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Abstract

We study an estimator of the number of change points in the drift of a stochastic process
based on the Schwarz criterion. In a general statistical model where the additive measurement noise
satisfies a certain weak invariance principle (examples included are partial sums, renewal processes,
and linear processes in time series analysis) consistency can be shown under the condition that
the number of jumps is not greater than a given upper bound.
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1 Introduction

The aim of this paper is to discuss the problem of estimating the number of change points in
a general context. It extends work of Yao (1988) and Lee (1995) concerning only sequences
of independent normal random variables. In particular, we combine an auxiliary result of
Yao (1988) for i.i.d.-normal random variables with an invariance principle for partial sums to
improve a later result of Yao and Au (1989) where an i.i.d.-sequence with a more restrictive
moment condition was considered.

As in many other asymptotic studies of change-point problems it turns out that certain
invariance principles are very useful and allow for reducing the statistical analysis to that of
an asymptotic Gaussian model. Recently, Horvath and Steinebach (1999) pursued this idea in
a general vein by simply taking advantage of a weak invariance principle in the testing of a
change in the mean or variance of a rather general stochastic process. In particular, cases of
dependent observations are included in this framework.

Assume that we observe a stochastic sequence (Z,(i));=1,.., having the following structure:

. ayi + by Y,V (1) c 1<i<ny
Zny(nj—1) +aj(i —nj_) +0,Y, (i —n;—y) @ njoi<i<ng, j=2,...,1+1

where a; # a;_1, bj and n; = [fin], 0 = 6y, < 6 < ... < 6, < 641 = 1, are unknown

parameters, and where (Yn(j)(i)) are unobservable stochastic sequences satisfying a

1=1,...,nj—nj 1
(uniform) weak invariance principle. Namely, we assume that, for every n > 1 | there exist
[ + 1 independent Wiener processes {WW(t) : 0 <t <n; —n;_1}, 5 =1,...,1+ 1, such that,
if necessary after re-definition on a suitable probability space,



max
1<i<nj—nj; 1

Y(i) = WP(i)| = Op(n%)  (n— o) (12)
with some v < 1/2.

That means we have a piecewise linear function with an additive measurement noise. Various
statistical models satisfy condition (1.2) above as will be demonstrated by a few examples:

Example 1.1 (Partial sums) For every n > 1 | let {Xi(yj,'l) ci=1,2,...}, j=1,...,1+1,
be | + 1 independent sequences of i.i.d. (independent, identically distributed) random variables
with P{XZ-(fn) <z} = P{Xl(]f <z} forallz€eR , n>1, EXl(Jl) = luj, Var(Xl(fl)) =07>0,
being fized. For some 0 =0y < 0; < ... <01 =1, consider {Z,(i) : 1 <i<n} asin (1.1)
with a; = pj , bj=o0; , and

YO(i) = Si_ (XY —p)fo; © 1<i<mnj—mnj_y, j=1,...,0+1.

If, in addition, E|X{{f|2JFA < 00, for some A > 0, then the Komlos, Major and Tusnddy
(1975) strong approzimation implies (1.2) for {YD(i) : 1 <i < nj—n;_1}, witha =1/(2+A) .

Example 1.2 (Renewal Processes) Let the random variables XY be as in Ezample 1.1, but

with P(XS) Z O) =1. Set a; = 1/;}0 , bj =0j /N?ﬂa

lé’iénj—nj_l, ]:1,,l+1

32
Uj/,uj/

Then (1.2), with a = 1/(2 + A) , follows directly from Example 1.1 in combination with
Theorem 3.1 of Csorgd, Horvath and Steinebach (1987).

Motivated by a change-point analysis of time series, the following generalization of Example
1.1 is of particular interest. It also demonstrates that, although the increments of the observed
process {Z,(i) : 1 < i < n} may have a special dependency structure before and after
the change-points n;, the approximating Wiener processes {W(¢) : 0 <t < n; — nj_},
j=1,... 141, can be chosen to be independent.



