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Abstract

We investigate the extremal behaviour of a diffusion (X;) given by the SDE
dXt = /,L(Xt)dt-FU(Xt)th, t> 0, XO =,

where W is standard Brownian motion, pu is the drift term and ¢ is the diffusion coefficient.
Under some appropriate conditions on (X;) we prove that the point process of e-—upcrossings
converges in distribution to a homogeneous Poisson process. As examples we study the ex-
tremal behaviour of term structure models or asset price processes such as the Vasicek model,
the Cox-Ingersoll-Ross model and the generalised hyperbolic diffusion. We also show how to
construct a diffusion with pre-determined stationary density which captures any extremal
behaviour. As an example we introduce a new model, the generalised inverse Gaussian dif-

fusion.
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1 Introduction

Over the last decade a variety of stochastic models have been suggested as appropriate models
for financial products. In a continuous time setting the dynamics of an interest rate or price

process is often modelled as a diffusion process given by a stochastic differential equation (SDE)
dXt :/J,(Xt)dt-l-O'(Xt)th, t> 0, XU =T, (]_]_)

where W is standard Brownian motion, p is the drift term and o is the diffusion coefficient or
volatility. Two standard models in finance are of the above form:

(i) The Black-Scholes model: (X;) models the price process of an asset, here p(z) = pz
and the volatility o(2) = ox. The resulting model for the price process is geometric Brownian
motion.

(ii) The Vasicek model: the process (X;) models an interest rate, the drift term x is linear
and the volatility ¢ > 0 is some constant.

Both models can be considered in the framework of Gaussian models. It has been recognised
for decades that financial data like interest rates and asset prices exhibit fluctuations which
cannot be modelled by Gaussian processes or simple transformations as in the two standard
models above.

There are two features, heavy-tailedness and the dependence structure, that require mod-
elling for financial data. Various models have been suggested to capture these features. For a
discussion of non-linear heavy-tailed models and further references we refer to Section 7.6 of
Embrechts, Kliippelberg and Mikosch (1997). There are in principle two different approaches.

A first concept replaces the Gaussian driving process in the Black-Scholes or Vasicek model
(or any other traditional model) by a process with heavy-tailed marginals as for instance a
stable process, a Lévy process or a discrete time counterpart as an ARMA (autoregressive-
moving average) process with heavy-tailed noise (see e.g. Barndorff-Nielsen (1995), Eberlein
and Keller (1995), Kliippelberg and Mikosch (1996), Mittnik and Rachev (1997)).

The second concept sticks to Brownian motion as the driving dynamic of the process, but
introduces a path-dependent, time-dependent or even stochastic volatility into the model. These
models are commonly referred to as volatility models, and include diffusions given by the SDE
(1.1). Hence this paper is about such models. Discrete time counterparts are for instance ARCH
and GARCH models, which have been successfully applied in econometrics. The extremal be-

haviour of the ARCH(1) model has been studied in de Haan et al. (1989) and is an interesting



complement to the present paper.

In this paper we study the extremal behaviour of diffusion processes defined by (1.1). The
stationary distributions of the processes under investigation are well-known and one might expect
that they influence the extremal behaviour of the process in some way. This is however not
the case: for any pre-determined stationary distribution the process can exhibit quite different
behaviour in its extremes.

Extremal behaviour of a stochastic process (X;) is for instance manifested in the asymptotic

behaviour of the maxima

MY = X, t . 1.2
i = max X, >0 (1.2)

The asymptotic distribution of M/ for ¢+ — 0o has been studied by various authors, see Davis
(1982) for detailed references. Two monographs on this and related problems are by Leadbetter,
Lindgren and Rootzén (1983) and Berman (1992). It is remarkable that running maxima and
minima of (X};) are asymptotically independent and have the same behaviour as the extremes
of iid random variables. In this paper we restrict ourselves to the investigation of maxima, the
mathematical treatment for minima being similar.

We furthermore investigate the point process of upcrossings (more precisely e-upcrossings)
of a high threshold u by (X}). For fixed e > 0 the process has an e-upcrossing at t if it has
remained below u on the interval (¢t — ¢,¢) and is equal to u at . Under weak conditions, the
point process of e-upcrossings, properly scaled in time and space, converges in distribution to
a homogeneous Poisson process, i.e. it behaves again like iid random variables, coming however
not from the stationary distribution of (X;), but from the df F which also describes the maxima
MX (see Theorem 3.4).

The paper aims at applications in finance: for the various models under consideration we
derive the distributional behaviour of M;* as t — oo, which together with Theorem 3.4 describes
the extremal behaviour of the whole process (X;). The results of this paper can be applied to
study risk measures of financial products as for instance the value at risk or related quantile
risk measures; see Embrechts, Kliippelberg and Mikosch (1997), Example 6.1.6. This work is
currently under way and will be presented in another paper.

The course of this paper is as follows. In Section 2 we present the framework for the results to
follow. We shall require certain properties on the speed measure and scale function of (X;), which
we explain and summarise in the usual conditions (2.5). They are assumed to hold throughout

the paper.



In Section 3 we present some results on extreme value theory for diffusions. We show that,
provided MtX has a weak non-degenerate limit, then, under weak conditions, also the point pro-
cesses of e-upcrossings converge to a homogeneous Poisson process (Theorem 3.4). Furthermore
we derive the limit distribution of M (suitably normalised) under simple conditions on the drift
term and the diffusion coefficient (Theorem 3.7). Finally we show how to construct a diffusion
with pre-determined stationary density which captures any extremal behaviour (Theorem 3.8).

In Section 4 we apply these results in order to derive the extremal behaviour of such diffusions
as the Vasicek model, the Cox-Ingersoll-Ross (CIR) model, including a generalised version, and
the generalised hyperbolic diffusion. Depending on the choice of parameters the generalised CIR
model allows for large fluctuations in the data. This is captured by the limit distribution of M;*
and the intensity of the limit point process of e-upcrossings.

We conclude in Section 5 the paper with a new model, the generalised inverse Gaussian
diffusion, which is constructed with the pre-determined generalised inverse Gaussian stationary
density and a pre-determined diffusion coefficient. If we choose the diffusion coefficient as in the
CIR model we obtain a further generalisation of this important model. Whereas in Section 4
we mainly present results without explicit calculations, for this new model we derive certain
quantities in detail.

We shall need some results on classical extreme value theory. For an introduction to extreme
value theory we refer to Leadbetter, Lindgren and Rootzén (1983), Resnick (1987) or Embrechts,
Kliippelberg and Mikosch (1997, Chapter 3).

