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Abstract—In this paper, we present a new system to automat-
ically estimate the rotational axis (orientation) of robotic joints
relative to distributed accelerometers. We designed, implemented,
and tested a method for the estimation of joint orientation.
The method takes advantage of basic movement patterns of
a robotic segment. The method uses considerably less input
data compared to related methods for the estimation of joint
orientation. As sensor input, it only needs the gravitational
acceleration measured before and after a commanded joint
rotation, dynamic acceleration components are not needed. We
evaluated the implementation of the method on a Bioloid robot
equipped with three Tactile Module prototypes. Our Tactile
Modules are multimodal sensor systems and also feature a triaxial
accelerometer. The robot successfully estimated the rotation axes
of each DOF of its shoulder and elbow joints relative to the
accelerometer frames of the Tactile Modules that are randomly
distributed on the corresponding segments.

I. INTRODUCTION

A. Body schema, automatic kinematic calibration, and joint
reconstruction

Humans are aware of their limbs and joints, they are aware
of the shape of their entire body. Based on this awareness,
the brain can exactly control each single human movement.
The sensory representation of the 3-D body shape is termed
as a body schema. In [1], body schema is defined as: “(a) the
mapping from proprioception and efferent copy (copy of motor
command) to body posture and motion, and (b) the mapping
from tactile sensation to its originating position on the body
surface”. This definition is derived from Head and Holmes [2]
who initially proposed the term body schema. The autonomous
acquisition of body schema is also one of the important issues
in embodied artificial intelligence. According to [3] and [4],
the physical body of an agent specifies the constraints on the
interaction between the agent and its environment. A physical
body also helps to form cognition and action of an agent.

Body schema is strongly connected to the problem of
automatic kinematic calibration in robotics [5]. Kinematic
calibration acquires relative joint positions/distances and ori-
entations, and uses this data to obtain the kinematic function,
e.g., forward kinematics. It is highly desirable to automate
the calibration process, so that a robot finds its kinematic
parameters by itself, especially without relying on external
sensors. By external sensors, we mean measurement systems,
which are neither a part of the robot nor attached to its sur-
face. Automatic calibration contrasts with traditional industry
robotics, where the kinematic parameters are either already
provided by the manufacturer of the robot or gathered by a
calibration procedure with a human in the processing loop

Institute for Cognitive Systems, Technische Universität München,
Karlstrasse 45/II, 80333, München, Germany, Email: see
http://www.ics.ei.tum.de/

Fig. 1. The left arm of a Bioloid robot equipped with two of our Tactile
Modules (TM 341 and TM 2). The robot moves the joints 4 and 6 (one
joint at a time). Our system estimates the orientation of the joint axes (cyan)
relative to the accelerometer frames (orange) of the Tactile Modules that are
randomly distributed on the segments.

utilising external measurement systems.
In order to solve the problem of autonomous kinematic cali-
bration and to provide a body schema, our overall approach is
to create an autonomous robot reconstruction system. To this
end, the surface of the robot is covered by Tactile Modules [6].
The Tactile Modules are multimodal sensor systems, which
can be connected to each other to form a network. A Tactile
Module Network emulates the human skin and approaches
multimodal whole body touch sensation for humanoid robots
[6]. An important application of the Tactile Modules is full
spatial calibration, also called 3-D shape reconstruction [6], by
using their integrated BMA 150 acceleration sensors. Thus, a
robot would reconstruct the 3-D shape of its segments, which
are fully covered by the Tactile Modules, but even then one
problem still remains: the segments are connected by joints.
So if the entire 3-D shape and also the kinematic chain of
the robot have to be reconstructed, the joints connecting two
segments will have to be reconstructed as well. This can be
achieved by acquiring the distance and orientation of the joint
axis relative to a Tactile Module on the corresponding segment,
as it is pointed out in [6].
Joint reconstruction can be split up into two problems, the
estimation of joint position/distance on the one hand, and
the estimation of joint orientation on the other. This paper
investigates the latter one, the estimation of joint orientation.
By joint orientation, we mean the vector describing the rotation
axis of a joint relative to a specific reference frame. It is crucial
to have data on how the joint axes are oriented to each other.
This information is important to gather the forward kinematics
and to match reconstructed segments to each other.
Here, we present a system, which automatically estimates
the rotation axis of a joint relative to randomly distributed
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accelerometers. We use the triaxial accelerometer embedded
into each of our Tactile Modules. In order to estimate the axis
of a selected joint, our system first commands that joint to
perform a simple movement pattern (only one joint moves at
a time) and then it deduces the joint axis.

