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Chapter 1

Introduction

Control theory deals with dynamical systems which can be influenced by controls. Such a system
is called control system. Typical questions are: Given an initial state x0 for a control system,
is there a suitable control such that a predefined final state xf can be reached? Can this state
be reached in finite or infinite time? Which states can be reached within a certain time. These
types of questions belong to a part of control theory, which is called controllability theory. We
will introduce to this topic in chapter 3.
Another important part of control theory is the stabilization problem. Suppose the uncontrolled
system has an unstable equilibrium point. Stabilizing the control system around this equilibrium
point means that we are looking for a suitable control such that this state becomes a stable
equilibrium point of the controlled system. Balancing a ball on one’s head is an example for
a stabilization problem. We present some ideas of this topic in chapter 4. The control law we
present in this work as our main original contribution belongs to this part of control theory.
Another area of research is optimal control theory . Suppose for example that for a given initial
and final state the question of controllability has a positive answer - meaning there is a suitable
control such that the solution of the controlled system starting in x0 reaches xf in finite time.
Among all controls which are admissible and suitable to perform this task, optimal control
theory is searching for those controls, which minimize (or maximize) a certain cost functional
such as ”energy consumption” or ”time needed” until the final state is reached. Our control law
is based on a minimum energy control law for linear time-varying systems [Cheng, 1979] which
was extended to nonlinear systems in [Sastry et al., 1994]. We will give a brief overview about
historical facts in optimal control theory for linear systems in chapter 2.
Throughout this work t will represent the time variable. We only regard finite-dimensional state
spaces and restrict ourselves to Rn for some integer n > 0. The state vector will be denoted by
x. The variable u is reserved for the vector-valued control, which – unless stated otherwise –
will be taken from a subspace U ⊆ Rr, 0 ≤ r ≤ n, which will usually be bounded and having 0
as an inner point. Instead of simply ”control” we will equally use the terms ”control function”,
”control law” and ”control input” or ”input function”.
Control systems we regard can be described as vector-differential equation of the form

ẋ(t) = f(x(t), u(t), t), t ≥ t0. (1.1)

The right hand side of (1.1) has to fit certain regularity assumptions. We will assume regularity
for f such that there is no blow-up of the solution in finite time and that for every initial value
x0 at t0 and every admissible control input u(t) ∈ U there is a unique solution x(t, u(t);x0) for
system (1.1) and t ≥ t0. For simplicity we will often denote the solution as x(t) hiding the fact
that it also depends on the initial value and the control input.

1



2 CHAPTER 1. INTRODUCTION

In many cases the control input u(t) depends only on the state x(t) of the system and thus we
have

u = u(x(t)). (1.2)

Control systems using such control inputs are called closed-loop or feedback-control systems. The
function f on the right hand side of (1.1) can be linear with respect to the state and the control.
In this case we obtain the control system

ẋ(t) = A(t)x(t) +B(t)u(t), t ≥ t0, (1.3)

where A(t) ∈ R(n,n) and B(t) ∈ R(n,r) are matrix-valued functions which we assume to have at
least locally integrable elements. If A(t) ≡ A and B(t) ≡ B are constant matrices, the control
system is called linear autonomous control system or linear constant control system.
Control systems which are not linear are called nonlinear control systems. Linear control systems
arise for example as linearization of nonlinear control systems. When linearizing around a point
(x0, u0) ∈ Rn × Rr we obtain a linear constant control system. Linearizing along a curve of the
state space (not necessarily a trajectory of the system) we obtain in general a linear time-varying
control system. Linear control systems are often helpful in describing the local behaviour of a
nonlinear system (see section 3.1).

About this work

In this work we present a novel nonlinear feedback control law for planar pendulum systems
with any number of links which locally stabilizes the inverted pendulum position (i.e. all pendu-
lum links point upward). It is also possible to locally stabilize those systems along trajectories
of the uncontrolled pendulum, when the linearization along these trajectories is controllable.
Numerical simulations indicate that the presented control law can actually be used to swing the
pendulum up to the inverted position from rather far away. For example in cases of up to three
links, we successfully managed to swing it up not only from the stable equilibrium point but
also using initial conditions where the pendulum links had very high velocities.

This work is organized in the following way:

In chapter 2 we study the time-optimal control problem for the linear simple pendulum equation
as introductory example and historical review:

• First we outline a result by D. Bushaw [Bushaw, 1958] which dates back to the beginning
of control theory. It is one of the first papers providing a precise mathematical description
of a class of control problems and its solution. The main idea is to study the geometry
of solution curves in the phase space belonging to a certain control input and finding
an equivalent geometrical formulation for the problem. This work belongs to the part of
optimal control theory as the goal is to find time-optimal solutions.
As the input space for the control inputs can be very rich, the set of solution curves
may also be very large. Bushaw avoids this problem by assuming the input space to be
discrete and finite. Although this sounds like a serious restriction, in most cases it is not
even a greater restriction than assuming the control inputs to be bounded. The reason
for this is the so-called bang-bang principle (see appendix A) which roughly speaking says
that everything that can be done with bounded controls can also be achieved by controls
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assuming limiting values. Bushaw could not refer to this result as it was unknown at that
time.

• In the second result the input space is bounded and no longer discrete and finite as in
the result of D. Bushaw. We present the theory developed by Hermes and Lasalle [Hermes
and LaSalle, 1969] rather detailed as it gives a good survey of linear system theory which
will be needed later in this work. Applying their theory to the linear simple pendulum
equation we recover the solution of D. Bushaw, although the input spaces will be chosen
differently!

• A third result concerning the linear case is presented in appendix D and is based on
Pontrjagin’s maximum principle. The maximum principle is an important result in optimal
control theory as it can be formulated in a very general setting for nonlinear systems and
for different cost functionals (a precise formulation is echoed in appendix D). Applied to
the linear model of a simple pendulum we obtain the same control as we already obtained
before.

Bushaw’s method is very restrictive in the sense that it is only applicable for a very small class
of systems with low dimension and allowing only controls assuming discrete values. Its strength
lies in the fact that it provides a constructive method for finding an optimal control.
The method of Hermes and Lasalle is more general as it solves the time-optimal control prob-
lem for linear time-varying systems of arbitrary, but finite dimension and in addition it admits
bounded controls. The disadvantage of this method is that the solution contains the state tran-
sition matrix of the uncontrolled linear system and – unless the system is autonomous – can in
general not be given explicitly. For practical purposes a numerical scheme is necessary to over-
come this difficulty. We used an algorithm proposed in [Eaton, 1962] to show that this method
actually works and demonstrated that in terms of the simple pendulum where the state transi-
tion matrix can be given explicitly. Thus we are able to compare our numerical results with the
analytical solution.
The method of Pontrjagin is the most general of the three, as it is designed for optimal control
problems, not necessarily time-optimal control problems. In particular it is applicable for non-
linear systems. The disadvantage is that it only provides a necessary condition for the optimal
solution and it does not guarantee existence of a solution. Due to its simplicity, for our intro-
ductory example existence of a solution is not a hard problem but still something that has to
be proved.

Chapter 3 is dedicated to the topic of controllability. For linear systems, time-varying or not,
the question of controllability has been completely answered (cf. e.g. [Klamka, 1991] which is a
monograph dealing exclusively with controllability of linear systems). The main theorem for lin-
ear controllability is theorem 3.9 in the present work, where the so called controllability Gramian
is introduced. The controllability Gramian is a matrix which is invertible if and only if the linear
system is controllable. For several reasons this theorem plays an extraordinary role not only in
the theory of linear control systems. To mention some of them:
– The criterion provides a necessary and sufficient condition for global controllability.
– Allowing unbounded controls every state can be transferred to any arbitrary state in any given
finite time.
– The proof of the theorem is constructive and uses the Gramian to solve the state transition
problem.
– The Gramian appears in the solution of many nonlinear control problems as it does in our
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control law.

Remark: In contrary to the Kalman criterion, which works for finite dimensions of the state
space only, the method using the controllability Gramian can be generalized to control problems
with infinite dimensional state spaces, but infinite dimensional state spaces will not be regarded
in this work.

Theorem 3.9 gives an integral criterion for systems of the form (1.3), which on the one hand
does not require much regularity of the system matrices A(t) and B(t) but on the other hand
brings along the integration problem which in general has to be solved numerically. In case the
matrices A(t) and B(t) are sufficiently often differentiable, there is a criterion for controllability
which only makes use of derivatives (theorem 3.10). It should be mentioned that the regularity
assumptions depend on the dimension of the matrix A(t) and therefore these regularity assump-
tions are strong for large dimensions of the underlying linear system (if the dimension of A(t) is
n the matrices A(t) and B(t) have to be n− 1 times differentiable).
This theorem is important for another reason. It is a generalization of the Kalman criterion to
time-varying systems.
Although autonomous linear systems are a special case of linear time-varying systems and there-
fore the whole ”time-varying theory” can be applied, several methods deserve to be mentioned
on their own.
Autonomous linear systems are much more simple to handle than time-varying linear systems
(constant rank, computable state transition matrix, . . . ). The first results in the field of control-
lability were obtained for this class of systems. The Kalman rank condition which was published
in [Kalman, 1960] is an important result to be mentioned (here theorem 3.11). It reduces the
question of controllability to some elementary matrix computations involving the system ma-
trices A and B. Unfortunately this method is not constructive, but – if applicable – easier to
handle than the integral criterion of theorem 3.9.
Following the presentation in [Klamka, 1991] we add another important method for checking
controllability of linear autonomous systems. It is based on the transformation to Jordan-form.
Controllability does not depend on this full rank linear transformation. This method has the
advantage that it reveals the coupling of the state variables. It provides a lower bound for the
size of the input vector and therefore gives conditions for the minimum number of actuators
necessary to guarantee controllability.

For general nonlinear systems it is still hard to prove controllability. The huge variety of possible
nonlinearities makes it difficult to find a general method in order to answer the question of
controllability.
There have been several attempts to tackle the problem of controllability for nonlinear systems.
In this work we will only restate some results using Lie-algebra techniques as these ones seem
to be a good choice in investigating controllability for an important class of nonlinear control
systems which are the so-called control affine systems (see 3.2.3). Without going into detail, in
sloppy notation they are of the form:

ẋ(t) = f(x(t)) +
∑
i∈I

gi(x(t))ui(t)

where I is a finite index set whose cardinality typically does not exceed the dimension of the
state space. This class of nonlinear control systems covers many control systems motivated by
real-life applications. The system dynamics enters as ”drift term” f , whereas the actuated parts



5

correspond to the terms gi(x(t)) · ui(t) where ui(t) denote the control inputs. The systems we
are interested in – planar pendulum systems – can be written in this form.
The main observation for these systems is that one can not only steer in the direction of the
vector fields gi but also in directions spanned by the Lie-brackets of these vector fields and –
under additional assumptions – the vector field f . A major problem is that in general one can
only go forward in the direction of f and has to make more and strong assumptions on f to
actually go ”backward”. It is unsatisfactory that even for the case where only one control input
enters in the control affine problem the question of controllability for the nonlinear system can
only be answered by very restrictive assumptions on the drift term f . We give a brief summary
of the existing theory.
Knowing much about linear systems and few about nonlinear ones it seems natural to look at the
linearization of the nonlinear system and trying to make conclusions for the original nonlinear
systems. This standard procedure will – if at all – at first deliver local results, but – depending
on the ”strength” of the nonlinearity, the domain of validity can still be very large.
An important result is due to Lee and Markus [Lee and Markus, 1967]. It states that in case the
linearization around an equilibrium point is controllable, the nonlinear system is controllable
in a neighborhood around the equilibrium point which is determined by the inverse function
theorem.
If the linearization is not controllable sometimes local controllability can still be proved by
the Lie algebraic methods mentioned above. This important result of Lee and Markus can be
generalized to any trajectory (cf. e.g. [Coron, 2007]) and we will apply this theorem to planar
pendulum systems.
From the same book we state theorem 3.39 which can be viewed as a generalization of the
Kalman criterion for nonlinear systems in the sense that it simplifies to the generalized Kalman
criterion already mentioned if applied to a linear time-varying system (note that here additional
regularity assumptions on the system matrices are required) and to the Kalman condition if
applied to a linear autonomous system (which automatically fits the mentioned regularity as-
sumptions). This relationship is important as theorem 3.39 is about controllability in directions
of Lie-Brackets and therefore is a beautiful link between the theorems stated in our work.

Chapter 4 deals with the stabilization problem. Given a reference trajectory (which might be a
single point of the state space) we are interested in stabilizing the system along this trajectory.
We start by giving all the necessary definitions along with the most important stability theorems
based on Lyapunov’s second method. Here we mainly follow the presentation in [Sastry, 1999].
For autonomous linear system it is well known that stability properties can be characterized
by the location of the eigenvalues belonging to the system matrix. Unfortunately there is no
generalization to time-varying linear systems. For those and nonlinear systems Lyapunov theory
will be used here.
The difficulty in applying Lyapunov theory lies in the fact that a suitable Lyapunov function (see
4.8) has to be found. For linear time-varying systems there is a standard procedure leading to
a Riccati differential equation, which - for autonomous linear systems reduces to the Lyapunov
equation – a system of linear algebraic equations – where the problem is reduced to finding a
suitable ”right hand side” for this equation.
For nonlinear systems finding such a Lyapunov function is much more difficult. At least there
is a theorem (see e.g. [Poznjak, 2008, Zubov 1964]) providing a necessary condition by stating
that a Lyapunov function for nonlinear systems exists, if the system can be stabilized.
In this chapter we present 4 results from literature which provide stabilizing control laws for
linear autonomous, linear time-varying and nonlinear systems. These theorems are strongly con-
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nected as the law for nonlinear systems can be seen as direct generalization of the stabilization
law for time-varying systems which in turn can be seen as generalization of the linear autonomous
systems. These theorems are the basis for the novel control law we present at the end of this
chapter. Next we give a brief overview of the presented stabilization methods:

– For linear autonomous systems Kleinmann [Kleinmann, 1970] found a way to (asymptotically)
stabilize the zero-solution of the uncontrolled systems by what he called ”an easy way”. This
method has several advantages:

• The method uses the Gramian computed over a finite time interval. The controllability
question can be answered by checking the rank of this matrix.

• No transformation of variables is needed.

• No eigenvalues have to be determined.

The disadvantage of this method is that one cannot prescribe the rate of convergence a priori
and therefore convergence might be extremely slow.

– To overcome this disadvantage we present another method for linear autonomous systems
which goes back to R. W. Bass. Bass never published his result but it is contained in some
lecture notes for a course he taught at the NASA Langley Research Center in August 1961. A
summary can be found in [Russell, 1979] for example. It should be mentioned that the result of
Bass is earlier than that of Kleinmann.

– R. W. Bass used a modified controllability Gramian allowing to adjust the rate of conver-
gence in the sense that a minimal rate of convergence is guaranteed. This ”convergence factor”
appears in the generalization of Kleinmann’s method to linear time-varying systems and later
for nonlinear systems. Therefore this idea is an important step and thus we decided to mention
it. Given a minimal rate of convergence by the method of Bass, the actual performance of the
resulting control law turns out to be much better when applied to the planar pendulum systems
with up to three links.

– 1979 V. Cheng generalized Kleinmann’s method to time-varying linear systems (see [Cheng,
1979]). Using the idea of Bass a minimum rate of convergence can be established. Cheng proves
that his method uniformly exponentially stabilizes a linear time-varying system at a prescribed
rate.
One of the disadvantages is that at every instant of time the controllability Gramian has not
only to be computed but also to be inverted. As in general it is not a sparse matrix this inversion
is costly for large dimensions.
One crucial thing to mention is that the resulting control law works globally to stabilize the
system to the zero-solution. This is a very strong result.

– Fifteen years later a group around S. Sastry used Cheng’s method to stabilize nonlinear sys-
tems. They regarded the problem of stabilizing the nonlinear system along a trajectory. The
linearization along this reference trajectory has to be controllable.
In principle Sastry et al. showed that the control law suggested by V. Cheng for linear time-
varying systems can also be used for nonlinear systems where as time-varying system the lin-
earization along the reference trajectory is used. As a result they obtain a local stabilizing control
law for the nonlinear system. The proof relies on Taylor series expansion. Convergence of the
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trajectory of the controlled system to the reference trajectory is proved almost literally as in
Cheng’s paper but one has to take into account the higher order terms from the Taylor series
expansion.

– In the last part of chapter 4 we present a modification of the control law of Sastry et al.; it
is designed to stabilize a nonlinear system along a feasible reference trajectory, i.e. a trajectory
with controllable linearization.
The main idea is to avoid the already mentioned matrix inversion of the controllability Gramian
at every instant of time and therefore during every numerical time step. Since the controllability
Gramian depends continuously on the system matrix resulting from the linearization along the
reference trajectory it is possible to keep it unchanged over some time interval. Numerical exper-
iments with planar pendulum systems with up to three links indicate that these time intervals
can actually be chosen pretty large, even if the underlying system is very sensitive as for example
in case of the triple pendulum. In our numerical examples we chose intervals of length up to 2
time units which means, if the numerical time step is assumed to be 0.01 that we only have to
invert the Gramian matrix in 0.5% of the numerical time steps. In particular if the reference
trajectory reduces to a single point of the state space this method performs pretty well due
to the fact that the linearization around this point results in a linear autonomous system. We
conjecture, but unfortunately did not manage to proof that for reasonable systems the basin of
attraction for stabilizing an equilibrium position is the whole state space. In fact Cheng’s global
stabilization result for the zero-solution of linear time-varying systems suggests that this global
result remains true for the modified control law although the convergence rate will decrease. In
our numerical simulations for planar pendulum systems we could not find any initial conditions
which failed to converge to the inverted pendulum position.
In general, stabilizing the inverted pendulum position is performed in two parts. First, a control
input is designed which swings the pendulum up. Second, linearization theory is used to bal-
ance the inverted pendulum. This procedure results in two different control laws and switching
between them is needed at an appropriate moment. Although the modified control we are going
to propose here seems to be suitable to swing up and stabilize the inverted pendulum position
without switching, we suggest to use the dynamics of the uncontrolled pendulum system as
much as possible in order to bring the pendulum closer to the desired equilibrium state as this
is energetically more efficient and reduces the amount of input energy significantly as we show
by some examples concerning the double and triple pendulum.
As a conclusion we derive a control law which considerably reduces the computational effort
compared to the control law proposed in [Sastry et al., 1994] . At least for planar pendulum sys-
tems with up to three links this control law appears to be capable of swinging up and balancing
the pendulum at its inverted position from any starting configuration.

The last chapter is devoted to the application of those methods to planar pendulum systems.
First we derive the equations of motion for planar pendulum systems up to the triple pendulum.
After a short discussion we apply different stabilization methods for the derived systems and
compare the results. Finally we apply our modified control law for different scenarios including
the use of the natural dynamics as described above. We compare the results by evaluating a
suitable cost functional which penalizes both the total amount of input energy as well as large
input values.
The obtained models for the planar pendulum systems have been implemented in MATLAB.
Simulations include the dynamics of the uncontrolled pendulum and the controlled pendulum.
Results were saved as video files. Each video frame shows three figures:
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– the first figure shows the solution of the controlled system;
– the second figure shows the solution of the reference trajectory, which is a solution of the
uncontrolled system;
– the third figure shows both solutions.
To present the results in this work we provide selected simulation results as a series of frames
obtained from these video files. After each series of frames we add the plots showing the cor-
responding deviation in the single components of the state space (uncontrolled vs. controlled
solution). Finally there are plots of each component of the control input.
For the planar pendulum system with n links an explicit general form of the equations of motion
is derived in appendix C. In this appendix we generalize a result from [Lam and Davison, 2006]
where controllability of the linearized n-pendulum around its inverted position is shown. We de-
veloped an explicit formula for the linearization around an equilibrium state of the n-pendulum
and proof controllability of the linearization around an arbitrary equilibrium state. We show
that theoretically it is sufficient to actuate only the first (or likewise the last) pendulum link to
establish controllability.



Chapter 2

Time-optimal control for the linear
simple pendulum equation - a
historical review

One of the first analytical results in optimal control theory was given by D. Bushaw in his
PhD-thesis written in 1952 and partially published in [Bushaw, 1958] where he investigated the
following problem:
If g is a given function

g :

{
R2 ⊃ D → R, 0 ∈ D
(x, y) 7→ g(x, y)

, (2.1)

find a function u(x, y) defined on D with the following properties

• u(x, y) assumes only the values −1 and 1.

• For any point (x0, y0) a solution x(t) of the differential system

ẍ(t) + g(x(t), ẋ(t)) = u(x(t), ẋ(t)), x(0) = x0, ẋ(0) = y0 (2.2)

exists, and there is a (least) positive value of t, say t∗, such that for this solution x(t∗) =
ẋ(t∗) = 0.

• For all points in D, t∗ is minimal with respect to the class of functions u satisfying the
first two properties.

With respect to some additional assumptions the first property is no real restriction. It would
suffice to assume |u| ≤ 1. The reason is the so called ”bang-bang-principle”, which roughly speak-
ing states that under suitable assumptions one can replace every admissible bounded control by
a control function, which only assumes the limiting values (see appendix A). The assumption
of bounded control functions is often justified with the idea that in practice control inputs have
to be realized by actuators which can only provide limited forces to the underlying mechanical
system.
A scalar-valued bang-bang control only assumes two values and is therefore also called on-off
control . In many practical problems bang-bang controls have to be avoided. For example no one
wants to drive a car where the only options are maximum acceleration or maximum deceleration.