2 The usual conditions

The diffusion (X;) given by the SDE (1.1) has state space (/,r) C R, where [, can be —oo
or +00. We only consider the case when the boundaries | and r are inaccessible and (X) is
recurrent. We require furthermore that, for all = € (I,7), 0?(x) > 0 and there exists some ¢ > 0
such that ffj—;(l + |u(t)])/o%(t)dt < co. These two conditions guarantee in particular that the
SDE (1.1) has a weak solution which is unique in probability (see Karatzas and Shreve (1988),
Chapter 5.5.C).

Associated with the diffusion is the scale function s and the speed measure m. The scale

function is defined as

s(x) :/jexp{—2/zy :2(8)dt} dy, we(,r), (2.1)
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where z is any interior point of (I,7). Since the scale function is unique only up to a positive
affine transformation (if 5(z) = as(x) + 8 for some a > 0 and € R, then § is a scale function
if and only if s is), in a first order approximation, the choice of z is of no importance. The scale
function s defines in the usual way a measure on ([,r), the so-called scale measure, which is
absolutely continuous with Lebesgue density
s'(z) = exp {—2 /I 'L;(t) dt} , x€(lr). (2.2)
. 0(1)

For the speed measure m we know that m(I) > 0 for every non-empty open subinterval I of

the interior of (I,7). We only consider diffusions with finite speed measure m and denote its
total mass by |m| = m((l,r)). The speed measure of model (1.1) is absolutely continuous with
Lebesgue density

m(m)zm, z € (l,r). (2.3)

In this situation (X;) is ergodic and its stationary distribution is absolutely continuous with

Lebesgue density
h(z) = m/(z)/|m]. (2.4)

Notice that the connection between stationary distribution, speed measure, scale function, drift
term and diffusion coefficient (given by (2.1)-(2.4)) allows us to construct diffusions with arbi-
trary stationary distribution (see Examples 4.4 and the generalised inverse Gaussian diffusion
of Section 5).

Since the process is recurrent and the boundaries [ and r are inaccessible, we must have
s(u) — oo as u T r and s(u) — —oo as u | I. Conversely, if s(u) — oo (resp. —o0) as u T r (resp.
u } 1), then [ and r are inaccessible, and therefore (X;) is recurrent.

For proofs of the above relations and further results on diffusions we refer to the monographs
by Karlin and Taylor (1981), Karatzas and Shreve (1987), Rogers and Williams (1987), Revuz
and Yor (1991) or any other advanced textbook on stochastic processes.

Throughout this paper, we assume that the diffusion process (X;) defined in (1.1) satisfies

the usual conditions:

s(r) = —s(l) = 00,

Im| < oco.



3 Extremal behaviour of diffusions

The following formulation can be found in Davis (1982).

Proposition 3.1 Let (X;) satisfy the usual conditions (2.5). Then for any initial value Xy =
y € (I,r) and any uy T r,

lim [PY(MY < uy) = F'(w)] = 0, (3.1)
where F is a df, defined by
F(z) = VMm@ (z), z€eR, (3.2)

for any z € (I,r). (I4 denotes the indicator function of A.) The function s and the quantity |m|

also depend on the choice of z. O

Various proofs of this result exist and we refer to Davis (1982) for further references. Davis’
proof is based on a representation of such a diffusion as an Ornstein-Uhlenbeck process after a
random time-change. Standard techniques for extremes of Gaussian processes apply leading to
the above result.

It is not difficult to show that Proposition 3.1 is true for arbitrary initial probability measure
H. For the special choice of H = m/|m| the diffusion (X}) is stationary.

As a consequence of Proposition 3.1, the maxima M;X have, properly normalised, a non-
degenerate limit distribution @) if and only if ' belongs to the maximum domain of attraction of
Q (we write MDA (Q)) for some extreme value distribution @. In Proposition 3.1, any function
u; T 1 is possible, but as usual in classical extreme value theory we restrict ourselves to positive

affine functions, i.e.
Ut = T + bt . (33)

The norming constants a; > 0 and b; € R have to be chosen appropriately to ensure convergence
to a non-degenerate limit.

The extremal behaviour (in particular the behaviour of the maximum) of an iid sequence
with common df F is determined by the far end of the right tail F = 1 — F. In our situation
the asymptotic behaviour of the maxima M;* is determined by the tail of F as in (3.2): If
F € MDA(Q) with norming constants a; > 0 and b; € R, then

a,t_l(MtX—bt)iQ, t— 0. (3.4)



As already noted the scale and speed measure of a diffusion (X;) are not unique. Different scale
and speed measures (and therefore different z) lead to different df’s F' in Proposition 3.1. They

are however all tail-equivalent.

Corollary 3.2 Under the conditions of Proposition 3.1 the tail of the df F in (3.2) satisfies

€T -1
Fo)~ (ol [ Swdy) ~ (olsta) ™, o, (5.5)
4
where ~ means that the quotient of lhs and rhs converges to 1.

Proof. The representation of (3.5) follows immediately by Taylor expansion from (3.2) and the
fact that s(z) — oo as ¢ 1 r.

We show that the rhs is for different z asymptotically equivalent, and thus independent of
z € (I,r). Let z1,20 € (I,r) and z; # z9. Denote s;,m; and |m;| the functions and constants

corresponding to z; for i = 1,2. Then from (2.1) we obtain
s1(z) = a + Bsa(z),

where a and 3 are constants depending on z; and z9. Furthermore, from (2.3) we obtain

2 2 1

™) = @)~ @ - B
Hence |mq| = |ms|/B and
o —1
F(x) ~ (jmas(a)) ™" = (|m2|(5 n sm))) ~ (malsa(@)™", wtr,
since limgq, s2(z) = oo. O

Proposition 3.1 reduces the asymptotic behaviour of the maximum of (X;) to that of the maxi-
mum of iid random variables with df F' having tail (3.5). It would be interesting to know more
about the extremal behaviour of the corresponding diffusion (X;) than just the behaviour of
its maxima. From classical extreme value theory it is well-known that the point process of ex-
ceedances of an iid sequence of a level u;, plotted at points i/t, converges to a homogeneous
Poisson process for u; 1 r as t 7 co in an appropriate way. Extremes of a continuous time stochas-
tic process over a high threshold w; typically occur on intervals and form excursions over this
level. However, an analogous discrete skeleton which describes the behaviour of the extremes of
a continuous time stochastic process is provided by a point process of the upcrossings (i.e. the
events where excursions above a level begin). This is quite natural and upcrossings are well—

defined if the sample paths of the corresponding process are regular (i.e. differentiable in the
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Figure 1: Sample path of a diffusion with threshold u = 3.8. For the values of ¢ = 3.2, 1.2, 0.8, 0.4 we get
6, 7, 10, 14 e—upcrossings, respectively. The number of e—upcrossings depends crucially on £. The dependence

only disappears in the limit.

