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1 IntroductionOver the last decade a variety of stochastic models have been suggested as appropriate modelsfor �nancial products. In a continuous time setting the dynamics of an interest rate or priceprocess is often modelled as a di�usion process given by a stochastic di�erential equation (SDE)dXt = �(Xt)dt+ �(Xt)dWt ; t > 0 ; X0 = x ; (1.1)where W is standard Brownian motion, � is the drift term and � is the di�usion coe�cient orvolatility. Two standard models in �nance are of the above form:(i) The Black-Scholes model: (Xt) models the price process of an asset, here �(x) = �xand the volatility �(x) = �x. The resulting model for the price process is geometric Brownianmotion.(ii) The Vasicek model: the process (Xt) models an interest rate, the drift term � is linearand the volatility � > 0 is some constant.Both models can be considered in the framework of Gaussian models. It has been recognisedfor decades that �nancial data like interest rates and asset prices exhibit 
uctuations whichcannot be modelled by Gaussian processes or simple transformations as in the two standardmodels above.There are two features, heavy-tailedness and the dependence structure, that require mod-elling for �nancial data. Various models have been suggested to capture these features. For adiscussion of non-linear heavy-tailed models and further references we refer to Section 7.6 ofEmbrechts, Kl�uppelberg and Mikosch (1997). There are in principle two di�erent approaches.A �rst concept replaces the Gaussian driving process in the Black-Scholes or Vasicek model(or any other traditional model) by a process with heavy-tailed marginals as for instance astable process, a L�evy process or a discrete time counterpart as an ARMA (autoregressive-moving average) process with heavy-tailed noise (see e.g. Barndor�-Nielsen (1995), Eberleinand Keller (1995), Kl�uppelberg and Mikosch (1996), Mittnik and Rachev (1997)).The second concept sticks to Brownian motion as the driving dynamic of the process, butintroduces a path-dependent, time-dependent or even stochastic volatility into the model. Thesemodels are commonly referred to as volatility models, and include di�usions given by the SDE(1.1). Hence this paper is about such models. Discrete time counterparts are for instance ARCHand GARCH models, which have been successfully applied in econometrics. The extremal be-haviour of the ARCH(1) model has been studied in de Haan et al. (1989) and is an interesting2



complement to the present paper.In this paper we study the extremal behaviour of di�usion processes de�ned by (1.1). Thestationary distributions of the processes under investigation are well-known and one might expectthat they in
uence the extremal behaviour of the process in some way. This is however notthe case: for any pre-determined stationary distribution the process can exhibit quite di�erentbehaviour in its extremes.Extremal behaviour of a stochastic process (Xt) is for instance manifested in the asymptoticbehaviour of the maxima MXt = max0�s�tXs ; t > 0 : (1.2)The asymptotic distribution of MXt for t ! 1 has been studied by various authors, see Davis(1982) for detailed references. Two monographs on this and related problems are by Leadbetter,Lindgren and Rootz�en (1983) and Berman (1992). It is remarkable that running maxima andminima of (Xt) are asymptotically independent and have the same behaviour as the extremesof iid random variables. In this paper we restrict ourselves to the investigation of maxima, themathematical treatment for minima being similar.We furthermore investigate the point process of upcrossings (more precisely "-upcrossings)of a high threshold u by (Xt). For �xed " > 0 the process has an "-upcrossing at t if it hasremained below u on the interval (t � "; t) and is equal to u at t. Under weak conditions, thepoint process of "-upcrossings, properly scaled in time and space, converges in distribution toa homogeneous Poisson process, i.e. it behaves again like iid random variables, coming howevernot from the stationary distribution of (Xt), but from the df F which also describes the maximaMXt (see Theorem 3.4).The paper aims at applications in �nance: for the various models under consideration wederive the distributional behaviour ofMXt as t!1, which together with Theorem 3.4 describesthe extremal behaviour of the whole process (Xt). The results of this paper can be applied tostudy risk measures of �nancial products as for instance the value at risk or related quantilerisk measures; see Embrechts, Kl�uppelberg and Mikosch (1997), Example 6.1.6. This work iscurrently under way and will be presented in another paper.The course of this paper is as follows. In Section 2 we present the framework for the results tofollow. We shall require certain properties on the speed measure and scale function of (Xt), whichwe explain and summarise in the usual conditions (2.5). They are assumed to hold throughoutthe paper. 3



In Section 3 we present some results on extreme value theory for di�usions. We show that,providedMXt has a weak non-degenerate limit, then, under weak conditions, also the point pro-cesses of "-upcrossings converge to a homogeneous Poisson process (Theorem 3.4). Furthermorewe derive the limit distribution ofMXt (suitably normalised) under simple conditions on the driftterm and the di�usion coe�cient (Theorem 3.7). Finally we show how to construct a di�usionwith pre-determined stationary density which captures any extremal behaviour (Theorem 3.8).In Section 4 we apply these results in order to derive the extremal behaviour of such di�usionsas the Vasicek model, the Cox-Ingersoll-Ross (CIR) model, including a generalised version, andthe generalised hyperbolic di�usion. Depending on the choice of parameters the generalised CIRmodel allows for large 
uctuations in the data. This is captured by the limit distribution of MXtand the intensity of the limit point process of "-upcrossings.We conclude in Section 5 the paper with a new model, the generalised inverse Gaussiandi�usion, which is constructed with the pre-determined generalised inverse Gaussian stationarydensity and a pre-determined di�usion coe�cient. If we choose the di�usion coe�cient as in theCIR model we obtain a further generalisation of this important model. Whereas in Section 4we mainly present results without explicit calculations, for this new model we derive certainquantities in detail.We shall need some results on classical extreme value theory. For an introduction to extremevalue theory we refer to Leadbetter, Lindgren and Rootz�en (1983), Resnick (1987) or Embrechts,Kl�uppelberg and Mikosch (1997, Chapter 3).2 The usual conditionsThe di�usion (Xt) given by the SDE (1.1) has state space (l; r) � R, where l; r can be �1or +1. We only consider the case when the boundaries l and r are inaccessible and (Xt) isrecurrent. We require furthermore that, for all x 2 (l; r), �2(x) > 0 and there exists some " > 0such that R x+"x�" (1 + j�(t)j)=�2(t)dt <1. These two conditions guarantee in particular that theSDE (1.1) has a weak solution which is unique in probability (see Karatzas and Shreve (1988),Chapter 5.5.C).Associated with the di�usion is the scale function s and the speed measure m. The scalefunction is de�ned ass(x) = Z xz exp��2Z yz �(t)�2(t)dt� dy ; x 2 (l; r) ; (2.1)4