9
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We will give a glimpse of Bushaw’s idea in terms of the linearized simple pendulum (in this case
we have g(x, ẋ) = x)

ẍ(t) + x(t) = u(x, ẋ). (2.3)

The control u only assumes the values +1 and −1. For u = −1 equation (2.3) becomes

ẍ(t) + x(t) = −1, (2.4)

which we will refer to as N -System. Its solution for the initial value

(
x(0)
ẋ(0)

)
=

(
x0
y0

)
is given by

x(t) = y0 · sin(t) + (x0 − 1) cos(t)− 1. (2.5)

For u = +1 equation (2.3) simplifies to

ẍ(t) + x(t) = 1, (2.6)

which we will refer to as P -System. Its solution for

(
x(0)
ẋ(0)

)
=

(
x0
y0

)
can be expressed as

x(t) = y0 · sin(t) + (x0 − 1) cos(t) + 1. (2.7)

The solution trajectories in the phase space (x, ẋ) =: (x, y) are concentric circles or parts of
them (”arcs”) with (−1, 0) as center for the N -system and (1, 0) for the P -system. The radius
is determined by the initial value (x(0), ẋ(0)) and – as long as x(0) 6= 0 – depends on u.

Figure 2.1: solution trajectories for N -system (left) and P -system (right)

For a given initial value we follow the circle containing this initial point in clockwise direction
until u changes its sign. As every point in the phase space lies on a solution trajectory belonging
to the N -system and a solution trajectory belonging to the P -system, changing the sign of u can
be geometrically interpreted as changing from a P -arc to a N -arc or from a N -arc to a P -arc.
On the other hand, such a change can only occur, when u changes sign. Such, finding a solution
to problem (2.3) is equivalent to finding a connected path consisting of P -arcs and N -arcs which
leads from the initial point to the origin.
Bushaw’s solution can be summarized as follows, where we will only show the third item:

1. Solution trajectories consist of continuously assembled alternating P - and N -arcs (paths).

2. Except for possibly the first and last arc, all arcs are semicircles.

3. Above the x-axis there can only be transitions from N -arcs to P -arcs and below the x-axis
from P -arcs to N -arcs.
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Figure 2.2: a possible solution path (not time-optimal!)

4. Existence follows from construction.

Figure (2.2) gives an example of a solution which is not time-optimal.
The N/P -system can be written as first order system

d

dt
x = y (2.8)

d

dt
y = −x± 1

Let tABC denote the time needed to move along the path ABC in figure (2.4) and tADC the time
length for path ADC above the x-axis. Then we have due to (2.8) and separation of variables

tABC =

∫
ABC

y−1 dx <

∫
ADC

y−1 dx = tADC (2.9)

since for every fixed x (except for the point A and C) the corresponding y-value on the arc ABC
is greater than the one belonging to the arc ADC. An analogous argument shows that below
the x-axis there can only be transitions from P -arcs to N -arcs.
As indicated in figure (2.3) fewer time is needed to move from point P to point Q along a P−arc
than along a N−arc, since the time needed is proportional to the angle corresponding to the
arc.
With the help of these properties one can show existence of time-optimal controls for arbitrary
initial data and the property that for time-optimal solution trajectories all arcs are semicircles
except possibly the first and last one. We will omit the details of the proof, which can be found
in [Bushaw, 1958].
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Figure 2.3: choosing the right arc from P to Q

Figure 2.4: in the upper half plane there are only PN transitions possible
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2.1 Linear time-optimal control theory

In this section we will introduce the linear time-optimal control problem and its solution.

2.1.1 Problem formulation

The systems we regard are of the form

ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = x0 (2.10)

where for r ≤ n, r, n ∈ N, x(t) ∈ Rn the matrices A(t) ∈ R(n,n), B(t) ∈ R(n,r) have at least
locally integrable elements. We are looking for a control function u : R+

0 → Ω ⊆ Rr, Ω = [−1, 1]r,
which brings the linear time-varying system (2.10) to the zero state 0 ∈ Rn in minimum time t∗.
The linearized pendulum equation (cf. section (5.1))

z̈(t) + z(t) = u(t) (2.11)

can be written as first-order system with A =

(
0 1
−1 0

)
, B =

(
0
1

)
, x : R→ R2.

It will be shown with the methods of LaSalle [LaSalle, 1960, Hermes and LaSalle, 1969], that
for every possible initial condition there is an admissible control u∗ and a finite time t∗ solving
the above problem. The resulting control is bang-bang (|u| = 1) and unique.

2.1.2 Transforming into an equivalent problem

Let Φ(t, 0) denote the solution to Ẋ(t) = A(t)X(t) with initial condition X(0) = I where
Y (t) := Φ−1(t, 0)B(t) and A(t), B(t) are the system matrices of (2.10)1. The solution of (2.10)
is given by

x(t, u) = Φ(t, 0)x0 + Φ(t, 0)

∫ t

0
Y (τ)u(τ)dτ (2.12)

which can be directly verified (or cf. e.g. [Balakrishnan, 1976, Theorem 4.8.3]).
The solution formula (2.12) for equation (2.10) shows, that the control u only influences the term∫ t
0 Y (τ)u(τ)dτ . Since the final state shall be the stable equilibrium represented by the origin of

the phase space. Both sides of (2.12) vanish at t = t∗. Therefore problem (2.10) is equivalent to
finding an admissible u∗ and a minimum time t∗ for a given initial state x0 such that:

− x0 =

∫ t∗

0
Y (τ)u∗(τ)dτ. (2.13)

We define

R(t) := {
∫ t

0
Y (τ)u(τ)dτ, u ∈ Ω} (2.14)

as ”reachability set”. The solution to the original problem is then equivalent to finding an
admissible control u so that −x0 ∈ R(t∗) and −x0 /∈ R(t) for all t with 0 ≤ t < t∗.

1Since in this chapter we always assume that the initial time t0 = 0 we write Y (t) instead of Y (t, 0) for
simplicity
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2.1.3 Time-optimal control

So far we do not know anything about the existence of a suitable time-optimal control function
u. We state that the i-th component u∗i of any time-optimal control u∗ (if it exists) must be of
the form

u∗i (τ) = sgn (ηTY (τ))i for (ηTY (τ))i 6= 0, (2.15)

for some η ∈ Rn \ {0}.

Let u(τ) ∈ Ω be an admissible control, such that the system reaches the origin of the phase
space in finite time. Because (2.13) is an equivalent formulation of problem (2.10) this means

− x0 ∈ R(t). (2.16)

Even for discontinuous control functions u the functional
∫ t
0 Y (τ)u(τ)dτ and the setR(t) are con-

tinuous functions of t. For arbitrary positive times t1 and t2, with t1 < t2 we have R(t1) ⊂ R(t2)
meaning whenever we can reach the origin within time t1 we can reach the origin in time t2. To
see this we could take the control function u2 which is the same as u1 in the interval [0, t1] and
0 elsewhere.
We are looking for a control function ũ(τ) such that −x0 is contained in the set R(t∗) where t∗

is as small as possible. Because R(t) is convex (cf. appendix A) and depends continuously on
time, −x0 has to be on ∂R(t∗).

There is a support hyperplane H containing −x0, such that all points belonging to R(t∗) lie
on the same side of H (e.g. [Eggleston, 1958]). Let η be the normal to H in −x0 and pointing
outwards of R(t∗)2. For every control function ũ bringing the system from the initial state x0
to the origin in minimum time t∗ we have:

ηT
∫ t∗

0
Y (τ)u(τ)dτ ≤ ηT

∫ t∗

0
Y (τ)ũ(τ)dτ ∀u ∈ Ω⇐⇒∫ t∗

0
ηTY (τ)u(τ)dτ ≤

∫ t∗

0
ηTY (τ)ũ(τ)dτ ∀u ∈ Ω =⇒∫ t∗

0
ηTY (τ)ũ(τ)dτ =

∫ t∗

0

∣∣ηTY (τ)
∣∣ dτ

Therefore time-optimal controls have to be of the form (2.15).

Remark: If ηTY (τ) vanishes, (2.15) is not defined and does not provide any information about
the control function. This does not necessarily mean that the control u has no effect as we can
see from (2.12).
For the linear pendulum equation (2.11) a possibly time-optimal control has to be bang-bang
because we can compute the explicit representation of Y (τ):

Y (τ) = Φ(τ, 0)−1(τ)B =

(
cos(τ) sin(τ)
− sin(τ) cos(τ)

)−1(
0
1

)
=

(
− sin(τ)
cos(τ)

)
(2.17)

and since sin(τ) and cos(τ) are linearly independent functions ηTY (τ) can only vanish on a set
of measure zero.

2Note that η does not need to be a normal to ∂R(t∗) in −x0 as the separating hyperplane H need not be
unique
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2.1.4 Uniqueness

The normal η is determined by the point −x0 in the phase space and the position of the
hyperplane H containing this point. The control function

ũ(τ) = sgn(ηTY (τ)) (2.18)

need not be unique since for example it could be possible to define more than just one hyperplane
containing −x0. In this case there would be at least two different suitable normal vectors. It is
clear that uniqueness of the (time-optimal) control function is strongly linked with the geometry
of the reachability set. We already mentioned that (2.18) is only a necessary condition. Under
certain circumstances this necessary condition turns out to be sufficient.

Definition 2.1. (i) A point x is said to be an extreme point of the convex set M if x ∈ M
and there are no two points x1, x2 ∈ M, x1 6= x2 such that x can be expressed as linear
combination of x1 and x2.

(ii) A point x is called exposed point of the convex set M if x ∈ M and there is a support
hyperplane to M that meets M in the single point x.

For problem (2.10) the necessary condition (2.15) is also sufficient. We formulate the following
theorem which holds for all linear time-varying systems of the form

ẋ(t) = A(t)x(t) +B(t)u(t) (2.19)

where x(t) is a n-vector, A(t) a square matrix of size n× n with integrable elements aij(t). The
control vector u(t) is a r-vector, where r is at most n and B(t) is a n× r-matrix with integrable
elements. Before stating the theorem we will introduce some useful notions following [Hermes
and LaSalle, 1969]:

Definition 2.2.

(i) Two control functions u = (u1, . . . , ur)
T and v = (v1, . . . , vr)

T are said to be essentially
equal on [0, t] if for every j = 1, . . . , r we have uj = vj almost everywhere on [0, t] where
the j-th column of B is different from the zero-vector: b∗j(t) 6= 0.

(ii) The control to reach a point q in time t is said to be essentially unique if all controls to
reach this point are essentially equal.

The first part means that the controls u and v are equal almost everywhere whenever they are
effective.
We will also use the self explaining terms essentially bang-bang or essentially determined . The
term essentially can be thought of as an abbreviation for whenever the control is effective.

Theorem 2.3. For system (2.19) we have

1. q is an extremal point of R(t)⇐⇒ there is a unique trajectory from the origin to q [Hermes
and LaSalle, 1969, Theorem 14.2].

2. The control function u∗ to reach q∗ in minimum time t∗ is determined essentially unique
by sgn(ηTY (t)) = sgn(ηTΦ−1(t, 0)B), η 6= 0 if and only if q∗ is an exposed point of R(t∗)
[Hermes and LaSalle, 1969, Theorem 15.1].
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Proof. 1. Suppose there are two control functions u and v, bringing the system (2.19) to state
q in the same time t on different solution trajectories. Then there is a time s ∈ (0, t) such
that

pu :=

∫ s

0
Y (τ)u(τ)dτ 6=

∫ s

0
Y (τ)v(τ)dτ =: pv. (2.20)

Define q1 and q2 as follows:

q1 = pu + (q − pv)
q2 = pv + (q − pu).

As constructed q1 will be reached when using the control function u for the time interval
[0, s] and the control function v for (s, t]. q2 will be reached when using first the control
function v and then u. Since both points can be reached in total time t they belong to the
reachability set R(t). Since q = 1

2q1 + 1
2q2 it is not an extreme point of R(t). This means

whenever q is an extreme point of the reachability set R(t) the trajectory to this point is
unique. We will now show the other direction. Suppose q is contained in R(t) but it is not
an extreme point. Then q can be represented as convex combination of two points, say q1
and q2 of R(t), q1 6= q2:

q =
1

2
q1 +

1

2
q2, q1, q2 ∈ R(t).

Every point in R(t) can be reached by using a bang-bang control. Therefore there are
bang-bang controls u and v, such that q1 can be reached with control u in time t and q2
with control v also in time t. We can reach q in time t by using the control w := 1

2u+ 1
2v.

The control function w is not bang-bang, since u and v are different bang-bang controls.
This means, that at least one component, say wj is not bang-bang. Due to the bang-bang
theorem there is a bang-bang control ŵj such the following equation holds:

yj(t, w) :=

∫ t

0
Y∗j(τ)wj(τ)dτ =

∫ t

0
Y∗j(τ)ŵj(τ)dτ =: yj(t, ŵ) (2.21)

For all other components we take ŵi := wi. Then we have

y(t, w) :=

∫ t

0
Y (τ)w(τ)dτ =

∫ t

0
Y (τ)ŵ(τ)dτ =: y(t, ŵ) (2.22)

We can now find a time s < t such that y(s, w) 6= y(s, ŵ):

y(t, w)− y(t, ŵ) =

∫ t

0
Y (τ)w(τ)dτ −

∫ s

0
Y (τ)ŵ(τ)dτ

=

∫ t

0
Y (τ)(w(τ)− ŵ(τ))dτ

=

∫ t

0

n∑
i=1

Y∗i(τ)(wi(τ)− ŵi(τ))dτ

=

∫ t

0
Y∗j(τ)(wj(τ)− ŵj(τ))dτ

Because wj and ŵj are not identical and the left hand side is absolutely continuous there
must be a time s < t such that y(s, w)− y(s, ŵ) 6= 0. But this means, the trajectory is not
unique, completing the proof of the first part.
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2. Every exposed point is also an extreme point. So the trajectory to an exposed point is
unique. We will show, that for exposed points the control function is uniquely determined
by the necessary condition (2.18).
Let u∗(t) = sgn(ηTY (t)) be essentially determined on the interval [0, t∗]. The point q∗

which will be reached in time t∗ by using this control is a boundary point of R(t∗) having
η as normal to a support plane H∗. Points on H∗ can only be reached by controls of the
form sgn(ηTY (t)). Since any other control of this form is essentially equal to u∗ the point
q∗ is the only point of the reachability set R(t∗) which lies on H∗ which means that q∗ is
an exposed point.
Now let q∗ be an exposed point of the reachability set R(t∗). For any support plane H
for R(t∗) at q∗ we have H ∩R(t∗) = {q∗}. In particular there is a normal η such that for

u∗(t) = sgn(ηTY (t)) and q∗ we have q∗ = y(t∗, u∗) :=
∫ t∗
0 ηTY (t)dt.

q∗ is also an extreme point which means that the trajectory to reach this point is unique.
From the proof of the first part of this theorem we know that controls have to be bang-
bang. Let u and v be bang-bang-controls, such that q∗ is reached in time t∗. Then we
can reach q∗ also by using the the control w := 1

2u + 1
2v. This control function has to

be bang-bang as well. But this is only possible, when u and v are essentially equal which
completes the proof.

Before giving an example we present a theorem about existence of a time-optimal solution for
linear systems:

2.1.5 Existence

Theorem 2.4. [Hermes and LaSalle, 1969, Th. 13.1]
Regard system (2.10). If for a given state x1 and an initial value x0 there is a control u and a
time τ such that the solution of the controlled system starting in x0 reaches x1 in time τ , then
there is a time-optimal control.

Proof. Define w(t) := Φ−1(t, 0)x1 − x0, then we have x1 = x(τ, u) is equivalent to w(τ) ∈ R(τ)
which follows directly from (2.12). For t∗ = inft{w(t) ∈ R(t)} we clearly have 0 ≤ t∗ ≤ t. Let
y(t, û) denote the elements of R(t) corresponding to the control input û.
There is a sequence tn converging to t∗ and a sequence of control inputs un such that for
w(tn) := y(tn, un) we have

‖w(t∗)− y(t∗, un)‖ ≤ ‖w(t∗)− w(tn)‖+ ‖y(tn, un)− y(t∗, un)‖ (2.23)

≤ ‖w(t∗)− w(tn)‖+

∥∥∥∥∫ tn

t∗
Y (τ)un(τ)dτ

∥∥∥∥ (2.24)

where for continuity reasons the right hand side converges to 0 as n tends to infinity. Therefore
y(t∗, un) converges to w(t∗) = y(t∗, u∗) which lies in R(t∗) as the reachability set is closed (a
proof for this fact can be found in [Halmos, 1948],[Lyapunov, 1940]) as well as the input space.
Such a time-optimal control u∗ exists.
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2.1.6 Summary example: A time-optimal control for a linear pendulum model

For the linear pendulum optimal controls are of the form (2.18) and using (2.17) it reads as

u∗(t) = sgn(ηTY (t)) = sgn(ηTΦ−1(t, 0)B) = sgn(−η1 sin(t) + η2 cos(t)). (2.25)

Because sin(t) and cos(t) are linearly independent functions and η is nontrivial by being a nor-
mal, a possibly time-optimal control is uniquely determined by (2.25). So every boundary point
of the reachability set is an exposed point due to theorem (2.3) which means, the reachability
set is strictly convex. We also know that is strictly increasing with t.

Figure 2.5: finding the normal η for the lin-
earized pendulum

Remark: For the linear pendulum equation (2.10)
the set {t|ηTY (t) = 0, t ∈ [0, t∗]} has mea-
sure zero. Linear time-varying systems having this
property are called normal [Hermes and LaSalle,
1969, corollary 15.1]. For normal system time-
optimal controls are essentially unique determined
by a bang-bang control. The reachability sets are
strictly convex.

We will give a geometric approximative solution
to the problem of finding a time-optimal control
for the linearized pendulum equation (2.10) for a
concrete initial value:

ẋ(t) =

(
0 1
−1 0

)
x(t) +

(
0
1

)
u(t)

x(0) =

(
0
1

)
=: x0

A time-optimal control function for this prob-
lem has to be bang-bang as showed above.
Since −x0 is contained in R(π) we know,
that the optimal control function will change
sign at most one time. With the help of
Cinderella3 one can visualize all reachability
sets for t ≤ π (; interactive Java-applet:
http://home.in.tum.de/˜lehl/pendel.html). So we
choose a time t such that −x0 is a boundary point
of the reachability set R(t). The normal to the support hyperplane containing −x0 is given by
η. If we choose a vector ξ such that η = ξ/‖ξ‖ then u∗(t) = sgn(ηTY (t)) = sgn(ξTY (t)/‖ξ‖) =
sgn(ξTY (t)). We may choose an approximation for a suitable ξ as (−6,−19)T .
The (approximative) time-optimal control is then given by:

u∗(t) = sgn(ξTY (t)) ≈ sgn(

(
−6
−19

)T (− sin(t)
cos(t)

)
) = sgn(6 sin(t)− 19 cos(t)). (2.26)

We start with u∗ = −1 and follow a circle around (−1, 0). At time t ≈ 1.27 we change to +1
and follow a circle around (1, 0) until the origin is reached after 0.72 further time units. The

3 http://www.cinderella.de by Prof. Dr. Jürgen Richter-Gebert and Prof. Dr. Ulrich Kortenkamp

http://home.in.tum.de/~lehl/pendel.html
http://www.cinderella.de
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Figure 2.6: solution trajectory in the (x, ẋ) space

solution is shown in figure (2.6) where we can see that we only slightly miss the origin.

Remark: Using a numerical algorithm (see appendix B and [Eaton, 1962]) we obtain 2.0 as t∗

and η∗ =

(
−0.2924 . . .
−0.9562 . . .

)
where the final distance to the origin is less than 4/1000. Nevertheless

the rude geometrical guess led to an acceptable result (t∗ = 1.99).

Remark: There is a powerful tool to obtain this result called Pontrjagin’s maximum principle
(see appendix (D)), which gives a necessary condition for a trajectory to be (time-)optimal. The
method presented above is also sufficient.
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Chapter 3

Controllability

The method presented in the previous chapter by Hermes and LaSalle gives necessary conditions
for time-optimal controls. Only for special cases these necessary conditions are also sufficient,
e.g. for linear time-varying systems which are normal . From LaSalle’s theory we already know
that for linear systems (time-varying or not) the existence of an admissible control implies the
existence of a time-optimal control.
In this chapter we will give some results about controllability of linear and nonlinear systems.

Consider the dynamical system
ẋ = f(x, u); (3.1)

where x ∈ Rn is the state vector, u ∈ Rm the control and f is a locally Lipschitzian function
which maps into Rn. Given an initial value x(t0) = x0 and an admissible control u(t), t ≥ t0 we
denote the corresponding solution of (3.1) – if it exists – as x(t, u;x0) for t ≥ t0. In many times
we will omit the initial value x0 and write x(t, u) for simplicity.

Definition 3.1. Reachability set
Given a state q ∈ Rn we define the reachability set R(q, T ) to be the set of all states p ∈ Rn for
which there exists an admissible control u such that x(T, u, q) = p

Remark: For q = 0 we also write R(T ) instead of R(0, T ).

