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Chapter 1

Introduction

This thesis is divided into three parts, in which we
1. model dependencies among meteorological variables by regular vines (R-vines) and
2. model tree ring data by linear mized models and
3. summarize the main points of Part I and II and give an outlook for future research.

Thus our work applies to the field of climate research and dendrology from a statistical
point of view with a clear focus on the statistical methodology. Each part is considered
separately.

Our first part is based on R-vines which present a recent field of research. Vines
denote a flexible class of modeling high-dimensional dependencies, introduced by Bedford
and Cooke [2001, 2002] and discussed in Kurowicka and Cooke [2006], which use only
bivariate copulas as building blocks. The special cases of canonical vines (C-vines) and
D-vines were considered by Aas et al. [2009] to derive multivariate copulas using pair
copula decomposition. However, the more general class of R-vines is less restrictive in the
dependency structure on the data and present a suitable graphical model to describe pair
copula constructions. Recently, Difimann et al. [2011] developed a sequential, heuristic
method based on graph theory to fit an appropriate R-vine copula specification to a given
dataset. We will use this method to model the dependence structure among meteorological
variables in our first part.

While Diimann et al. [2011] or Brechmann and Czado [2012] apply R-vines to financial
data, modeling the multivariate distribution of meteorological quantities is also in the
focus of interest. Whether for forecasting, pricing of weather derivatives or other studies in
climate science or hydrology, statistical information about dependencies between different
weather variables are needed. For example, Moller et al. [2012] propose a method for
post-processing an ensemble of multivariate forecasts in order to obtain a joint predictive
distribution of weather by using Bayesian model averaging and copulas. Copulas serve
also as a base for the study of Bokusheva [2010] modeling the dependence structure
between weather-based crop insurance respectively weather derivatives yields and weather
variables. Further works with application in the field of hydrology, e.g. by Genest and
Favre [2007] or Kao and Govindaraju [2010], are also using copula approaches to model

1



CHAPTER 1. INTRODUCTION 2

multivariate dependencies among droughts and meteorological quantities. Genest and
Favre [2007] even indicated that application of copulas in hydrology is still in its nascent
stages and their full potential for analyzing hydrologic problems is yet to be realized
[Kao and Govindaraju, 2010, p. 122]. Therefore our flexible and less restrictive R-vine
approach based on pair copula constructions to model high-dimensional dependencies
among meteorological measurements seems consequential.

Our model will be built on data coming from the meteorological observatory in Ho-
henpeissenberg which is located about 80km southwest of Munich, southern Germany, in
the foothills of the Alps at an altitude of 1000m above sea level. In detail we consider
observations of six variables, namely daily mean, minimum and maximum temperature
as well as daily mean humdity, daily mean air pressure and daily total amount of precip-
itation from a time span of 1950-2009. We divide these sixty years into 12 subperiods of
five years each and fit appropriate R-vine models to data from three of them (i.e. from
periods 1955-1959, 1980-1984 and 2005-2009). In order to do this, based on the Theorem
of Sklar [1959] and the theory of pair copula constructions, we need to model the marginal
distributions of our variables first. In case of the temperature variables and daily mean
air pressure we were inspired by Campbell and Diebold [2005] to capture autoregression
and seasonal effects by linear regressions. The detection of slightly skewed distributed
residuals is modeled by skew normal and skew ¢ distributions respectively (according to
Azzalini [1985] and Azzalini and Capitanio [2003]) and the results are compared over time.
Further, we assume that daily mean humidity is beta distributed and hence we will use a
beta regression model (introduced by Ferrari and Cribari-Neto [2004]) in order to capture
autoregression and seasonal effects too. Modeling the behavior of daily total precipitation
is a bit more demanding since the variable often takes values equal to zero. Therefore we
will concentrate on the two stage chain-dependent-process model of Stern and Coe [1984],
using binomial and gamma regressions to model the daily rainfall amount based on our
data.

The distribution of daily precipitation is not continuous, since it has an additional
point mass at zero. So in this case our classical six-dimensional R-vine approach is not
straightforward anymore. We will handle this scenario by extending the model of Erhardt
and Czado [2012] from insurance data to our application. The idea in doing so is simple,
namely modeling the dependence structure of the first five variables without precipitation
by a five-dimensional R-vine in the classical way and we connect the variable of positive
precipitation amount (modeled in the course of the above mentioned two step regression)
to the established vine to get a six-dimensional R-vine copula specification on rain days.
Simulations from the whole model are then straightforward using the modeled rain success
probability "day d has rain”, also fitted in the course of the marginal distribution model
of precipitation.

We compare the resulting R-vine structures for the three periods, i.e which dependen-
cies are modeled among the variables and especially whether any changes in the common
dependence structures are detectable over these time spans. We end this part with sim-
ulations from our models and compare several simulated parameters such as, e.g., the
dependence measure Kendall’s tau for different pairs of variables with the empirical ones.
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Figure 1.1: Drill core from a tree containing several year rings. (¢) Christoph Dittmar

In the second part of the thesis, we consider tree ring width data of two tree species,
namely Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.), also mea-
sured in the region of Hohenpeissenberg. An example of a drill core from a tree containing
a number of year rings is illustrated in Figure 1.1. In our seasonal climate, both species
produce one tree ring per year, but however, the tree ring growth cannot proceed faster
than permitted by the most limiting factor, according to Liebig’s law of the minimum
(Fritts [1976]). Thus, the tree-growth is limited by environmental factors and series of
tree rings can be seen as archives of a tree’s reaction to these factors [Zang, 2010, p. 7.
While lower treeline and forest border sites are most sensitive to precipitation, latitudinal
and altitudinal treeline sites are most sensitive to temperature variations (see, e.g., in Zang
[2010]). However, our observed trees are located on neither treeline or border. Thus, the
limiting factors are not uniform and easy to identify across the investigated populations
and correlations between growth and climate may be complicated to interpret (Friedrichs
et al. [2008] and Leal et al. [2008]). Zang [2010] mentions that the greatest methodological
challenge of his work is the extraction of quantititative information about limiting factors
of tree growth. He presents several approaches such as dendroclimatic calibration (multi-
ple linear relationships between climate and tree growth) or multivariate benchmarking
using dendroclimatic archetypes. We present a further statistical methodology by linear
mixed models to examine the relationships between climate and tree growth.

In our analysis we consider several seasonal means of meteorological quantities which
we already used in the first part. In detail we calculate seasonal means”(the seasons are
selected based on previous dendrological studies) of daily mean temperature, air pressure,
humidity and total precipitation. In addition, we calculate the highest numbers of consecu-
tive days without rain (longest dry periods/droughts) of the selected seasons to model the
(multiple) linear relationships between climate occurrences and tree ring widths. Linear
mixed models (LMMs) provide a flexible analytic tool to model these kinds of clustered
longitudinal data in case of tree rings, in which the residuals are normally distributed but
may not be independent or not have a constant variance in contrast to linear models. A
LMM may include fixed-effect parameters associated with one or more covariates, such
as the meteorological quantities in our case, and random effects associated with one or
more random factors (like e.g. a randomly sampled specific tree effects). In order to do not
distort the pure influence of different meteorological variables on our dependent year ring
variable we will remove any non-climatic variance out of our series (detrending by splines)
first. Appropriate random effects are then selected based on likelihood ratio tests while
the fixed effects are chosen by the smallest AIC (due to Akaike [1973]) of the different
considered models. We compare the results for both tree species, i.e. the modeled relation-
ships between the climate variables and tree growth as well as the behavior of the modeled
variances of standardized tree ring widths compared to the empirical counterparts and
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Part 1
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Figure 1.2: Path through the thesis.

whether it is influenced by climate occurrences.

Thus, the thesis is organized as follows. Part I starts with chapter 2 in which we present
basic concepts that are needed throughout the first part of this work, namely several
distributions with their properties as well as results from the theory of copulas, dependence
measures and an introduction into R-vines based on graph theoretical concepts. A method
how to select an appropriate R-vine copula specification is also given as well as several
regression models for the marginal behavior modeling of the considered meteorological
variables. Subsequently, these (six) marginal models are set up in Chapter 3 case by case
with corresponding results, compared over the periods. In chapter 4, we specify our R-
vine model with an emphasis on how to include the variable of precipitation into our
modeling. It is presented by an algorithm and afterwards we outline how to simulate
from our model. Chapter 5 summerizes the results of the three fitted R-vine models for
each period and compares the modeled dependence structures and their corresponding
log-likelihood values. Simulations from the models complete the first part.

Chapter 6 introduces Part II with basic concepts that are needed throughout the
second part of the thesis such as smoothing spline interpolation or generalized additive
models which will be needed to detrend the year ring data in an initial step. In addition,
linear mixed models are subsequently defined together with methods for parameter esti-
mation and model selection. This will be used in Chapter 7, because after detrending the
raw ring width series, appropriate random and fixed effects will be selected to yield the
final models for both considered tree species. The results of the modeled relationships be-
tween tree growth and climate variables as well as the behavior of the modeled variances
of the detrended ring series are offered in Chapter 8, which complete the second part.

The thesis closes with a summary of the main points and an outlook for future research
for each Part I and II respectively in Chapter 9 and 10. It completes the final third part
of this work. The described structures of Part I and II are still summerized in Figure 1.2.
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Chapter 2

Preliminaries - Part 1

In this chapter we give a brief introduction to the basic concepts that are needed through-
out this part and moreover throughout this thesis. In detail we start to introduce several
distributions with their properties, which we will need for our work. In a second step,
we introduce copulas as basis for regular vines, since the joint distribution function of a
random vector can be represented by a copula (theorem of Sklar, 1959). In this context
we present the important classes of elliptical and Archimedean copulas, give an overview
of bivariate copula families which we will meet again during this work and show their
relationships to the common dependence measures Kendall’s 7 and tail dependence. Since
elliptical and Archimedean copula approaches for modeling multivariate dependence are
quite restrictive, bivariate copula resp. pair copula constructions offer a more flexible and
intuitive way of modeling multivariate distributions [Aas et al., 2009, p. 183]. However, the
number of possible pair copula constructions is large, therefore they need to be classfied
using regular vines which are based on graph theoretical concepts (Diimann et al. [2011]).
Nevertheless, beforehand, we need to model the marginal distributions of our wheather
variables. Therefore we introduce several regression models to capture seasonality and
autoregression for our variables later. In the end, we would like to test the residuals out
of regression models to be independent in form of a Ljung-Box test.

2.1 Distributions

To model the multivariate depence among wheather variables, we will meet a number of
different distributions to fit the marginal behavior of each variable. Additionally, we will
be confronted with some basic distributions in the section of copulas. Therefore, we will
introduce the range of them, their properties and behavior. We mainly follow Czado and
Schmidt [2011] and Georgii [2007] for the most familiar distributions.

2.1.1 Continuous uniform distribution

The continuous uniform distribution is a continuous distribution defined on an interval
la,b], a < b.
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Figure 2.1: Density function of the standard uniform distribution.

Definition 2.1 (Uniform distribution.) We denote Z ~ U(a,b) to be uniform dis-
tributed, if it has the following density function

1 L fora<z<b
2) = —— 1 p(2) =< - - = 2.1
/) b—a[’b]() {O, for z < a and z > b. (2.1)
The corresponding cumulative distribution function (cdf) is given by
0, for z < a,
PZ<2)=F(:)= {32, fora<z<b (2
1, for z > b.
It holds, that
b b—a)?
E[Z] = “;r and Var(Z) = ¢ 12“) .

In the special case Z ~ U(0,1), we say Z is standard uniform distributed with corre-
sponding density function f(2) = 1j9(2) and P(Z < z) = z.

2.1.2 Normal distribution

The most important distribution in statistics is of course the normal (or Gaussian) dis-
tribution. It is defined as follows:
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Figure 2.2: Density function of the normal distribution for different parameters. The solid
line corresponds to the standard normal distribution

Definition 2.2 (Normal distribution.) We say Z ~ N(u,0?) is normal (or Gaus-
sian) distributed, if u € R, 0 > 0 and the density function of Z is given by

1 z—p)?
f(z) = \/W‘B(%;. (2.3)

The normal cdf follows

/ 1 (t=p)*
P(Z<z)=F(z)= e 202 dt, 2.4
(z<)=Fe) - [ = 2.9
respectively and it holds, that
E[Z] = p and Var(Z) = o (2.5)

The distribution with g = 0 and o = 1 is called the standard normal distribution and one

22
denotes ¢(z) := \/%6_7 for the density and

B(z) = /_ T ot dt (2.6)
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for the cdf of a standard normal distribution.

In addition, the normal distribution is symmetric around p, i.e. P(Z — pu > z) =

3
P(Z — p < —=2). Its skewness, defined as v, := F {(%) }, is equal to 0.

2.1.3 Multivariate normal distribution

The classical approach to model multivariate dependence among variables is to assume
that they are multivariate normal (or Gaussian) distributed. Therefore we introduce this
kind of distribution in the following:

Definition 2.3 (Multivariate normal distribution.) An n-dimensional random vec-
tor Z = (Zy, ..., Z,) is called multivariate (or Gaussian) normal distributed of dimension
n, if there exist = (pi1, ..., b)) € R™ and L € R™™ with rank(L) = m, so that

Z =LX + p, (2.7)
where X = (X1, ..., X;n)' and X; are iid with X; ~ N(0,1).

In this case, we say Z ~ N, (u, ), where ¥ = LL'. If n = m, we say, that Z follows
a non-singular normal distribution. In contrast, Z follows a singular normal distribution
in case of n > m.

The matrix ¥ € R™ "™ denotes the corresponding variance-covariance matriz of Z,
that defines the dependence among the compenents of the random vector. It contains the
entries

Zij = COU(ZZ', Zj), 1 S Z,j S n.
It holds, that

E[Z)=pand Var(Z) =%, (2.8)
and the density function of Z is defined by
) = o (5 w5 ) (29)
— X —— — - 5 .
Gl A 20 !

where z = (21, ..., z,) € R" and |¥| is the determinant of . The corresponding distribu-
tion function will be denoted by Ps..

Further properties are:

(i) The multivariate normal distribution is stable under linear transformations, i.e. if
Z ~N,(1, %), b € R" and C € R it follows that

CZ +b~ N, (Cu +b, 020’) .

(ii) The components of a multivariate normal distribution are normal distributed, i.e. if

Z ~ N,(w,Y), it holds that Z; ~ N (u;, Xy), for i =1,...,n.



CHAPTER 2. PRELIMINARIES - PART I 10

i
A

Figure 2.3: Joint density of a bivariate standard normal distribution with different corre-
lation parameters and their corresponding contour plots. The left panel corresponds to a
standard bivariate normal distribution with correlation p = 0 among both variables, the
middle panel refers to a correlation p = 0.8 and the right panel based on p = —0.25.

(iii) If Z ~ N, (s, %) and X;; = 0, for 4,5 € {1, ...,n} and i # j, it follows that Z; and
Z; are independent. Hence, if ¥ is diagonal then Zi, ..., Z,, are independent.

(iv) The multivariate normal distribution belongs to the class of elliptical distributions.
These will be defined in Section 2.18.

2.1.4 Skew normal distribution

In Chapter 3 we will see that some of the wheather variables are skewed in contrast
to the assumption of the normal distribution. The skewed normal distribution offers an
appropriate extension to fit the data well. Thereby, the normal distribution will be a
special case of it. The following definition and listed properties are based on Azzalini
[1985], Azzalini and Dalla Valle [1996] and Azzalini and Capitanio [1999].

Definition 2.4 (Skew normal distribution.) A random variable Z is said to be skew
normal distributed, if it has the density function

(el (59) - e [P o

where ¢(z) is the density function and ®(z) is the cdf of the standard normal distribution
(cp. (2.6)), respectively. & € R is called location parameter, w > 0 stands for the scale
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Figure 2.4: Density function of the skew normal distribution for different parameters. The

solid line corresponds to the standard normal distribution.

parameter and o € R corresponds to the shape paramter of a skew normal distribution.

Then we say,

Z ~ SN (& w,a).

The corresponding cdf results in

W

P(Zgz)zF(z)zcb(z_f)—QT(Z;f,a),

where T'(h,a) is Owen’s T function®. It is defined as follows

1 a e—%h2(1+x2)
T(h,a) = —/ ————dr, —o00o < h,a < 0.
0

o

Then, mean and variance are given by

2 o}
E[Z] = ¢+ 5\/; here § == ——2
[Z] £+ w —, where Ve
262

Var(Z) = w? (1——).

™

1+ 22

(2.11)

(2.12)

(2.13)

1Tt is named after Donald Bruce Owen, who introduced the formula in 1956. The function T'(h,a)
gives the probability of the event (X > h and 0 <Y < aX), where X and Y are independent standard

normal random variables [Azzalini, 1985, p. 173].
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In case of a skew normal distribution, the special interest is focused on the skewness,
which can be calculated as

n=EF (%) _ 4 ; m (1(§\2/(Z7:)3/2 € (-1,1). (2.14)

It can be shown, that the skewness ~; is driven by the shape parameter «, in a way,
that the absolute value of the skewness ~; increases as the absolute value of « increases.
Moreover, if a > 0, then the distribution is right skewed (positively skewed) and it is left
skewed (negatively skewed) if o < 0.

As mentioned above, if a = 0, it follows that T’ (Zw;g, a) =0 as well as 6 = 0 and the
distribution of Z results in a normal distribution, i.e Z ~ N(&,w?).
Some further properties are:

(i) The density of SN (0, 1,0) is the density of the standard normal distribution N (0, 1).
(i) If Z ~ SN(0,1,a), then —Z ~ SN(0, 1, —a).
(iii) If Z ~ SN(0,1,«), it follows that 1 — P(Z < —2) = P((—Z) < 2).

)
)

(iv) The cdf of Z ~ SN(0,1,1) is P(Z < 2) = (®(2))%
)

(v) The skew normal distribution can be extended to the multivariate case. For further
details we refer to Azzalini and Dalla Valle [1996].

2.1.5 t-distribution

In contrast to the normal distribution, some data may be better described by using a
heavy-tailed distribution such as the (Student’s) t-distribution (e.g. when outliers are
expected). However, it is related to the normal distribution, i.e. it is symmetric and
belongs to the class of elliptical distributions as well. Its definition is given by:

Definition 2.5 (¢-distribution.) A random variable Z follows a t-distribution with v >
0 degrees of freedom, if its density function corresponds to

v+1

ACONIE
)=ttt y) (215)

for all z € R, where I'(z) = fooo t*~le~tdt is the Gamma function. We say

Z ~t,.

It results that

EZ] = Oforv>1, (2.16)
Var(z) = —~ 5 for v>2. (2.17)

vV —
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Figure 2.5: Density function of the ¢-distribution for different degrees of freedom v. The
solid line corresponds to the standard normal distribution.

Note, that F[Z] and Var(Z) do not exist for v < 1 and Var(Z) = oo for 1 < v < 2.
Similiar to the normal distribution, the skewness of the t-distribution is also equal to 0
(for v > 3, otherwise it is undefined).

The t-distribution becomes closer to the normal distribution as v increases. As v — oo,
7 approaches a standard normal distribution. Two further important properties are:

(i) The t-distribution with v degrees of freedom can be defined as the distribution of

the random variable Z with x

V/v
where X is standard normal distributed, V' has a chi-squared distribution with v
degrees of freedom and X and V are independent.

Z = (2.18)

Y

(i) For p € R, (X + p) /%, with X and V defined as in (i), follows a noncentral
t-distribution with noncentrality parameter pu.

2.1.6 Multivariate t-distribution

To make things complete, we briefly introduce the multivariate t-distribution, since it can
also model multivariate dependence with symmetric tail dependence, as we will see in
Section 2.2.3. The definition is based on Demarta and McNeil [2005].
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Definition 2.6 (Multivariate ¢-distribution.) The n-dimensional random vector Z =
(Z1,...., Zn) s said to have a (non-singular) multivariate t-distribution with v > 0 de-
grees of freedom, mean vector p € R™ and positive-definite dispersion or scatter matriz
Y e R™™ denoted Z ~ t,(v, u, %), if its density is given by

A T () R DD CED) - 510
7 r(v/2>\/<m>n|z|( y 7 ) . ew

where z = (21, ..., z,) € R"™ and |Y| is the determinant of ¥.

Note, that the covariance matrix is not equal to X, but Cov(Z) = -*3X and it is only
defined if v > 2. We refer to the standard multivariate t-distribution, if g = 0.

2.1.7 Skew t-distribution

Similar to the skew normal distribution, since some wheather variables have correspond-
ing characteristics, we are interested in a distribution that is related to the t-distribution
but provide some skwewness in its density. The skew t-distribution offers this. Azzalini
and Capitanio [2003] focused on this special case of skew elliptical densities.

If one wants to introduce an asymmetric variant of the t-distribution, the intuitive
way is to replace the normal variate in (2.18) by a skew normal one. Hence, we denote a
random variable Z to be skew t-distributed, if

X

Z=¢+4 N (2.20)

where X ~ SN(0,w, «), i.e. X is skew normal distributed, thus has density (2.10) with
& = 0. V has a chi-squared distribution with v > 0 degrees of freedom and X and V are
independent. This yields to the following definition:

Definition 2.7 (Skew t¢-distribution.) A random variable Z follows a skew t-distribution
with v > 0 degrees of freedom, if it has the following density

F(2) = 24,(=)Tors a<z‘5)< vl )é , (221)

AN

where t,, is the density function of t-distribution with v degrees of freedom (cp. (2.15)) and
T, 11 corresponds to the cdf of a t-distribution with v + 1 degrees of freedom. Similar to
the skew normal distribution, & € R denotes the location and w > 0 the scale parameter.
Shape parameter a € R drives the skewness. Then, we say

Z ~ skewt(&, w, a, v). (2.22)
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Figure 2.6: Density function of the skew ¢-distribution for different parameters. The solid
line corresponds to a skew normal distribution with location parameter & = 0, scale
parameter w = 1 and shape parameter a = 1.

It can be shown, that the corresponding distribution function is given by
P(Z < 2) = F(z) = By [Fx(zyD)|V = v2),

where X and V are the random variables from (2.20) and Fx(z) denotes the corresponding
cdf of the skew normal distribution of X.

Mean and variance are obtained by

L (3(v—1)

E[Z] = &+ wé(v/m)Y? : , for v > 1, (2.23)
F(§V)
Var(Z) = w?*—~2 5 — (B2 for v >2, (2.24)
V J—
where § := \/ﬁ7
After some algebra, the index of skewness turns out to be
v(3—14%)  3v ) v 177
- — 2 — - f 2.2
NER| T e T T | H , for v > 3, (2.25)
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Figure 2.7: Density function of the beta distribution for different parameters.

The properties of the skew t-distribution are quite similar to the ones of the skew
normal distribution, i.e. the skewness (2.25) is driven by shape parameter a. Hence, the
absolute value of v; increases as the absolute value of « increases. If a > 0, then the
distribution is right skewed (positively skewed) and it is left skewed (negatively skewed)
if a < 0. Further, if a = 0, then Z follows a t-distribution with v degrees of freedom, i.e.
Z ~ t,. Additionally, on can easily see in (2.21), that if v — oo, Z turns out to be skew
normal distributed with the corresponding parameters.

Note, however, there are many ways to develop and define a skew ¢-distribution, so there
exists no unique one. But Azzalini and Capitanio [2003] clarify that all ways lead to
Equation (2.21) to be the density of a skew t-distribution.

2.1.8 Beta distribution

The beta distribution is a generalization of the uniform distribution, describing continuous
random numbers with values in [0, 1]. Therefore it is suited to model the distribution of
a variable of, e.g., daily relative humidity, since humidity is measured between 0% and

100% (i.e. one examines M™%y instead).
100%

Definition 2.8 (Beta distribution.) A random number Z is called to be beta distributed
with parameters a,b > 0, if it has the density

f(z) = Bl 21— z)bfll[o,l](z), (2.26)
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where B(a,b) := fol tr (1 =) tadt = % is the beta-function. We say

Z ~ Beta(a,b).

Mean and variance are given by

a ab
E[Z] = @) and Var(Z) = (ETEDICET (2.27)

Note, for the special case a = b = 1, one gets the uniform distribution on [0, 1]. One
further remark: If random numbers X,Y are independent and X ~ Gamma(a,b) re-
spectively Y ~ Gamma(a,c), then XLJFY ~ Beta(b,c). The gamma distribution will be
presented in the next subsection.

However we will use a different parameterization according to Ferrari and Cribari-Neto
[2004], i.e. u:=a/(a+b) and ¢ := a + b and so (2.26) changes to

I'(¢)
(u)T((1 = p)9)

with 0 < ¢ < 1 and ¢ > 0, where ¢ is known as the precision parameter since, for fixed
i, the larger ¢ the smaller the variance of Z; ¢! is called the dispersion parameter. It
holds that E[Z] = p and Var(Z) = p(1 — p)/(1 + ¢).

fzm,0) = T PN — ) el g < 2 < 1 (2.28)

2.1.9 Gamma distribution

The gamma distribution describes continuous and positive random variables, like, e.g. the
daily amount of rainfall when it rains. Therefore we introduce and define this kind of
distribution as follows:

Definition 2.9 (Gamma distribution.) A random variable Z is said to be gamma dis-
tributed with parameters a, A > 0, if it has the following density function

f(2) = Lioeo(2) F)(\:L) 207 te N, (2.29)

If Z is gamma distributed, we write

Z ~ Gamma(a, \).

It holds, that ¢Z ~ Gammal(a, %) Therefore one defines A\~! as scale parameter, while a
determines the form of the distribution. It follows, that

E[Z] = % and Var(Z) = % (2.30)

Three further interesting properties are:
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Figure 2.8: Density function of the gamma distribution for different parameters.

(i) The sum of independent Z; ~ Gamma(a;, \) distributed variables is again gamma

distributed, i.e.
Z Z; ~ Gamma (Z a;, )\> )
i=1

i=1
(i) If Z ~ x2, then Z ~ Gamma(%, 3).

(iii) For Z ~ Gamma(1,)\), one gets an exponential distributed random variable Z with
parameter A.

As for the beta distribution, we will use a alternative representation of density (2.29)
to model the positive daily rain amount according to Stern and Coe [1984]. It is called
mean parametrization and given by

f(z) = ﬁ <g)nz“ exp (—gz) , (2.31)

where x := a and p := $. One can easily verify, that

E[Z) = pand Var(Z) = N—Z (2.32)

K
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Figure 2.9: Probability mass function of the binomial distribution for different parameters.

2.1.10 Binomial distribution

As last step in this section we introduce the discrete binomial distribution. It is the
distribution of the number of successes in a sequence of n independent yes/no experiments,
each with success probability p.

Definition 2.10 We say Z ~ Bin(n,p) is binomial distributed, if p € (0,1) and for
every k € {0,...,n} holds, that

F(k) = P(Z = k) = (”)pm e (2.33)

For n = 1, we get a success/failure experiment, i.e. a random number, that only assumes
the values 0 or 1. It is called Bernoulli distribution. Every binomial distributed random
variable equals the sum of n Bernoulli random numbers.

The cdf of the binomial distribution for £ € N is given by

Mean and variance follow as

E[Z]) =np and Var(Z) = np(1 — p). (2.34)

2.2 Copulas

What are Copulas? Nelsen [2006] answers in his book ”[...]copulas are functions that join
or "couple” multivariate distribution functions to their one-dimensional marginal dis-
tribution functions. Alternatively, copulas are multivariate distribution functions whose
one-dimensional margins are uniform on the interval (0,1)” [Nelsen, 2006, p. 1]. This prop-
erty is an advantage over classical approaches like e.g. multivariate normal distributions,
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since copulas allow modeling multivariate dependence among random vectors seperatly of
their margins. So the variables do not have to be characterized by the same parametric
family of univariate distributions anymore [Genest and Favre, 2007, p. 347]. In this con-
nection the most important theorem was introduced by Abe Sklar [1959] that describes
the above mentioned properties and explains the name ”copula”.

We will now formally present the basic concepts and their properties, following mainly
Nelsen [2006] and Brechmann [2010]%. For illustration, we will start with the bivariate
case and generalize afterwards.

2

Definition 2.11 (Bivariate Copula.) A bivariate copula is a function C' : [0,1]* —

[0, 1] having the following proporties:

1. For every uy,us in [0, 1]
C(Ul, 0) =0= C(O, Ug)

and
C(u1,1) = uy and C(1,uz) = ug

2. For every uyi, ug1, Ui, gz € [0,1] such that uy < ugr and urp < g,

C(U217U22) - O(u217 Ulz) - C(Uu,um) + C’(Un, Ulz) >0

A simple example for a copula is the bivariate independence copula IT?(uy, us) = uius.
One can easily verify, that the properties of Definition 2.11 are fulfilled.

The definition of a copula can be generalized to the multivariate case. While the first
property of Definition 2.11 can directly be transferred to the n-dimensional case, one
needs more work for the second property (in detail see [Nelsen, 2006, p. 45]).

Definition 2.12 (Copula.) A n-dimensional copula is a function C' : [0,1]" — [0,1]
with the following proporties:

1. For every uw= (uy, ...,u,) in [0,1]",
C(u) = 0 if at least one coordinate of u is 0,

and if all coordinates of w are 1 except u;, then

C(l, ceey ].,UZ‘, ]., ceey 1) = Uy;.

2. C'is n-increasing.

%You can find further information e.g. in Joe [1997] and Genest and Favre [2007]
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For the next theorem we need two of the following functions, for u = (uy, ...,u,) € [0, 1]™

M™(u) = min(uy,us, ..., uy); (2.35)
I"(w) = wjug-- - uy; (2.36)
W™u) = maxr(u +us+ ... +u, —n+1,0). (2.37)

It can be shown, that M™ and II" are n-dimensional copulas for all n > 2, whereas
W™ fails to be an n-dimensional copula for any n > 2 (i.e. W™ is a copula only for n = 2)
[Nelsen, 2006, p. 47].

With these results, one gets an important property of copulas, stated in the following
theorem:

Theorem 2.13 (Fréchet-Hoeffding bounds.) Let C be a n-dimensional copula. Then
for every u € [0, 1],
W (u) < C(u) < M"(u). (2.38)

You can regard a copula as an n-dimensional distribution function with uniform mar-
gins, i.e. C'(uy,...,u,) = P(U; < uy,...,U, < u,) for uniform random variables Uy, ..., U,.
Often you are also interested in the joint survival function

C(ury ooy tin) = P(Uy > ug, ..., Uy > uy).

For the bivariate case, n = 2, one gets

C(ul,u2) = P(U1 > Uy, Uy > UQ) =1—u —us+ C(Ul,UQ) (239)

As mentioned above, the most important theorem in this connection is the theorem
of Sklar [1959]. It shows the role of a copula that ”couples” a joint distribution function
to its univariate margins and therefore describes multivariate dependence. Here we only
present it for the continuous case, since it is just relevant for our work.?

Theorem 2.14 (Sklar.) Let F' be a n-dimensional distribution function with continuous
margins F, ..., F,. Then there exists a unique copula C' such that for all € = (xy, ..., xn)/
€ (RU{—o00,00})",

F(x) = C(Fi(x1), ..., Fy(x,)). (2.40)
Conversely, if C is a copula and FY, ..., F,, are distribution functions, then the function F

defined by (2.40) is a joint distribution function with margins Fy, ..., F,.

Soif X; ~ F;, i = 1,....,n, where F1, ..., F,, are continuous and invertible, and X =
(X1,...,X,) ~ F, then Sklar’s Theorem 2.14 states that there exists a unique copula such

that (2.40) is fulfilled. Thus, C' describes the dependence between X7, ..., X,,.
Furthermore one easily gets the appropriate copula, according to (2.40), by

C(u) = F(Fy Y (w), ..., F, Y (uy)). (2.41)

3A proof can be found, e.g., in [Nelsen, 2006, pp. 46-47].
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This method is called inversion method. The Gaussian and t copulas are examples of
copula families, which are constructed like this (see (2.44) and (2.46)). Further methods
are presented in [Nelsen, 2006, pp. 51].

Besides the joint distribution function, simultaneously one is also interested in calcu-
lating the joint density function resp. the copula density ¢ . It can be derived by partially
differentiating and applying the chain rule as [Brechmann, 2010, p. 18]

T e e S ) i) (24D

O"C(Fi(x1), ..., Fn(zy)) f(x)
& c(Fi(Te), ..., Fu(xy)) = = ,
where fi,..., f, and f are the corresponding density functions to Fi, ..., F;, and F.
In case of the n-dimensional independence copula II"(w) = ujuy - - - u, from (2.36),

we get

TUE@), o Ealn)) = e S o) OF(er)0F(m)
D F) = fulan) - falea). (2.43)

Equation (2.43) represents the well-known density if random variables Xj, ..., X,, are in-
dependent.
This yields to the following result.

Theorem 2.15 Forn > 2, let X1, ..., X,, be continuous random variables. Then

X4, ..., X, are independent, iff the n-dimensional Copula C' of X1, ..., X,, is II".

Furthermore, perfect negative (for n = 2) and positive dependence can be detected by
the Fréchet-Hoeffding bounds.

Theorem 2.16 Forn > 2, let X4, ..., X,, be continuous random variables with copula C'.
Then

1. each of the random variables X1, ..., X,, is almost surely a strictly increasing function
of any of the others iff C = M™, and

2. X, and X, are almost surely strictly decreasing functions of each other iff C = W?2.

In addition, another important property of copulas is given by the following theorem:

Theorem 2.17 Let X, ..., X,, be continuous random variables with copula C'. Then C' is
wmvariant under strictly increasing transformations of X, ..., X,.

Since we will meet a lot of them during the later analysis, we want to introduce two
important classes of copulas known as elliptical and Archimedean copulas in the following.
These copulas find a wide range of applications, since they can easily be constructed and
have many nice properties, such as symmetry and associativity, within these classes. In
addition, in case of Archimedean copulas, the great variety of families of copulas which
belong to this class, shows their importance [Nelsen, 2006, p. 109].
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2.2.1 Elliptical copulas

Elliptical copulas are generated by elliptical distributions using the inversion method,
stated in (2.41), see Hult and Lindskog [2002] or Owen and Rabinovitch [1983]. Therefore
we need the following definition:

Definition 2.18 (Elliptical distribution.) Let p be a fized n-component vector, i.e.
p € R" and ¥ a (n X n)-positive definite symmetric matriz, i.e. ¥ € R™™™. Then, a
n-dimensional random vector X = (X, ...,Xn)/ 18 said to be elliptical distributed, if the
density function of X, fx(x), has the following representation

fx(@) = e 277 (2= w7 (@ — )
with normalizing constant ¢, € R and some function & which is independent of n.
We have two famous examples for elliptical distributions:

1. The multivariate normal distribution is elliptical with ¢, = (27)~™/?
and ¢(k) = exp(—3k) Vk > 0.

2. The multivariate t-distribution with ¢, = (wn) /2T (42) /T (%)
and ¢(k) = (1 + %)_(Wm)/z, Vk > 0, and v > 0 are the degrees of freedom.

Using the inversion method from (2.41), based on Sklar’s Theorem 2.14, we can con-
struct the correspoding copulas in both cases, i.e.

1. The multivariate Gaussian copula with w = (uy, ..., u,)'":

Coaus,x () = P (D7 (1), ..., 2 (uy)) (2.44)

1 L2 () >~ (un) 1,
:W|K|_2/oo /Oo exp(—gwl{_lm) duy - - - duy,,

where ®~! denotes the inverse of the standard normal cumulative distribution func-
tion (cdf) @, ®x the multivariate standard normal cdf with symmetric positive
defnite correlation matrix K € [~1,1]"*" and & = (®~(uy), ..., 8" (u,)) € R".

Accordingly, the multivariate Gaussian copula density:

1 exp (—iz'K'z)

(2m)n/2,/|K| _1 1 _
CGaus, i (W) = T 3 = |K| 2 exp <—m (I, — K 1):1:) :
[T 5= exp (—377) 2
(2.45)
2. The multivariate t copula, with w = (u,...,u,) is given by (see Demarta and
McNeil [2005] or Kurowicka and Joe [2010]):
Crox(u) =t (6, (1), ...t (u)) (2.46)

t 1t (u1) t L (un) vin " y—1 32
:/ / L () <1+“<_“‘) duy - - du,
e T (%) /() |K] v
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where ¢! is the inverse of the cdf of the univariate standard t distribution with
v > 0 degrees of freedom, t, the corresponding cdf of the multivariate standard t
distribution with correlation matrix K € [—1,1]"*" and degrees of freedom v and
x = (t; (uy),....t; (u,)) € R™

The t copula density is then given by:

v+1
2

5)
+1

2

(2.47)

v+n

<1+ w/Kflcc) 2

1 T (%) ( F,(,

I(

i (1 )
)

where K € [0,1]" is the correlation matrix of the joint density of the standard t
distribution and v the degrees of freedom.