B. Related Works

Here, we focus on related works on the estimation of joint
orientation/axis as a crucial part of joint reconstruction and
kinematic calibration.
Hersch, Sauser, and Billard presented a system which esti-
mates robotic joint orientation and position in order to acquire
a body schema represented by the kinematic function [5].
The system uses a learning mechanism, which combines
information from the proprioception (motor encoders), the
stereo vision, and tactile sensors. An iterative gradient-descent
method calculates joint orientation and position, but it also
needs visual or tactile input for this purpose.
Different possibilities exist to describe the orientation of a
joint axis. In [5], the orientation of a joint axis is described
as a vector. As it is shown in [7], the Denavit-Hartenberg
convention uses angles to describe the orientation of a joint
axis i relative to the previous joint axis i− 1.
The orientation of the joint axis is necessary to acquire
the kinematic chain and it is one of the parameters, which
kinematic calibration should find out.
According to the categorization in [8], kinematic calibration
can be split up into three approaches: 1) closed-loop calibra-
tion; 2) open-loop calibration; and 3) screw axis measurement.
Closed-loop calibration uses movement patterns (self motions)
and only joint angle sensing, without any external metrology
system. The method requires the robot to attach its end effector
to the ground and to form a mobile closed kinematic chain [8].
Works on closed-loop calibration are reported in [9], [10], [11],
and [12].
Open-loop calibration requires an external metrology system
to measure the pose of the end effector of a robot [8]. Many
approaches exist to measure the pose of the end effector.
For this purpose, Goswami, Quaid, and Peshkin use a radial-
distance linear transducer (LVDT) [13]. It is also possible
to use a calibration plate with index marks, which provide
accurate positions of the end effector, as reported in [14].
Stone, Sanderson, and Neuman use external ultrasonic range
sensors [15].
Screw axis measurement identifies rotational joints of a robot
as a screw, i.e., as a line in space [8]. The method extracts
the kinematic parameters from the knowledge of all of the
joint screws found. Screw axis measurement splits up into two
sub-methods: 1) circle point analysis (CPA); and 2) Jacobian
measurement method.
In circle point analysis, each joint moves in a circle [8],
[16], while an external measurement unit records the positions
of the end effector, similar to open-loop calibration. The
method uses these recorded positions to approximate a plane,
in which the circle lies [16]. The normal of this plane and
the center of the circle define the joint screw. Instead of

external position sensors to obtain the location of the end
point of a robotic link, Canepa, Hollerbach, and Boelen used
an onboard accelerometer and proceeded similarly to open-
loop methods with a nonlinear optimization to derive the
parameters, see [17]. Their system calibrated a 7 DOF robotic
arm. The researchers mounted a triaxial accelerometer on the
robot endpoint. Their method calculates kinematic parameters
(joint axis orientation, center of rotation). Concerning the joint
orientation, they report a very high accuracy, which is partly
due to their high precision accelerometer used. However, they
do not clearly mention how they derive that reported accuracy,
i.e., it is not clear how they know the ideal axis relative
to the accelerometer frame. When the accelerometer frame
is mounted randomly somewhere on the robot segment, it is
important to first gather the ideal axis orientation relative to
the accelerometer frame, before one can compare that ideal
orientation with the orientation estimated by the system. Since
we distributed our Tactile Modules randomly somewhere on
the segments and measured each axis orientation relative to
our accelerometer frame manually by using a triangle and
goniometer, the ideal axis alone can have uncertainties of
a few degrees. So when obtaining the ideal axis manually
by such simple instruments, it is unlikely that the estimation
accuracy is less than 1◦, even in case of a correct estimation.
The precision of the actuators is also an important factor
influencing the estimation result.
The Jacobian measurement method determines the joint
screws simultaneously by measuring the Jacobian matrix [8].
This method works velocity based on the one hand, or force
and torque based on the other hand [18]. As it is described
in [18], the velocity based approach needs an external mea-
surement unit, which first gathers the endpoint linear and
angular velocities. Then the method estimates the kinematic
parameters. The force and torque based approach requires a
manipulator to have joint torque sensing and endpoint 6-axis
force/torque sensing [18]. During the calibration procedure,
the manipulator rigidly attaches its endpoint to the environ-
ment. The method systematically exerts the joint torques and
the corresponding endpoint forces. In the identification step,
the method estimates the parameters. Hollerbach, Giugovaz,
Buehler, and Xu apply screw axis measurement based on the
Jacobian method in order to calibrate the Sarcos Dextrous
Arm, see [19]. They also compared the method to open-loop
calibration and CPA.
In sum, the related works show that joint orientation is one of
the key parameters used to extract kinematic data. However,
the methods of the related works have their drawbacks when
applying them on autonomous robot systems. They either
need external measuring devices (like standard open-loop
approaches and CPA) or require the robot to form a closed-
loop with its environment (like closed-loop approaches). When
using a closed-loop approach for example, a humanoid robot
would always have to attach its arms to some part of the
environment in order to automatically calibrate its arms.
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C. Our Approach

