
threshold, which is the anticlassical limit for potentials that vanish faster than −1/r2 [4].

Low binding energies

The low-energy behavior of the outer reflection phase can be deduced from the behavior
at zero energy of the solutions in the potential tail. Two linearly independent zero-energy
solutions w0(r), w1(r) of the radial Schrödinger equation with the tail potential alone
behave as

w0(r)
r→∞∼ 1 and w1(r)

r→∞∼ r (3.19)

in the outer asymptotic region1. These wave functions can, in the limit of small distances,
be accurately represented by WKB waves. These are given by

w0,1(r)
r→0∼ D0,1

√

ptail
0 (r)

cos

(
1

~

∫ ∞

r
ptail

0 (r′)dr′ − φ0,1

2

)

. (3.20)

In the limit of low binding energies (κ → 0) the solution u(−)(r) that fulfills the bound-
state boundary condition (3.11) can, up to the order of the energy, be given by the linear
combination of the zero-energy solutions defined by Eq. (3.19)

u(−)(r)
κr→0∼ w0(r)− κw1(r)

r→∞∼ 1− κr . (3.21)

1In fact, the solution w1(r) that asymptotically behaves as r exists only for potentials that vanish
faster than −1/r3 asymptotically. However, the following procedure’s range of applicability contains the
inverse-cube (−1/r3) reference potential as a limiting case.
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Comparing this form of the solution to expression (3.12) in the inner region of the potential
tail using (3.20) gives

φout(E)

2
κ→0∼ − Stail(0)− Stail(E)

~
+
π

2

− arctan

(
D0 cos(φ0/2) − κD1 cos(φ1/2)

D0 sin(φ0/2) − κD1 sin(φ1/2)

)

+O(κ2) . (3.22)

This expression is only correct up to the order κ. The expansion of φout(E) up to this
order yields

φout(E)

2
κ→0∼ φ0

2
− Stail(0)− Stail(E)

~
+ bκ+O(κ2) . (3.23)

The coefficient of the term of order κ in Eq. (3.23) is a length that will, in the following,
be referred to as the threshold length b. It is explicitly given by

b =
D1

D0
sin

(
φ0 − φ1

2

)

. (3.24)

From a more sophisticated effective-range expansion, which is demonstrated in Refs. [13,
43], the term of the order of κ2 could be deduced from these solutions for potential tails
falling off faster than −1/r3.

From the low-energy expansion (3.23) of the outer reflection phase, we can give a
universal expression for the quantization function (3.15) at low energies

F (E)
κ→0∼ bκ

π
+O(κ2) , (3.25)

which is valid for all potentials with attractive tails that vanish faster than −1/r2 asymp-
totically [54]. Note, that, in the limit of low energies, the terms including the action
integrals both at zero and at finite energy in Eqs. (3.16) and (3.23) cancel exactly.
These terms are typically of lower order in the energy than the inverse penetration depth
κ =
√−2µE/~.

High binding energies

At large negative energies, the outer reflection phase φout(E) tends to π/2, which is its
semiclassical value (2.42). For high binding energies, the conditions for semiclassical be-
havior are well fulfilled, since the interaction potential is very steep in the vicinity of the
outer classical turning point (cf. Section 2.2.3). Assuming the semiclassical value of π/2,
we can give the high-energy expansion of the tail part of the quantization function as

Ftail(E)
κ→∞∼ FNDE

tail (E)− φ0

2π
+

1

4
, (3.26)

which differs from the LeRoy-Bernstein function (3.18) only by a constant offset. There-
fore, the shortcomings of the purely semiclassical quantization rule are not revealed, unless
bound states with very low binding energies are concerned. This is thoroughly discussed
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in Section 5.1.2. However, one should keep in mind that the short-range part Fsr(E) of
the quantization function (3.15) is probably not negligible at energies far from threshold.

An asymptotic expansion of the outer reflection phase at high energies can be obtained
by taking higher-order corrections to the WKB wave function into account [13, 43]. This
procedure can be very useful when the explicit shape of the quantization function is to be
determined via an interpolation scheme, as done in Section 4.2.2.

3.3 Formulation for scattering states

In this section, an expression is derived for the scattering phase shift, which characterizes
the long-range behavior of the continuum states at E > 0. This expression is based on
the solutions in the reference potential Vtail(r) and accounts for effects that are due to the
deviation of the full potential V (r) from the singular form of its tail at short distances via
the short-range parametrization ∆th + γ(E) [cf. Eq. (3.8)]. A relation to the properties of
quantum reflection is explicitly derived, in order to show how the scattering phase shift is
influenced by the tangible physical properties of the tail potential.

3.3.1 Parametrization of the scattering phase shift

For potentials vanishing faster than 1/r2 at large distances, there are two fundamental,
linearly independent solutions u(s)(r) and u(c)(r) of the radial Schrödinger equation (2.26)
that behave asymptotically as

u(s)(r)
r→∞∼ sin (kr) , u(c)(r)

r→∞∼ cos (kr) . (3.27)

The regular solution of the full potential V (r) can — in the limit of large distances — be
written as a superposition of these two fundamental solutions

ureg(r) ∝ cos (δ0) u(s)(r) + sin (δ0) u(c)(r) , (3.28)

which defines the s-wave phase shift δ0 for scattering states.
Considering only the attractive tail potential Vtail(r), which is more singular than

−1/r2 at the origin, the fundamental solutions u(s)(r) and u(c)(r), which are defined by
the boundary conditions (3.27), can — in the limit of small distances — accurately be
represented by WKB waves

u(s)(r)
r→0∼ As

√

ptail
E (r)

sin

(
1

~

∫ r

rE

ptail
E (r′)dr′ − φs

)

,

u(c)(r)
r→0∼ Ac

√

ptail
E (r)

cos

(
1

~

∫ r

rE

ptail
E (r′)dr′ − φc

)

, (3.29)

with rE given by Vtail(rE) = −E, as in Eq. (3.9), and real nonnegative amplitudes As

and Ac. Explicit expressions (3.29) for the fundamental solutions in the inner region can
obviously be obtained from the exact solutions of the radial Schrödinger equation (2.6)
with the reference potential Vtail(r) in the limit r → 0, where the WKB approximation is
accurate. The amplitudes As and Ac as well as the phases φs and φc, which all depend on
the energy, are thus determined solely by the reference potential Vtail(r).
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Relating the phase of the tail based expression (3.8) of the regular solution ureg(r) in
the inner region of the tail potential to the phase of the corresponding linear combination
(3.28) of the two fundamental solutions (3.29) in the inner region yields

tan δ0 =
As

Ac

sin (∆thπ − ξt + φs)

cos (∆thπ − ξt + φc)
(3.30)

for the s-wave phase shift δ0 for scattering by the full potential V (r) that has a singular
attractive tail Vtail(r). The right-hand side of Eq. (3.30) contains four functions, which
depend only on the tail potential. The phase ξt stems from the tail-based representation
(3.8) of the regular solution at short distances and is explicitly given by the corresponding
terms in Eq. (3.9). The ratio As/Ac and the phases φs and φc, which are defined via (3.29),
are solely determined by the tail potential Vtail(r). They can be determined by compar-
ing the WKB expressions (3.29) to analytically known solutions for the tail potential, if
available. Otherwise they can easily be calculated by numerically integrating the radial
Schrödinger equation (2.6) with Vtail(r) for any desired energy.

Properties related to the short-range part of the potential enter Eq. (3.30) — to first
order — via the remainder ∆th. Higher-order short-range effects can be accounted for
by replacing the remainder ∆th in Eq. (3.30) by the full short-range parametrization
∆th + γ(E) [cf. Eq. (3.8)].

3.3.2 Connection to the properties of quantum reflection

The two fundamental solutions u(s)(r) and u(c)(r) [see Eqs. (3.27) and (3.29)] to the ra-
dial Schrödinger equation (2.6) with the reference potential Vtail(r) have been chosen for
reasons of convenience. They, themselves, do not represent any actual physically mean-
ingful quantum state. However, the amplitudes and phases that enter the parametrization
(3.30) of the phase shift can be related to the quantities of quantum reflection, which are
physically meaningful and tangible properties of the singular attractive tail potential. The
basic essentials of this result have already been published in Ref. [61].

Quantum reflection process

A particle approaching an attractive force field can be reflected far away from the center
of the potential. This process is called quantum reflection [62] and is a purely quantum
mechanical phenomenon without any classical analog. Its occurrence in atomic physics
has been established in various experiments [63, 64]. For typical interatomic interactions,
it has been shown that quantum reflection takes place at rather large distances [65] and
is therefore an effect due to the potential tail.

For attractive potentials Vtail(r) that are more singular than −1/r2 at the origin and
vanish faster than −1/r2 asymptotically, there are two distinct regions of WKB validity.
The WKB approximation becomes increasingly accurate in the limit of small radii close to
the singularity, as well as in the limit of large radii where the potential becomes negligible.
These regions are separated by an anticlassical region that extends around the distance
rE with Vtail(rE) = −E, where the WKB criterion (2.38) is not well fulfilled. As already
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discussed in Section 2.2.1, the wave function can be split up into an inward and an outward
traveling part, wherever the WKB approximation is valid.

The process of quantum reflection can thus be described by a stationary solution urefl(r)
of the radial Schrödinger equation that is a superposition of an inward traveling wave and
an outward traveling reflected wave in the outer asymptotic region (r → ∞). This wave
function can be given in terms of free-particle waves

urefl(r)
r→∞∼ 1√

~k
exp(−ikr) +

R√
~k

exp(ikr) , (3.31)

with the wave number k =
√

2µE/~ as long as the potential vanishes faster than 1/r2

at large distances. The complex coefficient R = |R| exp(iφR) is the reflection amplitude
with |R| ≤ 1. A detailed description of the modulus and phase of the quantum reflection
amplitude can be found in Refs. [65–67]. An alternative representation of this solution is

urefl(r)
r→∞∝ 1√

~k
sin(kr) +

Krefl√
~k

cos(kr) . (3.32)

The complex coefficient Krefl can be related to a complex phase shift for the quantum
reflection process [67] and is connected to the reflection amplitude R via the relation

Krefl = i

(
1 +R

1−R

)

. (3.33)

In the limit of small radii the solution urefl(r) is an inward-traveling wave representing
the transmitted part of the incoming wave. Since the potential is not a constant in the
inner region of WKB validity, the inward-traveling wave cannot be expressed as a free
wave. We need to use the WKB expression

urefl(r)
r→0∼ T

√

ptail
E (r)

exp

(

− i
~

∫ r

rE

ptail
E (r′)dr′

)

(3.34)

instead. The complex transmission amplitude T can be given in terms of its modulus and
phase by |T | exp(iφT ).

Since the radial flux density

jr =
~

2µi

(

u∗ du

dr
− udu

∗

dr

)

≡ const . (3.35)

is conserved,2 the amplitudes for transmission and reflection necessarily need to fulfill the
relation

|R|2 + |T |2 = 1 . (3.36)

The quantities |T |2 and |R|2 can thus be thought of as the probabilities for transmission
through and quantum reflection by the anticlassical region around rE in the attractive
interaction potential.

2The requirement that the flux is conserved is an immediate consequence of the Wronskian W (u, u∗)
being independent of r for any solution u(r) of an ordinary second-order differential equation.
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Quantum capture process

The process that will, in the following, be referred to as quantum capture is described as
follows: A particle moving in the inner region of an attractive potential Vtail(r) can be
captured on the inside, despite the fact that its energy is actually above the dissociation
threshold. This is due to reflection by the anticlassical region in the potential. Therefore,
this process is also referred to as near-side quantum reflection [68].

The stationary solution ucapt(r) that describes the quantum capture of a particle inci-
dentally traveling outwards is — in the inner spatial region — given by

ucapt(r)
r→0∼ 1

√

pE(r)

[

exp

(
i

~

∫ r

rE

p(r′)dr′

)

+ C exp

(

− i
~

∫ r

rE

p(r′)dr′

)]

, (3.37)

representing an outward traveling WKB wave and a captured inward traveling wave with
the complex capture amplitude C. The wave function (3.37) can be constructed from
superposition of the solution urefl(r) which describes the quantum reflection of an inward
traveling wave, and its complex conjugate. From this connection to the quantum reflection
process, the relation

C = −R∗ T

T ∗
(3.38)

is derived, which connects the amplitudes for reflection, transmission and capture. A
general form of this relation is given in Refs. [54, 69] for quantum reflection from the left-
and the right-hand side. On the outside of the anticlassical region in the potential Vtail(r),
the wave function can simply be given by an outward traveling, transmitted wave

ucapt(r)
r→∞∼ T√

~k
exp(ikr) , (3.39)

where the transmission amplitude is just the same as in Eq. (3.34) for the quantum re-
flection process [68, 69]. Its squared modulus |T |2 gives the probability for the particle to
escape from the inner region of WKB validity.

Relation to fundamental solutions

From the wave function ucapt(r) describing the quantum capture, the phases and ampli-
tudes of the previously defined fundamental solutions u(s)(r) and u(c)(r) [see Eqs. (3.27)
and (3.29)] can be related to the amplitudes for reflection and transmission. The funda-
mental solution u(s)(r) which is a sine in the outer asymptotic region [cf. Eq. (3.27)] can
be expressed in terms of the wave function (3.39) of the quantum capture process

u(s)(r) = Im

[√
~k

T
ucapt(r)

]

(3.40)

in all of the coordinate space. By making use of Eqs. (3.37) and (3.38) and using well-
known trigonometric identities, this wave function can — in the inner region — be written
as

u(s)(r)
r→0∼ 1

√

ptail
E (r)

√
~k

|T |

{[

1 + |R| cos(φR)
]

sin

(
1

~

∫ r

rE

p(r′)dr′ − φT

)

+|R| sin(φR) cos

(
1

~

∫ r

rE

p(r′)dr′ − φT

)}

. (3.41)
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This form can, by making use of the identities

1 + |R| cos(φR) = Re (1 +R) = |1 +R| cos (arg(1 +R)) ,

|R| sin(φR) = Im (1 +R) = |1 +R| sin (arg(1 +R)) , (3.42)

be reformulated as

u(s)(r)
r→0∼
√
~k
|1 +R|
|T |

1
√

ptail
E (r)

sin

(
1

~

∫ r

rE

p(r′)dr′ − φT + arg(1 +R)

)

. (3.43)

By comparing this expression to Eq. (3.29), we can establish the relations

As =
√
~k
|1 +R|
|T | , and φs = φT − arg(1 +R) . (3.44)

Using the corresponding identity

u(c)(r) = Re

[√
~k

T
ucapt(r)

]

(3.45)

for the solution u(c)(r) that is a cosine in the outer asymptotic region [cf. Eq. (3.27)] and
performing similar conversions, we find

Ac =
√
~k
|1−R|
|T | , and φc = φT − arg(1−R) . (3.46)

The ratio of amplitudes can then be given as

As

Ac
=

∣
∣
∣
∣

1 +R

1−R

∣
∣
∣
∣ = |Krefl| . (3.47)

It is found to be identical to the absolute value of the coefficient Krefl for quantum reflection
[cf. Eq. (3.32)]. Equation (3.30) can thus be reformulated using only the properties of
quantum reflection

tan δ0 =

∣
∣
∣
∣

1 +R

1−R

∣
∣
∣
∣

sin(∆thπ − ξt + φT − arg(1 +R))

cos(∆thπ − ξt + φT − arg(1−R))
. (3.48)

In formula (3.48) the influence of the potential tail now enters via its tangible physical
properties, i.e., the amplitudes for transmission and quantum reflection.

3.3.3 Limiting expansions

As for the case of quantization (see Section 3.2.2), analytical expansions of the tail func-
tions both at low and at high energies can be derived from the zero-energy solutions in
the potential Vtail(r) also for energies above the dissociation threshold (E > 0).
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Low collision energies

The low-energy behavior of the wave function u(s)(r), defined by its asymptotic behavior
(3.27), can be given by

u(s)(r)
kr→0∼ kw1(r)

r→∞∼ kr , (3.49)

where w1(r) is the zero-energy solution of the radial Schrödinger equation (2.6) with the
reference potential Vtail(r) alone, which has already been defined in Eq. (3.19). As in
Section 3.2.2, this formulation is valid as long as the reference potential vanishes faster
than −1/r3 asymptotically. We compare both sides of relation (3.49) in the limit r → 0
using Eqs. (3.20) and (3.29). This explicitly yields

As
√

ptail
E (r)

sin

(
1

~

∫ r

rE

ptail
E (r′)dr′ − φs

)

=
D1k

√

ptail
0 (r)

cos

(
1

~

∫ ∞

r
ptail

0 (r′)dr′ − φ1

2

)

. (3.50)

In the limit of small distances, the local classical momentum ptail
E (r) approaches its zero-

energy correspondent ptail
0 (r) due to the distinct singularity of the reference potential at

r = 0. The low-energy expression for the amplitude can just be read off Eq. (3.50),

As
k→0∼ D1k . (3.51)

Equating the phases gives the low-energy behavior of the corresponding phase

φs
k→0∼ −φ1

2
− π

2
+

1

~

∫ ∞

rE

ptail
0 (r)dr +

1

~

∫ rE

0

[

ptail
0 (r)− ptail

E (r)
]

dr , (3.52)

where the action integrals that occur, are — in accordance with the behavior at energies
below the dissociation threshold (E < 0) — of lower order in the energy than the wave
number k =

√
2µE/~.

The same procedure is applied for the solution u(c)(r). Its asymptotic low-energy
behavior is expressed by

u(c)(r)
kr→0∼ w0(r)

r→∞∼ 1 , (3.53)

which is valid for all singular attractive potential tails that vanish faster than −1/r2

asymptotically. Equating the corresponding expressions from Eqs. (3.20) and (3.29) in
the limit of small distances yields

Ac
√

ptail
E (r)

sin

(
1

~

∫ r

rE

ptail
E (r′)dr′ − φc

)

=
D0

√

ptail
0 (r)

cos

(
1

~

∫
∞

r
ptail

0 (r′)dr′ − φ0

2

)

. (3.54)

It is thus found that the amplitude Ac approaches a finite value in the limit of zero energy

Ac
k→0∼ D0 . (3.55)

The corresponding phase is just given by

φc
k→0∼ −φ0

2
+

1

~

∫
∞

rE

ptail
0 (r)dr +

1

~

∫ rE

0

[

ptail
0 (r)− ptail

E (r)
]

dr . (3.56)

Having derived the low-energy behavior of all the tail-related functions that enter
formula (3.30) for the s-wave phase shift due to the full potential V (r), we can specify
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the low-energy behavior of the phase shift itself. In this limit, the ratio of the amplitudes,
which has the dimension of a length, is given by

As

Ac

k→0∼ D1

D0
k . (3.57)

The zero-energy value of the fraction of sine and cosine in (3.30) is found by inserting the
zero-energy values of the phases φs and φc given in (3.52) and (3.56). After some simple
conversions the low-energy limit of Eq. (3.30) yields

tan δ0
k→0∼ −D1

D0

[

cos

(
φ0 − φ1

2

)

+ sin

(
φ0 − φ1

2

)

cot(∆thπ)

]

k (3.58)

The terms containing the action integrals in both ξt [cf. Eq. (3.9) and φs,c [cf. Eqs. (3.52)
and (3.56)] might be of lower order than the wave number k, but in the limit of low
energies they cancel exactly. The result (3.58) is by no means surprising; it just gives the
first term of the well-established effective-range expansion (see, e.g., Ref. [27])

tan δ0
k→0∼ −ak , (3.59)

which is determined by the scattering length a, that was first introduced by Fermi in the
context of scattering of slow neutrons [30]. Whenever the interaction potential vanishes
faster than −1/r3, a scattering length exists. In our case, Eq. (3.58) yields

a = ā+
b

tan(∆thπ)
, (3.60)

where we introduced an additional length scale, the mean scattering length

ā =
D1

D0
cos

(
φ0 − φ1

2

)

, (3.61)

and b is just the threshold length, as defined in Eq. (3.24). Equation (3.60) shows that
the scattering length depends on the two length scales ā and b, that both are properties of
the tail potential. Short-range effects enter the scattering length solely via the threshold
quantum number’s remainder ∆th. Further short-range corrections enter the expansion
(3.59) only in higher-order terms of the wave number k, according to the formula (3.30)
for the scattering phase shift.