Definition 3.2. Reachable set
The reachable set of state q at time T is defined as

RT (q) =
⋃

t0≤t≤T
R(q, t). (3.2)

Definition 3.3. Controllability
Given system (3.1) and points x0, x1 of the state space. The system is said to be controllable
from x0 to x1 if there is an admissible control u such that the corresponding solution starts in x0
and ends up in x1 in finite time. System (3.1) is said to be asymptotically controllable from x0
to x1 if there is an admissible control u such that x1 is reached in infinite time. Or to be more
precise, for every ε > 0 there is a finite time T such that the trajectory which starts in x0 and
corresponds to the control u hits the ball around x1 with radius ε and remains there for all time
t > T .

Definition 3.4. Local controllability
Given system (3.1) and a point x0 of the state space system (3.1) is said to be locally controllable

21
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in x0 if there is an environment of x0 in the state space, such that x0 is controllable to every
point in this environment in finite time.

Definition 3.5. Small-time local controllability (STLC)[Sussmann, 1983b]
A control system (3.1) is said to be small-time locally controllable (STLC) from a point p if, for
every time T > 0, p is in the interior of the set of points q that can be reached from p in time
not greater than T .

Figure (3.1) shows the reachability sets for a two-dimensional-system at times t = h, 2h, 3h and
4h, which is locally controllable, but which is not small-time locally controllable at the center
of the circle.

Figure 3.1: Example for a locally but not small-time locally controllable system

The reachability sets shown in (3.1) have a remarkable property. Although the first three reach-
ability sets do not contain an environment of the center of the circle they all contain a nonempty
open set in the state space. This motivates the following definition:

Definition 3.6. Accessibility
System (3.1) is said to be accessible from state q ∈ Rn if for every T > t0 the reachable set
RT (p) contains a nonempty open set.

Definition 3.7. Global controllability
System (3.1) is said to be globally controllable (or completely controllable) if for any two points
x0, x1 there exists an admissible control u that steers x0 to x1 along a trajectory of the system
in finite time.
System (3.1) is said to be globally asymptotically controllable if for any two points x0, x1 and
any ε > 0 there exists an admissible control u that steers x0 to an ε-environment of x1 along a
trajectory of the system in a finite time T and the solution trajectory remains there for all times
t > T .

Definition 3.8. Null-controllability
A state x0 is said to be null-controllable if there exists an admissible control u that steers x0 to
the origin in finite time.
System (3.1) is said to be globally null-controllable if every state x0 is null-controllable.
State x0 is asymptotically null-controllable if there is an admissible control steering x0 to the
origin in infinite time.
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3.1 Controllability of linear systems

As linear autonomous systems are a special case of linear time-varying systems all controllability
criteria which apply for the latter also apply for the former. We will start with linear time-varying
systems and will then give the simplified versions for the time-invariant cases as well as some
criteria, which do apply for this case only. The main references for this chapter are [Chen, 1970]
and [Klamka, 1991].
Before we start with the controllability criteria, we will formulate two lemmata:

Lemma 3.1. [Chen, 1970, Th. 5-2],[Klamka, 1991, Lemma 1.3.2]
Assume that the functions f1, . . . , fn : R → Rm have continuous derivatives up to order n − 1
on the interval [t0, t2]. Let F be the n×m matrix with fi as its i-th row and let F (k) be the k-th
derivative of F . If there is some t1 ∈ [t0, t2] such that the n× n ·m matrix

[F (t1)|F (1)(t1)| . . . |F (n−1)(t1)] (3.3)

has rank n, then the functions fi are linearly independent on [t0, t2] over the field of real numbers.

Proof. by contradiction:
Suppose there is some t1 in [t0, t2] such that

rank[F (t1)|F (1)(t1)| . . . |F (n−1)(t1)] = n

but the functions fi are linearly dependent on [t0, t2]. Then there is a nonzero vector α ∈ Rn
such that αTF (t) = 0T for all t ∈ [t0, t2]. Building the k-th time derivative up to order n − 1
yields

αTF (k)(t) = 0T for all t ∈ [t0, t2] and k = 1, . . . , n− 1

Therefore we have

αT [F (t1)|F (1)(t1)| . . . |F (n−1)(t1)] = 0T (3.4)

which means that the n rows of [F (t1)|F (1)(t1)| . . . |F (n−1)(t1)] are linearly dependent contra-
dicting the assumption that [F (t1)|F (1)(t1)| . . . |F (n−1)(t1)] has rank n.

Remark: Lemma (3.1) is a sufficient but not necessary condition for a set of functions to be
linearly independent. For example the functions f1(t) = t5 and f2(t) = |t5| are linearly indepen-
dent on [−1, 1] but fail to match the condition of lemma (3.1).

Lemma 3.2. [Klamka, 1991, Lemma 1.3.1]
The functions f1, . . . , fn are linearly independent on [t0, t1] if and only if the n×n matrix defined
by

G(t0, t1) :=

∫ t1

t0

F (t)F T (t)dt (3.5)

has full rank.

Proof. Necessity: (by contradiction)
Assume that the functions f1, . . . , fn are linearly independent on [t0, t1] but the matrix G(t0, t1)
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is singular. Then there is a nonzero vector α ∈ Rn such that αTG(t0, t1) = 0T a.e. in [t0, t1]. We
then have

0 = αTG(t0, t1)α

= αT
∫ t1

t0

F (t)F T (t)dtα

=

∫ t1

t0

αTF (t)F T (t)αdt

=

∫ t1

t0

(
αTF (t)

) (
αTF (t)

)T
dt (3.6)

Since the integrand is nonnegative, αTF (t) = 0T almost everywhere. But this is a contradiction
to the assumption that the rows fi(t), i = 1, . . . , n of the matrix F (t) are linearly independent.
Sufficiency: (by contradiction)
Assume that G(t0, t1) is nonsingular and the functions f1, . . . , fn are linear dependent. Then
there is a nonzero vector α ∈ Rn such that αTF (t) = 0T a.e. in [t0, t1]. We then have

0T =

∫ t1

t0

αTF (t)F T (t)dt = αTG(t0, t1) (3.7)

which is a contradiction to the nonsingularity of G(t0, t1).

3.1.1 Linear time-varying systems

Now we will give some controllability criteria for time-varying linear systems.
We consider the system

d

dt
x(t) = A(t)x(t) +B(t)u(t) (3.8)

where x(t) ∈ Rn denotes the state vector, u ∈ L1
loc([t0,∞],Rm)1 will be admissible controls

and A(t) is an n× n matrix with locally Lebesgue integrable elements aij ∈ L1
loc([t0,∞],R) for

i = 1, . . . , n; j = 1, . . . , n. The matrix B(t) has size n×m where m ≤ n and bij ∈ L1
loc([t0,∞],R)

for i = 1, . . . , n; j = 1, . . . ,m.
For a given control function u(t) and initial value x(t0) = x0 there is a unique solution of
equation (3.8) denoted by x(t, x(t0), u) which is absolutely continuous2 (see for example [Desoer
and Zadeh, 1963]).
The solution can be expressed as

x(t, x(t0), u) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ, t ≥ t0 (3.9)

where Φ(t, t0) is the the solution of Ẋ(t) = A(t)X(t), X(t0) = I. It is called fundamental
matrix or transition matrix and defined for all t, t0 in (−∞,∞). The fundamental matrix has

1in [Klamka, 1991] u is assumed to be L2
loc([t0,∞],Rm) allowing a proof that uses Hilbert space techniques,

nevertheless there is no need to make this strong regularity assumption on the control input
2a function f : R ⊃ [a, b]→ R is said to be absolutely continuous if it has a derivative f ′ a.e. which is Lebesgue

integrable and for all x ∈ [a, b] we have f(x) = f(a) +
∫ x
a
f ′(t)dt.
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the following properties

rank Φ(t, t0) = n t0, t ∈ R arbitrary (3.10)

Φ(t, t) = I t ∈ (−∞,∞) (3.11)

Φ−1(t, t0) = Φ(t0, t) t, t0 ∈ (−∞,∞) (3.12)

Φ(t2, t1)Φ(t1, t0) = Φ(t2, t1) t2, t1, t0 ∈ (−∞,∞). (3.13)

The next theorem will give a necessary and sufficient controllability criterion for linear time-
varying system. This result was first published in [Kalman et al., 1963]. There is a constructive
proof of this theorem in [Klamka, 1991, Th. 1.3.1].

Theorem 3.9. The dynamical system (3.8) with the above made regularity assumptions is glob-
ally controllable if and only if there is a time t1 > t0 such that the n× n matrix defined by

W (t0, t1) :=

∫ t1

t0

Φ(t1, t)B(t)BT (t)ΦT (t1, t)dt (3.14)

is nonsingular.

Proof. Sufficiency: Let x(t0) ∈ Rn be an arbitrary initial value of system (3.8). Suppose there
exists some finite time t1 > t0 such that W (t0, t1) is invertible. Given the above regularity
assumption, the control law defined by

u(t) := BT (t)ΦT (t1, t)W
−1(t0, t1)(x1 − Φ(t1, t0)x(t0)) (3.15)

in the interval [t0, t1] belongs to the class L1
loc([t0, t1],R) and steers x0 to x1 in time t1− t0 along

the trajectory x(t, x(t0), u), t ∈ [t0, t1]. This can be directly verified using solution formula (3.9):

x(t1, x(t0), u) = Φ(t1, t0)x(t0)+

+

∫ t1

t0

Φ(t1, t)B(t)BT (t)ΦT (t1, t)dt ·W−1(t0, t1)(x1 − Φ(t1, t0)x(t0))

= Φ(t1, t0)x0 +W (t0, t1)W
−1(t0, t1)(x1 − Φ(t1, t0)x0)

= x1 (3.16)

Necessity: (by contradiction)
Suppose system (3.8) with initial value x(t0) = x0 is controllable to an arbitrary state x1 in
some finite time t1 > t0 (which does not depend on x1). Assume that W (t0, t1) is not invertible.
By lemma (3.1) the rows of the matrix Φ(t1, t)B(t) are linearly dependent on [t0, t1] meaning
there exists a nonzero vector α ∈ Rn such that

αTΦ(t1, t)B(t) = 0 ∀t ∈ [t0, t1]. (3.17)

From the solution formula (3.9) and the latter equation we have for x0 = 0 using control (3.15)

x1 =

∫ t1

t0

Φ(t1, t)B(t)u(t)dt. (3.18)

By means of (3.17) we obtain αTx1 = 0 which leads to a contradiction to the assumption α 6= 0
by choosing x1 = α conluding the second part of the proof.
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Remark (cf. e.g. [Coron, 2007][p. 6f]): For its importance in linear control theory and its special
structure the matrix W (t0, t1) defined in (3.14) is also called controllability Gramian of the
control system (3.8). This matrix plays an important role to steer solutions of (3.8) to a certain
state as well as in stabilization theory.
Since for every x ∈ Rn we have

xTW (t0, t1)x =

∫ t1

t0

‖BT (t)ΦT (t1, t)x‖2 dt (3.19)

the controllability Gramian is a nonnegative symmetric matrix and it is invertible if and only if
there is a constant c > 0 such that

xTW (t0, t1)x ≥ c‖x‖2, ∀x ∈ Rn, (3.20)

which is a strong hint that the left hand side might be helpful in finding a suitable Lyapunov
function for the controlled system. We will later see that for some control inputs it actually is a
Lyapunov function.

If the system matrices A(t), B(t) in (3.8) show more regularity, a criterion similar to that of
Kalman for linear autonomous systems can be established:
Let A(t) and B(t) be (n − 1) times continuously differentiable. Then we define n matrices
M0(t), . . . ,Mn−1(t) of size n×m as follows:

M0(t) = B(t)

Mk+1(t) = −A(t)Mk(t) +
d

dt
Mk(t), k = 0, . . . , n− 2. (3.21)

Theorem 3.10. [Chen, 1970, Th. 5-5],[Klamka, 1991, Th. 1.3.2.]
Assume the matrices A(t), B(t) in (3.8) are n−1 times continuously differentiable. The dynam-
ical system (3.8) is globally controllable if there exists some time t1 > t0 such that

rank[M0(t1)|M1(t1)| . . . |Mn−1(t1)] = n (3.22)

where Mi(t), i = 0, . . . , n− 1 are the above defined matrices.

Proof. We have

Φ(t0, t)B(t) = Φ(t0, t)M0(t)

d

dt
Φ(t0, t)B(t) =

d

dt
Φ−1(t, t0)B(t)

= −Φ−1(t, t0)

(
d

dt
Φ(t, t0)

)
Φ−1(t, t0)B(t) + Φ−1(t, t0)

(
d

dt
B(t)

)
= −Φ−1(t, t0)A(t)Φ(t, t0)Φ

−1(t, t0)M0(t) + Φ−1(t, t0)

(
d

dt
M0(t)

)
= −Φ−1(t, t0)

(
A(t)M0(t) +

d

dt
M0(t)

)
= Φ(t0, t)M1(t). (3.23)

For higher derivatives we get

dk

dtk
Φ(t0, t)B(t) = Φ(t0, t)Mk(t), k = 2, . . . , n− 1 (3.24)
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Therefore

rank[M0(t1)|M1(t1)| . . . |Mn−1(t1)]

= rank Φ(t0, t1)[M0(t1)|M1(t1)| . . . |Mn−1(t1)]

= rank

[
Φ(t0, t1)B(t1)|

d

dt
Φ(t0, t)B(t)

∣∣∣∣
t=t1

| . . . | d
n−1

dtn−1
Φ(t0, t)B(t)

∣∣∣∣
t=t1

]
(3.25)

Due to lemma (3.1) the rows of Φ(t0, t)B(t) are linearly independent for t ∈ [t0, T ], T ≥ t1. From
lemma (3.2) and theorem (3.9) the theorem then follows.

3.1.2 Linear autonomous systems

We are given the linear autonomous (control) system

d

dt
x(t) = Ax(t) +Bu(t) (3.26)

where A and B are constant matrices of dimension n× n and n×m, x ∈ Rn denotes the state
vector and u ∈ U ⊂ Rm, m ≤ n denotes the control. The set U is a bounded subset in Rm and
control the control components u1, . . . , um are assumed to be Lebesgue integrable.
The next theorem is a direct consequence of theorem (3.10).

Theorem 3.11. Kalman’s controllability criterion [Kalman, 1960, Corollary 5.5]
System (3.26) is globally controllable if and only if

rank[B|AB|A2B| . . . |An−1B] = n (3.27)

Proof. Since the constant matrices A and B are infinitely many times continuously differentiable,
theorem (3.10) can be applied and the matrices Mi(t) reduce to AiB for i = 0, . . . , n − 1 and
our theorem follows.

The next theorem sometimes reduces the effort for the Kalman controllability criterion (3.11).
If B is a n×m matrix of rank r < m one has only to check the rank of a n× nr matrix instead
of a n× nm matrix.

Theorem 3.12. When the rank of the matrix B of the linear autonomous system (3.26) is r < n
the system is globally controllable if and only if the rank of the matrix

[B|AB|A2B| . . . |An−rB] (3.28)

is n.

Proof. If we can show that rank[B|AB|A2B| . . . |An−rB] = rank[B|AB| . . . |An−1B] the theorem
follows from the Kalman controllability criterion (3.11). Therefore let Wi denote the n × ni
dimensional matrix [B|AB| . . . |AiB] for i ∈ N. Now let us suppose for a moment that

rankWi = rankWi+1

for some i ∈ N. Since the columns of Wi are in Wi+1 the assumption rankWi = rankWi+1 implies
that every column of the matrix Ai+1B is linearly dependent on the columns of the matrices
B,AB, . . . , AiB. By induction it follows that for every k > i+ 1 the columns of the matrix AkB
are linearly dependent on the columns of B,AB, . . . , AiB. Therefore we get rankWk = rankWi.
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In other words, if there is a number i ∈ N such that rankWi = rankWi+1 then the rank of all
matrices having an higher index as i does not increase any more.
Now we start with the matrix W0 = [B] which has rank r. Since the maximum rank of Wn−1 is
n it suffices to append at most n− r submatrices – which are the matrices AB,A2B, . . . An−rB.
Therefore rankWn−r = rankWn−1 and theorem (3.11) can be applied to conclude the proof.

Corollary 3.1. If the matrix B in (3.26) has rank r the linear autonomous system (3.26) is
globally controllable if and only if the n× n dimensional matrix

Wn−rW
T
n−r (3.29)

is nonsingular.

Proof. Since for any real matrix A we have rankAAT = rankA (this can be easily seen by
proving equality of their nullspaces: AATx = 0 ⇐⇒ xTAATx = |ATx|2 = 0 and using the fact
that rankA = rankAT ) the corollary is a direct consequence of theorem (3.12).

Theorem 3.13. System (3.26) is globally controllable if and only if the rows of the matrix

expA·tB (3.30)

are linearly independent on [0,∞).

Proof. For a constant matrix A the fundamental matrix is given by expA(t−t0) (e.g. [Desoer
and Zadeh, 1963, Chapter 6.2]). Using theorem (3.9) system (3.26) is controllable if and only
if expA(t−t0)B has linearly independent rows. Since expA(t−t0)B is an analytic function for
t ∈ (−∞,∞) linear independence of its rows in a certain time interval is equivalent to linear
independence in each time interval.

Corollary 3.2. The linear autonomous system (3.26) is globally controllable if and only if it is
locally controllable.

Proof. That the notion of local and global controllability is the same for linear autonomous
systems follows directly from the proof of the latter theorem (3.13).

Theorem 3.14. The linear autonomous system (3.26) is globally controllable if and only if the
rows of the matrix

(sI −A)−1B (3.31)

are linearly independent on [0,∞) over the field of complex numbers.

Proof. Since (sI−A)−1B = L(expAtB)(s), where L is the Laplace transform,3 and s is a complex
number, the theorem follows from the property of the Laplace transform as it is a one-to-one
linear operator (e.g. [Engelberg, 2005, Chapter 1]).

Theorem 3.15. Linear feedback control equivalence
If the control function u is a linear feedback control, i.e. can be written in the form

u(t) = Fx(t) + v(t) (3.32)

3For a real valued function f(t) the Laplace transform is defined as L(f(t)) =
∫∞
0

expst f(t)dt, where s is a
complex number (e.g. [Engelberg, 2005, Chapter 1]).
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where F is called feedback matrix, the linear autonomous dynamical system (3.26) is globally
controllable if and only if the linear state-feedback dynamical system

ẋ(t) = (A+BF )x(t) +Bv(t) (3.33)

is globally controllable with respect to the new control function v.

Proof. For a proof see for example [Chen, 1970, Chapter 7.3].

Controllability of Jordan-form dynamical systems

Changing the basis of the state space shouldn’t affect the controllability of a linear system, which
will be shown in the next theorem.

Theorem 3.16. Invariance under linear equivalence transformations [Klamka, 1991, Lemma
1.5.1]
The controllability of the dynamical system (3.26) is invariant under any linear equivalence
transformation x = Tz, where x, z ∈ Rn and T is a n× n regular matrix.

Proof. Since T is a regular matrix, the inverse T−1 exists and using the the transformation
x = Tz we obtain from (3.26) the transformed system

ż(t) = T−1ATz(t) + T−1Bu(t). (3.34)

Defining J := T−1AT and G := T−1B we obtain

ż(t) = Jz(t) +Gu(t). (3.35)

System (3.35) is globally controllable if and only if

rank[G|JG| . . . |Jn−1G] = n. (3.36)

Because

rank[G|JG| . . . |Jn−1G] = rankT [B|AB| . . . |An−1B] (3.37)

this is case if and only if the the original system (3.26) is globally controllable.

Remark: Theorem (3.16) also holds for time-varying linear dynamical system if there is a trans-
formation T (t) which is nonsingular for all t ∈ (−∞,∞).

Transforming a linear autonomous system to its Jordan canonical form will allow us to answer
the question of controllability almost by inspection.
Let us assume, the dynamical system (3.26) has k distinct eigenvalues λ1, . . . , λk with multi-
plicities n1, . . . , nk, where

∑k
i=1 ni = n gives the dimension of the state space. Then there is a

nonsingular transformation matrix T such that we can transform system (3.26) to its Jordan
canonical form4

ż(t) = Jz(t) +Gu(t). (3.38)

4which is unique except for the sequence of the Jordan blocks
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where the matrices J and G can be arranged in the following way:

J =


J1

J2
. . .

Jk

 , G =


G1

G2
...
Gk

 ; (3.39)

Ji =


Ji1

Ji2
. . .

Jir(i)

 , Gi =


Gi1
Gi2

...
Gir(i)

 i = 1, . . . , k; (3.40)

Jij =


λi 1

λi 1
. . . 1

λi

 , Gij =


Gij1
Gij2

...
Gijnij

 i = 1, . . . , k
j = 1, . . . , r(i)

; (3.41)

(3.42)

missing entries are equal to zero,
Ji is the ni × ni Jordan block belonging to the eigenvalue λi
Gi is the ni ×m submatrix of G corresponding to the Jordan block Ji,
r(i) is the number of Jordan blocks in the submatrix Ji,
Jij are the nij × nij Jordan blocks belonging to the eigenvalue λi, for i = 1, . . . , k;

j = 1, . . . , r(i),
Gij are the nij ×m submatrices of G corresponding to Jij ,
Gijnij are the rows of Gij corresponding to the rows of Jij ,

where we have

n =

k∑
i=1

ni =

k∑
i=1

r(i)∑
j=1

nij (3.43)

For s 6= λi the inverse of (sI − Jij) is given by

(sI − Jij)−1 =


(s− λi)−1 (s− λi)−2 . . . (s− λi)−nij

0 (s− λi)−1 . . . (s− λi)−nij+1

...
...