The idea of our work was to acquire the joint orienta-
tion with a minimum of input data. In contrast to open-
loop approaches and especially CPA, our approach does
not need external measuring devices. Unlike the closed-loop
approaches, a robot using our method does not need to
form a closed kinematic chain with its environment. We
investigated the capability of the estimation of joint axis by
using only acceleration as sensor modality. We decided to
take a ‘static’ estimation approach. In contrast to CPA as a
common method for joint orientation estimation, our approach
for orientation estimation relies only on the gravitational
acceleration measured at different static segment positions and
the commanded joint rotation angle. An accelerometer A is
mounted on a segment S (see Fig. 2). Here, the expression
‘static’ indicates that the segment S does not move while the
accelerometer is measuring the gravity vector (G-vector). After
the system has measured the G-vector, it moves the segment
S by the corresponding rotational joint J , which axis is to be
estimated. Our approach does not need dynamic acceleration
components, no accelerometer recordings are captured during
segment motion. Note that only one joint is allowed to move at
a time. After the movement has stopped, the system measures
the G-vector again. Then it deduces the joint orientation from
the different G-vectors and the known joint rotation angle.
The rotation angle is relatively small (ca. 17◦) compared to
the one of CPA (step by step throughout the entire joint range,
e.g., 180◦, according to [19]). The smaller the joint rotation
angle is, the smaller the difference between the recorded G-
vectors gets. In general, the rotation angle should not be too
small, e.g., below 10◦, since the G-vectors are nearly one
and the same then, making the estimation of joint orientation
less precise. The rotation angle should also not be too big,
since the robot requires more space and time to move the
corresponding segment. We found out that an angle between
15◦ and 20◦ is a good tradeoff. Our approach is limited to
rotational joints, so it estimates the orientation of each rotation
axis representing a DOF. Our approach has the advantage
of using flexible reference frames. This means that a Tactile
Module (TM) can be placed anywhere on a robotic segment.
The location is not relevant, the module should just stay fixed
somewhere on the segment moved by the joint, which is to
be estimated. One Tactile Module on segment S is enough
to estimate the corresponding joint axis J . If two or more
TMs are attached on the segment, e.g., a network of TMs,
one of them can be arbitrarily selected to be the reference
TM providing the reference frame. Our estimation method
is based on a global optimization of a quaternion rotation
and uses a simple movement pattern of the joint that is
to be estimated. Closed-loop and open-loop approaches use
nonlinear optimization techniques, however their mathematical
and algorithmic approach, e.g., in [17], is different to ours, and
none of the related work was found utilises quaternions, which
are robust to singularities.
As input data, our method needs gravitational acceleration and

Fig. 2. Model of our joint estimation approach (original image [17] was
modified): Inputs (purple) of the estimation system are the G-vectors recorded
in multiple segment poses and the rotation angle commanded to joint J . The
output (light green) is the unit vector κ describing the orientation of J relative
to the accelerometer frame. The estimation of the vector p (dashed arrow)
describing the position of J also belongs to joint reconstruction but is not
the focus of this paper. When using our Tactile Modules, the accelerometer
frame A is also the module frame.

the rotation angle commanded to the robotic joint. As output
data, our method delivers the orientation/direction vector of a
joint axis relative to the frame of a selected accelerometer.