Effective-range expansion for φs

In the following, an effective-range expansion is performed in order to obtain an expression
for the phase φs(k). For this purpose, we consider the fundamental solution u(s)(r) that
behaves like a sine asymptotically, according to Eq. (3.27), in the reference potential
Vtail(r). We define uk(r) ≡ u(s)(r) for this solution at a given asymptotic wave number
k =

√
2µE/~. Its behavior in the inner region of the reference potential Vtail(r) is given

by Eq. (3.29).
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We consider two possible solutions uk1
, uk2

in the same reference potential Vtail(r) at
different asymptotic wave numbers k1, k2. The corresponding radial Schrödinger equations
are then given by

− u′′
ki

(r)− 2µ

~2
Vtail(r)uki

(r) = k2
i uki

(r) (3.62)

Multiplying each of the two equations with the solution of the other and subtracting one
from the other leads to

uk1
u′′

k2
− u′′

k1
uk2

=
(

k2
1 − k2

2

)

uk1
uk2

. (3.63)

Intergrating this equation from an arbitrary lower bound rl to an upper bound ru gives
∫ ru

rl

(
uk1

u′′
k2
− u′′

k1
uk2

)
dr =

(

k2
1 − k2

2

) ∫ ru

rl

uk1
uk2

dr . (3.64)

Partial integration of the left-hand side gives

[
uk1

u′
k2
− u′

k1
uk2

]ru

rl
=
(

k2
1 − k2

2

) ∫ ru

rl

uk1
uk2

dr . (3.65)

Since the limits of integration are completely arbitrary, we are free to choose rl → 0 and
ru →∞. In order to obtain the contribution from the lower bound to the left-hand side,
we need to know not only the wave function [see upper relation of Eq. (3.29)] in the inner
region of WKB validity in the potential tail, but also its derivative, which is given by

u′
ki

(r) =
As(ki)
√

pki
(r)

{

pki
(r)

~
cos Ωki

(r)− 1

2

p′
ki

(r)

pki
(r)

sin Ωki
(r)

}

, (3.66)

where we used the abbreviation

Ωki
(r) ≡ 1

~

∫ r

rki

ptail
ki

(r′)dr′ − φs(ki) . (3.67)

In the limit of interest, i.e., r → 0, expression (3.66) for the wave function’s derivative is
further simplified

u′
ki

(r)
r→0∼ As(ki)

√

p0(r)

p0(r)

~
cos Ωki

(r) . (3.68)

The contribution from the lower limit in Eq. (3.65) can thus be given as

[
uk1

u′
k2
− u′

k1
uk2

]

rl→0
=
As(k1)As(k2)

~
sin [Ωk2

(0) − Ωk1
(0)] . (3.69)

In order to evaluate the upper limit in Eq. (3.65), we make use of the solutions of the
free Schrödinger equation vki

(r) obeying the same boundary conditions as the solutions
uki

(r) with a given potential

uki
(r)

r→∞∼ vki
(r) ≡ sin(kir) . (3.70)

Taking the same steps that led to Eq. (3.65) but for the free solutions vki
(r), we obtain

[

vk1
v′

k2
− v′

k1
vk2

]ru

rl
=
(

k2
1 − k2

2

) ∫ ru

rl

vk1
vk2

dr . (3.71)
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The evaluation of the lower bound yields

[
vk1

v′
k2
− v′

k1
vk2

]

rl
= sin [(k2 − k1) rl]

rl→0→ 0 . (3.72)

In the limit ru →∞, the identity

[
vk1

v′
k2
− v′

k1
vk2

]ru→∞
=
[
uk1

u′
k2
− u′

k1
uk2

]ru→∞
(3.73)

holds and the relation

[

uk1
u′

k2
− u′

k1
uk2

]ru→∞
=
(

k2
1 − k2

2

) ∫ ∞

0
vk1

vk2
dr (3.74)

is obtained, which is then inserted in Eq. (3.65), together with Eq. (3.69). This yields

As(k1)As(k2)

~
sin [Ωk2

(0)− Ωk1
(0)] =

(

k2
1 − k2

2

) ∫ ∞

0
(uk1

uk2
− vk1

vk2
) dr (3.75)

and therefore

sin [Ωk2
(0)− Ωk1

(0)] = ~

(

k2
1 − k2

2

) ∫ ∞

0

uk1
uk2
− vk1

vk2

As(k1)As(k2)
dr . (3.76)

Without any loss of generality, the wave number k2 is renamed to k and the limit k1 → 0
is performed. Using the known low-energy identities (3.49) and (3.51) and expanding the
sine in Eq. (3.70) gives

sin [Ωk(0) − Ω0(0)] = −~k2 1

D1

∫ ∞

0

w1uk − rvk

As(k)
dr . (3.77)

Since the present effective-range expansion is only correct up to O(k2), the term on the
left-hand side is expanded in terms of the wave number k. Solving for φs(k) yields

φs(k)
k→0∼ φs(0) +

1

~

∫ ∞

rE

ptail
0 (r)dr

+
1

~

∫ rE

0

[

ptail
0 (r)− ptail

E (r)
]

dr − hsk
2 +O(k3) , (3.78)

with the coefficient hs, which has the units of an area and is defined via

hs =
~

D2
1

∫ ∞

0

[

r2 − w1(r)2
]

dr . (3.79)

In accordance with the ordinary effective-range expansion [31–33] for the scattering phase
shift and corresponding expansions [67], the integral in Eq. (3.79) converges for all reference
potentials that fall off faster than −1/r5 asymptotically. The threshold value φs(0) =
−φ1/2− π/2 is found by comparing to Eq. (3.52).
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Effective-range expansion for φc

The effective-range expansion for the phase φc(k) can be performed in a similar fashion.
In fact, the actual evaluation of the occurring terms is even less demanding than for the
phase φs(k), since the amplitude Ac(k) reaches a finite value as k → 0 [cf. Eq. (3.55)].
This procedure yields

φc(k)
k→0∼ φc(0) +

1

~

∫ ∞

rE

ptail
0 (r)dr

+
1

~

∫ rE

0

[

ptail
0 (r)− ptail

E (r)
]

dr − hck
2 +O(k3) . (3.80)

The effective area hc is given by

hc =
~

D2
0

∫ ∞

0

[

1− w0(r)2
]

=
~

D2
0

ρeff = b ρeff , (3.81)

where the relation (B.13) has been used to obtain the third identity. The zero-energy
solution w0(r) is defined in Eq. (3.19) and ρeff is the subthreshold effective range defined
in Ref. [13], which also determines the next-to-leading term in the quanitzation function
(3.16). It can explicitly be evaluated for any potential with a tail that vanishes faster
than −1/r3 asymptotically. The threshold value φc(0) = −φ0/2 is found by comparing to
Eq. (3.56).

High collision energies

In the limit of high energies, we find that the quantality function (2.37) tends to zero at
all distances,

lim
E→∞

QE(r) = 0 ∀r > 0 , (3.82)

for reference potentials that fall off faster than 1/r2 asymptotically and are more singular
than −1/r2 at the origin. This means that the criterion (2.38) for the validity of the
WKB approximation is fulfilled in all of coordinate space. Therefore, we can identify the
fundamental solutions defined in Eq. (3.27) with their WKB behavior (3.29), which was
originally restricted to the inner region of the potential tail, but is — in the limit of high
energies — valid for all distances r. We thus obtain the identities

As/c
√

ptail
E (r)

sin / cos

(
1

~

∫ r

rE

ptail
E (r′)dr′ − φs/c

)
r→∞∼ sin / cos(kr) (3.83)

for both the fundamental solution u(s)(r) and the fundamental solution u(c)(r). In the limit
of large distances, r → ∞, the local classical momentum reaches the free-particle limit
ptail

E (r)→ ~k and we can immediately read off the high-energy behavior of the amplitudes

As/c
E→∞∼

√
~k , (3.84)

which obviously yields
As

Ac

E→∞∼ 1 (3.85)
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for their ratio. This limit can also be obtained from the identity (3.47) in a very intuitive
way.

The high-energy limits of the phases φs and φc are obtained by comparing the argu-
ments of the trigonometric functions in Eq. (3.83), which yields

φs/c
E→∞∼ lim

r→∞

[
1

~

∫ r

rE

ptail
E (r′)dr′ − kr

]

=− krE +
1

~

∫
∞

rE

[

ptail
E (r)− ~k

]

dr . (3.86)

According to the relations (3.44) and (3.46), this is also the high-energy expansion of the
phase φT of the transmission amplitude, which enters the wave function (3.34) for the
quantum reflection process.

Inserting the high-energy expansions (3.85) and (3.86) into the expression (3.30) for
the phase shift and using the explicit form (3.9) of the phase ξt yields

δ0
E→∞∼ nthπ − ξt + φs/c

=nthπ +
φout(0)

2
+
π

2
+

1

~

∫
∞

0

[

ptail
E (r)− ptail

0 (r)− ~k
]

dr . (3.87)

In the limit of high energies, the threshold quantum number nth thus enters the phase
shift only as a simple offset, while the energy dependence is determined by the tail of
the interaction potential. The validity of Eq. (3.87) is limited to near-threshold energies,
which can, however, be larger than the characteristic energy scales of the tail potential by
orders of magnitude. Further short-range corrections are omitted, but could in principle
be included by simply adding πγ(E) to the right-hand side of Eq. (3.87).

The phase shift δ0 is defined only up to an integer multiple of π. Choosing the full
threshold quantum number nth in (3.87) instead of its remainder ∆th and assuming that
the phase shift is a continuous function, ensures that δ0(0) is Nbπ, where Nb = ⌊nth⌋+ 1
is the number of bound states supported by the full potential well. This is reminiscent
of Levinson’s Theorem3 [28, 29]. However, expression (3.87) does not tend to zero in the
limit of high energies. This is due to the fact that, at energies beyond the validity of
Eq. (3.87), the behavior of the phase shift is actually not governed by the potential tail,
but by the behavior of the potential in the inner region.

3.4 Summary of results

For interaction potentials with tails that fall off faster than 1/r2 asymptotically and are
more singular than −1/r2 at the origin, a separation of the influence of this tail potential
on the bound-state spectrum and the scattering properties has been achieved. Utilizing the

3Note that the applicability of Levinson’s Theorem is restricted to a very special class of potentials.
It is in particular not applicable for potentials that have a repulsive core more singular than 1/r2 at the
origin.
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modified WKB approximation of Section 2.2, where appropriate, a parametrization of the
short-range solution (3.8) in interaction potentials with singular attractive tails has been
given, which offers an appropriate boundary condition for the singular tail potential. It is
essentially determined by the noninteger remainder ∆th of the threshold quantum num-
ber nth and a further short-range correction γ(E) that is a smooth and small function of
energy which vanishes at E = 0. At near-threshold energies, it can thus be approximated
by its leading-order term γsrE or even be completely neglected. From the short-range
parametrization, the scattering properties as well as the bound-state spectrum can be ob-
tained from the solutions of the Schrödinger equation with only the singular tail potential
as reference.

The present formulation is particularly convenient in the case that the deviation of the
full interaction potential from the singular form of its tail is restricted to distances that
are small compared to the typical length scales of the tail potential, i.e., the full potential
is deep in the sense that it supports a large number of bound states. This requirement is
typically well fulfilled by interatomic potentials, that have tails that are essentially due to
induced electrostatic interactions (see Appendix A).

The quantization function F (E), which enters the quantization condition (3.14), is —
for near-threshold energies — essentially determined by its tail part (3.16), which can be
obtained from the solutions in the tail potential. Its fundamental difference to the purely
semiclassical LeRoy-Bernstein function (3.18), which might offer a good description of the
progression of bound-state levels for high binding energies, has been pointed out. The
quantization function’s low-energy behavior (3.25) is found to be universally determined
by the threshold length b [cf. Eq. (3.24)].

For continuum states (E > 0), the scattering phase shift has been expressed in terms
of functions that depend on the potential tail only; the short-range effects on the scatter-
ing properties are completely described via the threshold quantum number nth and the
small short-range correction γ(E). The tail functions have been expressed in terms of the
properties of quantum reflection, i.e., via the tangible properties of the tail potential. At
high collision energies, the threshold quantum number nth is manifest in the scattering
phase shift as a constant offset [cf. Eq. (3.87)]. In the limit of low collision energies the
scattering process is, for potentials falling off faster than −1/r3, determined by the scat-
tering length a (3.59) that can be expressed (3.60) via the mean scattering length ā [cf.
Eq. (3.61)], the threshold length b and the remainder ∆th that parametrizes the effects
due to the short-range part of the full interaction potential.



Chapter 4

Application to inverse-power tails

The formalism for the description of quantization and scattering that has been derived
in the preceding Chapter 3 is particularly powerful in the presence of pure inverse-power
potential tails, as can occur in the interaction of two compound particles such as atoms,
ions and molecules. At large distances, the interaction energy can be given in terms of a
multipole expansion (cf. Appendix A), that is essentially an expansion in powers of 1/r.

If one of the interacting compound particles has zero net charge, the lowest-order terms
in this multipole expansion vanish and the resulting potential tail fulfills the preconditions
for the present treatment. Whenever the leading-order term of the multipole expansion
dominates the interaction way down to small distances, where the WKB criterion (2.38)
is fulfilled for this potential, it will be sufficient to include only that term in the definition
of the reference potential Vtail(r) for a correct description of quantization and scattering
at near-threshold energies. For inverse-power reference potentials, the quantities defined
in the previous section are given explicitly in this chapter.

The first part of this chapter is devoted to general properties that hold for all inverse-
power potentials. The subsequent section deals with the quantization function in the
presence of inverse-power tails. An explicit form of the tail part Ftail(E) of the quantization
function is presented for the case of inverse-cube interactions. The effects of long-range
inverse-power potential tails on the collisional properties is studied in the last section of
this chapter. For the most prominent cases of inverse-power potentials the scattering phase
shift according to Eq. (3.30) is given explicitly.

4.1 Generalities for inverse-power tails

The inverse-power tails, that fulfill the requirements for the applicability of the present
formalism, i.e., are more singular than −1/r2 at the origin and vanish faster than −1/r2

asymptotically, can be given by

Vα(r) = −Cα

rα
= − ~

2

2µ

βα−2
α

rα
, α > 2 . (4.1)

The strength of the interaction is given by the strength coefficient Cα, or alternatively by

43
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the length βα. Relating the interaction strength to the length scale βα is quite convenient,
since it also introduces a corresponding energy scale

Eα =
~

2

2µ

1

β2
α

. (4.2)

Expressing all energies in units of this energy and all length in units of βα allows a
significant simplification of the radial Schrödinger equation (2.6) with the tail potential
(4.1)

[

d2

dρ2
+

1

ρα
+ χ

]

u(ρ) = 0 , (4.3)

where ρ is the dimensionless radius r/βα and χ ≡ E/Eα. Depending on whether the energy
is below or above the dissociation threshold (E = 0), we can also write

χ =
E

Eα
=

{

(kβα)2 , E > 0

−(κβα)2 , E < 0
(4.4)

with the asymptotic wave number k =
√

2µE/~ or the inverse penetration depth κ =√−2µE/~, respectively.

Equation (4.3) emphasizes a particular feature of homogeneous potentials such as Vα(r)
(4.1); all properties of the corresponding solutions do not depend on the energy and the
potential strength separately, but only on the product (κβα) or (kβα) respectively. So
does, e.g., the local classical momentum (2.29), that is now given by

ptail
E (ρ) =

~

βα

√

χ+ ρ−α . (4.5)

Regions of WKB validity

For inverse-power potentials (4.1), we can explicitly identify the regions of WKB validity
by evaluating the quantality function QE(r) as defined in (2.37). With the local classical
momentum given by Eq. (4.5) this yields

QE(ρ) =
α

16
ρα−2 α− 4− 4(α + 1)χρα

(1 + χρα)3 . (4.6)

We find that, at small ρ, the quantality function behaves as

QE(ρ)
ρ→0∼ α (α− 4)

16
ρα−2 , (4.7)

except for the case of α = 4, where the quantality function starts proportional to ρ6.
Therefore, for all inverse-power potentials Vα(r) [cf. Eq. (4.1)], the accuracy of the WKB
approximation increases with decreasing r and becomes exact in the limit r → 0, inde-
pendent of the system’s energy. For large ρ the quantality function behaves as

QE(ρ)
ρ→∞∼ −α(α+ 1)

4

1

χ2
ρ−(α+2) , (4.8)
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Figure 4.1: The absolute value of the quantality function QE(ρ) for the potential V3(r) = −C3/r
3

is plotted against the dimensionless radius ρ = r/βα for zero energy (solid line) and for both a
negative energy χ = −1 (dashed line) and a positive energy χ = +1 (dotted line). The value
quantality function QE(ρ) tends to zero both in the limit ρ→∞ (for nonzero energies) and in the
limit ρ → 0 (for every energy). At negative energy (χ = −1) a classical turning point exists at
ρ = 1 and the corresponding quantality function (dashed line) diverges at this point.

so that the WKB approximation becomes increasingly accurate in the limit r →∞ too for
any given nonzero energy. This is actually not very surprising, since the potential Vα(r)
vanishes in the limit r→∞ and each solutions can be written as a linear combination of
exp(±ikr) for positive energies or exp(±κr) for negative energies. These are just particular
cases of WKB waves (2.35) in a constant potential.

At a classical turning point, i.e., at rE for negative energies in attractive inverse-power
potentials (4.1), the quantality function diverges (cf. Section 2.2). For positive energies,
the absolute value of the quantality function does not diverge but has a maximum at
around rE ,1 which is given by

rE = |χ|−1/αβα =

{

(κβα)−2/α βα E < 0

(kβα)−2/α βα E > 0
. (4.9)

As an example, Figure 4.1 shows the behavior of the quantality function (4.6) for the
inverse-cube potential V3(r) = −C3/r

3 for different energies. The absolute value of the
quantality function is plotted against the dimensionless radius ρ = r/β3 for the energies
E = 0,−E3,+E3. We find that, in the limit of small radii (4.7), it is essentially independent
of the energy. For the negative energy value E = −E3 (dashed line), rE = β3 is the classical
turning point and the quantality function diverges. For the positive energy value E = +E3

(dotted line) the behavior at small and large ρ is the same as for E = −E3, since neither the
low-ρ asymptote (4.7) nor the high-ρ asymptote (4.8) depends on the sign of the energy.

1The absolute value of the quantality function can obviously be determined by explicitly differentiating
Eq. (4.6) with respect to ρ. This actually yields a distance that is rE times a factor close to unity in the
cases considered here (cf. Ref. [70]).
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Zero-energy solutions

Two linearly independent zero-energy solutions (3.19) of the radial Schrödinger equation
(4.3) with the tail potential Vα(r) are needed for the calculation of the low-energy ex-
pansions of the quantization function (see Section 3.2.2) and the tail functions for the
description of unbound scattering states (see Section 3.3.3). These functions can be given
analytically

w0(r) =
Γ(1 + ν)

νν

√
r

βα
Jν(z) , w1(r) = Γ(1− ν)νν

√

βαrJ−ν(z) , (4.10)

where J±ν(z) denotes the Bessel function of the first kind2 of order ±ν, with

ν =
1

α− 2
, and z = 2ν

(
βα

r

)1/(2ν)

(4.11)

being the argument. The gamma function Γ(x) is real-valued for real arguments x. In the
limit r → 0, the argument z of the Bessel functions diverges to infinity. The asymptotic
expansion for large arguments [48] of the Bessel functions can then be compared to the
inner WKB form (3.20) to determine the amplitudes D0,1 and the phases φ0,1 (see, e.g.,
[54]). This yields

D0 =

√

~

πνβα

Γ(1 + ν)

νν
, φ0 =

π

2
+ νπ ,

D1 =

√

~βα

πν
Γ(1− ν)νν , φ1 =

π

2
− νπ . (4.12)

These amplitudes and phases determine the parameters that enter the low-energy identities
that have been formulated in Section 3.2.2 for the quantization function F (E) and in
Section 3.3.3 for the tail functions φs, φc and As/Ac that characterize the continuum
states above threshold.

The threshold length, which is defined in Eq. (3.24) and determines the leading-order
energy dependence of the quantization function [cf. Eq. (3.25)], is given by

bα = ν2ν Γ(1− ν)

Γ(1 + ν)
sin(νπ)βα . (4.13)

This expression can easily be evaluated for any α > 3 and, in addition, takes a finite value
in the limit α → 3. A threshold length b3 thus exists for the reference potential V3(r).
The mean scattering length (3.61) determines, together with the threshold length bα, the
threshold law (3.60) for elastic scattering. For inverse-power tails Vα(r) with α > 3 it is
given by

2For integer orders ν the Bessel functions fulfill J−ν(z) = (−1)νJν(z) and are therefore not linearly
independent. As far as our considerations are concerned, this is only important in the case of α = 3; a
solution linearly independent of w0(r) (4.10) is asymptotically given by r + ln r instead of r.
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α 3 4 5 6 7 α→∞

bα/βα π 1 0.631342 0.477989 0.391514 π/(α− 2)

āα/βα — 0 0.364506 0.477989 0.538872 1

Table 4.1: Values of the threshold length bα and of the mean scattering length āα for inverse-power
tail potentials Vα(r) (4.1) with different values of the power α.

āα = ν2ν Γ(1− ν)

Γ(1 + ν)
cos(νπ)βα . (4.14)

In the particular limit of α → 3 the mean scattering length āα diverges to −∞; a finite
scattering length does not exist for potentials with inverse-cube tails V3(r). Explicit values
for bα and āα are given in Table 4.1.

4.2 Quantization for inverse-power tails

The general form of the tail part Ftail(E) of the quantization function that enters the
quantization rule (3.14) via Eq. (3.15) has been given in Refs. [13, 43] for inverse-power
tails and will briefly be summarized in the following. Explicit expressions for the tail
part of the quantization function in the presence of tail potentials proportional to −1/r6

[13, 43] and −1/r4 [42, 43] have also been given before. We thus do not recapitulate these
quantization functions, but derive an explicit, analytical expression for the tail part of the
quantization function only for the case of inverse-cube tails V3(r) in Section 4.2.2.

4.2.1 The general case −Cα/rα with α > 2

In this section, the constituents of the tail part Fα(E) of the quantization function for
the class of inverse-power potentials Vα(r) with α > 2 [see Eq. (4.1)] are explicitly given.
Limiting expansions for the outer reflection phase φout(E) are given in an analytical form
and the corresponding implications on the quantization function are studied.

For inverse-power tail potentials (4.1), the difference of the two action integrals that
occurs in Eqs. (3.16), (3.18) and (3.23) can be evaluated analytically, which yields

FNDE
α (E) =

1

π~
[Stail(0)− Stail(E)]

=
1

π~

∫ ∞

rE

ptail
0 (r)dr +

1

π~

∫ rE

0

[

ptail
0 (r)− ptail

E (r)
]

dr

=
1

π

∫
∞

(κβα)−2/α
ρ−α/2dρ+

1

π

∫ (κβα)−2/α

0

[

ρ−α/2 −
√

(κβα)2 − ρ− α
]

dρ

=
1

π

{
2

α− 2
+

∫ 1

0
x−α/2

[

1−
√

1− xα
]}

(κβα)1−2/α

=
Gα

π
(κβα)1−2/α , (4.15)
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α 3 4 5 6 7 α→∞

φ0/π 3/2 1 5/6 3/4 7/10 1/2

Gα 2.24050 1.19814 0.835265 0.646777 0.529983 π/α

Table 4.2: Values of the outer reflection phase at zero energy φ0 and of the coefficient Gα for
inverse-power tail potentials Vα(r) (4.1) with different values of the power α.

where we substituted ρ → (κβα)−2/αx to obtain the third identity. The distance rE is,
for E < 0, just given by the outer classical turning point rE = (κβα)−2/αβα, according to
its definition (4.9). By expanding the square root in the integrand, an analytical solution
can be found which yields

Gα =

√
π

α− 2

Γ
(

1
2 + 1

α

)

Γ
(

1 + 1
α

) (4.16)

for the coefficient Gα. Equation (4.15) constitutes the LeRoy-Bernstein quantization func-
tion FNDE

tail (E) [cf. Eq. (3.18)] that was obtained for inverse-power potentials Vα(r) with
α > 2 in 1970 [14, 15]. It exhibits the typical semiclassical energy dependence on the
reduced outer classical turning point

s = κrE = (κβα)1−2/α . (4.17)

The LeRoy-Bernstein quantization function FNDE
α (E) is, however, not exact for binding

energies very close to the dissociation threshold E = 0, which is the anticlassical limit
for these kinds of potentials [4]. To account for purely quantum mechanical effects at low
binding energies it needs to be modified via the correct values of the outer reflection phase

Fα(E) = FNDE
α (E)− φ0 − φout(E)

2π
. (4.18)

At low energies the outer reflection phase φout(E) is in general given by Eq. (3.23).
With φ0 from Eq. (4.12), the difference of the action integrals evaluated above [Eq. (4.15)],
and the threshold length bα defined in Eq. (4.13), this yields

φout(E)
κ→0∼ φ0 − 2Gα(κβα)1−2/α + 2bακ+O(κ2) . (4.19)

The phase φ0 and the coefficient Gα are explicitly given in Table 4.2 for different values
of the power α. For inverse-power tail potentials Vα(r) with α ≥ 4 the subsequent term
O(κ2) can in general be obtained analytically. The corresponding scheme is not revisited
here. For further reading see Ref. [13]. With the difference of the action integrals given
by Eq. (4.15) and the low-energy limit (4.19) of the outer reflection phase, the low energy
limit of the quantization function is

Fα(E)
κ→0∼ bα

π
κ+O(κ2) , (4.20)

which is in accordance with the more general formulation of Eq. (3.25).
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D1 D3 D5 D7

1

9

√
π

Γ (1/6)

Γ (2/3)
0

17

486

√
π

Γ (5/6)

Γ (−2/3)
− 1093

29160

√
π

Γ (7/6)

Γ (−4/3)

0.809550 0 −0.0174159 −0.0202295

Table 4.3: Analytical and numerical values for the coefficients of the high-energy expansion (4.21)
of the outer reflection phase in the case of an inverse-power tail potential (4.1) with α = 3.