Example 1.3 (Linear processes) Consider {Z,(i) : 1 < i <n} asin (1.1), but with b; = 0, A,
and

YO(i) = S e/ (0j4) ¢ 1<i<ng—ny,
where {a, :u=0,1,...} is a real sequence such that
A= Z ay, # 0.
u=0

Let

00
= Z Au€k—u,n »
u=0

where {egpn bk =0,£1,%2,.. .5k <m} and {eg, : k=0,...,n;n;_1 < k <n;}, j=2,...,1+1
are | + 1 independent sequences, each i.i.d. (white noise), with Ecy,, =0 ,

2
. O'l . kSnIJ
Var(gk,n)_{U? conjia<k<ng g=2,...,1+1,

02 > 0, and Elep,[*t® < 0o (for some A > 0) . We further assume that there exists an

exponent > 3/2 so that

a, =0 (u_ﬁ) (u— 0) . (1.3)

If, in addition, the ej,’s have smooth densities and {a, : ©v = 0,1,...} satisfies some
regularity conditions, then the invariance principle (1.2), with o = 1/(2 + A) follows from
Horvéth (1997). For details and exact conditions confer Lemmas 2.1 and 2.2 of Horvath (1997).

We need an additional technical condition: For all j = 1,...,/+ 1 and € > 0 there exist
n,Cy, C7; > 0 such that for all n > n:

P (an < Z (Yn(j)(i) _ Yn(j)(@' — 1))2 < Cﬂl) >1—¢ (1.4)
=1

This is obviously fulfilled for Example 1.1. For a verification concerning Example 1.2 and
Example 1.3 confer Kiihn (1999), pp. 52-55.

For any k, let j(k) = (J1,...,jx) be the vector which minimizes
JH—I _ ] ] 2
S (J1y- -+ Jk) Z > {2Zu() = ZulG = 1) = Zuljir jinr) } (1.5)
1=0 j=g;+1



subject to j(k) := (J1,.--,Jk), Ji € INg, 0 =17 < J1 < ... < jr < jk+1 = n, where

Zo(a,b) = bia (Z,(0) — Zo(a)} .
We define
o SGE) _ (k)
k n o ik n

Using a criterion similar to that of Schwarz (1978), we estimate [, the unknown number of
change points, by [ which maximizes the function

SC(k) = —g log &2 — kd,
subject to k < [,. Here kd, is a penalty term in order to avoid over-fitting.

Our main result is as follows:

Theorem 1.4 Consider Z,, as in (1.1) satisfying (1.2), 0 < a < 1/2, and (1.4). Let 1, be a
known upper bound for 1, and assume the penalty factor d, to increase such that

e 70 (n — 00), (1.6)
but

dn

— =0 (n— o0). (1.7)

n

Then we have

P {argknolaxlu SC(k) = l} =1 (n— o00).
Remark. In the case of i.i.d.-increments (Example 1.1) Theorem 1.4 improves Theorem 3 in
Yao and Au (1989) in two ways. First, we only require a (1/a)-th moment (« is an arbitrary real
number < 1/2) for the increments (instead of the sixth moment). Second, the penalty factor
d,, only has to increase faster than n?® instead of n*® which was the corresponding condition
in Yao and Au (1989) translated into our notation.

To prove Theorem 1.4 we need three lemmas.



Lemma 1.5 Let do( ) i=minj—y 41 |n; —njq] and a < nj < ... < nj, <b with min{|a —
n;l, |b — n;|} > do ) for j with j; < j < jo, then there ezist ¢ € [njl,n]2] and § > 0, only
depending on the jumb hights, but not on n, such that

b—a

|Hap(C)] = mdom)@
where
L Cn(c) - Cn(a) _ Cn(b) - Cn(c)
Hap(€) = c—a b—c
and, for i = 1,...,n, (i) == X5 a;((i A ny) — nj_1)4 represents the “systematic part” of
Zn (1)

The proof is exactly the same as for Lemma 2 in Lee (1995) because we only consider the
”systematic part” ¢, of Z, (which we get by setting Y,) = 0 in (1.1)).