where z is any interior point of (l; r). Since the scale function is unique only up to a positivea�ne transformation (if es(x) = �s(x) + � for some � > 0 and � 2 R, then es is a scale functionif and only if s is), in a �rst order approximation, the choice of z is of no importance. The scalefunction s de�nes in the usual way a measure on (l; r), the so-called scale measure, which isabsolutely continuous with Lebesgue densitys0(x) = exp��2Z xz �(t)�2(t)dt� ; x 2 (l; r) : (2.2)For the speed measure m we know that m(I) > 0 for every non-empty open subinterval I ofthe interior of (l; r). We only consider di�usions with �nite speed measure m and denote itstotal mass by jmj = m((l; r)). The speed measure of model (1.1) is absolutely continuous withLebesgue density m0(x) = 2�2(x)s0(x) ; x 2 (l; r) : (2.3)In this situation (Xt) is ergodic and its stationary distribution is absolutely continuous withLebesgue density h(x) = m0(x)=jmj : (2.4)Notice that the connection between stationary distribution, speed measure, scale function, driftterm and di�usion coe�cient (given by (2.1)-(2.4)) allows us to construct di�usions with arbi-trary stationary distribution (see Examples 4.4 and the generalised inverse Gaussian di�usionof Section 5).Since the process is recurrent and the boundaries l and r are inaccessible, we must haves(u)!1 as u " r and s(u)! �1 as u # l. Conversely, if s(u)!1 (resp. �1) as u " r (resp.u # l), then l and r are inaccessible, and therefore (Xt) is recurrent.For proofs of the above relations and further results on di�usions we refer to the monographsby Karlin and Taylor (1981), Karatzas and Shreve (1987), Rogers and Williams (1987), Revuzand Yor (1991) or any other advanced textbook on stochastic processes.Throughout this paper, we assume that the di�usion process (Xt) de�ned in (1.1) satis�esthe usual conditions: s(r) = �s(l) =1 ; (2.5)jmj <1 :5



3 Extremal behaviour of di�usionsThe following formulation can be found in Davis (1982).Proposition 3.1 Let (Xt) satisfy the usual conditions (2.5). Then for any initial value X0 =y 2 (l; r) and any ut " r, limt!1 jP y(MXt � ut)� F t(ut)j = 0 ; (3.1)where F is a df, de�ned byF (x) = e�1=(jmjs(x))I(z;r)(x) ; x 2 R ; (3.2)for any z 2 (l; r). (IA denotes the indicator function of A.) The function s and the quantity jmjalso depend on the choice of z. 2Various proofs of this result exist and we refer to Davis (1982) for further references. Davis'proof is based on a representation of such a di�usion as an Ornstein-Uhlenbeck process after arandom time-change. Standard techniques for extremes of Gaussian processes apply leading tothe above result.It is not di�cult to show that Proposition 3.1 is true for arbitrary initial probability measureH. For the special choice of H = m=jmj the di�usion (Xt) is stationary.As a consequence of Proposition 3.1, the maxima MXt have, properly normalised, a non-degenerate limit distribution Q if and only if F belongs to the maximum domain of attraction ofQ (we write MDA(Q)) for some extreme value distribution Q. In Proposition 3.1, any functionut " r is possible, but as usual in classical extreme value theory we restrict ourselves to positivea�ne functions, i.e. ut = atx+ bt : (3.3)The norming constants at > 0 and bt 2 R have to be chosen appropriately to ensure convergenceto a non-degenerate limit.The extremal behaviour (in particular the behaviour of the maximum) of an iid sequencewith common df F is determined by the far end of the right tail F = 1 � F . In our situationthe asymptotic behaviour of the maxima MXt is determined by the tail of F as in (3.2): IfF 2 MDA(Q) with norming constants at > 0 and bt 2 R, thena�1t �MXt � bt� d! Q ; t!1 : (3.4)6



As already noted the scale and speed measure of a di�usion (Xt) are not unique. Di�erent scaleand speed measures (and therefore di�erent z) lead to di�erent df's F in Proposition 3.1. Theyare however all tail-equivalent.Corollary 3.2 Under the conditions of Proposition 3.1 the tail of the df F in (3.2 ) satis�esF (x) � �jmjZ xz s0(y)dy��1 � (jmjs(x))�1 ; x " r ; (3.5)where � means that the quotient of lhs and rhs converges to 1.Proof. The representation of (3.5) follows immediately by Taylor expansion from (3.2) and thefact that s(x)!1 as x " r.We show that the rhs is for di�erent z asymptotically equivalent, and thus independent ofz 2 (l; r). Let z1; z2 2 (l; r) and z1 6= z2. Denote si;m0i and jmij the functions and constantscorresponding to zi for i = 1; 2. Then from (2.1) we obtains1(x) = �+ �s2(x) ;where � and � are constants depending on z1 and z2. Furthermore, from (2.3) we obtainm01(x) = 2�2(x)s01(x) = 2�2(x)�s02(x) = 1�m02(x) :Hence jm1j = jm2j=� andF (x) � (jm1js1(x))�1 = �jm2j(�� + s2(x))��1 � (jm2js2(x))�1 ; x " r ;since limx"r s2(x) =1. 2Proposition 3.1 reduces the asymptotic behaviour of the maximum of (Xt) to that of the maxi-mum of iid random variables with df F having tail (3.5). It would be interesting to know moreabout the extremal behaviour of the corresponding di�usion (Xt) than just the behaviour ofits maxima. From classical extreme value theory it is well-known that the point process of ex-ceedances of an iid sequence of a level ut, plotted at points i=t, converges to a homogeneousPoisson process for ut " r as t " 1 in an appropriate way. Extremes of a continuous time stochas-tic process over a high threshold ut typically occur on intervals and form excursions over thislevel. However, an analogous discrete skeleton which describes the behaviour of the extremes ofa continuous time stochastic process is provided by a point process of the upcrossings (i.e. theevents where excursions above a level begin). This is quite natural and upcrossings are well{de�ned if the sample paths of the corresponding process are regular (i.e. di�erentiable in the7
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Figure 1: Sample path of a di�usion with threshold u = 3:8. For the values of " = 3:2; 1:2; 0:8; 0:4 we get6; 7; 10; 14 "{upcrossings, respectively. The number of "{upcrossings depends crucially on ". The dependenceonly disappears in the limit.L2{sense). In cases with irregular sample paths there can be in�nitely many upcrossings on a�nite interval.To avoid such problems special upcrossings, namely "-uprossings, are considered. We usethe de�nition given by Pickands (1969) for continuous processes. We also refer to Leadbetter,Lindgren and Rootz�en (1983), Chapter 12, for more mathematical background.De�nition 3.3 Let (Xt) be a di�usion satisfying the usual conditions (2.5). Take " > 0.(a) The process (Xt) is said to have an "{upcrossing of the level u at t0 if Xt < u for t 2 (t0��; t0)and Xt0 = u.(b) Let N";u(t) denote the number of "-upcrossings of u by (Xs)0�s�t. Then for any t > 0,N�t (B) = N";ut(tB) = #f"-upcrossings of ut by (Xs)0�s�t : st 2 Bgis the time{normalised point process of "-upcrossings on the Borel sets B of (0; 1]. 2The point process (N�t ) has a point at t0 if (Xs)0�s�t has an "{upcrossing at t0t. "{upcrossingsof a continuous time process correspond to exceedances of an iid sequence. It is well-known thatfor a sequence (Xt) of iid rvs, all with df F , the point processes (N�t ) of exceedances convergeto a homogeneous Poisson process with intensity � , provided the ut are appropriately chosen,namely such that tF (ut)! � 2 (0;1) ; t!1 : (3.6)8