In the limit κ → ∞, the outer reflection phase approaches the conventional WKB
value of π/2. Taking higher-order corrections to the WKB approximation in Eq. (2.31)
into account, the high-κ expansion of the outer reflection phase is

φout(E)
κ→∞∼ π

2
+

jmax∑

j=1

Dj

sj
, (4.21)

where s again stands for the reduced outer classical turning point (4.17). Explicit expres-
sions for the coefficients Dj are given, for any power α > 2, up to j = 7 in Ref. [42]. For
arbitrary α, only terms with odd j which are not integer multiples of α give a nonvanishing
contribution to the high-κ expansion (4.21). In the limit of high energies, the tail part of
the quantization function for inverse-power tails is given by

Fα(E)
κ→∞∼ FNDE

α (E)− ν

2
, (4.22)

with FNDE
α (E) given in Eq. (4.15), according to Eq. (3.26). We thus find that, except for

a constant offset, the near-dissociation expansion given by LeRoy and Bernstein [14] gives
the correct progression of bound-state energies in the limit of high binding energies, but
fails near the dissociation threshold E = 0. However, one should keep in mind that, at
higher binding energies, the short-range part Fsr(E) of the quantization function is most
certainly not negligible.

4.2.2 Dipole-dipole interaction (α = 3)

We now study the near-threshold quantization for potentials that have inverse-cube tails
V3(r) = −C3/r

3. Isotropic interaction potentials with these tails can occur in the in-
teraction between two atoms of the same species, but in different internal states (see
Appendix A). Exact values for the outer reflection phase are presented. With these values
the correct form of the tail part Fα=3(E) of the quantization function is obtained. In
order to present a simple form for this quantization function, a simple rational expression
is presented, which accurately approximates the outer reflection phase. The results for the
quantization function in the presence of inverse-cube tails have already been published in
Ref. [71].

Outer reflection phase

For the inverse-cube reference potential V3(r) the threshold value of the reflection phase
is given by 3π/2 (see Eq. 4.10 and Table 4.2). and φout(E) decreases to its semiclassical
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Figure 4.2: Exact values of the outer reflection phase φout as obtained with an inverse-cube
reference potential. They are plotted against the reduced outer classical turning point (4.17) (solid
line) together with the analytical low-energy expansion (4.23) (dashed line) and the high-energy
expansion (4.21) for different values of jmax (dot-dashed lines).

value π/2 as the asymptotic inverse penetration depth κ increases (κ→∞), according to
Eq. (4.21). Exact values for the outer reflection phase are shown as the solid line in Fig-
ure 4.2. They have been calculated by solving the Schrödinger equation (4.3) numerically
with bound-state boundary conditions (3.11) and are plotted against the reduced outer
classical turning point s = (κβ3)1/3 of the reference potential V3(r) = −C3/r

3, with the
characteristic length β3 = 2µC3/~

2.
The low-energy expansion φlow

out(E) of the outer reflection phase φout(E) is depicted as
the dashed line in Figure 4.2. It is defined via the expansion

φα=3
out (E)

κ→0∼ 3π

2
− 2G3(κβ3)1/3 + 2π(κβ3)

def
= φlow

out(E) , (4.23)

where the next term is of the order κ2, but can not be obtained analytically for the case
of inverse-cube tail potentials V3(r) . According to Eq. (4.16) the coefficient G3 is given
by

G3 =
√
π

Γ (5/6)

Γ (4/3)
≈ 2.24050 , (4.24)

as already listed in Table 4.2. Note that this contribution from the outer reflection phase
cancels exactly with the contribution of the action integrals to the quantization function
(3.16). The threshold length b3 that enters the expansion (4.23) is just b3 = πβ3 as already
stated in Table 4.1.

The high-energy expansion φhigh
out (E) is given by Eq. 4.21 with s = (κβ3)1/3. The coef-

ficients Dj for the inverse-power tail potential (4.1) with α = 3 are gathered in Table 4.3.
The high-energy expansions (4.21) obtained with jmax = 1, 5, 7 are shown as dot-dashed
lines in Figure 4.2. We can clearly see from Figure 4.2 that the high-energy expansion
φhigh

out (E) is an asymptotic expansion; the inclusion of higher order terms does not neces-
sarily increase the range of applicability. However, there is only a small energy regime
0.2 . s . 1 that is not well covered by the expansions (4.23) and (4.21) at low and high
energies respectively.
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Interpolation scheme

Our goal is to find an analytical expression approximating the energy-dependent behavior
of the outer reflection phase for all energies, and consequently of the quantization function
(3.16), in order to provide an accurate form of the quantization rule (3.14), that can be
applied to realistic situations.

Starting from the low-energy expansion (4.23) and the high-energy expansion (4.21)
some effort has been put into the interpolation between these two regimes. In previous
works, several different types of fitting functions have been used to approximate the exact
behavior of the outer reflection phase. A first attempt was undertaken by Trost et al. [59].
An even simpler expression was given by Côté et al. in 2004 [72]. The most accurate fit
for the reflection phase over the whole energy range so far has been found by introducing
an interpolation function of the form

φfit
out(E) = A(E) · φlow

out(E) + [1−A(E)] · φhigh
out (E) , (4.25)

with an appropriate choice of the function A(E). The expression (4.25) has been able to
approximate the exact reflection phase up to an accuracy of at least 10−3 over the whole
energy range for inverse-power tail potentials Vα(r) with α = 6 [13] and α = 4 [42].

For the special case of the tail potential V3(r), finding such an interpolation function
is a challenging task; the deviation from the exact values needs to be a lot smaller in this
case, in order to account for the increased density of states near the dissociation threshold
E = 0. The density of states diverges as the energy approaches the dissociation threshold
for all inverse-power tails (4.1) with α > 2, while the total number of bound states remains
finite. However, the density of near-threshold bound states increases the closer the power
α in (4.1) comes to the value 2, below which the number of bound states is infinite [73].
We thus try an alternative to the interpolation scheme of Eq. (4.25) in order to obtain an
accurate analytical approximation to the exact values of the reflection phase.

One alternative is to consider a rational function of s to approximate the reflection
phase

φrat
out(s)

π
=

3 +
∑imax

i=1 cis
i

2 +
∑imax

i=1 disi
. (4.26)

This is particularly useful for inverse-power tail potentials (4.1) with α = 3 because κβ3

is an integer power of the reduced classical turning point s, in contrast to α = 6, where
κβ6 = s3/2.

The limiting cases (4.23), (4.21) impose several constraints on the rational function
(4.26). First of all, to make sure that the expression reaches 3/2 as s→ 0 [cf. Eq. (4.23)],
the zeroth-order terms in the numerator and denominator are given by 3 and 2 respectively.
Furthermore, the highest order imax must be the same in numerator and denominator,
since φout approaches a constant value as s→∞. This constant is π/2 so we can conclude
that cimax

= dimax
/2. According to this principle we equip the expression (4.26) with the

correct limiting expansions (4.23), (4.21). If we consider the low-energy expansion up to
O(κ) = O(s3) and the high-energy expansion up to and including O(s−5), we get another
eight constraints to the ci and di.

We have experienced that this procedure is very efficient for the case imax = 8, in which
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i ci di

1 8.198894514574 7.367727350550

2 38.229531850326 32.492317936470

3 85.724646494548 85.380005002970

4 147.081920247084 169.428485967491

5 185.465618264420 242.028021052411

6 141.484936909078 250.115055730896

7 60.927524697423 63.749260455229

8 56.372265754601 112.744531509202

Table 4.4: Coefficients for the rational expression φrat
out(E) [Eq. (4.26)] with imax = 8 for the outer

reflection phase φout. The coefficients are obtained via a χ2-fit to the numerically exact values of
the reflection phase as depicted in Figure 4.2.

(4.26) contains 16 parameters.3 This leaves us with seven free fit parameters, considering
the limiting expansions mentioned above. Fitting to a set of numerically exact values for
the reflection phase yields the values for the coefficients (c1, . . . , c8, d1, . . . , d8) gathered in
Table 4.4.

The analytical expression (4.26) obtained by this fitting procedure fulfills the relations
(4.23) and (4.21) with jmax = 5 by construction. The absolute value of the deviation
from the numerically exact values is shown in Figure 4.3. It can be seen that the rational
expression (4.26) approximates the outer reflection phase with an accuracy of 10−7π in
the whole range from threshold (κ = 0) to the high-κ limit. This is an appreciable
improvement over the interpolation scheme of Eq. (4.25).

The expression (4.26) contains more fitted parameters than the expressions (4.25) used
for the −1/r6 [13] and for the −1/r4 [42] potentials, but it has a transparent structure
and it fulfills the high-accuracy requirements of the −1/r3 case. All these interpolated
expressions are superior to the earlier attempts [59, 72], where either the low-κ or the
high-κ expression for φout(E) is only correct to leading order.

Explicit expression for the quantization function

The tail contribution to the quantization function is constructed according to (3.16) with
the analytical expression (4.26) for the outer reflection phase

Fα=3(s) =
G3

π
· s− φ0 − φrat

out(s)

2π

=
Γ (5/6)√
πΓ (4/3)

s+
3 +

∑imax

i=1 cis
i

4 + 2
∑imax

i=1 disi
− 3

4
(4.27)

with the corresponding coefficients listed in Table 4.4. This quantization function (4.27)
accounts for all effects originating from the potential tail up to an accuracy of 5 × 10−8

3There is no analytical expression reproducing the characteristics of the reflection phase exactly in every
energy region and so there is no approximate expression to be preferred for other reasons than accuracy
and handling.
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Figure 4.3: The absolute value of the deviation of the rational expression (4.26) for the outer
reflection phase from its numerical values is plotted against the reduced classical turning point s
on a doubly-logarithmic scale. From s & 4 on, the high-energy expansion (4.21) of the reflection
phase with jmax = 7 is closer to the exact value of the reflection phase than the numerical values.
Therefore the expansion (4.21) is the reference for the rational function (4.26) in this energy regime.

(see Figure 4.3).

The left panel of Figure 4.4 shows both Fα=3 and FNDE
α=3 as functions of κβ3 = s3.

Taking either the low-energy expansion (4.23) or the interpolated expression (4.26) for the
outer reflection phase, we find that the quantization function for potential tails (4.1) with
α = 3 behaves as

Fα=3(E)
κ→0∼ κβ3 = s3 def

= F low
α=3(E) (4.28)

at low energies (dashed line in Figure 4.4). The contributions of the actions integrals
(∝ s) in (3.16) cancel exactly. As shown in previous works [13, 41, 42], this gives the
universal behavior of quantization functions for potentials with tails vanishing faster than
−1/r2 asymptotically [cf. Eq. (3.25)]. This is in strict contrast to the LeRoy-Bernstein
function (4.15) which neglects the energy dependence of the outer reflection phase and
starts linearly in the reduced outer classical turning point s.

Using the high-energy expansion of the reflection phase for the quantization function
(3.16) we obtain

Fα=3(E)
κ→∞∼ G3

π
· s+

1

2π

jmax∑

j=1

Dj

sj
− 1

2

def
= F high

α=3 (E) . (4.29)

This expression resembles the near-dissociation expansion for high energies, but it is offset
by −1/2. This offset is, for given α, equal to ν/2 = 1/ [2(α − 2)], according to Eq. (4.22).
Thus the discrepancy between the LeRoy-Bernstein function (4.15) and the correct quan-
tization function (4.27) increases as α→ 2. The constant offset of −1/2 is depicted in the
right panel of Figure 4.4, where the quantization functions Fα=3 and FNDE

α=3 are plotted
against the reduced outer classical turning point s up to higher energies (κβ3 ≈ 64).

It is still widely believed, that the near-dissociation expansion offers a good description
of the highest-lying states in a potential well with a long-range tail [74–77]. The accuracy
of both the LeRoy-Bernstein function (4.15) and the correct quantization function (4.27)
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Figure 4.4: The left panel shows the quantization function (4.27) for inverse-cube potential tails,
i.e. (4.1) with α = 3 plotted against the product of the inverse penetration depth κ and the length
parameter β3. The correct quantization function (4.27) (solid line) starts linearly in κβ3, whereas
the quantization function (4.15) derived from the near-dissociation expansion (LeRoy-Bernstein
function) shows a wrong near-threshold behavior (dotted line). The low-κ and high-κ expansions
of the correct quantization function (4.28) and (4.29) are also shown (dashed line, dot-dashed line).
The right panel shows the quantization function (4.27) for an inverse-cube potential tail, i.e. (4.1)
with α = 3, as function of the reduced outer classical turning point s (solid line). The corresponding
quantization function resulting from the near-dissociation expansion, the LeRoy-Bernstein function
(4.15), is also shown (dotted line).

deteriorates with increasing separation from the threshold, due to short-range effects, that
vanish in the limit E → 0. But only the quantization function (4.27), accounting for
the energy dependence of the outer reflection phase provides the correct description of
quantization in the near-threshold regime. The near-dissociation expansion fails there
too, because it is based on the conventional semiclassical approximation which breaks
down near threshold for potentials with inverse-power tails Vα(r) with α > 2.
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4.3 Scattering for inverse-power tails

In Chapter 3, a formalism has been developed that allows the treatment of scattering
processes given that the considered interaction potential has an attractive tail Vtail(r)
that vanishes faster than 1/r2 asymptotically and is more singular than −1/r2 at the
origin. The singular form of the tail potential provides the possibility of separating the
influence of the attractive tail on the scattering properties from effects due to the deviation
of the full potential from the singular form of its tail.

Analytical expansions of the scattering tail functions are given for inverse-power tail
potentials Vα(r) = −Cα/r

α for general α > 2 and explicitly for the integer cases −1/r6

to −1/r3, including the rather rare case of isotropic −1/r5 interactions for reasons of
completeness. For each of these cases, the effective-range expansion for the s-wave scat-
tering phase shift is reformulated and the low-energy scattering parameters are expressed
in terms of the threshold quantum number nth and further short-range parameters, if
needed.

4.3.1 The general case −Cα/rα with α > 2

The preconditions that have been formulated in Chapter 3 for the shape of the tail potential
Vtail(r) are perfectly fulfilled by the inverse-power potential Vα(r) with α > 2. In the
following, we study the peculiarities of the scattering parameters that arise for certain
shapes of the inverse-power tail, i.e., for different powers α. The tail functions for scattering
are given and their implications for the scattering phase shift are studied.

Tail functions

In order to evaluate the formula (3.30) or (3.48) for the scattering phase shift and to obtain
explicit expressions for the low-energy scattering parameters, we need to provide the tail
functions ξt, As/Ac, φs, and φc in an explicit form. We thus present — for the general
case of an inverse-powers tail (4.1) — limiting analytical expressions of these, both at high
collision energies and at low collision energies.

Evaluation of the phase ξ
t

To find an explicit expression for the phase ξt (3.9) that enters the expression (3.8) for
the regular solution in the short-range region of the potential tail, as well as the formulae
(3.30) and (3.48) for the scattering phase shift, we need to evaluate the integrals occurring
in Eq. (3.9) for each tail potential Vα(r). With the local classical momentum given by
Eq. (4.5) and the distance rE given by Eq. (4.9), we find

1

~

∫ ∞

rE

ptail
0 (r)dr +

1

~

∫ rE

0

[

ptail
0 (r)− ptail

E (r)
]

dr

=

∫ ∞

(kβα)−2/α
ρ−α/2dρ+

∫ (kβα)−2/α

0

[

ρ−α/2 −
√

(kβα)2 + ρ−α

]

dρ

=

[∫ ∞

1
x−α/2dx−

∫ 1

0
x−α/2

(√
1 + xα − 1

)

dx

]

(kβα)1−2/α , (4.30)



56 4. Application to inverse-power tails

α 3 4 5 6 7 α→∞

ηα 0.908797 0.847213 0.802904 0.769516 0.743463
√

2− arsinh(1)

τα 0.769516 0.847213 0.885769 0.908797 0.924102 1

Table 4.5: Values of the coefficients ηα and τα for inverse-potential tail Vα(r) (4.1) for different
values of the power α.

where we substituted ρ → (kβα)−2/αx to obtain the second identity. The first integral
in the third line of Eq. (4.30) can be evaluated in a straighforward fashion. The second
integral can also be evaluated analytically by expanding the square root in the integrand
in orders of xα and integrating each addend separately. Together with φout(0) = (1/2+ν)π
[cf. Eqs. (3.23) and (4.12)], Eq. (3.9) yields

ξt = −
(

3

4
+
ν

2

)

π +
2

α− 2
ηα(kβα)1−2/α , (4.31)

which is valid for all inverse-power tails Vα(r) with α > 2. The coefficient ηα can be
expressed in terms of a hypergeometric function

ηα =
√

2− α

α+ 2
2F1

(
1

2
,
1

2
+

1

α
;
3

2
+

1

α
;−1

)

. (4.32)

Explicit values of the coefficient ηα are listed in Table 4.5.

High-energy behavior

At energies much larger than the characteristic energy scale Eα of the inverse-power po-
tential tail (4.1), it has been shown that the ratio As/Ac of the amplitudes approaches
unity (3.85) [cf. also Eq. (3.47)]. The high-energy expansion of the corresponding phases
φs and φc has been derived in Section 3.3.3. For inverse-power tails (4.1), the integrals
occurring in Eq. (3.86) can be evaluated analytically

φs/c
E≫Eα∼ − krE +

1

~

∫
∞

rE

[

ptail
E (r)− ~k

]

=− (kβα)1−2/α +

∫ ∞

(kβα)−2/α

[√

(kβα)2 + ρ−α − (kβα)

]

dρ

=−
[

1−
∫ 1

0

1

y2

(√

1 + yα − 1
)

dy

]

(kβα)1−2/α

=− τα(kβα)1−2/α (4.33)

for any α > 2. In the third line of Eq. (4.33), we substituted ρ → (kβα)−2/α/y. The
high-energy behavior of the phases φs and φc shows the typical semiclassical dependence
on the energy, i.e., it is proportional to (kβα)1−2/α (cf. Ref. [54]). The coefficient τα can
be evaluated again by expanding the integrand in orders of yα. This procedure yields

τα =
√

2− α

2(α − 1)
2F1

(
1

2
, 1− 1

α
; 2− 1

α
;−1

)

. (4.34)
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From this behavior and the complete knowledge of the phase ξt (4.31), we can deduce an
expression for the high-energy behavior of the scattering phase shift as given in Eq. (3.87)

δ0
E≫Eα∼

(

nth +
3

4
+
ν

2

)

π −
(

τα +
2

α− 2
ηα

)

(kβα)1−2/α . (4.35)

The coefficient for the typical semiclassical energy dependence of the phase shift can further
be simplified, which gives

τα +
2

α− 2
ηα =

α

α− 2

Γ
(

1
2 + 1

α

)

Γ
(

1− 1
α

)

√
π

. (4.36)

A corresponding expression was already found by Flambaum et al. [44] from semiclassical
considerations.

Low-energy behavior of the tail functions

For the ratio of the amplitudes As/Ac, we can use its lowest-order expansion as given in
Eq. (3.57) with the amplitudes from Eq. (4.12) to obtain

As

Ac

k→0∼ ν2ν Γ(1− ν)

Γ(1 + ν)
(kβα) =

√

ā2
α + b2

α k (4.37)

for any α > 3, where the threshold length bα and the mean scattering length āα are
defined for inverse-power tails in Eqs. (4.13) and (4.14) respectively. In order to obtain
an expression for the ratio of the amplitudes, we can alternatively use the identity (3.47)
with the result for Kα

refl taken from the context of quantum reflection

As

Ac
= |Kα

refl|
k→0∼ ν2ν Γ(1− ν)

Γ(1 + ν)
(kβα)

− ν1+6ν Γ(−ν)Γ(−2ν)2Γ(−3ν)

Γ(ν)2Γ(−4ν)
cos(2πν)(kβα)3

+

√
π

4

Γ
(

−1
2 − 1

2ν

)

Γ
(

1 + 1
2ν

) cos(πν)(kβα)α−2 +O(k5) , (4.38)

which gives an expansion up to higher orders of the wave number k. This expression is
derived from the expansion of Kα

refl that was found by Arnecke et al. and is presented in
Ref. [78]. It was obtained by expanding the corresponding Jost solutions [29] within the
framework established in Ref. [79]. The expansion (4.38) is valid for any α > 5, while its
first-order term remains valid down to α > 3.