2.2.2 Archimedean copulas

To explain Archimedean copulas, one needs the following definition beforehand [Nelsen,
2006, p. 151-152]:

Definition 2.19 (Completely monotonicity.) A function g(t) is completely mono-
tonic on an interval J if it is continuous there and has derivatives of all orders that
alternate in sign, i.e, if it satisfies

—1’“d—k >0
(—1) dtkg( ) >0,

for all t in the interior of J and k =0,1,2, ...
And the following theorem explains Archimedean copulas:

Theorem 2.20 (Archimedean copula.) Let ¢ : [0,1] — [0, 00] be a continuous strictly
decreasing function, such that ©(0) = oo and p(1) =0, and let ¢~ denote the inverse of
. If C :[0,1]" — [0, 1] is given by

Clu) = ¢! (o(ur) + p(uz) + ... + o(un))

wherew = (uy, ..., u,) € [0,1]", then C is a n-dimensional copula, so called n-dimensional
Archimedean copula with generator @, for all n > 2 iff =1 is completely monotonic on
0, 00).

In the bivariate case, the assumptions of complete monotonicity and ¢(0) = co are not
necessary. Here, it is sufficient to assume ¢(0) < oo and the pseudo-inverse ol of
a convex generator function ¢ is considered instead of ¢! [Nelsen, 2006, p. 110]. The
pseudo-inverse ¢l~U of a continuous, strictly decreasing function ¢ : [0,1] + [0, 00] is

defined by:
-1
_ e (1), 0<t<
SO[ 1}(75) = { " <

©(0),
0, p(0) <t <

t < oo.
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So if ¢(0) = oo, then it follows that p[=!) = = and ¢ is called strict .

For example, W?(uy, up) = max(u; + ug — 1,0), from (2.37), is an Archimedean cop-
ula with p(t) = 1 —¢, for t € [0,1]. TT%(uy,ug) = ujuy with p(t) = —log(t) is strictly
Archimedean, but M?(uy,uy) = min(uy, us) from (2.35) is not an Archimedean copula.

Since most commonly used generators depend only on one or at most two parameters
(see the following section), modeling dependency of n-dimensional random vectors through
Archimedean copulas is quite restrictive. Elliptical copulas have correlation parameters for
each pair of variables, therefore one concentrates more on elliptical copulas for dimensions
n > 2, while Archimedean copulas are rather used in the bivariate case.

2.2.3 Bivariate copula families

Bivariate copulas, also called pair-copulas, constitute the building blocks of the joint vine
distribution that we will use for our model later. So we here introduce several bivari-
ate copula families, belonging to elliptical and Archimedean copulas, which we will meet
again throughout the thesis. Extended descriptions as well as further copula families can
be found, e.g., in Nelsen [2006] or Joe [1997]. We start with the most familiar bivariate
copula families, such as Gaussian-, t-, Clayton-, Gumbel-, Frank- and Joe- Copulas, then
describe the rotated counterparts and give an example of two-parameters Archimedean
copulas in the end. The corresponding scatter and contour plots for standard normal
margins can be found in Appendix A. In addition, the connection of these families to
dependence measures like Kendall’s 7 or tail dependence parameters will be shown in the
next section.

We summarize the properties of the different bivariate copula families in tables to
make it comparable. Notice that the Gaussian- and the t-copulas differ from the rest in
such a way that they are elliptical copulas which are also reflection symmetric, i.e. if
(Uy, Us) follows one of the two copulas, then (1 — Uy, 1 — Us) is distributed as the same
copula. In contrast, the other described families are all Archimedean copulas which are
non-symmetric with respect to reflection, except Frank copulas which are also reflection
symmetric. But all copulas studied here, except the family of t-copulas, since they depend
also on the degrees of freedom v, depend only on one parameter (in the bivariate case).
An example of a two-parameters Archimedean copula is given afterwards. Furthermore
we are interested in which parameter values lead the corresponding copula to be equal
to the Fréchet-Hoeffding bounds M? (2.35) and W2 (2.37) as well as to be equal to the
bivariate independent copula IT? from (2.36).

Note, in case of Gaussian and t-copulas, ®y represents the bivariate standard normal
distribution and ¢y, the bivariate standard t-distribution with v > 0 degrees of freedom,
each with the corresponding correlation parameter § € (—1,1). Furthermore it holds
x; = & Hu;) and x; =t (u;) respectively, for i = 1,2, where ® is the univariate standard
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normal distribution and ¢, the univariate standard t-distribution with v > 0 degrees of

freedom.

| Copula | Co(uy,uz) | Generator ¢(t) | Parameter |
Gaussian g (D1 (uy), @ (uy)) / 6e(—1,1)
t to (t, " (u1), 6, (u2)) / e (-1,1),v>0
Clayton (uy? +uy? —1)"17° st —1) 6>0
Gumbel exp [— ((—logu1)? + (—log us)?)? (—logt)? 0>1
Frank —Zlog |1+ (70 ;Z,(ieuz_l) —log ee:e;__ll 6 € R\{0}
Joe 1 [(1—w)? + (1 —u)? — (1—u)’(1—uz)?]? | —log [1— (1—1)°] 0> 1

Table 2.1: Part I: Properties of the most familiar bivariate copula families.

| Copula | Co=W? | Cy= | Cy=M* | Further properties

Gaussian | for § — —1 for 6 =0 for  — 1 elliptical & symmetric

t for§ - —1 |forf =0and | for 6 — 1 elliptical & symmetric

v — 00

Clayton / for 8 -0 | for § — oo | Archimedean & non-symmetric
Gumbel / for 6 =1 for & — oo | Archimedean & non-symmetric
Frank for 6 — —o0 for 0 — 0 for 0 — Archimedean & symmetric
Joe / for  — 1 for # — oo | Archimedean & non-symmetric

Table 2.2: Part II: Properties of the most familiar bivariate copula families.

’ Copula H co(uy, us) ‘
. 1 0% (x2+22))—20x >
Gaussian | —= exp <— S ! 2>
(V+2)/F(Z) w2 +a2—20x1 10
t vrdt, (x1)dt, (x )2\/ 02 (1 + = V(21 02) 1)
Clayton | (1 +6)(uyug)™" "7 x (uy? +uy? —1)7972
I

Gumbel C‘)iu;’“” (log uy-log uz)” — X [((— logup)? + (—logug)?)? + 6 — 1}

" ((logur)?+(—logus)?)” ¥

-0 _ efurtug)
Frank (e 1) P

T
Joe [(1—ur)? + (1= ug)? — (1 —wy)?(1 — up)?]? 7 (1 — uy)? (1 — p)~!
X [0 =1+ (1—u)’ 4+ (1 —u)? — (1—uy)?(1 - )]

Table 2.3: Part III: Properties of the most familiar bivariate copula families.
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Rotated copulas

Instead of considering the distribution of (Uy, Us) € [0, 1]? one can also consider the cop-
ulas of (Uy,1 —Us), or (1 — Uy, 1 —U,), or (1 — Uy, Us,), which are known as the rotated
versions of the copula of (U, Us). Their densities are their original densities rotated by
90, 180 and 270 degrees respectively and thus the idea only makes sense for reflection-
asymmetric copulas, i.e. for Clayton, Gumbel and Joe copulas.

According to Lemma 2.4.4 from Nelsen [2006], one gets the following copulas and
densities for the three cases:

90°:

180°:

270°:

(U, Us) € [0,1]? follows a rotated copula by 90 degrees with parameter 6 iff (1 —
Uy, Us) is distributed as one of the above mentioned copulas with parameter —6,

CSOO (u1,u2) = ug — Cr_py(1 — uy, ug),
where C' is one of the Clayton, Gumbel or Joe copulas. Its density is given by
3% (uy, ug) = c—gy(1 — uy, uz),
where c is the corresponding density of C'.

(Uy,Uy) € [0,1]? follows a rotated copula by 180 degrees with parameter 6 iff (1 —
Ui, 1 — Uy) is distributed as one of the above mentioned copulas with parameter 6.
A rotated copula by 180 degrees is also called survival copula.

3% (ug, un) = uy +uy — 1+ Co(1 — uy, 1 — uy),

where C' is one of the Clayton, Gumbel or Joe copulas. Its density is given by

cégoo(ul, ug) = co(1 —ug, 1 — usg),

where c is the corresponding density of C'.

(U, Us) € [0, 1] follows a rotated copula by 270 degrees with parameter 6 iff (Uy, 1—
Us) is distributed as one of the above mentioned copulas with parameter —6,

Cy™ (ur, u2) = ug — Ciegy(ur, 1 — ua),

where C' is one of the Clayton, Gumbel or Joe copulas. Its density is given by

g™ (ur, ug) = c(_gy(ur, 1 — us),

where c is the corresponding density of C'.
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Two-parametric Archimedean copula

At last we give an example for a two-parametric Archimedean copula, called Clayton-
Gumbel copula/BB1 (cp. Joe [1997]). It is a generalization of the one-parametric Clayton
and Gumbel families. It has the generator (t) = (t= — 1)° and so

Cfs S unu) = |1+ [ = 1) + (uy” = 1)) ] o

where § > 0 and 6 > 1. It obtains the independence copula II? for § — 0 and § = 1 as
well as W2 for § — oo and § — oo. In addition, it becomes a Clayton copula for § = 1
and a Gumbel copula if  — 0.

Further properties and further two-parametric Archimedean copulas, such as the Joe-
Clayton copula, can be found in the above mentioned references and in Schepsmeier
[2010].

2.2.4 Pair copula constructions of general multivariate distribu-
tions

Multivariate copulas are often limited in modeling the range of various dependence struc-
tures. The Gaussian copula can model the whole correlation structure but does not allow
for tail dependence. In contrast, the t-copula allows for tail dependence, but it cannot
model asymmetric tail dependence, i.e. when upper and lower tail dependence are not the
same. Therefore one uses Archimedean copulas, which are stated above. Nevertheless, el-
liptical and Archimedean copulas do not allow for different dependency patterns between
pairs of variables (Czado [2012] and Kurowicka and Joe [2010]). Pair copula constructions
as building blocks for our later model can overcome these shortcomings. Based on Aas
et al. [2009], pair copula constructions are described as a simple and flexible way to specify
multivariate dependence.
We start with a 3-dimensional example for illustration and generalize afterwards.

Example 1 (Pair copula construction in 3 dimensions.) Let X = (X, X5, X3) a
3-dimensional random vector with joint density function f univariate densities fy, fo and
f3. F1, F5 and F3 denote the corresponding marginal distribution functions. According to
the definition of conditional densities [Czado and Schmidt, 2011, pp. 20-21], we get

f(@1, 22, 23) = fa(w3) f(w2|2s) f(21|20w3). (2.48)
Sklar’s Theorem 2.14 and Equation (2.42) indicate
f(l'b 9027553) = C123 (F1(ZC1), Fz(iCQ), FB(SU:S)) f1($1)f2(9€2)f3(333), (2-49>

where c1o3 s the density of a three-dimensional copula. In the bivariate case, it follows
that

f(x2,13) = caz (Fa(72), F3(x3)) fa(z2) f3(73)

for a bivariate copula density coz. Thus, using again the definition of conditional densities,

f(x% I3)

fwalas) = f3(x3)

= Co3 (Fy(x2), F3(x3)) fo(xa). (2.50)
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Similarly, one can decompose

f(xs|zs)

where c3p2 s an appropriate pair copula for F(x1|x2) and F(xs|xs). Decompose f(x1|x2)
as in (2.50) and one gets

f(@1]z2, 13) = crgpp (F(21]22), F(23|2)) 1o (Fi (1), Fa(wa)) fi(21).
Combining all into Equation (2.48):
(1, m9,23) = cig (Fi(w1), Fa(xa)) cos (Fa(2), F3(w3)) caga (F(21]72), F(23|22))
x f1(x1) f2(2) f3(3).

If we look at Equation (2.49), one can see that the trivariate copula density is constructed
by bivariate copulas as building blocks:

C123 (F1($1), F2(952), F3($3)) = (12 (Fl(iUl), F2(9€2)) Ca23 (Fz(iUz), F3(953))
Xcigp2 (F(21|22), F(23]22)) -

f(x1]2a, 73) = = cuzp (F(21]72), F(x3|22)) f(21|22), (2.51)

Pair copulas are well studied, understood and applied (see Kurowicka and Joe [2010] and
Section 2.2.3). Note that since in Equation (2.48) the variables can be permuted in 3! = 6
ways, this decomposition is not unique.

In addition, we assume that the pair copula c3)2 in Equation (2.51) is independent of
the conditioning variable X, i.e.,

cizp2 (F(@1|z2), F(x3]22); ©2) = cra3 (F(x1|22), F(23]72)) -

According to Aas et al. [2009], this assumption is necessary in order to facilitate statistical
inference. Hobaek Haff et al. [2010] call this the simplified pair copula construction and
show that it typically is a good approximiation to the correct decomposition.

Now we want to decompose a n-dimensional random vector X = (X, Xs, ...,Xn)' with
joint density (using again the definition of conditional densities):

f(@®) = fulzn) f(@nlzn) f(@n-a|Tn_1,20) - f(T1|Ts 0y Tio1, ). (2.52)

Like in Example 1, we can decompose each term in (2.52) into marginal densities and
appropriate bivariate copulas using the general formula

falv) = copso; (F(zlv), F(vjlv-;)) f(alvy),

where v is an m-dimensional vector, v; an arbitrary component of v and v_; denotes the
(m — 1)-dimensional vector v without v;.
Hint: The above stated pair copulas are applied to marginal conditional distributions
of the form F(z|v). These can be obtained for every j (Joe [1996]) by
. any'Uj"Ufj (F(ZE|’U_J'),F(’U]'|'U_]'))

F(z]v) = o) , (2.53)
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where Cy ., |,_; is the bivariate copula distribution function. For the special case, where v
is univariate, we have
oC,., (F F
F(l’|'U) — x,v ( (x)ﬂ (/U)) )
OF (v)

Now we have seen how a multivariate density can be decomposed into the product of
pair copulas and marginal densities. But this decomposition is not unique and therefore
for high-dimensional distributions, there is a significant number of possible pair copulas
constructions. Aas et al. [2009] show for example that there are 240 different constructions
for a five-dimensional density. For that reason to help organising them, Bedford and Cooke
[2001, 2002] have introduced a graphical model denoted as the regular vine. We will take
care of it in detail later. Beforehand, we introduce the dependence measures Kendall’s 7
and tail dependence and their connections to our presented bivariate copula families.

2.3 Dependence measures

In the previous section we have seen the pair copula construction to model multivariate
dependence. Thus, modeling the dependence between two random variables becomes an
important feature to explain dependence among large numbers of variables.

2.3.1 Pearson’s product moment correlation

The Pearson’s product moment correlation is very popular to measure bivariate depen-
dence because it is often straightforward to calculate. It is defined as follows:

Definition 2.21 (Pearson’s product moment correlation.) The product moment cor-
relation of random variables X and Y with finite expectations E[X], E]Y] and finite vari-
ances 1s

E[XY] - EX]E[Y] _ Cou(X.Y)
VVar(X)\/Var(Y)  /Var(X)\/Var(Y

corr(X,Y) = (2.54)

If we have given N pairs of samples (z;,v;),7 = 1, ..., N, from the random vector (X,Y),
then we calculate the corresponding sample or empirical product moment correlation as
follows:

corr(X,Y) val(x 2y =) (2.55)
\/Zz (2 — ) \/Zz 1

- 1 N =
where T = N Zi:l x; and § = N Zi:l Yi-

Neverthesless, for uncertainty analysis it has several disadvantages [Kurowicka and
Cooke, 2006, p. 28].

1. The product moment correlation is not defined if the expectations and variances of
X and Y are not finite (e.g. for the Cauchy distribution).
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2. corr is only a measure of linear dependence and not invariant under non-linear
strictly increasing transformations.

3. The value of corr depends on marginal distributions.

The association measures Kendall’s 7 and Spearman’s p can overcome these issues.

2.3.2 Kendall’s 7

Kendall’s 7 belongs to the so-called ”association measures” to model any type of depen-
dence between two random variables. In contrast, the term ”correlation coefficient” is
reserved for a measure of the linear dependence (e.g. the Pearson’s product moment cor-
relation of Definition 2.21). Proofs of the following theorems can be found in Nelsen [2006].

Before we can define Kendall’s 7, we have to introduce the definition of concordance.

Definition 2.22 (Concordance.) Two pairs of observations (x;,y;) and (x;,y;) from
the continuous random vector (X,Y) are called concordant, if

x; < xj and y; <vyj, orif x; > x; and y; > y;, respectively if (x; — x;)(y; —y;) > 0.
Similarly, the pairs are discordant if

(i — ;) (i — ;) <0
The case (x; — z;)(y; — y;) = 0 cannot occur, when X and Y are continuous.

The idea of associated measures is to investigate, whether ”large” values of one variable
are "associated” with "large” values of the other and similarly for ”small” values.

Kendall’s 7 is now defined as probability of concordance minus the probability of
discordance of two random variables X and Y:

Definition 2.23 (Kendall’s 7.) Let X andY two random variables and (X1,Y1), (X2, Ys)
two independent and identically distributed copies of (X,Y), then Kendall’s T is defined
as follows:

T(X,Y) = P (X1 — X5)(Y1 —Y3) > 0) = P((X1 — X3)(Y1 — Y2) <0) (2.56)

The sample or empirical version of Kendall’s 7 is calculated in the following way:
Let {(x1,v1), (z2,¥2), ..., (xn,yn)} denote a random sample of N observations from the
continuous random vector (X,Y’). There are (1;[ ) distinct pairs of (z;, ;) and (z;,y;) of
observations in the sample. Each pair is either concordant oder discordant, so let ¢ denote
the number of concordant pairs and d the number of discordant pairs. Then the sample
or empirical Kendall’s 7 is defined as

c—d c—d

HXY) == o
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Equivalently, 7 is the probability of concordance minus the probability of discordance for
a pair of observations (z;,v;) and (z;,y;) that is chosen randomly from the sample.

An important relationship between Kendall’s 7 and copulas is stated in the following
theorem.

Theorem 2.24 Let X, and X5 be continuous random variables with copula C. Then

T(Xl,XQ) = 4/ C’(ul,ug) dC<U1,U2) —1

[0,1)2

In case of Archimedean copulas, one gets the expression of Kendall’s 7 in terms of the
generator o:

1
(X1, Xs) = 1 +4/ o) g
0

2.3.3 Spearman’s p

The population version of Spearman’s p, as further measure of association, is also defined
in terms of concordance.

Definition 2.25 (Spearman’s p.) Let (X1,Y1), (X2,Y2) and (X3,Y3) be independent
and identically distributed copies of the continuous random vector (X,Y). Then Spear-
man’s p 1s defined as

p(X,Y) =3[P (X1 — X5)(Y1 = Y3) > 0) = P (X1 — X,)(Y1 — ¥3) <0)] (2.57)

So Spearman’s p is defined to be proportional to the probability of concordance minus
the probability of discordance of the two vectors (X7, Y7), (Xs, Y3). The copula of (X;,Y7)
is C, but since (X,,Y3) are independent, their copula is IT>. The empirical version of
Spearman’s p is defined as the correlation of the pairs of ranks and can be found, e.g., in
Nelsen [2006]. Corresponding to Theorem 2.24, we have

Theorem 2.26 Let X| and X5 be continuous random variables with copula C. Then

p(X1, Xo) = 12/

(0,1]2

C(Ul, Ug) duldug —-3= 12/ U1U dC(Ul, UQ) -3

[0,1]2

It can be shown that 7(X,Y), p(X,Y) = 1 if Y is almost surely an increasing function
of X. Accordingly, 7(X,Y), p(X,Y) = —1if Y is almost surely an decreasing function of
X. Further, since Kendall’s 7 and Spearman’s p can be expressed in terms of copulas of two
random variables, both measures are invariant under strictly increasing transformations
(follows from Theorem 2.17) and independent of the marginal distributions of X and Y.
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2.3.4 Tail dependence

While the above introduced measures describe the dependency between two random vari-
ables on the whole space [0, 1]?, tail dependence measures the dependence between the
variables in the upper-right quadrant and in the lower-left quadrant of [0, 1]?. Hence,

Definition 2.27 (Tail dependence.) Let X; and Xy random variables with correspond-
ing marginal distribution functions Fy, Fy. The lower tail dependence parameter N°V¢" of
X1 and X5 is given by:

Mower — Jim P(X, < Fy U)X < FUH(t)). (2.58)

t—04

The upper tail dependence parameter \"PP" is defined as:

NPPET — Tim P(X, > Fy HH)| Xy > Fy (1), (2.59)

=1
if the limits exist.
The connection to copulas is stated in the following theorem:

Theorem 2.28 Let Xy and X5 be continuous random variables with copula C'. If the
limits (2.58) and (2.59) exist, then

C(t,t
yover — g D), (2.60)
t—04 t
and c c
t,t 1-2t t,t
AUPPET = Tim (t.0) = lim + Ot >, (2.61)
t=1- 1 —¢  t=1- 1—t

where C' is the joint survival function from (2.39).

For example, the lower tail dependence parameter for the idependent copula II? is
given by

T1%(t, t 2
Abower — im (t, >: lim — = lim ¢t = 0.
t—04 t t—04 t t—04

The upper Fréchet-Hoeffding bound M?, from (2.37), shows perfect lower tail dependence:

2
g T L) B L I T
t—04 t t—04+ ¢ t—04
The tail dependence parameters of the bivariate copula families discussed in Section
2.2.3, except the rotated ones, can be found in the literature, e.g. in Nelsen [2006] or in
Demarta and McNeil [2005]. The tail dependence parameters for the rotated copulas can
be found in parts in Brechmann [2010].

Copula parameters can be expressed in terms of Kendall’s 7 and/or tail dependence
parameters. This is shown in the following Table 2.4 for the most familiar bivariate copula
families from Section 2.2.3.
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’ Copula H Kendall’s 7 \ Nlower \ Aupper ‘
Gaussian 2 arcsin(6) 0 0
t 2 arcsin(6) 2t, 41 (—\/V—H\/%) = \lower
Clayton % 2-1/0 0
Gumbel 1— % 0 2 — 21/0
Frank® 1-44+420 0 0
Joe 1+ & [ tlog(t)(1 — £)21-9/% gt 0 2 — 21/9

Table 2.4: Kendall’s 7 and tail dependence parameters of the most familiar bivariate
copula families.

2.4 Regular vines

Bedford and Cooke [2001, 2002] introduced a graphical model to classify different pair
copula constructions, called regular vines. In order to define them, we need a few basics
in graph theory, which are given in the following subsection.

2.4.1 Graph theory

The following definitions and theorems can be found in Diestel [2010]. We start with the
definition of a graph.

Definition 2.29 (Graph, node, edge, degree, path, cycle.) A graph is a pair G =
(N, E) of sets such that E C {{x,y} : x,y € N}. The elements of E are called edges of
the graph G, the elements of N are its nodes. Further,

- d(v) denotes the degree of v, i.e. the number of neighbors of a node v € N.
- A path is a graph G = (N, E) with N = {vg, v1, ..., v1} and E = {{vo, v1}, {v1,v2}, ..., {vk_1,vx } }.
- A cycle is a path with vy = vg.

If there is a function w : £ — R, then G is called weighted and denoted by G = (N, E, w),

i.e., weights are assigned to each edge. G is called complete, if E = {{z,y} : for all z,y €
N}.

1Dy (0) = foe —_</% __ gz (Debye function)

exp(z)—1
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A graph G is called connected if any two of its nodes are linked by a path in G. Trees
are graphs, which are connected and do not contain cycles. They are characterized by the
following theorem:

Theorem 2.30 (Characterization of trees.) The following statements are equivalent
for a graph T = (N, E):

(i) T is a tree.
(i1) Any two nodes of T are linked by a unique path in T.

(i5i) T is minimally connected, i.e., T is connected but T — e is disconnected for every
edge e € E. T'— e denotes the graph with removed edge e.

(iv) T is mazimally acyclic, i.e., T contains no cycle but T + {x,y} does contain a
cycle for any two non-adjacent nodes x,y € N. T + {x,y} denotes the graph with
additional edge {x,y}.

A tree with a root node vy, i.e. a tree that has a node vy with d(vy) = |N| — 1, is called
star. It holds, that d(v) = 1 Vv € N\{v}.

A subgraph of a graph G = (N, E) is a graph G' = (N, E') with N' C Nand E' C E.
A subgraph T' = (N, Er), which is a tree with Ny = N, is called spanning tree of a
graph G = (N, E).

2.4.2 Definition regular vines

A regular vine can be described as a nested set of trees, where the edges of tree ¢ are the
nodes of tree ¢+ 1, and where two edges in tree i are joined by an edge in tree i + 1 only if
they share a common node. It is based on pair copula constructions, seen in Section 2.2.3,
i.e. edges will correspond to pair copulas which then build the joint density. Kurowicka
and Cooke [2006] define regular vines in the following way:

Definition 2.31 (Regular vines.) V is a regular vine on n elements if
(Z) V - (Tla ...,Tnfl).
(i) Ty = (N1, Ey) is a tree with nodes Ny = {1,...,n}. Fori=2,...n—1,T, = (N;, E;)
18 a tree with nodes N; = E;_q.

(11i) Two nodes in tree T;11 can be joined by an edge only if the corresponding edges in
tree T; share a node, for i =1,....n — 2. (Proximity condition)

An example of a regular vine on 7 nodes is shown in Figure 2.10 (cp. Czado [2012]).
Since the number of possible regular vines on n nodes is still very large®, two special

cases of regular vines were recently studied, named canonical vines and D-vines’ (see Aas
et al. [2009]). They are defined as follows (due to Kurowicka and Cooke [2006]):

n—2
6Morales-Napoles [2010] shows: (5) x (n — 2)! x 2( 2) possible regular vines on n nodes.

"D-vines were originally called ”drawable” vines. ”Canonical” vines are named due to the fact that
sampling from such vines is most natural. (see Kurowicka and Cooke [2006])
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Figure 2.10: Example of a seven-dimensional R-vine.
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Figure 2.11: Example of a four-dimensional C-vine.
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Figure 2.12: Example of a four-dimensional D-vine.
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Definition 2.32 (Canonical vine, D-vine.) A regular vine is called a

(i) canonical vine if each tree T;, i = 1,....,n — 1, is a star, i.e., if each tree T; has a
unique node, the root node, of degree n — i (root node is connected to n — i edges).

(i) D-vine, if T\ is a path, i.e., if each node in T\ has a degree of at most 2.

Due to the proximity condition (iii) in Definition 2.31, it holds, that the first tree T}
of a D-vine still determines all higher order trees Ts,...,T,,_1 uniquely. The additional
restrictions limit the number of different canonical or D-vines on n nodes to n!/2. In
the following regular vines and canonical vines will be denoted as R-vines and C-vines,
respectively. Examples of a C- and D-vine on 4 nodes respectively, are given in Figures
2.11 and 2.12.

Bedford and Cooke [2002] and Kurowicka and Cooke [2006] show that the edges of
an R-vine can be uniquely identified by two nodes, called conditioned nodes and a set
of conditioning nodes. The edges in tree T; are identified by jk|D, where j < k and D
is the conditioning set. If D = &, then the corresponding edge is denoted by jk. The
conditioned nodes {j, k} are ordered here to propose an unique order of the arguments of
the bivariate copluas, identified by the edges (see Czado [2010]).

Due to the proximity condition in Definition 2.31, the notation of an edge e in T;
will depend on the two edges in 7T;_;, which have a common node in 7;_;. Denote these
edges by a = j(a), k(a)|D(a) and b = j(b), k(b)|D(b) with V' (a) := {j(a), k(a), D(a)} and
V(b) :={j(b), k(b), D(b)}, respectively. The nodes a and b in tree T; are therefore joined
by edge e = j(e), k(e)|D(e), where

jle) = min{i:i e (V(a)UV(b)\D(e)},
k(e) = max{i:i € (V(a) UV (b)\D(e)}, (2.62)
D(e) = V(a)NV(b).

However, this unique order of the conditioned nodes is not necessary. It is made out of
convenience.

For example the edge e = 1,4]23 in tree T3 of Figure 2.10 is derived from edges

= 1,3]2 with V(a) = {1,2,3} and b = 2,4|3 with V(b) = {2,3,4}. It holds, that
D(e) ={2,3},j(e) =1 and k(e) =

We build up a statistical model on a regular vine tree with node set N' = {Ny, ..., N,,_1}
and edge set £ = {E1, ..., E,,_1} by associating each edge e = j(e), k(e)|D(e) in E; with a
bivariate copula density ¢j(e) k() D(e)- Let X p(e) be the sub random vector of X, indicated
by the indices contained in D(e). An R-vine distribution is defined as the distribution
of the random vector X := (X, ..., X,,) with marginal densities fi, &k = 1,...,n and the
conditional density of (Xj(e), Xk()) given the variables X p() specified as c;() r(e) (e for
the R-vine tree with node set A/ and edge set £. Kurowicka and Cooke [2006] prove that
the joint density of X is uniquely determined and given by

flzy, . zn) = H ) XHHCJ o0 (F(je)|Tpe)), F(Tre)|Tpe)),  (2.63)

r= 1=1 e€F;
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where () denotes the subvector of x indicated by the indices contained in D(e). The
joint densfcy (2.63) is called R-vine density. Thus the corresponding R-vine copula speci-
fication is defined as

Definition 2.33 (R-vine copula specification.) (F,V, B) is an R-vine copula speci-
fication if F = (Fi,..., F,) is the vector of the continuous invertible marginal distribu-
tion functions of X = (X1,...,Xy), V is an n-dimensional R-vine and B = {B.|i =
1,....,n—1;e € E;} is the set of the corresponding pair copulas.

For the special case of C-vines, the conditioned set only depends on the tree level, i.e.
D(e) = D,Ve € E;. Assuming the order 1,...,n and hence D; = {1,....,i — 1}, a C-vine
density can be written as

n—1n—i

flzy,.yxy) = H x) X HHC“*JU (i-1) = Hf xp) X H H Cijhi(i-1) (2.64)
r= =1 j=1 =1 j=i+1
where ¢; ki, im = Ciklivyim (F (T3] Ti1s s Tiy ) F(@p| @iy, -0y 234,,)).-

Again assuming the order 1,...,n, in D-vines the conditioning sets of edges ¢ = (a, b)
are always those nodes which lie between the nodes a and b in the first tree T7. A D-vine
density is given by

n—1n—t
f(xla oy I ) H xr X HHCJJ+Z|(]+1 Gi—1)- (265)
r= =1 j=1

Statistical inference for C- and D-vines has been discussed in Aas et al. [2009]. R-
vines specifications were recently explored by Dimann [2010] and Difimann et al. [2011]
which provides us with a basis of our model among meteorological variables later. In a
next step, we introduce the concept of a so called R-vine matriz that gives a convenient
representation of an R-vine, as we will use it to display the results of our model later.

2.4.3 Regular vine matrices

R-vine matrices (RVM) were introduced by Morales-Népoles [2008]. However, we will use
the notation introduced by Dimann [2010].
Let M = (m;;)ij=1..n € {0,...,n}"*" be a lower triangular matrix.

-----

(i) We denote the set of the non-zero entries in the i-th column of M by
LM(’L> = {mm, ...,mm}.
(ii) Further we define the following two sets

By(i) = {(mis,D):k=i+1,....n,D = {myi, ..., Mpi}}
BM(Z) = {(mm,D) . k’ = 7, + 1, ...,n,D = {mw} U {mk+17i, ,mn’l}}

With these notations, we can define an RVM.



CHAPTER 2. PRELIMINARIES - PART I 40

Definition 2.34 (R-vine matrix.) Let M € {0,...,n}"*" be a lower triangular matriz.
M = (mi;)ij=1..n is called R-vine matriz if it satisfies the following conditions:

(i) Lp(i) C Ly (j) for1 <j<i<n,
(1)) mi; & Ly(i+1) fori=1,...,n—1, and
(iii) fori=1,...,n—1 and for allk =i+ 1,...,n—1,
(Mueis {1y oy }) € Bu(i+1)U...UBy(n—1) (2.66)
UBM(i+ 1)U ..U By(n —1).

Condition (i) states that all entries of a column have to be contained in all columns
on the left of this column. The second condition ensures that there is a new entry on the
diagonal in each column. Together, it results that the variables are added to the RVM
sequentially from the right to the left. Condition (iii) is caused by the proximity condition
in Definition 2.31 and is however rather laborious to check for a given matrix. Nevertheless
it is the critical condition of Definition 2.34 and it can be shown, that conditions (i) and
(ii) follow from condition (iii). More Details can be found in Diimann [2010]. But two
simple properties of an R-vine matrix can be seen directly from the definition:

(i) All elements in a column are different.

(ii) Deleting the first row and column from an n-dimensional R-vine matrix gives an
(n — 1)-dimensional R-vine matrix.

But how to read from an RVM? RVMs are not unique, there are 2"~ different RVM’s
possible which correspond to the same R-vine [Difmann, 2010, Theorem 3.20]. We can
construct an R-vine from a given RVM in the following way:

(i) The nodes of T} are given by 1, ..., n.

(ii) The edges of T}, and hence the nodes of Ty, are given by
{{mii,mn,;} i=1..,n—1},
(iii) The edges of T5 (and nodes of T3) are given by
{{miismn_1ilmn}i=1,...,n—2}, (2.67)

i.e. by the diagonal element and the second last element conditioned on the last
element of columns i =1,...,n — 2.

(iv) Generally, the edges of T (and node of 7}.4) are given by
{{mi,i, mn_j+17i|mn_j+2,i, cany mm} . 2 = ]., = 2},

i.e. by the diagonal element and the element and the element in row n — j + 1
conditioned on the last elements of columns i = 1,...,n — J.
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The best way to explore this, is to give an illustrative example:

Example 2 (Five-dimensional RVM.) Let M an RVM, given by (the zero entries in
the upper triangle are omitted for simplicity)

(2.68)

I
— N o O
O — Ot
— o Ot

2
11

It can be checked that the conditions of Definition 2.34 are satisfied. Following our proce-
dure described above, we construct the following R-vine:

(1) Edges of tree T and nodes of Tree To: {my1,ms1} = {1,4}, {ma2,ms2} = {2,3},
{ms3,ms3} = {1,5} and {my4,ms4} = {1,2}.

®

1,4

2,3 1,2
O—O !

1,5

Ty

Figure 2.13: Five-dimensional R-vine corresponding to Example 2.
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(ii) According to (2.68), the edges of tree Ty and nodes of tree Ty are given by

{m1,17m4,1|m5,1} = {274‘1}

and similarly for the 2nd and 3rd column: {masa,mys|mso} = {1,3|2} and
{ms3, maslmss} = {2,5/1}.

(iii) The edges of tree T and the nodes of tree Ty follows

5

{m1,17m3,1 man, ms,l} = {374|17 2}
2]

s

N — | Ot W
— DN Ot
— DN

and {ma 2, m3a|maa, ms2} = {3,5[1,2}.

() Finally, the edge of tree Ty is given by {my 1, maa|ms1, may1,ms1} = {4,5]1,2,3}.

RVMs of C- and D-vines can be represented by particularly well-structured RVMs. For
details, see Brechmann [2010].

The chosen copula types and parameters belonging to an R-Vine, constructed by pair
copulas and expressed by an RVM, can easily be denoted in matrix form as well. The cor-
responding pair copula types and parameters can be set in the corresponding off-diagonal
entries, since the diagonal entry in each column defines one element of the conditioned
sets of the edges corresponding to this column uniquely. This means, that copula type and
parameter(s) corresponding to {m;;, My i|Mkt1,, ..., M}, k > 4, are stored in the (k,7)-th
entry. We illustrate that in the following example:

Example 3 (R-vine copula type and parameter matrices.) Consider the R-vine of
Ezxample 2, defined by the RVM in (2.68). Further, we have the following R-vine copula
type and parameter matrices T and P;:

N 0.23

T=|m? G P =001 154 ,
C N II? 0.77 0.35 0.00
J C N F 0.90 2.87 0.77 1.28

where 112 denotes a bivariate independence copula, N a Gaussian, C a Clayton, G a
Gumbel, F' a Frank and J a Joe copula. Then we can identify, e.qg., the copula type and
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parameter of the edge 1,3|2 as described above:

4
5 3 N 0.23

M=|3 5 5 T=|1% @ JP= (001 154
2 [1] 2 2 C [N] m 0.77 [0.35] 0.00
1 2 111 J C N F 0.90 2.87 0.77 1.28

i.e. the copula of edge 1, 3|2 is a Gaussian copula with parameter 0.35. Other copula types
and parameters are identified similarly.

Note: If a copula belongs to a two-parametric family such as the t or Clayton-Gumbel
copulas, one needs a second copula parameter matriz Py to specify the corresponding second
parameters.

2.4.4 Selecting regular vine distributions

According to Difimann et al. [2011], fitting an R-vine copula specification to a given
dataset, requires three separate tasks:

(1.) Selection of the R-vine (structure), i.e. selecting which unconditioned and condi-
tioned pairs to use.

(2.) Choice of a bivariate copula family for each pair selected in (1.).

(3.) Estimation of the corresponding parameter(s) for each copula.