Recall from (3.4) that for the choice of ut = atx+ bt:P �MXt � atx+ bt� = F t(atx+ bt)! Q(x) = e�� ; x 2 R : (3.7)Taking logarithms in (3.7) shows that (3.6) is equivalent to (3.7). Convergence of the pointprocesses of exceedances to a Poisson process also holds for more general sequences (Xt) ifthe dependence structure is nice enough to prevent clustering of the extremes in the limit. Fordi�usions (1.1) the dependence structure of the extremes is such that the point processes of "-upcrossings converge to a homogeneous Poisson process, however, the intensity is not determinedby the stationary df H, but by the df F from Proposition 3.1. This means that the "-upcrossingsof (Xt) are likely to behave as the exceedances of iid rvs with df F .The extra condition (3.10) of the following theorem relates the scale function s and speedmeasure m of (Xt) to the corresponding quantities sou and mou of the standard Ornstein-Uhlenbeck process, de�ned bysou(x) = p2� Z x0 et2=2dt and m0ou(x) = 1=s0ou(x) ; x 2 R : (3.8)Theorem 3.4 Let (Xt) satisfy the usual conditions (2.5) and ut " r such thatlimt!1 tjmjs(ut) = � 2 (0;1) : (3.9)Assume there exists some positive constant c such thatm0ou(s�1ou (s(z)))s0ou(s�1ou (s(z))) s0(z)m0(z) � c ; 8z 2 (l; r) : (3.10)Then for all starting points y 2 (l; r) of (Xt) and " > 0 the time-normalised point processes (N�t )of "-upcrossings of the level ut converge in distribution to N as t " 1, where N is a homogeneousPoisson process with intensity � on (0; 1].Remark 3.5 (a) Notice from Corollary 3.2 that tF (ut) � t=(jmjs(ut)). Hence, if ut = atx+ btand � = � lnQ(x), then condition (3.9) guarantees that F belongs to some maximum domainof attraction.(b) Pickands (1969) proved that the point processes of "-upcrossings converge to a homogeneousPoisson process in the case when (Xt) is a Gaussian process. Notice that the assumptions ofTheorem 3.4 are particular satis�ed for the Ornstein-Uhlenbeck process with c = 1.(c) Examples which satisfy condition (3.10) are the Vasicek model, the Cox-Ingersoll-Ross model9



or the generalised Cox-Ingersoll-Ross model for 
 6= 1. All these models are presented in Sec-tion 4. Nevertheless not every di�usion satis�es the assumptions in Theorem 3.4. Lemma 3.6indicates that for the generalised inverse Gaussian di�usion with � > 0;  > 0 and 
 > 1:5 or
 < 0:5 the assertion of Theorem 3.4 may not hold.Proof. The proof invokes a random time change argument. An application of Theorem 12.4.2of Leadbetter et al. (1983) shows that the theorem holds for the standard Ornstein-Uhlenbeck(Ot) process. Denote by Zt = sou(Ot) ; t � 0 ;the Ornstein-Uhlenbeck process in natural scale. Now de�neYt = s(Xt) ; t � 0 ;which is again a di�usion process in natural scale. (Yt) can then be considered as a random timechange of the process (Zt), i.e. Yt = Z�t a:s: (3.11)The random time �t has a representation via the local time of the process Y . This is a conse-quence of the Dambis-Dubins-Schwarz Theorem (Revuz and Yor (1991), Theorem 1.6, p.173),Theorem 47.1 of Rogers and Williams (1987), p.277 and Exercise 1.27 of Revuz and Yor (1991),p.226. For z 2 (l; r) denote Lt(z) the local time of (Ys)0�s�t in z. Then�t = Z 1�1 Lt(z)dmou(s�1ou (z))= Z 1�1 Lt(z)m0ou(s�1ou (z))s0ou(s�1ou (z)) s0(s�1(z))m0(s�1(z))dm(s�1(z))= Z t0 m0ou(s�1ou (Ys))s0ou(s�1ou (Ys)) s0(s�1(Ys))m0(s�1(Ys))ds= Z t0 m0ou(s�1ou (s(Xs)))s0ou(s�1ou (s(Xs))) s0(Xs)m0(Xs)ds ; t � 0 ;where we used the occupation time formula (cf. Revuz and Yor (1991), p.215). Notice also that�t is continuous and strictly increasing. Under condition (3.10) we obtain�t � �t�" � c" ; t � 0 : (3.12)Moreover, Itô and McKean (1974), p. 228 proved the following ergodic theorem�tt a:s:! 1jemj = 1jmj : (3.13)10