The low-energy expansions of the phases φs and φc are given in Eqs. (3.78) and (3.80) in
general terms. For an explicit expression of these low-energy expansions for inverse-power
tails (4.1), the effective areas hs and hc that contain integrals involving the zero-energy
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solutions (4.10) need to be evaluated. For the effective area hs (3.79), this yields

hs =
~

D2
1

∫ ∞

0

[

r2 − w1(r)2
]

dr

=
πν1−2ν

Γ(1− ν)2

1

βα

∫ ∞

0

{

r2 − Γ(1− ν)2ν2νβαr [J−ν (z)]2
}

dr

= πν4ν+2β2
α

∫ ∞

0

(
z

2

)−4ν−1






[

(z/2)−ν

Γ(1− ν)

]2

− [J−ν(z)]2






dz , (4.39)

where the integration variable has been changed to z as defined in Eq. (4.11). It is found
that hs scales with β2

α. The integrand is, in the limit of small z, of the order of z1−6ν ,
so that the integral diverges unless ν < 1/3, i.e., α > 5. This condition for the existence
of an effective-range term was already formulated in Section 3.3.3. Whenever the integral
converges to a finite value, we find that

hs

β2
α

=
1

3ν
ν4ν Γ(4ν)

Γ(2ν)2
Γ(1− 3ν)Γ(1 − ν) sin(πν) . (4.40)

A similar integration technique can be applied to evaluate the integral in Eq. (3.81). We
can, however, also make use of the expression for ρeff, that has been derived in previous
works [13, 43]

ρeff

βα
=

π(2ν)2ννΓ
(

1
2 + 2ν

)

sin(πν)Γ
(

1
2 + ν

)

Γ (1 + 3ν)
. (4.41)

A finite value for the sub-threshold effective range ρeff exists for all inverse-power potentials
Vα(r) with α > 3. With the threshold length bα given in Eq. (4.13) and simplifying the
expression that is obtained, we find

hc

β2
α

=
1

3ν
ν4ν Γ(4ν)

Γ(2ν)2
Γ(1− 3ν)Γ(1− ν) sin(3πν) . (4.42)

The values for the effective ares hs and hc are gathered in Table 4.6 for various values of
the power α. Together with the zero-energy phases (4.12) and the explicit form of the
integrals obtained in Eq. (4.30), the phases for both the sine (3.78) and the cosine solution
(3.80) can be given in terms of α

φs/c
k→0∼

(

−1

2
± ν − 1/2

2

)

π + 2νηα(kβα)1−2/α − h(α)
s/ck

2 +O(k3) . (4.43)

The validity of this expansion is limited by the existence of the effective areas hs/c. The
expansion (4.43) for φc is therefore valid for all α > 3, while the corresponding expansion
for φs is only valid for α > 5.

From these results a further term proportional to the energy can also be obtained for
the transmission phase φT , which was defined for the quantum reflection process (3.34)
and enters the formula (3.48) for the scattering phase shift. By making use of the relations

φT = φs + arg(1 +R) = φc + arg(1−R) (4.44)
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α 3 4 5 6 7 α→∞

hc/β
2
α — π/3 0.478821 1/3 0.267278 π/(α − 2)

hs/β
2
α — — — 1/3 0.165187 π/(3(α − 2))

Table 4.6: Values of the effective areas hc and hs for inverse-potential tails Vα(r) (4.1) for different
values of the power α.

obtained from Eqs. (3.44) and (3.46) together with the relations

arg(1 +R) = arg

(
2iKrefl

iKrefl − 1

)

, arg(1−R) = arg

(
2

1− iKrefl

)

(4.45)

as obtained via Eq. (3.33), we can derive the expansions

arg(1−R)
k→0∼ − āαk +

ν4ν

2

Γ(1− ν)2

Γ(1 + ν)2
sin(2πν)(kβα)2

+ ν6ν

[

1

3

Γ(1− ν)3

Γ(1 + ν)3
− Γ(−2ν)2Γ(−3ν)

Γ(ν)3Γ(−4ν) sin(πν)

]

cos(3πν)(kβα)3

+O(k4) (4.46)

and

arg(1 +R)
k→0∼ π

2
− νπ − āαk +

ν4ν

2

Γ(1− ν)2

Γ(1 + ν)2
sin(2πν)(kβα)2

+
π

2
ν4ν Γ(−3ν)Γ(−2ν)

Γ(−4ν)Γ(ν)Γ(2ν)
(kβα)2

+ ν6ν

[

1

3

Γ(1− ν)3

Γ(1 + ν)3
− Γ(−2ν)2Γ(−3ν)

Γ(ν)3Γ(−4ν) sin(πν)

]

cos(3πν)(kβα)3

− 2α−2Γ(1− α) sin(απ/2)ν−2ν Γ(ν)

Γ(−ν)
(kβα)α−3 +O(k4) (4.47)

from the expressions for the complex amplitude Kα
refl of quantum reflection taken from

Ref. [78]. These are valid for all α > 5. This procedure immediately yields

φT
k→0∼ − φ0

2
+

2

α− 2
ηα(kβα)2/α − āαk +

ν4ν

2

Γ(1− ν)2

Γ(1 + ν)2
sin(2πν)(kβα)2

− π

3
ν4ν Γ(−ν)Γ(4ν)

Γ(2ν)2Γ(3ν)
(kβα)2 +O(k3) , (4.48)

which goes beyond the result presented in Appendix B. Our present formulation, which
focuses on elastic scattering, does not benefit from this result very much, since the expan-
sions for φs and φc were already known up to the order of the energy from the effective-
range formalism shown above (Section 3.3.3). It is, however, worth mentioning, since the
transmission phase φT itself is not accessible via a comparable effective-range expansion.
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Effective-range expansion

Inserting the expansions (4.43) obtained for φs and φc and the expansion (4.38) for the
ratio of amplitudes As/Ac into the formula (3.30) yields the low-energy expansion of the
scattering phase shift which is equivalent to the well-known effective-range expansion as
easily obtained from scattering theory for short-range potentials (see, e.g., [27–29])

tan δ0
k→0∼ −ak − 1

2

(

a2reff

)

k3 +O(k5) . (4.49)

It is conventionally given as an expansion of the cotangent of the scattering phase shift

k cot δ0
k→0∼ −1

a
+

1

2
reffk

2 +O(k4) , (4.50)

which is more common in the existing literature although the former expansion (4.49) is,
in general, considered to be of simpler form and more elegant from the mathematical point
of view (see e.g. [34]).

The first-order coefficient is, of course, the scattering length a [30], that exists for any
potential with an inverse-power tail Vα(r) [Eq. (4.1)] with α > 3. It can, as also shown
before [cf. Eq. (3.60)], explicitly be given in terms of the length scales āα and bα that are
given in Eqs. (4.14) and (4.13)

a = āα +
bα

tan(nthπ)
= ν2ν Γ(1− ν)

Γ(1 + ν)

[

cos(νπ) +
sin(νπ)

tan(∆thπ)

]

. (4.51)

From this relation, we can easily see that the scattering length a diverges, when the value
of the remainder is

∆∞
th = 0 , (4.52)

i.e., whenever there is a bound state exactly at the dissociation threshold (E = 0)4 [cf.
Eq. (3.25) with (3.14)], and vanishes to zero whenever

∆
(0)
th = 1− ν =

α− 3

α− 2
. (4.53)

We can therefore see, that the distribution of the scattering length in units of the char-
acteristic length scale βα of the inverse-power tail Vα(r) clearly depends on the power
α.

Expanding the expression (3.30) for the scattering phase shift with the ratio of the
amplitudes (4.38) and the phases (4.43) up to O(k3), the effective range reff in expression
(4.49) can be given as a function of the scattering length a

reff

βα
= Fα −Gα

βα

a
+Hα

(
βα

a

)2

, (4.54)

4In the context of ultracold quantum gases, this case is referred to as unitarity. The effective interaction
strength is independent of the peculiarities of the interaction potential in the limit of low energies.
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with the coefficients (according to the nomenclature in Ref. [44])

Fα =
2

3

π

sin(πν)
ν2ν Γ(ν)Γ(4ν)

Γ(2ν)2Γ(3ν)
− 2ν1−2νΓ(ν)2 λ2

sr

Gα =
4

3

π

sin(πν)
ν4ν Γ(1− 2ν)Γ(4ν)

νΓ(ν)Γ(2ν)Γ(3ν)
+ 4π cot(πν)λ2

sr

Hα =
2

3

π

sin(πν)
ν6ν Γ(1− 3ν)Γ(1 − ν)Γ(4ν)

ν2Γ(ν)2Γ(2ν)2
− 2ν2ν−1Γ(1− ν)2 λ2

sr . (4.55)

When expanding the expression (3.30) up to the order of k3, the lowest order term γsr of
the short-range correction γ(E) [cf. Eqs. (3.8) and (3.10)] enters the effective-range term
via λ2

sr = γsrEα. Writing γsr = 2µβ2
sr/~

2 introduces the (generally complex) short-range
length scale βsr. Its absolute value is considered to be comparable to the length scale on
which the full potential V (r) deviates from the singular form of its inverse-power tail (4.1).
The last term of each coefficient Fα, Gα, Hα contains the square of the ratio λsr = βsr/βα.

In the limit that the modulus of the short-range length scale βsr is very small compared
to the length scale βα of the tail potential Vα(r), the ratio λsr tends to zero and these
terms will be negligible. The result obtained for the effective-range reff is — in this limit
(λsr → 0) — equivalent to the expression that was previously derived by Flambaum et al.

[44].
Whenever a bound state exists exactly at the dissociation threshold (E = 0) the

threshold quantum number’s remainder ∆th is exactly zero [cf. Eq. 4.52] and the scattering
length diverges according to Eq. (4.51). Therefore the effective-range expansion (4.49) is
rather useless, since it can not provide for a proper description of the scattering phase
shift. However, the formulation (3.30) remains valid and yields

tan δ∞
0

k→0∼ 2

r∞
effk

+O(k) , (4.56)

with the effective range for this constellation given by r∞
eff = reff(a→∞) = Fαβα, accord-

ing to Eq. (4.54). This leads to a divergence of the scattering cross section in the limit of
zero collision energy

σ∞
0

k→0∼ 4π

k2
− π (r∞

eff)2 +O(k2). (4.57)

This relation can also be obtained by making use of the effective-range expansion (4.50),
and is extensively studied in Ref. [80]. In the presence of a bound state at E = 0, the
present framework thus provides information about the scattering phase shift that is found
to behave as

δ∞
0

k→0∼ π

2
− r∞

eff

2
k +O(k2) . (4.58)

We find that the s-wave phase shift starts at π/2, which is well-known from scattering
theory for actual short-range potentials (cf. Refs. [28, 29]) and actually modifies Levinson’s
Theorem. The first-order term of the expansion in the wave number k is just given by the
value of the effective range r∞

eff (4.54) in the limit a→∞.
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The considerations of this section have been quite general so far (α > 3 or α > 5 for
the discussion of the scattering length or the effective range, respectively). It is a known
fact, that the scattering phase shift is an odd function of the wave number k only for truly
short-range potentials that fall off faster than any power of the distance asymptotically.
In the case of scattering by potentials with inverse-power tails Vα(r) with α > 2, that
is discussed here, the expansion of the phase shift in odd orders of the wavenumber k
breaks down at O(km), with m = α− 2 (see Ref. [36]). For the cases α ≤ 5, the effective-
range expansion (4.49) up to O(k3), will be modified by “anomalous”, i.e., logarithmic or
even-order terms. These can also be identified in the low-energy expansions of the tail
functions.

In the following sections, we focus on the cases of tail potentials Vα(r) with integer
values of α in the range 3 ≤ α ≤ 6. These are the most prominent cases for typical
interactions between two compound particles, such as for atom-atom, atom-ion or atom-
molecule interactions (cf. Appendix A) and will exhibit “anomalous” terms in the effective-
range expansion. Some of the results presented are partially published in Ref. [60].

4.3.2 Induced dipolar interactions (α = 6)

We study the elastic scattering from a potential that has an attractive tail proportional to
−1/r6. This case is very prominent, since it occurs, e.g., in the interaction of two ground-
state atoms (see Appendix A). Its understanding is crucial in the field of ultracold atomic
physics especially for the creation and manipulation of atomic Bose-Einstein condensates
[24, 26, 81].

In this section, we present — for the reference potential V6(r) = −C6/r
6 — results for

the tail functions for scattering, that are valid from the extreme quantum regime (E ≪ E6)
very close to the dissociation threshold to the semiclassical regime at moderately high
energies (E ≫ E6). Their low-energy behavior is studied in order to obtain an improved
effective-range expansion of the scattering phase shift, which is valid in the limit of low
collision energies.

Tail functions

In the following, the tail functions As/Ac, φs, φc and, for reasons of completeness, also the
phase ξt are explicitly given for the case of a −1/r6 reference potential. Corresponding
analytical expansions are presented, where possible. The phase ξt can explicitly be given
just by evaluating Eqs. (4.31) and (4.32) with α = 6

ξα=6
t = −7

8
π +

1

2
η6(kβ6)2/3 , (4.59)

with the coefficient η6 as given by Eq. (4.32) and in Table 4.5. The characteristic length
scale of the potential tail is β6 = (2µC6/~

2)1/4. Expression (4.59) is valid for all collision
energies.

The tail functions As/Ac, φs and φc can not be obtained analytically for all energies
but are obtained from numerical calculations. The left-hand side of Figure 4.5 shows the
ratio of the amplitudes As/Ac (solid line) as obtained from numerically solving the radial
Schrödinger equation (4.3) with the tail potential V6(r) = −C6/r

6 alone. The dotted
line visualizes the low-energy behavior to first order, according to Eq. (4.37), while the
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Figure 4.5: The graph on the left-hand side shows the universal behavior of the ratio of amplitudes
As/Ac for an inverse-power tail (4.1) with α = 6 as a solid line, plotted against the product (kβ6)
together with its low-energy behavior (dotted line) to first order in k [see Eq. (4.37)] and its high-
energy behavior (dot-dashed line) given in Eq. (3.85). The graph on the right-hand side shows the
universal behavior of the tail-dependent phases φs and φc for the same potential tail, but plotted
against (kβ6)2/3. The dotted lines and the dot-dashed line show the low-energy behavior to lowest
order (4.43) and the high-energy behavior (4.33) respectively.

dot-dashed line represents the high energy limit, i.e., unity (3.85). We find that the exact
numerical values follow the low-energy expansion almost up to kβ6 . 1. For higher energies
(kβ6 & 8), the ratio of amplitudes oscillates around its high-energy limit (dot-dashed line)
with decreasing amplitude, so that As/Ac deviates from unity on scales smaller than 10−3

for energies corresponding to kβ6 & 15, beyond the range plotted in Figure 4.5.
The corresponding low-energy behavior up to higher orders in the wave number k can,

as demonstrated before, be given by the expansion of the absolute value of the amplitude
Kα=6

refl of quantum reflection from the attractive singular potential V6(r) = −C6/r
6

As

Ac
= |Kα=6

refl |
k→0∼ 1

2

Γ(3/4)

Γ(5/4)
(kβ6)− π

15
√

2
(kβ6)4 +O(k5) , (4.60)

which is, of course, a special case of the expansion (4.38) presented in the previous section.
The expansion (4.60) contains all terms up to and including O(k4). This is verified in
Figure 4.6(a), where the difference between the exact values of As/Ac and their low energy-
behavior (4.60) divided by (kβ6)4 is plotted against kβ6. From the observation that this
quantity tends to zero in the limit of kβ6 → 0, we can conclude that all terms up to
and including the term O(k4) entering the asymptotic expansion (4.60) are correct (see
Appendix C) and the subsequent term is at least O(k5).

The corresponding phases are shown in the right panel of Figure 4.5. The behavior of
both the phase φc (solid line) and the phase φs (dashed line) is plotted against (kβ6)2/3,
which is the leading energy dependence at both low and high collision energies (dotted lines
and dot-dashed line respectively). The common high energy-asymptote of both phases is

just given by −τ6(kβ
2/3
6 ) according to Eq. (4.33).

In the limit of low energies, the phase φc can, according to Eq. (4.43), be given by

φc(k)
k→0∼ −3π

8
+

1

2
η6(kβ6)2/3 − 1

3
(kβ6)2 +O(k4) . (4.61)

From the graph shown in Figure 4.6(b) we can deduce that this expansion is not only
correct up to O(k2), as suggested by Eq. (4.43), but correctly gives all terms up to and
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Figure 4.6: For a −1/r6 tail, the difference between numerically obtained results for (a) the ratio
of amplitudes As/Ac, (b) the phase φc and (c) the phase φs and the corresponding low-energy
expansions [cf. Eqs. (4.60), (4.61) and (4.64)] are divided by the highest-order contribution to
the analytical expansion and plotted against (kβ6). The circumstance that all plotted quantities
tend to zero in the limit kβ6 → 0 shows the correctness of all analytically obtained terms in the
corresponding expansion.

including O(k3). The subsequent term in Eq. (4.61) that is not known analytically is thus
O(k4). Obviously, this is not a general feature of the phase φc but holds for the particular
case of the reference potential V6(r) [Eq. (4.1)], for which there is no term O(k3) in the
asymptotic expansion (4.61) of the phase φc.

Since we have determined the low-energy behavior of the phase φc including all terms
up to O(k3), we can also determine the phase φs up to the same order. Since both phases
are in general connected via

φs = φc + arg

(
1−R
1 +R

)

= φc +
π

2
− arg (Krefl) , (4.62)

according to Eq. (4.44), their difference can be evaluated by making use of the expressions
(4.46) and (4.47) for α = 6. This yields

φs − φc = arg

(
1−R
1 +R

)
k→0∼ −π

4
−
√

2π

15

Γ(1/4)

Γ(−1/4)
(kβ6)3 +O(k4) . (4.63)

With this expression and the expansion (4.61) of the phase φc given above, we can give
an extended expansion for φs beyond the order of the energy

φs(k)
k→0∼ −5π

8
+

1

2
η6(kβ6)2/3 − 1

3
(kβ6)2 −

√
2π

15

Γ(1/4)

Γ(−1/4)
(kβ6)3 +O(k4) . (4.64)

The expansion of φs has a nonvanishing term O(k3). The correctness of this term is again
tested (see Appendix C) in Figure 4.6(c), where the ratio plotted tends to zero in the limit
of small kβ6. This gives rise to the assumption that both φc and φs have been obtained
correctly up to and including O(k3) via the expansions (4.61) and (4.64).

Scattering phase shift

From the ratio of amplitudes As/Ac and the phases φs and φc that have been obtained
for the case of an inverse-power tail V6(r) and are presented in Figure 4.5, we can deduce
the s-wave scattering phase shift δ0 by making use of Eq. (3.30) for any given value of the
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Figure 4.7: This figure shows the s-wave phase shift δ0 as obtained via Eq. (3.30) for an inverse-
power tail (4.1) with α = 6, using ξt from Eq. (4.59) and the other tail functions as visualized
in Figure 4.5. The solid lines show the phase shift for different values of the threshold quantum
number’s remainder ∆th = {0, 0.01, 0.1, 0.25, 0.5, 0.9, 0.99}. The dot-dashed line gives the phase
shift for the special value of ∆th = 3/4, for which the scattering length from Eq. (4.66) is exactly
zero. The three upper dashed lines again correspond to the phase shift for values of the remainder
∆th = {0, 0.01, 0.1}, but for the case that the number of bound states is increased by one.

threshold quantum number’s remainder ∆th. The results are shown in Figure 4.7, where
possible further short-range corrections that could enter Eq. (3.30) in terms of γ(E) [cf.
Eq. (3.8)] are neglected.5

The results of Figure 4.7 illustrate how, on the one hand, a smooth variation of the
remainder ∆th in the range [0,1) causes smooth shifts of the s-wave phase shift at higher
energies according to Eq. (4.35) where the value of ∆th is manifest as a constant offset,
while on the other hand, at very low collision energies, the phase shift δ0 depends very
sensitively on the remainder ∆th. Small variations can lead to a significant change of the
scattering properties. This violent behavior is reflected by the corresponding low-energy
expansion of the s-wave phase shift

tan δ0
k→0∼ − 1

2
√

2

Γ(3/4)

Γ(5/4)
[1 + cot(∆thπ)] (kβ6)

− 1

6
√

2

Γ(3/4)

Γ(5/4)

1

sin2(∆thπ)

[

1− 3πλ2
sr

]

(kβ6)3

+
π

15
(kβ6)4 +O(k5) . (4.65)

5For typical interatomic potentials, these corrections scale with the depth of the interaction potential
that is usually orders of magnitude larger than Eα. Therefore, deviations from the phase shift obtained for
the case γ(E) ≡ 0 are most likely to be too small to be visualized on the scales of Figure 4.7.
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This expansion has been obtained by inserting the low-energy expansions of both the
phases φc and φs [Eqs. (4.61) and (4.64)] and the ratio of the amplitudes As/Ac [Eq. (4.60)]
into the formula (3.30) that then yields the s-wave phase shift in the presence of a −1/r6

potential tail. Further short-range corrections are incorporated according to Eq. (3.10).
They first enter the expansion (4.65) in the term O(k3) and are parametrized via λ2

sr =
γsrE6. The quantity λsr = βsr/β6 can be considered a measure for the length scales on which
the full potential deviates from the singular form −C6/r

6 of its tail (see Section 4.3.1).

While the expansion (4.65) is already of appealing simplicity, one might consider it
more appropriate to express this result in terms of the well-known scattering parameters,
i.e., the scattering length a and the effective range reff as introduced in Eq. (4.50). In
order to do so, the present expansion (4.65) is compared to the effective-range expansion
(4.49). The leading-order term in k gives the scattering length that, in the present case of
a −1/r6 tail, is

a =
1

2
√

2

Γ(3/4)

Γ(5/4)
[1 + cot(∆thπ)] β6 , (4.66)

which is obviously a special case of Eq. (4.51). From this expression we can immediately
see that the scattering length is positive in 3/4 of all possible values of the remainder ∆th

for interaction potentials with −1/r6 tails (see also Ref. [40]). The effective range can now
be given in terms of the scattering length

reff =

√
2

3

[

Γ(1/4)

Γ(3/4)
− 2
√

2
β6

a
+ 4

Γ(3/4)

Γ(1/4)

β2
6

a2

]
[

1− 3π λ2
sr

]

β6

=
1

3

[
Γ(1/4)

Γ(3/4)

]2
[

1− 2
ā

a
+ 2

(
ā

a

)2
]
[

1− 3πλ2
sr

]

ā (4.67)

In the tail-dominated limit |βsr| ≪ β6 or λsr → 0 this exact result tends to the universal
result that was obtained in Ref. [44].

A further result that is worth discussing is the occurrence of a term proportional to
k4 in the extended effective-range expansion (4.65) which is an “anomalous” term of even
order in the wavenumber k; it is a consequence of the nonanalyticity of the scattering
matrix. The existence of this term was originally predicted by Hinckelmann and Spruch
[82] using the Gell-Mann–Goldberger decomposition procedure together with the distorted
wave Born approximation (see, e.g., Refs. [4, 29]). This result is confirmed by the present
studies.