L?-sense). In cases with irregular sample paths there can be infinitely many upcrossings on a
finite interval.

To avoid such problems special upcrossings, namely e-uprossings, are considered. We use
the definition given by Pickands (1969) for continuous processes. We also refer to Leadbetter,

Lindgren and Rootzén (1983), Chapter 12, for more mathematical background.

Definition 3.3 Let (X;) be a diffusion satisfying the usual conditions (2.5). Take € > 0.

(a) The process (X}) is said to have an e—upcrossing of the level u at tg if Xy < u fort € (to—e, to)
and Xy, = u.

(b) Let N.,(t) denote the number of e-upcrossings of u by (Xs)o<s<¢. Then for any t > 0,

) s
N (B) = N, (tB) = #{e-upcrossings of u; by (Xs)o<s<t : n € B}

is the time—normalised point process of e-upcrossings on the Borel sets B of (0,1]. O

The point process (N;) has a point at ¢y if (X)o<s<; has an e—upcrossing at tt. e—upcrossings
of a continuous time process correspond to exceedances of an iid sequence. It is well-known that
for a sequence (X3) of iid rvs, all with df F, the point processes (N;) of exceedances converge
to a homogeneous Poisson process with intensity 7, provided the u; are appropriately chosen,
namely such that

tF(uy) = 7 € (0,00), t— 00. (3.6)



Recall from (3.4) that for the choice of u; = ayz + by:
P (MtX <ax+b)=F(az+b)—>Q)=e", z€eR. (3.7)

Taking logarithms in (3.7) shows that (3.6) is equivalent to (3.7). Convergence of the point
processes of exceedances to a Poisson process also holds for more general sequences (X;) if
the dependence structure is nice enough to prevent clustering of the extremes in the limit. For
diffusions (1.1) the dependence structure of the extremes is such that the point processes of e-
upcrossings converge to a homogeneous Poisson process, however, the intensity is not determined
by the stationary df H, but by the df F' from Proposition 3.1. This means that the e-upcrossings
of (X;) are likely to behave as the exceedances of iid rvs with df F.

The extra condition (3.10) of the following theorem relates the scale function s and speed
measure m of (X;) to the corresponding quantities s,, and m,, of the standard Ornstein-

Uhlenbeck process, defined by
Sou(x) = \/27r/ e”’2dt  and ml . (r)=1/s,.(z), z€R. (3.8)
0

Theorem 3.4 Let (X;) satisfy the usual conditions (2.5) and uy T r such that

t
lim —— = 0 . 3.9
A8l — 7€ (0) (39)

Assume there exists some positive constant ¢ such that

Mo (Sou (5(2))) 5'(2)
Sou(50u (5(2))) ™' (2)

Then for all starting points y € (I,r) of (X;) and € > 0 the time-normalised point processes (N;')

>c, Vze(lr). (3.10)

of e-upcrossings of the level uy converge in distribution to N ast T oo, where N is a homogeneous

Poisson process with intensity T on (0,1].

Remark 3.5 (a) Notice from Corollary 3.2 that tF (u;) ~ t/(|m|s(us)). Hence, if uy = ayz + by
and 7 = —InQ(z), then condition (3.9) guarantees that F' belongs to some maximum domain
of attraction.

(b) Pickands (1969) proved that the point processes of e-upcrossings converge to a homogeneous
Poisson process in the case when (X;) is a Gaussian process. Notice that the assumptions of
Theorem 3.4 are particular satisfied for the Ornstein-Uhlenbeck process with ¢ = 1.

(c) Examples which satisfy condition (3.10) are the Vasicek model, the Cox-Ingersoll-Ross model



or the generalised Cox-Ingersoll-Ross model for v # 1. All these models are presented in Sec-
tion 4. Nevertheless not every diffusion satisfies the assumptions in Theorem 3.4. Lemma 3.6
indicates that for the generalised inverse Gaussian diffusion with x > 0,4 > 0 and v > 1.5 or

v < 0.5 the assertion of Theorem 3.4 may not hold.

Proof. The proof invokes a random time change argument. An application of Theorem 12.4.2
of Leadbetter et al. (1983) shows that the theorem holds for the standard Ornstein-Uhlenbeck
(O¢) process. Denote by

Zy = s0u(Or), t20,

the Ornstein-Uhlenbeck process in natural scale. Now define
Y't = S(Xt) s t Z 0,

which is again a diffusion process in natural scale. (Y;) can then be considered as a random time

change of the process (Z;), i.e.
Yi=27, a.s. (3.11)

The random time 7, has a representation via the local time of the process Y. This is a conse-
quence of the Dambis-Dubins-Schwarz Theorem (Revuz and Yor (1991), Theorem 1.6, p.173),
Theorem 47.1 of Rogers and Williams (1987), p.277 and Exercise 1.27 of Revuz and Yor (1991),
p.226. For z € (I,r) denote L;(z) the local time of (Y;)p<s<t in z. Then

n= | " L@ dmo(s,) (2)

e MR E) ST
- /ooLt( Vo (o (2)) M1 )

bl (s, (Ys)) 8'(s 1(Y5))
0 Shu(Sou (Ys)) m/(s71(Y5))
Pmly (5 (5(X5))) 8'(Xs)

=y el (s(%)) mx)® P20

where we used the occupation time formula (cf. Revuz and Yor (1991), p.215). Notice also that

7; is continuous and strictly increasing. Under condition (3.10) we obtain
Ty —Tpe >ce, t>0. (3.12)

Moreover, It6 and McKean (1974), p. 228 proved the following ergodic theorem

oy 1o 1 (3.13)
t ) m|

10



Wlog we assume |m| =1 in the following.