. . .
...

0 0 . . . (s− λi)−1

 (3.44)

which can be directly verified.

Lemma 3.3. [Klamka, 1991, Lemma 1.5.2],[Chen, 1970, Ch. 5.5]
The rows of the matrix (sI−J)−1G are linearly independent over the field of complex numbers if
and only if, for every i = 1, . . . , k, the rows of the matrices (sI−Ji)−1Gi are linearly independent
over the field of complex numbers.
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Proof. Since we have

(sI − J)−1G =


(sI − J1)−1G1

(sI − J2)−1G2
...

(sI − Jk)−1Gk

 (3.45)

(sI − Ji)−1Gi =


(sI − Ji1)−1Gi1
(sI − Ji2)−1Gi2

...
(sI − Jir(i))−1Gir(i)

 ; i = 1, . . . , k, (3.46)

(sI − Jij)−1Gij =


(s− λi)−1 (s− λi)−2 . . . (s− λi)−nij

0 (s− λi)−1 . . . (s− λi)−nij+1

...
...

. . .
...

0 0 . . . (s− λi)−1



Gij1
Gij2

...
Gijnij

 ;
i = 1, . . . , k;
j = 1, . . . , r(i)

;

(3.47)

the rows of (sI−Ji)−1Gi are linear combinations of (s−λi)−1. Therefore the rows of (sI−Ji)−1Gi
are linearly independent if and only if the rows of (sI − J)−1G are linearly independent.

Theorem 3.17. [Klamka, 1991, Th. 1.5.1],[Chen, 1970, Ch. 5.5]
The dynamical system (3.26) is globally controllable if and only if for each i = 1, . . . , k the rows
Gi1ni1 , Gi2ni2 , . . . , Gir(i)nir(i) of the matrix G are linearly independent over the field of complex
numbers.

Proof. Theorem 3.14 states that (3.26) is globally controllable if and only if the rows of (sI −
J)−1G are linearly independent over the field of complex numbers.
Necessity: From lemma (3.3) we know that the matrix (sI − Ji)−1Gi contains the r(i) rows

[(s− λi)−1Gi1ni1 ], [(s− λi)−1Gi2ni2 ], . . . , [(s− λi)−1Gir(i)nir(i) ]. (3.48)

Now, if the rows Gi1ni1 , Gi2ni2 , . . . , Gir(i)nir(i) are not linearly independent then the rows of

(sI − Ji)−1Gi are not linearly independent and therefore the rows of (sI − J)−1G cannot be
linearly independent.
Sufficiency: Assume Gi1ni1 , Gi2ni2 , . . . , Gir(i)nir(i) are linearly independent. From (3.47) we see

that the rows of (sI−Jij)−1Gij depend on Gijnij . The l-th row of (sI−Jij)−1Gij contains a term
of the form (s−λi)−nij+l−1Gijnij showing the linear independence of the rows of (sI−Jij)−1Gij .
Since Gi1ni1 , Gi2ni2 , . . . , Gir(i)nir(i) are linearly independent, all rows of (sI−Ji)−1Gi are linearly

independent for all i = 1, . . . , k and therefore also (sI − J)−1G has linearly independent rows
and the theorem follows.

Corollary 3.3. If the dynamical system (3.26) is globally controllable then for each i = 1, . . . , k
we have

r(i) ≤ m, (3.49)

where m is the number of columns of the matrix B in (3.26).

Proof. This is a direct consequence of theorem 3.17 since otherwise it wouldn’t be possible that
Gi1ni1 , Gi2ni2 , . . . , Gir(i)nir(i) are linearly independent.
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From the proof of the last corollary we obtain a necessary condition for the size of the matrix
B: it must have at least as many columns as the maximum number of Jordan blocks belonging
to an eigenvalue of the matrix A. This gives a lower bound for underactuated systems, since m
is the number of control components in the control vector u. For example a system like

ẋ(t) =


1 0 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 3 1
0 0 0 0 3

 (3.50)

is globally controllable by using a control function with a single control component. For example
B = (1, 0, 1, 0, 1)T gives a completely controllable system.
But if there are at least two Jordan blocks belonging to the same eigenvalue, this is not longer
the case 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 3 1
0 0 0 0 0 3

 . (3.51)

Here the matrix B must have at least two columns, for example

B =



1 0
0 1
0 0
0 1
0 0
0 1

 (3.52)

leads to a completely controllable system.
Jordan blocks belonging to different eigenvalues can be handled by a single column of B. The
lower bound of columns the matrix B must have is determined by the highest number of Jordan
blocks all belonging to the same eigenvalue. This number is a necessary condition for global
controllability and due to the invariance under a change of variables it is not hard to see that it
is also sufficient.
From the foregoing we have the corollary which is a special case of the last corollary (3.3):

Corollary 3.4. If (3.26) is globally controllable and B has size n × 1 all eigenvalues of the
matrix A have to belong to at most one Jordan block.

3.2 Controllability of nonlinear systems

In this chapter we will restrict ourselves to conclusions we can make from the linearization of
the system and those nonlinear systems, which have a very special form - so called control affine
systems. For practical purposes this selection seems to be a good choice, as in many cases the
control enters linearly. Even for this case we will omit in many cases lengthy and technical proofs
but will refer to the publications where they can be found. This chapter is only intended to recall
some results which are helpful in tackling the problem of controllability for nonlinear systems.
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Many of the cited theorems are taken from the book [Coron, 2007] which can be seen as the ”
”state-of-the-art” in this area.
We consider the nonlinear control system

ẋ(t) = f(x(t), u(t)), (3.53)

where x ∈ Rn is the state vector, u ∈ Ω ⊆ Rm the control where Ω is closed and bounded. For
technical reasons we define Ω̂ as a bounded open set containing Ω. This is necessary in order to
define ∂f

∂u where u is a boundary point of Ω. As an admissible control function we will assume u
to be a (locally) Lebesgue integrable function, which maps from R into Rm and m ≤ n.
In the first part, when talking about the linearization of (3.53), we will assume f ∈ C1(Rn ×
Ω̂,Rn). Later in this chapter we will make stronger assumptions for the right hand side of (3.53).
We will have to assume that f is complete, i.e. for every bounded admissible control and every
initial value the solution exists for all times t. Furthermore it will be at least C∞, in many cases
we will even assume it to be analytic. See (3.104) for an example where this distinguishment is
important.

For the notation of the solution operator of (3.53) – if it exists – we will make the following
convention, which for example is used in [Brockett, 1976]: We denote the solution operator of
(3.53) as (exp(t− t0)f(x, u)), or in the short form (exp(t− t0)f).
We use the bracketing (exp tf) to distinguish the solution operator of (3.53) from the exponen-
tial exp(tf), whenever this expression is defined. In addition we will use (·)−exponential when
talking about (exp tf). If f is linear constant we have (exp tf) = exp(tf).

3.2.1 Linearization of the nonlinear system

A first attempt to study controllability of nonlinear systems is to consider its linearization. Even
if the linearization at some state x̃ and some control ũ is not controllable, it may happen that
the nonlinear system is locally controllable – in this case the linearization provides us with no
information about the nonlinear system. A positive result was given in [Lee and Markus, 1967]:
If the linearization at a stationary point of the nonlinear system is controllable, the system is
locally controllable at this point.

Definition 3.18. Linearization along a trajectory
The linearized control system along the trajectory x̄(t) corresponding to the control ū(t) is given
by the linear time-varying control system

ẋ(t) =
∂f

∂x
(x̄(t), ū(t))x(t) +

∂f

∂u
(x̄(t), ū(t))u(t). (3.54)

The linearization at a point in D := (Rn × Ω̂) is a special case, as it is the linearization along a
constant trajectory x̄(t) ≡ x̃.

Definition 3.19. Linearization at a point
The linearized control system at a point x̃ corresponding to the control ũ is given by the linear
autonomous control system

ẋ(t) =
∂f

∂x
(x̃, ũ)x(t) +

∂f

∂u
(x̃, ũ)u(t). (3.55)



34 CHAPTER 3. CONTROLLABILITY

The following theorem is due to Lee and Markus. In [Lee and Markus, 1967] they regard the
case where the zero-state is an equilibrium point of the uncontrolled system.

Theorem 3.20. Let (x̂, û) ∈ D and an equilibrium point of (3.53), where û is a constant control.
If the the linearized control system at (x̂, û) is completely controllable then the nonlinear control
system (3.53) is locally controllable at (x̂, û).

Proof. Since D is open and x̂ is an equilibrium point with respect to the control û, for every
control u(t) with ‖u(t)− û‖ < ε, where 0 < ε � 1, the solution x(t) is defined at least for a
small time interval. Let us assume, it is defined for 0 ≤ t ≤ 1, which can be achieved by choosing
ε suitably small. Defining A := ∂f

∂x (x̂, û) and B := ∂f
∂u(x̂, û) we know from the controllability of

the linearized system, that there are admissible controls u1(t), . . . , un(t) steering the system

ẋ(t) = Ax(t) +Bu(t) (3.56)

to n linearly independent directions.
We now introduce a new parameter ξ = (ξ1, . . . , ξn)T ∈ Rn and define a control function

u(t, ξ) = û+
n∑
i=1

ξiui(t) (3.57)

using the reference control function û and the control functions u1, . . . , un from the linearized
system. Because ui(t) are assumed to be Lebesgue integrable and [0, 1] is a compact subset of
R there is a umax <∞ such that

max
1 ≤ i ≤ n
0 ≤ t ≤ 1

‖ui(t)‖ < umax.

If we choose ξ such that

max
1≤i≤n

|ξi| ≤
ε

n · umax
,

we have

‖u(t, ξ)− û‖ = ‖
n∑
i=1

ξiui(t)‖ ≤
n∑
i=1

‖ξiui(t)‖ ≤
ε

n · umax

n∑
i=1

‖ui(t)‖

and for 0 ≤ t ≤ 1 we have

‖u(t, ξ)− û‖ ≤ ε

n · umax
n · umax = ε.

If we choose ε suitably small, u(t, ξ) is an admissible control. Let x(t, ξ) denote the corresponding
solution to the control function u(t, ξ). We will now show, that x(1, ξ) covers an open set in Rn
when ξ varies near zero, which will proof the theorem. Therefore consider the differentiable map

ξ 7→ x(1, ξ). (3.58)

Using the implicit function theorem all we have to show is that

Z(t) :=
∂x

∂ξ
(t, ξ)

∣∣∣∣
ξ=0

=
∂x

∂ξ
(t, 0) (3.59)

is nonsingular.
Using

∂x

∂t
(t, ξ) = f(x(t, ξ), u(t, ξ)), x(0, ξ) = x̂ (3.60)
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and
∂

∂ξ

∂x

∂t
(t, x) =

∂f

∂x
(x(t, ξ), u(t, ξ))

∂x

∂ξ
(t, ξ) +

∂f

∂u
(x(t, ξ), u(t, ξ))

∂u

∂ξ
(t, ξ) (3.61)

together with x(t, 0) = x̂, u(t, 0) = û and (3.59) we have

Ż(t) = AZ(t) +B[u1, . . . , un] (3.62)

If zi(t) denotes the i-th column of the matrix Z(t) we have

żi(t) = Azi(t) +Bui(t), zi(0) = x̂ (3.63)

Since ui steers the the linearized system to n linearly independent directions for 0 ≤ t ≤ 1 we
have span{z1(1), . . . , zn(1)} = Rn. Therefore Z(1) = ∂x

∂ξ (1, 0) is nonsingular and the theorem
follows.

Remark: Note that in the proof of theorem (3.20) the control functions u1, . . . , un for the lin-
earized system do not have to lie in the set of admissible control functions for the nonlinear
problem. They only have to be (locally) Lebesgue integrable. If we choose ξ suitably small, the
composite control function u(t, ξ) which will be close to the reference control function û and
because D is open we obtain an admissible control u for the nonlinear problem. An important
result from stabilization theory says that if the linearized system around an equilibrium point
of a nonlinear system is controllable, then there is a smooth feedback law stabilizing this equi-
librium point for the nonlinear system (cf. [Coron, 2007][Theorem 10.13, p.218]).

The following 3-dimensional system shows that local controllability of the nonlinear system can
be possible although the linearization is not controllable.

ẋ(t) =

sin(x3(t))
cos(x3(t))

0

u1(t) +

0
0
1

u2(t) (3.64)

This example is taken from [Nijmeijer and van der Schaft, 1990, p. 52f] and is a simplified
model of driving a car (in a plane domain). The position of the car at time t is given by
(x1(t), x2(t)) ∈ R2 and the steering angle at time t is x3(t). So the control component u1 stands
for driving the car forwards (or backwards) and the control component u2 models the steering of
the car. So it makes sense to assume that the set of admissible controls is bounded and contains
the origin (as an inner point). For (x1, x2, x3, u1, u2) = (0, 0, 0, 0, 0) the linearized system is
uncontrollable:

ẋ(t) =

0 0 0
0 0 0
0 0 0

x(t) +

0 0
1 0
0 1

(u1(t)
u2(t)

)
, (3.65)

since the first component x1(t) is clearly uncontrollable. That the nonlinear system is locally
controllable will be shown later. In this case the linearization misses to give information for the
nonlinear model. We need to introduce some mathematical notions.

3.2.2 Vector fields, integral manifolds, Lie algebras and distributions

Controllability theory for nonlinear systems is still in progress and only for some classes results
have been obtained. These results have only local character. Due to many different kinds of
nonlinearities which can occur many different approaches have been made. We will restrict
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ourselves here to the special case of control affine systems and the approach related to the
theory of vector fields and Lie algebras.
We will begin with some mathematical preliminaries (see e.g. [Sastry, 1999]).

Definition 3.21. vector fields in Rn
A vector field is a map f : Rn → Rn which assigns every vector x of an open subset U ⊂ Rn a
vector f(x) ∈ Rn. For k ≥ 1 it is called Ck-vector field if f is k-times continuously differentiable
with respect to each of its components x1, . . . , xn.

Whenever we use the term smooth vector field we assume the vector field is continuously differ-
entiable as many times as necessary in the context where it is used.

The Lie derivative is the derivative of a scalar function along a vector field:

Definition 3.22. Lie derivative
Let f be a vector field in Rn and V : Rn → R be a scalar-valued function. Then the Lie derivative
of V in the direction of f is defined as

LfV :=

n∑
i=1

fi
∂V

∂xi
= 〈∇V (x), f(x)〉 . (3.66)

The derivative of a vector field with respect to another vector field is given by the Lie bracket
of these vector fields:

Definition 3.23. Lie bracket
Given to vector fields f, g in Rn the Lie bracket [f, g] defines a new vector field in Rn. Its
components are given by

[f, g]j(x) :=

n∑
k=1

fk(x)
∂gj
∂xk

(x)− gk(x)
∂fj
∂xk

(x), ∀j = 1, . . . , n, ∀x ∈ Rn (3.67)

Definition 3.24. Commuting vector fields
Two vector fields f, g in Rn are called commuting vector fields if their Lie bracket vanishes:

[f, g] = 0.

Remark: Since [g, f ] = −[f, g] for commuting vector fields we also have [g, f ] = 0.

Definition 3.25. R-algebra
A R-algebra is a vector space A over the field R together with a bilinear operation{

A×A→ A

(x, y) 7→ x · y = xy
(3.68)

called multiplication such that

• (x+ y) · z = x · z + y · z

• x(y + z) = x · y + x · z

• µ · (x · y) = (µ · x) · y = x · (µ · y)
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for all x, y, z ∈ A and for all µ ∈ R.

Definition 3.26. Lie Algebra
A Lie algebra (G, F, {·, ·}) is a vector space G over some field F together with a binary operation

{·, ·} : G×G→ G (3.69)

such that {·, ·} has the following properties

• bilinearity:
{ax+ by, z} = a{x, z}+ b{y, z}

{z, ax+ by} = a{z, x}+ b{z, y}

for all a, b ∈ F and all x, y, z ∈ G.

• antisymmetry:
{x, y} = −{y, x} ∀x, y ∈ G

• Jacobi-Identity

{x, {y, z}}+ {y, {z, x}}+ {z, {x, y}} = 0, ∀x, y, z ∈ G

The space of C∞-vector fields in Rn over the field of real numbers together with the Lie bracket
[·, ·] is a Lie algebra. We define the adjoint action which is helpful in representing higher order
Lie brackets:

Definition 3.27. Adjoint Action
Let (G, F, {·, ·}) be a Lie algebra. Given f ∈ G one defines, by induction on k ∈ N, the adjoint
action of f on G by

ad0
f g = g, (3.70)

adk+1
f g = {f, adkf g} (3.71)

for all k ∈ N and all g ∈ G.

For example if we take f, g ∈ (C∞(Rn,Rn),R, [·, ·]) we have

ad1
f g = [f, g] (3.72)

ad2
f g = [f, [f, g]] (3.73)

ad3
f g = [f, [f, [f, g]]]. (3.74)

Definition 3.28. Distribution
Given a set of smooth vector fields g1, g2, . . . , gm we define the distribution 4 as

4 = span{g1, . . . , gm}. (3.75)

Throughout this chapter ”span” is meant over the ring of smooth functions, i.e. elements of
4(x) which denotes 4 at x are of the form

α1(x)g1(x) + α2(x)g2(x) + . . .+ αm(x)gm(x) (3.76)

where the αi(x) are smooth scalar-valued functions of x for all i = 1, . . . ,m.
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Definition 3.29. Involutive Distribution
A distribution 4 is called involutive distribution, if for any two vector fields g1, g2 ∈ 4 their
Lie bracket [g1, g2] is also in 4.

Definition 3.30. Involutive Closure
Given a distribution 4, the involutive closure 4̄ denotes the smallest involutive distribution
containing 4.

For the following two definitions let us assume we have a distribution4 on Rn and a submanifold
N of Rn

Definition 3.31. integral manifold
The submanifold N of Rn is called integral manifold of 4 if for every x ∈ N the tangent space
TxN coincides with 4(x).

Definition 3.32. maximal integral manifold
Let N be an integral manifold of 4. It is called maximal integral manifold if it is connected and
every other connected integral manifold of 4 which contains N coincides with N .

The following example is taken from [Sastry, 1999, p. 512f] and motivates the use of Lie brackets
when talking about controllability of nonlinear systems.

Consider the system

ẋ(t) = g1(x)u1 + g2(x)u2 (3.77)

where u = (u1, u2)
T , u1, u2 : R → R is the control vector and g1, g2 are smooth vector fields in

Rn. Given some initial value x0 ∈ Rn we can go in any direction which is in

span{g1(x0), g2(x0)}. (3.78)

As we will see we could also steer the system along the direction defined by the vector field [g1, g2]
(which in general is not in span{g1(x0), g2(x0)}). To see this we use the piecewise constant control

u(t) =


(1, 0)T t ∈ [0, h[

(0, 1)T t ∈ [h, 2h[

(−1, 0)T t ∈ [2h, 3h[

(0,−1)T t ∈ [3h, 4h[

(3.79)

for small h and evaluate the Taylor series expansion for x about x0 up to order 2:

x(h) = x(0) + hẋ(0) +
1

2
h2ẍ(0) + . . .

= x0 + hg1(x0) +
1

2
h2

∂g1(x)

∂x

∣∣∣∣
x=x0

g1(x0) + . . .

= x0 + hg1(x0) +
1

2
h2
∂g1(x0)

∂x
g1(x0) + . . .

where ∂g1(x)
∂x denotes the Jacobian and we use the abbreviation ∂g1(x0)

∂x for ∂g1(x)
∂x

∣∣∣
x=x0

.
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x(2h) = x(h) + hẋ(h) +
1

2
h2ẍ(h) + . . .

= x(h) + hg2(x(h)) +
1

2
h2
∂g2(x(h))

∂x
g2(x(h)) + . . .

= x0 + hg1(x0) +
1

2
h2
∂g1(x0)

∂x
g1(x0)+

+ hg2(x0 + hg1(x0) +
1

2
h2
∂g1(x0)

∂x
g1(x0) + . . .)+

+
1

2
h2
∂g2(x0 + hg1(x0) + 1

2h
2 ∂g1(x0)

∂x g1(x0) + . . .)

∂x
·

· g2(x0 + hg1(x0) +
1

2
h2
∂g1(x0)

∂x
g1(x0) + . . .) + . . .

= x0 + hg1(x0) +
1

2
h2
∂g1(x0)

∂x
g1(x0) + h(g2(x0) + h

∂g2(x0)

∂x
g1(x0) + . . .)+

+
1

2
h2
∂g2(x0)

∂x
g2(x0) + . . .

= x0 + h (g1(x0) + g2(x0)) +
1

2
h2
(
∂g1(x0)

∂x
g1(x0) + 2 · ∂g2(x0)

∂x
g1(x0) +

∂g2(x0)

∂x
g2(x0)

)
+ . . .

x(3h) = x(2h)− hg1(x(2h)) +
1

2
h2
∂g1(x(2h))

∂x
g1(x(2h)) + . . .