When there is a bound state exactly at the dissociation threshold, the scattering length
is divergent (a→∞) and we find the low-energy expansion by inserting the corresponding
remainder ∆∞

th = 0 into Eq. (3.30) with the low-energy expressions (4.60), (4.61), and
(4.64) for the tail functions for −1/r6 potentials. This yields

δ∞
0

k→0∼ π

2
−
√

2

6

Γ(1/4)

Γ(3/4)

[

1− 3πλ2
sr

]

(kβ6) +O(k2) , (4.68)

which is just the particular case of Eq. (4.58) with α = 6, since the effective-range expan-
sion (4.50) holds for potentials with −1/r6 tails (at least up to O(k2)). It is depicted in
Figure 4.7 by the lowest solid line as well as by the lowest dashed line (red lines), that
have been obtained via Eq. (3.30) for integer values of the threshold quantum number nth.
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Figure 4.8: The graph on the left-hand side shows the universal behavior of the ratio of amplitudes
As/Ac for an inverse-power tail (4.1) with α = 5 as a solid line, plotted against the product (kβ5)
together with its low-energy behavior (dotted line) to first order in k [see Eq. (4.37)] and its high-
energy behavior (dot-dashed line) given in Eq. (3.85). The graph on the right-hand side shows the
universal behavior of the tail-dependent phases φs and φc for the same potential tail, but plotted
against (kβ5)3/5. The dotted lines and the dot-dashed line show the low-energy behavior (4.43)
and high-energy behavior (4.33) respectively.

4.3.3 Quadrupole-quadrupole interactions (α = 5)

An asymptotic 1/r5 behavior occurs in leading order of the interaction potential between
two quadrupoles. This interaction potential will most certainly not be spherically symmet-
ric. However, in the interaction between two atoms in certain internal states, a spherically
symmetric form of the 1/r5 interaction can occur (cf. Appendix A). The strength coeffi-
cient C5 of this interaction can, in principle, be either positive or negative. In the present
work we only consider the case of an asymptotically attractive interaction potential.

From the theoretical point of view the case of an attractive inverse-power potential
V5(r) [Eq. (4.1)] is of particular interest, since it constitutes the highest integer power α
for which a finite effective-range term reff as defined via Eq. (4.49) does not exist. From
the work Levy and Keller [36] it is known that an “anomalous” logarithmic term of the
order O(k3) occurs in the expansion of tan δ0, which replaces the finite effective-range
term that exists of all powers α > 5.

Tail functions

In the case of an attractive −1/r5 interaction at large distances, we can again evaluate
the phase ξt analytically by solving the corresponding WKB integrals (3.9), that contain
the explicit form of the potential tail V5(r), or by just evaluating Eqs. (4.31) and (4.32)
with α = 5. This yields

ξα=5
t = −11

12
π +

2

3
η5(kβ5)3/5 , (4.69)

where the characteristic length of the tail potential V5(r) is given by β5 = (2µC5/~
2)1/3.

A numerical value for η5 is found in Table 4.5.

Figure 4.8 shows the ratio of the amplitudes As/Ac (left panel) and the phases φc (right
panel, solid line) and φs (right panel, dashed line) as obtained by numerically solving the
Schrödinger equation (4.3) with the reference potential V5(r). The ratio As/Ac of the
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amplitudes is plotted against the dimensionless product kβ5 in the range from zero to
kβ5 ≈ 13. While in its high-energy limit (kβ5 & 12) it approaches unity (dot-dashed line),
its low-energy behavior is given by

As

Ac
= |Kα=5

refl |
k→0∼ Γ(2/3)

32/3Γ(4/3)
(kβ5)− 1

6
(kβ5)3 ln(kβ5)

+
1

72

(

13− 20γE − 6
√

3π − 12 ln 2 + ln 9
)

(kβ5)3

+
2π2

37/6Γ(1/3)2
(kβ5)4 +O(k5) , (4.70)

where the real number γE ≃ 0.577216 is Euler’s constant6. This expansion is, very similar
to the case of α > 5, obtained by making use of the relation (3.47) and the corresponding
expression for Kα=5

refl from Ref. [78]. The expansion (4.70) starts linearly in the wavenumber
k, as expected from Eq. (4.37). However, in strict contrast to the cases with α > 5
(cf. Secs. 4.3.1 and 4.3.2), it exhibits an “anomalous” logarithmic term that is O(k3), in
accordance with Ref. [36]. Figure 4.9(a) shows the absolute value of the difference between
the expansion (4.70) and the numerical values as shown in the left panel of Figure 4.8
divided by the (kβ5)4, which is the highest order obtained in Eq. (4.70). We can see that
this ratio tends to zero in the limit kβ5 → 0 which ensures that all terms of the expansion
(4.70), including the “anomalous” logarithmic contribution, have been obtained correctly
(cf. Appendix C).

The right panel of Figure 4.8 shows the exact values of the phases φc (solid line) and φs

(dashed line) plotted against (kβ5)3/5, which is the leading-order energy dependence both
at low and at high energies. Both phases approach their common high-energy behavior
−τ5(kβ5)3/5 as given by Eq. (4.33) with a numerical value for the coefficient τ5 given in
Table 4.5. The dotted lines illustrate the leading-order term at low energies both for φs

and φc, according to Eq. (4.43) with η5 as given by Eq. 4.32 or explicitly in Table 4.5. An
expansion for the phase φc is obtained from the corresponding effective-range expansion
(Section 3.3.3). The effective area hα=5

c takes a finite value (cf. Table 4.6) and we can
explicitly state

φc
k→0∼ − 5

12
π +

2

3
η5(kβ5)3/5 −

√
π

3

(
2

3

)1/3

Γ(7/6)(kβ5)2 +O(k4) . (4.71)

From the ratio plotted in Figure 4.9(b) we find that this expansion is not only correct
up to O(k2), but that furthermore no term O(k3) exists. The subsequent term of the
expansion (4.73) is O(k4).

For the phase φs the effective-range expansion of Section 3.3.3 does not yield a finite
coefficient hs for the term of order k2. We can, however, obtain an expansion of φs

beyond its leading order term via the same formalism that has been applied to the case
of α = 6, i.e., by making use of the relation (4.62) that connects the phases φs and
φc via the amplitude R for quantum reflection by the singular attractive tail potential
V5(r) = −C5/r

5. In the limit of low energies, the difference of the two phases can thus be

6Euler’s constant ist also referred to as Euler-Mascheroni constant and can be defined via the relation
γE = limn→∞

[∑n

k=1

1

k
− ln(n)

]
.
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Figure 4.9: For a −1/r5 tail, the difference between numerically obtained results for (a) the ratio
of amplitudes As/Ac, (b) the phase φc and (c) the phase φs and the corresponding low-energy
expansions [cf. Eqs. (4.70), (4.71) and (4.73)] are divided by the highest-order contribution to
the analytical expansion and plotted against (kβ5). The circumstance that all plotted quantities
tend to zero in the limit kβ5 → 0 shows the correctness of all analytically obtained terms in the
corresponding expansion.

given by

φs − φc = arg

(
1−R
1 +R

)
k→0∼ − π

6
+

35/3

4π
Γ(4/3)2 ln(kβ5)(kβ5)2

+
32/3

4π
Γ(4/3)2

(

5γE −
13

4
+ ln

8√
3

+
π

2
√

3

)

(kβ5)2 +O(k4)

(4.72)

according to Ref. [78]. The present expansion (4.72) exhibits an “anomalous” logarithmic
term of the order k2. Adding Eq. (4.72) to the expansion of φc yields

φs
k→0∼ − 7

12
π +

2

3
η5(kβ5)3/5 −

√
π

3

(
2

3

)1/3

Γ(7/6)(kβ5)2

+
32/3

4π
Γ(4/3)2

(

5γE −
13

4
+ ln

8√
3

+
π

2
√

3
+ 3 ln(kβ5)

)

(kβ5)2 +O(k4) . (4.73)

Since the expansion (4.72) of the difference of the phases does not include a term of the
order O(k3), the expansion (4.73) of φs is also correct up to O(k3). This is confirmed by
Figure 4.9(c), where the ratio that is plotted tends to zero in the limit kβ5 → 0. Even
though the effective-range formalism of Section 4.3.1 fails for φs in the reference potential
V5(r), Eq. (4.73) gives an expansion for the phase φs up to and including the order of k3.

Scattering phase shift

The scattering phase shift that occurs in scattering by a potential that has an attractive
tail proportional to −1/r5 is plotted in Figure 4.10 as obtained from Eq. (3.30) for different
values of the threshold quantum number’s remainder ∆th. The solid lines correspond to
the specific values ∆th = {0, 0.01, 0.1, 1/3, 0.5, 0.9, 0.99}, while the dashed lines correspond
to the lowest three solid lines but for a total number of bound states increased by one —
in accordance with Levinson’s theorem. The dot-dashed line marks the phase shift for the
special case of ∆th = 2/3, for which the scattering length is exactly zero [cf. Eq. (4.53)].
The lowest solid and the lowest dashed line both mark the case of a bound state exactly
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Figure 4.10: This figure shows the s-wave phase shift δ0 as obtained via Eq. (3.30) for an inverse-
power tail (4.1) with α = 5, using ξt from Eq. (4.69) and the other tail functions as visualized
in Figure 4.8. The solid lines show the phase shift for different values of the threshold quantum
number’s remainder ∆th = {0, 0.01, 0.1, 1/3, 0.5, 0.9, 0.99}. The dot-dashed line gives the phase
shift for the special value of ∆th = 2/3, for which the scattering length from Eq. (4.75) is exactly
zero. The three upper dashed lines again correspond to the phase shift for values of the remainder
∆th = {0, 0.01, 0.1}, but for the case that the number of bound states is increased by one.

at the dissociation threshold, in which the scattering length diverges and the scattering
phase shift starts not at an integer multiple of π but at π/2.

For the general case of a nonzero value of the remainder ∆th, the formula (3.30) with
the tail functions as obtained with the tail potential V5(r) in Section 4.3.3 yields the
low-energy limit of the scattering phase shift

tan δ0
k→0∼ − ak +

1

3
(kβ5)3 ln(kβ5)

− 1

2

[

F̃5 − G̃5
β5

a
+ H̃5

(
β5

a

)2
](

a

β5

)2

(kβ5)3

− π

3

a

β5
(kβ5)4 +O(k5) , (4.74)

where we have already carried out the replacement of the remainder ∆th with the scattering
length, that is, according to Eq. (4.51) for the case of scattering by a potential with a −1/r5

tail, given by

a =
1

32/3

Γ(2/3)

Γ(4/3)

[

1

2
+

√
3

2
cot(∆thπ)

]

β5 . (4.75)

The expansion (4.74) of the scattering phase shift for an inverse-power potential tail (4.1)
with α = 5 exhibits an “anomalous” term that replaces the effective-range reff which takes
a finite value for all inverse-power potential tails with α > 5, but does not exist in this
particular case.
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The coefficients F̃5, G̃5, and H̃5 that enter the expansion (4.74) of the scattering phase
shift are given by

F̃5 =
9

31/6π
Γ(4/3)4 − 2

31/3
Γ(1/3)2 λ2

sr ,

G̃5 =
4

31/3
Γ(4/3)2 − 4π√

3
λ2

sr ,

H̃5 =
1

18

[

13− 20γE + 2
√

3π − 12 ln 2 + 2 ln 3
]

− 2× 31/3Γ(2/3)2 λ2
sr ,

They explicitly depend on the lowest-order short-range correction via λ2
sr = γsrE5, that

accounts for short-range effects beyond what is accounted for by the threshold quantum
number’s remainder ∆th. The fourth order term in the expansion (4.74) is universal in
the sense that it depends only on the scattering length but on no further short-range
parameters.

In the limit λsr = βsr/β5 → 0, that might be referred to as the universal or tail-
dominated limit, the expansion (4.74) of the scattering phase shift can be written as

tan δ0
k→0∼ − ak +

1

3
(kβ5)3 ln(kβ5)

− 1

2

[

1.51684 − 2.21158
β5

a
+ 0.345441

(
β5

a

)2
](

a

β5

)2

(kβ5)3

− π

3

a

β5
(kβ5)4 +O(k5) , (4.76)

and is — up to O(k4) — determined by the scattering length alone. The coefficients F̃5,
G̃5, and H̃5 have been replaced by their exact numerical values for λsr = 0. This limit
might be sufficient to reproduce the low-energy scattering parameters in many realistic
situations.

We now look at the particular case of in which a bound state exists at the dissociation
threshold (∆th = ∆∞

th = 0) and the scattering length goes to infinity (a → ∞). Since
this special case is not a limiting case of the expansion (4.74), the formula (3.30) for the
scattering phase shift needs to be expanded separately for ∆∞

th = 0, which yields

δ∞
0

k→0∼ π

2
− F̃5

2
(kβ5) +O(k2) . (4.77)

This linear behavior can be found in Figure 4.10 where the phase shift is plotted against
the product (kβ5) for integer values of the threshold quantum number nth (lowest solid
line and lowest dashed line).

Notice, that an expansion for the scattering phase shift equivalent to Eq. (4.74) or
Eq. (4.77) for potentials with inverse-power tails with α = 5 has never been given in
the existing literature so far. This might be due to the inflated interest in the cases of
−1/r6 and −1/r4 tail potentials that are the most common long-range interactions in
atomic physics. However, there is a growing interest in the isotropic, attractive −1/r5

interaction, since it is a candidate for exotic photoassociation experiments [83]. Whether
or not such speculations are justified, a comprehensive study of low-energy scattering
phenomena certainly requires the understanding of −1/r5 interactions at low energies as
well.
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4.3.4 Polarization interactions (α = 4)

The case of an interaction via a potential with an inverse-power tail (4.1) with α = 4
is rather common, since it occurs whenever a charged particle interacts with a neutral
compound particle that has a nonvanishing dipole polarizability. The strength coefficient
C4 can simply be expressed in terms of the static dipole polarizability αd of the neutral
partner C4 = αd/2. When the neutral partner is in its ground state, the interaction
is attractive at large distances. In atom-electron interactions this attraction can lead to
bound states, i.e., negatively charged ions. Atom-ion collisions are, however, more suitable
for the present treatment, since the high masses (compared to the electron mass) of the
particles involved promote the existence of an inner WKB region in the full interaction
potential.

The scattering phase shift for potentials with a tail that is −C4/r
4, has been a subject

of numerous studies by several authors (see Ref. [84] and references therein). Considering
the low-energy scattering properties for this class of potentials, the groundbreaking works
of O’Malley, Spruch, and Rosenberg [34, 35] need to be mentioned. These works are based
on the exact solution for −1/r4 potentials that can be given in terms of Matthieu functions
[48]. O’Malley et al. were the first to present a modified effective-range expansion for the
scattering phase shift δ0 that contains the “anomalous” terms that are characteristic for
the polarization interaction [Eq. (4.1) with α = 4].

Tail functions

As in the previous cases, we can evaluate the phase ξt as given in Eq. (4.31) with α = 4
in a straightforward fashion. This yields

ξα=4
t = −π + η4(kβ4)1/2 , (4.78)

with the coefficient η4 given in Eq. (4.32) and in Table 4.5 in numerical form. The charac-
teristic length associated with the tail potential V4(r) is β4 =

√
2µC4/~; for the case of a

polarization induced interaction [cf. Eq. (A.6)] it is given by β4 =
√
αdµ/~. While expres-

sion (4.78) is valid over the whole range of energies considered, the further tail functions,
i.e., As/Ac, φs, and φc can not be given analytically for all energies, but are obtained by
solving the radial Schrödinger equation (4.3) with the reference potential V4(r) and the
corresponding boundary conditions (3.27).

Exact values of the tail functions are depicted in Figure 4.11. The left panel shows the
ratio As/Ac plotted against the dimensionless product kβ4, together with its lowest-order
term at low-energies (dotted line) as given by Eq. (4.37) and its high-energy limit, i.e.,
unity (dot-dashed line) [cf. Eq. (3.85)].

From the expression for the amplitude Kα=4
refl in Ref. [78], an expansion of the ratio of

amplitudes As/Ac in orders of the wave number k can be obtained [cf. Eq. (3.47)]. This
yields

As

Ac
= |Kα=4

refl |
k→0∼ (kβ4) +

4

3
(kβ4)3 ln(kβ4)

+

[

8

3
(γE + ln 2) +

1

2

(
π

3

)2

− 28

9

]

(kβ4)3 +O(k4) . (4.79)
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Figure 4.11: The graph on the left-hand side shows the universal behavior of the ratio of ampli-
tudes As/Ac for an inverse-power tail (4.1) with α = 4 as a solid line, plotted against the product
(kβ4) together with its low-energy behavior (dotted line) to first order in k [see Eq. (4.37)] and
its high-energy behavior (dot-dashed line) given by Eq. (3.85). The graph on the right-hand side
shows the universal behavior of the tail-dependent phases φs and φc for the same potential tail, but
plotted against (kβ4)1/2. The dotted lines and the dot-dashed line show the low-energy behavior
(4.43) and high-energy behavior (4.33) respectively.

In this expansion an “anomalous” term can be identified, i.e., the logarithmic term which
is O(k3). Its implications on the scattering properties will be explained in the following
section. Figure 4.12(a) shows the difference of the expansion (4.79) to the exact values for
As/Ac divided by (kβ4)2. In the limit kβ4 → 0, this quantity tends to zero, which shows
that all terms of the expansion (4.79) have been obtained correctly (see Appendix C).

The right panel of Figure 4.11 shows the phases φs and φc plotted against (kβ4)1/2,
which is the leading-order energy dependence both at low and at high energies. This is
visualized by the dotted line that represents the common low-energy behavior according
to Eq. (4.43) and the dot-dashed line that represents the common high-energy behavior
of both phases according to Eq. (4.33).

The effective-range expansion for the phases from Section 3.3.3 yields an expansion of
the phase φc that is correct up to and including the term O(k2),

φc
k→0∼ −π

2
+ η4(kβ4)1/2 − π

3
(kβ4)2 +O(k3) . (4.80)

The comparison to the exact values that have been obtained numerically is visualized in
Figure 4.12(b) and confirms the correctness of the expansion (4.80) up to the order of k2.
The effective-range expansion that yields Eq. (4.80) for φc breaks down for the phase φs

for any inverse power-potential Vα(r) with α ≤ 5 in general, and thus also for the case
of α = 4 in particular. As already performed for the case of an inverse-power potential
with α = 5, we can find an expansion for the difference of the two phases φs and φc

that are connected via Eq. (4.62). Their difference can be expressed via the amplitude
R for quantum reflection by the singular inverse-power potential V4(r) as described by
Eq. (3.31). With the identity (3.33) and the expansion of Kα=4

refl taken from Ref. [78] this
expansion yields

φs − φc = arg

(
1−R
1 +R

)
k→0∼ −π

3
(kβ4) +

2π

3
(kβ4)2 +O(k3) . (4.81)
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Figure 4.12: For a −1/r4 tail, the difference between numerically obtained results for (a) the
ratio of amplitudes As/Ac, (b) the phase φc and (c) the phase φs and the corresponding low-energy
expansions [cf. Eqs. (4.79), (4.80) and (4.82)] are divided by the highest-order contribution to
the analytical expansion and plotted against (kβ4). The circumstance that all plotted quantities
tend to zero in the limit kβ4 → 0 shows the correctness of all analytically obtained terms in the
corresponding expansion.

As already seen from Figure 4.11, the threshold values at E = 0 are the same for both
phases. The expansion (4.81) thus contains no zeroth-order term in the wave number k.
From the expansion (4.80) of the phase φc and the expansion of the difference φs − φc

[Eq. (4.81)] the expansion

φs
k→0∼ −π

2
+ η4(kβ4)1/2 − π

3
(kβ4) +

π

3
(kβ4)2 +O(k3) . (4.82)

can be deduced for the phase φs. Its zeroth-order term is given by −π/2 which is, as
mentioned before, the same as for the phase φc. The anomalous term of first order in k
that enters the expansion (4.81) of the phase difference is carried over to the phase φs.
From Figure 4.12(c) we may conclude that all terms up to O(k2) entering Eq. (4.82) are
given correctly; the quantity plotted tends to zero in the limit of low energies (kβ4 → 0)
as required for the correct expansions (see Appendix C).

Scattering phase shift

The phase shift obtained in scattering by a potential with a −1/r4 tail is depicted in
Figure 4.13. Its shows the energy-dependent s-wave phase shift for different values of
the threshold quantum number’s remainder ∆th as obtained via Eq. (3.30) with the
tail functions of Section 4.3.4. The plot shows the phase shift for remainders of ∆th =
{0, 0.01, 0.1, 1/4, 3/4, 0.9, 0.99} for the total number of bound states N as solid lines. For
the three lowest values of the remainder, the corresponding upper dashed lines show the
phase shift for the case of one more bound state, in accordance with Levinson’s theorem.
The dot-dashed line marks the special case of a vanishing scattering length at a remainder

of ∆
(0)
th = 1/2, according to Eq. (4.53). The circumstance that this particular value is 1/2

indicates that the probability for finding either a positive scattering length is exactly 1/2,
assuming the remainder is uniformly distributed on the interval [0, 1). This is a unique
feature of scattering by potentials interaction with −1/r4 tails.

In order to obtain a low-energy expansion of the phase shift, the expansions of the
tail functions As/Ac [Eq. (4.79)], φc [Eq. (4.80)], and φs [Eq. (4.82)] are inserted into
Eq. (3.30). Together with a nonzero value of the remainder ∆th and the small short-range
correction γ(E) according to Eq. (3.8) this immediately yields
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Figure 4.13: This figure shows the s-wave phase shift δ0 as obtained via Eq. (3.30) for an inverse-
power tail (4.1) with α = 4, using ξt from Eq. (4.78) and the other tail functions as visualized
in Figure 4.11. The solid lines show the phase shift for different values of the threshold quantum
number’s remainder ∆th = {0, 0.01, 0.1, 1/4, 3/4, 0.9, 0.99}. The dot-dashed line gives the phase
shift for the special value of ∆th = 1/2, for which the scattering length from Eq. (4.84) is exactly
zero. The three upper dashed lines again correspond to the phase shift for values of the remainder
∆th = {0, 0.01, 0.1}, but for the case that the number of bound states is increased by one.
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where the remainder has already been expressed in terms of the scattering length, which
is, according to Eq. (3.59) for α = 4 with the values ā4 = 0 and b4 = β4, given by

a =
β4

tan(∆thπ)
. (4.84)

The expression (4.83) is formally equivalent to the famous expression derived in [34, 35],
and it establishes a connection to the threshold quantum number nth via Eq. (4.84).
Furthermore, it exposes the universal character of the expression (4.83) for the phase
shift; in the limit λ2

sr = γsrE4 → 0 it depends only on the scattering length.