II. SYSTEM DESCRIPTION

A. Hardware – Tactile Modules

Our Multimodal Tactile Modules (HEX-O-SKINs) [6] are an
approach to multimodal humanoid tactile sensing. They form
an artificial robotic sensor skin, emulating the functions of hu-
man skin. Every HEX-O-SKIN is a small, rigid printed circuit
board (PCB), which incorporates different sensor modalities
together with a local controller, as it is described in [6].
The PCB has a hexagonal shape of 1.4 cm edge length (see
Fig. 3). An important feature is that four of six edges have

Fig. 3. HEX-O-SKIN. Top view (left) and bottom view (right). The BMA
150 acceleration sensor is located in the center. The vector describing joint
orientation is estimated relative to the right handed Cartesian frame (orange)
of the BMA 150.

ports, which can connect neighbouring modules. Thus, we can
form a Tactile Module Network (TMN). For joint orientation
estimation, we only need the integrated triaxial acceleration
sensor BMA 150. Note that the frame of the BMA 150 is the
frame of the corresponding Tactile Module as well.
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B. Conditions

At a certain processing step, our method estimates the axis
of rotation k described in frame A. Note that the axis of
rotation k is actually identical with the axis κ of joint J (joint
orientation) when accelerometer A is mounted on the segment
S (see Fig. 2). This is true for the following conditions:

• Segment S is rigid, e.g., not made of a material which
can deform during movement.

• Only joint J is allowed to move during the estimation
process, all the other joints have to stand still (one joint
at a time).

• The orientation of the whole robot does not change during
the estimation process.

These conditions have to be met when running the implemen-
tation of our method on a robot. In the following, one can
consider these conditions to be fully met. This is also the case
when our system performs on different robotic platforms, like
the Bioloid or a KUKA Lightweight arm.

C. Our Method

The goal is that the joint orientation has to be estimated
relative to the accelerometer frame, no matter how the ac-
celerometer is mounted on the corresponding segment. So the
orientation of the Tactile Module in space and its orientation
relative to the joint axis should not be constrained.
We observed that a method using roll-pitch-yaw angles as
orientation descriptors is not the best choice due to singular-
ities. Thus, our method works with quaternions. Our method
delivers the vector κ describing joint orientation according to
the right hand rule of rotation. The main idea is to extract this
vector from a quaternion rotation:

q̂2 = q̂R ∗ q̂1 ∗ q̂
−1
R . (1)

where q̂ denotes a quaternion and ∗ symbolizes quaternion
multiplication. Generally, Eq. (1) rotates a 3-D vector repre-
sented by q̂1 into the vector represented by q̂2. The vectors
are described in the same frame and the rotation quaternion
q̂R encodes the axis of rotation. Applying Eq. (1) on the
estimation of joint axis, the 3-D vectors represented by q̂1

and q̂2 are the G-vectors in frame A which the accelerometer
measures before and after rotation of J , i.e., from servo
position 1 to servo position 2 (see Fig. 4).

Fig. 4. Basic movement pattern (top view on the joint). Here, the orientation
of the elbow joint (cyan) is estimated relative to the TM having ID 2. Our
system chooses a movement direction (back or forth) and then it estimates
joint orientation according to the right hand rule of rotation.

q̂1 =
[
0 g1x

g1y
g1z

]T
(2)

q̂2 =
[
0 g2x

g2y
g2z

]T
(3)

Given q̂1 and q̂2, now the aim is to find out q̂R, since it
contains the axis of rotation and its angle.

q̂R =
[
qR1

qR2
qR3

qR4

]
(4)

q̂R =


cos(∆θcmd

2 )

kx · sin(∆θcmd

2 )

ky · sin(∆θcmd

2 )

kz · sin(∆θcmd

2 )

 (5)

We transform Eq. (1) into a compact form written as

0 = G · q̂R . (6)