= x0 + h (g1(x0) + g2(x0)) +
1

2
h2
(
∂g1(x0)

∂x
g1(x0) + 2 · ∂g2(x0)

∂x
g1(x0) +

∂g2(x0)

∂x
g2(x0)

)
+

− hg1(x0 + h(g1(x0) + g2(x0)) + . . .) +
1

2
h2
∂g1(x0)

∂x
g1(x0) + . . .

= x0 + h (g1(x0) + g2(x0)) +
1

2
h2
(
∂g1(x0)

∂x
g1(x0) + 2 · ∂g2(x0)

∂x
g1(x0) +

∂g2(x0)

∂x
g2(x0)

)
+

− hg1(x0)− h2
∂g1(x0)

∂x
g1(x0)− h2

∂g1(x0)

∂x
g2(x0) +

1

2

∂g1(x0)

∂x
g1(x0) + . . .

= x0 + hg2(x0) + h2
(
∂g2(x0)

∂x
g1(x0)−

∂g1(x0)

∂x
g2(x0) +

1

2

∂g2(x0)

∂x
g2(x0)

)
+ . . .

x(4h) = x(3h)− hg2(x(3h)) +
1

2
h2
∂g2(x(3h))

∂x
g2(x(3h)) + . . .

= x0 + hg2(x0) + h2
(
∂g2(x0)

∂x
g1(x0)−

∂g1(x0)

∂x
g2(x0) +

1

2

∂g2(x0)

∂x
g2(x0)

)
−

− h(g2(x0 + hg2(x0) + . . .)) +
1

2
h2
∂g2(x0)

∂x
g2(x0) + . . . (3.80)

= x0 + hg2(x0) + h2
(
∂g2(x0)

∂x
g1(x0)−

∂g1(x0)

∂x
g2(x0) +

1

2

∂g2(x0)

∂x
g2(x0)

)
−

− hg2(x0)− h2
∂g2(x0)

∂x
g2(x0) +

1

2
h2
∂g2(x0)

∂x
g2(x0) + . . .

= x0 + h2
(
∂g2(x0)

∂x
g1(x0)−

∂g1(x0)

∂x
g2(x0)

)
+ . . . (3.81)

= x0 + h2 ([g1(x0), g2(x0)]) + . . . (3.82)
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We return to example (3.64) – the model of driving a car – to show that this procedure actually
defines a new direction, in which - at least approximately - the system can be steered. The vector

fields

sinx3
cosx3

0

 and

0
0
1

 do not commute since

sinx3
cosx3

0

 ,

0
0
1

 =

0 0 0
0 0 0
0 0 0

sinx3
cosx3

0

−
0 0 cosx3

0 0 − sinx3
0 0 0

0
0
1

 =

− cosx3
sinx3

0

 6= 0.

(3.83)
We apply the control function (3.79) to obtain according to the above calculations the approxi-
mations

x(h) =

x1(0)
x2(0)
x3(0)

+ h

sinx3(0)
cosx3(0)

0

 . . .

x(2h) =

x1(0)
x2(0)
x3(0)

+ h

sinx3(0)
cosx3(0)

1

 . . .

x(3h) =

x1(0)
x2(0)
x3(0)

+ h

sinx3(0)− sin(x3(0) + h)
cosx3(0)− cos(x3(0) + h)

1

 . . .

x(4h) =

x1(0)
x2(0)
x3(0)

+ h

sinx3(0)− sin(x3(0) + h)
cosx3(0)− cos(x3(0) + h)

0

 . . .

If we use a first order approximation

sin(x3(0) + h) ≈ sinx3(0) + h cosx3(0)

cos(x3(0) + h) ≈ cosx3(0) + h sinx3(0)

we obtain

x(4h) =

x1(0)
x2(0)
x3(0)

+ h2

− cosx3(0)
sinx3(0)

0

+ . . . =

x1(0)
x2(0)
x3(0)

+ h2

sinx3(0)
cosx3(0)

0

 ,

0
0
1

+ . . . =

(3.84)

=

x1(0)
x2(0)
x3(0)

+ h2

− cosx3(0)
sinx3(0)

0

+ . . . (3.85)

where

− cosx3(0)
sinx3(0)

0

 which is not an element of span{

sinx3(0)
cosx3(0)

0

 ,

0
0
1

}.
The example above shows that Lie brackets can answer the controllability question in case the
linearization is not controllable.
In the next section we will introduce drift-free control affine systems - to which the example
above belongs - where Lie brackets are a powerful tool as they can establish a sufficient criterion
for controllability.
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3.2.3 Drift-free and control affine systems

We will consider control systems of the form

ẋ(t) = f(x(t)) +
m∑
i=1

gj(x(t))uj(t), m ≤ n (3.86)

which are called affine control systems. The functions f, g1, . . . , gm are assumed to be vector
fields of Rn and – unless stated otherwise – are supposed to be analytic. The vector field f
is called drift vector field or simply drift term whereas the gi are referred to as input vector
fields. As always x ∈ Rn denotes the state vector and ui are the control functions which can be
summarized to a control vector u = (u1, . . . , um).

Definition 3.33. Accessibility algebra
Given a control system (3.86) the accessibility algebra A is defined as the smallest Lie algebra
of vector fields in Rn which contains the vector fields f, g1, . . . , gm.

Definition 3.34. Accessibility distribution
The accessibility distribution C of system (3.86) is defined as the distribution which is generated
by the elements of the accessibility algebra A of (3.86).

Definition 3.35. Let diff(Rn) denote the group of diffeomorphisms of Rn. For a given set X
of complete vector fields in R we denote by {expX} the smallest subgroup of diff(Rn) which
contains (exp tf) for f ∈ X and t ∈ R.

The accessibility distribution is equal to {exp 4̄} where 4 is generated by the vector fields
appearing on the right hand side of (3.86).
Remark: Without proof we mention the fact that every element of C can be expressed as linear
combination of terms which have the following form

[h1[h2, [. . . [hk, hk+1] . . .]]], with k ∈ N, hi ∈ {f1, g1, . . . gm}. (3.87)

For a proof see for example [Nijmeijer and van der Schaft, 1990, Proposition 3.8].

Theorem 3.36. (Version of Frobenius theorem)[Brockett, 1976, Theorem 1]
Let 4I be an involutive distribution generated by some vector fields h1, . . . , hn in Rn.

1. If h1, . . . , hn are analytic on Rn – then given any point x0 ∈ Rn there is a maximal
submanifold N of Rn containing x0 such that 4I spans the tangent space of N at each
point of N .

2. If h1, . . . , hn ∈ C∞ on Rn with constant dimension of 4I(x) ∀x ∈ Rn – then given any
point x0 ∈ Rn there is a maximal submanifold N containing x0 such that for every x ∈ Rn
we have 4I(x) spans the tangent space of N at x.

For a proof see for example [Sastry, 1999, Ch. 8.3].

Drift-free control systems

Throughout this subsection the drift term f(x) in (3.86) vanishes and all our control systems
are of the form

ẋ(t) =

m∑
i=1

gj(x(t))uj(t). (3.88)
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Example (3.64) of driving a car in a plane domain belongs to this class of control systems where
the vector fields are g1(x(t)) = (sinx3(t), cosx3(t), 0)T and g2(x(t)) = (0, 0, 1)T . As we have
already seen, when starting in point p of the state space we can not only steer in all directions of
span{g1(p), g2(p)} but we can also approximately steer in the direction defined by the Lie bracket
[g1(p), g2(p)] of the two vector fields. This suggests, that the set of available directions contains
the accessibility algebra A generated by the vector fields g1, . . . , gm. Using more sophisticated
control functions than (3.79) allows us to steer also in the directions [g1(x0), [g1(x0), g2(x0)]]
or [[g1(x0), g2(x0)], [g1(x0), [g1(x0), g2(x0)]]] [Sastry, 1999, p. 513]. Actually these directions are
already contained in the higher order terms of the Taylor expansion (3.82) [Nijmeijer and van der
Schaft, 1990, p.78]. So also ”brackets of brackets” and their linear combinations define available
directions, suggesting, that the accessibility distribution C is contained in the set of available
directions in the case of a driftless system.
For systems with drift term higher order brackets do not necessarily define new directions. The
”intuitive” reason is that the additional drift term allows only to follow the direction +f0(x)
but not the direction −f0(x). For example the two-dimensional system

ẋ(t) =

(
x22(t)

0

)
︸ ︷︷ ︸
f0(x)

+

(
0
1

)
︸︷︷︸
f1(x)

u(t) (3.89)

is nondecreasing in its first component, meaning that −(1, 0)T for example is not an available
direction to steer the system to. But the iterated Lie bracket

[[f1, f0], f1](x) = −
(

2
0

)
(3.90)

suggests exactly this direction.

The accessibility distribution C = {exp 4̄} seems to be much larger than {exp4}. It is an
astonishing result of Chow that for sufficiently smooth vector fields these sets are actually equal
which we will restate here without proof:

Theorem 3.37. (Version of Chow’s theorem)[Brockett, 1976, Theorem 2]
Let 4 be a distribution and 4̄ its involutive closure.

1. If the elements of 4̄ are analytic on Rn – then given any point x0 ∈ Rn there is a maximal
submanifold N of Rn containing x0 such that N = {exp4}x0 = {exp 4̄}x0.

2. If the elements of 4̄ are C∞ on Rn with dim(4̄) constant on Rn – then given any point
x0 ∈ Rn there is a maximal submanifold N containing x0 such that N = {exp4}x0 =
{exp 4̄}x0.

From the theorem of Chow we can now deduce a controllability rank criterion for local control-
lability:

Theorem 3.38. Controllability rank condition for drift-free control systems
If for some state x0 ∈ Rn the accessibility distribution C of (3.88) at x0 has dimension n , then
(3.88) is locally controllable in x0.

Proof. Chow’s theorem.
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Control systems with drift term

Control affine systems have the special form (3.86)

ẋ(t) = f(x(t)) +
m∑
i=1

gi(x(t))ui(t).

They can be regarded as a special case of drift-free control systems in the following sense: Maybe
in a drift-free control system there is a failure of a control component, say um+1(t), which for
example could freeze and send a constant output signal um+1. Then we can interpret the term
gm+1(x(t))um+1(t) = gm+1(x(t))um+1 as drift term f(x(t))

ẋ(t) =
m+1∑
i=1

gi(x(t))ui(t) =
m∑
i=1

gi(x(t))ui(t) + (gm+1(x(t))um+1)︸ ︷︷ ︸
f(x(t))

(3.91)

which results in a system of type (3.86).

The following theorem gives a sufficient criterion for small-time local controllability for nonlinear
control affine systems. It will turn out, that this theorem will be a generalization of the Kalman
criterion (3.11) of the linear control problem (3.26). We consider the control affine problem (3.86)
for t ≥ 0:

Theorem 3.39. (cf. [Coron, 2007][pp. 131-133])
Consider

ẋ(t) = F (x, u) = f(x(t)) +
m∑
i=1

gi(x(t))ui(t) (3.92)

where ui are scalar input functions, f, gi are analytic functions. Let x = a be an equilibrium
point of the uncontrolled problem, i.e. F (a, 0) = f(a) = 0. Then, if

span{adkf gj(a); k ∈ N, j ∈ {1, . . . ,m}} = Rn (3.93)

holds the control affine system is small-time locally controllable at x = a.

We will omit the proof for this theorem and refer to Halina Frankowska who proofed this result in
[Frankowska, 2005] by using the Brouwer fixed point theorem in a more general setting regarding
differential inclusions.
Instead we will show that the directions defined by adkf gj(a); k ∈ N, j ∈ {1, . . . ,m} are in fact
available directions for the control affine problem (3.86):
Fix j ∈ {1, . . . ,m} and define an auxiliary function Φ such that

Φ ∈ Ck([0, 1]) (3.94)

Φ(l)(0) = Φ(l)(1) = 0, ∀l ∈ {0, . . . , k − 1}. (3.95)

For η ∈ (0, 1] and ε ∈ [0, 1] define u(t) : [0, η]→ Rm by choosing its components

ui :=

{
[0, η]→ Rn

t 7→ δij · ε · Φ(k)( tη ),
(3.96)
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where δij =

{
1 if i = j

0 if i 6= j
is the Kronecker delta. Defining A := ∂F

∂x (a) and B := ∂F
∂u (a, 0) =

(g1(a), . . . , gm(a)) we consider the two initial value problems

ẋ(t) = F (x, u) = f(x(t)) +
m∑
i=1

gi(x(t))ui(t), x(0) = a (3.97)

ẏ(t) = Ay(t) +Bu(t), y(0) = 0. (3.98)

Using Gronwall’s lemma (4.1) there is some C > 0 and ε0 > 0 such that for all ε ∈ [0, ε0] and
η ∈ (0, 1] we obtain

|x(t)− a− y(t)| = |
∫ t

0
f(x(τ), u(τ))−Ay(τ)−Bu(τ)dτ | ≤ Cε2. (3.99)

For the solution of the linear system (3.98) we obtain by integration by parts

y(η) =

∫ η

0
e(η−t)ABu(t) dt

=

∫ η

0
e(η−t)Aε · Φ(k)(

t

η
) · gj(a) dt

= −εη
∫ η

0
e(η−t)A · Φ(k−1)(

t

η
)dt

...

= (−1)kηkε

∫ η

0
e(η−t)AAkΦ(

t

η
)gj(a) dt

= (−1)kηk+1ε

∫ 1

0
Φ(τ)eη(1−τ)AAkgj(a) dτ (3.100)

Hence, for some finite constant D sufficiently large but independent of ε ≥ 0 and η ∈ (0, 1] we
have ∣∣∣∣y(η)− (−1)kAkgj(a)ηk+1ε

∫ 1

0
Φ(τ) dτ

∣∣∣∣ ≤ Dεηk+2. (3.101)

From the definition of the adjoint action (3.27) one easily obtains the formula

adkf gj(a) = (−1)kAkgj(a) (3.102)

which together with the estimates (3.99) and (3.101) gives

x(η) ≈ a+ ε · ηk+1(−1)k adkf gj(a)

∫ 1

0
Φ(τ) dτ, (3.103)

which shows, that one can actually move in the direction of (−1)k adkf gj(a). Also the direction

−(−1)k adkf gj(a) is available, simply by changing the sign of the auxiliary function Φ.
In the linear case condition (3.93) above reduces to the Kalman controllability criterium (3.11).
A necessary condition for analytic right hand sides of (3.86) (or even general nonlinear systems)
is due to [Nagano, 1966] can be formulated as follows: If the (control affine/general nonlinear)
system is small-time controllable at x = x0 then the corresponding accessibility distribution has
rank n at x = x0 (which often is called the Lie algebra condition. Note that for this necessary
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condition analyticity is crucial. A one-dimensional counterexample if this condition does not
hold is given by

ẋ(t) = f(x(t), u(t)) :


R× R→ R

(x(t), u(t)) 7→

{
u(t)e

− 1
u2(t) for u(t) 6= 0

0 for u(t)

(3.104)

The right hand side is infinitely many times differentiable. But although it is controllable at
x = 0 the accessibility distribution at this point has rank 0, such that analyticity is crucial for
Nagano’s theorem.
Remark: Nagano’s theorem is important as a necessary condition for nonlinear analytic systems.
But there are important cases where with less assumptions the Lie algebra condition is (al-
though not necessary) a sufficient condition establishing (small-time) controllability. For linear
autonomous systems for example once more we rediscover the Kalman condition (3.11) for con-
trollability. For driftless control systems with vector fields in C∞, we already saw from Chow’s
theorem (3.37), that the Lie algebra condition turns out to be sufficient.
As seen in theorem (3.39) there are Lie-brackets which are useful in determining controllability
properties, but example (3.89) shows, that there are also Lie-brackets, which are not helpful
in determining controllability properties or even worse they can be an obstruction to control-
lability. As we have seen, Lie-brackets naturally appear as limiting directions and therefore the
effects of ”bad brackets” have to be neutralized in some way. A natural question is, which of
the Lie-brackets are ”good ones” and which of them not. A more ambitious question then is to
ask how the effects of the ”bad brackets” can possibly be healed. This interplay of ”good” and
”bad” brackets has not been fully understood. It is still an open problem and even the scalar
input case (m = 1) seems to be quite difficult.
Let us consider this special case where m = 1 in (3.86):

ẋ(t) = f(x(t)) + g(x(t))u(t), t ≥ 0. (3.105)

We assume that f and g are smooth vector fields and that |u| ≤ 1.
Let x = x0 be an equilibrium point of the uncontrolled system, i.e. f(x0) = 0. Henry Hermes
conjectured in [Hermes, 1976] that Lie-brackets with an even number of g′s are ”bad ones”. Let
Sk(f, g) denote the linear span of all brackets built of the vector fields f and g such that the
number of g′s is at most k. Then the Hermes conjecture which was proofed by Sussmann 1983
can be formulated as theorem:

Theorem 3.40. Hermes-Sussmann
Regard system (3.105), where x ∈ Rn and f, g are smooth vector fields mapping into Rn. Let
x0 ∈ Rn be such that f(x0) = 0 and Sk(f, g)(x0) = Rn for some k ≥ 1 and condition

S2p(f, g)(x0) = S2p+1(f, g)(x0) (3.106)

holds for every natural p. Then (3.105) is small-time locally controllable at x0.

Unfortunately this condition is not necessary, as could be shown by Jacubczyck in [Sussmann,
1987]. For the proof which is quite lengthy we refer to the original work [Sussmann, 1987] where
also the Jacubczyck example was presented. An outline of the proof, which still is quite lengthy,
can be found in [Sussmann, 1983a]. The main idea was approximating the original nonlinear
system by systems containing Lie-brackets to obtain more information than one would get from
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the linearization of the system. As seen in the motivating example control variations play an
important role. When studying the solutions of the approximating system, the Baker-Campbell-
Hausdorff formula plays an important role and Gianna Stefani conjectured in [Stefani, 1985]
that symmetries in this formula have to be studied to identify the real bad brackets. Real bad
brackets, because we already know that condition (3.106) is not necessary and Stefani could
show in the same paper, that not all brackets with an even number of g′s are obstructions to
controllability. In this paper a 3-dimensional example of type (3.105) was regarded, where the
local controllability could be established with the help of Lie-brackets containing the term g four
times.



Chapter 4

Stability and stabilizing control laws

In this chapter we introduce an algorithm which stabilizes a nonlinear system along a given
reference trajectory. This is a local method and uses the (controllable) linearization along this
trajectory. To motivate the control law we will first give some results from the linear theory. We
start with stability notions, where we mainly follow the presentation in [Sastry, 1999, p. 86ff]:

4.1 Stability notions

Given a general nonlinear differential equation

ẋ(t) = f(x(t), t), x(t0) = x0, t ≥ t0 (4.1)

where x ∈ Rn and unless stated otherwise, f is C∞(Rn,Rn). We assume there is an equilibrium
point xe. Without loss of generality we may assume that this equilibrium point is the origin
x = 0 of the state space (which can always be achieved by a suitable change of variables).

Lemma 4.1. (cf. e.g. [Sastry, 1999][p. 86]) Bellman-Gronwall Lemma
Let z(·), a(·), u(·) : R+

0 → R+ be given positive functions and T > 0. Then, if for all t ≤ T we
have

z(t) ≤ u(t) +

∫ t

0
a(τ)z(τ)dτ, (4.2)

if follows that for t ∈ [0, T ] the following inequality holds:

z(t) ≤ u(t) +

∫ t

0
a(τ)u(τ)e

∫ t
τ a(σ)dσdτ. (4.3)

Proof. Define

r(t) :=

∫ t

0
a(τ)z(τ)dτ,

differentiating and using (4.2) yields

ṙ(t) = a(t)z(t) ≤ a(t)u(t) + a(t)r(t)

which means that for some positive function s(t) we have

ṙ(t) = a(t)u(t) + a(t)r(t)− s(t).

47



48 CHAPTER 4. STABILITY AND STABILIZING CONTROL LAWS

This is an inhomogeneous linear differential equation and solving it with initial condition r(0) = 0
yields

r(t) = e
∫ t
0 a(σ)dσ·

∫ t

0
e−
∫ τ
0 a(σ)dσ(a(τ)u(τ)−s(τ))dτ =

∫ t

0
e
∫ t
τ a(σ)dσa(τ)u(τ)dτ−

∫ t

0
e
∫ t
τ a(σ)dσs(τ)dτ

Since s ≥ 0 and the exponential is positive, inequality (4.3) follows concluding the proof.

Proposition 4.1. (cf. [Sastry, 1999]) Rate of convergence (growth/decay rate)
Regard system (4.1) and assume that f is Lipschitz continuous in x with Lipschitz constant L
and piecewise constant with respect to t. Further assume that x = 0 is an equilibrium state of
the uncontrolled system, then - as long as x(t) remains in a ball around the equilibrium point
x = 0 - the solution x(t) satisfies

‖x(t)‖ ≤ ‖x0‖eL(t−t0). (4.4)

Proof. Since x̃(t) ≡ 0 is a trivial solution for the initial value problem with x̃(t0) = 0 =: x̃0 we
have

‖x(t)− x̃(t)‖ ≤ ‖x0 − x̃0‖+

∫ t

t0

‖f(x(τ), τ)− f(x̃(τ), τ)‖dτ

≤ ‖x0 − x̃0‖+ L

∫ t

t0

‖x(τ)− x̃(τ)‖dτ

‖x(t)‖ ≤ ‖x0‖+ L

∫ t

t0

‖x(τ)‖dτ

Applying the Bellman-Gronwall Lemma (4.1) with a(t) ≡ ‖x0‖, z(t) = ‖x(t)‖, u(t) ≡ L leads
to the desired inequality whenever ‖x0‖ 6= 0. For ‖x0‖ = 0 inequality (4.4) trivially holds since
then x(t) ≡ 0.