The most intuitive way of finding the "best” model would be to accomplish steps (2.)
and (3.) for all possible R-vine constructions. But this is not feasible, since the number
of possible R-vines on n variables increases very rapidly with n, as we mentioned above.
Other approaches are based on manual interpretation of plots, e.g. K- or Chi-Plots (cp.
Genest and Favre [2007]), to decide which bivariate copula family to use. But this is
again not feasible to do for every possible copula in every possible R-vine decomposition,
especially in higher dimensions. In addition, such methods do not guarantee objectivity.

Therefore, Diffimann et al. [2011] developed a sequential, heuristic method to select
the tree structure of the R-vine, the so called sequential method. They start by defining
the first tree 77 = (IVq, Ey) for the R-vine, continuing with the second tree and so on. So
the proposed method for (1.) depends on the copulas selected in (2.) and estimated in
(3.) one step before. In detail, it looks as follows.

Sequential method to select an regular vine copula specification based on
Kendall’s 7

For selecting one possible R-vine for a given dataset it is necessary to decide for which
pairs of variables you want to specify appropriate copulas. As discussed, therefore the
trees are selected sequentially in such a way that the chosen pairs model the strongest
pairwise dependencies present [Diimann et al., 2011, p. 13-14]. One uses Kendall’s 7 as
instrument to measure the strongest dependence, since it measures dependence indepen-
dently of the assumed distribution and hence, is especially useful when combining different
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Algorithm 1 Sequential method to select an R-vine model based on Kendall’s 7.
Input: Data (z1,...,21,), l = 1,..., N (realizations of i.i.d. random vectors).
Output: R-vine copula specification, i.e. V, B.
1: Calculate the empirical Kendall’s tau 7; for all possible variables pairs {j,k},1 <
1 <k<n.
2: Select the spanning tree that maximizes the sum of absolute empirical Kendall’s taus,

i.e.
max Z |75 k] -

e={j,k} in spanning tree

3: For each edge {7, k} in the selected spanning tree, select a copula and estimate the cor-
responding parameter(s). Then transform ﬁ}\k(Izj\xzk) and ﬁk|j(xlk|xlj), l=1,..,N,
using the fitted copula @k (see (2.53)).
4: for1=2,....,n—1do
5: Calculate the empirical Kendall’s tau 7 p for all conditional variable pairs
{j,k|D} that can be part of tree T;, i.e. all edges fulfilling the proximity con-
dition (see Definition 2.31).

6: Among these edges, select the spanning tree that maximizes the sum of absolute
empirical Kendall’s tau, i.e.

max E ‘Tj,k|D‘ .

e={j,k|D} in spanning tree

7 For each edge {j,k|D} in the selected spanning tree, select a conditional copula
and estimate the corresponding parameter(s). Then transform ﬁjIkUD(xlj | Tk, T1D)
and ﬁkUUD(xlkmj, xp), l =1,..., N, using the fitted copula (jjkID (see (2.69)).
8: end for

(non-Gaussian) copula families.® The sequential method is described by Algorithm 1.

Note: Since one examines every tree seperately, it is not guaranted to find a global
optimum.” Nevertheless Difmann et al. [2011] think their approach is reasonable, since
the copulas specified in the first tree of the R-vine often have the greatest influence on
the model fit. Further, it is more important to model the dependence structure between
random variables that have high dependencies correctly, because most copulas can model
independence and the copulas distribution functions for parameters close to independence
are very similar. In addition, their approach minimizes the influence of rounding errors in
later trees, which pairs with strong pairwise dependence are most prone to and for real
applications it is natural to assume that randomness is driven by the dependence of only
some variables and not all. For further detail we refer to [Diimann et al., 2011, p. 13].

8However, Brechmann [2010] discusses that the described method also works in the same way for every
other measure of dependence.

9Global optimum is meant in terms of model fit, e.g., higher likelihood, smaller AIC/BIC or superior
in terms of the likelihood-ratio based test for comparing non-nested models proposed by Vuong [1989].
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We use a mazimum spanning tree (MST) algorithm, such as the Algorithm of Prim
[Cormen et al., 2009, Section 23.1], to select the tree that maximizes the sum of absolute
empirical Kendall’s taus (Steps 2 and 6 in Algorithm 1).1°
So in Steps 2 and 6 of Algorithm 1 we are looking for a tree, hence we could look also for
a star or a path instead, to obtain a C- or a D-vine structure, respectively.

A proof, that this algorithm creates an R-vine can be found in [Dimann et al., 2011,
p. 15]. In the next subsection, we will explore how to select the appropriate pair-copula
families with corresponding parameters sequentially in Steps 3 & 7.

But how to calculate Z3j|kup(xlj]xlk, x;p) and F\k|juD($lk|xl]’, xip), L =1,..., N in Steps
3 & 7 in Algorithm 1?7 Let E, be the set of all possible edges in Tree T; due to the
proximity condition. For all e € E; we have to calculate the value of Kendall’s 7 (Steps 1
& 5 in Algorithm 1). So if e € E;,e = {a,b} = j(e), k(e)|D(e), as defined in (2.62) with
a = j(a),k(a)|D(a) and b = j(b), k(b)|D(b) respectively, connects variables ;) with @)
given the variables Zp(), we hence need the transformed variables ﬁj(e” D) (Tj(e) | TD(e))
and ﬁk(e)m(e)(azk(e)\wl)(e)) (cp. to Steps 3 & 7 in Algorithm 1). They are calculated as
described in Equation (2.53), i.e, w.l.o.g. j(e) = j(a), then

OCj(a),k(a)|D(o) (F}'<a)|D<a> (%5(0) D(@®D(0)), Fr(@)|D(a) (Th(a)| D(a) !wma)))

ﬁ' e)|D(e)\Lje) | T D(e - =
o Esolene) OF(a)|D(a) (Tk(a) D(a) | T D(a))

= h (ij)w(a) (%j(@Ip@| D), Fr(@)]D(a) ($k(a)|D(a)’$D(a))> : (2.69)

where ﬁ}(a)w(a) ((a)|D(a)|®D(a)) and ﬁk(a)‘p(a) (Zk(a)|D(a) | D(a)) Were obtained before recur-
sively in the same way by Algorithm 1.

For these it is then straightforward to calculate the empirical Kendall’s 7. Then we pro-
ceed with Step 2 and for the edges selected in the MST, we need to fit a copula based on
two conditioned variables again. The latter point is outlined in the following section. An
exemplification of Algorithm 1 is given in Table 2.5.

Selecting pair-copula families sequentially

Due to Algorithm 1, we need to select a copula family for every pair of variables, tree
by tree. The choice of families therefore is based on the presented pair copulas in Section
2.2.3 (except the two-parameter Archimedean copulas, such as Clayton-Gumbel copulas).
Then we proceed as follows:

1. In case of positive dependence, one can select among the Gaussian, t-, (survival)
Gumbel, (survival) Clayton, Frank and (survival) Joe copulas. If one models negative

10T ypically such algorithms are described to find a minimal spanning tree. But the algorithms work in
both ways. Further, an MST algorithm does not depend on the actual values of the edges, instead it only
uses their ranks. Therefore we would get the same tree even if we took other weights, i.e. transformed
edge values by a monotone increasing function, like squared taus [Difimann et al., 2011, p. 14].
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1 ‘ Graph

‘ Description

1

Assume that we have 5 variables

Ny = {1,2,3,4,5}. The first graph is always a
complete graph, where we can connect every node
with every other node. Let us assume the Algo-
rithm of Prim selects the solid edges. The concrete
edge values (Kendall’s taus) are not of interest in
this example.

All edges from the previous step are now nodes.
. An edge is drawn (dashed and solid) whenever
N the nodes share a common node in the previous
tree (proximity condition). The graph is again con-
L3 nected and the now selected tree is indicated by the

Here we need all edges to form a tree, therefore
there are no options in this step. Interesting: As
soon as a graph has a D-vine structure, there are
no more options in the following trees, since it
uniquely determines all following conditioned and
conditioned sets (cp. Definition 2.32).

solid edges.
1,54

(2.3]1) (3.41)

Table 2.5: Exemplification of the model selection Algorithm 1.

dependence, we have the choice among Gaussian, t-, rotated Gumbel (by 90 or 270
degrees), rotated Clayton (by 90 or 270 degrees), Frank and rotated Joe copulas (by
90 or 270 degrees) respectively.

. Then the corresponding parameters are estimated by maximum likelihood estima-

tion. Note: If the estimation of the degrees of freedom in case of a t-copula leads to
a value of 30 or higher, then the t-copula is very close to the Gaussian, which can
be used instead.

. To find the copula, which fits "best”, we use the AIC!'! (Akaike [1973]). It corrects

the log likelihood of a copula for the number of parameters. Hence, the use of the
t-copula is penalized compared to the other ones, since it is the only two parameter
family under consideration.

UBivariate copula selection using AIC has been investigated in Manner [2007] and [Brechmann, 2010,
Section 5.4] who found that it is a quite reliable criterion, in particular, in comparison to alternative
criteria, such as copula goodness-of-fit tests.
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Evaluation of the joint R-vine density and simulation of an R-vine specification

Given an R-vine matrix, introduced in Section 2.4.3, we are interested in building the
corresponding R-vine density of the specified R-vine distribution. Further, in a next step,
we would like to simulate from this distribution. However, these are non-trivial tasks,
since the order of the conditioning variables required is not obvious. But Diimann et al.
[2011] introduce two efficient algorithms which can handle our purposes. Nevertheless, we
skip any details here, since the extensive technical code is not relevant for our work. So
we rather refer to [Diimann et al., 2011, pp. 8-12] for a deeper insight.

For our application we will use the R-package VineCopula implemented by Schepsmeier
et al. [2012]. It is based on the presented theory in the previous sections and models,
selects and samples from an appropriate R-vine specification for a given dataset.

2.5 Regression models

To build an R-vine model for a given dataset, as it will be the set of meteorological mea-
surements in our case, we have to find out the marginal distributions of each variable first.
This is necessary in the context of fitting the appropriate pair copulas of the selected pairs
of variables in an R-vine.

The behavior of meteorological variables at a point in time ¢ depends on the behavior
of the corresponding meteorological variables in the past, i.e. at time ¢t — 1, ¢t — 2, and
so on. So the variables include autoregressive parts, which we have to model. Further,
each variable will exhibit an seasonal pattern, hence, e.g., the daily mean temperature
will likely be higher in summer than in winter. We will capture these properties with
several regression models for the different variables to model their marginal distributions
(in detail, see Chapter 3).

In this section we introduce the definitions of different regression models, their theoreti-
cal properties, their methods for parameter estimation and their goodness of fit measures.
We start with linear models, needed to model the distribution of temperature and air
pressure variables. Then we introduce the beta regression (for modeling humidity) and
end with the introduction of generalized linear models such as the binomial and gamma
regression, needed to fit the behavior of precipitation.

2.5.1 Linear models

Certainly the most famous regression model is presented by the linear model. Here we
want to model a random variable Y, called response, in terms of k£ known predictors
x1,..., T, denoted as covariates.

The linear model explains the response as a linear function of the predictors, i.e.

Y = B0+ fro1 + ... + Brwr + €, (2.70)

where we have p := k+ 1 regression parameters: 3 (intercept parameter) and parameters
b1, ..., B according to the covariates; € is a random error variable. The unknown regression
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parameters have to be estimated from n observations

(Yis Ti1y ooy Tig), 0 = 1, ..., m,

where y; are the observed values of the random variables Y;. Then, our linear model is
build on the following assumptions:

Definition 2.35 (Assumptions of the linear model.)

1. Linearity: There is a linear relationship between the random response Y; and the
covariate vector x; of the form

Y, = Bo+ Pixit + ... + Bpxip + €, 1=1,...,n, (2.71)
where €; is a random variable with Ele;] =0, Vi € {1,...,n}.
2. Independence: The random variables €; are independent.
3. Variance homogeneity: The random variables €; have constant variances for all
h Var(Y;) = Var(e;) = o2, Vi € {1, ..,n}. (2.72)

4. Normality: The random variables €; are normal distributed, i.e. together with 2.
and 3., €; are iid with

€ ~N(0,0%), Vi€ {1,...,n}.

The linear regression model of Definition 2.35 is often represented in matrix-vector no-
tation. Therefore we define the design matriz X, containing the n observations of the
covariates in its rows

1 11 TL12 ... T1k
1 =z T . T

Y 21 T22 2k c RO,
1 21 Tpo ... Tpk

The vectors of random variables Y; and ¢; as well as the regression coefficients are repre-
sented by

Y = (vaYYQa“'aYn)IERna
€ = (e, €3,....,6,) €R",

B = (Bo, B, Br) €RE.

Then the model can be formulated as
Y = X3+ € with € ~ N,(0,0°1,), (2.73)

where 0 is the n-dimensional null vector and I,, the nxn identity matrix; N, (u, X) denotes
the n-dimensional multivariate normal distribution with mean vector p and covariance
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matrix ¥ (cp. to Section 2.1.3).

Thus, it follows that
E[Y]= XB and Var(Y) = o1,
and hence

Y ~ N, (XB,c%1,). (2.74)
The expectation of Y; is a linear function of the unknown regression parameters, i.e.

EY:] = Bo + fixi1 + ... + By for all 4.

Parameter estimation

So we are interessted in estimating the unknown model parameters 3 and o, i.e obtaining
estimates X o X
B = (Bo, b1, .-, Bx) € RP, and &,

based on n observations. Usually one uses either the least-squares estimation or mazximum
likelthood estimation. In the case of linear models under the assumption of independence,
homogeneity and normality, both techniques yield the same estimate for 3 (Czado and
Schmidt [2011]). The only difference results in the fact that the maximum likelihood es-
timation provides also an estimate for o and additional statistical analysis in form of
prediction intervals and tests [McCulloch and Searle, 2001, p. 116].

In the least squares estimation, one does not make any distributional assumptions
on the response variable Y;. Our goal is to find regression coefficients 8 such that the sum
of raw residuals

is minimized, where g; are the fitted values, i.e.
Gi = Bo + Brzar + ... + Bz, (2.76)

for all 7 € {1,...,n}.

The method of least squares minimizes the sum of squared residuals, i.e.

QB y) = lly—XBI* =D (v —4:)* =D _(r)* (2.77)
=1 =1
Then,
min Q(B,y) = %‘;’y) -0 XXB=Xy. (2.78)

The right hand side of (2.78) is called normal equation. Thus, if the matrix X is of full
rank p, the minimum of Q(3,y) and so the estimate of 3%, is obtained by

B=(XX)'Xy. (2.79)

12Th9 least squares solution has the following geometric interpretation: The vector of fitted values
Y= XB = X(X X)X y is the projection of y onto the linear space, that is spanned by the columns
of X. H := X(X X)~ !X denotes the corresponding projection matrix [Czado and Schmidt, 2011, pp.
201-203].
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In addition, we define ) R
Y = XB=X(XX)'X'Y. (2.80)
In contrast, the maximum likelihood estimation uses the assumptions that the

random variables Y; are normally distributed (see (2.73)). So the likelihood of (3, ) given
y is given by

1 1
L(B.oly) = s o0 { ~ 5o Iy = X6} (2.81)

One directly sees, that (2.81) is maximized when ||y — X8| is minimized. Hence, the
mazximum likelihood estimate (MLE) of the regression parameter 3 under the normality
assumption is equal to the least squares estimate in (2.79).

The MLE for variance o2 equals

n

52 1 > (i — i) (2.82)

i=1

However, an unbiased estimator for o2 is given by

2= L Z@i—gi)?. (2.83)

Goodness of fit

We assume, that the assumptions of Definition 2.35 are fulfilled. We are now interested in
the goodness of fit of our linear model (2.71). Therefore we define the multiple coefficient
of determination.

Definition 2.36 (Multiple coefficient of determination.) We define the multiple co-
efficient of determination R? as
oSSR, SSD
SST SST

where
n

SST = Z(K —Y)? total sum of squares,

=1
SSR = Z(}Afl —Y)? regression sum of squares,
i=1

n

SSE = Z(Y’ — }72)2 sum of squares error,

i=1
with Y == 15" Y,

2

Further, we define the adjusted multiple coefficient of determination R,

_ §5B/(n—p)
SST/(n—1)

as

R, =1 (2.84)
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One can show, that SST = SSR+ SSFE [Czado and Schmidt, 2011, p. 217]. For the inter-
pretation of R? we have to look at the total sum of squares SST, since it is an estimator
of the variance of the random responses Y; (only the factor 1/(n — 1) is missed). Thus, R?
explains the proportion of the response variability, which is explained by our regression
model. It holds that R* € (0,1) and the closer it is to 1, the better the model explains
the variability of the response. But, it can be shown that if one adds additional covariates
to the model, then R? always increases. In contrast to that fact, Rgdj also consider the
number of estimated regression parameters and we can compare the goodness of fit of
models with different numbers of covariates.

Further, we are often interested in statistical inference for the model parameters.
Especially to test the following hypothesis for a single parameter:

Hy:pB;=0vs. Hy: 8; #0, for a fixed j € {0,..., k}.
This yields to the following test statistic (see, e.g., McCulloch and Searle [2001])

~

T; := bi_ g tnps (2.85)

se(53;)
where sAe(Bj) = 54/ ((X'X)71);; is the estimated standard error of Bj. So we reject the
null hypothesis Hy at a level of significance «, if |7} > t;imw /2> where t;ip’lfa /2 is the
100(1 — /2)% quantile of a t-distribution with n — p degrees of freedom (cp. Definition
2.5 of a t-distribution). In this case we can assume that 3; # 0 significantly, i.e. covariate
x;; has an significant influence on response Y;.
For further goodness of fit measures, such as the analysis of variance (ANOVA) or diag-
nostic plots, we refer to McCulloch and Searle [2001] or Czado and Schmidt [2011].

2.5.2 Linear skew normal and skew ¢ regression

Our definition of linear skew normal and skew t regressions differs only in point 4 of
Definition 2.35 for linear models. Here, the random error term follows either a skew normal
or a skew t distribution instead of a normal distribution. This yields to the following
definition:

Definition 2.37 (Assumptions of the linear skew normal/skew ¢ regression.)

1. Linearity: There is a linear relationship between the random response Y; and the
covariate vector x; of the form

Y, =060+ fixii + ... + Brxa + €, 1 =1,...,n, (2.86)
where €; is a random variable with Ele;] =0, Vi € {1,...,n}.
2. Independence: The random variables €; are independent.
3. Variance homogeneity: The random variables €; have constant variances for all

1, 1.€.

Var(Y;) = Var(e) = 02, Vi€ {1,....n}. (2.87)
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4. Skew normal/skew t: The random variables €; are either skew normal distributed
for alli =1,....n or skew t distributed for all i = 1,...,n. Hence, together with 2.
and 3., €; are 1id with

€ ~ SN (& w,a), Vi e {1,....n}, or

€; ~ skewt(§,w,a,v), Vi € {1,...,n}.

The skew normal and skew t distribution correspond to their definitions in Section 2.1.

Parameter estimation

To estimate our parameters 3, &, w, a, respectively, 3, &, w, a, v, we proceed in 2 steps:

1. Similar to the linear models we are using the method of least squares to estimate
our parameter vector 3. Since this method does not depend on any distributional
assumptions we get similar to (2.77)

B=(XX)"Xy.

2. We take the raw residuals r; = y; — 9; and use the method of maximum likelihood to
estimate é ,w, & and é , W, &, I respectively. Since there exist no closed-form expres-
sions for the estimates, except for a = 0, the maximum likelihood estimation has
to be computed numerically. Details can be found in [Azzalini and Capitanio, 1999,
pp. 12-14] and Bowman and Azzalini [1997] as well as in [Azzalini and Capitanio,
2003, pp. 19-20].

We will use the corresponding R-functions sn.mle and st.mle from R-library sn, see
Azzalini [2011], to fit appropriate distributions.

Goodness of fit

It is clear that we cannot use the goodness of fit measures of linear models, since they
depend on the assumption of normally distributed error terms. Thus, in case of our skew
normal /skew ¢ regression, we will restrict the goodness of fit analysis to two measures:

1. Ljung-Box tests to test the assumption 2 of independent error terms in Definition
2.37 (details for that kind of testing will be presented in Section 2.6) and

2. Quantile-quantile (Q-Q) plots to validate the distributional assumption 4 in Def-
inition 2.37, i.e. comparing the empirical quantiles of the raw residuals with the
theoretical ones of either the fitted SN or fitted skewt distribution. Deviations
from a straight line indicate a violation from the distributional assumption.

Note: We will also use both measures in case of linear models, since they can also be
applied for them.
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Weighted least squares

In practice, the assumption of variance homogeneity (3.) in Definition 2.37 is often vio-
lated. The variance is then rather dependent on 7, i.e. we assume

Var(e) = o® - w, (2.88)

with different w; > 0 Vi € {1,...,n}. The w;’s are called weights and one assumes, that
they are known. This kind of regression is called heteroskedastic. If we set
Y; 1
Zi = =
\/ Wj \/ Wj

where € = ¢w,; Y2 it follows, that

(Bo + Brxir + ... + Brwir) + €],

Var(ef) = —Var(e;) = fwia2 = o

2 w’L

Thus, all assumptions of Definition 2.37 are fulfilled. We define

wp; 0 0 ... 0
we=|0o o . | erre, (2.89)
- 0
O 0 ... 0 w,
and Z := (2, ..., Y2) = W~2Y. Then we can find the estimator By, ¢ by using the

w1’  wn
method of least squares from (2.77). We get

Buwrs = XWIX) X' Wy, (2.90)

where y = (1, ..., yn)' is the sample of n observations of the response. This method is
called weighted least squares'®. We then consider the residuals ryy = W2 (y — XBwers)
to fit the appropriate distribution.

2.5.3 Beta regression

Now we want to define a regression model for beta distributed random variables. Typically
for such an regression analysis it is useful to model the mean of the response [Ferrari and
Cribari-Neto, 2004, pp. 802-803]. Therefore one uses the parameterization (2.28) of the
beta density, introduced in Section 2.1.8. So if Y ~ Beta(u, ¢), it follows that

ElY]=pand Var(Y) = u(llT_;) (2.91)

The parameter ¢ can be interpreted as a precision parameter, i.e., for fixed u, the larger
the value of ¢, the smaller the variance of Y'; 1/¢ is called dispersion parameter.

13This definition is based on Czado and Schmidt [2011].
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Note also that a beta regression model based on the standard parameterization Beta(a, b)
(cp. (2.26)) was proposed by Vasconcellos and Cribari-Neto [2005].

We assume in Section 2.1.8 that the beta distributed response is constrained to the
standard unit interval (0,1). Hence, if a response is restricted to the interval ([, u) with
known [, u and [ < u, one simply models (Y —[)/(u — [) instead.

So let Y1, ..., Y, be independent random variables, each with Y; ~ Beta(u;, ¢) Vi €
{1,...,n}. The model is obtained by assuming that the mean for every Y; can be expressed
agl4

k
g(pi) = Bo + injﬁj = wilﬁ =7, (2.92)
j=1

where B = (B, B, ..., Bx) € R¥1 is the vector of unknown regression parameters and
x; = (1,2;1,...,25) € RF! are the observations on k covariates (k < n); n; is called
linear predictor.

g : (0,1) — R is strictly monotonic and twice differentiable, called link function. A
particularly useful link function, that we will also use in our case, is the standard logit
link, i.e.

T lten

9(pi) = log (1 a ) S [l - (2.93)

However, there are several possible choices for other link functions. For details see Ferrari
and Cribari-Neto [2004].

Note: Since the variance of Y; is a function of p; and hence of the covariates, non-
constant response variances are naturally accomodated into the model [Ferrari and Cribari-
Neto, 2004, p. 805].

Parameter estimation

We estimate the paramaters (3, ¢) by using the method of maximum likelihood. The
log-likelihood function based on a sample of n independent observations yy, ..., ¥, is given

by
=1 =1

where

li(pi, @) = logT(¢) —logI'(pi¢p) —log T'((1 — pi)@) + (i — 1) log y;
H{(1 = p3)¢ — 1} log(1 — u:),

with p; defined from (2.93).

However, the maximum likelihood estimators of 3 and ¢ do not have a closed-form.
One needs a numerical maximization of the log-likelihood function using a nonlinear

Y¢p. to Ferrari and Cribari-Neto [2004].
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optimization algorithm, such as a Newton algorithm or a quasi-Newton algorithm (for
details, see Ferrari and Cribari-Neto [2004]). These algorithms require the specification of
initial values as start points for their iterations. Ferrari and Cribari-Neto [2004] suggest
to use a least squares estimation from a linear regression of the transformed responses
9(Y1); -+, 9(yn) on covariates X to get an initial point estimate for B, i.e. according to
(2.77), Buare = (X' X) 21X 2 where z = (g(y1), ..., g(y»)) . For an initial guess for ¢, we
use from (2.91) that ¢ = p;(1 — ;) /Var(Y;) — 1 and

Taylor

Var(g(Y) =" Var (g(m) + (Vi — m)g () = Var(Yy) (¢'(u))*
Hence, Var(Y;) ~ Var(g(Y;))/ (¢'(1;))” and the initial guess for ¢ is given by

gbstart - Z qu 1 — Iul - 1a

where ji; = g1 (mi/(X/X)*lX/z) is the i-th fitted value from the linear regression of
9(y1), . g(yn) on X. 52 = &'&/[(n — k) (¢'(11:))?] where é = z — X(X'X)"'X'z is the
vector of least squares residuals from the above mentioned linear regression.

Further, under the usual regularity conditions for maximum likelihood estimation when
the sample size is large, one can show that

(g) ~ Nk—H ((g) 7Zbeta) ’

with an appropriate covariance matrix Y.,. The calculation of Y., can be found in
[Ferrari and Cribari-Neto, 2004, p. 806]. Thus with this property one can build confidence
intervals to perform asymptotic Wald tests, i.e. testing whether the (3;’s significantly differs
from 0.

Goodness of fit

In case of beta regressions, a global measure of explained variation is denoted by the
pseudo R? (RZQ) ). Tt is defined as the square of the sample correlation coefficient between

the vector of the fitted linear predictors 1§ = (1, ..., 7,) and g(y) = (g(x1), ..., 9(yn)), i.e

R = {cori(, g(y))}, (2.94)

where corr is defined in (2.55) and 0 < Rf, < 1. In case of RIQ) = 1 we have a perfect
agreement between 1) and ¢g(y) and hence between fi and y.

Further graphical tools for detecting departures from the postulated model and influ-
ential observations are the following:

1. Define the standardized residuals

A

Yi — W
Var(y:)

ri =
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where fi; = g~ (x;' 8) and @’(yl) = (fu(1 — 1)) /(1 + &). A plot of these residuals
against the index of the observations ¢ should show no detectable pattern.

2. There should be no trend detectable in the plot of r; against 7;.

3. The plot of observed values y; against the predicted values ji; should follow a straight
line.

4. Since the distribution of the residuals is not known, half-normal plots with simulated
envelopes are a helpful diagnostic tool. Therefore we enhance the usual half-normal
plot by adding a simulated envelope which can be used to decide whether the ob-
served residuals are consistent with the fitted model. They are produced as follows:

(i) Fit the model and generate a simulated sample of n independent observations
using the fitted model as if it were the true model.

(ii) Fit the model to the generated sample and compute the ordered absolute values
of the residuals.

(iii) Repeat steps (i) and (ii) &k times. (Ferrari and Cribari-Neto [2004] consider
k =19 to be a good choice.)

(iv) We consider n sets of k order statistics. For each set, compute its average,
minimum and maximum values.

(v) Plot these values and the ordered residuals of the original sample against the
halfnormal scores @' ((i +n — 3)/(2n + 1)).

The envelope is formed by the minimum and maximum values of the k order statis-
tics. Observations of absolute residuals from the original sample outside the limits
of the envelope should need further investigation. Additionally, if a considerable
proportion of points falls outside the envelope, then one has evidence against the
adequacy of the fitted model [Ferrari and Cribari-Neto, 2004, p. 809].

5. There are further plots to detect influential points on the regression parameter by a
high Cook’s distance or to identify leverage points by a corresponding high leverage
parameter. However, we skip any details here how to calculate them. For further
information we refer to Ferrari and Cribari-Neto [2004].

We will use the R package betareg, described in Cribari-Neto and Zeileis [2010], to fit
the appropriate beta regressions to our model in chapter 3.

2.5.4 Generalized linear models

Now we want to formulate regression models for further non-normally distributed re-
sponses, as for e.g. binomial, Poisson or Gamma distributed responses. The class of gen-
eralized linear models (GLM) formalizes a framework to model such problems. One can
easily show that a linear model, introduced in Section 2.5.1, can be respresented as a

GLM. The sections about GLM’s are based on McCullagh and Nelder [1989].
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As before we denote the independent response variables by Y;, for i = 1,...,n, and the
covariates corresponding to Y; by x; = (1,24, ...,24) € RP, p:=k+ 1.y, i =1,...,n,
represents the set of observation of Y;. Then we can characterize a generalized linear model
as follows:

Definition 2.38 (Components of a GLM.)

1. Random component:
Response variables Y;, 1 = 1, ...,n, are independent with density or probability mass
function from the exponential family with canonical parameter 6 and dispersion pa-
rameter ¢ given by

Oy — b(6)
a(¢)

The functions a(-),b(-) and c(-,-) are known. It holds that p; = b'(6;) where p; is the
mean of Y; and Var(Y;) = 0"(6;)a(9).

f(y;0,0) = exp { + c(y, ¢)} : (2.95)

2. Systematic component:
The linear predictor is defined as

ni(B8) = milﬁ = Po+ frxa + ... + BrTia,

where B = (B, ..., ﬁk)’ € RP is the vector of p unknown regression parameters which
have to be estimated.

3. Parametric Link Component:
The relationship between the linear predictor n; and the mean p; of Y; is explained
by the link function

/

g(pi) = ni(B) = z; B.

Points 2 and 3 of Definition 2.38 resemble the ones in the definition of the beta regression
model in the previous section. In contrast, GLM’s are only defined for response variables
which are members of the exponential family. Many well known distributions are members
of it, like the normal, binary, Poisson, Gamma and inverse Gaussian distributions. A table
with the corresponding functions a, b and c¢ as well as the corresponding parameters 6 and
¢ can be found in [McCullagh and Nelder, 1989, p.30]. For a binomial random variable
Y; ~ Bin(n, p) the distribution of % belongs to the exponential family. The above stated
dispersion parameter can be known or unknown. In some GLMs such as the normal and
Gamma regression we have an unknown dispersion parameter, which also has to be esti-
mated.

We assume, that the link function g is monotone and differentiable. This is reasonable
because, due to the monotonicity of g, y; is increasing if z;; is increasing for 3; > 0. Some
examples of link functions for binary/binomial responses are:
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(i) logit link:

Using the logistic cdf F(z) = we get (if p € (0,1))

62
1+e??

g(p) = F~'(p) = log (L) : (2.96)

I—p

We also used this link function for the beta regression in the previous section. It
is symmetric around 0.5, i.e. (0.5 — u) = —g(0.5 + p) for 0 < p < 0.5. The
corresponding GLM is called logistic regression.

(ii) probit link:
Using the standard normal cdf F'(z) = ®(2), we get (if p € (0,1))

The corresponding GLM is called probit regression.

(iii) complementary log-log link:
Using the the complementary log-log cdf F(z) = 1 — exp{—exp{z}}, we get (if
pe (0,1))
9(p) = log(—log(1 — p)).

The corresponding GLM is called complementary log-log regression.

GLM’s with such link function ((i)-(iii)) are called binomial GLM’s, since one assumes
that the mean p € (0,1) and then uses the inverse of cdf’s to define the corresponding
link functions, i.e. g(u) = F~(u) where F is a cdf.

A link function g(+) is called canonical if 6; = n; for all i.

Parameter estimation

To estimate the regression parameters 3 = (o, ..., Bx) we use again the method of max-
imum likelihood. Thus, we want to maximize the log-likelihood. For the observed data
y=(y1,...,yn) of Y = (Y1,....,Y,) the log-likelihood in a GLM is given by

(B0, y) =Y log(f(yi,0:,0) = > Li(i, &, y:), (2.97)

where [;(;, ¢, y;) is the log-likelihood for observation y;, i.e.

(yi0i — b(0;))
a(¢)

However, we do it numerically, using the algorithm of iterated weighted least squares
(IWLS) which is geared to the Fisher scoring algorithm. The IWLS is stated in Algorithm
2. In that Z can be identified as the first order Taylor approximation of g around u]. A
rough approximation to the variance of Z! is given by (W/)~1.



CHAPTER 2. PRELIMINARIES - PART I 99

Algorithm 2 Iterative weighted least squares algorithm for GLM estimation of 3.

1: Choose an initial value ,@0 and € > 0.
2: Let B" be the current estimate of 3, determine

- = wilﬁ" i =1,...,n (current linear predictors)
- ur =g () (current fitted means)

- 67 := h(zi¥) (current canonical parameters)
where h is the inverse function of ¥’

dyg

or

Hi=H;

2
0,=0" dpt; —
t Hi Hi=H;

3: Regress Z! on x;q, ..., x4 with weights (W7 )™ (Weighted least squares) to obtain new
‘//6\1' _ Er—f—l” < e.

- ZT =10 + (yi — 1)) (m ) (adjusted dependent variable)

-1

W= [b”(&i)

estimate B”Jrl and continue with step 2 until

Further one can show, that under some regularity conditions the MLE of 3 is asymp-
totically normal distributed, i.e

Bn — (3 in probability as n — oo and

{W (%ﬂl’))} B ) 0.1

Thus, the asymptotic normality can be used to construct asymptotic Wald tests for test-
ing Hy : B; = 0 versus H; : B; # 0. For further details, see McCullagh and Nelder [1989].

The estimation of an unknown dispersion parameter will be treated in the next section,
because we need the goodness of fit measure Pearson’s statistic to be able to define it.

Goodness of fit

In the context of GLM’s the major tools of assessing the goodness of fit are the deviance
and the Pearson’s statistic.

Now the regression parameters 3 are estimated and with the fitted means

7

//[i =g 71(wi/8)7
one estimates p; = E[Y;]. For a good model we want to have the fitted means fi; close to
the observations y;. Therefore we need a discrepancy measure between y; and [i;, called

deviance. It is defined as the difference between the log-likelihood of the fitted model
and the log-likelihood of the saturated model. The saturated model is the largest well
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defined model for n responses which allows for n parameters, i.e. one estimates u; by
the observation y;. Clearly, this model fits perfectly but it is completely non-informative
about the relationship between the covariates and the responses. Then, the deviance is
defined as follows:

Definition 2.39 (Deviance in a GLM.) The scaled deviance in a GLM is given by

_ Z yi(0; — Hz‘)a—<£)(9i) + 5(91)7 (2.98)

where I(-,¢,y) is the corresponding log-likelihood, defined in (2.97), 0, = h(f;) and
0; := h(y;); h(:) denotes the inverse function of b'(-).

If we assume that a(p) = ¢/w holds, we define the (unscaled) deviance in a GLM as

D(p,y) = ¢Ds(1, y, ¢). (2.99)

The unscaled deviance in (2.99) eliminate the influence of the dispersion parameter ¢.

For a random variable Y, with distribution from the exponential family, one can show
that Var(Y') = b"(0)a(¢). Therefore, we define V(u) := 0”(f) as the variance function in
a GLM with h(u) = 6. A further discrepancy measure for assessing the goodness of fit of
a GLM is given by the generalized Pearson x* statistic and it is defined as follows:

Definition 2.40 (Generalized Pearson x? statistics in a GLM.)

n

Vi y) =) % (2.100)

where V([1;) is the estimated variance function for the i-th observation.

Under some regularity conditions, which can be found in McCullagh and Nelder [1989],
the deviance and Pearson x? statistic have the following distribution for large n.

D(p,y)

(B, y)

DX p (2.101)
2
X - (2.102)

an aAn

L denotes approximation in distribution.

A moment estimator of ¢ can now be constructed based on the asymptotic distribution.
It is defined as .
X (1Y)

b= R (2.103)
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Further, we are using the distributional properties (2.101) and (2.102) to test asymp-
totically at a level o the goodness of fit of a specified GLM. Therefore we construct two
test scenarios, i.e. the residual deviance test and the partial deviance test for nested GLM
models. The residual deviance test for a GLM model is a asymptotic level « test, where
we reject

Hy: The specified GLM is true

versus
Hli not Ho,

if R
D(p,y)

¢
Here, Xz,l—a denotes the 100(1 — )% quantile of a x? distribution with r degrees of free-

> Xppi—a - (2.104)

dom and ¢ is an estimate of the dispersion parameter ¢.

If we want to compare the fit of two nested GLM’s, we have to consider a partial de-
viance test. Hence, we fit two models:

1. Model F with linear predictor: n = X;3; + X332 and deviance Dp,

2. Model R with linear predictor: n = X;3; and deviance Dg,

where 31 € RP! and B2 € RP? with p := p; + py. Then the partial deviance test for nested
GLM models is a asymptotic level « test, where we reject

Hglﬁzzo

versus

Hl :/627&07
if
DR:DF o2

p2,1—a’

2.105
> (2.105)

where ngsF is the estimate of the dispersion parameter ¢ based on the full data, i.e. the
Model F is assumed to hold.