It is already argued in Refs. [34, 35] that the expansion of tan δ0 is more elegant than
the expansion of k cot δ0. In addition, it is better suited for further application, e.g., in the
context of effective interactions (see [85]) and pseudopotentials [86, 87] that have already
been applied to the particular case of −1/r4 interactions [88].
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When the scattering length diverges (a → ∞) in the case that there is a bound state
at E = 0, we find, from expanding Eq. (3.30) with the tail functions for −1/r4 tails and
∆th = ∆∞

th = 0, an expression for the leading-order energy dependence of the phase shift
at low-energies

δ∞
0

k→0∼ π

2
−
[
π

3
− πλ2

sr

]

(kβ4) +O(k2) . (4.85)

As usual for the case of a bound state exactly at the dissociation threshold, the phase
shift starts at π/2 and the lowest-order energy dependence is O(k). The lowest solid line
and the lowest dashed line in Figure 4.13 show the scattering phase shift at integer values
of the threshold quantum number nth. Both lines start at a half-integer value of π and
exhibit the linear behavior (4.85) in the limit of low-energies.

4.3.5 Dipole-dipole Interactions (α = 3)

Attractive potential tails proportional to −1/r3 are quite common in atomic physics. It is
the leading radial dependence of the interaction energy between two permanent dipoles and
also occurs in a spherically symmetric form as a resonant dipole-dipole interaction [7, 89].
In the latter case an atom in a given internal state interacts with an atom of the same
species in a different internal state. If a dipole transition between the two internal states
is allowed, the dipole-dipole interaction operator can give a nonvanishing contribution to
the interaction energy, already in first order (see Appendix A).

The tail potential V3(r) = −C3/r
3 constitutes the lowest-integer order of inverse-power

potentials (4.1) to which the formalism derived in Chapter 3 is applicable. Although it is
subject to that formalism, its low-energy collision properties are very different from those
of potentials with inverse-power tails (4.1) with α > 3; a scattering length that describes
the scattering process in the limit of very low collision energies does not exist for the case
of a long-range 1/r3 interaction. That is why, in contrast to the interactions previously
discussed, scattering from potentials with attractive −1/r3 tails is, to the present day,
only poorly understood.

An analytical threshold law describing the low-energy scattering for the repulsive case
of 1/r3 interactions including all terms that are O(k) was given by del Giudice and
Galzenati in 1965 [79] and was rederived by Gao in 1999 [90]. The attractive case, how-
ever, is more complicated due to the additional influence of the short-range part of the
interaction potential that deviates from the −1/r3 behavior; this case has not been studied
to a satisfactory extend so far.

In their comprehensive work [36] on scattering from long-range potentials, Levy and
Keller also study the case of attractive 1/r3 interactions. They predict the low-energy
behavior of the phase shift to be given by

tan δ0
k→0∼ −(kβ3) ln(kβ3) +O(k) , (4.86)

with the characteristic length of the inverse-cube tail given by β3 = 2µC3/~
2. The expan-

sion (4.86) still constitutes the established form of a threshold law for elastic scattering
from inverse-cube potentials in today’s literature [4, 27, 84]. It is correct in the limit of
very low energies but neglects further terms of first order in the wave number k. In par-
ticular, the expansion (4.86) does not contain any information about the influence of the
short-range potential on the low-energy scattering process. Further approaches [91, 92] to
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Figure 4.14: The graph on the left-hand side shows the universal behavior of the ratio of ampli-
tudes As/Ac for an inverse-power tail (4.1) with α = 3 as a solid line, plotted against the product
(kβ3) on a logarithmic scale together with its low-energy behavior (dotted line) to first order in
k as given by Eq. (4.88) and its high-energy behavior (dot-dashed line) given in Eq. (3.85). The
graph on the right-hand side shows the universal behavior of the tail-dependent phases φs and φc

for the same potential tail, but plotted against (kβ3)1/3. The dotted lines and the dot-dashed line
show behaviors of the phases at low energies (4.89) and (4.91) and high-energy behavior (4.33)
respectively.

low-energy scattering in the presence of attractive inverse-cube interactions make use of
the Gell-Mann – Goldberger two-potential formula and the distorted wave Born approxi-
mation (as established in Ref. [82]).

Tail functions

Although it is a very particular case, the −1/r3 interaction is still fulfills the preconditions
for the applicability of the formalism developed in Chapter 3. Therefore the tail functions
are obtained in a similar fashion as for the cases for which a scattering length exists
(α > 3). The phase ξt is given in Eq. (4.31) and can be evaluated for the case α = 3. This
yields

ξα=3
t = −π

4
+ 2η3(kβ3)1/3 , (4.87)

with η3 given analytically by Eq. (4.32) and numerically in Table 4.5. The phase ξt

exhibits the typical semiclassical energy dependence (kβ3)1/3 for 1/r3 tail potentials. The
expression (4.87) is valid over the whole energy range considered.

The further tail functions are depicted in Figure 4.14. The left panel shows the ratio
As/Ac of the amplitudes of the fundamental solutions (3.29) in an attractive inverse-cube
potential. It is plotted against the dimensionless product (kβ3) on a logarithmic scale in
order to adequately resolve the low-energy limit, which is visualized as the dotted line
in the left panel of Figure 4.14. Due to the nonexistence of a mean scattering length ā
for inverse-cube potentials, the low-energy expansion of As/Ac can no longer be given by
Eq. (4.37). It can, however, equivalently be obtained from the expansion of Kα=3

refl as given
in Ref. [78], which yields

As

Ac
= |Kα=3

refl |
k→0∼ π

√
√
√
√1 +

(
3
2 − 3γ − ln(2kβ3)

π

)2

(kβ3) +O(k2) . (4.88)
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From the left panel of Figure 4.14 it can be seen that this expansion gives the correct
low-energy behavior of the ratio of amplitudes. It is, however, only a good approximation
to As/Ac at very low energies kβ3 . 10−2.

The right panel of Figure 4.14 shows the phases φc (solid line) and φs (dashed line)
plotted against the dimensionless quantity (kβ3)1/3. The dot-dashed line gives the common
high-energy asymptote of both phases that is given by −τ3(kβ3)1/3 according to Eq. (4.33).
The dotted lines give the analytic low-energy expansions of the respective phases. The
phase φc can — according to Eq. (3.56) — be expanded at least to the order of the
wave number k, since the function w0(r) (4.10), which is approached by the fundamental
solution u(c)(r) (3.53), is well defined for an inverse-power potential (4.1) with α = 3

φc
k→0∼ −3π

4
+ 2η3(kβ3)1/3 +O(k2) . (4.89)

This expansion perfectly fits the exact values of φc as plotted in the right panel of Fig-
ure 4.14.

The near-threshold expansion of the phase φs can not be obtained via a similar pro-
cedure, due to the lack of an appropriate zero-energy solution w1(r) (3.49) that, as dis-
cussed in Section 4.1 does not exist for the reference potential V3(r). Similar to the cases
previously discussed, the low-energy behavior of the phase φs can be obtained from the
phase φc together with an expansion of the phase difference according to Eq. (4.62). This
difference is expressed via the amplitude R of quantum reflection by the tail potential
V3(r) = −C3/r

3. This yields

φs − φc = arg

(
1−R
1 +R

)
k→0∼ arctan

(
3
2 − 3γ − ln(2kβ3)

π

)

+O(k1) , (4.90)

including all known orders of Kα=3
refl in the expansion. Therefore, we can not predict the

behavior of the phase φs beyond zeroth order in the wave number k. Its energy dependence
below the O(k1) is given by

φs
k→0∼ −3π

4
+ arctan

(
3
2 − 3γ − ln(2kβ3)

π

)

+ 2η3(kβ3)1/3 +O(k1) . (4.91)

From the numerical results plotted in the right panel of Figure 4.14 we can confirm that
this expansion gives the correct low-energy behavior of the exact values of the phase φs.
Its limiting value φs(0) = −π/4 is approached logarithmically, which is hard to resolve in
the right panel of Figure 4.14.

The validity of expansions of the tail functions is, in the case of inverse-power poten-
tials (4.1) with α = 3, restricted to low orders of the wave number k. This is due to
the occurrence of “anomalous” terms already in the leading order of the expansion (cf.
Eq. (4.90). Therefore, the correctness of the expansions according to the scheme presented
in Appendix C is not illustrated separately; its validity has, however, been verified for the
expansions presented in this section.

Scattering phase shift

Possible phase shifts due to scattering from a potential with an attractive inverse-cube
tail are visualized in Figure 4.15. The results plotted are obtained by evaluating the
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Figure 4.15: This figure shows the s-wave phase shift δ0 as obtained via Eq. (3.30) for an inverse-
power tail (4.1) with α = 3, using ξt from Eq. (4.87) and the other tail functions as visualized
in Figure 4.11. The solid lines show the phase shift for different values of the threshold quantum
number’s remainder ∆th = {0, 0.1, 1/4, 2/5, 3/4, 0.9}. The dot-dashed line gives the phase shift for
the special value of ∆th = 0.591127, for which the phase shift starts like −(kβ3) ln(kβ3) +O(k2).
The three upper dashed lines again correspond to the phase shift for values of the remainder
∆th = {0, 0.1, 1/4}, but for the case that the number of bound states is increased by one.

expression (3.30) for the scattering phase shift δ0 with the tail functions for the reference
potential V3(r) that are given above (see Figure 4.14). The solid lines show the phase shift
for different values of the remainder ∆th = {0, 0.1, 1/4, 2/5, 3/4, 0.9}, representing the
influence of different short-range potentials. The dashed lines correspond to the lowest
three solid lines but for a total number of bound states that is increased by one.

The low-energy expansion of the phase shift is obtained by inserting the expansions
(4.88), (4.89), and (4.91) for the tail functions of the reference potential V3(r) into the
formula (3.30) for the scattering phase shift. This yields

tan δ0
k→0∼ −

[

ln(kβ3) +
π

tan(∆thπ)

]

(kβ3) +

(
3

2
− 3γE − ln 2

)

(kβ3) +O(k2) , (4.92)

which contains all terms of O(k). While the threshold laws that have been discussed in
the previous sections essentially depended on the scattering length, we can clearly see
from Eq. (4.92) that a finite scattering length does not exist in the presence of a −1/r3

potential tail, which is due to the logarithmic term already incorporated in the well-known
expression (4.86). This term causes the divergence of the elastic scattering cross section
(cf. Eq. (2.25)) in the limit of low-energies. The expansion (4.92) depends on the short-
range form of the full interaction potential via the threshold quantum number’s remainder
∆th that is manifest in the first-order term in k. These terms contribute to the zero-energy
cross section and must, therefore, not be neglected.
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Corresponding formulae were derived by Shakeshaft [91] (1972) and Ganas [92] (1973).
Their derivation is based on the two-potential formula as used by Hinckelmann and Spruch
[82]. As pointed out in the latter work, it contains a particular weakness; it requires the
knowledge of the scattering properties of an unphysical, truncated potential. That is
why formula (4.92) for the low-energy phase shift in the presence of −1/r3 interactions
is more insightful. It relies on a single parameter, that has an inherent physical meaning
and incorporates the influence of the short-range potential to the low-energy scattering
properties.

When there is a bound state exactly at the dissociation threshold (∆th = ∆∞
th = 0),

the phase shift starts at π/2, as required. The leading-order dependence on the wave
number k can not be given explicitly, since the term O(k2) is not known in the expansion
(4.89) of the phase φc. For an inverse-cube tail potential, the question of the phase shift’s
behavior in the case of a bound state at E = 0 was already addressed in Ref. [93], but a
comprehensive answer is not given there.

4.4 Summary of results

The inverse-power potentials Vα(r) = −Cα/r
α with α > 2 have been identified to be

ideal candidates for the reference potentials of the formalism derived in Chapter 3; by
definition they are more singular than −1/r2 at the origin and vanish faster than −1/r2

asymptotically. This makes them ideal candidates for a treatment within the framework of
the phase-corrected WKB theory (see Section 2.2). The distinct regions of WKB validity
have been identified and the analytical zero-energy solutions have been presented.

The properties of the quantization function Fα(E) (3.16) for the general case of the
inverse-power reference potentials Vα(r) = −Cα/r

α with α > 2 have been studied both in
the regime of high energies, where the semiclassical picture holds, and in the immediate
near-threshold regime, where purely quantum mechanical effects play a predominant role.
For an inverse-cube potential tail, an explicit analytical expression (4.27) for the tail part
Fα=3 of the quantization function has been presented. It is based on a highly accurate
approximation of the outer reflection phase φout(E) accounting for analytical limiting
expansions. Such high accuracy was not achieved in the cases α = 6 [13, 41] and α = 4
[42] that have previously been studied.

The expression for the scattering phase shift have also been analyzed; low- and high-
energy expansions have been presented for the tail-related functions As/Ac, φs and φc

that were obtained by explicitly solving the Schrödinger equation with the inverse-power
reference potential. For the particular integer cases 3 ≤ α ≤ 6 these tail functions have
been presented and the scattering phase shift for potentials with the corresponding tails
have been derived. For each of the tail potentials considered the phase shift has been illus-
trated as a function of the energy for different values of the threshold quantum number’s
noninteger remainder ∆th ∈ [0, 1). For all of these cases, low-energy expansions of the tail
functions have been given, from which modified effective-range expansions for the s-wave
phase shift has been derived. These exhibit characteristic terms for each power α, that can
not be reproduced with any other potential tail. In particular, a comprehensive threshold
law for elastic scattering by potentials with attractive inverse-cube tails has been presented
for the first time. We have also studied the modifications of the low-energy expansions of
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the phase shift for the special case when there is a bound state exactly at the dissociation
threshold (∆th = 0).





Chapter 5

Application to specific systems

The formalism for the description of quantization and scattering, that has been devel-
oped in the preceding chapters is now applied to specific problems. We first study the
applicability of the quantization function (4.27) that has been derived in Section 4.2.2
for inverse-cube tail potentials. It is applied to homonuclear long-range molecules. In
the subsequent section, the applicability of our approach is demonstrated for two model
Lennard-Jones potentials, studying both quantization and scattering. In particular, the
threshold law (4.92) for scattering from potentials with −1/r3 tails is verified. Section
5.2.3 deals with the theory’s applicability to potential tails that are not well described by
a single inverse-power term. The scattering phase shift for a model potential with a mixed
tail consisting of two inverse-power terms is analyzed from this point of view.

5.1 Vibrational bound states in long-range molecules

In this section we study the application of the quantization function (4.27) for inverse-cube
tails to homo-nuclear alkali dimers forming pure long-range molecules [94]. Typical inter-
nuclear distances are much larger there than those for usual chemical binding potentials.
The asymptotic behavior of such a potential well can often be described by the resonant
dipole-dipole interaction [89]. In these cases the potential tail is proportional to −1/r3 at
large distances (see Appendix A).

Nowadays it has become possible to determine the energy eigenvalues of the vibra-
tional states with the method of photoassociation spectroscopy (see e.g. Ref. [74, 75, 95]).
Using this method, it is possible to locate the bound states in very broad energy regions.
Nevertheless the high density of states in such a long-range potential still makes the mea-
surement of bound states very close to the threshold difficult. A discussion of these results
has already been published in Ref. [71].

5.1.1 Determination of the potential tail’s dispersion coefficient

One aim of photoassociation spectroscopy experiments is the determination of accurate
strength coefficients C3 from the bound-state spectra that are obtained. Given the en-
ergy eigenvalues and the strength coefficient C3, the reduced outer classical turning point

83
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corresponding to each energy eigenvalue reads

sn = (κnβ3)1/3 =

√
2µ

~
C

1/3
3 (−En)1/6 . (5.1)

This relates the strength coefficient C3 to the energy spectrum via the quantization func-
tion (4.27) for inverse-cube tails.

Recent analyses are still predominantly done utilizing the LeRoy-Bernstein function
(4.15), despite its wrong near-threshold behavior. The reason is the simple linear relation
between n and the reduced outer classical turning point sn in the corresponding quan-
tization rule. The results obtained for C3 via the LeRoy-Bernstein function (4.15) are
close to those obtained using the correct quantization function (4.27), as long as the vi-
brational levels used are not too close to threshold, since the difference between Fα=3(E)
and FNDE

α=3 (E) is only a constant offset at large binding energies [see Eq. (4.22)].
The higher the energy difference to the threshold is, the more important are the effects

due to the short-range part of the binding potential that can only be treated phenomeno-
logically, so that quantization functions based on the potential tail alone can only be
considered an approximation. Using the correct quantization function (4.27) these prob-
lems far from threshold will be the same as with the LeRoy-Bernstein function (4.15), the
accuracy of the correct quantization function (4.27) however increases towards threshold.
The best determination of the strength coefficient is measuring vibrational levels as close
to the dissociation threshold as possible and then using the correct quantization function
(4.27).

5.1.2 Extrapolation and number of bound states

The fitting procedure, to determine the strength coefficient C3 of the inverse-cube potential
tail, yields the remainder ∆th of the threshold quantum number nth. Its integer part ⌊nth⌋
depends on the counting of the bound states; it can only be determined correctly if the
correct quantum numbers, as obtained by counting from n = 0 for the ground state, are
assigned to the vibrational levels measured. The range of energy that is accessible in a
single experiment usually does not encompass the whole spectrum; the ground state is
thus not detected in most experiments. If a certain range of the spectrum is known, the
relation

n(En) = nth − Fα=3(En) + γsrEn (5.2)

[cf. Eqs. (3.14) and (3.15)] can be used to extrapolate the spectrum towards lower binding
energies, all the way up to the dissociation threshold.

In recent works [75–77], effective quantum numbers ñ = ⌊nth⌋ − n counting from 0 at
the highest-lying state to ⌊nth⌋ for the ground state are assigned to the levels observed.
Each observed energy level can then be associated to its correct effective quantum number
ñ without knowing either n or ⌊nth⌋, but only their difference.

In case that the observed levels lie far enough from threshold, both the LeRoy-Bernstein
function (4.15) and the correct quantization function (4.27) yield essentially the same
coefficient C3, but the remainder obtained from the LeRoy-Bernstein function (4.15) will
be offset by 1/2 relative to the correct remainder.

If the correct remainder in an interaction potential with a −1/r3 tail is ∆th > 1/2, i.e.
in half of all possible cases, then naive extrapolation via the LeRoy-Bernstein formula will
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Figure 5.1: Vibrational quantum number n versus the reduced outer classical turning point sn

(5.1) for bound-state energies in the long-range 0−

g configuration of Na2. Both the exact values
(filled circles) and the values extrapolated by Stwalley via the LeRoy-Bernstein formula (empty
circles) are shown. The solid line determines the positions of the exact eigenenergies and is based
on the correct quantization function (4.27), whereas the dotted line indicates the energies that
would have been expected using the LeRoy-Bernstein function (4.15). It is clearly visible that the
quantization function (4.27) gives the correct results.

predict a spurious bound state near the threshold, which leads to a wrong assignment of
the downward quantum numbers to the bound states and an overestimation (by one) of
the total number of bound states in the near threshold region.

As an example, we discuss a work of William Stwalley [94] that deals with pure long-
range sodium dimers near the Na(3P3/2)+Na(3S1/2) dissociation asymptote. The bound-
state spectrum was calculated numerically based on the adiabatic potentials of Ref. [94,
96] for both the 0−

g and the 1u symmetry by using the conventional Bohr-Sommerfeld
quantization rule. Since the numerical determination of the highest-lying bound states was
not possible then, the spectrum was extrapolated to the threshold using the semiclassical
LeRoy-Bernstein quantization function (4.15), as derived in Refs. [14, 15].

Based on the energies calculated by Stwalley [94] for the 0−
g configuration up to n = 36,

Gao [97] extrapolated the spectrum to the threshold using a pure quantum approach de-
rived from exact wave functions for the inverse-cube potential tail, without any reference
to WKB wave functions. In order to check the accuracy of the various extrapolation proce-
dures, we have calculated the exact bound-state energies for the potential from Ref. [96] by
solving the Schrödinger equation numerically. Exact values for the highest six vibrational
levels are given in Table 5.1 and Table 5.2

We can use relation (5.2) to extract values for the strength coefficient C3, the threshold
quantum number nth and the leading-order coefficient γsr of the short-range contribution
to the exact quantization function. By fitting Eq. (5.2) to the three bound-state en-
ergies En with n = 34, 35 and 36, for the 0−

g configuration (see Table 5.1), we obtain
C3 = 6.39 a.u. which reproduces the strength of the tail in the adiabatic potential curve
[94, 96] exactly. The threshold quantum number is found to be nth = 39.1690 which is
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n exact Stwalley [94]

34 1.81083 × 10−5 1.8262 × 10−5

35 5.60556 × 10−6 5.6648 × 10−6

36 1.29912 × 10−6 1.3175 × 10−6

Table 5.1: Exact vibrational energy eigenvalues (in cm−1) for the three bound states with n =
34, 35 and 36 in the pure long-range sodium dimer dissociating to Na(3P3/2)+Na(3S1/2) with 0−

g

symmetry. These have been calculated by numerically solving the Schrödinger equation with the
adiabatic potential from Ref. [94, 96]. The second column shows the values obtained by Stwalley
[94] via conventional Bohr-Sommerfeld quantization.

about one half smaller than the value determined in [94], as expected, due to the offset
of 1/2 in the LeRoy-Bernstein function compared to the correct quantization function.
The leading-order coefficient of γ(E) is obtained as 1/γsr = −0.767404 cm−1; relating
this to a characteristic length scale for the short-range effects via |γsr| = 2µβ2

sr/~
2 gives

βsr ≈ 2.62 a.u., which is very small compared to the characteristic length parameter of the
potential tail, given by β3 = 2µC3/~

2 ≈ 2.68× 105 a.u. in this case.

Having determined these three parameters, the energies of the remaining near-threshold
bound states can be read off from the correct quantization condition at each point, where
nth−Fα=3(E) + γsrE equals 37, 38 and 39. We compare these extrapolated values for the
energies to the exact spectrum in Figure 5.1 and Table 5.2. The values extrapolated via
the LeRoy-Bernstein formula deviate from the exact values more, the closer the energy
is to threshold. The values obtained via Gao’s quantum extrapolation and with our cor-
rect quantization function (4.27) are in better agreement with the exact values up to the
threshold.

The energy eigenvalues for the highest three states extrapolated via (5.2) with the
quantization function (4.27) agree within 10−16 cm−1 to 10−14 cm−1 with the exact eigen-
values obtained by solving the Schrödinger equation. The deviation of the values from
[97] is somewhat larger, partly because Gao’s extrapolation is based on Stwalley’s energies
that were calculated under the assumption, that the reflection phases equal π/2; this is
almost correct for high binding energies but becomes less accurate towards the dissociation
threshold. So the energy eigenvalues calculated in Ref. [94] differ a little from the exact
eigenvalues, even for n < 37 (see Table 5.1).