Wlog we assume jmj = 1 in the following.According to Theorem 4.7 of Kallenberg (1983) it su�ces to show for any y 2 (l; r)limt!1P y(NX";ut(tU) = 0) = P (N(U) = 0) ; (3.14)where U is an arbitrary union of semi-open intervals, andlim supt!1 Ey(NX";ut(t(a; b])) � E(N((a; b])) <1; for every (a; b] � (0; 1] : (3.15)By de�nition of the processes O, Z, X and Y , setting vt = s(ut), z = s(y), wt = s�1ou (vt) andx = s�1ou (z), we have for k � 1,P y(NX";ut(t(a; b]) � k)= P (#f"-upcrossings ofut byX� ; � 2 t(a; b]g � k jX0 = y)= P (#f"-upcrossings of vt byY� ; � 2 t(a; b]g � k jY0 = z)= P (f9�1; : : : ; �k 2 t(a; b] : 8i = 1; : : : ; k ; Y� < vt 8� 2 (�i � "; �i) and Y�i = vtg jY0 = z)= P (f9��1 ; : : : ; ��k 2 (�ta; �tb] : 8i = 1; : : : ; k ; Zu < vt 8u 2 (��i�"; ��i) and Z��i = vt g jZ0 = z)� P (f9��1 ; : : : ; ��k 2 (�ta; �tb] : 8i = 1; : : : ; k ; Zu < vt 8u 2 (��i � c"; ��i) and Z��i = vt g jZ0 = z)(3.16)= P (#fc"-upcrossings of vt byZu ; u 2 (�ta; �tb]g � k jZ0 = z)= P (#fc"-upcrossings of s�1ou (vt) by s�1ou (Zu) ; u 2 (�ta; �tb]g � k j s�1ou (Z0) = s�1ou (z))= P x(NOc";wt((�ta; �tb]) � k) :The inequality is a consequence of (3.12). Notice, since all transformations are strictly monotoneand continuous, when we start with (a; b], then we get again an interval (�a; �b]. Furthermore,we know already that the theorem holds for the OU-process O. We show that for all k � 0,lim supt!1 ��P x(NOc";wt((�ta; �tb]) � k)� P x(NOc";wt((ta; tb] � k)�� = 0 ; x 2 R ;equivalently, for all k � 0,lim supt!1 ��P x(NOc";wt((�ta; �tb]) � k)� P x(NOc";wt((ta; tb] � k)�� = 0 ; x 2 R ; (3.17)For any 0 < � < 1, de�neAt = fj�ta � taj � �ta ; j�tb � tbj � �tbg ; t � 0 :11



By the triangular inequality, the lhs of (3.17) is bounded bylim supt!1 ��P x(NOc";vt((�ta; �tb]) � k;At)� P x(NOc";wt((ta; tb]) � k;At)��+2 lim supt!1 fP x(j�ta � taj � �ta) + P x(j�tb � tbj � �tb)g =: I1 + I2 :Notice that I2=0 by (3.13).Again by the triangular inequality and the fact that (�ta; �tb] � ((1� �)ta; (1 + �)tb] in At,I1 � lim supt!1 �P x(NOc";wt((�ta; �tb]) � k;At)� P x(NOc";wt(((1� �)ta; (1 + �)tb]) � k;At)�+ lim supt!1 �P x(NOc";wt((ta; tb]) � k;At)� P x(NOc";wt(((1� �)ta; (1 + �)tb]) � k;At)�=: J1 + J2 :Furthermore,J1 � lim supt!1 �P x(NOc";wt((�ta; �tb]) � k;At; NOc";wt(((1� �)ta; (1 + �)tb]) > k)�� lim supt!1 �P x(NOc";wt(((1 � �)ta; (1 + �)ta]) > 0) + P x(NOc";wt(((1� �)tb; (1 + �)tb]) > 0)�= lim supt!1 �PH(N�t ((0; 2�a] > 0) + PH(N�t ((0; 2�b] > 0)�= P (N((0; 2�a] > 0) + P (N((0; 2�b] > 0) � 2(1 � e��2�b) ;where H is the stationary distribution and N�t is the time-normalised point process of "-upcrossings of the process O. We used that the Ornstein-Uhlenbeck process O has the strongMarkov property and is ergodic, and that the result holds for O.Similar considerations yield the same upper bound for J2 and hence the lhs of (3.17) is boundedby 4(1 � e��2�b). Letting � # 0 we have proved (3.17) for all k � 0, which yields together with(3.16) and x = s�1ou (s(y)),lim supt!1 Ey(NX";ut(t(a; b])) = lim supt!1 1Xk=1P y(NX";ut(t(a; b]) � k)� 1Xk=1 lim supt!1 P x(NOc";wt(t(a; b]) � k)= 1Xk=1P (N((a; b]) � k) = E(N((a; b])) ;and therefore (3.15) holds. Now we check (3.14):Wlog choose an arbitrary U of the form U = Sdi=1(ai; bi] with disjoint intervals and a1 � a2 �: : : � ad. Then, by de�nition of the "-upcrossings,limt!1P y(NX";ut(tU) = 0) = limt!1P y(fNX";ut(tU) = 0g \ d\i=1fMX[tai ;tai+"] < utg)12



+ limt!1P y(fNX";ut(tU) = 0g \ d[i=1fMX[tai ;tai+"] � utg)= limt!1P y( d\i=1fMXt[ai;bi] < utg)+ limt!1P y(fNX";ut(tU) = 0g \ d[i=1fMX[tai ;tai+"] � utg)=: K1 +K2 :We show by induction that the rhs equals P (Tdi=1fN((ai; bi]) = 0). Because of Proposition 3.1and the fact that K2 = 0 (see below) this is true for d = 1. Now we may assume thatIfTd�1i=1 fMXt[ai;bi]<utgg d! IfTd�1i=1 fN((ai ;bi])=0gg ; t!1 ; (3.18)and by the Markov property,P (MXt[ad ;bd] < utjXtad) P! e��(bd�ad) t!1 : (3.19)By Slutzki's theorem, the product of the lhss of (3.18) and (3.19) converges in distribution tothe product of their rhss. Applying Theorem 5.2 of Billingsley (1968) we obtainK1 = limt!1Ey(1fTd�1i=1 fMXt[ai;bi]<utggP (MXt[ad;bd] < utjXtad))= E(1fTd�1i=1 fN((ai ;bi])=0gge��(bd�ad))= P (d�1\i=1fN((ai; bi]) = 0g)e��(bd�ad)= P ( d\i=1fN((ai; bi]) = 0g) = P (N(U) = 0) :In the last step we used that a homogeneous Poisson process has independent increments. Itremains to show K2 = 0. With the same notation as before we haveK2 � limt!1P y( d[i=1fMX[tai;tai+"] � utg)� dXi=1 limt!1P y(MX[tai;tai+"] � ut)� dXi=1 limt!1P z(MZ[�tai ;�tai+"] � vt)� dXi=1 limt!1P z(MZ[�tai ;�tai+"] � vt; j�tai � taij < �tai; j�tai+" � taij < �tai)+ dXi=1 limt!1 (P z(j�tai � taij � �tai) + P z(j�tai+" � taij � �tai)) :13