For our modeling of daily precipitation we will use two GLM’s, the binomial and the
gamma regression. They are presented in the next section.
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2.5.5 Binomial regression

For example, the number of days on which it rains can be modeled by binomial responses.
So we consider the data given by (y;,x;),i = 1,...,n, where y; are the realizations of
independent binomial distributed random variables Y; ~ Bin(n;, p;(x;)) and x; are known
covariates. p;(x;) denotes the success probability of Y; that is dependent on covariates x;.
As mentioned before the distribution of nx belongs to the class of exponential families in
contrast to the binomial distribution. This holds due to the fact that we can express the
corresponding probability mass function as

P(Yi/n; = ki) = P(Y; = nik;) = (n?];i)pi(wi)mki(l — pi(ay))mimk
= exp {log <(nill;>) + n;k; log (%) + n; log(1 — pi(;pi)):| ) (2.106)

Thus, it follows c¢(¢;,y;) = log ((@yz ca(g;) = é,@i = log <%> and b(0;) =
log(1 + exp(#;)). In addition ¢; = n; is known and therefore has not to be estimated.

The mean of % equals the succes probability, i.e.

Y nzpz(fﬂz)
=[] =

n;

= pz(ﬂ?z)

Since we are interested in modeling the success probability we fit a GLM on % instead of

Y;. If we choose the logit link function g(u;) = log (ﬁﬂ) = x; B =1, from (2.96), we get
G 2.107
Hi = pil@i) = 7 (2.107)

In this case the logit link is the canonical link since g(u;) = 6; (cp. (2.106)). The estimation
of the unknown regression parameters 3 = (fo, ..., B) € R¥*! as well as corresponding
goodness of fit measures are described in the previous section about GLM'’s.

2.5.6 Gamma regression

Modeling of positive continuous responses like e.g. positive rain amount on rain days
can be obtained by a gamma regression model since the gamma distribution is only
defined for positive random variables. Additionally in practice one often observes that the
variances among different responses are not constant but are increasing with the mean.
This property can also be captured by gamma distributed variables.

Let us consider the data (y;, @;),7 = 1,...,n, where y; are realizations of independent
gamma distributed random variables, i.e. Y; ~ Gamma(u;, k) defined in (2.31) in Section
2.1; x; are the known covariates. The mean and variance of Y; are given by

2
_ M
K

EY;] = pu; and Var(Y;)
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The gamma distribution belongs to the class of exponential families, since

F s e ) = exp [(n — 1) log(0) — s+ o) = () — log ()

—exp i (2 < togle)) + )] (2,108

125
where ¢ is independent of p;, 0; = —1/p;,6(6;) = log(p) = log(—1/6;) = —log(—6;) and
the dispersion parameter is given by a(¢) = ¢ = 1/k. Thus, we can set up a GLM using
the log link function, i.e.

g(wi) = log(i;) = i B = i, (2.109)

where B = (B9, ..., Br) € R*! has to be estimated. Clearly, the log link is not the canonical
link but it is often used since it does not impose any restrictions on 3 and it is convenient
for modeling and for interpretation of the parameters.

In addition, in the case of the gamma regression one has to estimate the corresponding
dispersion parameter. It is done by the Pearson’s x? statistic described in Section 2.5.4.
The estimation for 3 follows by an IWLS algorithm, also described in the section about
GLM’s.

Note, often the sum of a group of responses has a specific meaning. For example, if
we observe the positive rain amount on day ¢ of the year, i = 1,...,365 and we have
data over 5 years, each year denoted by j = 1,..,5. We express our responses as Y;; and
Y, = 25:1 Y;; stands for the total rain amount on day 7 of the year, measured over 5
years. Y;* :=Y;/5 denotes the average rain amount on day i of the year. More formally, we
have responses Y;; with j =1,...,n, and i =1,...,n. We set Y, := Z;“:l Y, and Y := T%
If Y;; ~ Gamma(p,, k) are independent one can show that

Vi 1
Ve="=— Yii~ G R OTR 2.110
e ™ 2 Yo ~ Gomma ) (2.110)
Thus, we model Y;*,¢ = 1,...,n instead of Y;; by a gamma regression, called gamma

regression with weights n;.

2.6 Ljung-Box test

A further goodness of fit measure to investigate whether the chosen linear models or
linear skew normal/skew ¢ regressions are appropriate is given by the test of Ljung and
Box [1978]. In detail we want to examine whether the assumption of independent error
terms in_the Definitions 2.35 and 2.37 is obtained. So we take the raw residuals 7; =
y;i —x; 3,i=1,...,n and perform the Ljung-Boz test, i.e. we test the hypothesis

Hy : (Ti)i=1, n are independent versus H; : not Hj. (2.111)

Note that the Ljung-Box test is generally performed to check for autocorrelated residuals
which we modify here for our purpose.
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The test statistic of the Ljung-Box test is constructed by considering the sample autocor-
relation of (7;);=1,. . It is defined as

.....

n /\‘/\‘
Zi:h-i-l Til'i—h

ﬁh = n ~9 )
Do T

for lags h = 1,...,n — 1. The test of Ljung and Box [1978] jointly considers the autocor-
relations of the first 1 < m < n — 1 lags and has the test statistic

m ~

Qp) =nln+2)y_ .
h=1

n

Under Hy (cp. 2.111), @(ﬁ) is asymptotically x? distributed with m degrees of freedom.
Thus, we reject the null hypothesis at a significant level o if Q(p) > x7,,_, Where X7, |,
denotes the 100(1 — )% quantile of a x? distribution with m degrees of freedom.

2.7 Markov chains

We still want to mention a brief definition of Markov chains because we will need them
in case of modeling daily total precipitation. According to Georgii [2007] a Markov chain
is defined as follows:

Definition 2.41 (Markov chain.) A sequence of discrete random variables Y1, Y, Ys, ...
with possible values in a countable set E is called (first order) Markov chain if the variables
follow the Markov property, i.e.

P(YH—H = y|Y1 =y, Yo =y, ..., Y, = yn) = P(Yn-i-l = y|Yn = yn) (2'112>

Thus, the distribution of Y, 11 depends only on the present state vy, and does not depend
on the past.

Markov chains are called stationary if the conditional probability distribution in (2.112)
is independent of n, i.e.

P(Yn—i-l = y|Yn = yn) = P(Yn = y|Yn—1 = yn)a

for all n. Hence, the conditional probability distribution of a non stationary Markov chain
depends on n. For further details we refer to Georgii [2007], pp. 153-182.
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Marginal models

After completing the preliminaries we now want to model the multivariate dependence
structure of meteorological variables by an R-vine distribution. Therefore, as Section 2.4
suggests, we need to model the marginal behavior, i.e. the marginal distributions of our
variables first. In order to do this, data of meteorological observations are needed.

Our model will be built on data coming from the meteorological observatory in Hohen-
peissenberg, southern Germany. It is based at mount Hoher Peissenberg which is located
about 80km southwest of Munich in the foothills of the Alps at an altitude of 1000 m a.s.1.
(see Figure 3.1). Meteorological data has been collected since 1781 and thus it represents
the oldest mountain observatory in the world.

After the very first observations had been made around 1758/1759, it all began with
the planning of an academic observatory at Hohenpeissenberg in 1772. The constitu-
tion of a meteorological station followed 1780 by abbot Johann Jakob on behalf of Karl
Theodor, Elector of the Palatinate. And thus one started the daily weather observation
under the rules of the Meteorological Society of the Palatinate (Societas Meteorologica
Palatina) on January, 1st 1781. The standard hours of observation of that time, the so
called ”Mannheim hours” (at 7:00, 14:00 and 21:00 hours local mean time) are still used
as a standard for today’s climatological observations. Because of several political changes
and wars the corresponding competences for the wheather station Hohenpeissenberg were
often changed too. Hence, the station was attended by priests, teachers and vicars un-
til the Meteorological Service of the Third Reich (”Reichswetterdienst”) took over the
observatory in 1934. In 1952 after the Second World War, the German Weather Service
("Deutsche Wetterdienst”), DWD, decided to incorporate the station into their meteoro-
logical network because of its meaningful location for ecology and climate research.

Today the wheather station is part of the meteorological observatory Hohenpeis-
senberg. The observatory became a global station within the ” Global Atmosphere Watch
(GAW)” programme which the World Organisation for Meteorology (WMO) had initiated
in the beginning of the nineties. Beside the regular duties from before, the emphasis is
placed on the permanent monitoring of trace gasses, the identification of physical, chem-
ical and optical characteristics of aerosols as well as the determination of the chemical
composition of precipitation. In addition, continuous long-term measurements of volatile
hydrocarbons, such as OH and H,S0,, are made. The DWD additionally uses the located
radar device for their applied research which improves weather forecasts and warnings not

65
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Figure 3.1: Location of the meteorological observatory Hohenpeissenberg in Bavaria,
southern Germany. It is based about 80km southwest of Munich in the foothills of the
Alps at an altitude of 1000 m a.s.l. (©) OpenStreetMap and contributors, CC-BY-SA.

only for the region. Interesting climate data from Hohenpeissenberg of the last about 230
years can be found in Table 3.1. More about the history of the meteorological observatory
Hohenpeissenberg can be found at Deutsche Wetterdienst DWD [2012].

The German Weather Service was founded in 1952 as National Meteorological Service
of the Federal Republic of Germany. It is responsible for providing services for the pro-
tection of life and property in the form of weather and climate information and therefore
maintains today about 2200 measurement stations all over Germany. The core of this
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’ Results ‘ Time frame Date Value
Warmest month 1781 — Jan. 2012 | August 2003 20,7 °C
Coldest month 1781 — Jan. 2012 | February 1956 -12,4 °C
Highest temperature 1879 — Jan. 2012 | July 29, 1947 33,8 °C
Lowest temperature 1879 — Jan. 2012 | February 11, 1929 | -29,1 °C
Highest 24-hour 1879 — Jan. 2012 | May 21, 1999 138,5 mm
precipitation total
Highest monthly precipitation | 1879 — Jan. 2012 | June 1979 366,6 mm
Lowest monthly precipitation | 1879 — Jan. 2012 | November 2011 0,2 mm
Sunniest month 1937 — Jan. 2012 | July 2006 332 Hours
Month with least sunshine 1937 — Jan. 2012 | December 1947 31 Hours
Strongest wind gust 1949 — Jan. 2012 | November 27,1983 | 177 km/h
Deepest snow cover 1901 — Jan. 2012 | March 10, 1931 145 cm
Highest fresh snow depth 1947 — Jan. 2012 | November 23, 1972 | 48 cm
in 24 hrs
Highest amount of 1947 — Jan. 2012 | January 1968 178 cm
new snow within a month
Highest air pressure 1879 — Jan. 2012 | January 16, 1882 1047 hPa
(sea level)

Lowest air pressure 1879 — Jan. 2012 | February 25, 1989 | 968 hPa
(sea level)

Annual mean temperature 1781 — Jan. 2012 6,2 °C
Mean cloud cover 1879 — Jan. 2012 66%
Mean relative humidity 1879 — Jan. 2012 7%

Table 3.1: Climate data for Hohenpeissenberg from Deutsche Wetterdienst DWD [2012].

network are twelve so called climate reference stations and the meteorological observatory
Hohenpeissenberg belongs to this kind of stations. They should detect possible climate
changes with common measuring techniques and well-trained wheather observers over the
next years. At these climate reference stations the DWD measures meteorological data
on the half hour over the whole year in order to doing their research. In this connection,
air pressure, temperature, wet-bulb temperature, maximum and minimum temperature,
minimum temperature at ground, temperature at ground in 5, 10, 20, 50 and 100 cm
depth, precipitation height, relative humidity and sunshine duration are measured by a
sensor system and by man. In contrast, wheather phenomena (e.g. snow, rain, fog, and
so on) as well as the meteorological quantities of cloud forms, depth of fresh snowfall and
the state of the ground (e.g. wet, frozen, watery, and so on) are observed only by man.
Wind direction and wind speed as well as global radiation are measured only by a sensor
system.!

Lep. website http://www.dwd.de.
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Note however, for our dependence model we will concentrate on daily measurements
of the following six fundamental meteorological variables:

1. Daily mean air temperature [measured in °C]

2. Daily minimum air temperature [measured in °C|
3. Daily maximum air temperature [measured in °C]
4. Daily mean relative humidity [measured in %]

5. Daily mean air pressure [measured in mbar]

6. Daily total precipitation [measured in mm)]

Cleary, one could investigate and add more meteorological variables like daily mean wind-
speed or daily mean temperature at ground. But we think for our purpose it will be suffi-
cient to start with these stated ones to build a common 6-dimensional R-vine distribution
and hence a non-trivial statistical dependence structure of these six fundamental meteo-
rological quantities.

The observatory Hohenpeissenberg provides data over the last 230 years as we men-
tioned above, but not for all meteorological quantities. Some observations of, e.g., wind
speed started first in the 1940s and some long-term observations provides incomplete data
over long periods. However, we will use the data of observations of the six variables stated
above from a time span of 1950 — 2009. Then we divide these sixty years into 12 subpe-
riods, i.e. each subperiod represents 5 years (12 5-years subperiods). For all subperiods
we will fit the marginal distributions for 5 of our six meteorological variables by different
regression models (see Sections 3.1 - 3.6). Due to robustness, the marginal distribution
of daily total precipitation will fit by a binomial/gamma regression based on data of the
whole time span 1950-2009 (Section 3.7). So for the remaining 5 variables we take three
periods, i.e. one period of the beginning, one period in the middle and one period of the
end of the whole time span, and present their corresponding results as demonstration.
These three periods are

1. Period 1955-1959 (with 1826 daily observations a variable),
2. Period 1980-1984 (with 1827 daily observations a variable),
3. Period 2005-2009 (with 1826 daily observations a variable).

For these three periods we will then select appropriate R-vine distributions respectively
and compare whether possible structural differences have occured over time. Note that
we have 1826 daily observations for each variable in periods 1955-1959 & 2005-2009 as
well as 1827 data points for each variable in period 1980-1984 (since it contains two leap
years). The described schedule of the used time periods is illustrated in Figure 3.2.

One further important assumption is the homogeneity of our data. In this connection
homogeneity means that our data series is not affected by instrumentation changes and
station moves of the DWD. One can do several homogeneity tests for raw time series to
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Figure 3.2: Observations from time span 1950-2009 (60 years) which is divided into 12
subperiods a 5 years. We present the results of the marginal models and build correspond-
ing R-vines for the three red marked periods (1955-1959, 1980-1984 and 2005-2009). Note
that the regression model of daily total precipitation is based on data of the whole time
span 1950-2009.

detect any abnormalities. For details we refer, e.g., to Herzog and Miiller-Westermeier
[1996]. However, we skip any homogeneity tests for our data at this point since we got the
data directly from the DWD with property to be already a homogenized station series.?.

A lot of work were done in stastical modeling the marginal behavior of temperatures.
In fact most of them using time series or linear regression models including e.g. ARMA
(Auto Regressive-Moving Average) or GARCH (Generalized Autoregressive Conditional
Heteroscedasticity) models to fit the distribution and variability of temperature variables
most precisely. Their intentions, however, differ among the sighted studies. Zheng et al.
[1997] use a systematic statistical approach that selects the optimum statistical model
(with respect to serial correlation, linearity, etc., i.e. an ARMA model) to detect any trend
in regional-mean temperature series. As well, Visser and Molenaar [1995] use structural
time series models, i.e. ARIMA (Auto Regressive-Integrated—Moving Average) models,
to estimate trends and do regression analysis in climatological series. The estimation of
current temperature trends are also studied by Mills [2009] using a variety of statistical
signal extraction and filtering techniques and their extrapolations. Gil-Alana [2005] mod-
els long-term temperature series by fractional integration techniques (including ARMA
processes) with long memory behavior.
Pricing wheather derivates correctly is the aim of Cao and Wei [1999] and Campbell and
Diebold [2005]. Therefore they need to model conditional mean and variance dynamics
in daily average temperatures by approximation of the seasonal volatility component us-
ing a Fourier series and by approximation of the cyclical volatility component using a
GARCH process to be able to give out-of-sample weather forecasts. Anastasiadou and
Lépez-Cabrera [2012] tie in with their work to model temperature risk to investigate the
statistical evidence of global warming by identifying shifts in seasonal mean of daily av-
erage temperatures over time and in seasonal variance of temperature residuals. Further
temperature forecasting approaches can be found, e.g., in Harvey [1989] and Kleiber et al.
[2011].

However, the above listed models are based on temperature series data measured at

2At all climate reference stations, measurements of newly installed climatological sensors are com-
pared with at least ten years old comparative measurements of conventional sensor systems to avoid
misinterpretations in climate series (Deutsche Wetterdienst DWD [2012]).
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Yt, meantemp
Yt, meantemp

-10 0 10 20 Jan 1980 Jan 1982 Jan 1984

Yt-1, meantemp time

Figure 3.3: Example of the strong positive autocorrelation (left panel: data y;meantemp
against Ys_1 meantemp) and the seasonal behavior (right panel: Y meantemp against time ¢)
of daily mean air temperature measured in Hohenpeissenberg in the period 1980-1984.

different and fixed places around the world. Thus their approaches are locally justified.
But all models present normal or slightly skewed distributed residuals after capturing au-
toregressive parts and seasonal dynamics. Therefore we prefer linear regressions to model
the temperature variables daily mean air temperature Y; meantemp at time ¢, daily mini-
mum air temperature Y; pintemp at time ¢ and daily maximum air temperature Y} jmaztemp
at time ¢. Clearly, these variables are each strongly autocorrelated (i.e. the temperature
today is strongly influenced by the temperature of yesterday and by the temperature of
the day before yesterday and so on) and exihibt seasonal patterns (i.e. the temperature in
summer is probably higher than in winter) which is illustrated for an example in Figure
3.3. These properties can then be modeled by implementing appropriate covariates in the
predictor parts of the linear regressions (see Sections 3.1 - 3.3). Adding a trend component
does not seem to be relevant since we model data "only” over 5 years periods. Aditionally,
we will see that this approach also fits the behavior of daily mean air pressure, Y}, ess at
time ¢, respectively well (Section 3.6).

The variable of daily relative humidity Y} pumidity at time t takes values between 0%
and 100%. Thus, it seems to be reasonable that its distribution follows a beta distribution.
Yao [1974] enters this approach, but we like to extend it in order to model autoregression
and seasonal effects additionally by a beta regression model which was introduced by
Ferrari and Cribari-Neto [2004] (see Section 3.5).

Modeling the behavior of daily total precipitation Y; ... at time ¢ is a bit more de-
manding since it often takes the value equal to zero (in our dataset of Hohenpeissenberg,
Yipree = 0 in 48% of the cases between 1950 and 2009). A wide range of literature can
be found on this topic with different intentions. A regression model using spline func-
tions for generating time series of daily precipitation amounts is presented by Buishand
and Klein Tank [1996] in order to study climate change impacts. Sloughter et al. [2007]
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Variable No. of observations No. of observations No. of observations
Period 1955-1959 Period 1980-1984 Period 2005-2009

Y meantemp | 1826 1827 1826

Yi mintemp 1826 1827 1826

Y: maztemp 1826 1827 1826

Y: humidity 1826 1827 1826

Y press 1826 1827 1826

Y: prec modeled on data over whole time span 1950-2009: 21915 observations

Variable Regression model Covariates of the linear predictor

YZ,L. ‘ }/th,- ‘ YVt—S,- ‘ Y;‘f?,- ‘ L, season

VIV ] V] V

n,meantemp Linear InOdel/
Linear skew normal regression

vi
Yi mintemp | Linear skew ¢ regression vV V vV vV Vv
Yi maztemp | Linear model/ v Vv Vv vV Vv
Linear skew normal regression
Y humidity | Beta regression vV Vv
Y} press Linear skew t regression Vv Vv N4 Vv Vv
Y prec Binomial/Gamma regression
Variable Covariates of the linear predictor

. . knd knd
Sln(xt,winddirection) ‘ Cos(xt,winddirection) ‘ Sln( 36é~t)), k= 2, 4 ‘ COS( 36((3t))’ k= 2, 4

Y;f,meantemp

Y;f,mintemp

Y;t,maztemp

Yi,humidity \/ \/

Kﬁ,press

}/t,prec \/ \/

Table 3.2: Framework of our marginal models for the six meteorological variables. Note
that 2y season € {1,2,3,4} denotes the meteorological season at time ¢, i.e. 1=winter,
2=spring, 3=summer and 4=fall. The daily mean wind direction at time ¢ is given by
Tt winddirection (N€eded to explain the "Fon”-effect, i.e. dry and hot winds in the foothills
region of the Alps) and d(t) stands for the number of the day in the corresponding year
at time ¢.

use Bayesian model averaging as a statistical way of postprocessing forecast ensembles
to create predictive probability density functions of precipitation variables, while Little
et al. [2009] use generalized linear models for forecast the density of daily rainfall. In
contrast, Kim and Mallick [2004] build a model based on the skew normal distribution
which is applied in the spatial prediction of weekly rainfall. On the other hand a general
linear regression is used by Turlapaty et al. [2009] to merge precipitation data. Berrocal
et al. [2008] present a statistical model that is a spatial version of a two-stage model
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that represents the distribution of precipitation by a mixture of a point mass at zero
and a Gamma density for the continuous distribution of precipitation accumulation. A
simultaneous simulation of daily precipitation at multiple locations is discussed by Wilks
[1998]. It is based on the work of Stern and Coe [1984] which provides a chain-dependent-
process stochastic model of daily precipitation: First they model occurrences of rain by a
two-state, first-order Markov chain using an binomial regression and secondly they model
nonzero amounts of rain by a gamma distribution using a gamma regression. We will
also use the model of Stern and Coe [1984] for our data since it provides an appropriate
instrument of modeling the behavior of total daily precipitation over the whole year at
Hohenpeissenberg. We already mentioned above that due to robustness our model will
be based on observations over the whole time period 1950-2009 as Stern and Coe [1984]
suggest (Section 3.7).

The whole framework of the modeling the marginal behavior of our six meteorological
variables is summerized in Table 3.2.

3.1 Daily mean air temperature

Now we start to model daily mean air temperature Y meantemp in Hohenpeissenberg at
time ¢ using linear models and linear skew normal regressions respectively. We need both
types of regressions here, since we detect some skewness in the distribution of the residuals
from period 1985-1989 to last period 2005-2009 which can be better fit by a skew normal
distribution as we will see immediately.

Note that we decided to regress on standardized variables, i.e. on

~ yt,meantemp - gmeantemp
Yt meantemp = = > (31)
Smeantemp
where
1826

_ 1
ymeantemp - @ ; yt,meantemp

is the mean of observations® and

1826
_ 1 3 , ,
Smeantemp = 1825 (yt,meantemp - ymeantemp)
t=1

denotes the empirical standard deviation®. This standardization might be useful if the
variables are on very different scales and/or the magnitude of coefficients for variables
with small values may not indicate their relative importance influencing the response
variable (Quinn and Keough [2002]).

_ 1827 . .
3ymeamemp = le thl Yt,meantemp, When the period contains two leap years.

4~ L 1 1827 _ . .
Smeantemp = \/ Ta36 2t—1 (Yt,meantemp — ghneamgmm,)?7 when the period contains two leap years.
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This yields to the following model specification describing the behavior of standardized
daily mean temperature observations at time t in Hohenpeissenberg for each of the 12
periods:

Yt meantemp = BO + Y1Yt—1,meantemp + Y2Yt—2,meantemp + Y3Yt—3,meantemp

+’Y7:7jt77,meantemp + ﬁseasonxt,season + Et,meantemp; (32)
for t € {1,...,1826} (t € {1, ...,1827} when the period contains two leap years), where

(i) Covariable %t season = 1 for winter days, ¢ season = 2 for spring days, = season = 3
for summer days and @ seqson = 4 for fall days, for all ¢ (thus, covariable z; seqson as
factors). This division results from the meteorological seasons:

winter = December, January, February

spring = March, April, May

summer = June, July, August

- fall = September, October, November
(ii) We assume:
- From period 1950-1954 to period 1980-1984:

€t meantemp ™ N(O 0'2 ) (lld)

» ¥ meantemp

- From period 1985-1989 to period 2005-2009:
Et,meantemp ~ SN(gmeantempa wmeantemp7 ameantemp) (11d)

Thus, the strong autoregressive behavior is modeled by the linear part 191 meantemp +
YoUt—2.meantemp T V3Ut—3meantemp + V1Yt—7meantemp 1 (3.2) and the seasonal behavior is
captured by SseasonTt season- Alternatively one could also use Fourier series instead for
modeling seasonal effects as Campbell and Diebold [2005] and Anastasiadou and Lépez-
Cabrera [2012] do. However, it does not result in any signficant differences in our outcomes.

Due to the model we use the method of least squares to calculate the estimates of the
coefficients (607 Y1,72,73, V75 5season:springa 6season:summer7 ﬁseason:fall)/ S RS (Cp Sections
2.5.1 and 2.5.2); Bscason=spring Bseason=summer a0d Bseason=fan here describe the seasonal
difference of the standardized daily mean temperature between winter and spring, winter
and summer or winter and fall, respectively, corresponding to the season at time ¢ (hence
we are using a dummy coding for 4 seqson here). The estimates of the coefficients for the
three periods 1955-1959, 1980-1984 and 2005-2009 as well as the corresponding p-values
of Wald tests (testing Hy : 5; = 0 vs. Hy : B; # 0or Hy : v, =0 vs. H; : 7, # 0) and
the R2, can be found in Table 3.3. Note that there exists no Wald tests and R, for
the last period since we fit a linear skew normal regression. All covariates seem to have
an significant influence on the standardized daily mean temperature (p-values << 0.05)
and the dej > (.8 indicate an appropriate explanation of the variability of the response
by our models. One can show that further autoregressive covariates do not improve the
model here.
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Coeflicient Period 1955-1959 Period 1980-1984 Period 2005-2009
Estimate | p-value of | Estimate | p-value of Estimate
Wald test Wald test

Bo -0.13 0.00 -0.20 0.00 -0.13
oat 0.96 0.00 0.88 0.00 0.99
Y2 -0.24 0.00 -0.23 0.00 -0.27
Y3 0.08 0.00 0.13 0.00 0.10
Y7 0.06 0.00 0.03 0.03 0.06
Bseason=spring 0.13 0.00 0.18 0.00 0.14
Bseason=summer 0.26 0.00 0.39 0.00 0.26
Bseason=jfall 0.11 0.00 0.21 0.00 0.12
dej 0.85 0.83 /

Table 3.3: Summary of the coefficient estimations and the adjusted Rgdj for the daily mean
air temperature models of the different periods. Note that there exists no Wald tests and

Ridj for the last period, since we use a linear skew normal regression.

With the resulted fitted values imeantemp we calculate the raw residuals

~

7ﬂt,meam‘/enno = yt,meantemp - yt,meantemp'
Using the Ljung-Box test, i.e.
Hy : residuals are independent vs. Hy : residuals are not independent,

the assumption (ii) of independent errors seems plausible (see Table 3.4: only for period
1980-1984 we would have to reject the null hypothesis at lag 365. However we think that
we can ignore this single result, since the large lag of 365 may be not very meaningful.).

Results of the maximum likelihood estimation of the distribution parameters (see
Sections 2.5.1 and 2.5.2) can be found in Table 3.5. Three goodness of fit diagnostic
plots for each period are then shown in Figure 3.4. First we plot the raw residuals of our
models against their observation numbers and thus against their point in time. We do
not detect any systematic pattern for any season here which underlines the assumption

’ Period \ lag 1 \ lag 5 \ lag 365 ‘
1955-1959 | 0.88 | 0.95 0.25
1980-1984 | 0.86 | 0.94 0.01
2005-2009 | 0.96 | 0.84 0.57

Table 3.4: p-values of the Ljung-Box tests (with lag 1,5 and 365) with the raw residuals
of the daily mean air temperature models for the different periods. As a result we cannot
reject the null hypothesis of a Ljung Box Test at a 5% significance level (except for period
1980-1984 at lag 365).
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Figure 3.4: Goodness of fit plots for our fitted daily mean air temperature models. The left
panel describes the raw residuals plotted against their observation numbers. The middle
panel shows Q-Q plots of the corresponding fitted distributions which are compared to
the empirical ones in the third panel. For all periods the plots do not exhibit any severe
objections against our assumed models.

of independent error terms. The corresponding quantile-quantile plots (Q-Q plots) are all
following nearly straight lines which attest the goodness of our fits. The fitted distributions
compared to the empirical ones are then illustrated in the third plots.

Note that the result of normal or slightly skewed distributions of the (standardized)
daily mean air temperature error terms coincide with the outcomes of Campbell and
Diebold [2005]. The estimated shape parameter Qmeantemp = —1.14 for the last period
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| Parameter | Period 1955-1959 | Period 1980-1984 | Period 2005-2009 |

02 cantemp 0.15 0.17 0.13
gmeantemp / / O 27
Wmeantemp / / 0.44
Omeantemp / / -1.14

Table 3.5: Estimates of the fitted distribution parameters in the (standardized) daily mean
air temperature model for every period.

2005-2009 indicates a slightly negatively skewed normal distribution around zero. That
means that the variability of negative error terms is a bit higher than the variability of
positve error terms. In other words, there is a slightly greater variability for ”wheather
surprises” from our fitted mean of (standardized) daily mean air temperature downwards
than upwards. In addition, the fitted distributions have nearly the same estimated variance
over the periods.

3.2 Daily minimum air temperature

Our modeling of daily minimum air temperature is similar to the previous one. We also
regress on standardized variables like in the daily mean air temperature case before. The
only difference results in the distribution of the error terms which can be best fitted by a
skew t distribution (defined in Section 2.1.7). Hence, the model specification is given by:

Yt mintemp = BO + Y1Yt—1,mintemp + Y2Yt—2,mintemp + V3Yt—3,mintemp

+’Y7yt—7,mintemp + ﬂseasonxt,sezzson + €t,mintemp; (33)

for t € {1,...,1826} (¢ € {1,...,1827} when the period contains two leap years), where

Yt,mintemp _gnlintemp

(1) yt,mintemp - gmintemp

and Ymintemp the empirical mean of the time series.

, where S,intemp i the empirical standard deviation

(ii) Covariable ¥t seqson = 1 for winter days, Zt season = 2 for spring days, Tt season = 3
for summer days and x; seqson = 4 for fall days, for all ¢ (as factors). This division
results from the meteorological seasons:

winter = December, January, February

spring = March, April, May

summer = June, July, August

- fall = September, October, November
(iii) We assume:
€t,mintemp " Skewt(ft,mintempy Wt mintemp, Qt,mintemp dft,mintemp)

(independent but with different variances at time t).
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Figure 3.5: Plots of the raw residuals from our daily minimum air temperature model
against the observation numbers for every period. One might detect different variances of
the residuals at different observations numbers ¢ and thus at different point in time ¢.

The last assumption (iii) is manifested by looking at the plots of the raw residuals

o~

Tt mintemp ‘= Yt;mintemp — gtymmtemp against the observation numbers (Figure 3.5), where
Yt mintemp denotes the fitted values of model (3.3). They are suggestive of different vari-

ances at different points in time. For that reason we use the method of weighted least
squares (described in Section 2.5.2) to estimate the parameters in (3.3) with appropriate
weights Wy mintemp such that

1
v wt,mintemp

for all t. Suitable weights, as we will see, are given by the empirical standard deviation
over all standardized observations at day d of the year in the period, i.e.

€t mintemp ™ 3k€wt(£mintemp7 wmintemp7 amintempa dfmintemp) (11d)7

Wd mintemp = Sd(yd,mintempa Yd+365,mintemps Yd+2x365,mintempr Yd+3x365,mintemp> yd+4><365,mintemp>7

where d=1,...366. Then it follows that w; mintemp = Wa(t) mintemp, Where d(t) € {1,...,366}
denotes the corresponding day of the year at oberservation t.

The estimates of the coefficients in (3.3) by the method of weighted least squares
(WLS) for the different periods are presented in Table 3.6. Note again, since we do a skew

t regression we cannot perform any Wald tests to test the significance of the parameters
~ ~WLS .
(cp. Section 2.5.2). The raw residuals 75>, = U mintemp — U mintemp 2fter weighted

least squares seem to be independent (compare Table 3.7) which underlines the assump-

tion of independent error terms. Note that i,mmtemp here denotes the fitted values of the
weighted least square regression.

The fitted distribution parameters are estimated by the method of maximum likeli-
hood and can also be found in Table 3.6. For the period 1955-1959 we have nearly no
skewness in the fitted distribution of the error terms after WLS since Qpintemp = 0. For the
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Coeflicient Period 1955-1959 | Period 1980-1984 | Period 2005-2009
Estimate Estimate Estimate
5o -0.15 -0.19 -0.16
Y1 0.93 0.88 0.94
Y9 -0.21 -0.22 -0.21
3 0.07 0.10 0.05
Y7 0.05 0.05 0.07
Bseason=spring 0.14 0.16 0.16
Bseason=summer 0.30 0.39 0.31
Bseason:fall 0.13 0.22 0.17
O intemp 0.25 0.28 0.23
Emintemp 0.00 -0.13 -0.08
Wmintemp 0.42 0.48 0.39
Omintemp -0.01 0.33 0.21
df mintemp 7.13 10.67 6.02

Table 3.6: Summary of the coefficient estimations after weighted least square regression
of (standardized) daily minimum air temperature as well as the estimated parameters for
the fitted distributions of the corresponding residuals for the different periods. Note that
there exists no Wald tests in case of skew t regressions.

further periods we then fit slight positively skewed ¢ distributions around mean 0 which
means that the variability of positive error terms (”temperature up surprises from the
mean”) is slight higher than the variability of negative error terms (”temperature down
surprises from the mean”). The estimated parameters Emmtemp, Omintemp A Qmintemp a8
well as the estimated degrees of freedom dAfmmtemp for all of the 12 periods (all periods are
marked as gray dashed lines in the background) are illustrated in Figure 3.6. Note that
there is no significant trend detectable over time since we did a simple linear regression
of the parameters against time (black dashed line) and so these distributions have almost
the same estimated variance over the periods.

| Period | lag 1 [ lag 5 | lag 365 |
1955-1959 | 0.13 | 0.55 [ 0.01
1980-1984 [ 0.22 [ 0.53 | 0.06
2005-2009 | 0.08 [ 0.59 [ 0.12

Table 3.7: p-values of the Ljung-Box tests (with lag 1,5 and 365) with the raw residuals
after weighted least square regression of the daily minimum air temperature for the dif-
ferent periods. As a result we cannot reject the null hypothesis of a Ljung Box Test (Hy :
residuals are independent vs. H; : residuals are not independent) at a 5% significance
level (except for period 1955-1959 at lag 365).
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Figure 3.6: Estimated scale Wynintem, and location gmmtemp parameters (top left panel),
estimated shape parameters Qmintemp (top right panel) as well as estimated degrees of
freedom (z\fmmtemp (bottom panel) of the fitted distributions of the residuals in the (stan-
dardized) daily minimum air temperature model for all periods. The colored dashed lines
represents corresponding 95%-confidence intervals and the black dashed lines correspond
to a simple linear regression of the parameters against time. Note that there is no sig-
nificant trend detectable. The gray dashed lines in the background mark the 12 5-years
periods.

The diagnostic plots in Figure 3.7 underline our model assumptions. In detail, the
raw residuals after WLS regression seem to be independent, they do not exihibit any sys-
tematical pattern against their observation numbers ¢ (and thus against time). Further
they now seem to have a common variance at all points in time. The corresponding Q-Q
plots of the fitted distributions of the residuals are following straight lines which can be
compared by looking in the plots of the empirical distributions against the fitted ones.
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Figure 3.7: Goodness of fit plots for our fitted daily minimum air temperature models.
The left panel describes the raw residuals after weighted least squares regression plotted
against their observation numbers. The middle panel shows Q-Q plots of the corresponding
fitted distributions which are compared to the empirical ones in the third panel. For all
periods, the plots do not exhibit any severe objections against our assumed models.

3.3 Daily maximum air temperature

The daily maximum air temperature model resembles basically the model of daily mean
air temperature. Again we are using standardized variables for our regression and the
error terms follow a skew normal distribution in the last periods in contrast to the ones
in the early periods. Thus, our observations of daily maximum temperature are explained
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by the following model:

yt,mamtemp = 60 + Vlytfl,mamtemp + 72yt72,maxtemp + '73yt73,mamtemp

+77yt—7,maartemp + /Bseasonxt,season + Et,maxtemp7 (34)

for t € {1,...,1826} (¢ € {1,...,1827} when the period contains two leap years), where

Yt,maztemp —Ymaztemp

(1) Yemaztemp = S , where 5,,43temp 1 the empirical standard deviation
maxtemp

and Ymaztemp the empirical mean of the time series.