According to Theorem 4.7 of Kallenberg (1983) it suffices to show for any y € (I, r)

lim PY(NX, (tU) =0) = P(N(U) =0), (3.14)

t—00 &t

where U is an arbitrary union of semi-open intervals, and

limsupEy(NE)’(ut(t(a, b))) < E(N((a,b])) < oo, for every (a,b] C (0,1]. (3.15)
t—00
By definition of the processes O, Z, X and Y, setting v; = s(uy), 2 = s(y), wy = s,,'(v;) and
(z), we have for k > 1,

T = Soy

PY(NZ, (t(a,b]) = k)

£,ut

= P(#{e-upcrossings ofu; by X, ,v € t(a,b]} > k| X9 =y)

(3.16)
= P(#{ce-upcrossings of vy by Z,, ,u € (74,15} > k| Zo = 2)
= P(#{ce-upcrossings of s} (v;) by s, (Zy) ,u € (Tra, ]} > k| 55,0 (Z0) = 5,,1(2))

ou

= P"(N2 ., ((Tras 7)) > k).

CE Wt

The inequality is a consequence of (3.12). Notice, since all transformations are strictly monotone
and continuous, when we start with (a,b], then we get again an interval (7,, 7). Furthermore,

we know already that the theorem holds for the OU-process O. We show that for all k£ > 0,

lim sup ‘P‘”(NO ((Tta, Tp]) > k) — P*(NQ ,, ((ta,tb] > k)‘ =0, zeR,

ce, Wt [N
t—o00

equivalently, for all k& > 0,
lim sup ‘P"J(Ng’wt((rta,nb]) <k)-— PI(Ng’wt((ta,tb] < k)‘ =0, z€R, (3.17)
t—00

For any 0 < 0 < 1, define

Ay = {|7a — ta| < dta, |7y — tb] < 6tb}, t>0.

11



By the triangular inequality, the lhs of (3.17) is bounded by

hmsup‘Px Pt Ut((Tta,Ttb]) <k Ay)— Px(NO ((ta, tb]) < k,At)‘

ce, Wi
t—00

+2lim sup{ P*(|7¢q — ta| > 6ta) + P*(|1y — tb| > 6tb)} =: I +1Iy.

t—o00

Notice that Ia=0 by (3.13).
Again by the triangular inequality and the fact that (744, 7] C ((1 — d)ta, (1 + 0)tb] in Ay,

L < Timsup (PPN, (s 7)) < Ky A) = PN, (1= 6)ta, (1 + 0)1b]) < k, Ar))

ce we cewr
+tE£sup (P*(NQ ., ((ta, th]) < k, A;) — P*(NZ,,,(((1 = d)ta, (1 + 8)tb]) < k, Ay))
= Ji+ JO;.
Furthermore,
Ji < h?isup (P"(NZ 0, (Ttas 7)) < by A, N2, (1 = 8)ta, (1 + 6)tb]) > k)
< lim ;Zp (P*(NZ ., (((1 = d)ta, (1 + 6)ta]) > 0) + P*(N2,,, (1 — 8)tb, (1 + 6)tb]) > 0))

t—00

= 11?1 sup (P (N;((0,2da] > 0) + PH(N;((0,26b] > 0))

P(N((0,20a] > 0) + P(N((0,26b] > 0) < 2(1 — e 72%)

where H is the stationary distribution and N/ is the time-normalised point process of e-
upcrossings of the process O. We used that the Ornstein-Uhlenbeck process O has the strong
Markov property and is ergodic, and that the result holds for O.

Similar considerations yield the same upper bound for Jy and hence the lhs of (3.17) is bounded
by 4(1 — e 72%). Letting 0 | 0 we have proved (3.17) for all k& > 0, which yields together with
(3.16) and @ = 5,1 (s()),

limsup EY(NZX, (t(a,b])) = hmsupZPy EUt( (a,b]) > k)

£yt
t—00 t—00 k=1

< thsupP’”(Ng w, (ta; ) > k)

t—o00

- ZP (a,b]) = k) = B(N((a,b])),

and therefore (3.15) holds. Now we check (3.14):
Wlog choose an arbitrary U of the form U = ngl(a”ia b;] with disjoint intervals and a; < a9 <

.. < aq. Then, by definition of the e-upcrossings,

d
lim PY(N2,, (tU) =0) = lim PY({N, S (tU) = 03 0 (M, 1o < ui})

t—o00 !
=1

12



d
+ hm Py({ €Ut (tU) = 0} n U{M[ifzi,taﬂre] > ut})
=1

t—00

d
= lim Py(ﬂ{Mt)[f”’bi} < ug})

d
+ lim PY({NZ,, (tU) = 0} 0 [ J{M, 440 > ue})
i=1
= K|+ K>5.
We show by induction that the rhs equals P(ﬂ?zl{N((ai, bi]) = 0). Because of Proposition 3.1

and the fact that Ky = 0 (see below) this is true for d = 1. Now we may assume that

d,

Lnirony y<ury = i (obn=ony > 1% (3.18)
and by the Markov property,
P(Mt)[id,bd] < ug| Xia,) B gmlbaan) 4y oo (3.19)

By Slutzki’s theorem, the product of the lhss of (3.18) and (3.19) converges in distribution to

the product of their rhss. Applying Theorem 5.2 of Billingsley (1968) we obtain

K= lim Ey(1{051:_11{MXa.,b.]<ut}}P(Mt)[id’bd} < ut] Xia,))
_ —T(b —aq)
= B( {n? (b= )

- ﬂ{N ai, b)) =0h)e 7 (ba—aq)

= ﬂ{N ai, bi]) = 0}) = P(N(U) = 0).

In the last step we used that a homogeneous Poisson process has independent increments. It

remains to show Ky = 0. With the same notation as before we have

d
Ky < lim PY({M, 1o = w})

t— 00
i=1
d
= tl—lglo pe (M[mutaﬂrE] > uy)
i=1
d
yA
= tlggo P (M[Tta Tagre] 2 ot)
i=1
d
< 2 tlgglo PZ(M[Tml Tras o] > Ut | Tra; — tai| < 0tai, |Tia; +e — ta;| < dta;)
1=
+Z lim (P*(|7ia, — tai| > dta;) + P*(|7ua,+e — ta;| > dta;)) .

13



Because of (3.13), the second and third term vanish. Again by ergodicy and Proposition 3.1,
Ky < Zgzl(l — e 279 Letting 0 | 0, Ko = 0 and we proved

lim PY(NZ, (tU) =0) = P(N(U) = 0). (3.20)

t—o00 &sut

and hence (3.14). O

Theorem 3.4 describes the asymptotic behaviour of the number of e-upcrossings of a suitably
increasing level. In particular, on average there are 7 e-upcrossings of u; by (X;)o<s<; for large t.
Notice furthermore, that we get a Poisson process in the limit which is independent of the choice
of € > 0. A visualisation of the Poisson approximation of Theorem 3.4 is shown in Figure 8 for
the generalised inverse Gaussian diffusion.