Lemma 1.6 Suppose that (1.2) with o € (0,1/2) and (1.4) hold. Then

{Znks) = Gulka) = (Zalkr) = GoDY _ (n).  (8)

max
0<ki<k2<n, ki,ko€IN ko — Ky

a)

b) It holds, uniformly over all ¢,,c,41 € {0,...,n} with no change-point n; in between, and all
c € (¢, Cry1):

S(cr, ..., c) = S(c1, - oy CryCCrpty ooy c) = Op (n%‘).

PROOF OF LEMMA 1.6: a): We want to derive the assertion from Lemma 1 in Yao (1988)
concerning i.i.d.-normal r.v.’s by taking (1.2) into account. We have

{Zn (k2)=Cn (k2) = (Zn (k1) —Cn (K1)}

MAX0<ky <kz<n, kik2€IN fy—Fy
. 2
{Ziill bj{YrE])((kW\”r"j 1D)4) =Y (k1 Anj—n; 1) }}
= MAXo<k; <ky<n, ki,k2€IN —
{Zéill bj{WT(Lj)((kz/\nj—nj 1)+4)— W(]) (k1Anj—nj_1) }-I—Op }
= MaXp<k; <ky<n, kik2€IN foa—k1
. 2
{Eéill bj{Wﬁ”((sznj—nj 1D)4) =W (k1 Anj—nj_1) }}
= MAaX<k <ka<n, kik2€IN -
‘Z’“ bJ{W(J)((kg/\n]fnJ D4) =W (kiAnj—nj 1) }‘ v
+ MaXo<k; <ky<n, kiko€IN e x Op (n®) + Op (n*®)
= Op (logn) + Op (\/logn no‘) + Op (n*®)
== Op (nZO‘)



b) : We have

S((ery..yer)) —S(ery ey CryCy Crity ooy CE))
(c =) —€) /5 _ 2
- as (Zcr,c - Zc,cr+1)

Cr4+1 — Cp

_ (c = ¢ )(erp1 — ) (Zn(c) — Gule) = (Znler) = Galer))

Cri1 — Cr c—Cp

Zalers1) = Galer1) = (Zale) — <n<c>>>2

) <0y (1)

Cry1 —C
— — 1 1 1
_ (c—¢)(erp1 — ) +9 +
Cr1 = Cr C—¢Cr \/(c — ¢ )(¢rp1—c€)  Crer—C
<4
— Op(n20‘)

Lemma 1.7 For all k € IN, € > 0, there exist n, Cy, C; > 0, such that

PROOF OF LEMMA 1.7: Here, we need the additional assumption (1.4).

STEP 1: (,, <7):

S (k)
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S((n1,....,m))+ Op (7120‘)
L1 minien | YO (n; —n; 1))
= 2 VOGN vy 1)~ v V9 -l 20
P R e T ey
Y 2
41 m—mion _ , {Y(J)} (n; —nj_1)
= > b YOG = vD36 -1 + 3 02+ 7 Op (n2
—0p(1)
Z Co’n.

The O’s are uniformly valid for j(k) (k fixed) and the last inequality is true with a proba-
bility smaller than a given ¢ > 0 for n big enough. The constant Cj is derived from assumption
(1.4) and depends on ¢.