We call the matrix of Eq. (6) the ‘gravity-matrix’ G, since
it consists of the G-vectors before and after rotation of J .
Equation (6) is determined analytically, and it is a null space
problem, which is solved by singular value decomposition
(SVD). The solution is the right singular vector of G corre-
sponding to the smallest singular value. However, we observed
that the solution found was not unique. After every run, two
equal smallest singular values existed, which means that any
linear combination of the corresponding right singular vectors
is a valid solution. For this reason, we took another approach:
we expected the left side of Eq. (6) not to be exactly zero due
to noise or other irregularities.

e = G · q̂R (7)

This led to an optimization problem. Besides the given G-
vectors, we used the commanded angle of joint rotation ∆θcmd
as additional information. Our method minimizes Eq. (7) along
with the additional constraint that k has to be a unit vector.
The method minimizes with respect to the rotation axis k. We
decided to use the Nelder-Mead algorithm (NMA) in order to
minimize this error function. The advantages of NMA are that
it is robust and the function, which is to be minimized does
not need to have a derivative. In general, optimization methods
often converge into local minima, strongly dependent on the
initial guess, so they do not guarantee a global solution. A
common problem is the false convergence at a point other than
the minimum. This difficulty was also found when using the
NMA [20]. In order to find a global minimum, we use a finite
set of start vectors as input for the Nelder-Mead algorithm.
Each of these start vectors is a point located on the surface of
a sphere with the radius r = 1. The number of start vectors
depends on the step width δs of the discretization of the sphere
surface. A step width of δs = 0.1 was enough to obtain a high
number of initial vectors. This resulted into 2016 different
points on the sphere surface, ki1 ,ki2 , . . . ,ki2016 .
Our overall system architecture is depicted in fig. 5. Our
system calculates one solution ks for each initial guess ki on
the sphere surface. A large set {S} of solutions ks (symbolized
by {S}ks

) is available to our system before it enters the pro-
cessing steps marked by a green dashed line in Fig. 5. We call
each ks a single solution. The vector κaxis describing the joint
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Fig. 5. System architecture: estimation by global optimization of a quaternion
rotation. Input data in purple, output data in dark green. The visual result of the
process of sphere discretization is shown below the box ‘Sphere discretizer’.
Each point (blue) on the sphere surface is sequentially put into the NM
optimization step. For each solution, the system calculates the backward error.
It is the Euclidian distance between the estimated g2 and the measured g2.
This ensures the correctness of each estimated solution ks of the optimization
step. A K-Means algorithm with automatic selection of suitable cluster centers
deduces 1 up to 2 final vectors κaxis1 , κaxis2 (joint axis) describing the
orientation of the joint. In addition, the system also calculates the joint
orientation angle α, which is the angle enclosed by the TM-plane and the
estimated vector κaxis.

axis has to be ‘filtered out’ of {S}ks
. If the whole set consists

of single solution vectors which have very little numerical
difference to each other (e.g., numerical discrepancy after the
third decimal place), it is clear that the set will represent one
solution which can be described by the average of all ks. So
in this case, our optimization method has converged into one
final solution (one average vector). Nevertheless, experiments
showed that {S}ks can sometimes be divided into more than
one group, each group again represented by its average vector.
This means that our optimization method has converged into
multiple final solutions. In such case, a single solution of
one group has a mentionable numerical difference to a single
solution of another group. This difference results into a certain
Euclidian distance between the corresponding solution vectors.
Our system has to obtain the correct average vector, which
describes the physical joint axis according to the right hand
rule of rotation. All the other average vectors are correct in so
far that they minimize the error function, but they are not the
joint axis in reality. In the following, we term this phenomena
as the problem of solution manifolds. A typical case is shown
in Fig. 6. For the clustering process, the number of cluster
centers is two because of the worst case configuration, in
which the G-vector obtained in servo position 1 is (nearly)
the same as in servo position 2. So both estimated axes (one
axis points up and the other one points down, both aligned
with the G-vector) are valid, since each of them turns g1 into
g2 according to the right hand rule of rotation. The main task
of the clustering process is to divide the single solutions into
one up to two groups, so that the system can easier select the
correct group (corresponding to the physical joint axis) later.