The next lemma provides a simple sufficient condition, only on scale function and speed
measure of (X;), for (3.10). Notice that by positivity and continuity, (3.10) holds automatically

on compact intervals. It remains to check this condition for z in a neighbourhood of r and I.

Lemma 3.6 Let (X;) satisfy the usual conditions (2.5). Assume furthermore that (3.9) holds

and that there exist c1,co € (0, 00| such that

1 s"(z)  m"(2) o or
41n<|s(z>|)s<z>( ) ooaere (3.21)

s'(z)m!(z)  (m/(2))?
according as z T r or z | 1, then the assertion of Theorem 5.4 holds.

Proof. By 'Hospital,
Sou(x) ~ g(x) = v27rex2/2/x, T — 00, (3.22)

and s, and g are unbounded and non-decreasing for all z large enough. Moreover, sy, and g

are inversely asymptotic, i.e. for all A > 1, there exists some zy(A) such that

Sou(z/N) < g(r) < sou(Ax), VI >x0(N).
This implies by Exercise 14 of Bingham, Goldie and Teugels (1987), Section 3.13, that
s,0(z) ~ g (z) ~ V2Inz as £ — oo. Thus, by 'Hospital,

Mou(Sou (5(2))) 8'(z) ~  s"(z )/m( ) — (z)m (2)/ (m'(2))?
Sou(s2u (5(2))) ™' (2) tu(sou (5(2))8' (2)
( )

~

2(sou z)m!(

41n(|8(z)|)8(2) (8’(Z)m’(2) (m'(2))?
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The second line is a consequence of (3.22) for x = s,,1(s(2)) which tends to +oo as z | [ or z 1 r.

U

In the last line we have used that s, (z) ~ £+/21In|z| as  — +o0.

|

In the following situations we work out conditions on p and o such that the tail behaviour of F

can easily be described. We apply these results to the examples in Sections 4 and 5.

Theorem 3.7 Assume that the usual conditions hold.

(a) Assume that p=0. Then (I,r) = (—o0,00) and

o] -1
F(z) ~ (/ (2/02(t))dt> 5\, 100,
(b) Assume that r = 0o and —oo < p = [] p(t)/o?(t)dt < oo for some z € (I,00). Then

F(z) ~e*m| 'z, z— .

(¢) Let pu and o? be differentiable functions on (zq,r) for some zo < r such that

HIF o EUNEE e CY AT B

Then

where h is the stationary density of (X;).

Proof. We first prove (b). By I'Hospital and (2.2),

lim s(z) = lim s'(z) = e %, z— .
T—00 T T—00

(3.23)

(3.24)

(3.25)

This implies that s(z) ~ e 2’z as ¢ — oo. Now Corollary 3.2 applies and (3.23) follows by

I’Hospital.

(a) Immediately from (2.2) we have s'(z) =1 for all € (I,r). Hence by (2.1) s(z) =z — z for

z € (I,r). Since limg4, s(z) = oo and lim,; s(z) = —oo, we must have [ = —oo and r = co. Then

part (b) applies with p =0 and |m| = [*_(2/0?(t))dt.

(c) Notice that s’ is an exponential function, hence

s"(z) = —28’(%‘):2((2)) , z€(lr).

Then by I'Hospital (which can be applied because of (3.24

2 75 (y)dy

lim — lim 2'(@
vtr —s'(x)o?(z) /() wtr —s'(x)o(1) — 8" (z)o?(x)/p(x)

~—

)7

~—

=1, xTr.
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Inserting this in (3.5) yields F(z) ~ —2u(z)/(Jm|s'(z)o?(x)) as # 1 r, and the result follows
from (2.3) and (2.4). O

From equations (2.1)-(2.4) it is clear that (X;) is also uniquely determined by its stationary
density h(z) and the diffusion coefficient o(z). They determine the drift term which is for

differentiable volatility o

0'2 a
() = 2()%111(02(33);1(33)), ve(r). (3.26)

Theorem 3.8 Assume that the usual conditions hold with r = oo. Let h be the stationary
density, h positive on (xg,00) for some zy > 0.

(a) If o%(z) ~ z'7%(z)/h(z) as x — oo for some & > 0 , where £ is a slowly varying function
such that 1/¢ is locally bounded. Then

(r) ~ gx_‘sé(az), T — 00.

|

(b) If 0?(x) ~ caz‘s_le_axﬁ/h(fp) as x — oo for a,B,¢ > 0,6 € R, then
F(z) ~ gx“ﬂ_%_axﬁ , T —00. (3.27)

Proof. (a) By (2.3) and (2.4) s'(z) ~ 2z=('"=9 /(jm|f(z)) as z — co. Hence s’ is regularly varying
with index § — 1 and is locally bounded. From Corollary 3.2 it follows with Karamata’s theorem

(Theorem 1.5.11 of Bingham, Goldie and Teugels (1987)) that

() ~ gﬂj_éf(fb), T — 00.

ol

(b) By (2.3) and (2.4) we obtain s'(z) ~ 2$_(‘5_1)eo‘“’5/(c|m|) as £ — oco. Then by I’'Hospital

2
(l‘) x7675+26a15

— .
™ JmlcaB T

giving (3.27) by Corollary 3.2. O

Notice that this result provides a method to construct diffusions with any arbitrary stationary
density (with right endpoint » = c0) and any extremal behaviour.
4 Extremes of stochastic models in finance
Diffusion processes given by the SDE (1.1)
dX; ZM(Xt)dt-FO'(Xt)th, t>0,

16



with properties as described in Section 2 are common models in finance; see e.g. Lamberton and
Lapeyre (1991), Duffie (1992), Merton (1994) or Baxter and Rennie (1996). Examples 4.1, 4.2,
and 4.3 are standard models for the term structure of interest rates; diffusions as Example 4.4
have been successfully fitted to share prices (Kiichler et al. (1994), Eberlein and Keller (1995)).

The state space ([, 7) and the range of parameters of all models below is such that limg, s(z) =
oo and limg,; s(z) = —oo, hence the boundaries are inaccessible. This can easily be checked by
standard calculations and (2.1). Furthermore, the speed measure m is finite for all models, the
processes are ergodic with stationary distribution which is absolutely continuous with density A
given by (2.4). Hence all these models satisfy the usual conditions (2.5).