Because of (3.13), the second and third term vanish. Again by ergodicy and Proposition 3.1,K2 �Pdi=1(1� e�2��ai). Letting � # 0, K2 = 0 and we provedlimt!1P y(NX";ut(tU) = 0) = P (N(U) = 0) : (3.20)and hence (3.14). 2Theorem 3.4 describes the asymptotic behaviour of the number of "-upcrossings of a suitablyincreasing level. In particular, on average there are � "-upcrossings of ut by (Xs)0�s�t for large t.Notice furthermore, that we get a Poisson process in the limit which is independent of the choiceof " > 0. A visualisation of the Poisson approximation of Theorem 3.4 is shown in Figure 8 forthe generalised inverse Gaussian di�usion.The next lemma provides a simple su�cient condition, only on scale function and speedmeasure of (Xt), for (3.10). Notice that by positivity and continuity, (3.10) holds automaticallyon compact intervals. It remains to check this condition for z in a neighbourhood of r and l.Lemma 3.6 Let (Xt) satisfy the usual conditions (2.5). Assume furthermore that (3.9) holdsand that there exist c1; c2 2 (0;1] such that14 ln(js(z)j)s(z) � s00(z)s0(z)m0(z) � m00(z)(m0(z))2� ! c1 or c2 (3.21)according as z " r or z # l, then the assertion of Theorem 3.4 holds.Proof. By l'Hospital, sou(x) � g(x) = p2�ex2=2=x ; x!1 ; (3.22)and sou and g are unbounded and non-decreasing for all x large enough. Moreover, sou and gare inversely asymptotic, i.e. for all � > 1, there exists some x0(�) such thatsou(x=�) � g(x) � sou(�x); 8x � x0(�) :This implies by Exercise 14 of Bingham, Goldie and Teugels (1987), Section 3.13, thats�1ou (x) � g�1(x) � p2 lnx as x!1. Thus, by l'Hospital,m0ou(s�1ou (s(z)))s0ou(s�1ou (s(z))) s0(z)m0(z) � s00(z)=m0(z)� s0(z)m00(z)=(m0(z))22s00ou(s�1ou (s(z)))s0(z)� 12(s�1ou (s(z)))2s(z) � s00(z)s0(z)m0(z) � m00(z)(m0(z))2�� 14 ln(js(z)j)s(z) � s00(z)s0(z)m0(z) � m00(z)(m0(z))2� ; z " r or z # l :14



The second line is a consequence of (3.22) for x = s�1ou (s(z)) which tends to �1 as z # l or z " r.In the last line we have used that s�1ou (x) � �p2 ln jxj as x! �1. 2In the following situations we work out conditions on � and � such that the tail behaviour of Fcan easily be described. We apply these results to the examples in Sections 4 and 5.Theorem 3.7 Assume that the usual conditions hold.(a) Assume that � � 0. Then (l; r) = (�1;1) andF (x) � �Z 1�1(2=�2(t))dt��1 x�1 ; x!1 :(b) Assume that r =1 and �1 < � = R rz �(t)=�2(t)dt <1 for some z 2 (l;1). ThenF (x) � e2�jmj�1x�1 ; x!1 : (3.23)(c) Let � and �2 be di�erentiable functions on (x0; r) for some x0 < r such thatlimx"r ddx ��2(x)�(x) � = 0 and limx"r �2(x)�(x) exp��2Z xz �(t)�2(t)dt� = �1 : (3.24)Then F (x) � j�(x)jh(x) ; x " r ; (3.25)where h is the stationary density of (Xt).Proof. We �rst prove (b). By l'Hospital and (2.2),limx!1 s(x)x = limx!1 s0(x)! e�2� ; x!1 :This implies that s(x) � e�2�x as x ! 1. Now Corollary 3.2 applies and (3.23) follows byl'Hospital.(a) Immediately from (2.2) we have s0(x) = 1 for all x 2 (l; r). Hence by (2.1) s(x) = x� z forz 2 (l; r). Since limx"r s(x) =1 and limx#l s(x) = �1, we must have l = �1 and r =1. Thenpart (b) applies with � = 0 and jmj = R1�1(2=�2(t))dt.(c) Notice that s0 is an exponential function, hences00(x) = �2s0(x) �(x)�2(x) ; x 2 (l; r) :Then by l'Hospital (which can be applied because of (3.24)),limx"r 2 R xz s0(y)dy�s0(x)�2(x)=�(x) = limx"r 2s0(x)�s0(x)o(1) � s00(x)�2(x)=�(x) = 1 ; x " r :15



Inserting this in (3.5) yields F (x) � �2�(x)=(jmjs0(x)�2(x)) as x " r, and the result followsfrom (2.3) and (2.4). 2From equations (2.1)-(2.4) it is clear that (Xt) is also uniquely determined by its stationarydensity h(x) and the di�usion coe�cient �(x). They determine the drift term which is fordi�erentiable volatility ��(x) = �2(x)2 ddx ln(�2(x)h(x)) ; x 2 (l; r) : (3.26)Theorem 3.8 Assume that the usual conditions hold with r = 1. Let h be the stationarydensity, h positive on (x0;1) for some x0 > 0.(a) If �2(x) � x1��`(x)=h(x) as x ! 1 for some � > 0 , where ` is a slowly varying functionsuch that 1=` is locally bounded. ThenF (x) � �2x��`(x) ; x!1 :(b) If �2(x) � c x��1e��x�=h(x) as x!1 for �; �; c > 0; � 2 R ; thenF (x) � c��2 x�+��2e��x� ; x!1 : (3.27)Proof. (a) By (2.3) and (2.4) s0(x) � 2x�(1��)=(jmj`(x)) as x!1. Hence s0 is regularly varyingwith index �� 1 and is locally bounded. From Corollary 3.2 it follows with Karamata's theorem(Theorem 1.5.11 of Bingham, Goldie and Teugels (1987)) thatF (x) � �2x��`(x) ; x!1 :(b) By (2.3) and (2.4) we obtain s0(x) � 2x�(��1)e�x�=(cjmj) as x!1. Then by l'Hospitals(x) � 2jmjc�� x����+2e�x� ; x!1 :giving (3.27) by Corollary 3.2. 2Notice that this result provides a method to construct di�usions with any arbitrary stationarydensity (with right endpoint r =1) and any extremal behaviour.4 Extremes of stochastic models in �nanceDi�usion processes given by the SDE (1.1)dXt = �(Xt)dt+ �(Xt)dWt ; t > 0 ;16