Remark: The Lipschitz constant L serves as growth rate if positive and decay rate if negative.

Definition 4.1. [Sastry, 1999][Def. 5.4] Stability in the sense of Lyapunov
The equilibrium point x = 0 is called stable equilibrium point of (4.1) (in the sense of Lyapunov)
if for all t0 ∈ R and ε > 0, there exists δ(ε, t0) such that

‖x0‖ < δ(ε, t0) =⇒ ‖x(t)‖ < ε ∀t ≥ t0, (4.5)

where x(t) is the solution of (4.1) with initial value x(t0) = x0.

Definition 4.2. [Sastry, 1999][Def. 5.5] Uniform stability
The equilibrium point x = 0 is called a uniformly stable equilibrium point of (4.1) if in the
preceding definition (4.1) δ can be chosen independent of t0.

Definition 4.3. [Sastry, 1999][Def. 5.6] Asymptotic stability
The equilibrium point x = 0 is an asymptotically stable equilibrium point of (4.1) if

• x = 0 is a stable equilibrium point of (4.1),

• x = 0 is attractive, i.e. for all t0 ∈ R there exists a δ(t0) such that

‖x0‖ < δ(t0) =⇒ lim
t→∞
‖x(t)‖ = 0,

where x(t) is the solution of (4.1) with initial value x(t0) = x0.
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Definition 4.4. [Sastry, 1999][Def. 5.10] Exponential stability
The equilibrium point x = 0 is an exponentially stable equilibrium point of (4.1) if there exist
m,α > 0 such that for the solution of (4.1) with initial value x(t0) = x0 we have

‖x(t)‖ ≤ m‖x0‖e−α(t−t0) (4.6)

for all x0 in an environment of 0. The constant α is called the rate of convergence or decay
rate.

4.1.1 Stability of linear time-varying systems

We consider the linear time-varying system

ẋ(t) = A(t)x(t), x(t0) = x0, t ≥ t0 (4.7)

where A(t) ∈ Rn×n is a piecewise continuous bounded function. As usual we denote the state
transition matrix as Φ(t, t0).

Theorem 4.5. (cf. [Sastry, 1999][Th. 5.32]) Stability of linear systems
The right-hand-side of the following table gives the stability conclusions of the equilibrium point
x = 0 of the linear time-varying system (4.7):

Conditions on Φ(t, t0) Stability conclusions

1. supt≥t0 ‖Φ(t, t0)‖ < M(t0) <∞ stable
2. supt0 supt≥t0 ‖Φ(t, t0)‖ <∞ uniformly stable
3. limt→∞ ‖Φ(t, t0)‖ = 0 asymptotically stable

where ‖Φ(t, t0)‖ = max{‖Φ(t, t0)x‖ : x ∈ Rn, ‖x‖ = 1}.

Proof. 1. Assume that
‖Φ(t, t0)‖ < M(t0) <∞ ∀t ≥ t0. (4.8)

We therefore have

‖x(t)‖ = ‖Φ(t, t0)x0‖ ≤ ‖Φ(t, t0)‖‖x0‖ ≤M(t0)‖x0‖ ∀t ≥ t0. (4.9)

Thus, given an arbitrary ε > 0 we have for δ := ε/M(t0)

‖x0‖ < δ = ε/M(t0) =⇒ ‖x(t)‖ ≤M(t0)‖x0‖ = M(t0)
ε

M(t0)
= ε. (4.10)

showing stability of the equilibrium point x = 0.
Suppose now that (4.8) does not hold. I.e. there is at least one element in Φ(t, t0) which in
absolute value takes on arbitrarily large values. Without loss of generality let us assume,
this element is Φ(t, t0)ik, 1 ≤ i, k ≤ n. Choose the vector ek - which has zeros everywhere
except the k−th entry which is one - as initial vector x0. Then the i−th component of the
state vector x at time t ≥ t0 is given by

xi(t) = Φ(t, t0)ik (4.11)

and - as Φ(t, t0) was assumed to be unbounded, so is xi, showing that the equilibrium state
x = 0 is unstable. Thus stability implies uniform boundedness of ‖Φ(t, t0)‖.
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2. (cf. e.g. [DaCunha, 2005]) We assume that x = 0 is a uniformly stable equilibrium point
of (4.7). Then there is a M > 0 such that for any t0 and x(t0) we have

‖x(t)‖ ≤M‖x(t0)‖, t ≥ t0. (4.12)

Given any t0 and t∗ ≥ t0, we can choose a state x∗ such that

‖x∗‖ = 1, ‖Φ(t∗, t0)x
∗‖ = ‖Φ(t∗, t0)‖‖x∗‖ = ‖Φ(t∗, t0)‖ (4.13)

Such a state always exists since ‖Φ(t∗, t0)‖ = max{Φ(t∗, t0)x, x ∈ Rn, ‖x‖ = 1}.
Now we apply (4.12) to the solution of (4.7) at time t∗ with initial state x0 = x∗, which
gives

‖x(t∗)‖ = ‖Φ(t∗, t0)x
∗‖ = ‖Φ(t∗, t0)‖‖x∗‖ ≤M‖x∗‖

=⇒ ‖Φ(t∗, t0)‖ ≤M (4.14)

showing one direction.
Now suppose that there is M > 0 such that supt0 supt≥t0 ‖Φ(t, t0)‖ < M . For any t0 and
x(t0) = x0 we have

‖x(t)‖ = ‖Φ(t, t0)x0‖ ≤ ‖Φ(t, t0)‖‖x0‖ ≤M‖x0‖, t ≥ t0 (4.15)

which shows uniform stability.

3. Assume that limt→∞ ‖Φ(t, t0)‖ = 0 holds. Due to continuity we have ‖Φ(t, t0)‖ < M(t0)
showing stability using 1. Moreover we have

‖x(t)‖ = ‖Φ(t, t0)x0‖ ≤ ‖Φ(t, t0)‖‖x0‖
t→∞−→ 0 =⇒ lim

t→∞
‖x(t)‖ = 0, t ≥ t0. (4.16)

showing asymptotic stability.
Now assume x = 0 is an asymptotic stable equilibrium point of (4.7). Then there exists
a x0 with ‖x0‖ = 1 such that ‖Φ(t, t0)x0‖ = ‖Φ(t, t0)‖. Choose a basis {z(i)}1≤i≤n of
Rn such that ‖z(i)‖ < δ(t0) ∀i ∈ {1, . . . , n}. Then there are ξ1, . . . ξn ∈ Rn such that∑n

i=1 ξiz
(i) = x0. It follows that

‖Φ(t, t0)‖ = ‖Φ(t, t0)x0‖

= ‖Φ(t, t0)

(
n∑
i=1

ξiz
(i)

)
‖

= ‖
n∑
i=1

ξiΦ(t, t0)z
(i)‖

≤ n ·max{|ξ1|, . . . , |ξn|} · max
1≤i≤n

{‖Φ(t, t0)z
(i)‖}

Since limt→∞max1≤i≤n{‖Φ(t, t0)z
(i)‖} = 0 due to asymptotic stability, we have ‖Φ(t, t0)‖ =

0 concluding the proof.

The next theorem shows that for a linear time-varying system uniform asymptotic stability and
exponential stability are the same:
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Theorem 4.6. Exponential and uniform asymptotic stability
The point x = 0 is a uniform exponentially stable equilibrium point of (4.7) if and only if x = 0
is an exponentially stable equilibrium point of (4.7).

Proof. The equilibrium point 0 of (4.7) is uniformly asymptotically stable if it is uniformly stable
and ‖Φ(t, t0)‖ =⇒ 0 as t→∞, uniformly in t0. The direction

exponential stability =⇒ uniform asymptotic stability

follows from the definition of the stability notions. To show the other direction we start with
the assumption of uniform asymptotic stability. I.e. ∀t1 there exist m0, T such that

Φ(t, t0) ≤ m0, t ≥ t1. (4.17)

Uniform convergence of Φ(t, t0) to 0 implies that

‖Φ(t, t1)‖ ≤
1

2
, ∀t ≥ t1 + T. (4.18)

Given any t, t0 choose k such that

t0 + kT ≤ t ≤ t0 + (k + 1)T. (4.19)

We have

‖Φ(t, t0)‖ = ‖Φ(t, t0 + kT )
k∏
j=1

Φ(t0 + (k + 1− j)T, t0 + j)‖

≤ ‖Φ(t, t0 + kT )‖
k∏
j=1

‖Φ(t0 + (k + 1− j)T, t0 + j)‖

≤ m02
−k ≤ 2m02

−(t−t0)
T ≤ 2m0e

− log 2
T
(t−t0)

showing that x = 0 is an exponentially stable equilibrium point of (4.7).

To apply the previous two theorems (4.5) and (4.6) an estimation for the norm of the state
transition matrix is needed. If upper and lower bounds for the (time-varying) eigenvalues of
the symmetric part of A(t) can be found, these can be used to estimate the norm of the state
transition matrix. We sketch this method without details following [Conti, 1976].
Let S denote the symmetric part of A(t) defined by

S(t) :=
1

2
(A(t) +AT (t)). (4.20)

For any solution x(t) of (4.7) we have

1

2

d

dt
xT (t)x(t) = xT (t)S(t)x(t). (4.21)

For s, t ≥ t0 we obtain

xT (t)x(t)− xT (s)x(s) = 2

∫ t

s
xT (τ)S(τ)x(τ)dτ (4.22)
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such that

ΦT (t, s)Φ(t, s)− I = 2

∫ t

s
ΦT (τ, s)S(τ)Φ(τ, s)dτ. (4.23)

Since S(t) is a symmetric matrix with entries in R for every t ≥ t0 we obtain a minimum
eigenvalue λ(t) ∈ R and a maximal eigenvalue µ(t) ∈ R for every t ∈ R, t0 ≤ t such that for
every vector v we have

λ(t)vT v ≤ vTS(t)v ≤ µ(t)vT v, t ≥ t0. (4.24)

From (4.21) and (4.24) we obtain the Wintner-Wasžewski inequality

e(2
∫ t
s λ(τ)dτ)xT (s)x(s) ≤ xT (t)x(t) ≤ e(2

∫ t
s µ(τ)dτ)xT (s)x(s), t0 ≤ s ≤ t (4.25)

where x(t) is a solution of (4.7). For an arbitrary vector v ∈ Rn we therefore have

e(2
∫ t
s λ(τ)dτ)vT v ≤ vTΦT (t, s)Φ(t, s)v ≤ e(2

∫ t
s µ(τ)dτ)vT v, t0 ≤ s ≤ t (4.26)

which is equivalent to

e−(2
∫ t
s µ(τ)dτ)vT v ≤ vTΦT (s, t)Φ(s, t)v ≤ e−(2

∫ t
s λ(τ)dτ)vT v, t0 ≤ s ≤ t (4.27)

Since ‖S(t)‖ ≤ ‖A(t)‖ which follows from the triangle inequality and the definition of S we
obtain for v ∈ Rn

e(−2
∫ t
s ‖A(τ)‖dτ)vT v ≤ e(−2

∫ t
s ‖S(τ)‖dτ)vT v (4.28)

≤ vTΦT (t, s)Φ(t, s)v · vTΦT (s, t)Φ(s, t)v

≤ e(2
∫ t
s ‖S(τ)‖dτ)vT v

≤ e(2
∫ t
s ‖A(τ)‖dτ)vT v, t0 ≤ s ≤ t.

For the state transition matrix we have now the inequality

e(
∫ t
s λ(τ)dτ) ≤ ‖Φ(t, s)‖ ≤ e(

∫ t
s µ(τ)dτ), t0 ≤ s ≤ t. (4.29)

And if there are λ, µ <∞ such that

λ ≤ λ(t) ≤ µ(t) ≤ µ, t0 ≤ t (4.30)

this reduces to
eλ(t−s) ≤ ‖Φ(t, s)‖ ≤ eµ(t−s), t0 ≤ s ≤ t. (4.31)

For continuity reasons such upper and lower bounds exist for every finite interval [s, t] with
t0 ≤ s ≤ t.

The following theorem contains a method to show stability of an equilibrium point without
making use of the fundamental solution. It is often called Lyapunov’s second method. We need
the following definition:

Definition 4.7. A symmetric matrix C(t) ∈ Rn×n is positive definite, denoted as C(t) > 0, if
for each t ∈ R, xTC(t)x > 0 ∀x ∈ Rn \ {0}.
A symmetric matrix C(t) = CT (t) ∈ Rn×n is uniformly positive definite, if C(t)−αI is positive
definite for some constant α > 0 (denoted as C(t)− aI > 0 or simply C(t) > aI).
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Remark: Constant positive definite matrices are always uniformly positive definite which we will
show in lemma (4.4).

Theorem 4.8.
Assume that A(t), t ≥ t0 is bounded. If for some α > 0 there is a Q(t) ≥ αI ∀t ≥ t0 such that

Rn×n 3 P (t) :=

∫ ∞
t

ΦT (τ, t)Q(τ)Φ(τ, t)dτ, t ≥ t0 (4.32)

is bounded, then the origin is an uniformly asymptotically stable equilibrium point of (4.7).

Proof. We can show that P (t) is uniformly positive definite for t ≥ t0, i.e. there exists β > 0
such that

βxTx ≤ xTP (t)x, ∀x ∈ Rn, t ≥ t0. (4.33)

To proof this fact we need the following inequality, where k is the bound for ‖A(t)‖:

e−k(τ−t)‖x‖ ≤ ‖Φ(τ, t)x‖. (4.34)

Inequality (4.33) can be obtained as follows:

xTP (t)x =

∫ ∞
t

xTΦT (τ, t)Q(τ)Φ(τ, t)x dτ (4.35)

≥ α
∫ ∞
t
‖Φ(τ, t)‖2dτ (4.36)

≥ α
∫ ∞
t

xTxe−2k(τ−t)dτ (4.37)

=
α

2k︸︷︷︸
=:β

xTx. (4.38)

Since P (t) is bounded by assumption, we have for some γ > 0

β‖x‖2 ≤ xTP (t)x ≤ γ‖x‖2. (4.39)

Defining v(x(t), t) := xT (t)P (t)x(t) we have v(0, t) = 0 and with (4.39) that v(x(t), t) is a
decreasing positive definite function. Moreover we have

v̇(x(t), t) = xT (t)(Ṗ (t) +AT (t)P (t) + P (t)A(t))x(t)

= −xT (t)Q(t)x(t)

≤ −α‖x‖2

along solutions x(t) of system (4.7). A function v(x(t), t) with these properties is called Lyapunov
function for system (4.7). Together we have

v̇(x(t), t)

v(x(t), t)
≤ −2k

v(x(t), t) ≤ v(x(t0), t0)e
−2k(t−t0) t0 ≤ t

β‖x‖2 ≤ v(x(t0), t0)e
−2k(t−t0)

‖x‖ ≤ v(x(t0), t0)
1
2β−

1
2 e−k(t−t0)

showing exponential stability of the origin and with theorem (4.6) we have uniform asymptotic
stability of the origin concluding the proof.
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This theorem gives a sufficient condition for uniform asymptotic stability by means of a certain
class of Lyapunov functions. The Lyapunov functions used in this theorem are of very special
nature and it should be mentioned that we could formulate a more general theorem by enlarging
the set of Lyapunov function candidates. If one could find any (differentiable) function such that
this function is a Lyapunov function with respect to (4.7) one can show stability of the origin
which follows directly from the proof. We will cite such a result for nonlinear systems (Zubov
1964).
The advantage of using Lyapunov functions is that one does not need to know the solution of the
underlying system. The disadvantage of the method of using Lyapunov functions is, that finding
a suitable Lyapunov function is often a very difficult task. For linear time-varying systems the
theorem above gives a ”constructive condition” in the sense that it describes a possibility to
construct such a Lyapunov function. It should be mentioned that the state transition matrix –
which is needed in this construction – can in general not be obtained in an explicit form. One
has to use approximations, for example with Chebyshev polynomials [Sinha and Chou, 1976].

4.1.2 Stability of linear autonomous systems

In this section we regard linear autonomous systems of the form

ẋ(t) = Ax(t), x(t0) = x0, (4.40)

where A ∈ Rn×n is a constant matrix. Linear autonomous systems of the form (4.40) are special
cases of linear time-varying systems (4.7). Therefore all stability results of the latter section hold
for systems of the form (4.40) as well. In addition we will give some stability results using the
eigenvalues of the matrix A. From the stability results of the time-varying case, we will restate
the Lyapunov result (4.8) for the autonomous case. The results presented in this section are
mainly taken from [Grüne and Junge, 2009] and [Leigh, 1980].

Lemma 4.2. Equivalence of stability and uniform stability
The equilibrium point x = 0 is a stable equilibrium point of (4.40) if and only if x = 0 is an
uniformly stable equilibrium point of (4.40).

Proof. The equilibrium point x = 0 is an stable equilibrium point of (4.40) if and only if

sup
t≥t0
‖Φ(t, t0)‖ <∞. (4.41)

Since Φ(t, t0) = eA(t−t0) this condition holds if and only if

sup
t0

sup
t≥t0
‖Φ(t, t0)‖ <∞, (4.42)

which is the criterion for uniform stability.

Lemma 4.3. Invariance with respect to coordinate transformations
Let T ∈ Rn×n be an invertible constant matrix. Use the coordinate transformation y = T−1x
and define Ã := T−1AT . The transformed system then reads:

ẏ(t) = Ãy(t), y(t0) = T−1x0. (4.43)

The equilibrium point x = 0 of system (4.40) has the same stability properties as the equilibrium
point y = 0 of the transformed system.



4.1. STABILITY NOTIONS 55

Proof. We start with the stability properties of the equilibrium point y = 0 of system (4.43) and
show that then the equilibrium point x = 0 of system (4.40) has the same stability properties.
The solution of system (4.40) is given by x(t) = ΦA(t, t0)x0 = eA(t−t0)x0, the solution of system
(4.43) is given by y(t) = ΦÃ(t, t0)y0 = eT

−1AT (t−t0)y0 = T−1eA(t−t0)Ty0. From Tx(t) = y(t) we
have

ΦA(t, t0)x0 = TΦÃ(t, t0)(T
−1x0). (4.44)

Let y = 0 be an stable equilibrium point of (4.43). Then for ε̃ = ε/‖T‖ > 0 there is a δ̃ > 0 such
that ‖y0‖ ≤ δ̃ implies

‖ΦÃ(t, t0)y0‖ ≤ ε̃ ∀t ≥ t0. (4.45)

Now ‖x0‖ ≤ δ implies

‖ΦA(t, t0)x0‖
(4.44)

= ‖TΦÃ(t, t0)(T
−1x0)‖ ≤ ‖T‖‖ΦÃ(t, t0)y0‖

(4.45)
≤ ‖T‖ ε

‖T‖
= ε (4.46)

showing the stability of the equilibrium point x = 0 of system (4.40).
Interchanging T with T−1 in the above argumentation shows that stability of the equilibrium
point x = 0 of system (4.40) implies stability of the equilibrium point y = 0 of system (4.43).
The same technique shows that x = 0 is an asymptotically stable/unstable equilibrium point
of system (4.40) if and only if y = 0 is an asymptotically stable/unstable equilibrium point of
(4.43). The ”duality” for exponential stability follows from the equivalence theorem (4.6) for
uniform asymptotic stability and exponential stability.

Theorem 4.9. (cf. e.g. [Grüne and Junge, 2009][cf. Th. 8.6]1 Eigenvalue criteria
Let λ1, . . . , λn ∈ C denote the eigenvalues of the matrix A of system (4.40), where al ∈ R denotes
the real part of the eigenvalue λl and bl ∈ R denotes the imaginary part of the eigenvalue λl.
We then have: The equilibrium point x = 0 of system (4.40) is

1. stable if and only if all eigenvalues have non-positive real part and those eigenvalues, which
have real part zero are semi-simple, i.e. given a Jordan normal representation of A, the
Jordan blocks belonging to these eigenvalues have dimension 1.

2. unstable if and only if there is an eigenvalue λr, 1 ≤ r ≤ n such that <(λr) > 0 or
<(λr) = 0 and given a Jordan representation of A, the corresponding Jordan block Jr has
dimension at least 2× 2.

3. asymptotically stable if and only if all eigenvalues have negative real part.

Proof. Due to lemma (4.3) if suffices to show the theorem for a system, where the matrix A has
Jordan normal form. We regard the system

ẋ(t) = Jx(t), x(t0) = x0, (4.47)

where J is the a Jordan normal representation of the matrix A. (For convenience, we denoted
the state variable of system (4.47) with x(t) although it is not the same as the state variable
x(t) of system (4.40), as we have to change coordinates to obtain system (4.47)). To simplify the
proof we make use of the 1-norm, denoted by ‖ · ‖ and defined by ‖x‖1 =

∑n
i=1 |xi| for x ∈ Rn.