(ii) Covariable ¥y seqson = 1 for winter days, @t season = 2 for spring days, ¢ season = 3
for summer days and x; seqson = 4 for fall days, for all ¢ (as factors). This division
results from the meteorological seasons:

winter = December, January, February

spring = March, April, May

summer = June, July, August

- fall = September, October, November
(iii) We assume:
- From period 1950-1954 to period 1980-1984:

€t,maxtemp ™ N(O 0'2 ) (lld)

) ¥ maxtemp

- From period 1985-1989 to period 2005-2009:
et,maxtemp ~ SN(fmawtempa wmaxtemp7 amawtemp) (lld)

We estimate the coefficients of our model described in (3.4) by the method of least squares.
The results are given in Table 3.8. As before, the coefficients Sseason=spring: Bseason=summer
and Bseqson=rfan describe the seasonal difference of the standardized daily maximum air
temperature between spring and winter, summer and winter or fall and winter, respec-
tively, depending on the season at time ¢ (dummy coding of ¢ seqson). All coefficients
seem to have a significant influence on the response ((nearly) all p-values of the Wald
tests < 0.05). Also the adjusted R, = 0.81 attest a relatively broad explanation of the
response variabilty by our model. Two facts results from comparing the coefficient esti-
mates of all temperature models: Firstly the standardized temperature one day before
has the most influence on the standardized temperature today (estimates 7;—;. > 0.8 in
all temperature models). Secondly all temperature models exhibit that the standardized
temperature the day before yesterday has an negatively influence on the standardized
temperature today (7;—2. < 0 in all temperature models).

~

Also in this case of the raw residuals 7y maztemp = Ut.maztemp — ﬂtmmtamp ('yvt,maxtemp are
the fitted values from our model) underline the assumption of independent error terms,
since we cannot reject the nullhypothesis, Hy : residuals are independent against Hy :
they are not, of a Ljung-Box test for different lags (cp. Table 3.9).
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Coeflicient Period 1955-1959 Period 1980-1984 Period 2005-2009
Estimate | p-value of | Estimate | p-value of Estimate
Wald test Wald test

Bo -0.15 0.00 -0.22 0.00 -0.17
Y1 0.85 0.00 0.83 0.00 0.79
Yo -0.14 0.00 -0.18 0.00 -0.07
Y3 0.07 0.00 0.12 0.00 0.06
Y7 0.06 0.00 0.03 0.05 0.06
Bseason=spring 0.16 0.00 0.21 0.00 0.19
Bseason=summer 0.30 0.00 0.43 0.00 0.34
Bseason=1fall 0.13 0.00 0.23 0.00 0.16
R, 0.81 0.81 /

O 2 atemyp 0.19 0.19 0.19
Smaxtemp / / 0.40
Wmaztemp / / 0.59
O4maxtemp / / -1.59

Table 3.8: Summary of the coefficient estimations and the adjusted Ridj for the daily
maximum air temperature models as well as the estimated parameters of the fitted distri-
butions of the corresponding error terms for the different periods. Note that there exists

no Wald tests and R, for the last period since we use a linear skew normal regression.

The parameters of the fitted distributions of the error terms are again estimated by the

method of maximum likelihood and the results are given in Table 3.8. These distributions
have mean zero and the same estimated variance over the periods. Similarly to the daily
mean temperature model the fitted distribution of the last period is slightly negatively
skewed around mean 0, described by the estimated shape parameter Qpaztemp = —1.59.
Thus, negative error terms have a little wider variability than postive error terms. The
further diagnostic plots in Figure 3.8 certify the goodness of our model fits.

’ Period \ lag 1 \ lag 5 \ lag 365 ‘
1955-1959 | 0.90 | 0.87 | 0.03
1980-1984 | 0.82 | 0.65 0.01
2005-2009 | 0.85 | 0.84 0.71

Table 3.9: p-values of the Ljung-Box tests (with lag 1,5 and 365) with the raw residuals of
the daily maximum air temperature model for the different periods. As a result we cannot
reject the null hypothesis of a Ljung Box Test (Hj : residuals are independent vs. H; :
residuals are not independent) at a 5% significance level (except for periods 1955-1959
and 1980-1984 at lag 365).
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Figure 3.8: Goodness of fit plots for our fitted daily maximum air temperature models.
The left panel describes the raw residuals plotted against their observation numbers.
The middle panel shows Q-Q plots of the corresponding fitted distributions which are
compared to the empirical ones in the third panel. For all periods the plots do not exhibit
any severe objections against our assumed models.

3.4 Fitted values of the temperature models

After building the marginal models of our three (standardized) temperature variables we
would still like to have a look at the fitted values of our models. Clearly, the standardized
variables are not much of our interest. Therefore we rather have to restandardize our fitted
values to be able to compare them to real observations.
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Figure 3.9: Restandardized fitted values of the daily mean temperature model for three
periods (Period 1955-1959 in the left plot, period 1980-1985 in the middle plot and period
2005-2009 in the right plot). In all three periods we detect an significant increase of the
fitted values over time. The red dashed lines correspond to simple linear regressions of
the fitted mean against time.
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Figure 3.10: Yearly means of the fitted (restandardized) values of daily mean, minimum
and maximum air temperature (colored plots) compared to the observed yearly means
of the corresponding variables (black lines). The colored dashed lines represent simple
linear regressions of the yearly means against time. In all cases we observe an significant
increase of the mean over time. The gray dashed lines in the background mark the 12
5-years periods, i.e. the points in time when our models switch.
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Figure 3.11: Yearly variances of the fitted (restandardized) values of daily mean, minimum
and maximum air temperature (left plot) compared to the observed yearly variances of
the corresponding variables (right plot). The colored dashed lines represent simple linear
regressions of the yearly variances against time. In all cases there is no significant trend
detectable. The gray dashed lines in the background mark the 12 5-years periods, i.e. the
points in time when our models switch.

In this connection restandardization of the fitted values, i.e. in contrast to Equation
(3.1), means

Yt temp -— ytiemp X Stemp + gtemp

where t € {1,...,1826} (¢t € {1,...,1827} when the period contains two leap years) and
a’temp are the fitted values out of one of our standardized temperature models, Siep,
the empirical standard deviation and ¥e,, the empirical mean of the underlying variable
observations as defined in (3.1). A comparison of, e.g., restandardized daily mean air
temperature fitted values for three periods is given in Figure 3.9. Confirmed by simple
linear regressions (red dashed lines) the fitted means increase significantly in all three
periods. In detail we detect an increase on average by 2.5°C per 5 years in the period
1955-1959, by 2°C per 5 years in the period 1980-1984 and by 1.5°C per 5 years in the last
period 2005-2009. However, the considered periods follow only a timespan over five years.
In other five years periods the fitted values could theoretically descrease significantly again.
Thus it is more interesting to look at the yearly means of the fitted restandardized values.
We can calculate the yearly means of the fitted values since we modeled the temperature
variables for all 12 five years periods over a whole time span of sixty years (1950-2009).
These are illustrated in Figure 3.10 for our three temperature variables by the colored
plots. For comparison we plot also the corresponding yearly means of the corresponding
variable oberservations, i.e. the "real” values (black lines). According to our goodness
of fit diagnostics one cannot detect any large differences between the fitted values and
the observed ones for all three temperature variables. Simple linear regression (dashed
lines) of the fitted values against time show an significant increase of the yearly mean of
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daily mean temperatures on average by 0.025°C p.a. (1.5°C in 60 years), an significant
increase of the yearly mean of daily maximum temperatures on average by 0.022°C p.a.
(1.32°C in 60 years) as well as an significant increase of the yearly mean of daily minimum
temperatures on average by 0.024°C p.a. (1.44°C in 60 years). The gray dashed lines in
the background of Figure 3.10 represent the points in time where our models switch every
five years. Note, to place emphasis on it, that we detect a significant increase of the yearly
means of temperatures only over the last 60 years. We cannot say anything about the
overall view of temperature developments over the last and next centuries.

Finally, we also take a look at the yearly variances of the fitted (restandardized)
values of three temperature variables over the last 60 years (left plot in Figure 3.11). No
significant trend is detectable. Clearly the observed yearly variances of the temperature
variables ("real” variances in the right plot of Figure 3.11) are higher compared to the
variances of the fitted values, since these differences are explained by the error terms in
our models.

3.5 Daily mean relative humidity

We are using a beta regression model to model the distributional behavior of the daily
mean humidity variable Y} pumidgity € (0%, 100%) at ¢ in Hohenpeissenberg. The beta re-
gression model is defined in Section 2.5.3 for modeling continuous variables Y that assume
values in the open standard unit interval (0, 1). Thus in case of our daily mean humidity
variable, we instead model

Y:‘,,humidity

100%
with values in (0, 1) for every period, based on the corresponding observations i pumidity ‘=

Pehumetty € {1,...,1826} (t € {1,...,1827} when the period contains two leap years).

Y;ﬁ,humidity =

Using the parametrization of (2.28) in Section 2.1.8, we assume that i,humidity ~

B (Mt,humiditya <Z5humidz'ty) with £ [Y;,humidity} = Ut humidity and appropriate precision param-
eter Opumidity. Hence, due to the regression model, we assume that

g(ﬂt,humidity) = Mt,humidity

where g : (0,1) — R is the link function and 7 pumidgity 1S the linear predictor at t. It is
defined as

Nt humidity = ﬁ() + Y1Yt—1, humidity + /Bsinwinddirection sin (It,winddiTectian X 1781—_0) +
ﬁcoswinddirection COs (xt,winddirection X &) + ﬁseason'xt,seasona (35>
for t € {1,...,1826} (¢t € {1, ..., 1827} when the period contains two leap years), where

(i) Covariable z yinddirection, Which is the daily mean wind direction at ¢,

(*Tt,winddirection € [007 3600])
captures the "Fon”-effect (dry and hot winds in the foothills region of the Alps).
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(ii) Covariable ¥y seqson = 1 for winter days, @t season = 2 for spring days, ¢ season = 3
for summer days and x; seqson = 4 for fall days, for all ¢ (as factors). This division
results from the meteorological seasons:

winter = December, January, February

spring = March, April, May

summer = June, July, August

- fall = September, October, November

Note that we choose the usual logit link as our link function g in the model, i.e. g(u) :=
log(p/(1 — 1)) (cp. to Section 2.5.3). We checked that other (asymmetric) link functions
as the log-log, complementary log-log, probit or Cauchy link do not improve our model.
Additional further autoregressive variables in 3.5 also did not result in better model fits.
However, an improvement can be achieved by adding the covariable of daily mean wind
direction. It explains an additional effect on humdity resulting from dry and hot winds
in the foothills region of the Alps, called "Fon” winds. This effect does not appear in
other lowland regions therefore the adding of such a covariable seems to be reasonable. A
method how to calculate the daily mean of hourly measured wind directions can be found
in Appendix B.

Notice that there is no available data of daily winddirection for period 1950-1954 to
period 1970-1974. Thus we implement the above mentioned linear predictor without the
two winddirection covariates for these time spans, i.e.

Nt humidity = 60 + V1Yt—1, humidity + ﬁseasonxt,season-

The maximum likelihood estimates of the coefficients in (3.5) and the p-values of corre-
sponding asymptotic Wald tests (i.e. testing Hy : f; =0 vs. Hy : 5; # 0 and Hy: y3 =0
vs. Hy : y1 # 0 respectively) are given in Table 3.10. Note as before, that the coefficients
Bseason:springa ﬂseason:summer and Bseason:fall describe the seasonal difference of ﬁt,humidity
between spring and winter, summer and winter or fall and winter, respectively, depend-
ing on the season at time ¢ (i.e. dummy coding for factor variable z; seqson). Almost all
coefficients seem to have an significant influence on the linear predictor 1 pumidity €xcept
some seasonal differences. The pseudo R? raises from 0.17 to the level of 0.32 by adding
the daily mean winddirection covariates.

The resulted fitted values (x 100) are plotted together with the observations in Figure
3.12. The diagnostic plots for our model fits of period 1955-1959, period 1980-1984 and
period 2005-2009 can be found in Figures 3.13 - 3.15. They include the plot of residuals
against their observation numbers (top left panel: should show no systematic pattern),
the plot of the corresponding Cook’s distance (middle panel at the top: should be small
for all observations), the plot of generalized leverage vs. predicted values (top right panel:
should be small for all predicted values), the plot of residuals against the values of the
linear predictor (bottom left panel: no trend should be detectable), the half-normal plot
of the residuals (bottom middle panel: points should lie inside the envelope) and the plot
of predicted vs. observed values (bottom right panel: should follow a straight line). When
we compare the half-normal plots (their constructions are described in Section 2.5.3) we
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Coeflicient Period 1955-1959 Period 1980-1984 Period 2005-2009
Estimate | p-value of | Estimate | p-value of | Estimate | p-value of
Wald test Wald test Wald test
5o -1.21 0.00 -0.56 0.00 -0.84 0.00
oat 3.30 0.00 2.53 0.00 3.00 0.00
Bsinwinddirection / 0.52 0.00 0.60 0.00
Beoswinddirection / -0.41 0.00 -0.38 0.00
Bseason=spring -0.03 0.55 -0.23 0.00 -0.34 0.00
Bseason—=summer -0.03 0.57 -0.31 0.00 -0.39 0.00
Bseason={fall 0.24 0.00 -0.05 0.30 -0.04 0.44
pseudo R? 0.17 0.29 0.32
| Ohumidity | 5.30 7.49 7.43

Table 3.10: Summary of the coefficient estimations together with the p-values of the cor-
responding asymptotic Wald tests, the pseudo R? and the estimated precision parameters
Ohumidity I the beta regression model for daily mean relative humidity of the three periods.

detect that a proportion of residuals fall outside the envelope lines in all periods. This
proportion is getting smaller in both later periods compared to the period 1955-1959 prob-
ably due to the fact of including the wind direction variables into the model. The other
plots offer no severe noticeable problems. However, the basic assumption of a beta dis-
tributed relative humidity variable seems to be fundamental. Maybe for a ”future work”,
one should use a kind of weighted beta regression to improve the model fit here.

Note that the variance of ¥t pumidity i @ function of fi pumidity and thus our regression
model based on this parameterization is naturally heteroskedastic.

Period 1955-1959

Period 1980-1984

Period 2005-2009
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Figure 3.12: Observations of daily mean relative humidity against the fitted values (x100)

time t

time t

of the corresponding regression models (red points) for the three periods.
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Figure 3.15: Diagnostic plots of daily mean relative humidity model - period 2005-2009.

3.6 Daily mean air pressure

The distributional modeling of the daily mean air pressure variable basically follows the
modeling of the temperature variables. More precisely it follows the daily minimum air
temperature model, since we also decided to fit a heteroskedastic regression model with
skew t distributed residuals in case of air pressure. Note that we again regress on standard-
ized variables and hence we assume the following model for the daily mean air pressure
observations:

yt,press = BO + Vlytfl,press + 72yt72,press + ’YSyth,press
+’77yt—7,press + Bsea80n$t,season + Et,pressa (36)

for t € {1,...,1826} (t € {1,...,1827} when the period contains two leap years), where

(1) Ut press = Lerrees—toress where Sppes5 i the empirical standard deviation and gpyess the

Spress

empirical mean of the time series.

(ii) Covariable ¥t seqson = 1 for winter days, @t season = 2 for spring days, Tt season = 3
for summer days and x; seqson = 4 for fall days, for all ¢ (as factors). This division
results from the meteorological seasons:

- winter = December, January, February
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Figure 3.16: Plots of the raw residuals from our daily mean air pressure model against
the observation numbers for every period. One might detect different variances of the
residuals at different observations numbers ¢ and thus at different point in time ¢.

- spring = March, April, May
- summer = June, July, August

- fall = September, October, November

(i) We assume:
Et,press ~ Skewzf(ét,p'ress; wt,pres& at,presm dft,press)

(independent but with different variances at time t).

The last assumptlon (i) is detected by looking at the plots of the raw residuals 7 press ==
Ytpress — Yt press against the observation numbers (Figure 3.16), where , yt press are the fitted
values of model (3.6). They show that the residuals might have different variances at
different points in time. For that reason we use the method of weighted least squares
(described in Section 2.5.2) to estimate the parameters in (3.6) with appropriate weights
Wy press Such that

1
\/ wt,press

for all t. Suitable weights, as already in the minimum air temperature model, are given by
the empirical standard deviation over all standardized observations at day d of the year
in the period, i.e.

€t press ™ Skewt(épresm Wpresss Xpress dfpress) (11d>7

Wd press = Sd(yd,pr6387 Yd+365,press; Yd+2x365,pressr Yd+3x365,press, yd+4><365,press>7

where d=1,...366. Then it follows that wypress = Wa()press, Where d(t) € {1,...,366}
denotes the corresponding day of the year at oberservation t.

The estimates of the coefficients in (3.6) by the method of weighted least squares
(WLS) are presented in Table 3.11 for the different periods. We see that the standardized
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Coefficient Period 1955-1959 | Period 1980-1984 | Period 2005-2009
Estimate Estimate Estimate
Bo -0.08 -0.01 -0.01
Y 0.99 0.99 1.06
Y9 -0.35 -0.38 -0.45
Y3 0.07 0.10 0.14
Y7 0.01 0.03 0.00
ﬁseason:spring 0.05 -0.08 -0.02
Bseason=summer 0.16 0.11 0.08
Bseason="fall 0.19 0.09 0.10
Uf,ress 0.38 0.39 0.32
Epress 0.19 0.23 0.09
Wpress 0.55 0.57 0.49
Opress -0.48 -0.56 -0.24
Af press 9.16 12.10 7.61

Table 3.11: Summary of the coefficient estimations after weighted least square regression
of (standardized) daily mean air pressure as well as the estimated parameters for the fitted
distributions of the corresponding residuals for the different periods. Note that there exists
no Wald tests in case of skew ¢ regressions.

variable of daily mean air pressure at ¢ strongly depends on the value of the standardized
variable at t — 1 (estimates 7; > 0.99). Note again, since we do a skew t regression we
cannot perform any Wald tests to test the significance of the parameters (cp. Section
2.5.2). As before, the coefficients Bseason—spring, Pseason=summer a0d Bscason=fau describe the
seasonal difference of the standardized daily mean air pressure between spring and winter,
summer and winter or fall and winter, respectively, depending on the season at time ¢ (i.e.

dummy coding for factor variable x; season)-
. WLs |~ ~WLS . .
The raw residuals 7" %% 0 := Ut press — Yy press alter weighted least squares seem to be inde-

pendent (compare Table 3.12 after Ljung-Box tests) which underlines the assumption of

’ Period \ lag 1 \ lag 5 \ lag 365 ‘
1955-1959 | 0.11 | 0.12 0.19
1980-1984 | 0.09 | 0.17 | 0.48
2005-2009 | 0.05 | 0.03 0.64

Table 3.12: p-values of the Ljung-Box tests (with lag 1,5 and 365) with the raw residuals
after weighted least square regression of the daily mean air pressure for the different
periods. As a result we cannot reject the null hypothesis of a Ljung Box Test (Hj :
residuals are independent vs. H; : residuals are not independent) at a 5% significance
level (except for period 2005-2009 at lag 5).
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Figure 3.17: Estimated scale Wy, ss, location g,ress and shape Qs parameters (left panel)
as well as estimated degrees of freedom c@“ ress (right panel) of the fitted distributions of the
residuals in the (standardized) daily mean air pressure model for all periods. The colored
dashed lines represents corresponding 95%-confidence intervals and the black dashed lines
correspond to a simple linear regression of the parameters against time. Note that there
is no significant trend detectable. The gray dashed lines in the background mark the 12
5-years periods.

~WLS
independent error terms. Note that y, ..., here denotes the fitted values of the weighted
least square regression.

The distribution parameters are estimated by the method of maximum likelihood and
can also be found in Table 3.11. For all regarded periods we fitted negatively skewed ¢
distributions of the error terms after WLS since @pess < 0. This means that the variability
of negative error terms (”air pressure down surprises from the mean”) is slight higher than
the variability of positive error terms (”air pressure up surprises from the mean”). The
estimated parameters gmss, Wpress and Qpress as well as the estimated degrees of freedom
a/l:fpress for all of the 12 periods (all periods are marked as gray dashed lines in the back-
ground) are illustrated in Figure 3.17. Note that there is no significant trend detectable
over time since we did a simple linear regression of the parameters against time (black
dashed line) and so these distributions have almost the same estimated variance and a
mean close to zero over all periods.

The diagnostic plots in Figure 3.18 underline our model assumptions. In detail, the
raw residuals after WLS regression seem to be independent, they do not exihibit any sys-
tematical pattern against their observation numbers ¢ (and thus against time). Further
they now seem to have a common variance at all points in time. The corresponding Q-Q
plots of the fitted distributions of the residuals are following straight lines which can be
compared by looking in the plots of the empirical distributions against the fitted ones.
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Figure 3.18: Goodness of fit plots for our fitted daily mean air pressure models. The left
panel describes the raw residuals after weighted least squares regression plotted against
their observation numbers. The middle panel shows Q-Q plots of the corresponding fitted
distributions which are compared to the empirical ones in the third panel. For all periods,
the plots do not exhibit any severe objections against our assumed models.

We take a look at the restandardized fitted values, i.e.

Yt,press *= Yt press X Spress + gpress

where ¢t € {1,...,1826} (t € {1,...,1827} when the period contains two leap years) and

yt,press

are the fitted values from our above described standardized mean air pressure
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Figure 3.19: Restandardized fitted values of the daily mean air temperature model for
three periods (Period 1955-1959 in the left plot, period 1980-1985 in the middle plot
and period 2005-2009 in the right plot). The fitted means increase significantly in periods
1955-1959 and 1980-1984 and decrease significantly in the last period 2005-2009 over time.
The red dashed lines correspond to simple linear regressions of the fitted mean against
time.

model, 5,,.ss the empirical standard deviation and .5 the empirical mean of the under-
lying air pressure observations. A comparison of restandardized daily mean air pressure
fitted values for three periods is given in Figure 3.19. Confirmed by simple linear regres-
sions (red dashed lines) the fitted daily means increase significantly in periods 1955-1959
and 1980-1984 and decrease significantly in the last period 2005-2009. In detail we detect
an increase on average by 1.2 mbar per 5 years in the period 1955-1959 and by 1.48 mbar
per 5 years in the period 1980-1984. In the last period 2005-2009 we have an siginficant
decrease of the fitted daily values on average by 1.2 mbar per 5 years.

The look at the yearly means of the fitted restandardized values of daily mean air pressure
(red line in the left plot in Figure 3.20) over sixty years (1950-2009) indicates an signifi-
cant increase on average by 0.02 mbar p.a. (1.2 mbar in 60 years). For comparison we also
plot the corresponding yearly means of the daily oberservations of mean air pressure at
Hohenpeissenberg, i.e. the "real” values of measured air pressure (black line). They are
almost falling on the same line. The gray dashed lines in the background of Figure 3.20
represent the points in time where our models switch every five years. Note again, that
we detect an significant increase of the yearly means of daily mean air pressure only over
the last 60 years. However, we cannot say anything about the overall view of air pressure
developments over the last and next centuries.

The look at the yearly variances of the fitted (restandardized) values of daily mean air
pressure over the whole period 1950-2009 (red line in the right plot in Figure 3.20) detects
no significant trend. Clearly the yearly variances of the air pressure observations (”real”
variances; the black line in the right plot of Figure 3.20) are higher compared to the vari-
ances of the fitted values, since these differences are explained by the error terms in our
model.
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Figure 3.20: Yearly means of the fitted restandardized values of daily mean air pressure
(red line in the left plot) compared to the yearly means of the "real” air pressure obser-
vations (black line in the left plot). One detects a significant increase in yearly means
of daily mean air pressure based on simple linear regressions of the means against time
(dashed lines). The yearly variances of the fitted (restandardized) values of daily mean air
pressure are presented by the red line in the right plot compared to the observed yearly
variances of the corresponding variable (black line in the right plot). The dashed lines
represent simple linear regressions of the yearly variances against time. In the variance
case there is no significant trend detectable. The gray dashed lines in the background
mark the 12 5-years periods, i.e. the points in time when our models switch.

3.7 Daily total precipitation

Modeling daily total precipitation, i.e. Y} .. at time ¢ in Hohenpeissenberg, is a special
case because the variable is often equal to zero. Stern and Coe [1984] introduced a two
step method to model such a behavior:

1. We model the rain occurrence on day d of the year, i.e. day d of the year is dry or
has rain with an appropriate rain probability following a binomial regression and

2. the positive rain amount when day d of the year is rainy is modeled by a gamma
regression,

where d = 1, ..., 366. Hence, we model the distributional behavior of Y .. for every day d
of the year and assume that the distribution of Y} ;... equals the distribution of Yy prec,
where d(t) denotes the corresponding calendar day d of the year at observation t. Due to
Stern and Coe [1984] we implement the model based on observations measured from the
whole period 1950-2009 (all in all 21915 observations) to have a suitable number of data.
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3.7.1 Modeling rain occurrence

We begin our model with defining the random variable J(d) as

J(d) = 0, %f day d is dry,‘
1, if day d has rain,

where d = 1, .., 366.

We assume that J(d) is a first-order, non stationary Markov chain, i.e. it holds that
P(J(d)=1J(d—-1),J(d—-2),J(d—3),...) = P(J(d) = 1|J(d — 1)).

Thus we are interested in modeling this probability, i.e. the rain success probability ”day
d has rain”, conditional on whether the day before had rain or not. Note, we checked that
the assumption of higher ordered Markov chains (i.e. conditioning on J(d — 1), J(d — 2),
J(d —3) and so on) would not improve our model fit here. So let us define

po(d) = P(J(d) = 1]J(d~1) = 0)
p(d) = P(I(d)=1J(d 1) =1), (3.8)

where d =1, ..., 366.

Based on our observations we further define

no1(d) := Number of days with J(d) =1 and J(d — 1) =0,
ni1(d) := Number of days with J(d) =1 and J(d —1) =1, (3.9)

It is reasonable to assume that the in (3.9) defined numbers of success (success = rain) on
day d of the year, depending on what happened one day before, are binomial distributed,
ie.

where p;(d) denotes the corresponding rain success probability as defined in (3.8) and

n;y(d) is the whole number of days conditional on whether the day before had rain or not
(i=0,1),d=1,..,366, ic.

not+(d) = Number of days with J(d) = 0,1 and J(d — 1) =0,
ni+(d) := Number of days with J(d) =0,1 and J(d —1) = 1.
Consequently, using the usual logit link function, we model the two rain success prob-

abilities of (3.8) by a binomial regression (described in Section 2.5.4) in the following
way:

ni1(d) o _ exp(n;(d))
E {n,ur(d)} =pild) [1 + exp(n:(d))]

@mwzzmMmzmQﬁﬁ@szm,
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Harmonics | Residual | Residual p-value of Partial Partial p-value of
degrees deviance | res. deviance degrees deviance | part. deviance

of freedom test of freedom test

0 365 471.53 0.00 / / /

1 363 391.50 0.15 2 80.03 0.00

2 361 374.96 0.30 2 16.54 0.00

3 359 372.38 0.30 2 2.58 0.28

Table 3.13: Analysis of deviance in our binomial regression model for ng;(d) ("there was
no rain yesterday on day d — 17). 2 harmonics are sufficient here, since the p-value of
the partial deviance test is equal to 0.28, i.e. the model is not improved by an extending
on 3 harmonics. The corresponding residual deviance test (p-value = 0.30) underlines an
appropriate model choice with 2 harmonics.

where 7;(d) is the linear predictor. In our case according to Stern and Coe [1984], 1;(d)
should be a Fourier series with & harmonics to capture seasonality effects, i.e.

k
ni(d) = aip + Z[a“ sin(ld") + by cos(ld)], i = 0,1,

=1

(3.11)

where d := 25¢ with d = 1, ..., 366.

With the aid of partial deviance tests (i.e. testing Hy : the model extension improves
the model fit vs. H; : it does not, see Section 2.5.4) we notice that 2 harmonics are
sufficient in the linear predictor (3.11) for both models of ng(d) and ny;(d). Further
residual deviance tests (i.e. testing Hy : the described model is true vs. H : it is not, see
Section 2.5.4) emphasize the goodness of fit. The detailed values of the deviances and the
p-values of the corresponding tests can be found in Tables 3.13 and 3.14. The estimates

Harmonics | Residual | Residual p-value of Partial Partial p-value of
degrees deviance | res. deviance degrees deviance | part. deviance
of freedom test of freedom test
0 365 394.70 0.14 / / /
1 363 372.68 0.35 2 22.02 0.00
2 361 363.56 0.45 2 9.12 0.01
3 359 363.27 0.43 2 0.29 0.87

Table 3.14: Analysis of deviance in our binomial regression model for ny;(d) (”there was
rain yesterday on day d — 17). 2 harmonics are also sufficient here, since the p-value of
the partial deviance test is equal to 0.87, i.e. the model is not improved by an extending
on 3 harmonics. The corresponding residual deviance test (p-value = 0.45) underlines an
appropriate model choice with 2 harmonics.
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Coefficient | mno1(d) model (i =0) | nii(d) model (i =1)

Estimate | p-value of | Estimate | p-value of

Wald test Wald test
a0 -0.69 0.00 0.83 0.00
a;1 0.06 0.02 0.14 0.00
bi1 -0.26 0.00 -0.01 0.78
a;o -0.04 0.23 -0.02 0.39
bio 0.12 0.00 0.08 0.00

Table 3.15: Coefficient estimations in case of modeling ng; (d) and n11(d) respectively with
p-values of the corresponding asymptotic Wald tests.

of the coefficients in the linear predictor (3.11) are calculated by an iterative weighted
least squares algorithm (IWLS) and the results are presented together with the p-values
of corresponding asymptotic Wald tests in Table 3.15. The comparison of the empirical
estimations of py(d) and p;(d) in contrast to the fitted ones of our model in Figure 3.21
shows that almost all empirical estimates lie inside the 95%-confidence interval of our fitted
probabilities for each day of the year (d = 1, ...,366). Note that empirical estimations of
po(d) and py(d), i.e. po(d) and pi(d) respectively, are calculated here as

# observations with rain at day d and no rain at day d — 1

po(d) = ,
Po(d) # observations with no rain at day d — 1
Bud) = # observations with rain at day d and at day d — 1
h1 # observations with rain at day d — 1 '
5 8-
S S

Figure 3.21: Plots of the empirical estimations defined in Equation (3.12) of py(d) (points
in left plot) and p;(d) (points in right plot) together with the fitted probabilities from
the model (solid lines in both plots) with corresponding 95%-confidence intervals (dashed
lines) for every day d of the year, d = 1, ..., 366.
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The plots in Figure 3.21 present a significant difference between the values of py(d) and the
values of p;(d) over the whole year. While the empirical probabilities of rain conditioned
on no rain one day before (py(d)) ranges between 0.1 and 0.61 over the year, the empirical
probabilities of rain conditioned on rain occurrence also one day before (p;(d)) lie between
0.42 and 0.92 over the year. Further, the probabilities of rain conditioned on no rain one
day before (po(d)) might be higher in summer than in winter. In contrast, the empirical
probabilities of rain conditioned on rain occurrence also one day before (p;(d)) rather stay
the same level (only a slight break in fall is illustrated).

3.7.2 Modeling positive rain amount

Now when J(d) = 1, i.e. it rains on day d of the year, we are interested in modeling this
positive amount of rain on day d for d = 1, ..., 366. As before we are modeling the positive
rain amount Y;*(d) of day d conditional on what happened one day before, i.e. whether
day d — 1 was dry (¢ = 0) or not (i = 1). More formally:

Y (d) = amount of rain at day d, when J(d) =1 and J(d—1)=14,i=0,1. (3.12)

According to Stern and Coe [1984] studies have shown that it is reasonable to assume
Y;"(d) to be gamma distributed, i.e.

Y F(d) ~ Gamma(k;, pi(d)), i =0, 1.
With this parametrization introduced in Section 2.1.9, it holds that
E[Y;"(d)] = mi(d), i=0,1,

where d = 1, ..., 366. Therefore it seems to be reasonable to implement again a GLM, i.e.
a gamma regression with log link funtion (defined in Section 2.5.4) to model that mean
E[Y;"(d)] = pi(d) on day d of the year. Hence, we assume that

log(pi(d)) =mi(d) < pi(d) = exp(n;(d)), 1 =0,1,

where 7;(d) denotes the linear predictor. Again we use a Fourier series as linear predictor
to capture the seasonality:

k

ni(d) = aip + Z[a” sin(ld’) + by cos(ld')], i = 0,1, (3.13)
1=1
__ 2nd : _

where d' = $52, with d = 1, ..., 366.

Note since we have 60 independent observations for each day of the year d (except for

February, 29th, there are only 15 observations), i.e. ¥ yrec With d(t) = d for d = 1, ..., 366,

we perform a gamma regression with weights (introduced in Section 2.5.4) to model Y;*(d)

based on averaged observations for each day d of the year (depending on what happend

one day before at d — 1), i.e.

Ti(d) = ﬁ()ll(d) 3 Vipree, (3.14)

{t: d(t):d N yt—l,prec:()}
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Harmonics Residual | Residual p-value of Partial Partial p-value of
(with degrees deviance | res. deviance degrees deviance | part. deviance
estimated (Ek) of freedom test of freedom test
0 (¢0=2.96) 365 1052.08 0.63 / / /

1 (¢1=1.43) 363 522.50 0.45 2 529.58 0.00
2 (¢2=1.43) 361 521.22 0.44 2 1.28 0.64

Table 3.16: Analysis of deviance in our gamma regression model for Y, (d) (”there was
no rain yesterday on day d —1”). One harmonic is sufficient here, since the p-value of the
partial deviance test is equal to 0.64, i.e. the model is not improved by an extending on
2 harmonics. The corresponding residual deviance test (p-value = 0.45) shows no lack of
fit with 1 harmonic. Note: (Ek denotes the estimated dispersion parameter for the gamma
regression with weights with & harmonics, needed to perform the residual and partial
deviance tests here.

(3.15)

yt,prem

(D)= = >
na(d) o
{t: d(t)=d N Yyt—1,prec>0}
with weights 7;1(d), i = 1,2. Here ng;(d) corresponds to the number of observations with
positive rain amount on day d of the year and no rain amount on day d — 1 of the year.
Similarly, n11(d) denotes the number of observations with positive rain amount on day d
and positive rain amount on day d — 1 of the year.

As described in Tables 3.16 and 3.17, one harmonic in the linear predictor (3.13) is
sufficient in case of modeling Y, (d) and two harmonics are required in case of modeling
Y;"(d). The estimated coefficients of the corresponding models can then be found in Table
3.18. A look at the plots of the averaged observations (points in both plots of Figure

Harmonics Residual | Residual p-value of Partial Partial p-value of
(with degrees deviance | res. deviance degrees deviance | part. deviance
estimated ggk) of freedom test of freedom test

0 (¢0=3.69) 365 1303.39 0.66 / / /

1 (¢1=1.50) 363 573.01 0.24 2 730.38 0.00

2 (¢2=1.48) 361 558.20 0.27 2 14.81 0.01

3 (¢3=1.49) 359 557.93 0.28 2 0.27 0.91

Table 3.17: Analysis of deviance in our gamma regression model for Y;*(d) (”there was
rain yesterday on day d — 1”). Two harmonics are sufficient here, since the p-value of the
partial deviance test is equal to 0.91, i.e. the model is not improved by an extending on
3 harmonics. The corresponding residual deviance test (p-value = 0.27) shows no lack of
fit with 2 harmonics. Note: ngﬁk denotes the estimated dispersion parameter for the gamma
regression with weights with & harmonics, needed to perform the residual and partial
deviance tests here.
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Coefficient | Y;"(d) model (i = 0) | Y;7(d) model (i = 1)
Estimate | p-value of | Estimate | p-value of
Wald test Wald test
a;1 -0.17 0.00 -0.14 0.00
bi1 -0.53 0.00 -0.39 0.00
a;o / / 0.01 0.56
bio / / 0.06 0.00
) 1.43 1.48

Table 3.18: Coefficient estimations in case of modeling Y (d) and Y;*(d) respectively with

p-values of the corresponding asymptotic Wald tests. ¢ denotes the estimated dispersion
parameter of the corresponding gamma regressions with weights.

3.22) together with the fitted values (solid lines in both plots of Figure 3.22) indicates
that almost all averaged observations lie inside the 95%-confidence intervals of the fitted
values. One can detect a slight but significant difference between the models of Y, (d)
and Y{"(d). However, both models show a higher rain amount in summer than in winter
months. This phenomenon might occur due to the fact that the foothills of the Alps are a
high precipitation region which reaches its distinctive maximum in summers (see Miiller-
Westermeier [2001]). It is because the portion of water vapor in the air is getting higher
the higher the temperature is in that region. Therefore higher rain amounts in summer
coming from convective precipitations are the consequence.

Figure 3.22: Plots of the averaged observations defined in Equation (3.14) and (3.15) of
Y;"(d) (points in left plot) and Y;"(d) (points in right plot) together with the fitted values
from the model (lines in both plots) with corresponding 95%-confidence intervals (dashed
lines) for every day d of the year, d = 1, ..., 366.