In the case of 1u symmetry in the same sodium system the threshold quantum number

n Stwalley [94] Gao [97] this work exact

37 1.9247 × 10−7 1.8908 × 10−7 1.85419 × 10−7 1.85419 × 10−7

38 1.1215 × 10−8 1.0065 × 10−8 9.74157 × 10−9 9.74156 × 10−9

39 4.1916 × 10−11 9.2524 × 10−12 8.00658 × 10−12 8.00685 × 10−12

Table 5.2: Vibrational energy eigenvalues (in cm−1) for the highest three bound states in the pure
long-range sodium dimer dissociating into Na(3P3/2)+Na(3S1/2) with 0−

g symmetry from different
extrapolation methods compared to the exact values
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Figure 5.2: Same as in Figure 5.1 but for the long-range 1u configuration. Here the extrapolation
via the LeRoy-Bernstein formula wrongly indicates a spurious 16th bound state (n = 15), whereas
the use of the correct quantization function (4.27) shows, that this state does not exist.

obtained by extrapolation via the LeRoy-Bernstein formula is 15.22 in Ref. [94] and there-
fore a spurious 16th bound state is predicted whereas the extrapolation with the correct
quantization function (4.27) would have yielded nth ≈ 14.72, which tells us that this state
does not exist (see Figure 5.2). The total number of bound states therefore is 15, not 16
as stated. An analogous mistake occurs in Ref. [15], where corresponding results for the
B1Σ+

u state of H2 are presented. In the latter case the threshold quantum number was
found to be 43.26± 0.04, implying a 44th bound state (n = 43), whereas using the correct
quantization function would have yielded nth ≈ 42.76 and therefore no bound state with
n = 43 exists.

In case of an inverse-cube potential tail, the offset in the LeRoy-Bernstein formula
leads to an overestimation of the threshold quantum number nth by 1/2, and hence to
the prediction of an additional spurious bound state in half of all possible cases. With
the correct quantization function (4.27), nth can be determined with high accuracy from
a few bound-state energies. One way of avoiding the assignment of a nonexistent bound
state with the LeRoy-Bernstein formula could be to simply subtract the offset 1/2 from
the threshold quantum number obtained by linear extrapolation. This can only work with
fair reliability, however, if the states used for the fit are far enough from threshold. On the
other hand short-range effects destroy the linear dependence on s in this region. Closer
to threshold short-range effects are less problematic but the picture of a constant offset is
less accurate.

5.2 Application to model potentials

In order to verify the results of the previous chapters, we apply the formalism that has
been developed in Chapter 3 to certain model potentials. Two Lennard-Jones potentials
with different inverse-power tails are analyzed making use of the results of Chapter 4. We



88 5. Application to specific systems

also study the case of a model potential with a mixed tail consisting of two inverse-power
terms. A separation of the influence of the potential tail is also achieved for this case.

5.2.1 (12|6) Lennard-Jones potential

The near-threshold quantization and the scattering properties of a (12|6) Lennard-Jones
potential is analyzed. It is in general given by

V12|6(r) = E
[(

rmin

r

)12

− 2

(
rmin

r

)6
]

. (5.3)

This potential has its minimum at rmin with V12|6(rmin) = −E . Due to its simple form it
certainly constitutes one of the most common potentials for modelling interatomic inter-
action with −C6/r

6 tails. The dispersion coefficient C6 = 2Er6
min is expressed in terms

of the rest position rmin and the well depth E . The radial Schrödinger equation (2.6) for
s waves with the (12|6) Lennard-Jones potential (5.3) can be rescaled by expressing all
lengths in units of the rest position (ρ = r/rmin)

[

− d2

dρ2
+B12|6

(
1

ρ12
− 2

ρ6
− E

E

)]

u0(ρ) , (5.4)

where the dimensionless Lennard-Jones strength parameter B12|6 = 2µEr2
min/~

2 is intro-
duced. It can clearly be seen that the form of the solutions u0(ρ) of Eq. (5.4) only depends
on the strength parameter B12|6 and the energy in units of the well depth. In particular, it
does not depend on the rest position rmin and the well depth E independently. The char-
acteristic length scale of the −1/r6 tail of the interaction potential can then be expressed
via

β6 = (2B12|6)1/4rmin . (5.5)

For our analysis, we consider a strength parameter of B12|6 = 104. The number of bound
states in a (12|6) Lennard-Jones potential can be estimated by approximating the threshold
quantum number nth via the generalized Bohr-Sommerfeld quantization rule (2.45) at the
threshold energy E = 0 [cf. Eq. (3.4)] under the assumption that the inner reflection
phase φin(0) is π/2 and the outer reflection phase φout(0) is 3π/4 according to Eq. (4.19)
with α = 6. This yields

nth ≈
1

π~

∫ ∞

σ

√

−2µV12|6(r) dr − 5

8
=

Γ
(

4
3

)

27/6
√
πΓ
(

11
6

)

√

B12|6 −
5

8
, (5.6)

with the zero of the potential at the distance σ = 2−1/6rmin. For the choice B12|6 = 104,
this approximation yields nth ≈ 23.2330. We can thus conclude that a total number of 24
bound states exists in the (12|6) Lennard-Jones potential (5.3) with B12|6 = 104 and that
the noninteger remainder takes a value of ∆th ≈ 0.2330. This value is certainly not exact
but might offer a good estimate.

The eigenenergies of the 24 bound states were already calculated in Ref. [98] and the
highest five energy levels are given in units of the potential depth E in Table 5.3. In order
to relate these energies to the scales of the potential tail they are converted to units of
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n −En/E −En/E6

19 0.006657024344 9414.454112

20 0.003047136244 4309.301403

21 0.001052747695 1488.810068

22 0.000198340301 280.495544

23 0.000002696883 3.813969

Table 5.3: Scaled energy eigenvalues of the highest five vibrational s-wave bound states in a
(12|6) Lennard-Jones potential (5.9) with a strength parameter of B12|6 = 104. The energies are
given both in units of the potential well depth E and in units of the characteristic energy scale E6

of the potential tail.

the characteristic energy scale E6 of the potential tail. For general (12|6) Lennard-Jones

potentials (5.3) the potential depth is related to this energy scale via E =
√

2B
3/2
12|6E6. For

the particular case of B12|6 = 104, this yields E =
√

2 × 106E6. The values obtained for
the eigenenergies are also given in Table 5.3.

From the bound-state energies listed in Table 5.3, a discrete set of values for the
short-range parametrization can be deduced via the relation

nth + γ(En) = n+ Fα=6(En) , (5.7)

that is just a reformulation of the quantization condition (3.14) in the presence of −1/r6

potential tails. The tail part Fα=6(E) of the quantization function can be derived by using
its definition (4.18) and explicitly evaluating the outer reflection phase numerically. An
explicit analytical form for the tail part of the quantization function for −1/r6 tails has
been given in Ref. [13]. The results for the short-range parametrization nth + γ(E) as
obtained from the highest five levels (Table 5.3) via Eq. (5.7) are depicted as dots in the
left half (negative energies) of Figure 5.3.

For positive energies the quantity nth +γ(E) (solid line in Figure 5.3) can be extracted
from the scattering phase shift δ0 for s waves. The parametrization (3.30) of the phase
shift can be inverted to yield an expression for the short-range parameters

nth + γ(E) = − 1

π
arctan

(
As/Ac sin(φs − ξt)− tan δ0 cos(φc − ξt)

As/Ac cos(φs − ξt) + tan δ0 sin(φc − ξt)

)

. (5.8)

The tail functions that are used are those that have already been presented in Section 4.3.2.
It can clearly be seen from Figure 5.3 that the discrete values for nth +γ(E) calculated

via Eq. (5.7) and the continuous values obtained from Eq. (5.8) merge smoothly at the
threshold energy E = 0. We can thus conclude that our definition of the tail potential
−1/r6 is sufficient for providing a clean separation of tail effects from the short-range
effects, so that their parametrization nth + γ(E) is insensitive to the actual position of the
dissociation threshold. The smooth behavior can be approximated by the linear relation
nth+γsrE, which is shown in Figure 5.3 as the dashed line. From a fit to the values of nth+
γ(E) closest to the threshold energy, we find that the exact value of the threshold quantum
number’s remainder is ∆th = 0.232732. This result deviates from the semiclassical estimate
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Figure 5.3: Short-range parametrization nth + γ(E) for a (12|6) Lennard-Jones potential (5.3)
with a strength parameter of B12|6 = 104. The dots give the results of Eq. (5.7) with the bound-
state energies from Table 5.3. The solid line gives the results obtained from Eq. (5.8) with the exact
values of the s-wave phase shift and the scattering tail functions from Section 4.3.2. The dashed line
shows the leading-order energy dependence nth +γsrE with nth = 23.2327 and γsrE6 = 8.24×10−7

via Eq. (5.6) by only 2.7×10−4. With this remainder the scattering length of the potential
(5.3) with B12|6 = 104 can be obtained via Eq. (4.66). Together with the relation (5.5),
this yields a = 12.0213 rmin. The short-range parameter γsr is very small in case that
the energy is expressed in units of the characteristic energy scale E6 of the potential tail
γsrE6 = λ2

sr = 8.24 × 10−7, which is small as already argued in Section 3.1. Expressing
the energy in terms of the E gives γsr = 1.1657/E . With these values, Eq. (4.67) yields
reff = 8.31752 rmin for the effective range.

In Ref. [13], slightly different numbers are obtained for nth and γsr. This deviation is
due to the fact that in Ref. [13] the quantity nth + γ(E) was extrapolated towards the
threshold from bound-state energies that obviously leave a certain gap, which corresponds
to the binding energy of the least bound state, to E = 0. From the phase shift, which is
a continuous quantity, the threshold quantum number nth can be explicitly calculated via
Eq. (5.8) to arbitrary precision without any extrapolation.

5.2.2 (6|3) Lennard-Jones potential

We want to demonstrate the applicability of our formalism also for the case of an inverse-
cube tail. A model potential with a −1/r3 tail can simply be constructed using the
well-known Lennard-Jones form. The potential

V6|3(r) = E
[(

rmin

r

)6

− 2

(
rmin

r

)3
]

, (5.9)

will in the following be referred to as the (6|3) Lennard-Jones potential. As in the case
of a (12|6) Lennard-Jones potential, the distance rmin is the position of the potential
minimum, and V6|3(rmin) = −E is its minimum energy. The zero of this potential is

given by σ = 2−1/3rmin. The total number of bound states can again be estimated by
evaluating the modified WKB expression (3.4) for the threshold quantum number nth
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n −En/E n −En/E n −En/E

0 0.890841 8 0.085204 16 0.00128430

1 0.701602 9 0.0580083 17 0.000565823

2 0.545472 10 0.0383812 18 0.000218672

3 0.418174 11 0.0245816 19 0.0000705157

4 0.315713 12 0.0151634 20 0.0000174078

5 0.234396 13 0.00895200 21 2.77767×10−6

6 0.170850 14 0.00501655 22 1.88535×10−7

7 0.122024 15 0.00263932 23 8.19184×10−10

Table 5.4: Scaled energy eigenvalues of the 24 vibrational s-wave bound states in a (6|3) Lennard-
Jones potential (5.9) with a strength parameter of B6|3 = 700.

from the generalized Bohr-Sommerfeld quantization rule (2.45)

nth ≈
1

π~

∫ ∞

σ

√

−2µV6|3(r) dr − 1 =
22/3

√
π

Γ(7/6)

Γ(5/3)

√

B6|3 − 1 , (5.10)

where the outer reflection phase is given by its threshold value φout(0) = 3π/2 (see
Eq. (4.19)) and the inner reflection phase is assumed to be given by its conventional
semiclassical value φin(0) = π/2. As in the previous case of a (12|6) Lennard-Jones po-
tential, the radial Schrödinger equation depends only on the strength parameter B6|3 =
2µEr2

min/~
2 and the energy in units of the well depth E .

For our analysis we choose a strength parameter of B6|3 = 700. Estimating the number
of bound states via Eq. (5.10) yields nth ≈ 23.3507, i.e., the potential supports 24 bound
states and the threshold quantum number’s remainder is ∆th ≈ 0.3507.

The dispersion coefficient of the inverse-power tail potential is C3 = 2Er3
min. The

corresponding characteristic length scale β3 can be expressed in terms of B6|3 and rmin,

β3 = 2B6|3rmin . (5.11)

Thus we find that the energy E3 is connected to the well depth via E = 4B3
6|3E3. For the

particular case of B6|3 = 700, this means E = 1.327 × 109E3.
The exact bound-state solutions of the Schrödinger equation with the potential (5.9)

and the corresponding eigenenergies have been calculated for B6|3 = 700 and are listed
in Table 5.4. They have already been published in Ref. [71]. Knowing these bound-
state energies, the short-range parametrization can be obtained for energies below the
dissociation threshold E = 0. Since nth + γ(E) is expected to be a smooth function
of the energy and insensitive to the actual position of the threshold, it can be linearly
extrapolated to above-threshold energies. The scattering properties such as the phase
shift and the cross section for elastic scattering can be derived.

The exact energy eigenvalues are analyzed using the quantization function Fα=3(E)
(4.27) for inverse-cube tails. The threshold quantum number and the behavior of the
short-range correction are determined via the relation

nth + γ(En) = n+ Fα=3(En) , (5.12)
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Figure 5.4: The right-hand side of Eq. (5.12) is plotted pointwise against bound-state enegies En

in units of the depth E of the (6|3) Lennard-Jones potential (5.9) (filled circles). The correspond-
ing results obtained via the LeRoy-Bernstein function (4.15) instead of the correct quantization
function (4.27) are shown as empty circles.

in analogy to Eq. (5.7). The results are depicted in Figure 5.4 which shows a plot of
nth+γ(En) against the scaled bound-state energies −En/E (filled dots). In order to expose
the advantages of the correct quantization function over the LeRoy-Bernstein function, the
results obtained with the purely semiclassical quantization function (3.18) are also shown
in Figure 5.4 as hollow dots. We find that theses results are shifted from the exact values
by approximately 1/2 for high binding energies [cf. Eq. (4.29)]. For low binding energies,
we find that the exact values smoothly approach the exact value of the threshold quantum
number as En → 0, while the semiclassical values do not show satisfactory convergence
properties.

To extrapolate the short-range parameters across the dissociation threshold to positive
energies, the parameters nth and γsr in Eq. (5.12) are determined by fitting a straight line
to the dots presented in Figure 5.4 using only the highest-lying states. For this procedure,
the high accuracy of the outer reflection phase in Eq. (4.26) becomes important since the
difference of the values n+Fα=3(En) for the highest two bound states is only 2.76725×10−7.
The uncertainty of the quantization function (4.27) should be noticeably smaller than this
difference, as is the case in the present work (see Figure 4.3). From the data shown in
Figure 5.4 the threshold quantum number is extracted as nth = 23.3512, which agrees to
within 5× 10−4 with the value nth ≈ 23.3507 obtained from Eq. (5.10). The leading-order
coefficient γsr of the short-range correction γ(E) to the quantization function is found to
be γsr = 1.47417/E . This coefficient can be related to a length scale βsr for the short
range effects by γsr = 2µβ2

sr/~
2. This gives βsr ≈ 0.05 rmin which is very small compared

to characteristic length parameter of the potential tail, β3 = 1400 rmin (see Eq. (5.11)).
Relating the short-range correction to the energy scale E3 yields γsr = 1.11 × 10−9/E3.

With these values, we can predict the low-energy scattering properties of the (6|3)
Lennard-Jones potential (5.9) with the strength parameter B6|3 = 700. Figure 5.5 shows
the results for s-wave cross section σ0 (dotted line) as obtained via Eq. (2.25) with the
phase shift obtained from Eq. (3.30) and the values for nth and γsr as determined from the
bound-state spectrum. These results are compared to the exact values for the cross section,
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Figure 5.5: The s-wave scattering cross section for the (6|3) Lennard-Jones potential (5.9) with
B6|3 = 700 is plotted in units of β2

3 against the energy in units of E3 on a doubly logarithmic scale.
The exact values (solid line) are obtained by solving the Schrödinger equation numerically. They
are accurately reproduced by the dotted line which illustrates the results obtained via Eq. (3.30)
with the correct values for nth and γsr. The corresponding low-energy expansion (dashed line) is
obtained from the threshold law (4.92) for inverse-cube tails.

which are obtained by solving the radial Schrödinger equation (2.6) numerically (solid
line). We find that the values for the cross section σ0 are practically indistinguishable.
The values for the s wave phase shift agree to within 10−5 over the whole energy range
considered. Figure 5.5 also gives the low-energy expansion of the cross section (dashed
line) as obtained via the low-energy expansion (4.92) of the phase shift for potentials with
inverse-cube tails using the value ∆th = 0.3512. It is found that this expression gives
the correct low-energy behavior of the cross section and might offer an estimate of its
actual value up to the energies ∼ 10−2E3. The correctness of the threshold law (4.92) for
inverse-cube tails is hereby verified.

5.2.3 Model potential with a mixed tail

The potential tail may contain nonnegligible contributions in addition to its leading 1/rα

term, and these contributions can affect the long-range behavior of the wave function in a
significant way, even very close to threshold. To show how the definition of the potential
tail needs to be modified in case of such a potential tail, we study the scattering by a
potential that has a tail that can be expressed as the sum of two inverse-power terms.
This application of the formalism developed in Chapter 3 has been published in Ref. [60].

As an example, consider a potential tail consisting of two inverse-power terms

Vtail(r) = −C4

r4
− C6

r6
= − ~

2

2µ

[

(β4)2

r4
+

(β6)4

r6

]

. (5.13)

as typically occur in the interaction of an neutral compound particle with a compound
particle that has nonzero net charge, e.g., the interaction of an atom with an ion. The
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Figure 5.6: The ratio As/Ac of the amplitudes defined in Eqs. (3.29) for the mixed tail (5.13)
with β4 = β6 ≡ β̄. The shaded area is bounded by the corresponding results for the single-power
tails that are already shown in Figs. 4.5 and 4.11 respectively. The corresponding phases φs and
φc for the mixed tail (5.13) with β4 = β6 ≡ β̄. The short-dashed line shows the phase ξt defined
by Eq. (3.9).

theory described in Chapter 3 is easily applied to such mixed tails. The tail functions
depend on the relative weights of the two terms in (5.13), as given, e.g., by λ = (β4/β6)2.
The zero-energy solutions w0(r) and w1(r) for the mixed tail potential (5.13) can be given
in terms of hypergeometric functions for arbitrary values of λ (see Ref. [99]). The low-
energy behavior of the tail functions can thus be given analytically [54, 100]. The ratio of
the amplitudes is

As

Ac

k→0∼ 2

∣
∣
∣
∣
∣
∣

Γ
(

3
4 − 1

4 iλ
)

Γ
(

1
4 − 1

4 iλ
)

∣
∣
∣
∣
∣
∣

(kβ6) , (5.14)

and the threshold values of the phases are given by

φs(0) = −5π

8
− λ

4

(

1− ln

(
λ

4

))

+ arg Γ

(
1

4
− iλ

4

)

,

φc(0) = −3π

8
− λ

4

(

1− ln

(
λ

4

))

+ arg Γ

(
3

4
− iλ

4

)

,

ξt(0) = −7π

8
− λ

4

(

1− ln

(
λ

4

))

+ arg Γ

(
3

4
− iλ

4

)

, (5.15)

all depending on the relative weight λ of the two terms of the mixed tail potential (5.13).
To construct a specific example, we choose the two characteristic lengths to be identical,
β4 = β6 ≡ β̄, so the mean scattering length and the threshold length are

ā = 0.187041 β̄ , b = 0.899758 β̄ . (5.16)

Therefore the ratio of amplitudes then is

As/Ac
k→0∼ 0.918994 (kβ̄) (5.17)

at low energies. The left panel of Figure 5.6 shows the ratio As/Ac of the amplitudes as
function of kβ̄, together with the results for the single-power tails V6(r) and V4(r) that are
already shown in Figures. 4.5 and 4.11 respectively. As expected, we find that the ratio of
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Figure 5.7: s-wave phase shift δ0 as function of kβ̄ for the model potential (5.19). The exact
values (solid line) are reproduced within 3 × 10−6π by the formula (3.30) with the tail functions
for the mixed tail (5.13), see Figure 5.6. In contrast, using the tail functions of the single-power
1/r4 case (dashed line) is insufficient beyond the immediate near-threshold regime.

amplitude As/Ac essentially lies between the values of its single-power counterparts. For
higher energies it is closer to the values for a pure −1/r6 reference potential.

The phases φs, φc that are obtained by solving the radial Schrödinger equation (2.6)
are plotted in the right panel Figure 5.6 as functions of (kβ̄)1/2 together with the phase
ξt defined by Eq. (3.9). They start at the values

φs(0) =− 0.547875π ,

φc(0) =− 0.482634π ,

ξt(0) =− 0.982634π . (5.18)

according to Eqs. (5.15). For a single-power 1/r4 potential tail, this plot would be a
straight line in the semiclassical region, (kβ̄)1/2 & 2. An explicit analytical expression for
ξt is not available for the mixed tail (5.13).

We now apply the theory to the potential

V (r) =
~

2

2µ

[

(βrep)10

r12
− β̄4

r6
− β̄2

r4

]

(5.19)

with βrep = β̄/7. The threshold quantum number is estimated via (2.45) with the threshold
value of the outer reflection phase for the tail potential (5.13) given in Ref. [99] as nth ≈
87.865788, so the potential supports 88 bound states. The scattering length is numerically
determined as a = −1.817681 β̄, so the correct value of the remainder, which follows with
(5.16) from Eq. (3.60) is ∆th = 0.865714. Figure 5.7 shows the exact phase shift (solid
line) together with the prediction of Eq. (3.30) (short-dashed line). The agreement is
better than 3× 10−6π in the range covered by this figure.

If we were to take Vtail(r) to be given by the leading single-power term V4 = −C4/r
4

only, then ā would vanish and b would be equal to β̄. This would imply choosing ∆th =
0.839903, in order to reproduce the exact scattering length which is a property of the
full potential (5.19) via Eq. (3.60). However, with this choice of ∆th, the single-power
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treatment can reproduce only the immediate near-threshold behaviour of the exact phase
shift. This is shown by the long-dashed line in Figure 5.7, which is the corresponding
prediction of Eq. (3.30) based on tail functions for 1/r4 potentials as given in Section 4.3.4.
It does not reproduce the exact values at high energies; significant deviations become
noticeable already at very small energies (kβ̄ ≈ 0.5).