with properties as described in Section 2 are common models in �nance; see e.g. Lamberton andLapeyre (1991), Du�e (1992), Merton (1994) or Baxter and Rennie (1996). Examples 4.1, 4.2,and 4.3 are standard models for the term structure of interest rates; di�usions as Example 4.4have been successfully �tted to share prices (K�uchler et al. (1994), Eberlein and Keller (1995)).The state space (l; r) and the range of parameters of all models below is such that limx"r s(x) =1 and limx#l s(x) = �1, hence the boundaries are inaccessible. This can easily be checked bystandard calculations and (2.1). Furthermore, the speed measure m is �nite for all models, theprocesses are ergodic with stationary distribution which is absolutely continuous with density hgiven by (2.4). Hence all these models satisfy the usual conditions (2.5).Once F is determined for any of these models, classical extreme value theory takes over.Recall that there are three extreme value dfs (up to a�ne transformations). Since all the exam-ples we treat in Section 4 are di�usions with state space unbounded above, we only consider theFr�echet df and the Gumbel df given by��(x) = expf�x��gI(0;1)(x) ; � > 0 ;�(x) = expf�e�xg ; x 2 R :If F 2 MDA(��), then the norming constants at and bt can be chosen such thatF (at) � t�1 and bt = 0 : (4.1)If F 2 MDA(�), then the norming constants at and bt can be chosen such thatF (bt) = t�1 and at � a(bt) ; (4.2)where a is the so-called auxiliary function; see e.g. Theorem 3.3.26 of Embrechts et al. (1997).Calculating the norming constants explicitly is then a standard, though often tedious task. Forbt a Taylor expansion leads to the necessary accurracy required by the convergence to typestheorem. We refer to the monographs by Leadbetter, Lindgren and Rootz�en (1983), Resnick(1987) or Embrechts et al. (1997) for some tutorial examples.Then (3.4) implies that MXtat d! �� if F 2 MDA(��) (4.3)and MXt � btat d! � and MXtbt P! 1 if F 2 MDA(�) : (4.4)17



Furthermore, all the models in this section except the generalised Cox-Ingersoll-Ross model 
 = 1satisfy condition (3.21) of Lemma 3.6, hence the Poisson approximation of the "{upcrossings isalso explicitly given for ut = atx+ bt and � = � lnQ(x), where Q is either �� or �.Figures 2, 3, 4, 5, 6 and 7 show simulated sample paths (of length t = 1000 respectively25 000) of the di�erent models. The solid line indicates those norming constants which describethe increase of MXt for large t, i.e. in MDA(��) we plot at (see (4.3)) and in MDA(�) we plotbt (see (4.4)).Figure 9 shows the empirical df, the empirical density and the QQ-plot (based on 350 simu-lated maxima, each taken from a sample path with t = 25 000) of the normalised maxima of thegeneralised inverse Gaussian model for certain parameter values together with the correspondinglimit df and density. The models were simulated by means of the Milstein Scheme (strong Taylorapproximation of convergence order 1) and we refer to Kloeden and Platen (1992) for details.Example 4.1 (The Vasicek model)In this model the drift term is �(x) = c � dx for c 2 R, d > 0 and the di�usion coe�cient�(x) � � > 0. The solution of the SDE (1.1) with X0 = x is given byXt = cd + (x� cd)e�dt + � Z t0 e�d(t�s)dWs ; t � 0 :(Xt) has state space R, mean value functionEXt = cd + (x� cd)e�dt ! cd and varXt = �22d �1� e�2dt�! �22d ; t!1 :It is well-known and easy to calculate from (2.2)-(2.4) that (Xt) has a normal stationary distri-bution, more precisely, it is N( cd ; �22d ), where N(a; b) denotes the normal distribution with meana and variance b.The assumptions of Theorem 3.7(c) are satis�ed givingF (x) � d(x� c=d)2�2=2d H(x) ;where H(x) is the tail of the stationary normal df; hence F has heavier tail than H. It canbe shown that the rhs is the tail of a so-called von Mises function (see e.g. Example 3.3.23 ofEmbrechts et al. (1997)), hence F 2MDA(�) with norming constantsat = �2pd ln t and bt = �pdpln t+ cd + �4pd ln ln t+ ln(�2d=2�)pln t :18
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Figure 2: Simulated sample path of the Vasicek model (with parameters c = d = � = 1) and correspondingnormalising constants bt.Example 4.2 (The Cox-Ingersoll-Ross model)In this model (Xt) satis�es the SDE (1.1) with �(x) = c� dx for d > 0, �(x) = �px for � > 0and 2c � �2. It has state space (0;1), mean value functionEXt = cd + �x� cd� e�dt ! cd ; t!1
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Figure 3: Simulated sample path of the Cox-Ingersoll-Ross model (with parameters c = d = � = 1) and thecorresponding norming constants bt.
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andvarXt = c�22d2 �1��1 + �x� cd� 2dc � e�2dt + �x� cd� 2dc e�3dt�! c�22d2 ; t!1 ;where X0 = x. From (2.2)-(2.4) we obtain that the stationary distribution H is �( 2c�2 ; 2d�2 ).Theorem 3.7(c) applies givingF (x) � 2cd�2 G(x) ; x!1 :where G(x) is the tail of the �( 2c�2 + 1; 2d�2 ) distribution. Notice that F (x) � AxH(x) for someA > 0. It is well-known (see e.g. Resnick (1987), p. 72-73) that the gamma distributions are inMDA(�) and the norming constants for F areat = �2=(2d) and bt = �22d �ln t+ 2c�2 ln ln t+ ln� d�(2c=�2)�� : (4.5)Notice that for �2 << c the constant �(2c=�2) is very large and consequently bt may becomenegative for small t. In extreme cases bt becomes positive only for very large t.Example 4.3 (Generalised Cox-Ingersoll-Ross model)In this model the drift term is given by �(x) = c� dx and the di�usion coe�cient has the form�(x) = �x
 for 
 2 [12 ;1). For 
 < 12 we have jmj = 1 and hence by Theorem 7 of Mandl(1968), p.90, the process is not ergodic. For 
 � 12 the process is ergodic with state space (0;1).We distinguish the following four cases:
 = 1=2 : 2c � �2 ; d > 0 (see Example 4.2)1=2 < 
 < 1 : c > 0 ; d � 0
 = 1 : c > 0 ; d > ��2=2
 > 1 : c > 0 ; d 2 R or c = 0 ; d < 0 : (4.6)For 12 � 
 � 1 the mean value function of (Xt) is given byEXt = 8>>>>><>>>>>: cd + �x� cd� e�dt ! cd if d > 0cd + �x� cd� e�dt !1 if d < 0x+ ct !1 if d = 0 (4.7)as t!1 where X0 = x. This indicates already that for certain parameter values the model cancapture large 
uctuations in data, which will re
ect also in the behaviour of the maxima.20