PROOF OF THEOREM 1.4 ( Compare Lee (1995) ): We want to show that SC(k)
strictly increases on {0,...,l} and strictly decreases on {[,...,l,} with a probability tend-
ing to 1 if n tends to infinity. This implies that SC(k) takes its maximum at [, i.e. [ :=

arg maxy—o, ., SC(k) is a consistent estimator of [. We analyze the difference SC(k+1)—SC(k)
and get:
SC(k+1) — SC(k) = g (log a2 —log62,,) — d,
g SG)
2 7 S(k+1)
~ Diog (14 SUED S
2 Sk +1))

~

Due to Lemma 1.7 the denominator S(j(k + 1)) is of order n (uniformly in £ =1,...,1,).
Since there are €; > 0, €9 > 0, such that for all v € IR,

min{(l — &)z, 9} <log(l+z) <z, (1.10)

it is sufficient to show:

~

1.) S(i(k)) = SG(k+1))>d, fork<l. (1.11)

~

2.) SG(k) — S(G(k+1)) < d, fork >1. (1.12)

7



where < means that the quotient tends to zero if n tends to infinity.
CASE 1: k<1

We start with an optimal solution j(k) in the minimization of (1.5) for £ and add one more
point to j(k). Due to the fact that S(j(k + 1)) is minimal for given k + 1, the amount the
least squares S(j(k)) decrease is a lower bound for S(j(k)) — S(j(k+1)). Consequently, if it is
possible to choose this additional point in such a way that the order of the decrease is bigger
than d,,, then (1.11) is proved.

Let j(k) = (c1,¢q,. .., ck). Suppose one plugs in an additional point ¢ between ¢, and ¢,4;.
Then:

S((cry.vyek)) = S((Cry ey CryCyCryry ey Cr))

S (Z0) = Zu(i=1) = Zo ) = 5 (Zal)) = Zuli—1) - Z.,,)°
i=cr+1 i=cp+1
Cr41 9
- Z ( (Z - 1) ZC Cr+1>
t=c+1

= (C - Cr) (Zcr,c - Zcr,cr+1)2 + (Cr+1 - C) (ZC:CT+1 - Zcr,cr+1)2

= (C - Cr) (M>2 (ZCT,C - Zc,cr+1)2 + (CH-I - C) (i>2 (ZC“C - ZC,cr+1)2

Cry1 — Cp Cry1 — Cp
_(e=a)leq—0) (o * 2
Rir— (Zere = Zeerin) - (1.13)

(
2 2
1,...,1, covers no element of {cy, ..., cx}. Consequently, there exists an r € {1,...,k —1} such
that ¢, < n; <...<ny, < cqq with min{|e, —nyl, |1 —ni|} > @ for i with iy <i <15. So,
Lemma 1.5 can be applied and there is a ¢ for which the following estimation of the decrease
of S holds (here we also make use of (1.13) and Lemma 1.6(a) where the uniformity is needed
because ¢, and ¢,;; are random):

On account of k < [ at least one of the [ disjoint intervals (nj — do("),nj + %o ”)>, j =

S((ery.voyer)) —S(ery sy Crgty ooy CE))

MmO =9 (7 Z = ul0) + ()

Cr+1 — Cr
(¢ —¢)(crp1 —©) _ _
> (o) (|u<c>| —2|Zepe = Zegrin — 1(0)))
Cr41 — Cp

> 7z

=)l
:dO(n)(s{(C—CT Cr+1—0> Dl (\/Cl—cr " \/Cr-i—ll —C> Op(na)}
> %{do(n)é } do(n)o {do\(;%)‘st

_|_

TL

\/ﬁ VCer+1 —C



- n do(n)
_ B
n

2 2 a+1/2
> 2800 o, (20

{1+o0p(1)}
> d,.

The last estimation holds because of dy(n) oc n together with (1.7). This proves (1.11).
CASE 2: k>1

Now we start with an optimal solution j(k + 1) for given k 4+ 1 and reduce the number of
points to k. It turns out that this does not change too much. First we add the [ (theoretical)
change points to be able to apply Lemma 1.6(b) and then we take out [ + 1 other points. So,

SGk+1) > SGk+1)U{n,...,m})
= S(nl,...,nl)—i-(’)p(n?o‘)

~

> S(j(k)) + Op (nh)

Thus

~

S(j(k) = S(j(k +1)) = Op (™)

and therefore (1.12) in view of assumption (1.6). This completes the proof of Theorem 1.4.
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