We can conclude, that using only the leading-order inverse power term −C4/r
4 is not

sufficient to properly describe the scattering properties of the potential (5.19). However,
including the next-to-leading order term in the definition of Vtail(r) [see Eq. (5.13)], a clean
separation between tail and short-range effects is achieved also for this case.

5.3 Summary of results

The quantization function Fα=3(E) (4.27) for inverse-cube tails has been applied to highly
excited states in homonuclear dimers forming long-range molecules, in order to achieve
a separation of the influence of the long-range tail potential on the bound-state spec-
trum from effects due to the short-range part of the potential. Its performance has been
compared to that of the semiclassical LeRoy-Bernstein function (4.15). The correct quan-
tization function (4.27) has been used to extrapolate a known stretch of the spectrum
towards higher energies all the way to the dissociation threshold. Short-range effects have
been included via Eq. (5.12), and the determination of nth is all the more accurate, the
closer the states used for the extrapolation are to threshold. This is in contrast to the
LeRoy-Bernstein formula which has the wrong energy dependence near threshold.

For a (12|6) Lennard Jones model potential the bound-state spectrum and the scat-
tering phase shift have been calculated numerically. The use of the quantization function
Fα=6(E) [13] and the tail functions As/Ac, φs, φc, and ξt as obtained with the single
inverse-power reference potential V6(r) = −C6/r

6 (see Section 4.3.2) provides a good sep-
aration of the tail effects and the short-range correction γ(E) to nth is found to be a
smooth function that is not sensitive to the actual position of the threshold energy.

The threshold quantum number nth of a given (6|3) Lennard-Jones potential has ex-
plicitly been determined from its the bound state spectrum. With this result the scattering
properties have been obtained from the knowledge of the bound-state spectrum by extrap-
olating the leading-order term of nth + γ(E) to positive energies. This procedure is found
to be very accurate. The corresponding results obtained for the scattering cross section are
in excellent agreement with the exact values. The correct value of the threshold quantum
number’s remainder ∆th provides the correct threshold law according to Eq. (4.92).

In many realistic cases a single-power tail might not be sufficient to even reproduce
the correct low-energy behavior of the scattering phase shift. For the case of a mixed tail
potential (5.13) the performance of the tail functions obtained from the mixed reference
potential has been compared to that of the tail functions for a pure −1/r4 tail as given in
Section 4.3.4. It is found that the exact phase shift which is accurately reproduced by the
tail functions of the mixed reference potential differs significantly from the single-power
estimate even at very low energies.



Chapter 6

Conclusions and Outlook

In the present thesis, a theoretical framework is presented that offers a clean and transpar-
ent separation of the short-range physics from the influence of the long-range potential tail
in near-threshold quantization and scattering phenomena in the presence of tail potentials
that are more singular than −1/r2 at the origin and vanish faster than 1/r2 asymptotically.
For two-body interaction potentials that occur in the field of atomic physics, the long-range
tail of the interaction potential can be calculated explicitly, e.g., by using perturbation
theory, while the short-range part of the potential remains unknown in general.

The separation of short-range effects from the influence of the tail potential is achieved
by constructing a short-range wave function (Section 3.1) that serves as a boundary condi-
tion for the tail potential. With this boundary condition, the wave function in the presence
of the full interaction potential V (r) is reproduced using only the tail potential Vtail(r)
as reference. The short-range wave function is analytically accessible via the framework
of the modified WKB approximation, which is presented in Section 2.2. The short-range
parametrization includes the noninteger remainder ∆th of the threshold quantum number
nth that is a property of the full interaction potential. The parametrization is essentially
insensitive to the actual position of the threshold energy. It thus promotes the understand-
ing of the interdependence of scattering properties and bound-state spectra in potentials
with singular attractive tails.

The concept of the quantization function that has originally been developed in Refs. [13,
41, 43] is revisited (Section 3.2) in order to keep the presentation self contained. In fact,
the derivation of the quantization function using the actual form of a short-range solution
(3.8), as performed in the present work, is even more insightful concerning the separation
of short-range effects from the influence of the tail potential.

A formulation for the scattering properties in the presence of singular attractive tail
potentials has been developed in Section 3.3. A formula for the scattering phase shift
[Eq. (3.30)] is presented, which depends only on the properties of the tail potential and the
threshold quantum number’s noninteger remainder ∆th. Further short-range corrections
might be included by replacing the remainder by the short-range parametrization ∆th +
γ(E), where γ(E) is a smooth function of the energy that scales with the potential depth
and vanishes at the dissociation threshold.

The tail potentials that are considered in the present work support neither purely
elastic scattering processes nor the existence of bound states. They do, however, support
the process of quantum reflection, i.e., the nonclassical reflection at an attractive potential
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without any actual barrier. We explicitly related the tail functions As/Ac, φs and φc

for elastic scattering that enter Eq. (3.30) to the physically tangible properties of the
tail potential, i.e., the amplitude R for quantum reflection by and the amplitude T for
transmission through the anticlassical region at rather large distances in the tail potential.

For arbitrary reference potentials that fall off faster than 1/r2 and are more singular
than −1/r2 at the origin, limiting expansions for the tail functions As/Ac, φs and φc, which
enter the formula (3.30) for the scattering phase shift are presented. The high-energy
behavior obtained from the semiclassical WKB approximation that becomes increasingly
accurate in the limit of high energies. The low-energy expansions are determined by the
properties of the zero-energy solutions in the tail potential; the correct threshold laws for
elastic scattering are obtained.

Inverse-power potentials Vα(r) = −Cα/r
α with α > 2 are identified to be appropriate

reference potentials for the formalism developed in Chapter 3; their properties are studied
in Chapter 4. It is found that all relevant properties of these potentials do not depend
on the energy and the strength of the potential independently, but only on the energy in
units of the characteristic energy scale Eα of the inverse-power reference potential. The tail
functions for the description of elastic scattering thus show a universal energy dependence
for each power α.

For the case of below-threshold energies the quantization function is studied in the
limit of high and low binding energies. The difference to the purely semiclassical LeRoy-
Bernstein quantization rule is explicitly pointed out in order to show that the quantization
function established in Section 3.2 reproduces the correct progression of bound states in
the immediate near-threshold regime. For the case of inverse-cube tail potentials, a highly
accurate analytical form of the quantization function is presented that can readily be
used for the description of bound-state spectra as obtained experimentally, e.g., from
photoassociation spectroscopy.

For interaction potentials with arbitrary inverse-power tails with α ≥ 6, the exact
effective-range expansions of the scattering phase shift is explicitly given; the influence
of the tail potential enters only in terms of the known low-energy expansions of the tail
functions As/Ac, φs and φc that can explicitly be evaluated for inverse-power reference po-
tentials with α ≥ 6. For the integer orders 3 ≤ α ≤ 6, the tail functions are given explicitly
as obtained from solving the Schrödinger equation with the corresponding reference po-
tential. For these cases, analytical modified effective-range expansions are presented that
contain anomalous terms, which are characteristic for each power α and do not occur in
the presence of a different tail potential.

A scattering length exists for all interaction potentials with attractive tails that fall
off faster than −1/r3. For the particular case of asymptotic inverse-cube interactions an
anomalous terms occurs already in leading order and a finite scattering length does not
exist. For this case, an exact threshold law (4.92) for elastic scattering is obtained from
within our theoretical framework; a corresponding formula can not be found in the existing
literature so far.

In Chapter 5 the framework that has been developed in the preceding chapters is
applied to physically relevant situations. Its applicability is tested for different interaction
potentials. With the help of the quantization function for inverse-cube tail potential, the
near-threshold bound-state spectra of homonuclear dimers are studied. The deficiency of
the purely semiclassical LeRoy-Bernstein formula becomes apparent; it fails to describe
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the progression of weakly bound states, while the correct form (3.16) of the quantization
function remains valid all the way to the dissociation threshold.

For model Lennard-Jones potentials, which have inverse-power tails, the interdepen-
dence of the bound-state levels and the scattering cross section is demonstrated. For s
waves, the short-range parametrization is derived from the exact bound-state spectrum
and the exact cross section for elastic scattering by making use of the tail functions that are
derived and presented in Chapter 4 for inverse-power tail potentials. For a (6|3) Lennard-
Jones potential, the threshold law (4.92) for elastic scattering by attractive inverse-cube
potential tails is verified by comparison to exact numerical values.

For a model potential with a mixed tail that is the superposition of a −1/r4 and
a −1/r6 term, results are presented in Section 5.2.3. The tail functions are calculated
from the particular form of the potential tail; universal scaling laws as for the case of an
pure inverse-power tail do not exist. However, the separation of the influence of the tail
potential from short-range effects is also achieved for this case. The comparison with exact
numerical data for the scattering phase shift shows that the consideration of the leading
−1/r4 term alone does not provide an appropriate choice of the tail potential; the exact
scattering phase shift differs significantly from the pure inverse-power case.

The applicability of the theoretical framework developed in the preceding chapters is
thus successfully demonstrated; the appropriate choice of the reference potential provides
insight into the short-range physics, which, together with the influence of the tail potential,
determines the scattering properties and bound state spectra of a given two-body system.

Further prospects

The present work restricts itself to the treatment of s-wave interaction, in order to provide
a comprehensive study within the limits of a doctoral thesis. However, the applicability of
the theoretical framework presented is by no means restricted to the case of zero angular
momentum. In rotational states the effective radial potential contains a centrifugal term
[cf. Eq. (2.7)]. Including this additional term in the reference potential, it still matches
the preconditions that are formulated in Chapter 3. For each partial wave, the result of
Chapter 3 can be adapted. For deep potentials with inverse-power tails Vα(r) = −Cα/r

α

with α > 2, Lemeshko and Friedrich [101, 102] have derived a relation

nth(l) ≈ nth(l = 0)− l

α− 2
(6.1)

that connects the threshold quantum number for s waves with those for higher angular
momenta, in order to analyze the progression of weakly bound rotational states. The
inclusion of higher angular momenta thus does not necessarily require the consideration
of further short-range parameters, at least not for low collision energies where only few
partial waves contribute to the elastic cross section. The tail functions are modified in
such a way that the parametrization (3.30) remains valid and typical features such as
shape resonances can be reproduced.

Furthermore, the applicability of the theory is not restricted to inverse-power tails as
considered in Chapter 4 or tail potentials that are certain superpositions of inverse-power
term as in Section 5.2.3. As long as there is an appropriate reference potential that is
more singular than 1/r2 and falls off faster than 1/r2 at large distances, the separation of
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short-range effects from the influence of the tail potential can be achieved. The range of
applicability can, without any loss of generality, be extended to tails including even more
inverse power-terms as might be appropriate for the full description of the interaction of
two ground state atoms (see Appendix A) or to the case of more complicated structures
of the tail potential. The present formalism has already been successfully applied to the
description of the Strontium dimer Sr2 [103] including all terms of the dispersion forces up
to and including the induced quadrupole-quadrupole interaction and considering nonzero
angular momenta.

The interaction of atoms and molecules with each other and with ionic partners can,
in general, not be assumed to be solely determined by single-channel physics. Typical
interatomic interactions are modified by multichannel phenomena. In elastic scattering
of two compound particles, Feshbach resonances might occur, which modify the observed
bound-state spectra and scattering cross sections (see, e.g., Ref. [4]). This is due to the
prolonged lifetime of the scattering complex when closed-channel bound states become
accessible. In a recent study [104] based on the results of the present thesis, it is shown
how, under given circumstances, the existence of a Feshbach resonance essentially modifies
the short-range parametrization in the following fashion

∆th → ∆th −
1

π
arctan

(

Γ̄/2

E − ER

)

, (6.2)

where Γ̄ is the resonance width, which is independent of the energy, and ER is the ac-
tual resonance position. With the parametrization (6.2), the multichannel problem can
effectively be reduced to a single-channel problem with adapted boundary conditions. An-
alyzing experimental data, as in the spirit of Section 5.2, then reveals the specific resonant
features in the short-range parameterization (6.2). This offers insight into the interde-
pendence of multichannel spectra and scattering phenomena. Previous works, such as
Refs. [76, 105, 106], that analyze the modification of bound-state spectra in the presence
of channel coupling could largely benefit from this formulation, as the scattering cross sec-
tions for a collision complex in a very particular internal state can in principle be predicted
from the progression of bound state energies.



Appendix A

Interatomic Potentials

This appendix discusses the typical long-range tails Vtail(r) of the interaction potentials
between two atoms, and also for the case of interaction of an atom with a charged particle
such as an ion.

Atom-atom interactions

The electrostatic potential of a charge distribution at a distance much larger than the ex-
tension of the charge distribution itself can be divided into contributions stemming from
different multipole moments [10]. The interaction energy between two charge distributions
can be given in terms of combinations of these multipole terms. For a quantum mechan-
ical description of these interaction terms, the coordinates relative to the center of mass
coordinates are just replaced by the corresponding position operators.

Therefore, the interaction between two neutral atoms A and B can — at large inter-
nuclear separations r — be described by the interaction operator

Ŵ = Ŵdd + Ŵdq + Ŵqd + Ŵqq + . . . (A.1)

where each term is indexed by the order of the interacting multipoles.1 The resulting forces
are typically referred to as van der Waals forces or dispersion forces. The interaction of the
2nA-pole moment of particle A with the 2nB -pole moment of particle B contributes to the
total asymptotic interaction energy with a term proportional to r−n, with n = nA+nB +1;
induced polarizations contribute with a r−2n term, as they are obtained from second-order
perturbation theory with the interaction operator (A.1). Since the neutral atoms posses no
net charge, the lowest order contribution in (A.1) is the dipole-dipole interaction operator

Ŵdd =
1

r3
(x̂Ax̂B + ŷAŷB − 2ẑAẑB) (A.2)

acting on both the elements of HA and HB, which are the Hilbert spaces containing the
atomic states of atom A and B, respectively. The strength coefficient of the interaction
can be calculated via perturbation theory in a straightforward fashion [12].

1d=dipole, q=quadrupole, and so forth.
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Two atoms in spherically symmetric ground states, such as alkali metal atoms, neither
posses permanent dipole nor quadrupole moments. Therefore the lowest-order contri-
bution to the interaction energy originates from the second-order perturbation with the
dipole-dipole operator and gives

Vtail(r) = −C6

r6
, (A.3)

for sufficiently large internuclear separations. The interaction strength C6 is referred to
as the dispersion coefficient. The induced dipole-dipole interaction is always attractive,
since a second-order correction to the ground state is always negative [53]. In this case,
the next-to-leading terms are −C8/r

8 from the induced dipole-quadrupole interaction and
−C10/r

10 from the induced quadrupole-quadrupole interaction [107].

The situation changes when both interacting atoms have a nonvanishing orbital angular
momentum and total angular momentum. The expectation value of the dipole moment
vanishes in every pure atomic state [53], but for certain atomic states (L 6= 0, J 6= 0, 1/2)
the expectation value of the quadrupole moment is nonzero. In these cases, we obtain

Vtail(r) = ±C5

r5
. (A.4)

This interaction can either be attractive or repulsive, depending on the particular internal
states of the interacting atoms.

The special case of the interaction of two identical atoms in different internal states has
a certain peculiarity: each state of the system has an additional double degeneracy due to
the possibility of exchanging the atoms’ internal states. For atoms in different states that
are connected via a nonvanishing probability of a dipole transition, there will be nonzero
off-diagonal matrix elements already from first-order corrections due to the dipole-dipole
interaction (cf. [12, 107])

Vtail(r) = ±C3

r3
. (A.5)

This type of interaction is referred to as the resonant dipole-dipole interaction [89]. It can
either be attractive or repulsive.

In general, all of the atom-atom interactions might be modified due to retardation
effects (see Refs. [9, 108, 109]). These effects are not considered in this work.

Atom-ion interaction

When interacting with an ion or a point charge, the atom is instantaneously exposed to
the Coulomb field caused by the partner’s charge φCoulomb(r) ∝ −1/r. The lowest possible
order of multipole interactions might occur, when the atom is in an internal state so that it
possesses a nonvanishing expectation value of the quadrupole moment, as discussed in the
context of Eq. (A.4). In this rather exotic case the atom-ion interaction could in principle
be ∝ 1/r3.

For more common cases, i.e., when the atom is in its ground state, the leading order
term will be due to the second-order contribution from the perturbation with the charge-
dipole interaction term that itself is ∝ 1/r2. The asymptotic interaction energy can then
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be given as

Vtail(r) = −C4

r4
= − αd

2 r4
, (A.6)

with αd being the static dipole polarizability (see, e.g., Refs. [53, 110]). For ground-state
atoms this interaction is always attractive. The long-range interaction potential between
an atom and an electron is also of the form (A.6). This long-range attraction can in
principle enable the formation of negatively charged ions [53].





Appendix B

The Transmission Amplitude

While not essentially a primary subject of the present work, the low-energy expansion
of the transmission coefficient in the process of quantum reflection by attractive singular
potentials is given for the reason of self-consistence.

This quantum reflection process can in general be characterized by the stationary wave
function

T
√

p(r)
exp

(

− i
~

∫ r

rE

p(r′)dr′

)

←→ 1√
~k

[
exp(−ikr) +Rr exp(ikr)

]
(B.1)

(see, e.g., Refs. [67, 78]). This notation means that the solution of the Schrödinger equation
that behaves as an inward traveling wave in the inner region is split up into an inward
traveling wave plus a reflected wave in the outer asymptotic region. The subscript r refers
to the right (i.e. outer) side from which the wave is incident in the first place.

Chosing a suitable linear combination of the solution (B.1) and its complex conjugate,
we can also find the solution that correctly describes the process of near-side quantum

reflection [68], i.e., an outward traveling wave being reflected by the potential.

1
√

p0(r)

[

exp

(
i

~

∫ r

rE

p(r′)dr′

)

+Rl exp

(

− i
~

∫ r

rE

p(r′)dr′

)]

←→ T√
~k

exp(ikr) . (B.2)

From this expression it follows for the reflection amplitude

Rl = − |Rr| e−iφRr e2iφT , (B.3)

which shows, that the very general relationships

Tr = Tl ≡ T , Rl = −R∗
r

T

T ∗
, (B.4)

connecting the left-side transmission and reflection to the corresponding right-side quan-
tities [54, 69] is well fulfilled.

For singular potential tails, the near-threshold behavior of the transmission amplitude
can be determined by comparing

√
~k

√

p0(r)

1

T
exp

(
i

~

∫ r

rE

pE(r′)dr′

)

+

(

inward-traveling
WKB wave

)

←→ exp(ikr) . (B.5)
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to an appropriate linear combination of the zero-energy solutions introduced in (3.19) and
(3.20).

At low energies the asymptotic form can be written as

eikr kr→0∼ 1 + ikr +O(k2) = w0(r) + ikw1(r) +O(k2) . (B.6)

In the limit r → 0 the wave function satisfying the boundary condition (B.5) reads

1
√

p0(r)

{

D0 cos

(
1

~

∫ r

∞

p0(r′)dr′ +
φ0

2

)

+ikD1 cos

(
1

~

∫ r

∞

p0(r′)dr′ +
φ1

2

)}

, (B.7)

which can be split up into an outward- and an inward-traveling part

1
√

p0(r)

D0eiφ0/2 + ikD1eiφ1/2

2
exp

(
i

~

∫ r

∞

p0(r′)dr′

)

+

(

inward-traveling
WKB wave

)

. (B.8)

Comparing only the outward-traveling part of Eqs. (B.5) and (B.8) gives an expression
for the transmission amplitude

T
k→0∼ 2

√
~k

D0eiφ0/2 + ikD1eiφ1/2
exp

[
i

~
lim
r→0

(∫ r

rE

pE(r′)dr′ −
∫ r

∞

p0(r′)dr′

)]

+O(k2) , (B.9)

which can — to order k — be rephrased as

T
k→0∼ 2

√
~k

D0
(1− iāk − bk)

exp

[

i

(

−φ0

2
+

1

~

∫ rE

0
[p0(r)− pE(r)] dr +

1

~

∫ ∞

rE

p0(r)dr

)]

+O(k2) . (B.10)

With T = |T | eiφT we can write

|T | k→0∼ 2

√
~k

D0

[

1− bk +O(k2)
]

, (B.11)

φT
k→0∼ −φ0

2
+

1

~

∫ rE

0
[p0(r)− pE(r)] dr +

1

~

∫ ∞

rE

p0(r)dr − āk +O(k2) (B.12)

for the modulus and the phase of the transmission amplitude.

Note that, with the well-known relation |R| k→0∼ 1− 2bk +O(k2) [78] the conservation
rule for the flux density (3.36) gives the identity

D0 =
√

~/b (B.13)

and therefore
|T | k→0∼ 2

√
bk
[

1− bk +O(k2)
]

. (B.14)

Furthermore, it has to be mentioned that the result for phase of the transmission
amplitude (B.12), that is correctly derived here, is not identical to the result obtained in
Ref. [68], since the matching to the given zero-energy solutions was performed wrong in
that work.



Appendix C

Verification of asymptotic
expansions

In the present work and especially in Chapter 4 asymptotic expansions of given quantities
play a major role. A tool that is used to verify the correctness of the expansions obtained
by analytical means is introduced and explained in the following.

Consider a function f(x). This function can be written in the form

f(x) =
∞∑

n=0

fnx
pn , (C.1)

where {pn} is a strictly monotonic increasing sequence of positive rational numbers. The
function f(x) can be written as an asymptotic expansion

f(x)
x→0∼

N∑

n=0

fnx
pn

︸ ︷︷ ︸

=fN (x)

+O(xpN+1) , (C.2)

which defines the function fN (x) that includes the leading order terms of f(x) up to and
including the term O(xpN ), where N is a given integer number. We can now define

∆fN = f(x)− fN (x) =
∞∑

n=N+1

fnx
pn (C.3)

which gives the remaining higher-order terms of f(x) that have not been included into
fN (x). The ratio

∆fN

xpN
=

∞∑

n=N+1

fnx
(pn−pN ) (C.4)

has a particular property, i.e., it tends to zero in the limit of small arguments x,

lim
x→0

∆fN

xpN
= 0 , (C.5)

which is due to the fact that pn − pN > 0 ∀n ≥ N + 1. This property is self-evident, but
can be made use of, in case that expansion coefficients fn are not known in general.
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If we now consider a function g(x), we can state

lim
x→0

g(x) − f(x)

xpN
= 0 (C.6)

if and only if

g(x)
x→0∼ fN (x) +O(xpN+1) , (C.7)

i.e., if and only if g(x) is identical to f(x) up on and including the term of the order
O(xpn).

Knowing the values of the function f(x), but not its expansion coefficients, offers the
opportunity to check whether a candidate function g(x) reproduces the correct lower-order
behavior of the function f(x) up to and including the order O(xpN ).
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