� 12 < 
 < 1The stationary density, which can be calculated by (2.2)-(2.4), ish(x) = 2A�2x�2
 exp�� 2�2 � c2
 � 1x�(2
�1) + d2� 2
 x2�2
�� ; x > 0 ;where A = 2�2 Z 10 t�2
 exp�� 2�2 � c2
 � 1 t�(2
�1) + d2� 2
 t2�2
�� dt :The assumptions of Theorem 3.7(c) are satis�ed and henceF (x) � dxh(x) � dA 2�2x�2
+1 exp�� d�2(1� 
)x2(1�
)� :Notice that F (x) � Bx2(1�
)H(x) for some B > 0. The rhs is the tail of a von Mises functionand hence in MDA(�) with norming constantsat = �22d ��2(1� 
)d ln t� 2
�12�2

bt = ��2(1� 
)d ln t� 12�2
 0@1� 2
 � 1(2� 2
)2 ln��2(1�
)d ln t�ln t 1A+ at ln� 2dA�2� :Notice that at is continuous in the point 
 = 1=2, i.e. at as above converges to �2=(2d) as 
 # 1=2,which is the same as (4.5). The �rst term of the norming constants bt coincides with the �rstterm of (4.5). The behaviour of at and bt as 
 " 1 is much more dramatic. It indicates alreadythat at 
 = 1 there must be a qualitative change in the extremal behaviour. This is con�rmedbelow.� 
 = 1In this case the solution of the SDE (1.1) with X0 = x is explicitly given byXt = e�(d+�22 )t+�Wt �x+ cZ t0 e(d+�22 )s��Wsds� ; t � 0 :We obtain from (2.2){(2.4) that the stationary density is inverse gamma:h(x) = ��22c�� 2d�2�1���2d�2 + 1���1 x�2d=�2�2 exp�� 2c�2x�1� ; x > 0 :Notice that h is regularly varying with index �2d=�2 � 2 and hence by Karamata's theorem(Theorem 1.5.11 of Bingham, Goldie and Teugels (1987)) the tailH of the stationary distribution21
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Figure 4: Simulated sample path of the generalised Cox-Ingersoll-Ross model for 
 = 1 (with parameters c = d =� = 1) and the corresponding norming constants bt.is also regularly varying. This implies that certain moments are in�nite:limt!1EX�t = 8>><>>: � 2c�2�� � � 2d�2 + 1� ��� � 2d�2 + 1� if � < 2d�2 + 1 ;1 if � � 2d�2 + 1 :In particular, limt!1varXt =8><>: 2c2d(2d� �2) <1 if 2d�2 > 1 ;1 if �1 < 2d�2 � 1 :For the tail of F we obtain by Theorem 3.7(c)F (x) � �22 ��22c�� 2d�2�1���2d�2 + 1���1 �2d�2 + 1� x�2d=�2�1 exp�� 2c�2x�1�� �22 ��22c�� 2d�2�1���2d�2 + 1���1�2d�2 + 1�x�2d=�2�1 ; x!1 :Here F (x) � BH(x) for some B > 0. Hence F is regularly varying, equivalently, F 2 MDA(�1+2d=�2),with norming constants at chosen according to (4.1) asat �  �22 ��22c�� 2d�2�1���2d�2 + 1���1�2d�2 + 1� t!1=(1+2d=�2) and bt = 0 :Notice that at � C t1=(1+2d=�2) for a constant C, i.e. at is a decreasing function of d=�2 in t.Hence the maxima MXt are likely to increase slower, when d=�2 gets larger. In particular,MXt =�Ct1=(1+2d=�2)� d! �1+2d=�2 ; t!1 :22
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Figure 5: Simulated sample path of the generalised Cox-Ingersoll-Ross model for 
 = 1:5 (with parametersc = d = � = 1) and the corresponding norming constants at. In this case A = 9:878.� 
 > 1Notice �rst that h is of the same form as in the case 12 < 
 < 1, in particularH is regularly varyingwith index �2
 + 1 2 (�1;�1). We apply Theorem 3.7(b) (alternatively Theorem 3.8(a)) andobtain F (x) � e2�jmjx�1 = (Ax)�1 ; x!1 ;where � = 1�2 � c2
 � 1 + d2� 2
� :In this case the tail of the stationary distribution H has again a lighter tail than F . HenceF 2 MDA(�1) with norming constants at � t=A. Notice that the order of increase of at isalways linear. The constant A decides about the slope. We obtain in particularAMXt =t d! �1 :For 
 = 3=2 it is possible to calculate A explicitly. We obtainA = 1c  1 + 2rd2��2c ed2=(c�2)� r2d2c�2!! ;where � denotes the standard normal df. Notice that (if we ignore the factor 1=c for the moment)A is increasing in the quotient d2=(c�2). 23



Example 4.4 (Generalised hyperbolic di�usion)Di�usions with given stationary distribution have been considered as appropriate models forasset prices. It is often assumed that the price process follows the SDE (1.1) with drift termzero; i.e. dXt = �(Xt)dWt ; t > 0 :Choose �2(x) = �2=h(x) ;where h is an arbitrary density, then (Xt) has exactly this stationary density h. These di�usionmodels and certain extensions have been investigated as alternatives to Gaussian processes forasset prices, see K�uchler et al. (1994), Bibby and S�rensen (1995), Eberlein and Keller (1995),Barndor�-Nielsen (1995) and Rydberg (1996).Here Theorem 3.8(a) applies, yielding2MXt =(�2t) d! �1 ; t!1 ;regardless of their stationary distribution. F 2 MDA(�1) means that the maximum of theprocess is likely to behave as the maximum of iid rvs with distribution tail F (x) � �22 x�1, so theprocess is likely to show much more extreme 
uctuation than one expects from its stationarydistribution.5 Generalised inverse Gaussian di�usionIn Example 4.4 we have seen how an ergodic di�usion with drift term � � 0 and arbitrarystationary distribution can be constructed. This construction has the drawback that all thesedi�usions show the same behaviour in their maxima MXt represented by F (x) � Ax�1 for someA > 0. Guided by Theorem 3.8 we choose another method of construction. We choose a densityh(x) and a di�usion coe�cient �(x). By equation (3.26) this de�nes a drift term �, giving anSDE (1.1).We shall present this method by introducing a new class of di�usions with generalised inverseGaussian stationary distribution and state space (0;1). Its stationary distribution has (like thegeneralised hyperbolic distribution) tails with asymptotic behaviour reaching from exponentialto regularly varying. Moreover, this model can be viewed as a further generalisation of theCox-Ross-Ingersoll model (Example 4.2). It also includes Example 4.3 for 
 = 1.24



