
A computational framework and the related algorithms for the virtual design and simulation of smart lightweight 
structures is presented. Controller design is based on a state space model that is derived from the finite element 
model. Discrete time control via an optimal linear-quadratic-Gaussian (LQG) regulator is applied.

The presented methods of all simulation and design steps are implemented in the in-house software Carat++. 
The two examples illustrate the design loop for different application scenarios.

Application to

Smart Membrane Structures

In this example, active control is 
adopted for vibration suppression 
under external loads like e.g. wind. 

Form finding is used to determine the 
optimal structural shape from an 
inverse formulation of equilibrium. 
Also the cutting pattern generation is 
integrated in the design loop in order 
to consider fabrication effects already 
in the design stage.

The state space model is derived from 
the finite element model and 
preserves the geometrically nonlinear 
equilibrium state and the prestress 
effects of the membrane structure.

Variable Camber Airfoil

This example presents the virtual
design loop for a surface-actuated
piezocomposite variable-camber
morphing wing structure. 

Finite element based optimization with
adjoint sensitivities is used to perform
optimal actuator placement and to
optimize the thickness distribution of
the passive structure for efficient
control. The constraining factor of this
optimization problem is the need for
sufficient bending stiffness to sustain 
shape under aerodynamic loading.

The state space model is again 
derived from the finite element model.

Simulation, Design and Control of Smart Structures
In the case of thin and lightweight structures, the aim of the computational design process is often to minimize weight while constraining various other 
criteria like stress and deformation. This is not only the dominant goal in the design of aerospace structures. In the civil engineering context, prominent 
examples are large membrane structures such as tents or roofings. Structural adaptivity and control can be used in this context to further increase 
functionality, improve usability or to create even lighter structures.
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Variable camber airfoil,
cooperation with Bilgen (Norfolk) and Friswell (Swansea)

Actuator Design
- actuator type
- actuator number
- actuator placement

Sensor Design
- sensor type, number and placement
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Piecoelectric Sensors:
Using the Direct Piezoelectric Effect:

„Internal generation of electrical charge
resulting from an applied mechanical force”

Piezoelectric Actuators:
Using the Inverse Piezoelectric Effect
“Internal generation of a mechanical strain
resulting from an applied electrical field”

Top view:

Bottom view:

Inclusion of piezoelectric Effects 
in the Finite Element Simulation

– Nonlinear Reissner-Mindlin kinematics
– ANS and EAS improvements
– Coupled constitutive equations:
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