Once F is determined for any of these models, classical extreme value theory takes over.
Recall that there are three extreme value dfs (up to affine transformations). Since all the exam-
ples we treat in Section 4 are diffusions with state space unbounded above, we only consider the

Fréchet df and the Gumbel df given by

Po(z) = exp{—2""Ho)(z), a>0,

A(z) = exp{—e"}, z€R.
If F € MDA(®,), then the norming constants a; and b; can be chosen such that
Fla;) ~t™" and b =0. (4.1)
If F € MDA(A), then the norming constants a; and b; can be chosen such that
F(b)=t~" and a; ~a(by), (4.2)

where a is the so-called auxiliary function; see e.g. Theorem 3.3.26 of Embrechts et al. (1997).
Calculating the norming constants explicitly is then a standard, though often tedious task. For
by a Taylor expansion leads to the necessary accurracy required by the convergence to types
theorem. We refer to the monographs by Leadbetter, Lindgren and Rootzén (1983), Resnick
(1987) or Embrechts et al. (1997) for some tutorial examples.

Then (3.4) implies that

MX
Tt 4 g, if FeMDA(®D,) (4.3)
at
and
MX — M
Mi =0 doy g =L 51 i FeMDA(A). (4.4)
ag t
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Furthermore, all the models in this section except the generalised Cox-Ingersoll-Ross model v = 1
satisfy condition (3.21) of Lemma 3.6, hence the Poisson approximation of the e—upcrossings is
also explicitly given for u; = ayz + by and 7 = —In Q(z), where Q is either @, or A.

Figures 2, 3, 4, 5, 6 and 7 show simulated sample paths (of length ¢ = 1000 respectively
25000) of the different models. The solid line indicates those norming constants which describe
the increase of M;X for large t, i.e. in MDA (®,) we plot a; (see (4.3)) and in MDA (A) we plot
by (see (4.4)).

Figure 9 shows the empirical df, the empirical density and the QQ-plot (based on 350 simu-
lated maxima, each taken from a sample path with ¢ = 25000) of the normalised maxima of the
generalised inverse Gaussian model for certain parameter values together with the corresponding
limit df and density. The models were simulated by means of the Milstein Scheme (strong Taylor

approximation of convergence order 1) and we refer to Kloeden and Platen (1992) for details.

Example 4.1 (The Vasicek model)
In this model the drift term is pu(z) = ¢ — dz for ¢ € R, d > 0 and the diffusion coefficient
o(z) = o > 0. The solution of the SDE (1.1) with X, = z is given by

t
Xy ==+ (z— g)e_dlt + a/ e~ U=)qw,, t>0.
0

(X};) has state space R, mean value function

2

and arX g (1 _th> — o t—
1 var = — — € -— o0 .
b7 o4 2d’

C

d)e_dt —

C C
EX, =< _ ¢
=gt d

It is well-known and easy to calculate from (2.2)-(2.4) that (X;) has a normal stationary distri-
bution, more precisely, it is N (3, %), where N(a,b) denotes the normal distribution with mean
a and variance b.

The assumptions of Theorem 3.7(c) are satisfied giving

(z —c/d)?

F(z) ~ d 272d

H(z),

where H(z) is the tail of the stationary normal df; hence F' has heavier tail than H. It can
be shown that the rhs is the tail of a so-called von Mises function (see e.g. Example 3.3.23 of
Embrechts et al. (1997)), hence F' € MDA (A) with norming constants

o c o Inlnt + In(o?d/27)
and by = —=VvInt+ - + .
Rz d ' 4/d Int

a

o
-~ 2V/dInt
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Figure 2: Simulated sample path of the Vasicek model (with parameters ¢ = d = ¢ = 1) and corresponding

normalising constants b;.

Example 4.2 (The Cox-Ingersoll-Ross model)
In this model (X;) satisfies the SDE (1.1) with u(z) = ¢ —dxz for d > 0, o(z) = oy/z for 0 >0

and 2c¢ > o2. Tt has state space (0, 00), mean value function

EXt:§+($—§)e*dt—>§, t — o0

T T
800 1000

Figure 3: Simulated sample path of the Cox-Ingersoll-Ross model (with parameters ¢ = d = ¢ = 1) and the

corresponding norming constants b;.
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and

co? c\ 2d\ _op c\ 2d 54 co?
V&I‘Xt—ﬁ(l—<1+($—a)?>€ +($—3)?6 >_>ﬁ’ t — 00,

where Xy = z. From (2.2)-(2.4) we obtain that the stationary distribution H is F(%, 3—%)

Theorem 3.7(c) applies giving

where G(z) is the tail of the F(% +1, 3—31) distribution. Notice that F(z) ~ AzH(zx) for some
A > 0. Tt is well-known (see e.g. Resnick (1987), p. 72-73) that the gamma distributions are in
MDA (A) and the norming constants for F' are

0,2

2c d
— ;2 —
ay = O /(2d) and bt = 2_d (lnt + ? lnlnt + In (W>> . (45)
Notice that for 02 << ¢ the constant I'(2¢c/0?) is very large and consequently b; may become

negative for small £. In extreme cases b; becomes positive only for very large ¢.

Example 4.3 (Generalised Cox-Ingersoll-Ross model)

In this model the drift term is given by u(z) = ¢ — dz and the diffusion coefficient has the form
o(z) = oz for v € [§,00). For ¥ < 1 we have |m| = oo and hence by Theorem 7 of Mandl
(1968), p.90, the process is not ergodic. For v > % the process is ergodic with state space (0, c0).