1in [Grüne and Junge, 2009] the proof is incomplete: not all of the stated implications are shown
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Without loss of generality we can assume t0 = 0. The fundamental solution Φ(t, t0 = 0) is then
given by eJt and we have

‖eJt‖1 =
m∑
k=1

‖eJktx(k)‖1, (4.48)

where x(k) ∈ Rn are those vectors, which are built by those components of the vector x, which
belong to the (generalized) eigenspace of the corresponding Jordan block Jk - the remaining
entries are set equal to zero. Therefore it suffices to proof the stated stability conclusions for
every Jordan block.
Eigenvalue criteria of 1. =⇒ stability / Eigenvalue criteria of 3. =⇒ asymptotic stability
Each Jordan block Jk is a square matrix of dimension d ≤ n and can be decomposed as

Jk = λk · Ik +Nk, (4.49)

where Ik is the unit matrix in Rd×d and Nk ∈ Rd×d is the nilpotent matrix

Nk =


0 1

. . .
. . .
. . . 1

0

 . (4.50)

Further we have Nd
k = 0 and λkIkNk = NkλIk, which are well-known facts from linear algebra

(or can be verified by direct computation) as well as the representation

eJkt = eλkteNkt = eλkt
(
Ik + tNk + . . .+

td−1

(d− 1)!
Nd−1
k

)
. (4.51)

Using |eλkt| = |e(ak+ibk)t| = eakt and matrix norm induced by the 1-norm we obtain

‖eJkt‖1 ≤ |eλkt|‖eNkt‖1 ≤ eakt
(

1 + t‖Nk‖1 + . . .+
td−1

(d− 1)!
‖Nk‖d−11

)
. (4.52)

Case-by-case analysis – ak = <(λk) = 0:
If <(λk) = 0, then by assumption d = 1 and we have

‖eJkt‖1 = |eakt| = e0 = 1 (4.53)

which establishes stability due to

‖Φ(t, 0)x0‖1 = ‖eJktx0‖1 ≤ ‖eJkt‖1‖x0‖1 = ‖x0‖1. (4.54)

ak = <(λk) < 0:

For any γ > 0 and any p ∈ N we have limt→∞ e−γttp = 0 such that for some c > 0 we have

e−γt
(

1 + t‖Nk‖1 + . . .+
td−1

(d− 1)!
‖Nk‖d−11

)
≤ c, ∀t ≥ 0. (4.55)

Then for every σ ∈]0,−a[ we can choose γ = −a− σ > 0 to obtain

‖eJkt‖1 ≤ e−σte−γt
(

1 + t‖Nk‖1 + . . .+
td−1

(d− 1)!
‖Nk‖d−11

)
≤ ce−σt, (4.56)
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resulting in

‖Φ(t, 0)x0‖1 = ‖eJktx0‖1 ≤ ‖eJkt‖1‖x0‖1 = ce−σt‖x0‖1 (4.57)

showing exponential stability which implies (uniform) asymptotic stability and therefore stabil-
ity.
We now show, that the eigenvalue criteria of 2. lead to the instability of the equilibrium point
x = 0 of system (4.40).
For some λk we have ak = <(λk) > 0 or ak = <(λk) = 0 ∧ d ≥ 2.
Case-by-case analysis – ak = <(λk) = 0:

Then for e1 ∈ Rd and every ε > 0 we have

‖eJkt(εe1)‖1 = |eλkt|ε = eaktε (4.58)

which tends to infinity as t→∞. Therefore we can find arbitrary small initial values such that
the solution is unbounded in time which proofs instability in the case where ak ≥ 0.
ak = <(λk) = 0 ∧ d ≥ 2:

For e2 ∈ Rd we have due to (4.49)

eλkte2 = eλkt(te1 + e2) (4.59)

and therefore for every ε > 0

‖eJkt(εe2)‖1 = |eλkt|ε(1 + t) = ε(1 + t) (4.60)

which tends to infinity as t → ∞ which shows instability of the equilibrium point x = 0 of
(4.40).
Next we show that if the eigenvalue criteria of 3. do not hold, then x = 0 is not an asymptotically
stable equilibrium point of (4.40).
If the eigenvalue criteria of 3. do not hold, there is at least one eigenvalue, say λr such that
<(λr) ≥ 0. If <(λr) > 0 or <(λr) = 0 and the corresponding Jordan block has dimension at
least 2 then we have instability due to 2. If <(λr) = 0 and the dimension of the corresponding
Jordan block is 1 we have for arbitrary ε > 0

‖Φk(t, t0)ε‖1 = |eλrt|ε = ε (4.61)

which does not converge to zero when t → ∞ such that x = 0 fails to be an asymptotic stable
equilibrium point of system (4.40) since at least the component corresponding to the Jordan
block Jr does not meet the necessary condition of converging to zero as t→∞ for suitably small
initial values.
The remaining directions now follow from the already proofed implications.

There is no such generalization of this theorem for time-varying systems. The following example
is due to Markus (cf. e.g. [Leigh, 1980][p. 69]). It is a two-dimensional example of a time-varying
linear system having a complex pair of eigenvalues with negative real part. Nevertheless the
system admits unbounded solutions:

ẋ(t) =

(
a cos2(t)− 1 1− a sin(t) cos(t)

−1− a sin(t) cos(t) a sin2(t)− 1

)
︸ ︷︷ ︸

A(t)

x(t), t ≥ 0 (4.62)
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where x(t) ∈ R2. The fundamental matrix is given by

Φ(t, 0) =

(
e(a−1)t cos(t) e−t sin(t)

−e(a−1)t sin(t) e−t cos(t)

)
(4.63)

and for 1 < a < 2 the solution

x(t) = Φ(t, 0)x0, x0 6= 0 (4.64)

is clearly unstable. However the eigenvalues of A(t) are independent of t and are given by

λ1/2 =
a− 2

2
± i
√

4− a2
2

(4.65)

where <(λ1) = <(λ2) = a−2
2 < 0 due to 1 < a < 2 completing the ”counter-example”.

Lemma 4.4. (cf. e.g. [Grüne and Junge, 2009][Ch. 9]
Let P ∈ Rn×n be a positive definite matrix. Then there are constants α, β ∈ R, 0 < α ≤ β such
that

α‖x‖2 ≤ xTPx ≤ β‖x‖2, ∀x ∈ Rn. (4.66)

Proof. For y = x
‖x‖ ∈ Rn we have xTPx = ‖x‖2yTPy. Since F (y) := yTPy is a continuous

function of {y | ∃ x : y = x
‖x‖} is compact, F attains its maximum Fmax =: β and minimum

Fmin := α.

The following theorem gives a stability criterion for linear autonomous systems via Lyapunov
functions. This result can found in [Grüne and Junge, 2009], [Sastry, 1999] or in any other
textbook about linear control theory:

Theorem 4.10. Consider the linear autonomous system

ẋ(t) = Ax(t), x(t0) = x0. (4.67)

Suppose there exists a matrix P ∈ Rn×n and a constant α > 0 such that

xT (t)(ATP + PA)x(t) ≤ −α‖x(t)‖2 (4.68)

for all x ∈ Rn. Then x = 0 is an asymptotically stable equilibrium point of system (4.40) if and
only if P is positive definite.

Proof. We define

V (x(t)) = xT (t)Px(t) (4.69)

and obtain

V̇ (x(t)) = xT (t)(ATP + PA)x(t) ≤ −α‖x(t)‖2. (4.70)

Assume now, that P is positive definite. Due to lemma (4.4) there is a β > 0 such that

β

α
‖x‖2 ≤ xTPx, ∀x ∈ Rn. (4.71)



4.1. STABILITY NOTIONS 59

Since now V (x) > 0, V̇ (x) ≤ 0 for all x 6= 0 and V (0) = 0 we have that V (x(t)) is a Lyapunov-
function and exponential stability follows as in the proof of (4.8):

V̇ (x(t))

V (x(t))
≤ −β

v(x(t)) ≤ v(x0)e
−β(t−t0), t0 ≤ t

β

α
‖x(t)‖2 ≤ v(x0)e

−β(t−t0)‖x(t)‖ ≤ v(x0)
1/2α1/2β−1/2e−

1
2
β(t−t0)

where exponential stability implies asymptotic stability.
To show necessity of the positive definiteness of P let us assume, P 6> 0 but (4.68) still holds.
Then there is a x0 ∈ Rn, with ‖x0‖ 6= 0 and V (x0) ≤ 0. Since Φ(t, t0)x0 = eA(t−t0)x0 6= 0 for all
t ≥ t0 we have due to (4.68) that V (Φ(t, t0)x0) is strictly monotonically decreasing. Therefore
for some δ > 0 we have

‖Φ(t, t0)x0‖2‖P‖ ≥ ‖V (Φ(t, t0)x0)‖ ≥ δ =⇒ ‖Φ(t, t0)x0‖ ≥
δ

‖P‖
> 0 (4.72)

for all t > T where T denotes the time where we have V (Φ(T, t0)x0) = −δ. (Due to (4.68) the
case ‖P‖ = 0 cannot occur by assumption). The last inequality shows, that if P is not positive
definite, x = 0 can not be an asymptotic stable equilibrium point of (4.40).

4.1.3 Stability for nonlinear systems

Lyapunov showed in his doctor thesis 1892 that the existence of a suitable Lyapunov function
for the equilibrium point x = 0 is sufficient to show stability. Zubov could show 1962 that if the
zero-state is locally stable then - at least locally - there is a Lyapunov function for the underlying
system (cf. e.g. [Poznjak, 2008]). The following theorem therefore is a necessary and sufficient
condition for stability in the sense of Lyapunov.

Theorem 4.11. (cf. e.g. [Poznjak, 2008][Th. 20.1.]) Local stability by Lyapunov’s criterion
(Zubov 1964)
The equilibrium x = 0 of (4.1) is locally stable if and only if there exists a function V (x, t),
called Lyapunov function, satisfying the following conditions:

1. V (x, t) is defined for ‖x‖ ≤ h and t ≥ t0, where h is some small positive number.

2. V (0, t) = 0 for all t ≥ t0 and is continuous in x for all t ≥ t0 in the point x = 0.

3. V (x, t) is positive definite.

4. V (x(t), t), where x(t) is a solution of (4.1), does not increase in t for t ≥ t0 where x0
satisfies ‖x0‖ ≤ h.

Proof. Sufficiency: Suppose there exists a function V (x, t) such that conditions 1.−4. of theorem
(4.11) hold. Due to positive definiteness (condition 3.) there is a function W (x) such that

V (x, t) ≥W (x), ∀t ≥ t0 (4.73)

W (0) = 0,W (x) > 0 ∀ x : ‖x‖ 6= 0. (4.74)

For 0 < ε < h consider the compact set of all states x satisfying ‖x‖ = ε. Then

inf
{x:‖x‖=ε}

W (x) =: λ > 0. (4.75)
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There is a number δ = δ(t0, ε) such that ‖x‖ < δ implies V (x, t) < λ (conditions 1. and 2.). Due
to property 4. we have for ‖x0‖ < δ we have

V (x(t), t) ≤ V (x0, t0) < λ, for t ≥ t0, (4.76)

and therefore ‖x(t)‖ < ε for all solutions where the corresponding initial state x0 satisfies
‖x0‖ < δ which shows stability of the equilibrium point x = 0.
Necessity: Suppose the state x = 0 is a stable equilibrium point of system (4.1). Let x(t) be the
solution of (4.1) where the initial state x0 satisfies ‖x0‖ ≤ h. Define

V (x, t) := sup
s≥t
‖x(s)‖, (4.77)

where x(s) is the solution corresponding to the initial state x(t)
Since x = 0 is a stable equilibrium point of (4.1) we have V (0, t) = 0 for all t ≥ t0. Stability
of the zero-state together with continuity of the solution x(·) and continuous dependence on its
initial data guarantees that conditions 1. and 2. are satisfied by V (x, t).
For x0 with ‖x0‖ 6= 0 we have

V (x0, t0) = sup
t≥t0
‖x(t)‖ ≥ ‖x0‖ =: W (x0) > 0 (4.78)

and therefore V (x, t) is positive definite satisfying condition 3.
Condition 4. easily follows from the definition of V . for s ≥ t(≥ t0) we have

V (x(t), t) = sup
t̃≥t
‖x(t̃)‖ ≥ sup

t̃≥s
‖x(t̃)‖ = V (x(s), s) (4.79)

showing that V (x(t), t) is nonincreasing in t ≥ t0 along solutions of (4.1).

4.2 Stabilizing control laws

David Kleinmann [Kleinmann, 1970] used the Gramian introduced in (3.14) to stabilize linear
constant systems. We assume the same assumptions as for (3.26), where we introduced linear
constant systems.

4.2.1 Linear constant systems I (Kleinmann)

Theorem 4.12. If a linear constant system of the form (3.26)

ẋ(t) = Ax(t) +Bu(t)

is controllable, the control law

u(t) = −BT

(∫ T

0
e−AτBBT e−A

T τdτ

)−1
x(t), T > 0 (4.80)

stabilizes the system around the origin of the state space.

Proof. The zero state is an equilibrium point of the uncontrolled system.
We define

S(0, T ) :=

∫ T

0
e−AτBBT e−A

T τdτ (4.81)
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which is very similar to the matrix W (0, T ) defined in formula (3.14) of theorem (3.9). The
relationship between both is given by

S(0, T ) = Φ(T, 0)W (0, T )ΦT (T, 0) (4.82)

Since we assumed controllability of the nonautonomous linear system we have invertibility of
W (0, T ) for every T > 0 due to theorems (3.9) and (3.13). With relationship (4.82) we have that
S(0, T ) is also invertible. We will proof now that

v(t, x(t)) := xT (t)S(0, T )−1x(t) (4.83)

is a suitable Lyapunov function showing that the origin of the state space is a stable equilibrium
point of the controlled system in the sense of Lyapunov. Since S(0, T ) is a constant matrix, we
will use the abbreviation S instead of S(0, T ).
With

ẋ(t) = Ax(t) + (−BBTS−1)x(t) = (A−BBTS−1)x(t) (4.84)

we have

v̇(t, x(t)) = xT (t)(AT − S−1BBT )S−1x(t) + xT (t)S−1(A−BBTS−1)x(t) (4.85)

= xT (t)
[
(AT − S−1BBT )S−1 + S−1(A−BBTS−1)

]
x(t). (4.86)

So we have to show that
[
(AT − S−1BBT )S−1 + S−1(A−BBTS−1)

]
is negative definite which

– since S is a regular symmetric matrix – is equivalent to showing that

S
[
(AT − S−1BBT )S−1 + S−1(A−BBTS−1)

]
S < 0 (4.87)

(confer for example [Wigner, 1963]). The left hand side of (4.87) then reduces to

S(AT − S−1BBT )S−1S + SS−1(A−BBTS−1)S

= SAT −BBT +AS −BBT

= AS + SAT − 2BBT = −e−ATBBT e−A
TT −BBT (4.88)

which is negative definite.
For the last step (4.88) we used

AS + SAT = −e−ATBBT e−A
TT +BBT (4.89)

which holds because both sides of this equation are a representation of

−
∫ T

0

d

dτ

(
e−AτBBT e−A

T τ
)
dτ. (4.90)

If we use the abbreviation Ā for the controlled system we have due to (4.84) Ā = (A−BBTS−1)
and because

− e−ATBBT e−A
TT −BBT = ĀS + SĀT (4.91)

we have shown that the origin of the state space is a stable equilibrium point of the controlled
system in the sense of Lyapunov.

Remark: Kleinmann’s method guarantees that the controlled system is exponential stable. It
does not tell something about the rate of convergence. Before giving the generalization of Klein-
mann’s theorem to linear time-varying systems by Victor Cheng we shortly sketch a method to
exponentially stabilize a controllable constant linear system where we can give a lower bound
for the rate of convergence.
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4.2.2 Linear constant systems II (Bass)

This method was presented in [Russell, 1979] where it is stated that it was first introduced by
R. W. Bass in some lecture notes of the NASA Langley Research Center in August 1961.
In contrast to the method of Kleinmann we need not compute matrix exponentials or integrals.
The problem of stabilizing a linear constant system is reduced to some linear equations coming
from a Lyapunov equation.

Theorem 4.13. The linear constant control system

ẋ(t) = Ax(t) +Bu(t) (4.92)

is controllable if and only if the linear constant control system

ẋ(t) = (A− λI)x(t) +Bu(t) (4.93)

is controllable, where λ ∈ R is arbitrary.

Proof. Follows from the Kalman controllability criterion (3.11) and

[B|(A− λI)B|(A− λI)2B| . . . |(A− λ)n−1B] =

= [B|AB| . . . |An−1B] ·


I −λI λ2I . . . (−1)n−1λn−1I
0 I −2λI . . . (−1)n−2(n− 1)λn−2I

0 0 I . . . (−1)n−3
(
n−1
n−3
)
λn−3I

...
...

...
. . .

...
0 0 0 . . . I


Therefore [B|(A−λI)B|(A−λI)2B| . . . |(A−λ)n−1B] has full rank if and only if [B|AB| . . . |An−1B]
has full rank.

R. W. Bass proposed the following method. Choose λ > 0 large enough such that −A − λI is
stable in the sense of (4.9). This can be accomplished by choosing for example

λ > max
i

n∑
j=1

|aij | or λ > max
j

n∑
i=1

|aij |. (4.94)

Regard
(A+ λI)P + P (A+ λI)T = BBT (4.95)

which is a Lyapunov equation and has a unique positive definite symmetric solution P . Equation
(4.95) is equivalent to

(A+ λI −BBTP−1)P + P (A+ λI −BBTP−1)T +BBT = 0. (4.96)

Due to theorem (4.10) the matrix (A+ λI −BBTP−1) is stable in the sense of (4.9) and since
λ > 0 we conclude that (A− BBTP−1) is stable where its eigenvalues lie in the left half plane
and have distance at least λ from the imaginary axis such that we have exponential stability at
a decay rate at least −λ.
We will apply the method of Bass for the linearized pendulum in section (5.1.2).
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Remark: If we combine Kleinmann’s method and the idea of Bass to stabilize the α-shifted
system we obtain an additional factor in the formula for S(0, T ):

Sα(0, T ) =

∫ T

0
e−(A+αI)τBBT e−(A+αI)

T τdτ

=

∫ T

0
e−αIτe−AτBBT e−A

T τe−αIτdτ

=

∫ T

0
e−2ατe−AτBBT e−A

T τdτ. (4.97)

This allows us to preadjust the rate of decay of the controlled system. We will see that the gen-
eralization of Kleinmann’s method for linear time-varying systems by Victor Cheng uses such a
”factor for convergence”.

4.2.3 Stabilizing under a time-varying nonlinearity - a sufficient criterion

Given a nonlinear system, consisting of a constant linear system with a time-varying nonlinearity
x0(t), which is assumed to be at least continuously differentiable, we will give a condition under
which the system can be transformed into a linear constant system and therefore can be stabilized
with the methods presented above:

Theorem 4.14. Regard the nonlinear system

ẋ(t) = Ax(t) +Bu(t) + x0(t). (4.98)

Suppose there exists a G ∈ GL(n) such that

d

dt
x0(t) = G−1(AG− I)x0(t), (4.99)

then the system (4.98) can be stabilized along the trajectory −Gx0(t).

Proof. After the variable transformation

y(t) := x(t) +Gx0(t) (4.100)

system (4.98) becomes

ẏ(t) = Ax(t) +Bu(t) + x0(t) +Gẋ0(t)

= Ay(t) +Bu(t)−AGx0(t) + x0(t) +G
d

dt
x0(t). (4.101)

Now if condition (4.99) holds we simply obtain a linear constant system

ẏ(t) = Ay(t) +Bu(t) (4.102)

which can be stabilized with a linear constant feedback.

Remarks:

• If A is invertible we can choose G = A−1 to stabilize around a given point.

• Condition (4.99) is very restrictive in the sense that the ”nonlinearity” of (4.98) is the
solution of a linear system of the form ẋ(t) = G−1(AG− I)x(t) for some G ∈ GL(n).
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The following theorem by Victor Cheng is a generalization of Kleinmann’s method for linear
time-varying systems.

4.2.4 Linear time-varying systems (Cheng)

Consider the linear time-varying system

ẋ(t) = A(t)x(t) +B(t)u(t) t ≥ t0 (4.103)

where we assume that A(t) : R→ Rn×n and B(t) : R→ Rn×n are piecewise continuous.
We define

Hα(t0, t) :=

∫ t

t0

e4α(t0−τ)Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ)dτ, α ≥ 0 (4.104)

which for α = 0 is the time-varying generalization of (4.81).

Theorem 4.15. [Cheng, 1979, Th. C1] If there is a δ > 0 and hM ≥ hm > 0 such that

0 < hmI ≤ H0(t, t+ δ) ≤ hMI ∀t ≥ t0 (4.105)

then for any α > 0 and γ : R+ → [12 ,∞[ which is piecewise continuous, the linear time-varying
control law

u(t) := −γ(t)BT (t)Hα(t, t+ δ)−1x(t) ∀t ∈ R+ (4.106)

makes the zero-solution of the controlled system

ẋ(t) =
(
A(t)− γ(t)B(t)BT (t)Hα(t, t+ δ)−1

)
x(t) (4.107)

uniformly exponentially stable at a rate greater than α.