(a) Perspective: az. = 128◦,
el. = −14◦

(b) Side view, perspective: az. =
125◦, el. = 0◦

(c) Perspective similar to the
photo on the right: az. = 146◦,
el. = −62◦

(d) The joint axis (light green) in
reality, according to the rotation
direction (purple)

Fig. 6. This visual output of our system shows the solution manifold problem
in the A-frame of a TM (x-axis in dark green, y-axis in dark orange, z-axis
in black, TM-ports represented by dashed black edges). Here, two solutions
exist. They are the average vectors displayed in blue color, each of them
represents one group of single solutions. All of them have a small backward
error (here, dBE = 0.0037), so they satisfy Eq. (7), but the picture 6(d)
shows that only one joint axis (light green) is correct according to the right
hand rule of rotation, which corresponds to one of the blue average vectors.
A green ellipse marks the right one, a red ellipse the wrong one.

D. Final algorithm

As output, our method delivers either one joint axis κaxis
on the one hand, or two joint axes κaxis1 and κaxis2 on the
other hand (see output of Fig. 5). In the second case, only
one of the estimated axes is physically correct, κaxis1 or
κaxis2 . Experimental results showed that in contrast to the
wrong estimation, it is very likely that the correct estimation
repeats itself after the system has moved the joint J once
again in the same direction, i.e., from servo position 2 to
position 3 (see Fig. 7). Based on this discovery, we created

Fig. 7. Schema of the extended movement pattern.

the final algorithm for joint estimation. After measuring the
G-vector in servo position 2, the robot is commanded to
move its joint from position 2 to position 3 in the same
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direction with the same amount of joint rotation ∆θcmd.
Our final algorithm calls the implementation of our method
(Fig. 5) twice: the first time with the G-vectors of servo
position 1 and 2 (movement and estimation, step 1); and again
with the G-vectors of servo position 2 and 3 (movement and
estimation, step 2). Then, it selects the correct joint axis from
the results obtained (selection, step 3). In this selection step,
our algorithm calculates the average of the two axes (one of
movement step 1 and one of movement step 2), which have
the minimum Euclidian distance to each other. This distance is
very small, since the corresponding axes are actually the same
in reality (correct estimation repeats itself from movement
step 1 to step 2). The principle of the solution repeating itself
after a second joint movement is visualized in Fig. 8.

(a) Movement and estimation,
step 1. Perspective: az. = 127◦,
el. = −12◦

(b) Movement and estimation,
step 2. Perspective: az. = 127◦,
el. = −12◦

(c) Selection, step 3, final algo-
rithm has chosen the correct axis.
Perspective: az. = 127◦, el. =
−12◦

(d) The joint axis (light
green) in reality, it was es-
timated correctly.

Fig. 8. The correct estimation repeats itself after an additional joint movement
in the same direction. As one can clearly see in 8(a) and 8(b), the Euclidian
distance between the wrong estimations (red ellipses) are greater than between
the correct ones (green ellipses). The Euclidian distance between the correct
estimations of step 1 and 2 tends towards zero.

III. EXPERIMENTS

A. Setup

We tested our system on the Bioloid robot with three
Tactile Modules randomly mounted on the segments (Fig. 9).
Compared to other robots like KUKA, the motor encoders of
the Bioloid are less precise. We wanted to show that our joint
orientation estimator also performs on low-cost robots. For our
distribution of Tactile Modules on the segments as shown in
Fig. 9, the robot has the following possibilities to estimate the
corresponding joint axes, see the schematics in Fig. 10. We
tested 15 ‘joint to sensor’ configurations where the Tactile
Modules had various inclinations and poses relative to the
joint axes, which were to be estimated (Fig. 11). For each of
the 15 ‘joint to sensor’ configurations, we let the robot do five

Fig. 9. Experimental setup on the Bioloid robot: the blue arrows mark
the joints, which axes were to be estimated. The green arrows mark the
Tactile Modules attached to the corresponding segments. The joint axes of the
shoulder and elbow provided sufficient various arm configurations in order to
test and validate our system.

(a) Joint 2 can be estimated rela-
tive to the frame of TM 341 and
TM 2. Joint 4 can be estimated
relative to the frame of TM 341
and TM 2. Joint 2 and joint 4
move upper arm and lower arm
with joint 6 staying fixed.