We distinguish the following four cases:

y=1/2 : 2¢ > o2, d>0 (see Example 4.2)
1/2<y<1 : ¢>0, d>0
/< (4.6)
vy=1 : c>0, d>—c%/2
v>1 : c>0,deR or ¢c=0,d<0.
For <+ <1 the mean value function of (X;) is given by
Sh(o=S)e ™ 52 i d>0
EX, = E-I—(x—E)e_dt oo if d<0 (4.7)
d d
T +ct — oo if d=0

as t = oo where Xy = z. This indicates already that for certain parameter values the model can

capture large fluctuations in data, which will reflect also in the behaviour of the maxima.
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° %<7<1

The stationary density, which can be calculated by (2.2)-(2.4), is

_ 2 oy 2 ¢ 1) d 22y
h(x)—AJZzp exp{ = (27_1513 +2_2733 , x>0,

2 [ 2 c d
A== | % -= U — ) BN 7
02/0 exp{ o? (27—1 +2—27

The assumptions of Theorem 3.7(c) are satisfied and hence

where

Fnl d 2 —2y+1 d 2(1—

Notice that F(z) ~ Bz2(1=H(z) for some B > 0. The rhs is the tail of a von Mises function

and hence in MDA (A) with norming constants

2 2(1 ) 2t
_ o-_ o _f)/ 2—24
a; = 5 <7d lnt>

a?(1—y)
d

1
o’l=7), \*% 2y -1 In
CE kS

d (2 —2v)? Int

Int
2d
) taln <_> |

Notice that a; is continuous in the point y = 1/2, i.e. a; as above converges to 02/(2d) as vy | 1/2,
which is the same as (4.5). The first term of the norming constants b; coincides with the first
term of (4.5). The behaviour of a; and b; as v T 1 is much more dramatic. It indicates already
that at v = 1 there must be a qualitative change in the extremal behaviour. This is confirmed

below.
o v=1
In this case the solution of the SDE (1.1) with X, = z is explicitly given by
o2 ¢ o2
X, = e ()W <3: +c / e(d+z>“Wsds> , t>0.
0

We obtain from (2.2)-(2.4) that the stationary density is inverse gamma:

2d
—2d

2\ 2 9d -1 ‘ )
h(z) = (;—> <F (—2 + 1>> p2d/0% =2 exp {——gxl} , x>0.
c o o

Notice that h is regularly varying with index —2d/0? — 2 and hence by Karamata’s theorem

(Theorem 1.5.11 of Bingham, Goldie and Teugels (1987)) the tail H of the stationary distribution
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Figure 4: Simulated sample path of the generalised Cox-Ingersoll-Ross model for 4y = 1 (with parameters ¢ = d =

o = 1) and the corresponding norming constants b;.

is also regularly varying. This implies that certain moments are infinite:

2\°T (%4 +1-6) | 5. 2d
. 5 ﬁ —F(2—d+1) if <§+17
lim FX, = P
t—00 . 2d
00 if 6> — +1.
o
In particular,
2’ < if 2d > 1
lim varX; = d(2d — o?) o’ ’
t—00 . 2d
o

For the tail of F' we obtain by Theorem 3.7(c)

2d
— o? (o2 2 2d ~' (24 Cod/e? % _
o~ 5 (%) T (r(Err) (Ber) e ten e
2 s 2\ 231 -1 ‘
T () ) e
C o o

Here F(z) ~ BH(z) for some B > 0. Hence F is regularly varying, equivalently, F' € MDA (@ 94/52),

with norming constants a; chosen according to (4.1) as

2d
o2 (o2 o2l 2d -1 2d
at~(7(2_0> (r(2)) " (2 )

Notice that a; ~ C +1/(14+2d/7%) for a constant C, i.e. a; is a decreasing function of d/o? in t.

1/(1+2d/0?)
) and b =0.

Hence the maxima MtX are likely to increase slower, when d/o? gets larger. In particular,

MtX/ (Ctl/(1+2d/a2)> E) (I)1+2d/02 , t— 0.

22



100
.

80
.

Y —— o

uhw‘.Jl [ ,iui.J‘.J. | JH‘ALA

(o] 200 400 600 800 1000

Figure 5: Simulated sample path of the generalised Cox-Ingersoll-Ross model for v = 1.5 (with parameters

¢ =d =0 =1) and the corresponding norming constants a;. In this case A = 9.878.

e v>1

Notice first that h is of the same form as in the case % < v < 1, in particular H is regularly varying
with index —2y + 1 € (—o0, —1). We apply Theorem 3.7(b) (alternatively Theorem 3.8(a)) and
obtain

= e?’ -1 -1
F(:v)wmx =(Az)”", z— o0,

1 c n d
P2\ "1 7227 )

In this case the tail of the stationary distribution H has again a lighter tail than F. Hence

where

F € MDA(®;) with norming constants a; ~ ¢/A. Notice that the order of increase of a; is

always linear. The constant A decides about the slope. We obtain in particular

AMK e S .

For v = 3/2 it is possible to calculate A explicitly. We obtain

A= 1 1+21/d2_7red2/(002)q> 22
c o2c co? ’

where ® denotes the standard normal df. Notice that (if we ignore the factor 1/¢ for the moment)

A is increasing in the quotient d?/(co?).
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Example 4.4 (Generalised hyperbolic diffusion)

Diffusions with given stationary distribution have been considered as appropriate models for
asset prices. It is often assumed that the price process follows the SDE (1.1) with drift term
zero; i.e.

dX; = O’(Xt)th, t>0.

Choose
o2 (x) = o*/h(x),

where h is an arbitrary density, then (X;) has exactly this stationary density h. These diffusion
models and certain extensions have been investigated as alternatives to Gaussian processes for
asset prices, see Kiichler et al. (1994), Bibby and Sgrensen (1995), Eberlein and Keller (1995),
Barndorff-Nielsen (1995) and Rydberg (1996).

Here Theorem 3.8(a) applies, yielding
oMY J(0%) S By, t— o0,

regardless of their stationary distribution. ¥ € MDA(®;) means that the maximum of the
process is likely to behave as the maximum of iid rvs with distribution tail F(z) ~ %2:3*1, so the
process is likely to show much more extreme fluctuation than one expects from its stationary

distribution.

5 Generalised inverse Gaussian diffusion

In Example 4.4 we have seen how an ergodic diffusion with drift term g = 0 and arbitrary
stationary distribution can be constructed. This construction has the drawback that all these
diffusions show the same behaviour in their maxima M;* represented by F(z) ~ Az~! for some
A > 0. Guided by Theorem 3.8 we choose another method of construction. We choose a density
h(z) and a diffusion coefficient o(z). By equation (3.26) this defines a drift term y, giving an
SDE (1.1).

We shall present this method by introducing a new class of diffusions with generalised inverse
Gaussian stationary distribution and state space (0, 00). Its stationary distribution has (like the
generalised hyperbolic distribution) tails with asymptotic behaviour reaching from exponential
to regularly varying. Moreover, this model can be viewed as a further generalisation of the

Cox-Ross-Ingersoll model (Example 4.2). It also includes Example 4.3 for v = 1.
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The density of the generalised inverse Gaussian distribution is given by

oo M
") = Sk (VD) p{

where K is the modified Bessel function of the third kind and index A. The following parameter

1
—§(Xx+¢x1)} , >0,

sets are possible

x>0, v>0, NeR}
{x=0, v>0, A<0}
{x>0, v=0, A>0}.
Notice that the norming constant simplifies for x = 0 and ¢ = 0.
Now we consider the special case of o(z) = oz” for 0 > 0 and v > 0. For the sake of

comparison we choose the diffusion coefficient to be the same as in Examples 4.2 and 4.3.