Chapter 4

R-vine specification

Now we are ready to model the dependencies among our six meteorological variables by
an R-vine distribution. After we have fitted the marginal distributional behaviors in the
previous chapter we would like to specify the common distribution of the random vector

/
Y., = 6
t -— (Y;f,me(zntem 7Y;€,mintempv Y;,maxtem 7}/1€,humidit 7Y;f, TESS ) Y;f,prec) € ]R ) (4]-)
P P Y P

at time t for the three periods 1955-1960, 1980-1984 and 2005-2009 (¢ € {1,...,1826}
for periods 1955-1960 and 2005-2009, and t € {1, ..., 1827} for the period 1980-1984 that
contains two leap years). Note, because we are interested in the common dependency
structure among the variables, it is sufficient to examine the distribution of the i.i.d. er-
ror terms €;. from our standardized (WLS) regression models instead of the quantities
Yi meantemp, Yt.mintemps Yt.maztemp @A Y press respectively, as well as the distribution of the
standardized daily humidity variable ihumidity instead of Y pumidity. This is reasonable
since the differences are only constrained to rescalings in the mean but the marginal dis-
tributional behaviors remain the same. Then we take the marginal distribution functions
F,. (which we have estimated in the previous chapter) and calculate the corresponding
margins u. = ﬁt(yt) for every variable and every point in time ¢ (here y;. denotes the
observation of a variable at time ¢) to get (hopefully) uniform on [0, 1] distributed margins
to be able to apply Sklar’s Theorem.

We have to consider that the distribution of daily total precipitation Y; ;.. at time ¢ has
an additional point mass at zero as we have seen in Section 3.7. Thus, the corresponding
probability function is not continuous at zero and therefore violates the assumption of
Sklar’s Theorem in the continuous case that we need here (cp. assumptions of Theorem
2.14). As a consequence, our six dimensional R-vine approach based on pairwise copula
constructions is not straightforward anymore. Erhardt and Czado [2012] developed a
model to handle such a scenario. Although they apply their approach to insurance data,
i.e. yearly claim totals, we can easily transfer it to our application. We will specify this
immediately in the next subsection, followed by a description how to construct this kind
of model by appropriate R-vines and we will conclude this chapter by showing how to
simulate from the model.

103
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4.1 Model formulation

First of all we can rewrite Y, at time ¢ from (4.1) as
Yt - (Yt,—preca Yt,prec)/ S RES: (42>

o 5
where Yt,—prec T (Y;S,meantempa }/t,mintempa Yt,maa:temp; }/t,humiditya Yt,press) € R” is the random
vector without the variable of daily total amount of precipitation Y} ;.. at time ¢. Further,
we can express Y; prec as

Yipree :=[1 = J(d(t))] x 0+ J (d(t)) Y,

t,prec

> 0, (4.3)

where J (d(t)) denotes the binary indicator random variable for the rain event on day
d(t) as defined in (3.7) in Section 3.7. As a reminder, J (d(t)) = 1 when day d(¢) has rain
with "rain success” probability p;(d(t)) := p(J (d(t)) = 1|J (d(t — 1)) = 1), i = 0,1, i.e.
depending on whether it was also rainy at day d(t — 1) or not. Otherwise J (d(t)) = 0
when day d(t) is dry with probability 1 — p;(d(t)), ¢ = 0,1, also depending on what
happened one day before on d(t — 1). Note that again d(t) € {1,...,366} stands for the
calendar day at time ¢. The random variable Yt;r,,,ec represents the positive amount of
rain when J(d(t)) = 1 at time ¢t. As we have modeled in Section 3.7, its continuous
gamma distribution also depends on J (d(t — 1)) at time ¢ — 1. But the level of positive
precipitation amount is independent of .J (d(t)) at time ¢ since Y;7... is observable when
J (d(t)) = 1. Therefore the common distribution of Y, _pcc, Yipree and J (d(t)) at time ¢

can be calculated as

FY, e Vi pree g (d(0)) (Yt —precs Yt.prees Jd(t))
=P (Yt,fprec < Yt —precs }/;f,prec < Ytprees J (d<t)) = jd(t))
=p (J(d(t) = jaw|J (d(t = 1)) P (Yi—prec < Ys—prees Yepree < Yepree|J (d(E)) = Jaw))
=p (J(d(t)) = jaw|J (d(t —1))) X
{P (Yi—prec < Ys—preer 0 < Yrpreel S (d(t)) = 0) if Jaw) =0,
P (Yt,—prec < Yt precs Y:I_?rec < yt,precu (d(t)) = 1) , if Jaw = 1.
=p (J(d(t)) = jaw | (d(t —1))) x
P (Yt —prec < Yi_prec) - if ja) = 0,
{P (Yt,—p'rec < Yt —prec Y;,?;rec < yt,prec) , if jd(t) =1,

(4.4)

1 5 /
for Yt,prec Z 0 and yt,fprec = ( 15,—)])7‘607 ) yzg,—)prec) S R5‘
The last line of Equation (4.4) suggests that our common distribution of Y, (i.e. in-
cluding Y} ,rec) equals either the common five dimensional distribution of Y _,,.. or the
common six dimensional distribution of (Y _rec, YJMC) € R depending on the value of

J (d(t)), times the distribution of J (d(t)) at time t. Clearly, these common five and six
dimensional distributions can be modeled by two R-vines.
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We can then determine the common densitiy of Y, (i.e. including Yje.:) and J (d(t))
at time t (cp. Erhardt and Czado [2012]) as follows:

Sy Wedawy) = p(J(d®t) = Jaw ! (d(t = 1)) X [Lis@w)=01S¥ e —pree Yt prec)

+ l{J (t)= l}f(Yt Cprec,YyT )(yt,—pT607 yt,prec)]

t,prec

Sklar .
= p(J () = jaw|J (d(t —1))) x (4.5)
|:1{J(d(t)):O}CYt,—prcc (Fn,meantemp (yt(,l—)pT€C>7 v Fyvt,p'ress (yt(:g)—)prec)> X

1 5
fY't,meantemp (yt(,zprec> T f}/t,prcss (yt(,zprec>
+ L@ay=13%

1
) <F}/t meantemp (yt( )prec) o F’YV+

tprec (ytprec)) X
(yt,prec)] )

C(Yt —precs Y+

t,prec

fyvt ,meantemp (yt —prec) ’ f}/t"—p'rec
’ 1 / .
where Yy ‘= (yt —precyyt prec) = (?/g —)precv . ayé )precaytprec) S R6 with Yt prec Z 0. The
functions F(yt(J ) orec)s Byt (Yepree), - (y§ 7 " ree) And fy+ (Y4 prec) Tepresent the marginal
t,prec t,prec
distribution and density functions respectively of the corresponding variables.

Due to the Theorem of Sklar (cp. Th. 2.14) the Equation (4.5) shows the common dis-
tribution of Y; and J (d(t)) in terms of marginal distributions and copulas Cy, _, .. and
Covo ooyt - Here for the copulas it holds

t prﬁc

C’yt’_pm(ul, P U,5) = C(Yt CpreesYy (ul, ..., Us, 1)

prec)

That is, while C(yt,_pmc v;h

t,prec

ables at time ¢ (when J (d(t)) = 1), Cy, _,,.. models that of all variables except precipi-
tation.

By looking at the log-likelihood of the model, it becomes clear that the modeling of
(Yt _pree, Yyt eo) and J (d(t)) can proceed independently:

t,prec

) describes the dependence between all meteorological vari-

108 fys s Yo Ja) = ogp (J (d(8)) = jaw|J (d(t — 1)) + log [...].

Thus, our way of modeling, i.e. first modeling the behavior of J (d(t)) in Section 3.7 and
afterwards modeling the common dependence of (Yt _pyec, Y;;Tec), is substantiated.
Thereby, according to the model built in Equations (4.4) and (4.5), our approach will
be the following :

Civi_preoys ) Will be modeled as vine copula with

t,prec

(4.6)

Cy,_ . a8 d-dimensional subvine.

The corresponding implementation will be now presented in the following section.
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4.2 Model implementation

The idea behind our approach (4.6) is simple: We model the dependence structure of the
first five variables (except precipitation) by a 5-dimensional R-vine copula specification
Cy,, ”vine without rain”) and connect the positive rain amount variable Y;},ec to
the established ”vine without rain” to get a 6-dimensional R-vine copula specification
C(Yt,fprec,YtTp ) ("vine with rain”) when it rains. It then explains the dependence among

the variables (th_prec,Y;;reC) on rainy days. At the same time the dependence among
our first five variables Yy _p,.. should not change and therefore our "vine without rain”
remains as 5-dimensional subvine in the ”vine with rain”.

The general detailed ”docking” procedure is described in Algorithm 3 and illustrated in
Table 4.1. In the Algorithm, (yt1,...,Yr,) for t = 1,..., N, represents N realizations of n

i.i.d. random vectors. In our case it corresponds to realisations of the vector Y _,... and

—prec (

1 ‘ Graph ‘ Description

1 Assume that we have the selected R-vine of 5 vari-
ables N7 = {1,2,3,4,5} (solid black lines) from
the example in Table 2.5 in Section 2.4.4. The ad-
ditional variable prec can now be connected with
every other node (dashed lines). Let us assume the
variable pair (4, prec) has the maximum empirical
Kendall’s tau of these pairs including prec and thus
it will be connected (red line). Note: The original

R-vine tree remains unchanged.

21 |52 All edges from the previous step are now nodes.
Due to the proximity condition the node (4, prec)

Ty has two connection possibilities (dashed lines). As-

1,4 4,5 sume that the conditional pair (1, prec|4) has the

1,3 maximum empirical Kendall’s tau of both possi-

bilities, (4, prec) will be then connected with (1,4)
(red line). Note again: The original R-vine tree 75
remains also unchanged here (solid black lines).

sibilities of nodes to connect with due to the prox-
imity condition (dashed lines). The connection to
node (1,5]4) will be selected based on maximum
[2»3|1} {374“} 1,5[4 empirical Kendall’s tau (red line). The initial R-
vine tree T3 remains as D-vine (solid black lines).
Further steps will proceed in the same way.

3 Again the conditional node (1, prec|4) has two pos-

Table 4.1: Exemplification of Algorithm 3 for the selection of the model with rain based
on the example from Table 2.5 in Section 2.4.4.
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Algorithm 3 Sequential method to select an R-vine model with rain based on Kendall’s

T.

Input: Data (y.1,...,%n), t = 1,...,N, and (y;,..), ¥ = 1,..., M (realizations of i.i.d.
random vectors). Here M denotes the number of observations whith positive rain
amount. Clearly, M < N.

Output: n + 1-dim. R-vine copula specification, where the n-dimensional R-vine copula
specification of (y 1, ..., ¥.») is a subvine of it.

1: Determine the n-dimensional R-vine copula specification based on (y 1, ..., .n) (7 vine
without rain”) as described in Algorithm 1 in Section 2.4.4.

2: Take only the variables at time ¢ when it has rained (M observations) and calculate
the empirical Kendall’s tau 7j .. for all possible variables pairs including the positive
precipitation amount variable {j, prec},1 < j <n.

3: Select the pair {j, prec} with the maximum empirical Kendall’s tau, select a copula
and estimate the corresponding parameter(s). The pair {j, prec} becomes an addi-
tional edge in tree 1 and thus an additional node in tree 2 in the in Step 1 selected
"vine without rain”. Then transform Fjrec);(Yiprec|¥i;), | = 1,..., M, using the fitted

copula @mec (see Algorithm 1).

4: for1=2,....,n—1do

5: Calculate the empirical Kendall’s tau 7; ¢/ p for all possible conditional variables
pairs {j, prec|D} that can be part of tree T;, i.e. all edges {j, prec|D},1 <j<n
fulfilling the proximity condition (cp. Definition 2.31).

6: Among these edges, select the conditional variable pair {j, prec|D} with maxi-
mum empirical Kendall’s tau, select a conditional copula and estimate the corre-
sponding parameter(s). The conditional pair {j, prec|D} becomes an additional
edge in tree ¢ and thus an additional node in tree ¢ + 1 (for i = n — 1 node
in the additional tree 7},) in the in Step 1 selected ”vine without rain”. Then
transform F\prec|jUD(xl,prec|xl,j7 x.p), | =1,..., M, using the fitted copula @-Wcm
(see (2.69)).

7: end for

8: Take conditional variables pairs {4, prec|D} and {j', k| D'} from the two edges of tree

T,,—1 which become the nodes in the additional tree T,,. Then select a conditional
copula and estimate the corresponding parameter(s) for the last conditional variables
pair, i.e. w.lo.g. {j ,prec|lk’, D'} to define the last edge in tree T,.

thus n = 5 and N = 1826 or N = 1827, depending on the considered season. Further in
the algorithm, M denotes the number of observations with positive rain amount which
corresponds in our case to M = 960 in period 1980-1984 and M = 928 in case of periods
1955-1959 and 2005-2009.

A summary of our model specification is given in Figure 4.1. We then continue with the
simulation from the model.
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Model summary

1. Model dependence among Y; = (Y _prec, Yt,prec), =
= (Y;f,meantempa Yt,mintempv}/t,maxtempa Y;,humidityvyi,pres& Y;S,prec)/ € R6 at time t)
t=1,...,1826(1827) for the three periods 1955-1959 (1826 observations), 1980-
1984 (1827 observations) and period 2005-2009 (1826 observations) respec-
tively.

2. Yt ... Precipitation amount when J (d(t)) = 1, where d(t) € {1, ...,366} de-

t,prec*
notes the calendar year at time t.

3. Then:
Vigree i= [1 = 7 (d(0)] X 0+ J (d(1) Y/}, 0 = 0.

t,prec

4. Joint distribution of Y

Ty e Jawy) = p(J(d(t) = jaw|J (d(t —1)))
X L a)=01 /Y1 —pree (Y —prec)

+ 1{J(d(t)):1}f(Y@fprec,YJr )(yt,fpreca yt,p’r‘ec) .

t,prec

5. Theorem by Sklar: fy, .. and fy, -+ in terms of marginal distribu-

t,prec

tions and copulas Cy, _,,.. and Cy, v+ ), where

t,prec

Cy, _pec(U1, ..., u5) = C(Ytﬂmwygr )(ul, oy Us, 1), with

,prec

(i) Cly, e Y dependence between all meteorological variables at ¢.

(ii) Cy,_,,.. dependence between all variables except precipitation.

6. Here Cy, v+ asvine copula with Cy, .. as 5-dim. subvine.

,prec

(i) Construct 5-dimensional R-vine Cy, ...
(i) Obtain Cy, -

rec appropriately to each R-vine
tree of Cy, _ .., 1.e. for tree Ty as example:

) by connecting Y}

+
y*P"‘eUth,p'rec

® ® ® ®
=

O—O O

Figure 4.1: Model summary.
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4.3 Simulation from the model

The simulation from our model is then straightforward. Therefore we proceed as follows:
(i) Draw sample J; from p (J (d(t)) = jau|J (d(t — 1))).
(ii) If J, = 0:

a) Set Yt,prec = 07

b) Draw sample (U meantemps ---> Ut,press) from Cy, _ .. (?vine without rain”) and
transform back via the corresponding inverse distribution functions at time ¢
to get simulations of (Y} meantemps -5 Yepress)-

(iii) If J, = 1:

a) Draw sample (Ut meantemps ---» Ut prec) from C(Yt e Y

t,prec

constructed described in Algorithm 3 and transform back via the corresponding

. . . . . . . . +
inverse distribution functions at time ¢ to get simulations of (Y yeantemps -+ Y, prec

) ("vine with rain”) as

The results of our model implementation for the Hohenpeissenberg data as well as simu-
lations from it are now presented in the next chapter.

).



Chapter 5

Results

In this chapter we will present the results of our dependence modeling among the Hohen-
peissenberg variables using the model described in the previous chapter. As mentioned
before, we evaluate the model for three periods (1955-1960, 1980-1984 and 2005-2009) and
compare the results over time. Following our model building process we begin with the
selection and estimation of appropriate R-vines for every period (”vines without rain”)
and then construct the corresponding ”vines with rain”. Afterwards we will check the
goodness of the model by comparing the log-likelihoods of the selected models applied
to the data of the different periods. In addition we will also compare them to the log-
likelihoods of Gauss-models, i.e. R-vine constructions using only Gaussian copulas, for
each period. A further goodness of fit measure is to compare the empirical Kendall’s taus
of variables pairs with the simulated ones out of the model for every period. In the end
of the chapter we would also like to consider the probabilites of several scenarios over the
different periods, like warm and dry wheather in summer, extreme precipitation or high
pressure, which can be estimated by our models.

5.1 Selected R-vines

We consider the 1826 (1827) Hohenpeissenberg observations of the random vector Y; =

(Yt,—preca Yt,prec>l = (Yt,meantempa Y;S,mintempv Yt,ma:vtem/z\)a Yt,humiditya Yt,pressy Y;t,prec)/ and the cor-
responding fitted marginal distribution functions F;. to select appropriate R-vines. Note

that in our case the observations of the error terms ¢, . are the residuals from the regression

models in Chapter 3.

5.1.1 R-vine model estimation - without precipitation

We first compare the observations of the variables except precipitation in pairs plots to
illustrate their pairwise relationship and dependence structure. Therefore we are using
bivariate copula contour plots of standard normal quantiles z;; = ®(@;;) calculated
(i)

i prec), Where @ € {meantemp, mintemp, maxtemp,

from our uniform margins u,; = Fy;(y

humidity, press} and yt(f),prec denotes the observations of the i-th component of Y; _ .. =
(Y;f7meantempa Y;f,mintempa Y;f,martemp7 Y;f,humiditya Y;f,press) fOI' = 17 ceey 1826(1827)
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I Variable H meantemp I mintemp | maxtemp | humidity | pressure
meantemp 1 0.47 0.66 -0.51 -0.09
mintemp 0.47 1 0.41 -0.25 -0.07
maxtemp 0.66 0.41 1 -0.50 -0.12
humidity -0.51 -0.25 -0.50 1 0.07
pressure -0.09 -0.07 -0.12 0.07 1

Table 5.1: Empirical Kendall’s taus for pairs of margins u;; =

{meantemp, mintemp, maxtemp, humidity, press}, for all t of period 1955-19509.
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Figure 5.1: Pairs plot of the uniform margins u;; =
responding bivariate copula contour plots of standard normal quantiles z;; = ®~

Period 1955-1959
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(lower panels) for i € {meantemp, mintemp, maxtemp, humidity, press} except precipi-
tation and for all ¢ of period 1955-1959. The middle panel shows the histograms of the
margins U;; (blue bars). Note that the scaling of axes for the contour plots naturally
ranges between [—3, 3] instead of [0, 1].
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’ Variable H meantemp ‘ mintemp | maxtemp | humidity | pressure
meantemp 1 0.50 0.65 -0.43 -0.11
mintemp 0.50 1 0.42 -0.26 -0.08
maxtemp 0.65 0.42 1 -0.42 -0.16
humidity -0.43 -0.26 -0.42 1 0.02
pressure -0.11 -0.08 -0.16 0.02 1

Table 5.2: Empirical Kendall’s taus for pairs of margins u,; = ﬁt,i(yg),pmc), where ¢ €

{meantemp, mintemp, maxtemp, humidity, press}, for all t of period 1980-1984.

Period 1980-1984
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Figure 5.2: Pairs plot of the uniform margins u;; = E,i(yg)_prec) (upper panels) and cor-
responding bivariate copula contour plots of standard normal quantiles z;; = ®~*(u,)
(lower panels) for i € {meantemp, mintemp, maxtemp, humidity, press} except precipi-
tation and for all ¢ of period 1980-1984. The middle panel shows the histograms of the
margins U;; (blue bars). Note that the scaling of axes for the contour plots naturally

ranges between [—3, 3] instead of [0, 1].



CHAPTER 5. RESULTS 113
’ Variable H meantemp ‘ maintemp | mazxtemp | humaidity | pressure
meantemp 1 0.56 0.72 -0.42 -0.11
mintemp 0.56 1 0.41 -0.27 -0.01
maxtemp 0.72 0.41 1 -0.42 -0.13
humidity -0.42 -0.27 -0.42 1 0.02
pressure -0.11 -0.01 -0.13 0.02 1
Table 5.3: Empirical Kendall’s taus for pairs of margins u;; = ﬁt,i(yg),pmc), where ¢ €

{meantemp, mintemp, maxtemp, humidity, press}, for all t of period 2005-2009.

Period 2005-2009
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Figure 5.3: Pairs plot of the uniform margins u;; = ﬁt,i(y
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) (upper panels) and cor-

responding bivariate copula contour plots of standard normal quantiles z;; = ®~*(u,)
(lower panels) for i € {meantemp, mintemp, maxtemp, humidity, press} except precipi-
tation and for all ¢ of period 2005-2009. The middle panel shows the histograms of the
margins U;; (blue bars). Note that the scaling of axes for the contour plots naturally
ranges between [—3, 3] instead of [0, 1].
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The plots of the margins and the pairwise contour plots of the corresponding standard

normal quantiles are given in Figures 5.1 - 5.3 for the three periods. Additionally, the
pairwise empirical Kendall’s taus of the margins can be found in the above Tables 5.1 -
5.3 where we detect naturally a strong positive pairwise dependence among the temper-
ature margins. In contrast to it, the margins of daily mean humidity indicate a negative
dependence on the temperature variables while the air pressure margins nearly seem to
be independent of humidity and minimum temperature margins. The look at the contour
plots illustrate unusual small peaks like ”bubbles” in the pairwise dependence structure
among the humidity margins and the other ones in the period 1955-1959. However, this
conspicuity does not occur in the other both periods. One can show that these peaks will
also arise in the other periods when one removes the covariates of wind direction (explain
the "Fon-effect”) in the marginal modeling of daily mean relative humidity. Thus, since
there was no daily wind direction data available for period 1955-1959, it shows that the
more information is included the better our model. The blue bars in the middle panels
of the pairs plots represent the empirical distribution of our margins.! Due to Sklar’s
theorem, they all should be uniform on [0, 1] to match our model assumption. All vari-
ables more or less seem to fulfill this property, only the humdity margins offer a slightly
non-uniform spread on [0, 1] which becomes a bit better over the periods as a result of
adding the wind direction covariable in our marginal regression modeling of humidity in
Section 3.5.
All in all a multivariate Gaussian distribution of our variables does not seem to be appro-
priate for all periods since the contour plots indicate pairwise tail dependencies, in parts
asymmetric tail dependencies especially among the temperature variables and among hu-
midity and the other variables.

The selected R-vines (due to Algorithm 1 in Section 2.4.4) and the corresponding
theoretical Kendall’s taus based on the estimated copula parameters are presented in
Figures 5.4 - 5.6. The first vine trees 17 of each period can be deduced from our pairs plots
and show the strongest dependencies among its nodes over all trees. The edges in T remain
the same over all periods but the estimated pair copulas change. The only difference in
the first tree between period 1955-1959 and 1980-1984 results in a change of pair copula of
mean temperature and humidity convenient to the change in the marginal humidity model
between both periods. The Frank copula then also remains in the last period describing
the bivariate behavior of both variables. Further we observe that the asymmetric pair
copulas among the temperature variables (i.e. Gumbel and survival Gumbel) in the first
both periods change to symmectric pair copulas (Frank and ¢) in the last period 2005-
2009 in tree T;. The other trees T;,7 = 2, 3, 4 still indicate only small dependencies among
their conditional pair variables (except (min_t, max_t|mean_t) in tree Ty of period 2005-
2009 with 7 = —0.26 of a t copula). There is also a change in the tree structure of the
second trees Ty from the first period to the last ones. But from the third trees on, T3, the
vines correspond as D-vines in all periods. The R-vines with corresponding parameters
are described by regular vine matrices (RVMs) and corresponding parameter matrices
which are given afterwards.

'We are here using the R function panel.hist of the package BioStatR (implemented by Bertrand
and Maumy-Bertrand [2012]) to plot the histograms in the middle panels.
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The R-vines are described by the following regular vine matrices (RVMs) (cp. Section
2.4.3). For the period 1955-1959, we have

2
5 4 90
Mperiod 1955-1959 = [ 3 5 1 s Tperiod 1955—1950 = | SC J270 ;
4 3 5 5 SJ N C
113 3 3 SG G270 G N
—0.04
P period 1955-1950 = | 0.15  —1.04
1.17  —-0.23 0.05
1.82 —-1.96 2.72 —-0.18
Period 1980-1984:
2
5 4 C
Mperiod 1980—1984 — 4 5 1 7Tpem'od 1980—1984 — SG F )
3 3 5 5 F C270 t
113 3 3 SG F G N
0.08 0
Pl,pem'od 1980—1984 — 1.09 —0.81 7P2,period 1980—1984 — 0 0
0.68 —0.17 0.03 0 0 17.88
1.96 —4.72 2.66 —0.25 0 0 0 0
Period 2005-2009:
2
4 4 C
Mperiod 2005-2000 = | 9 5 1 7Tperiod 2005—2009 — ¢ C90 ’
3 3 5 5 t C270 C
113 3 3 F F t t
0.04
P period 2005—2000 = | 0.19  —0.10 ;
—0.40 —-0.21 0.06
711 —4.67 090 —0.21
0
Ps period 2005—2000 = 0 0 ;
11.56 0 0
0 0 12.29 16.40

where 1 = meantemp, 2 =

mantemp, 3 = maxtemp, 4 = humidity and 5 = pressure.



CHAPTER 5. RESULTS 117

5.1.2 R-vine model estimation - including positive precipitation
amount

We now only consider the margins u;; = Fm(y,g lprec) and Uy prec = Pt t pree (Yt pree) at

time ¢ when it rains, i.e. at time ¢t when the observations of total precipitation amount
are Yipree > 0. As mentioned before the number of rain days is equal to 960 in the pe-
riod 1980-1984 and we compare 928 rain days observations in the periods 1955-1959 and
2005-2009. Again F; ; represents the fitted marginal distribution functions and F'* .. cor-
responds to the fitted distribution function of the p081tlve rain amount, i.e. it is gamma
distributed according to our modeling in Section 3.7. y, )prec denotes the observations
of Yt,—prec = (Y;f,meantempa Y;,mmtemp7 Y;f,maxtempa Y;,humzdztyy Y;f,press) for t = 17 ) 1826(1827)
and i € {meantemp, mintemp, maxtemp, humidity, press}.

We start comparing the observations of the variables when it rains again in pairwise
scatter and contour plots of the margins and the correspondig standard normal quantiles
respectively to illustrate their pairwise relationship and dependence structure on rain days
(Figures 5.7 - 5.9). Note that the scaling of axes for the contour plots then naturally ranges
between [—3, 3] instead of [0, 1]. Afterwards we will select the appropriate R-vines includ-
ing positive rain amount variable (Figures 5.10 - 5.12) specified in Algorithm 3 in Section
4.2. The R-vines are described by corresponding regular vine matrices (RVMs) and pa-
rameter matrices. Again we detect small peaks like ”bubbles” in the pairwise dependence
structure among the humidity margins and the other ones in the period 1955-1959 by
looking at the contour plots. As expected such ”"bubbles” do not occur in the other both
periods anymore but one can show that they will also occur in the other periods when
one would remove the ”Fon”-effect explaining wind direction variable out of the marginal
humidity regression model.

The empirical Kendall’s taus of pairs of margins on rain days are given in Tables 5.4
- 5.6. They indicate the strongest pairwise dependence including the positive precipi-
tation amount variable by the pair humidity and precipitation in all regarded periods
(0.18 < Thumidity prec < 0.23) which makes sense naturally. Thus, the positive rain amount
variable will be connected with humidity in the first trees 77 of our R-vines in all three
periods (due to Algorithm 3). However, the corresponding estimated pair copula of both
variables varies from survival Gumbel over Gaussian to a Frank copula over time, thus
becomes more tail symmetric.

A further look at the Tables 5.4 - 5.6 indicates that other pairwise dependencies among
the variables do not change noticeable when we only consider margins on rain days. This
fact is in line with our model assumption that the common dependence structure of the
variables without precipitation does not change when it rains. As we have just modeled
before, the R-vines of the variables without precipitation are now 5-dimensional subvines
in our selected vines including precipitation (compare Figures 5.10 - 5.12). Consequently,
the RVMs and parameter matrices from the previous Section 5.1.1 are now 5 x 5 sub-
matrices in the RVMs and parameter matrices describing the R-vines including postive
precipitation amount here in this section.
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’ Variable H meantemp ‘ mintemp | maxtemp | humidity | pressure | prec >0
meantemp 1 0.50 0.57 -0.39 -0.10 -0.15
mintemp 0.50 1 0.40 -0.19 -0.09 -0.06
mazxtemp 0.57 0.40 1 -0.42 -0.17 -0.08
humidity -0.39 -0.19 -0.42 1 0.13 0.23
pressure -0.10 -0.09 -0.17 0.13 1 -0.15
precipitation > 0 -0.15 -0.06 -0.08 0.23 -0.15 1

Table 5.4: Empirical Kendall’s taus for pairs of margins when it rains - period 1955-1959.
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Figure 5.7: Pairwise scatter and contour plots (note: axes between [-3,3]) of the margins
and corresponding standard normal quantiles resp. when it rains in period 1955-1959.
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’ Variable H meantemp ‘ mintemp | maxtemp | humidity | pressure | prec >0
meantemp 1 0.53 0.56 -0.39 -0.17 -0.11
mintemp 0.53 1 0.40 -0.23 -0.12 -0.07
mazxtemp 0.56 0.40 1 -0.38 -0.22 -0.05
humidity -0.39 -0.23 -0.38 1 0.09 0.18
pressure -0.17 -0.12 -0.22 0.09 1 -0.13
precipitation > 0 -0.11 -0.07 -0.05 0.18 -0.13 1

Table 5.5: Empirical Kendall’s taus for pairs of margins when it rains - period 1980-1984.
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Figure 5.8: Pairwise scatter and contour plots (note: axes between [-3,3]) of the margins

and corresponding standard normal quantiles resp. when it rains in period 1980-1984.
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’ Variable H meantemp ‘ mintemp | maxtemp | humidity | pressure | prec >0
meantemp 1 0.53 0.70 -0.39 -0.15 -0.09
mintemp 0.53 1 0.36 -0.19 -0.01 -0.10
mazxtemp 0.70 0.36 1 -0.41 -0.20 -0.08
humidity -0.39 -0.19 -0.41 1 0.11 0.19
pressure -0.15 -0.01 -0.20 0.11 1 -0.14
precipitation > 0 -0.09 -0.10 -0.08 0.19 -0.14 1

Table 5.6: Empirical Kendall’s taus for pairs of margins when it rains - period 2005-2009.

Period 2005-2009
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Figure 5.9: Pairwise scatter and contour plots (note: axes between [-3,3]) of the margins
and corresponding standard normal quantiles resp. when it rains in period 2005-2009.
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Figure 5.10: Selected R-vine including positive precipitation amount variable with theo-
retical Kendall’s 7 - Period 1955-1959
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Figure 5.12: Selected R-vine including positive precipitation amount variable with theo-
retical Kendall’s 7 - Period 2005-2009

The R-vines including positive precipitation amount are described by the following regular
vine matrices (RVMs) (cp. Section 2.4.3). For the period 1955-1959, we have

6
2 2 SJ
5 5 4 FC9
Mperiod 1955—1959 — 335 1 ’ Tperiod 1955—1959 — F SC  J270
1 4 3 5 5 J9O SJ N C
4113 3 3 SG SG G270 G N
1.03
—1.56 —0.04
Pl,period 1955—1959 — 1.08 0.15 _104
—1.00 1.17 -0.23 0.05
1.34 1.82 —-1.96 2.72 —-0.18
Period 1980-1984:
6
2 2 G90
5 5 4 F C
Mperiod 1980—1984 — 345 1 ) Tperiod 1980—1984 — F SG F
1 3 3 5 5 t F C270 ¢t
4113 3 3 N SG F G N
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—1.02
—1.25 0.08
Pl,period 1980—1984 = 076 109 _081 Y
—0.01 0.68 —0.17 0.03
029 196 —-4.72 2.66 —0.25

0
0 0
PZ,period 1980—1984 — 0 0 0
2148 0 0 17.88
0 0 0 0 0
Period 2005-2009:
6
2 2 N
v |5 404 - |69 c
period 2005—2009 — 35 5 1 » L period 2005—2009 — SC C (09 )
13 3 5 5 c t C270 C
411 3 3 3 FF F t t

—0.08

—1.18 0.04

0.01 —-0.40 —-0.21 0.06

1.67 711 —4.67 090 —-0.21

0
0 0
P period 2005—2009 = 0O o0 0 :
0 11.56 O 0
0

0 0 1229 16.40

where 1 = meantemp, 2 = mintemp, 3 = maxtemp, 4 = humadity, 5 = pressure and
6 = precipitation > 0.

5.2 Log-likelihood comparison

We would like to substantiate our model by comparing the log-likelihoods of the selected
models applied to the data from the three periods. Additionally it would be interesting
to compare these results with the log-likelihoods of an R-vine model using only Gaussian
pair copulas. The outcome is presented in Figure 5.13 and the corresponding log-likelihood
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Figure 5.13: Log-likelihood comparison between the models of each period and a model
using only Gaussian copulas applied to the data from the different periods.

Data from || Model of period | Model of period | Model of period | Gaussian
period 1955-1959 1980-1984 2005-2009 model
1955-1959 2522.70 2492.89 2341.13 2285.65
1980-1984 2331.59 2376.38 2236.19 2183.04
2005-2009 2721.35 2784.97 3032.48 2970.31

Table 5.7: Log-likelihoods of the selected models and of a Gaussian vine model applied to

the data from the different periods.
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Data from || Model of period Model of period Model of period Gaussian
period 1955-1959 1980-1984 2005-2009 model
vine vine vine vine vine vine vine vine
without incl. without incl. without incl. without incl.
prec prec prec prec prec prec prec prec

1955-1959 || 1316.99 | 1205.71 | 1298.14 | 1194.75 | 1263.26 | 1077.87 | 1223.63 | 1062.02
1980-1984 || 1144.99 | 1186.60 | 1181.26 | 1195.12 | 1123.11 | 1113.08 | 1096.92 | 1086.12
2005-2009 || 1317.53 | 1403.82 | 1357.73 | 1427.24 | 1468.04 | 1564.44 | 1443.87 | 1526.44

Table 5.8: Log-likelihoods of the selected models and of a Gaussian vine model applied to
the data when it is not raining and to the data on rain days from the different periods. Note
that the sum of both log-likelihoods of each model is given in Table 5.7 and illustrated in
Figure 5.13.

values can be found in Table 5.7. Note that in this connection the log-likelihood of a model
means the log-likelihood of the vine without precipitation applied to the data when it is
not raining plus the log-likelihood of the vine including positive precipitation amount
applied to the data on rain days, i.e.

lvine without prec (data[PTGC = O]) + lvine including prec(data[prec > O])a

where Lyine without prec(*) a0d lyine including prec(-) denote the log-likelihood functions of the
corresponding vines. The single values of the summands lyine without prec(data[prec = 0])
and lyine including prec(dataprec > 0]) are presented in Table 5.8 for the three periods.

The first observation we notice from Table 5.7 is that the resulting summed log-likelihood
values are in the range between 2183.04 and 3032.48. Further, the model of a specific
period applied to the corresponding data has the highest log-likelihood in contrast to the
models of the other periods and the Gaussian model applied to the same data. An inter-
esting fact is the large increase in the log-likelihood values applying data from the second
period to the third period 2005-2009. In addition, there is still a difference of almost 300
in the values of the last period vine model and the Gaussian model in contrast to the
other both models applied to data from period 2005-2009. It suggests, however, that a
considerable change in the dependencies among the variables occured from the second to
the last period. In particular, the difference is as large that even Gaussian copulas are
better fit than the no longer suitable selected vines from before. One could say ”our model
became more Gaussian” in the last period. It corresponds to the previous observations
we have made so far, namely the change from pair copulas with asymmetric tail depen-
dendence in the selected R-vines to ones with symmetric tail dependendence among the
temperature variables. In detail, as our selected vines in Figures 5.5 and 5.6 show, the pair
copulas among the temperature variables shift from survival Gumbel between meantemp
and mintemp to a Frank copula and from Gumbel between meantemp and maxtemp to
a t copula in the last period respectively. The look at the corresponding tail dependen-
cies (illustrated in Figure 5.14 by Kendall’s taus of the "upper” and "lower” 20% regions
between the margins of the variables) indicates an decrease of the lower tail dependence
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Figure 5.14: Theoretical exceedance Kendall’s taus, i.e. Kendall’s taus of the "upper”
(solid red lines) and "lower” (solid blue lines) 20% regions based on selected copulas of
the three models. The empirical counterparts of the margins are illustrated as dashed
lines.

among mean and minimum temperature and contemporaneously an increase of the lower
tail dependence among mean and maximum temperature to the level of the upper tail de-
pendecies. These remain nearly unchanged among the variables in all models. However, to
be precise, the empirical upper tail dependence among mean and minimum temperature
seems to increase from the second to the last period. Thus our models suggest that large
deviations downwards from the expected daily mean temperature strongly depend on large
downward deviations from the expected daily maximum temperature in the last period.
In the previous two periods we modeled instead that large downward deviations from the
expected daily mean temperature rather depended on large downward deviations from
the expected daily minimum temperature. So this tail dependence becomes more variable
in the last period. We can compare two examples out of our data exemplarily to make
things more concrete. Table 5.9 presents data of two summer days from periods 1980-1984
and 2005-2009. In both cases we detect a large downward deviation from our expected
daily minimum temperature, the corresponding margins of the transformed residuals, i.e.