The density of the generalised inverse Gaussian distribution is given byh(x) = (�= )�=22K� �p� �x��1 exp��12(�x+  x�1)� ; x > 0 ;where K� is the modi�ed Bessel function of the third kind and index �. The following parametersets are possible f� > 0 ;  > 0 ; � 2 Rgf� = 0 ;  > 0 ; � < 0gf� > 0 ;  = 0 ; � > 0g :Notice that the norming constant simpli�es for � = 0 and  = 0.Now we consider the special case of �(x) = �x
 for � > 0 and 
 � 0. For the sake ofcomparison we choose the di�usion coe�cient to be the same as in Examples 4.2 and 4.3.By equation (3.26), (2.2) and (2.3),�(x) = 14�2x2
�2 � + 2(2
 + �� 1)x� �x2� ;s0(x) = exp��12(�+  )� x�(2
+��1) exp�12(�x+  x�1)� andm0(x) = 2�2 exp�12(�+  )� x��1 exp��12(�x+  x�1)� :As formulated in Section 2 we require the process to be recurrent and to have inaccessibleboundaries 0 and 1, i.e.Z 11 x1���2
 expn�2 xo dx =1 and Z 10 x1���2
 exp� 2 x�1� dx =1 :This puts further restrictions on the parameter space and we considerf� > 0 ;  > 0 ; � 2 Rgf� = 0 ;  > 0 ; � < 0 and � � 2(1� 
)gf� > 0 ;  = 0 ; � > 0 and � � 2(1� 
)g : (5.1)The SDE (1.1) with � and � as above with this restricted parameter space has a unique solu-tion (Xt). This can be shown for instance by an application of Theorem 5.13 of Karatzas andShreve (1987) to ln(Xt). We call this solution (Xt) generalised inverse Gaussian di�usion (GIGdi�usion). For all parameters in (5.1), jmj < 1 and hence by Theorem 7 of Mandl (1968), p.90, (Xt) is ergodic.Comparison of the drift terms show that the GIG di�usion for 
 = 1=2 and  = 0 (whichimplies � > 0 and � � 1) is just the CIR model with parameters c = �2�=2 and d = �2�=4. If25



we choose 
 = 1 and � = 0 (which implies  > 0 and � < 0), then we obtain the generalisedCIR model with parameters c = �2 =4 and d = ��2(1 + �)=2.For the study of the extremal behaviour of (Xt) we distinguish three di�erent cases:

0 5000 10000 15000 20000 25000

0
20

40
60

80
10

0
12

0

Figure 6: Simulated sample path of the GIG model (with parameters 
 = 0:5, � = 0,  = � = 1, � = �1) andthe corresponding norming constants at.� � = 0Then  > 0 and � < 0 and � < 2(1� 
). The stationary density is inverse gamma of the formh(x) = ( =2)���(��) x��1 exp��( =2)x�1	 � ( =2)���(��) x��1 ; x!1 ;i.e. it is regularly varying. HenceF (x) � �2( =2)��(2� 2
 � �)2�(��) x�(2�2
��) ; x!1 :Thus F 2MDA(�2�2
��) with norming constants chosen according to (4.1) asat � ��2( =2)��(2� 2
 � �)2�(��) t�1=(2�2
��) and bt = 0 :By Karamata's theorem (Theorem 1.5.11 of Bingham, Goldie and Teugels (1987))H(x) � ( =2)���(��)(��)x� ; x!1 ;giving H(x) � 2�2(��)(2 � 2
 � �)x2�2
F (x) ; x!1 :Hence, depending on the choice of 
, the tail H of the stationary distribution can be heavier orlighter than or of the same order as F . 26



�  = 0Then � > 0 and � > 0 and � � 2(1� 
). The stationary density simpli�esh(x) = (�=2)��(�) x��1 exp f�(�=2)xg ; x > 0 ;which is a �(�; �=2) density. Now Theorem 3.8(b) applies givingF (x) � �22 ��2�2 x2
H(x) ; x!1 ;Then, as in the Cox-Ingersoll-Ross model, F is of gamma-type and hence F 2 MDA(�) withnorming constants chosen according to (4.2)at = 2=� and bt = 2� �ln t+ (2
 + �� 1) ln ln t+ ln��2(�=2)2�2
2�(�) �� :Since 
 > 0 this implies that F has a heavier tail than the stationary df H. Hence the extremalbehaviour of (Xt) shows larger 
uctuations than an iid family of random variables with df H islikely to show.�  > 0 ; � > 0
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Figure 7: Simulated sample path of the GIG model (with parameters 
 = 0:5, � =  = � = � = 1) and thecorresponding norming constants bt.Then � is arbitrary in R. Theorem 3.8(b) applies givingF (x) � �22 ��2�2 x2
H(x) ; x!1 :27



By (4.2) we obtain the norming constantsat = 2=� and bt = 2�  ln t+ (2
 + �� 1) ln ln t+ ln �2(�=2)2�2
��4K�(p� ) �� ��=2!! :The remark at the end of the case  = 0 applies.Finally we investigate the assumptions in Theorem 3.4 for this case in detail. First noticethat s0(x)!1 for x # 0 or x " 1. Thus by l'Hospitals0(x)s(x) � �2 ; x " 1 and s0(x)s(x) � � 2 x�2; x # 0:By Lemma 3.6 and the fact that m0(x)s0(x) = 2x�2
=�2,m0ou(s�1ou (s(x)))s0ou(s�1ou (s(x))) s0(x)m0(x) � �24 s0(x)s(x) x2
�1ln(js(x)j) �s00(x)s0(x) x+ 
� ; x " 1 or x # 0:If we further distinguish between left and right endpoint we derivem0ou(s�1ou (s(x)))s0ou(s�1ou (s(x))) s0(x)m0(x) ! 8>>>><>>>>: 0 
 < 0:5�24 �2 
 = 0:51 
 > 0:5 ; x " 1;and m0ou(s�1ou (s(x)))s0ou(s�1ou (s(x))) s0(x)m0(x) ! 8>>>><>>>>: 1 
 < 1:5�24  2 
 = 1:50 
 > 1:5 ; x # 0:Hence by Remark 3.5(c), we may conclude that in the case 0:5 � 
 � 1:5 the assumptions of theTheorem 3.4 are ful�lled while in the other cases condition (3.21) of Lemma 3.6 does not hold.AcknowledgementWe take pleasure in thanking Michael S�rensen for many conversations on di�usion processes,from which we learnt a lot. We are also grateful to Tina Rydberg for her simulation programfor hyperbolic di�usions. We thank Ralf Korn for various interesting discussions on stochasticprocesses in �nance. Last but not least we thank two unknown referees for various suggestionswhich improved the paper. We are particularly grateful to one referee for pointing out a gap inour proof of Theorem 3.4.
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Figure 8: The Poisson approximation for "-upcrossings of the GIG di�usion with parameters 
 = 0:5; � = 0;  =1; � = 1; � = �1 as in Figure 6. The threshold increases with the sample size. For the calculation of the thresholdswe used � = 10, i.e. on average there are 10 "{upcrossings for large t and �xed small " > 0. The �rst �gure showsa realisation of the process Xt for 0 � t � 1 000, the last two �gures represent continuations of this realisation tot = 5000 and t = 25 000, respectively. 31
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Figure 9: The empirical df (top), the empirical density (middle) and the QQ-plot (bottom) of the normalisedmaxima of the GIG model and the Gumbel df and density (solid line), based on 350 simulations with t = 25 000and parameters 
 = 0:5; � =  = � = � = 1 as in Figure 7.32