By equation (3.26), (2.2) and (2.3),

1
p(z) = 102x27_2 (¥ +2(2y + X — 1)z — xz?) ,

s'(z) = exp {——(X + @ZJ)} gz (2rHA-1) exp {%(Xw + 1/)331)} and

N —

m!(z) = % exp {%(X + w)} 2 exp {—%(xx + wﬂ} :

o

As formulated in Section 2 we require the process to be recurrent and to have inaccessible

boundaries 0 and oo, i.e.

> X ! 0
/ ' A exp {515} dr =00 and / 7'M exp {513_1} dr = o0.
1 0

This puts further restrictions on the parameter space and we consider

{x>0, v>0, NeR}
{x=0, >0, A<0 and A<2(1—7)} (5.1)
{x>0, v=0, A>0 and A>2(1—%)}.

The SDE (1.1) with 4 and o as above with this restricted parameter space has a unique solu-
tion (X;). This can be shown for instance by an application of Theorem 5.13 of Karatzas and
Shreve (1987) to In(X;). We call this solution (X;) generalised inverse Gaussian diffusion (GIG
diffusion). For all parameters in (5.1), |m| < oo and hence by Theorem 7 of Mandl (1968), p.
90, (X¢) is ergodic.

Comparison of the drift terms show that the GIG diffusion for v = 1/2 and ¢ = 0 (which
implies xy > 0 and A > 1) is just the CIR model with parameters ¢ = 02)/2 and d = o?y/4. If
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we choose ¥ = 1 and x = 0 (which implies ¢ > 0 and A < 0), then we obtain the generalised
CIR model with parameters ¢ = 021/4 and d = —o?(1 + )\)/2.

For the study of the extremal behaviour of (X;) we distinguish three different cases:

T T T T T
5000 10000 15000 20000 25000

120

—

100

80

60

40

20

Figure 6: Simulated sample path of the GIG model (with parameters v = 0.5, x =0, ¥ = o =1, A = —1) and

the corresponding norming constants a;.

o =0

Then ¢ > 0 and A < 0 and XA < 2(1 — 7). The stationary density is inverse gamma of the form

Y —A
h(z) = 7(?(/3))\) 2 exp {—(z/)/2)x_1} ~ 7(}/?(/3))\) 2N 25 0,

i.e. it is regularly varying. Hence

N o ($/2) M2 =2y — )\)337(2,27,/\)
21 (=) ’

Thus F € MDA (®y_5, ) with norming constants chosen according to (4.1) as

F()

T —r 00.

(P ey N
i 20 (=) e
By Karamata’s theorem (Theorem 1.5.11 of Bingham, Goldie and Teugels (1987))
7 (/27>
H(z) ~ 212
(z) I‘(—)\)(—)\)x , T — 00,

giving
2
(N2 -2y =N

Hence, depending on the choice of 7, the tail H of the stationary distribution can be heavier or

H(z) ~ > P F(z), z— oc0.

lighter than or of the same order as F.
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[ ] 1/}:0

Then xy >0 and A > 0 and A > 2(1 — ). The stationary density simplifies

W) = X exp (—(x/2)a} . @ >0,

Then, as in the Cox-Ingersoll-Ross model, F is of gamma-type and hence F € MDA (A) with

norming constants chosen according to (4.2)

2 2 2)2—27
ar = 2/x and th;(lnt+(2’y+>\—l)lnlnt—i—ln(%)).

Since v > 0 this implies that F' has a heavier tail than the stationary df H. Hence the extremal

behaviour of (X;) shows larger fluctuations than an iid family of random variables with df H is

likely to show.

e Y>0,x>0

25

|

15

10

T T T T T T
(o} 5000 10000 15000 20000 25000

Figure 7: Simulated sample path of the GIG model (with parameters v = 0.5, x = ¢ = ¢ = A = 1) and the

corresponding norming constants b;.
Then ) is arbitrary in R. Theorem 3.8(b) applies giving

F(z) ~ 7 (K)Qas%ﬁ(z), T — 00.



By (4.2) we obtain the norming constants

2 2-2v-A A/2
a; =2/x and btzg(lnt+(2’y+>\—1)lnlnt+ln(%<%> ))

The remark at the end of the case ¢ = 0 applies.
Finally we investigate the assumptions in Theorem 3.4 for this case in detail. First notice

that s'(z) — oo for 2 | 0 or z 1 co. Thus by I"'Hospital

, xToo and

By Lemma 3.6 and the fact that m'(z)s'(z) = 2227/0?,

Moy (5o (3(2) 8'(x) 0 s'(x) 2P (8"(93)
s' ()

Sou(sou (5(2))) ™/ (2) 4 s(z) In(|s(z)])

If we further distinguish between left and right endpoint we derive

g:-l-’y), z 1T ooorzx]|0.

0 v<0.5
(53 (s(2)) 8'2) | o7y
o (sol(s(@) m@ ) 12 17000 z 1 oo,
00 v>0.5
and
00 v<1.5b
Mou (550 (5(2))) <'(2) o2
st (sou (s(z))) m'(x) - 72 7 1.5 , xl0.
0 v>1.5

Hence by Remark 3.5(c), we may conclude that in the case 0.5 < < 1.5 the assumptions of the

Theorem 3.4 are fulfilled while in the other cases condition (3.21) of Lemma 3.6 does not hold.
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Figure 8: The Poisson approximation for e-upcrossings of the GIG diffusion with parameters v =0.5,x = 0,9 =
1,0 =1, A = —1 as in Figure 6. The threshold increases with the sample size. For the calculation of the thresholds
we used 7 = 10, i.e. on average there are 10 e—upcrossings for large ¢ and fixed small € > 0. The first figure shows
a realisation of the process X; for 0 < ¢ < 1000, the last two figures represent continuations of this realisation to

t = 5000 and ¢t = 25000, respectively.
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Figure 9: The empirical df (top), the empirical density (middle) and the QQ-plot (bottom) of the normalised
maxima of the GIG model and the Gumbel df and density (solid line), based on 350 simulations with ¢ = 25 000

and parameters v = 0.5,y =1 =0 = A =1 as in Figure 7.
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