Variable 06/04/1981 06/25/2007
observation fitted margin of | observation fitted margin of
expectation | residual expectation | residual
Mean temp. 8.8°C 17.8°C < 0.01 16.3°C 16.8°C 0.42
Min. temp. 7.5°C 15.5°C 0.01 7.1°C 12.4°C 0.02
Max. temp. 21.2°C 21.7°C 0.44 22.8°C 21°C 0.67

Table 5.9: Observations vs. fitted expectations of two days from different periods.
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both values of Uy mintemp are < 0.02. While we also see a large downward deviation from
the fitted daily mean temperature (margin of the residual < 0.01) on June, 4th 1981, the
observation of daily mean temperature is close to our expectation (margin of the residual
= 0.42) on June, 25th 2007. The observations of daily maximum temperature are also
close to the fitted expectation (corresponding margins of the residuals 0.44 and 0.67) in
both cases. This exemplification should show what the change to more variable (lower)
tail dependence among mean and minimum temperature in the last period does mean:
large downward deviations from the expected daily minimum temperature do not cause
usually large downward deviations from the expected daily mean temperature anymore
in the last period. In the same way one could also present an example to illustrate the
change to stronger lower tail dependence among daily mean and maximum temperature
we have modeled in the last period. However, one should manifest our modeling by study-
ing the dependence structures over all periods of the last decades as well as studying the
dependence structure among future observations as next steps.

5.3 Model simulations

As described in Section 4.3, we now simulate 100 x 5-years periods from each R-vine
model and so get 100 x 5 x 366 = 100 x 1830 = 183000 simulated values on copula level
(all € [0,1]). Out of our simulations we then calculate 100 Kendall’s taus for each variable
pair and compare them with the empirical ones. The results are given in Figure 5.15.
Nearly all empirical values are falling inside the 95%-confidence intervals of our simulated
Kendall’s taus. There are no large deviations from our simulated values detectable. Only in
cases of mean and maximum temperature as well as maximum temperature and humidity
the empirical taus lie slightly above of the 97.5%- respectively under the 2.5%-quantiles
in the first two periods. In case of minimum and maximum temperature the empirical ob-
servation lie slightly outside the corresponding confidence interval only in the first period.
Nevertheless based on this comparison our models seem to fit the pairwise dependencies
relatively sufficient. We notice an upward movement of the pairwise dependence among
mean and minimum as well as among mean and maximum temperature by nearly 0.1 over
our modeled periods. Thereby the dependence among mean and maximum temperature
seems to be higher (7 > 0.6 in all three periods) in contrast to the dependence among
mean and minimum temperature (Kendall’s tau ranges between 0.4 and 0.6 in all three
periods). Another interesting fact is that the negative pairwise dependence among mean
temperature and positive precipitation amount as well as among maximum temperature
and positive precipitation amount rather seems to decrease over our modeled periods,
while the pairwise dependence among minimum temperature and positive precipitation
seems to increase over time. Thus the positive rain amount on raindays becomes more
variable from the values of daily mean and maximum temperatures in the last period
while in contrast our model of this period suggests rather fewer rain amount on rain days
when the daily minimum temperature gets higher. In addition there are still more slight
movements in the pairwise dependencies among the variables. However, further studies
are needed here to prove their significance since we modeled only three 5-years periods of
the last 60 years.
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5.4 Simulated probabilities of different scenarios

A further interesting feature that we obtain using our model simulations is to calculate
probabilities of different scenarios, i.e. probabilities of occurances of several (extreme)
events at the same time. We decide to calculate the probabilities of the following scenarios:

1: Probability of extreme high daily maximum temperature, extreme high daily mean
temperature and extreme high daily minimum temperature at the same time.

2: Probability of extreme daily high maximum temperature, extreme high daily mean
temperature and extreme high daily minimum temperature at the same time in
winter.

3: Probability of extreme high daily maximum temperature, extreme high daily mean
temperature and extreme high daily minimum temperature at the same time in
sumimer.

4: Probability of extreme high daily maximum temperature and no rain at the same
time in summer.

5: Probability of extreme high daily maximum temperature, extreme low humidity and
no rain at the same time in summer.

6: Probability of extreme high daily maximum temperature, extreme low humidity,
extreme high daily mean air pressure and no rain at the same time in summer.

7: Probability of extreme high daily mean temperature and extreme high daily mean
air pressure at the same time.

8: Probability of extreme high daily maximum temperature and extreme high daily
mean air pressure at the same time in summer.

9: Probability of extreme high daily maximum temperature, extreme high daily mean
air pressure and no rain at the same time in summer.

10: Probability of extreme high daily maximum temperature and extreme high rain
amount on raindays at the same time in summer.

11: Probability of extreme high daily mean temperature and extreme high rain amount
on raindays at the same time in summer.

Note that in this connection extreme high and extreme low values mean margins higher
than 0.85 and lower than 0.15 respectively. We calculate 100 probabilities (corresponding
to every simulated 5-years period) out of our simulations simply by dividing the number
of our event occurrences by the whole number of regarded days. We compare these results
with the empirical probabilities of the events for all three periods. Additionally we cal-
culate corresponding 95%-confidence intervals around our empirical values, based on the
assumption that they are succes probabilities of Bernoulli experiments. The outcomes are
presented in Figure 5.16.
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Figure 5.16: Simulated probabilities of different scenarios with 97.5%- and 2.5%-quantiles
compared to the empirical ones with their corresponding 95%-confidence intervals (red

(dashed) lines).
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Naturally the more events should occur at the same time the smaller the probability
will be. From Scenario 1 to Scenario 7 our simulated 95%-confidence intervals lie inside the
empirical ones in contrast to Scenarios 8 to 11. Large changes in the probabilities of our
scenarios do not occur in the regarded three periods. However, in our case it is relatively
difficult to draw conclusions out of our results here, since the probabilites are very small
and we are again considering only 3 different periods over the last sixty years. Nevertheless
this exemplification shows which possibilities we obtain by using such R-vines to model
dependence structures among different meteorological variables.
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Chapter 6

Preliminaries - Part 11

In a second part of this work we would like to model the distributional behavior of
tree ring data from Hohenpeissenberg and their dependence on different meteorological
quantities. In this connection we think that using linear mized models (LMM) will be the
best approach to reach our targets and thus will be our method of choice. On these grounds
we present some theoretical basics in the field of linear mixed models in this chapter to be
sufficiently prepared for our tasks in the further work. However, beforehand, we will also
need some knowledge in smoothing spline interpolation as well as in generalized additive
models (GAM) to detrend some time effects in the raw tree ring data. Hence, we start
with these latter topics and end with the theory of LMMs afterwards in this chapter.

6.1 Smoothing spline interpolation

In our analysis we want to standardize our raw tree ring data in a way that we detrend
and transform the measured ring widths into dimensionless indices to equalize the growth
variations between tree ring series over time regardless of tree age or size (cp. Cook and
Peters [1997]). Thus, one wants to remove non-climatic variances of the data.

The process of detrending can be done by fitting a smooth growth curve to the ring
widths, like the modified negative exponential curve or the smoothing spline as we will
use in our case. Smoothing splines are based on cubic spline functions, i.e. given a sub-
divided interval {zo < z; < ... < z,}, a cubic spline function corresponds to a real
function s : [z, z,,] — R with the following properties (cp. Freund and Hoppe [2007]):

a) s € C*[xg, x,], i.e. function s has continuous first and second derivatives on interval
[0, Tp).
b) On each sub interval [z;, z;11], for i = 0,1,...,n — 1, function s corresponds with a

cubic polynomial.

The continuity of the first and second derivatives assures that the different cubic polyno-
mial segments are joined in a very smooth way. Hence a smoothing spline is a series of
piecewise cubic polynomials with a knot at each data point (e.g. at each point in time ¢ as
in our case of tree ring detrending). Due to Reinsch [1967] the smoothing spline minimizes

133
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the total squared curvature of the spline function, i.e.

min /xn [s"(2))* do (6.1)

zo

under the constraint

ino {%} 2 < S, (6.2)

where y; is the input series, dy; is a series of weights and S is a scaling parameter. The
quantities dy; control the extent of smoothing and are implicitly rescaled by varying S.
While Reinsch [1967] suggests to use a standard deviation associated with y; for weights
dy;, Cook and Peters [1981] found out that in case of detrending year ring widths it would
be better to weight all measurements equally by dy; = 1.0 (for details see [Cook and
Peters, 1981, p. 3]). Therefore expression (6.2) reduces to an unweighted residual sum-of-
squares criterion and the spline fit is determined by parameter S which Cook and Peters
[1981] scaled to be a fraction s of the variance of the data about the mean. However,
another parameter for spline selection is given by examining the standard methods of
the calculus of variations. Taking an auxiliary variable z together with the Lagrangian
parameter p, one has to minimize the following functional

/z” [s”(x)}gdx—l—p{zn: {%r +22 S} (6.3)

Zo i=0

to find a solution of the minimizing problem described in (6.1) and (6.2). Reinsch [1967]
shows that if the value of the Lagrangian parameter p is given, one can obtain all other
remaining parameters and coefficients (due to the corresponding Fuler-Lagrange equa-
tions) which then describe the fitted smoothing spline completely. Thus each spline can
be defined uniquely also by the value of the Lagrangian multiplier p and so if p is known
one can compute the spline directly rather than iteratively. Cook and Peters [1981] found
out that a value of log;, (p) = —4.0 (here the base 10 logarithm is meant) is a useful
starting point for using the smoothing spline in case of detrending tree ring width series
because otherwise climatic variance could be indistinguishable from the variance judged
to be non climatic [Cook and Peters, 1981, p. 9].

The detrended tree ring data is then given by the ratio actual-to-expected ring width
for each year which yields a set of dimensionless tree ring "indices” with a defined mean
of 1.0 and a largely homogeneous variance (see Cook and Peters [1997]), i.e. we consider

Yt
d = — 6-4
t S(t) ) ( )
where s(t) denotes the fitted smoothing spline at time t.

Note that there are still other methods to detrend tree ring width data, for further infor-
mation see, e.g., Cook and Peters [1997].
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6.2 Generalized additive model (GAM)

Generalized additive models (GAMs) describe the smooth extension of linear regression
models. Due to Hastie and Tibshirani [1986], we consider a response variable Y and a
set of predictor variables X, Xs,...,.X,. A set of n independent realizations of these ran-
dom variables will be denoted by (y1, Z11, ..., Z1p), s (Yns Tn1, -, Tnp). The additive model
generalizes the linear regression such that

E[Y|X1,...,X,] = sﬁisj(xj), (6.5)

where the s;’s are smooth functions standardized so that E[s;(X;)] = 0. These smoothers
then have to be estimated. One simple class of estimates is denoted by, e.g., local average
estimates, where (in case of a single predictor p = 1)

s(zi) = Avejen, (y5)-

The function Ave represents some averaging operator like the mean and N; denotes the
set of indices of points whose x values are closed to x;.

However, beside these simple smoothers, other estimates could be used such as kernel,
running lines or spline smoother (as we have described in the previous section) to fit a
GAM adequately. Therefore different estimation procedures are used, like local scoring or
local likelihood procedures, including backfitting procedures to specify the significance of
the smooth functions in GAMs. We will not go into any details here but refer to Hastie
and Tibshirani [1986] for further information.

6.3 Linear mixed models

Studies with clustered data such as, e.g., math scores from students in different classrooms
or studies with longitudinal or repeated-measures data where subjects are measured re-
peatedly over time or under different conditions, can be modeled by linear mixed models.
Also for a combination of both types of data, LMMs provide a flexible analytic tool to
model these kinds of continuous outcome variables in which the residuals are normally
distributed but may not be independent or not have a constant variance in contrast to
linear models. An LMM may include fixed-effect parameters associated with one or more
covariates and random effects associated with one or more random factors. Thus this mix
of fixed and random effects gives the linear mixed models its name. Note, we are here
mainly following West et al. [2007] and Fahrmeir et al. [2007].

Before we give a general definition of an LMM, we still define the types and structures
of data sets which can be modeled by LMMs:

- Clustered data: It means that the dependent variable is measured once for each
subject (the unit of analysis) and each subject belongs to a group of subjects (clus-
ter). An example beside the above mentioned math scores of students are birth
weights of rat pups (the unit of analysis) nested within litters (cluster of units).
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- Repeated-measures data: These are data sets in which the dependent variable
is measured more than once on the same unit of analysis across levels of a repeated
measures factor(s). These factors may be time or other experimental or observa-
tional conditions. An example is denoted by analyzing the activation of a chemical
measured in response to two treatments across three brain regions within each rat
(the unit of analysis). Both brain region and treatment are then repeated-measures
factors.

- Longitudinal data: Data sets in which the dependent variable is measured at
several points in time for each unit of analysis. An example is the analysis of social-
ization scores of a sample of autistic children (the units of analysis), who are each
measured at up to five time points (at ages 2, 3, 5, 9 and 13 years).

- Clustured longitudinal data: We will focus on these kind of data sets since they
combine features of both clustered and longitudinal data as we have in our tree ring
data set. The units of analysis are nested within clusters and each unit is measured
more than once. Tree ring widths measured for two different drilling directions (units
of analysis) are nested within 10 different trees (clusters). The units of analysis (tree
ring widths corresponding to the drilling direction) were then repeatedly measured
each year for each cluster (tree number).

In some cases it may be difficult to classify data sets as either longitudinal or repeated-
measures data. However, this distinction is not critical since the important characteristic
of both types of data is that the dependent variable is measured more than once for each
unit of analysis.

All here described data sets are hierarchical, because the observations can be placed
into levels of a hierarchy in the data. Thus we have multilevel data sets. We concentrate
on three levels and these levels are categorized in the following way:

- Level 1: This level denotes the observations at the most detailed level of the data.
Thus the continuous dependent variable is always measured at level 1 of the data.
In clustered data sets it corresponds to the units of analysis in the study while in
repeated-measures or longitudinal data sets level 1 denotes the repeated measures
made on the same unit of analysis.

- Level 2: It denotes the next level of hierarchy. In clustered data we find here the
clusters of units and in repeated-measures and longitudinal data sets it corresponds
to the units of analysis.

- Level 3: A further next level of hierarchy that refers to clusters of units in clustered
longitudinal data sets or denotes clusters of clusters).

An examplification of multiple levels of different hierarchical data sets according to the
above mentioned examples is given in Table 6.1.

In a next step we still like to clarify the distinction between fixed and random factors
and their related effects on a dependent variable in the context of LMMs. Due to West
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Data type Clustered data Repeated-measures/longitudinal data
Two-level | Three-level Repeated- Longitudinal Clustered
measures longitudinal
Data set example Rat pup | Classroom Rat brain Autism Tree ring
Level 1 | Rat pup Student Repeated Longitudinal | Longitudinal
measures measures measures
Level of (brain region (age in (time in
hierarchy and treatment) years) years)
Level 2 Litter Classroom Rat Child Drilling
direction
Level 3 School Tree number

Table 6.1: Examplification of multiple levels of different hierarchical data sets according
to the above mentioned examples.

et al. [2007], fixed factors are defined as categorical or classification variables for which
the investigator has included all levels that are of interest in the study. They might
include qualitative covariates or classification variables such as, e.g., gender, season or age
group.

In contrast random factors are denoted by classification variables with levels that can
be thought of as being randomly sampled from a population of levels being studied.
The data set does not provide all possible levels of the random factor, but one has the
aim to make inferences about the entire population of levels. Thus the results of the data
analysis can be generalized to a greater population of levels of the random factor.

Fixed effects in an LMM are unknown constant parameters, i.e. the regression coef-
ficients, associated with either continuous covariates or the levels of the categorical fixed
factors. On the other hand the effects associated with the levels of the random factors can
be modeled as random effects in an LMM. These random effects, in contrast to fixed
effects, are represented by unobserved random variables, which are assumed to follow a
normal distribution.

The levels of a factor (random or fixed) are said to be nested within levels of another
factor, when a certain level of a factor can only be measured within a single level of
another factor and thus not across multiple levels. The corresponding effects are known
as nested effects. For example levels of classroom are nested within levels of school since
each classroom can only appear within one school.

Moreover, one factor is said to be crossed with another, when a given level of a factor
(random or fixed) can be measured across multiple levels of another factor. However, we
will not go into any details here.

6.3.1 Specification of LMMs

To simplify matters we start to specify an LMM for a two-level longitudinal data set
for illustration. Thus in this specification Y;; represents the measure of the continuous
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response variable Y taken on the ¢-th point in time for the i-th subject, i.e.

Yie =/ XXt(il)+52 XXt(z‘Q)‘f‘ﬁS XXt(ig)—i_“'_'_ﬁk XXt(ZP)
fixed

+uy; X Zt(ll) + ...+ Ug; X Zt(zq) + €4- (66)

random

Here t = 1,...,n;, where n; denotes the number of longitudinal observatios on the de-
pendent variable for a given subject ¢ (unit of analysis) with ¢ = 1,...;m, i.e. m is the
number of subjects. Model (6.6) involves two sets of covariates, X and Z. The first set
contains p covariates XM, ... X®) associated with the fixed effects 3, ..., Bp. Thus, the

terms Xt(il), o Xt(f ) represent the t-th observation of the corresponding covariate for the
i-th subject. The second set contains ¢ covariates Z1)| ..., Z(@ associated with the random
effects uy;, ..., 44 corresponding to subject . Variable €, represents the residual associated
with the t-th observation in the i-th subject. Note as described before, the random effects
and residuals in Equation (6.6) are random variables which are assumed to be normal dis-
tributed. We additionally assume that for a given subject, the residuals are independent
of the random effects.

We can now generalize the above model for all longitudinal and clustered data sets
considering a general matrix specification of an LMM.

Definition 6.1 (Linear mixed model for longitudinal and clustered data.) A lin-
ear mized model (LMM) for longitudinal and clustered data is defined by

~ S
fized random
where 0 @ »)
” RIS
Y, = YQZ , X = X?i X?i X?f 3= 5.2 :
Yo X0 x@ X0 By
and
Zl(zD ZS) S Zl(g) U4 €15
Zg) Zé?) e Zég) Uz; €2
Zi = . . . . y Uy i= . ) € 1= .
Z}j} Z;(ffg . Z;Efz Ugi €nyi

Here, Y ; represents the n;-dimensional vector of continuous responses for the i-th subject
or cluster respectively and m denotes the number of subjects respectively cluster. Further,
X, and Z; are the (n; X p)- and (n; x q)-dimensional design matrices that respresent the
known values of the p and q covariates X, ..., X® and ZW ... ZD: 3 corresponds to
the p-dimensional vector of the fized effects while w; describes the vector of q random
effects that are specific to subject or cluster 1. The remaining error term is given by
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the n;-dimensional vector €; for a given subject or cluster 1. We assume that u; and €;,
1 =1,...,m, are multivariate normal distributed, i.e.

wu; ~ N(O, D),

where Wy, ..., Uy, and €y, ..., €, are independent and D corresponds to a symmetric and
positive definite q X q matrix with

Var(uy;) Cov(uys, ug;) ... Cov(uys, ug)
Cov(u;, uo; Var(us; .. Cov(ugg, ug
D :=Var(u;) = (_1 2i) (2) ) <,2 ) ,
Cov(uy, ug) Cov(ug, ug) .. Var(ug)

which is constant for all v = 1,...,m. The positive definite symmetric covariance matric
R; is given by

Var(ey;) Cov(eyg, €9i) ... Cov(ey, €nyi)

Cov(ey;, € Var(ey; ... Cov(e, €y

R; :=Var(e;) = ( ,1 2i) ( 2i) ' ( 2 )
Cov(e, €n,i) Cov(€g, €nyi) .. Var(en)

Note, for clustered longitudinal data as in our tree ring modeling, we will have a further
index j representing the cluster. Thus we model Y;;; where index ¢ denotes the points in
time (Level 1 units), index i is being used for subjects (Level 2 units) and index j stands
for the different cluster (Level 3 units). However, the concrete model in the case of tree
ring data is specified in the next chapter.

The variances and covariances of the R; matrix in assumption (6.8) are defined as
functions of another usually small set of covariance parameters stored in a vector denoted
by @r which has to be estimated. Many different covariance structures are possible here
for the R; matrix such as, e.g. autoregressive structures. However we will concentrate on
the simplest covariance matrix for R;, namely the diagonal one in which the residuals are
assumed to be uncorreslated and to have equal variance. That means for each subject ¢

a2 0 ... 0
) 0 o2 ... 0 o 5
Ri=Var(e)=oT=| = 7 7 V| eRW™ and 8r=(c?).  (6.9)
0 0 ... o2

Also for the D matrix from (6.8) one could consider different covariance structures. How-
ever, a D matrix with no additional constraints on its elements (aside from positive
definiteness and symmetry) implies that (¢ x (¢4 1))/2 covariance parameters have to be
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estimated, stored in the vector @p. In case of an LMM having only two random effects
associated with the i-th subject, the matrix D looks as follows

o2 Ot ua o

D= VCLT(U,Z‘) = ul u2,u € RQXQ and GD = Oulu2 | - (610)
Oulu2  Oy2 0_27
u2

The vector 8 then combines all covariance parameters contained in the vectors @p and 0 p.

In Definition 6.1 we present a general matrix specification of the LMM for a given
subject i. An alternative matrix specification for all subjects is then given by

Y = XB+Zu+¢€, where (6.11)
—~ ——

fixed random

0
u . G qux n
€ mq+n 0 ) On xmq R )

and n := > " n;. Additionally, we have

Y, X,
Y = : eER", X:=| ¢ | eR"” BeR and
Y. X,
A On 0 ... 0
0n2><q Z2 X . ) ) e x
Z = . . . | e R with Opyug = | 1 -, 1| € R"*
On, g Z. 0 . 0
D Opqg . Ogxe
o o Opeg D '
u=|: |eR™ e=|: | €eR" aswellas G:= | 7" ~ c R™axma
Opeq oo ... D
Rl 0n1><n2
Onyxn R
and R := 2_X ! ,2 e R,
OTZmX’Vll “e. .. Rm

The LMM introduced in Equation (6.11) implies the following marginal linear model:

Y = XB+ €, where € :=2Zu+€=(Z,1xn) (u) (6.12)
~—— \ €

and thus
€ ~N,(0,V), where
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Vi=A (g g) A = (Z, 1) (g 2) ( z ) =7GZ +R (6.13)

[TLXTL

Hence, the error term of (6.12) for subject 7 is given by
€ = Ziu; + € ~ N,,,(0,V;), with V, = Z,DZ, + R;.

Note that Model (6.11) implies the linear model (6.12), but Model (6.12) does not imply
the LMM from Defintion 6.1 and Equation (6.11). The concept of the implied marginal
model is certainly important since the estimation of the fixed-effect and covariance param-
eters in the LMM is carried out in the framework of the implied marginal linear model.
So, e.g., if one is only interested in estimating 3, one can use the linear model of (6.12)
and the method of weighted least squares to estimate the corresponding parameters as
long as V' is known.

The parameter estimation in LMMs will now be focused on in the next subsection.

6.3.2 Estimation in LMMs

In an LMM, as described in Defintion 6.1, we want to estimate the fixed-effect parameters
B and the covariance parameters 0 (i.e. @p and O for the D and R; matrices). Therefore
the commonly used methods to estimate these parameters are the maximum [kelihood
(ML) and the restricted mazimum likelihood (REML) estimation which we will describe
in the following.

Maximum likelihood estimation

This method of obtaining estimates of the unknown parameters by optimizing the like-
lihood function is well known, since we already introduced it in Chapter 2. Given the
observed data of Y'; by vy, the likelihood function for the i-th subject is defined as follows
according to the assumption of a multivariate normal distribution of Y; in our implied
marginal linear model from (6.12), i.e.

L(8.6) = (2m)~% W exp =30, — X8) Vi w - Xi8) ),

where |V;| denotes the determinant of V;. Then the likelihood function L(3,8) is given
by the product of the m independent contributions of the likelihood function for the i-th
subject, i.e.

L(8,0) = [ Li(8.9).

The corresponding log-likelihood function equals [(3,0) = log L(3,0) = >_."  log L;(3,0)
which looks like

[(3,0) = —0.5n x log (27) — 0.5 x Y log (Vi) = 0.5 x Y (y, — XiB8) Vi '(y, — X:B).
z Z (6.14)

Now we distinguish between two cases: 6 is known and 6@ is unknown respectively.
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- 0 is known: As we already mentioned above, if 8 is known it follows that matrices V;
are knwon for all 7 and thus also matrix V. Hence one is only interested in estimating
the regression parameters 3. According to our implied marginal linear model (6.12)
we can use the method of weighted least squares (introduced in Section 2.5.2 in
Chapter 2) and the optimal value to estimate 3 can be obtained analytically. We
get

-1
A= (Z X;‘/Z-IXZ-) > XVl (6.15)

~

One can show that F[3] = 8.

- 0 is unknown: When we assume 6 to be unknown, we first obtain estimates for the
covariance parameters in @ by using a profile log-likelihood function lyr,(6). This
function ly;7(0) is derived from [(3,0) in (6.14) by replacing 3 by B, defined in
Equation (6.15), i.e.

I (0) = —0.5n x log (2m) — 0.5 x > "log (|Vi]) = 0.5 x > Vi 'r;,  (6.16)

where B
T =Y — X (Z X;‘/Qle) > XV,

The maximization of {7,(0) with respect to 0 is a nonlinear optimization problem
including constraints on 6 so that the requirements of positive definiteness on D
and the R; matrices are satisfied. However, there exists no closed-form solution for
the optimal € and hence one has to resort to a numerical algorithm (like Newton-
Raphson or Fisher scoring) to obtain an estimate of 6.

After doing this, we define ‘A/Z = ZiﬁZi’ + El by replacing D and R; in Equa-
tion (6.13) by their ML estimates D and R; for all 7. Then again we use the method
of weighted least squares to estimate 3 with V; replaced by its estimate V; and thus
we get

-1
p- (i) S, 617

Here, 3 is again an unbiased estimator of 3, i.e. E[,/B\] = 0.

Note in both cases the variance of estimate 3, i.e. Vaar(8) is a p X p variance-covariance
matrix given by

Var(B) = (Z X;KA/Z.lX,)_ . (6.18)
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REML estimation

The REML estimation is an alternative method to estimate the covariance parameters in
6. REML is often preferred to ML estimation, because it produces unbiased estimates of
covariance parameters in contrast to ML since it takes into account the loss of degrees of
freedom that results from estimating the fixed effects in 3.

In detail, one optimizes the following REML log-likelihood function to estimate 0, i.e.

ZREML(6> = —0.5 % (n —p) X lOg (27‘(’) — 0.5 x Zlog(]VZD

—0.5 x Z Ve — 0.5 x Zlog <‘X;IA/Z_

i ) (6.19)

where 7; is defined as before. Again the estimate Vi is computed numerically and the
REML estimates of the fixed-effect parameters 3 and Var(3) are then computed using the
Equations (6.17) and (6. 18) as in the ML case. Note, although using the same equations,
the REML estimate of B and the corresponding Var(ﬁ) differ from the ML estimate
since the matrix V; is different in each case. But, however, the estimated variances of the
estimated fixed-effect parameters are biased downward in both ML and REML estimation

because they do not take into account the uncertainty introduced by replacing V; with XA/Z
[West et al., 2007, p. 29].

6.3.3 Tools for model selection

An important task in this connection is to select the ”best” model, i.e. a model that have
fewest number of parameters used and at the same time is best at predicting or explain-
ing the variation in our response (dependent) variable. Beside the assumption that one
considers the research objectives, i.e. previous knowledge about important predictors and
important subject matter considerations, we also use analytic tools here. We will espe-
cially focus on hypothesis tests and information criteria to select the most appropriatest
model.

Hypothesis tests

We want to test hypotheses about parameters in an LMM and therefore test a null (Hy)
against an alternative (H;) hypothesis about the parameters. We start with likelihood
ratio tests (LRTs):

- Likelihood ratio tests: LRTs are a class of tests that are based on comparing the
values of likelihood functions for two models defining a hypothesis being tested. In
our context these two models have a nesting relationship, which means that a more
general model (reference model) encompasses the null and alternative hypotheses
while a second simpler model model (nested model) satisfies the null hypothesis. So
the nested model is a ”special case” of the reference model, i.e. the only difference
between these two models is that the reference model contains the parameters being
tested but the nested model does not. LRTs can be used to test hypotheses about
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covariance parameters or fixed-effect parameters. The corresponding LRT statistic
is calculated as follows

LR := —2log (M> = —210g (Lyestea) = (—2108 (Lreference)) ~ X%, (6.20)
Lreference
where Lyesteqd and Lyeference denote to the values of the likelihood functions of the
corresponding models evaluated at the ML or REML estimates of the parameters.
Under mild regularity conditions the LRT statistic follows a x? distribution where
the number of degrees of freedom df is obtained by subtracting the number of
parameters in the nested model from the number of parameters in the reference
model (i.e., for example, if the reference model includes 5 parameters and the nested
model 3, the number of degrees of freedom equals df = 2).
Note, due to West et al. [2007], the likelihood ratio tests used to test hypotheses
about fixed-effect parameters in an LMM should be based on ML estimation because
REML estimation is not appropriate in this context. In contrast, when we test
hypotheses about covariance parameters in an LMM, REML estimation should be
rather used for reference and nested models.
We still draw our attention to the case when we want to test whether a given random
effect should be kept in a model or not. We are doing this by testing whether the
corresponding variances and covariances are equal to zero and thus whether the
random effect can be omitted. Note, that the covariance parameters satisfying the
null hypothesis lie on the boundary of the parameter space. Therefore we have to
distinguish two cases:

(i) In case of having only a single random effect in our reference model, the calcu-
lations of p-values are based on a x? distribution weighted by 0.5 [West et al.,
2007, p. 36], i.e.

p —value = 0.5 x P(x3 > LR)

(i) In case in which we have two random effects in our reference model and we wish
to test whether one of them can be omitted, i.e. we test whether the variance
for the given random effect that we wish to test and the associated covariance
of the two random effects are both equal to zero. Then the corresponding
asymptotic null distribution (i.e. the under H, assumed distribution) of the
test statistic LR is a mixture of x? and x3 distributions with each having an
equal weight of 0.5 (cp. West et al. [2007]), i.e.

p —value = 0.5 x P(xi > LR) + 0.5 x P(x3 > LR) (6.21)
- t-test: It is used for testing a single fixed-effect parameter in an LMM, i.e. testing
Hy:Bc=0 vs. Hy: [ #0,

for k € {1,...,p}. The corresponding ¢-statistic is then given by

R — (6.22)
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However, unlike the standard linear model, the test statistic (6.22) does not follow
an exact t distribution, i.e. the number of degrees of freedom for the null distribution
of the test statistic is not equal to n — p. One has to use approximate methods to
estimate appropriate degrees of freedom. Further details can be found in West et al.

2007].

- F-test: An F-test can be used to test hypotheses about multiple fixed effects in an
LMM, i.e. testing Hy : X8 =0 vs. H;: X8 # 0. We will not go into any details
here, we rather refer to the mentioned references for more information.

Information criteria

Information criteria are another set of useful tools in model selection, i.e. assessing the
fit of a model based on its optimum log-likelihood. They provide a way to compare any
two models fitted to the same set of observations without being nested. For the criteria
we follow the form ”the smaller the better”, i.e. a smaller value of the criterion indicates
a "better” fit. We introduce two measures:

- Akaike information criterion (AIC): We have already introduced the AIC in
Chapter 2. It is calculated (in our case) based on the ML or REML log-likelihood
of a fitted model due to Akaike [1973], i.e.

AIC = =2 x 1(3,0) + 2(p + q). (6.23)
- Bayes information criterion (BIC): The BIC is given by

BIC = -2 x I(B,0) + (p+ q) x log (n).

In contrast to the AIC, the BIC penalizes models with a large number of parame-
ters more than the AIC does since one multiplies the number of parameters being
estimated (p + ¢) by the logarithm of the total number of observations n.

However, we will concentrate on the AIC.

We are now ready to model our tree ring data by linear mixed models. For the im-
plementation, parameter estimation and model selection we will use the R-library nlme,
implemented by Pinheiro et al. [2012].



Chapter 7

Model selection

In contrast to the first part of our work, we now study yearly data, i.e. yearly tree ring
width (in mm) data measured from trees in the region of Hohenpeissenberg (Oberammer-
gau). In detail, the altitude of the tree location is about 910m above sea level, the trees
exposition corresponds to circa north-north-west (NNW) and the slope angle measures
about 10 degrees in all cases. We consider complete data over 55 years (1950-2004) for
10 trees of two different tree species, namely Norway spruce (Picea abies [L.] Karst.) and
silver fir (Abies alba Mill.). For every tree we measure the corresponding year ring from
two different drilling directions, i.e. from south-east and south-west, to have fundamental
data. Thus, altogether we have

59 X 10 X 2 =1100

years  number of trees  number of drilling directions

data points a each tree species.

Before we start to specify our model, we would like to detrend the raw tree ring
data series for each tree first. In order to do not distort the pure influence of different
meteorological quantities on our dependent year ring variable we are using smoothing
splines as introduced in Section 6.1 by Cook and Peters [1981] to remove any non-climatic
variance out of our series. Then we take the ratio described in (6.4) to yield our detrended
data, i.e.

treeringy; = RW1;; = Zt”, (7.1)
tij

where y;; corresponds to the values of the raw data series and s;; describes the values
of the fitted smoothing spline at time ¢ € {1950, ...,2004} for tree number j = 1,...,10
measured from drilling direction ¢ = 1,2. Thus, the values of RW I;;; (ring width index)
correspond to the detrended tree ring data calculated as described in (7.1). Note, for sim-
plicity, we will name RW I;; by treering,; in the following which we will then model by
linear mixed models. The method of detrending, i.e. removing any time and tree depend-
ing trend, is performed by the R function detrend of the R library dplR, implemented by
Bunn et al. [2012]. An example of detrended raw data for two trees of different species is
presented in Figure 7.1. Note that we here detrend all available data for a single tree (thus
for some trees we have data from more than 55 years) but in the end we only consider
(detrended) data over the mentioned period 1950-2004 for our model to have complete

146
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Figure 7.1: Two examples of detrending the raw tree ring series of a single tree. The left
panel corresponds to the data of spruce tree (1) No. 1 (01) with drilling direction from
south-east (G) while the right panel corresponds to data of fir tree (3) No. 1 (01) with
drilling direction from south-east (G). Both trees are coming from the region Oberam-
mergau/Hohenpeissenberg (OGHP).

data of all trees for comparison.

In our analysis we want to examine the (linear) relationship between the yearly tree
ring width and several yearly meteorological quantities modeled by linear mixed models.
As seen in the previous part we have daily data available of different meteorological
variables from Hohenpeissenberg which we want to connect with the yearly tree ring
width. Hence we will calculate yearly means of these daily data over different periods
or seasons and use them as covariates in our model to explain the variation in the tree
ring variables. In principle we will concentrate on the same quantities as in Chapter 3
but we will only regress on one temperature variable, i.e. we will calculate our yearly air
temperature means only over daily mean air temperature. In addition we are interested in
one further quantity here, namely the highest number of consecutive days without rain,
i.e. the longest dry period in a regarded season. Thus, the following quantities will be
implemented in our model:

1. Total amount of precipitation [measured in mm]|
2. Relative humidity [measured in %]

3. Air pressure [measured in mbar]

4. Air temperature [measured in °C]

5. Longest dry period: Highest number of consecutive days without rain
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tree ring measured in 2004
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Figure 7.2: Illustration of the seasons or periods of the calculated means of our considered
daily meteorological quantities in case of the year 2004.

A tree ring width measured in a specific year is influenced by climate occurrences during
previous seasons and periods respectively (see, e.g., Fritts [1976]). Recently works, e.g. by
Dittmar and Elling [1999] or Leal et al. [2008], have shown that year ring widths of fir and
spruce trees are influenced by the climate of the different seasons defined in the following
and hence we will calculate the means of our considered meteorological variables over
these periods. We start by defining a ”yearly season” as the time period from October to
December of the previous year plus the period January to December of the studied year.
Then we calculate a yearly mean of the aboved mentioned daily data over the period

October — December of the previous year + (72)
January — December of the studied year. '

Furthermore we want to examine the relationship between the yearly tree ring width and
the mean of the aforementioned daily data only over summer months, resp. winter months.
Therefore we calculate two summer means over the periods

June — August of the previous year (7.3)

and
May — August of the studied year. (7.4)

And the winter mean is calculated over the period

December of the previous year + (75)
January and February of the studied year. '

An illustration of the used periods for the different mean calculations can be found in
Figure 7.2 using the example of tree ring measured in year 2004.