(b) Joint 6 can be estimated rela-
tive to the frame of TM 2. Joint 6
can only move the lower arm.

Fig. 10. Estimation possibilities. Note that the shoulder joint has two DOFs
(joint axis 2 and 4) and the elbow joint has one DOF (joint axis 6).

Fig. 11. Tree structure showing the 15 ‘joint to sensor’ configurations we
tested. In each of these configurations, the robot did five consecutive axis
estimations per back or forth direction.

repetitions of the estimation process. Note that the estimation
accuracy or estimation error is the angle between the axis
estimated by our system and the ideal axis. For each ‘arm/joint
to sensor’ configuration, we first measured the orientation of
the ideal axis on the robot manually by using a triangle and
goniometer, and then let the system estimate the corresponding
axis orientation.

B. Results

1) Mean error: In each direction of rotation (back or
forth), the mean error was calculated after five estimations.
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An overview is shown in Fig. 12.

Fig. 12. Mean error in all the tested ‘joint to sensor’ configurations. Outliers
in some cases lead to greater mean errors over five estimation results. Only
one single estimation alone might not be enough (danger of an outlier). Thus,
the robot should do five estimations one after the other and take the median
of these estimation results to be the final joint axis (see Fig. 13).

2) Median error: In each direction of rotation (back or
forth), the median error was calculated after five estimations.
An overview is shown in Fig. 13.

Fig. 13. Median error in all the tested ‘joint to sensor’ configurations.
Our system achieves a good accuracy (ca. 4◦ – 5◦) for all ‘joint to sensor’
configurations tested except for the cases 2 1 – 2 3. In those cases, the
accuracy was also depended on the choice of internal system parameters
used for the automatic selection of cluster centers. Unfortunately, there is
no ‘golden’ choice of parameters.

IV. CONCLUSION

A. Discussion

The overall system was developed in a bottom-up manner.
At the beginning, it was not clear how our optimization method
will behave, e.g., convergence into one or more solutions.
This could only be discovered experimentally. Therefore, it
was helpful to reduce and to specify the amount of unknown
parameters at the start of the design process. We explicitly
decided to use the commanded angle of joint rotation as
additional input data, otherwise our method would have to
minimize the error function with respect to four unknown
parameters (kx, ky , kz , ∆θcmd) instead of three (kx, ky ,

kz). The control system specifies the commanded joint angles
anyway.
We expect a better estimation accuracy on robots having
more precise actuators, e.g., the KUKA arm. Note again
that the ideal axes, which we used to compare to the esti-
mated ones in order to obtain the accuracy, were not pre-
given like sometimes kinematic parameters are on datasheets.
We measured the ideal axis orientation manually relative to
the accelerometer frame by using simple instruments like
a triangle. This can already imply some inaccuracies. The
estimation accuracy also depends heavily on the precision of
the accelerometers, which are influenced by accelerometer axis
calibration and offsets. In general, any other type of triaxial
accelerometer can be used to work with our method.

B. Summary

In this paper, we presented a system, which automatically
estimates the orientation of a robotic joint. As input data, our
system uses the commanded rotation angle and the gravity
vector measured by the triaxial accelerometers. We designed
our system based on quaternion calculations, which are not
affected by singularities. Our estimation method uses an
optimization approach to acquire the joint axis. It turned out
that this approach leads to solution manifolds. Our method
uses K-means clustering with automatic selection of cluster
centers to group the solutions found. The final algorithm of
our method selects the solution, which is physically correct.
Except for a few cases, the estimation accuracy is about four
degrees in the median on the Bioloid robot.

C. Contribution

A notable advantage of our axis estimation method is that
it really relies on minimum input data. Only gravitational
acceleration is used along with the commanded rotation angle.
Related methods for the estimation of joint axis like the circle
point analysis of screw axis measurement are dependent on
external sensors. Sometimes they also suffer from the drift of
accelerometer integration. In addition, our system commands
relatively small rotation angles to the joint, compared to related
methods like CPA where the joint is often moved through its
entire range.
With the obtained joint orientations, combined with data on
surface geometries (3-D reconstruction [6]) and kinematic
tree, the robot has a large collection of useful data for its
overall shape reconstruction, which is helpful to acquire a body
schema.
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