7.1 Data analysis

Before we specify and start selecting appropriate linear mixed models for both tree species,
we still take a look at the behavior of the detrended tree ring width series over the
considered 55 years (1950-2004) for all 10 different trees of each species. Especially whether
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Figure 7.3: Detrended tree ring width series for each tree of the fir tree species.
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Figure 7.4: Detrended tree ring width series for each tree of the spruce tree species.
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Species Tree number

1 | 2 [ 3[4 [5[]6 ][ 7][8]9]10
Fir 0.32 | 0.56 | 0.67 | 0.47 | 0.54 | 0.59 | 0.54 | 0.28 | 0.35 | 0.53
Spruce || 0.32 | 0.20 | 0.24 | 0.49 | 0.41 | 0.14 | 0.45 | 0.57 | 0.33 | 0.19

Table 7.1: Empirical Kendall’s taus among the tree ring width series from two drilling
directions for a single tree (for both species).

there might be some unusualness in the developments or non-dependencies among both
drilling direction series corresponding to a single tree is a matter of interest. Table 7.1
presents the empirical Kendall’s taus between the detrended ring series of two drilling
directions for each tree of both species. As expected they are all quite strongly dependent
among each other although one detects some outliers, e.g. in case of spruce tree No. 7
with a small dependence (7 = 0.14) among the detrended tree ring series measured from
drilling direction south-east and south-west respectively. Generally, the detrended series
from both drilling directions seem less dependent among each other in case of spruce trees
as in case of fir trees. However, the corresponding Figures 7.3 and 7.4 detect no further
peculiarities among the series of each tree. The series are all lying in the range between 0
and 2.5 and the variances of the data seem to differ little from tree to tree. It underlines
our approach of modeling the data by linear mixed models with random effects per tree. In
case of all regarded fir trees (except fir tree No. 5), the corresponding detrended tree ring
series seem to decrease between 1960 and 1970 and increase again from 1970. Actually
one would expect that the detrended data would not show such a behavior anymore. But,
however, as we have hinted in the Section 6.1, the used smoothing spline interpolation is
relatively restricted in case of tree ring series in order to present as much low frequency
climatic variance as possible in the data and remove only divergent non-climatic anomalies
that could be wrongly interpreted in the time domain as exceptional climate events [Cook
and Peters, 1981, p. 9]. Hence we will simply model this observed ”overall” time effect
by an additional GAM model in the following before we set up linear mixed models
based on our then twice detrended data. Note, for the sake of completeness, the pairwise
relationships of the detrended ring width data of both tree species with the calculated
seasonal means are illustrated in plots in Appendix C. For some pairs different functional
relationships seem to be possible, however, we think modeling linear relationships among
year rings and covariables by LMMs constitutes a good starting point in all cases for our
analysis.

7.2 Model specification

Our (detrendend) tree ring data set for each tree species can be considered as clustered
longitudinal data, in which units of analysis (drilling directions) are nested within
clusters (tree numbers), and repeated measures are collected on the units of analysis
every year. As already introduced in Chapter 6, our data set is structured into three lev-
els: Level 3 represents the clusters of units (tree numbers), Level 2 the units of analysis
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Figure 7.5: Structure of the clustered longitudinal data for the j-th fir tree in the fir tree
ring data set.

(drilling directions), and Level 1 represents the longitudinal (repeated) measures (tree ring
widths) made over time. This level structure is illustrated in Figure 7.5 for the example
of the j-th fir tree.

Altogether, we now have the following variables included in both tree ring data sets
for each tree species, namely

- Tree number (Level 3) variable
(i) treeno. = Number of the fir/spruce tree (j = 1, ..., 10),
- Drilling direction (Level 2) variable

(i) drilldirection = drilling direction (i = 1 for south-east and i = 2 for south-
west),

- Time-varying (Level 1) variables

(i) time = Time points of longitudinal measures (years ¢ = 1950, ...,2004),

(i) treering = Detrended fir/spruce tree ring width (RWI), collected at each time
point (dependent variable),

(iii) yearlyprec/winterprec/summerprec/summerprec_1 = Yearly/winter/
summer /summer one year before - mean of daily total precipitation, collected
at each time point,

(iv) yearlyhum/winterhum/summerhum/summerhum 1 = Yearly /winter/
summer /summer one year before - mean of daily rel humidity, collected at each
time point,
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(v) yearlypress/winterpress/summerpress/summerpress_1 = Yearly/winter/
summer /summer one year before - mean of daily air pressure, collected at each
time point,

(vi) yearlytemp/wintertemp/summertemp/summertemp_1 = Yearly/winter/
summer/summer one year before - mean of daily mean air temperature, col-
lected at each time point,

(vii) yeardry/winterdry/summerdry/summerdry_1 = Longest yearly /winter/
summer /summer one year before - dry period, collected at each time point.

The corresponding periods of the yearly /winter/summer/summer one year before means
are described in (7.2) - (7.5).

Since the considered covariates are on very different scales, we are again using standard-
ized variables here as in the marginal models in Chapter 3. So we indicate their relative
influence on the response variable with our models. In detail, the standardization looks
as follows:

— treeringy; — treering;;
treeringy; = Jti; gl], (7.6)

Streeringij

where

1 2004

treering;; = (treering;) and

55 t=1950
1 2004 ) NN
Streerings; = 5—4 E 1050 (treemngtij — treermgij) ,

for t = 1950, ..., 2004 corresponding to the years, winddirection ¢ (¢ = 1,2) nested within
fir tree j (j = 1,...,10).

We do the same standardization for the different (seasonal) means, in example for the
summer mean of daily precipitation:

— summerprec; — SUMIMETPTec
summerprec; = , (7.7)
Ssummerprec
where
1 2004
Summerprec = — (summerprec;) and
55 £—t=1950
1 2004 ( )2
s = — E SUMMErprec; — SUIMMEer Prec
summerprec 54 1=1950 p t p )

for t = 1950, ..., 2004.

Attention: In case of spruce tree ring data, we use log-data to yield a better fit of
our model, i.e.

log(treeringu;) = og(treering;) — log( reermgj)7 (7.8)
Slog(treering;)
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Figure 7.6: Modeling an overall time effect by GAMs for both tree species. Both smooth
functions and thus time effects (red lines) are significant.

where

1 2004

log(treering;;) = (log(treering;)) and

% t=1950

1 2004 _ . 2
Sogureerings) =\ 5 Zt:l%o (log(tree?"mgtij) - log(treermgij)> :

for t = 1950, ...,2004 corresponding to the years, winddirection ¢ (i = 1,2) nested within
fir tree j (j = 1,...,10).

7.2.1 Modeling overall time effect by GAMs

In the data analysis in Section 7.1 we detect an obvious decreasing trend between 1960
and 1970 in actually all measured detrended fir tree widths. We used this detection as
reason to model an additional overall time effect that still occurs in all ring series of both
species although we already detrended the data series of every single tree by smoothing
splines beforehand. Therefore we are using two generalized additive models (GAMs) (cp.
Section 6.2) to explore the functional form of the relationship between covariate time and
the (already detrended and then standardized) tree ring widths for both tree species.!
Thus, we model

treeringu; = s(timey) + T, (7.9)
where s() is the smooth function, chosen to be a cubic spline. Remember, in case of
spruce tree ring data, we consider a modified model of (7.9) by log-data instead, i.e.

log(treering,;) = s(time;) + 7;;. The remainder 7, i.e. the twice detrended tree ring
data, is then modeled by a linear mixed model in both cases of the tree species. Figure

'We are here using the R library gam, implemented by Hastie [2011].
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7.6 presents the resulted smooth functions of our models (red lines). The nonparametric
effects (thus the overall time effect) are highly significant in both cases of our regarded
tree species (the corresponding p-values are < 0.01). In case of fir trees, the detection of
decreasing ring widths during the sixties and then again increasing widths in the seventies
is captured by our model. But also in case of spruce trees there is a slight overall time
effect detactable (since we have a small p-value) which is also modeled here.

7.2.2 General linear mixed models form

We now take the twice detrended and standardized tree ring data for both tree species,
i.e. 7;, measured at time point ¢ (¢ = 1950, ...,2004, corresponding to the years), from
drilling direction direction ¢ (i = 1, 2) nested within tree number j (j = 1, ..., 10). Together
with the above mentioned covariates, we specify the general form of a full linear mixed
model from which we start our model selection for both tree species in a next step. This
full model looks as follows:

Ttij = By + B1 X summerprec; + By X summerhum; +
— N —_ — N
b3 X summerpress; + 4 X summertemp; + b5 X summerdry; +
Bs X summerprec_l; + B7 x summerhum_1; + B X summerpress_1; +

—~—— ~——

Bo X summertemp_1; + PB1g X summerdry_1; + P11 X winterprec; +

[B12 X winterhum; + B3 X wm%esst + B4 X wintertemp; + (7.10)

b5 X winterdry; + P1g X yearlyprec; + B17 X yearlyhum,; +

@18 x yearlypress, + Pig X yearlytemp; + Pog X yeardrytﬁ
fixed

Up; -+ Uy; X s(timet) + Uoi|5 + €tij,

VvV
random

where

- Bo,-..,P20 are the fixed effects associated with the intercept and the time-level stan-
dardized covariates (as defined before),

- up; and uy; denote the random tree effects associated with the intercept and time
slope,

- uUg;|; represents an additional random effect associated with the drilling direction
nested within a tree and

- €5 corresponds to the residual.

As in Section 6.3 of Chapter 6 described, we assume that the random effects ug; and uy;
are joined normal distributed, i.e.

ulj

u; = <u°j> ~ N3(0, D)), (7.11)
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where the variance-covariance matrix D® is defined as

D(Z) — ( VCLT(UOJ‘) COU(u0j7u1j)) — < O-iZnt:tree Uint,time:tree) : (712>

COU(UQj, Ulj) VCL?"('LLU) Oint,time:tree Otime:tree

for all j = 1,...,10. Thus one has to estimate the three covariance parameters o2 ., .,

Oint time:tree and U?ime:tree for the two random tree effects associated with intercept and
time slope.

In addition, the third random effect associated with drilling direction ¢ nested within tree
J, i.e. ug);, is also assumed to be normal distributed and independent of the other both
random effects. Thus, it holds

ugij ~ N(0,DV), for all i and j, (7.13)

where
DW = 52

int:drilldirection(tree)’

which has to be estimated, if it is contained in the model.
Further in our case, we assume that the residuals are all i.i.d. normal distributed, i.e.

€ij ~ N (0,02 ), i.i.d. for all ¢,7 and j. (7.14)

residual

Thus, only the parameter o2 has to be estimated in this context.

residual
Note that our general model from (7.10) does not contain an additional fixed time ef-
fect (i.e. the covariate time) anymore since we already detrended our series beforehand.
We also checked that an additional covariate time would not improve the model fit of
model (7.10) significantly in both tree species cases.

Now we start selecting which random and fixed effects need to remain in the model
and which can be excluded to yield the best meaningful model fit.

7.3 Selecting random effects

In order to select which random effect might be omitted in our models, we are using
likelihood ratio tests, described in Section 6.3.3. The corresponding test statistic LR is
assumed to be chi-squared distributed as defined in (6.20). Note that in case of testing
the random effects, we consider REML estimations for our regarded models with the
corresponding restricted log-likelihood values (also for the LR calculation) since their
estimates of the random effect parameters are unbiased in contrast to maximum likelihood
estimates. The calculation of the p-values is described in Equation (6.21). For example,
when we would like to test whether one of both random effects u¢; and w;; can be omitted,
we estimate the values of the restricted log-likelihoods for the reference and nested model
respectively and then calculate the test statistic LR. In a next step, use Equation (6.21)
to yield the p-value of our likelihood ratio test, i.e. p—value = 0.5 x P(x? > LR)+ 0.5 x
P(x3 > LR). Thereby we can neglect that there exists also a third random effect wug;;
since it is assumed to be independent of the effects ug; and u,;. The results are presented
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Nullhypothesis Fir trees Spruce trees
LR p-value | reject LR p-value | reject
(REML) Hy (REML) Ho
Hjy : Random effect 32.30 40.64
uy; can be omitted (ref: -1317.60 0.00 vV (ref: -1427.41 0.00 v/
(vs. Hy : It cannot.) nest: -1333.75) nest: -1447.73)
H; : Random effect 0.00 0.00
U;|; can be omitted (ref: -1317.60 0.50 X (ref: -1427.41 0.50 X
(vs. Hy : It cannot.) nest: -1317.60) nest: -1427.41)
Hj : Random effect
u1; can be omitted 32.30 40.64
in model without (ref: -1317.60 0.00 vV (ref: -1427.41 0.00 vV
random effect ;) nest: -1333.75) nest: -1447.73)
(vs. Hy : It cannot.)
Hy : All random effects 32.30 40.64
can be omitted (ref: -1317.60 0.00 vV (ref: -1427.41 0.00 vV
(vs. Hy : They cannot.) || nest: -1333.75) nest: -1447.73)

Table 7.2: Selecting significant random effects based on likelihood ratio tests (cp. Section
6.3.3 in Chapter 6). The test statistic LR (due to REML estimations) is defined in (6.20).
The corresponding (restricted) log-likelihood values can also be found in the table for the
considered reference (ref:) and nested (nest:) model due to the different test scenarios.
The p-values are calculated as shown in Equation (6.21).

in Table 7.2.

In both tree species models we can omit the random effect associated with the drilling
direction nested within a tree u;; due to our likelihood ratio tests. The other both effects
seem to be significant and thus will remain in our models. Therefore from now on we
consider the models

’IA"/tij = fi[Eedt + Ug; + U1; X S(timet) + €tij, (715)

for both tree species (in which we study (standardized) log data in case of spruce trees)
and continue with selecting the significant fixed effects in the next section.

7.4 Selecting fixed effects

In contrast to the random effects, we estimate the fixed effect parameters of the full
model (7.10) by the method of maximum likelihood (ML). We are using these unbiased
estimates to calculate the corresponding AIC as defined in Equation (6.23) and compare
its value to the AIC when we have removed one fixed parameter out of the full model.
This procedure is repeated for every fixed parameter and in the end one selects that model
with the smallest AIC. We then take this selected model and start again the described
procedure of removing every single fixed parameter respectively that is contained in that
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model, estimate the rest of the fixed parameters by ML and calculate the corresponding
AICs. Then select again that resulted model with the smallest AIC. This backward model
selection by AIC ends when an AIC value cannot be undermatched anymore.

Using the above described selection by AIC to yield our end model. In case of fir trees
we get the following:

~——

Fir = Bo + B1 X summerprec; + By X summertemp; + B3 X summerprec_1, +

T'tij
—_— N — N —_— N——

By X summerpress_1; + PB5 X summertemp_l; + Bg X summerdry_1; +

By x winte/\r?rect + Bs X winterhumy + By X yearlyprec, + (7.16)

—_—— —_— —_——

@10 x yearlypress, + P11 X yearlytemp; + P1a X yeardryﬁ:

fixed
UQ; + Ur; X s(tz’met) + €tij -

Vv
random

The following model results in case of the (log) spruce tree data:

—~—

7P = By 4+ 1 X summerprec, + o X summerhum; + B3 X summertemp, +

tij

B4 X summerdry, + Bs X sumn;e?tzmp,lt + B¢ x summerdry_1; +

b7 x winterprec; + g X winterhum; + (7.17)

—~—

By x wing;]b?esst + P10 X winterdry; + P11 X yearlyprec, +

B X yearlyhumy; + B3 X yearlypress; + P14 X ye&:t\eg%pt—l—

~
fixed

Uoj + Ui; X s(timet) + €tij

'
random

From 20 fixed effect parameters in the full model we end with 12 and 14 parameters
respectively at this point. A comparison between both tree species, the values and single
significances of the fixed effects as well as the estimated parameter values in case of the
random effects will be now presented in the next Chapter.



Chapter 8

Results

The estimates of all parameters of the selected models (7.16) and (7.17) together with the
p-values of corresponding t-tests (defined in Section 6.3.3) for the fixed parameters are
presented in Table 8.1 for both tree species. Due to Section 6.3, the fixed effect parameters
(i.e. quasi fy,...,014) are estimated by the method of maximum likelihood (ML) while the
random effect parameters (i.e. Oresiduals Tintitrees Ttimetree ANA Ting timetrec) are estimated
by the restricted maximum likelihood (REML). Note that in Table 8.1 an estimate of the
correlation pins time:tree 15 Presented instead of covariance oips yime:tree- Table 8.2 summarizes
the relationship of the (standardized) covariates whether they are positively or negatively
influencing our (detrended and standardized) tree ring responses.

8.1 Fixed effects

In case of both tree species, the intercept parameters 5y do not seem to be significant
and thus could be excluded from the models in principle. Generally we detect slightly
more negative influences of the (standardized) covariates on the corresponding responses
than positive ones. In case of the selected spruce tree model we have two more fixed
effects included and the response variability is described by more winter and summer
meteorological quantities as in the fir tree case. But in return, the fir tree ring widths
measured in a specific year seem to be more influenced by meteorological occurrences in
summer one year before in contrast to spruce rings. While we have a fixed effect by the

longest yearly dry period (yeardry) included in our fir tree model, we detect effects of the
longest summer and winter dry period respectively instead, implemented in the spruce
tree model which are not modeled in case of fir trees. Further, spruce tree rings also seem
to be more influenced by humidity measurements as in the fir trees case.

An interesting finding is given by the positive influence of the yearly precipitation and
temperature mean while the corresponding summer means are modeled to have a negative
relationship to the reponse of both tree species. The common influence of summer and
yearly mean of temperature on the ring width is illustrated in Figure 8.1. One observes
that we have modeled that the warmer the summer (and hence the the warmer the summer
mean of temperature) of a specific year the smaller the corresponding tree ring width will
be (provided that all other covariates stay constant).

159
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Parameter Fir trees Spruce trees
of Estimate | p-value | Estimate | p-value
of t-test of t-test
Intercept (Bo) 0.00 0.90 0.00 1.00
summerprec; -0.16 | <0.001 | -0.17 | <0.001
summerhum, / / 0.12 0.08
summerpress; / / / /
summertempy -0.16 < 0.001 -0.24 < 0.001
summerdry; / / -0.27 < 0.001
summerprec_ly -0.09 0.01 / /
summerhum_1; / / / /
summerpress_li -0.12 < 0.001 / /
summertemp_1y 0.06 0.05 -0.12 < 0.001
summerdry_1; -0.09 < 0.001 0.06 0.05
winterprecy 0.06 0.07 -0.13 < 0.001
winterhumy -0.09 < 0.001 -0.17 < 0.001
winterpress; / / -0.11 0.01
wintertempy / / / /
winterdry; / / 0.09 0.01
yearlyprec, 0.08 0.06 0.23 < 0.001
yearlyhumy / / -0.24 < 0.001
yearlypressy -0.09 0.01 0.17 < 0.001
yearlytemp; 0.21 < 0.001 0.11 0.03
yeardry; 0.18 < 0.001 / /
Oresidual 0.79 0.84
Oint:tree 0.00 0.00
Otime:tree 0.44 1.39
Pint,time:tree -0.22 0.00
AIC (ML) 2570.33 2795.88
AIC (REML) 2638.08 2869.73
BIC (ML) 2654.83 2890.94
BIC (REML) 2722.37 2964.53
log-lik (ML) -1268.16 -1378.94
log-lik (REML) -1302.04 -1415.87

Table 8.1: Estimations of the fixed parameters of the covariates (done by maximum likeli-
hood (ML)) together with p-values of the corresponding t-tests as well as the estimations
of the random effects (done by restricted maximum likelihood (REML)) for both tree
species models. Note that pint time:ree denotes the corresponding correlation. In addition,
the AIC, BIC and log-likelihood values of the different methods are also listed.
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Variable Summer mean || Summer mean || Winter mean || Yearly mean
one year before

Fir | Spruce | Fir Spruce Fir | Spruce | Fir | Spruce

Precipitation - - - + — + +
Humidity + — — _
Air pressure — — _ +
Temperature — - + — + 4
Longest dry period - - + + T

Table 8.2: Summary for both tree species cases whether a seasonal mean has modeled
positive or negative influence on the response variable.

Now often a warmer summer induces also a higher yearly mean of temperature, so the
tree ring width will not be as small as when we would have only a high temperature mean
in summer but a small overall yearly temperature mean in the same year (provided that
all other covariates stay constant). However, the year ring width would still be higher
(provided that all other covariates stay constant) when we have a high yearly mean of
temperature and a lower yearly summer mean of temperature in the same year (thus the
seasons except summer must provide warm temperatures). Note that in case of fir trees the
yearly mean of temperature has a higher fraction (0.21) on the ring width than in case of
spruce trees (0.11) while at the same time the mean of temperature in summer has a lower
fraction (—0.16) on fir tree rings than it has on the ones of spruce trees (—0.24). Thus
the plane in Figure 8.1 is less steep in case of fir trees than in case of spruce trees. This
result corresponds to several studies made so far, like e.g. by Dittmar and Elling [1999],
where one observed generally a positive influence of temperature on the year ring width

Fir trees Spruce trees
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Figure 8.1: Modeled common influence of the yearly and summer temperature mean on
the (standardized) tree ring width for both species.
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of spruce trees (but it can easily transfer also to fir trees) but, however in contrast one
also detected a negative dependence between the year rings and summer temperatures
in the region of the alps. In addition at middle-high altitudes as we have in our case
(trees located at about 900m above sea level) there was observed a ”change point” from
negative to positive dependence between tree ring widths and temperatures in summer in
the region from 700 to 1000 meters above sea level. Thus the dependence among responses
and summer temperatures is not explict manifested in that region of altitudes and can
differ from position to postion. Note that the above description of the phenomenon we
have modeled in case of yearly and summer temperature means can equally transfer to the
relationship of yearly and summer mean of total precipitation to the ring width responses
in both tree species cases.

8.2 Random effects

The assumption of independent and identically normal distributed residuals is underlined
in both tree species cases by looking at the diagnostic plots in Figure 8.2. The raw resid-
uals plotted against the observation numbers do not present any systematic pattern and
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Figure 8.2: From both tree species models we plot each the corresponding residuals against
the observation numbers (left panel), a normal Q-Q plot of the residuals (middle panel)
and a comparison between the empirical density of the residuals and the theoretical normal
distribution (right panel).
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the Q-Q plots follow a straight line. Thus it assesses the goodness of our fits in a positive
way.

The special feature of linear mixed models is the flexible way of implementing random
effects. In our cases the standard deviations of the random effect associated with the time
slope a tree number are relatively high (0.44 and 1.39), in case of spruce trees even explicit
higher than in case of fir trees. In contrast, the standard deviations of the random effects
associated with the intercept for every tree are very small (i.e. < 0.001 for both tree
species) but we still modeled a negative correlation among both random effects in case of
fir trees (—0.22). In case of spruce trees, this correlation corresponds to zero. Additionally,
the estimates of the residual’s standard deviations in both tree species cases are similar,
namely 0.79 and 0.84.

With these results we can now calculate the modeled tree specific variances for all con-
sidered years t. Due to the random part in the selected models (7.16) and (7.17) we get
the variance of our detrended tree ring widths for both tree species at time ¢ by

Var(ty;) = Var(ug;) + s(time;)*Var(uy;) + Var(ey;) + 2s(time;) Cov(ug;, uy )

. 8.1
= O—i2nt:tree + S(timet)2atzime:tree + Jsesidual + 2$<t7’m€t)o—int,time:treea ( )
for all i = 1,2 and 5 = 1, ..., 10. The modeled variance over the 55 years is illustrated in

Figure 8.3 in comparison with the empirical ones from the detrended data of both tree
species. Generally the variances of detrended spruce year rings seem to be higher than in
the fir tree case. Nevertheless we detect a significant decrease in modeled and empirical
variances of both species, observed by simple linear regression of the data against time.
The results indicate a decrease of modeled variance by —0.001 p.a. (—0.05 in 55 years) in
the fir case and a steeper decrease by —0.003 p.a. (—0.18 in 55 years) in the case of spruce.
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Figure 8.3: Modeled variances of the detrended tree ring widths data for the fir trees (left
panel) and spruce trees (right panel) in comparison with the empirical ones of each year.
The dashed lines correspond to significantly decreasing simple linear regressions of the
detrended ring data against time.
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Figure 8.4: Modeled variances of detrended fir tree ring data plotted against the corre-
sponding standardized yearly means of temperature. The dashed line corresponds to a
simple linear regression of the modeled variances against the yearly temperature means.

It is consistent with the general studies of tree ring data since year rings are naturally
constrained to the tree breadth and thus its variances are also constrained.

Using these outcomings, one could now compare the influences of our covariables contained
in the models on the modeled variance. However we cannot detect any strong significant
relationships here when we study corresponding plots in both tree species cases. The only
observation that we made is a slight significant decrease of modeled variances (measured
by a simple linear regression) when the yearly mean of temperature gets higher in case
of fir trees. It is presented in Figure 8.4. Together with our model outcome that higher
yearly means of temperature induce rather larger tree rings, the significant decrease of
the corresponding fir (detrended) tree ring variance exhibit that these large widths will
then not vary as much.

As last point we want to remark that we could also calculate the variance of the raw
tree ring data yy,; for every tree j a drilling direction j and point in time ¢ by using the
ratio (7.1). Thus, we get

Var(yy;) = si;Var(treeringy;) = si;Var(fy;). (8.2)

But in that case it would not make sense to examine the relationship of the raw data
variances with our yearly covariates since we would not know exactly which variance
developments are caused by climate or biological occurrences and which are caused by
non-climate reasons such as time or age trends.
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Chapter 9

Summary and Outlook - Part I

In the first part of the thesis we studied R-vine models for three different periods (i.e.
1955-1959, 1980-1984 and 2005-2009) to model the dependence structures among six me-
teorological variables during these time spans in Hohenpeissenberg. In order to do this,
we first had to model the marginal distributional behaviors of the variables using different
regression models. Autoregression and seasonal effects were captured by linear regressions
in case of daily mean, minimum and maximum temperature as well as in case of daily
mean air pressure. While the residuals in the models of daily mean and maximum temper-
ature follow a normal distribution in the periods 1955-1959 and 1980-1984, we detected
slightly skewed normal distributed residuals in the models for both variables in the last
period 2005-2009. However, daily minimum air temperature and daily mean air pressure
were modeled with skew ¢ distributed error terms in all considered periods. We further
noticed significant increases in the modeled means of all temperature variables over the
whole time period 1950-2009. The modeled expected values of daily temperature variables
increase on average by about 1.4°C in 60 years. Additionally, the modeled variances indi-
cate no significant trend. However, in order to classify these results, one has to consider
the overall temperature developments over the last and next centuries. In case of modeling
the marginal behavior of daily mean humidity we attained better fits by including the
”Fon”-explaining variable of wind direction into our beta regression models. Nevertheless,
maybe for a future work, the fits could be improved by using a kind of weighted beta re-
gression. The modeling of daily total precipitation, performed by a two step method with
binomial and gamma regressions, offers more rain amount on summer days coming from
convective precipitations which occur in the foothills region of the Alps. All in all, our
marginal models fit relatively well for all six variables.

To connect the non-continuous (at zero) variable of daily total precipitation to our
R-vine models, we first modeled the dependence structure of the five variables without
precipitation by a five-dimensional R-vine in the classical way and then connected the
variable of positive precipitation amount to the established 5-dimensional vine to get a
six-dimensional R-vine copula specification on rain days. Thus, the dependence struc-
ture among the variables without precipitation should not change when it rains which is
underlined by our empirical data.

The modeled R-vines show dependence structures among the variables as generally
expected such as strong dependencies among the temperature variables and negative
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dependence between humidity and temperature in all considered periods. Air pressure is
modeled to be slightly negative dependendent on temperatures and air pressure as well as
slightly positive dependendent on humdity. However, our models offer a further feature,
namely to investigate also the tail dependencies among the variables. Based on the log-
likelihood values of the different models and the selected pair copulas in the R-vines,
we detect a considerable change in the dependencies among the temperature variables
from the second (1980-1984) to the last period (2005-2009). Our vine for the last period
becomes more ”Gaussian” in contrast to the previous ones, in detail, we detect a change
from pair copulas with asymmetric tail dependence in our first two R-vines (corresponding
to periods 1955-1959 and 1980-1984) to ones with symmetric tail dependence among
the temperature variables in the last period. In our case it means that large deviations
downwards from the modeled expectation of daily mean temperature strongly depend on
large downward deviations from the expected daily maximum temperature in the last
period. In the previous two periods we modeled instead that large downward deviations
from the expected daily mean temperature rather depended on large downward deviations
from the expected daily minimum temperature. So this tail dependence becomes more
variable in the last period.

Thus, in a next step one should evaluate R-vine models for all periods, i.e. between the
considered ones, to get more information how this detected change in the dependencies
among the variables developed over the whole time span and to classify how fundamental
it is. Maybe therefore one could also use a more dynamic division of the modeled periods
based on the points in time when changes in the dependencies occur.

However, in our case, simulated pairwise Kendall’s taus from the models correspond
to their empirical counterparts as an indicator for the goodness of our fits. In addition
we have simulated the probabilites of different scenarios (compared to the empirical ones)
which exihibts a nice feature of R-vine models.

This work could motivate to built R-vine models including further meteorological or
other variables, maybe also a spatial extension, to implement them into established fore-
cast and weather derivative pricing models and methods which are dependent on infor-
mation about the dependence structures among climate variables (as we have mentioned
in the introduction).



Chapter 10

Summary and Outlook - Part 11

In the second part of the thesis we modeled the (linear) relationship between yearly tree
ring widths and climate variables by linear mixed models for two tree species (fir and
spruce trees) from the region of Hohenpeissenberg. First we had to detrend the raw data
series by using smoothing splines in order to remove any non-climate variance over time
(in our case 55 years). The detrended data exhibit different variances per tree so that
our approach of using linear mixed models to model the year ring data seems reasonable.
However, we still detected an overall time trend (overall time effect) in the detrended
data of all considered trees, especially in the case of fir trees, which we modeled by an
additional generalized additive model (GAM). The residuals were then modeled by linear
mixed models including meteorological quantities as fixed effects for both tree species.
Note that in case of spruce trees we attained a better model fit by using log transformed
data. The meteorological quantities such as mean temperature, mean humidity, mean air
pressure, total precipiation and longest dry period were calculated as means over different
seasons which are meaningful in matters of tree growth. We then selected appropriate
random and fixed effects. Tree specific random effects were included in the model for both
species as well as a number of fixed effects. Thereby, interestingly, we detected positive
effects of yearly temperature and precipitation means on tree ring widths but negative
effects of summer temperature and precipitation means on ring widths in cases of both
tree species. However this result is convenient to previous studies where one observed
generally a positive influence of temperature on the year ring width, but in contrast one
also detected a negative dependence between the year rings and summer temperatures in
the region of the Alps. Further, the modeled variances of the detrended data for both tree
species decrease significantly over the whole time span. However, we could not observe
a clear relationship between these modeled variances and the meteorological covariates.
Only for fir trees in case of yearly mean temperature a slightly negative dependence
is detectable. Finally, the assumption of i.i.d. normal distributed residuals seems to be
fulfilled in the models of both tree species.

Our here presented methodology should serve as a further approach to extract quan-
titative and qualitative information about the limiting factors of tree growth. Therefore
one could evaluate further data sets by LMMs for comparison and/or modify the LMMs
by adding further covariates as well as by adding different covariance structures of the
residuals into the models to explain the variability of tree ring widths.
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Appendix A

Plots of bivariate copula families

Here we present contour and scatter plots of the bivariate copula families for standard
normal margins which we have discussed in Section 2.2.3. We are using the relationships
shown in Table 2.4 to calculate the copula parameters for different choices of Kendall’s
7. Note that only the Gaussian, ¢, Frank as well as the rotated Clayton, Gumbel and Joe
copulas exhibit negative dependence. For the ¢ copula we choose four and eight degrees
of freedom respectively for illustration.

1=-05 1=0.25 1=0.75

1=0.75

0.0 0.2 0.4 0.6 0.8 1.0

Figure A.1: Contour and scatter plots of the Gaussian copula for three choices of Kendall’s
T.
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1=-05v=4 1=0.25v=4 1=0.75,v=4

Figure A.2: Contour and scatter plots of the ¢ copula with four degrees of freedom for
three choices of Kendall’s 7.

1=-05v=8 1=0.25v=8 1=0.75v=8

Figure A.3: Contour and scatter plots of the t copula with eight degrees of freedom for
three choices of Kendall’s 7.



APPENDIX A. PLOTS OF BIVARIATE COPULA FAMILIES 171

1=0.25 =05 1=0.75

Figure A.4: Contour and scatter plots of the Clayton copula for three choices of Kendall’s
T.

1=-0.25 =05 1=-0.75

1=0.5 1=-0.75

Figure A.5: Contour and scatter plots of rotated Clayton copulas for three choices of
Kendall’s 7. The left panel corresponds to a rotated Clayton copula by 90 degrees, the

middle panel presents a rotated (survival) Clayton copula by 180 degrees and the right
panel shows a rotated Clayton copula by 270 degrees.
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1=0.25 =05 1=0.75

Figure A.6: Contour and scatter plots of the Gumbel copula for three choices of Kendall’s

T.

1=-0.25 =05 1=-0.75

1=-0.75

Figure A.7: Contour and scatter plots of rotated Gumbel copulas for three choices of
Kendall’s 7. The left panel corresponds to a rotated Gumbel copula by 90 degrees, the
middle panel presents a rotated (survival) Gumbel copula by 180 degrees and the right
panel shows a rotated Gumbel copula by 270 degrees.
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1=0.25 =05 1=0.75

Figure A.

1=-0.25 1=0.5 1=-0.75

Figure A.9: Contour and scatter plots of rotated Joe copulas for three choices of Kendall’s
7. The left panel corresponds to a rotated Joe copula by 90 degrees, the middle panel
presents a rotated (survival) Joe copula by 180 degrees and the right panel shows a rotated
Joe copula by 270 degrees.
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t=-05 1=0.25 1=0.75

Figure A.10: Contour and scatter plots of the Frank copula for three choices of Kendall’s
T.



Appendix B

Method to calculate daily mean
wind direction

We have data of wind direction measured every hour (24 measurements per day) and now
we want to calculate a daily mean of these wind directions. But how to do it?

The hourly wind direction is measured in degrees from 0 to 360 (0°=North, 45°=East,
180°=South, 270°=West, 360°=North, etc.

Due to the break from 360° to 0° we have to apply trigonometrical functions to be able
to calculate a daily mean. Furthermore we have to weight the measurements, because a
strong north wind in the first half of a day and a weak south wind in the second half
should not result in a daily mean of west wind.

Therefore we use the following procedure explained by an example:

Example: Mean of two measurements:

Measurement 1: 315° (North-west) at wind speed 5,
Measurement 2: 45° (North-east) at wind speed 10.

Calculate weighted cosine:
C1 =5 X cos (&)’

Cy =10 x cos (1%).

Calculate weighted sine:
51 =5 x sin (47).
Sy =10 x sin (337).

180

Build the means:
_ (C14C2)
(SlJQrSQ)

D) .

W Ol

Since it holds, that tan(z) = 2% (sce Figure B.1), we get

cos(x)
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Y
1
//////
1
2
Sin «
/ sina ~ cosa
(6} | "
-1 1 CoS v 1
2
\\ _1 //
2
\ _1

Figure B.1: Connection between sin, cos and tan on the unit circle

winddirection = arctan(£) x £2.

Here winddirection = 18.4°.

Since we have 24 hourly measurements, we get the daily mean of wind direction (i.e. winddirectz’on)
in general by:

1. Build weighted means over cosine and sine (here, windspeed; denotes the measured
wind speed and winddirection; the measured wind direction at time t):

1 24
c=— <wz’ndspeedt X €OS (wmddirectiont X i)) ,
24 t=1 180
1 24 : o @
5= 21 2 (wz’ndspeedt X sin (wznddzrectzont X ﬁ)) :
2. Get daily mean of wind direction by calculating arcus tangent:
—— . s 180
winddirection = arctan (:) X —.
c T



Appendix C

1inst

ing widths agai

Plots of tree r
covariables

To complete the data analysis in Section 7.1 in Chapter 7 we here present plots of the
detrended tree ring widths (as described in (7.1) of both tree species against our twenty

covariables, namely the different seasonal means. We start with the plots of the year rings

of fir trees.
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Figure C.1: Plots of detrended fir tree ring widths against the seasonal means - Part I.
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APPENDIX C. PLOTS OF TREE RING WIDTHS AGAINST COVARIABLES
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Figure C.2: Plots of detrended fir tree ring widths against the seasonal means - Part II.
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Figure C.3: Plots of detrended fir tree ring widths against the seasonal means - Part III.

We continue with the tree rings widths of spruce trees:
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Figure C.4: Plots of detrended spruce ring widths against the seasonal means - Part 1.
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Spruce trees
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Figure C.5: Plots of detrended spruce ring widths against the seasonal means - Part II.
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