Proof. Instead of showing stability of the origin for the controlled system (4.107) we show
stability for the α-shifted controlled system:

ẋ(t) =
(
A(t) + αI − γ(t)B(t)BT (t)Hα(t, t+ δ)−1

)
x(t) (4.108)

as stability of the former is a direct consequence of stability of the latter (which for linear
constant systems was introduced as the method of Bass). We will show that

v(t, x(t)) := x(t)THα(t, t+ δ)−1x(t) (4.109)

is a suitable Lyapunov function. Because Hα(t, t + δ) is symmetric and positive definite the
inverse Hα(t, t + δ)−1 is also positive definite, therefore we have v(t, x(t)) ≥ 0. For the zero-
solution we have v(t, 0) = 0. It remains to show that the time-derivative of v(t, x(t)) is negative
whenever x(t) is not the zero-solution. We will use the following identities

d

dt
Hα(t, t+ δ)−1 = −Hα(t, t+ δ)−1

d

dt
Hα(t, t+ δ)Hα(t, t+ δ)−1 (4.110)

(Hα(t, t+ δ)−1)T = Hα(t, t+ δ)−1 (4.111)

d

dt
Φ(t, τ) = A(t)Φ(t, τ) (4.112)

d

dt
Hα(t, t+ δ) = 4αHα(t, t+ δ) +A(t)Hα(t, t+ δ) +Hα(t, t+ δ)AT (t)+

+ e−4αδΦ(t, t+ δ)B(t+ δ)BT (t+ δ)ΦT (t, t+ δ)−B(t)BT (t) (4.113)
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to compute the time-derivative of v(t, x(t)):

d

dt
v(t, x(t)) = xT (t)

[
AT (t)H−1α (t, t+ δ)−HT (t, t+ δ)−1B(t)BT (t)γ(t)H−1α (t, t+ δ)+

+αH−1α (t, t+ δ)−H−1α (t, t+ δ)
d

dt
H(t, t+ δ)H−1α (t, t+ δ) +H−1α (t, t+ δ)A(t)−

−H−1α (t, t+ δ)γ(t)B(t)BT (t)H−1α (t, t+ δ) + αH−1α (t, t+ δ)
]
x(t)

= −xT (t)H−1α (t, t+ δ)
[
−Hα(t, t+ δ)AT (t) + γ(T )B(t)BT (t)− αHα(t, t+ δ)+

+4αHα(t, t+ δ) +A(t)Hα(t, t+ δ) +Hα(t, t+ δ)AT (t) + e−4αδΦ(t, t+ δ)B(t+ δ)·
· BT (t+ δ)Φ(t, t+ δ)−B(t)BT (t)−A(t)Hα(t, t+ δ) + γ(t)B(t)BT (t)− αHα(t, t+ δ)

]
·

·H−1α (t, t+ δ)x(t)

= −xT (t)H−1α (t, t+ δ)

(2γ − 1)B(t)BT (t)︸ ︷︷ ︸
I

+

+ e−4αδΦ(t, t+ δ)B(t+ δ)BT (t+ δ)ΦT (t, t+ δ)︸ ︷︷ ︸
II

+2αHα(t, t+ δ)

H−1α (t, t+ δ)x(t)

and since II ≥ 0 and I ≥ 0 because 1
2 ≤ γ(t) we can omit them to obtain

d

dt
v(t, x(t)) ≤ −2αxT (t)H−1α (t, t+ δ)x(t) ≤ − 2α

hM
‖x(t)‖2 ≤ 0 (4.114)

which gives us

v̇(t, x(t))

v(t, x(t))
≤
−2αh−1M
e4αδh−1m

= −2α
hm
hM

e−4αδ

ln |v(t, x(t))| − ln |v(t0, x0)| ≤ −2α
hm
hM

e−4αδ(t− t0)

|v(t, x(t))| ≤ |v(t0, x0)|e
(
−2α hm

hM
e−4αδ(t−t0)

)

h−1M ‖x(t)‖2 ≤ e4αδh−1m ‖x(t0)‖2e
(
−2α hm

hM
e−4αδ(t−t0)

)

‖x(t)‖ ≤ ‖x0‖
√
hM
hm

e2αδe

(
−α hm

hM
e−4αδ(t−t0)

)

showing that the zero-solution of the α−shifted system is uniformly exponentially stable at a
rate at least α hm

hM
e−4αδ. Therefore the original system is uniformly exponentially system at a

rate at least α hm
hM

e−4αδ which concludes the proof.

4.2.5 Nonlinear systems I (Sastry et al.)

Based on the work of Kleinmann and Cheng a similar control law was proposed for nonlinear
systems, stabilizing it to a given reference trajectory, chosen as a bounded solution of the un-
controlled system. The following theorem was proposed in a paper of G. Walsh, D. Tilbury, S.
Sastry, R. Murray and J. P. Laumond in [Sastry et al., 1994]

Theorem 4.16. [Sastry et al., 1994][Prop. 1]
Let

ẋ(t) = f(x(t), u(t)) t ≥ t0 (4.115)
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be a nonlinear system which belongs to the class of C2-functions with regard to x and u. Given
a bounded reference curve x0(t) of (4.115) as solution of the uncontrolled system, i.e. a solution
of ẋ(t) = f(x(t), 0), define

A(t) :=
∂f

∂x
(x0(t), 0) (4.116)

B(t) :=
∂f

∂u
(x0(t), 0). (4.117)

(4.118)

Let Φ(t, t0) denote the state transition matrix of A(t) corresponding to the initial time t0. For
α ≥ 0 we slightly modify the definition of Hα(t0, t):

Hα(t0, t) :=

∫ t

t0

e6α(t0−τ)Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ)dτ. (4.119)

If there exists a δ > 0 such that Hα(t, t + δ) is bounded away from singularity and numbers
hm, hM such that

0 < hM < H−1α (t, t+ δ) < hm ∀t (4.120)

then, for any function γ : t→ [12 ,∞), continuous and bounded, the control function

u(t) := −γ(t)BT (t)H−1α (t, t+ δ)(x(t)− x0(t)) t ≥ t0 (4.121)

locally, uniformly, exponentially stabilizes the system (4.115) to the reference trajectory x0(t) at
a rate at least αhmh

−1
M e−6αδ.

Proof. We introduce a new variable

x̃(t) = x(t)− x0(t) (4.122)

(4.123)

The Taylor series expansion of system (4.115) along the reference trajectory then gives

˙̃x(t) = A(t)x̃(t) +B(t)u(t) + o(x̃(t), u(t), t), (4.124)

where the higher order terms are o(x̃(t), u(t), t) since we assumed f ∈ C2. The suggested control
u is a feedback control law, so the higher order terms actually depend only on x̃(t) and t.
Since x0(t) was assumed to be bounded we know that B(t) is bounded. We also assumed that
H is bounded away from singularity meaning that H−1 is bounded from above. Together with
the assumption that γ(t) is bounded this results in

‖u(t)‖ = ‖γ(t)BT (t)H−1α (t, t+ δ)x̃(t)‖ ≤ C‖x̃(t)‖, C <∞ (4.125)

From this follows

lim
‖x̃(t)‖→0

sup
t≥t0

‖o(x̃(t), t)‖
‖x̃(t)‖

= 0. (4.126)

The proof is almost the same as in theorem 4.15:
We show that

v(x̃(t), t) = x̃T (t)H−1α (t, t+ δ)x̃(t) (4.127)
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The computation is pretty much the same as in the proof of theorem 4.15 with the only difference
that we get the additional terms

x̃T (t)H−1α (t, t+ δ)o(x̃(t), t) + o(x̃(t), t)H−1α (t, t+ δ)x̃(t). (4.128)

The time-derivative of v(x̃(t), t) is given by

d

dt
v(x̃(t), t) = −x̃T (t)H−1α (t, t+ δ)

(
(2γ − 1)B(t)BT (t) + e−6αδ·

·Φ(t, t+ δ)B(t+ δ)BT (t+ δ)ΦT (t, t+ δ) + 4αHα(t, t+ δ)
)
H−1α (t, t+ δ)x̃(t)+

x̃T (t)H−1α (t, t+ δ)o(x̃(t), t) + o(x̃(t), t)H−1α (t, t+ δ)x̃(t)

Similar to (4.114) the first two lines are bounded by − 4α
hM
‖x̃(t)‖2 whereas the last line is bounded

from above by α
hM
‖x̃(t)‖2 for sufficiently small x̃(t) which is guaranteed by (4.126). Together we

have

v̇(x̃(t), t) ≤ −4αh−1M ‖x̃(t)‖
v̇(x̃(t), t)

v(x̃(t), t)
≤
−4αh−1M ‖x̃(t)‖
e6αδh−1m ‖x̃(t)‖

= −4αhmh
−1
M e−6αδ

v(x̃(t), t) ≤ v(x̃(t0), t0)e
−4αhmh−1

M e−6αδ(t−t0) for 0 ≤ t0 ≤ t

h−1M ‖x̃(t)‖2 ≤ e6αδh−1m ‖x̃(t0)‖2e−2αhmh
−1
M e−6αδ(t−t0)

‖x̃(t)‖ ≤ ‖x̃(t0)‖h1/2M h−1/2m e3αδe−2αhmh
−1
M e−6αδ(t−t0)

concluding the proof.

4.2.6 Nonlinear systems II - a modified control law

The control law designed by Sastry et al. has the disadvantage that in every single numerical
time step the integral for the matrix Hα(t, t + δ) has to be solved, which in general will be
done numerically. Moreover this matrix has to be inverted, which again will in general be done
numerically.
One can think of a car driver, who – at every moment – looks ahead a short distance to the
course of the road to adjust velocity and steering angle. Of course this method seems to be most
adequate but experience shows that under certain circumstances it suffices to look on the road
only from time to time. A short distraction where for some time we do not look on the road
will in many cases not lead to a catastrophe. This is the motivation for the following modified
control law. Instead of computing the matrix H−1α (t, t + δ) in every single time step, we will
compute it only once, keep it constant for a certain amount of time and then repeat this step
for the next time interval, not necessarily of same length.
One might assume that this kind of ”control” strongly depends on the ”smoothness of the road”.
For the idealized example of a straight road we would even expect to do not worse than with
looking on the road at every time. We will show by the example of the double and triple pendu-
lum system that even for those very sensitive systems our approach leads to very good results
for even relatively large time intervals.
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The scalar control function u is designed as feedback control very similar to (4.121). Let t0 <
t1 < t2 < . . . < ti < tj < . . . be a strictly increasing sequence. Define the positive numbers
δ1 := t2 − t1, δ2 = t3 − t2 and in general δk = tk+1 − tk. For some constant α ≥ 0 we define the
following matrix similar to (4.104):

H̃α(tk, δk) :=

∫ tk+δk=tk+1

tk

e4α(tk−τ)Φ(tk, τ)BBTΦT (tk, τ)dτ. (4.129)

Assume that the matrix H̃α(tk, δk) is uniformly bounded away from singularity in {ti}i∈N, i.e.
there is a positive constant h independent of k such that for all k ≥ 0 we have 0 < hI <
H̃α(tk, δk). We need this condition for the invertibility of H̃ and the existence of an upper
bound h̃ for its inverse.
For a finite interval [a, b], where a < b <∞, we define the control function u as:

u(t) :=

mini{b≤ti}∑
k=maxi{ti≤a}

(−1) ·BT H̃−1α (tk, δk)χ[tk,tk+1)(t)(x(t)− x0(t)), (4.130)

where χ[tk,tk+1)(t) =

{
1 if t ∈ [tk, tk+1)

0 otherwise
is the characteristic function and x0(t) is the reference

trajectory.



Chapter 5

Application to plane pendulum
systems up to three links

5.1 Simple Pendulum

5.1.1 System dynamics

In this section we will deduce the equation of motion for the mathematical pendulum using the
Euler-Lagrange formalism and show that its linearization around one of its equilibrium points
is given by equation (2.11).

Figure 5.1: simple pendulum

69
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Consider a simple mathematical pendulum, where we make simplifications such as massless rigid
link, no friction, no gravity, etc.
The angular point of the simple pendulum is centered at the origin of the coordinate center and
the angle is measured from the downright position. For simplicity we set the length of the link
equal to 1 as well as the (point) mass centered at the bob, which we will also assume to be 1.
At time t we have

x(t) = sinϕ(t) (5.1)

y(t) = cosϕ(t) (5.2)

(5.3)

and for the velocity v(t)

v2(t) = ẋ2(t) + ẏ2(t) = ϕ̇2(t) sin2 ϕ(t) + ϕ̇(t) cos2 ϕ(t) = ϕ̇2(t). (5.4)

The kinetic energy of the pendulum system is given by

Ekin(ϕ, ϕ̇) =
1

2
ϕ̇2(t). (5.5)

If the x-axis marks the zero level for the potential energy we can measure it by

Epot(ϕ, ϕ̇) = − cosϕ(t). (5.6)

The Lagrangian L(ϕ, ϕ̇) is then given by

L(ϕ, ϕ̇) = Ekin(ϕ, ϕ̇)− Epot(ϕ, ϕ̇) =
1

2
ϕ̇2(t) + cosϕ. (5.7)

The Lagrangian for the n-pendulum can be found in appendix C.
The equation of motion can now be derived by the Euler-Lagrange equation:

d

dt

∂L

∂ϕ̇
(ϕ̇, ϕ)− ∂L

∂ϕ
= 0, (5.8)

which gives
d

dt
ϕ̇(t) + sinϕ(t) = 0⇐⇒ ϕ̈(t) + sinϕ(t) = 0. (5.9)

Writing the differential equation (5.9) as first order system we obtain the (nonlinear) pendulum
equation

ϕ̇(t) =ψ(t) (5.10)

ψ̇(t) =− sin(ϕ(t)).

5.1.2 Discussion of the linearized simple pendulum

The linearization along a trajectory (ϕ̃(t), ψ̃(t))T can be computed by formula (3.54) of definition
(3.18):

d

dt

(
ϕ(t)
ψ(t)

)
=

(
0 1

− cos(ϕ̃(t)) 0

)(
ϕ(t)
ψ(t)

)
. (5.11)

The linearized model (2.11) we used so far corresponds to the linearization at the equilibrium
point (0, 0). Equation (2.11) can be obtained be setting (ϕ̃(t), ψ̃(t)) = (0, 0) in (5.11).
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Controllability of the linearization around an arbitrary point

The linearization around a given point (ϕ∗, ψ∗)T is given by

d

dt

(
ϕ(t)
ψ(t)

)
=

(
0 1

− cos(ϕ∗) 0

)
︸ ︷︷ ︸

=:A(ϕ∗,ψ∗)

(
ϕ(t)
ψ(t)

)
. (5.12)

We regard the control system

d

dt

(
ϕ(t)
ψ(t)

)
=

(
0 1

− cos(ϕ∗) 0

)(
ϕ(t)
ψ(t)

)
+

(
0
1

)
︸︷︷︸
=:B

u(t), (5.13)

where u is a scalar-valued control input.
(5.13) is a linear autonomous control system. Due to corollary (3.2) local controllability is equiv-
alent to global controllability. The global controllability can be checked via the Kalman rank
condition (3.11):

rank[B|A(ϕ∗,ψ∗)B] = rank

[
0 1
1 0

]
= 2, (5.14)

Therefore the linearization of the nonlinear pendulum equation around an arbitrary point is
globally controllable.

Example: state-transition in finite time

We regard the linearization around the unstable equilibrium point (π, 0)T of the nonlinear pen-
dulum equation. We will use theorem (3.9) to show that any state x0 = (π − ε, δ)T for some
ε, δ ∈ R can be transferred to the unstable equilibrium (π, 0)T in any positive finite time T > 0.
Without loss of generality we assume t0 = 0.
Theorem (3.9) provides the control law performing this task:

u∗(t) = −BT e
AT

(π,0)
(T−t)

(∫ T

0
eA(π,0)(T−τ)BBT e

AT
(π,0)

(T−t)
dτ

)−1(
eA(π,0)T

(
π − ε
δ

)
−
(
π
0

))
(5.15)

for 0 ≤ t ≤ T and which can be easily verified by inserting into the solution formula (3.9) for
linear control systems:

x(T, x0, u
∗) = eA(π,0)T

(
π − ε
δ

)
−
∫ T

0
eA(π,0)(T−τ)BBT e

AT
(π,0)

(T−τ)
dτ · (5.16)

·
(∫ T

0
eA(π,0)(T−τ)BBT e

AT
(π,0)

(T−t)
dτ

)−1(
eA(π,0)T

(
π − ε
δ

)
−
(
π
0

))
=

(
π
0

)
.

Stability of the equilibria

The nonlinear pendulum equation (5.10) has the equilibria (0, 0)T and (π, 0)T . We are interested
in the stability of the linearized pendulum equation around these equilibria.
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For the equilibrium (0, 0)T we obtain

d

dt

(
ϕ(t)
ψ(t)

)
=

(
0 1
−1 0

)
︸ ︷︷ ︸
=:A(0,0)

(
ϕ(t)
ψ(t)

)
. (5.17)

Stability of (5.17) can be determined with the eigenvalue criteria (4.9). The system matrix A(0,0)

has eigenvalues −i and i. Since they are semi-simple we can conclude stability but no asymptotic
stability.

For the equilibrium (π, 0)T we obtain

A(π,0) =

(
0 1
1 0

)
(5.18)

which has eigenvalues −1 and 1 and due to theorem (4.9) the corresponding linear system is
unstable.

If the state transition matrix of the linear system is known, we can use theorem (4.5) to determine
the stability properties:
For A(0,0) the state transition matrix for t ≥ t0 is given by

Φ(0,0)(t, t0) =

(
cos(t− t0) sin(t− t0)
− sin(t− t0) cos(t− t0)

)
. (5.19)

In order to apply theorem (4.5) we have to compute the norm of (5.19).

‖Φ(0,0)(t, t0)‖2 = max
x∈R2,‖x‖2=1

‖Φ(0,0)(t, t0)x‖2 =

∥∥∥∥( cos(t− t0)x1 + sin(t− t0)x2
− sin(t− t0)x1 + cos(t− t0)x2

)∥∥∥∥
2

= max
x∈R2,‖x‖2=1

√
2 cos2(t− t0)x21 + 2 sin2(t− t0)x22

≤
√

2(cos2(t− t0) + sin2(t− t0)) max
x∈R2,‖x‖2=1

{x21, x22}

=⇒ ‖Φ(0,0)(t, t0)‖2 ≤
√

2 ≤ ∞, (5.20)

therefore the origin of the system
ẋ(t) = A(0,0)x(t) (5.21)

is uniformly stable. To show that the origin is not asymptotically stable with respect to system
(5.21) if suffices to take x1 = x2 = sin

(
π
4

)
since then we have

‖Φ(0,0)(t, t0)(x1, x2)
T ‖2 ≥

√
2 min{|x1|, |x2|} =

√
2 sin

(π
4

)
> 0. (5.22)

Because ‖(x1, x2)T ‖2 = 1 this implies that ‖Φ(0,0)(t, t0)‖2 6→ 0 as t→∞. For linear autonomous
systems exponential stability is equivalent to uniform asymptotic stability. For lack of asymp-
totic stability, we therefore do not have exponential stability either.

For system ẋ(t) = A(π,0)x(t) the state transition matrix for t ≥ t0 is given by

Φ(π,0)(t, t0) =

(
1/2 e−(t−t0) + 1/2 et−t0 1/2 et−t0 − 1/2 e−(t−t0)

1/2 et−t0 − 1/2 e−(t−t0) 1/2 e−(t−t0) + 1/2 et−t0

)
=

(
cosh(t− t0) sinh(t− t0)
sinh(t− t0) cosh(t− t0)

)
(5.23)
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and since sinh(t − t0) and cosh(t − t0) tend to infinity as t → ∞ we see that because of
Φ(t, t0)(π,0)(0, 1)T = (sinh(t − t0), cosh(t − t0))

T the norm of (5.21) is unbounded which im-
plies instability.

Stabilization - Balancing the upright position

The upright position (π, 0)T is a fixed point of the nonlinear system (5.41). The linearization in
(π, 0)T is given by

d

dt

(
x(t)
y(t)

)
=

(
0 1

− cos(π) 0

)(
x(t)
y(t)

)
=

(
0 1
1 0

)(
x(t)
y(t)

)
. (5.24)

We will assume in this example that we have a scalar control u which enters linearly. The
controlled system is assumed to be of the form

d

dt

(
x(t)
y(t)

)
=

(
0 1
1 0

)
︸ ︷︷ ︸

A

(
x(t)
y(t)

)
+

(
0
1

)
︸︷︷︸
B

u(t) (5.25)

In the following we will use the pole-shifting theorem (3.15), Kleinmann’s method (4.12) and
the method of Bass (4.2.2) to compute the stabilization control law.

First we use the pole-shifting theorem (3.15) to stabilize the linear system by a constant feed-
back.
We want to stabilize the origin in the sense that the equilibrium point (0, 0)T becomes asymp-
totically stable which, if the controlled system remains autonomous and linear, together with
(5.20) implies exponential stability.
Motivated by theorem (3.15) we make the following ansatz for the control function u:

u(t) := F ·
(
x(t)
y(t)

)
, (5.26)

where F ∈ R(1,2). We obtain the controlled system

d

dt

(
x(t)
y(t)

)
=

((
0 1
1 0

)
+BF

)(
x(t)
y(t)

)
(5.27)

where we are now looking for suitable choices F11 and F12 such that the origin is an asymptoti-
cally stable equilibrium point of (5.27). Using theorem (4.9) we can achieve asymptotic stability

by choosing F such that

((
0 1
1 0

)
+BF

)
has only negative eigenvalues.

If we choose F11 = −2 and F12 = −2 we obtain −1 as eigenvalue with multiplicity 2. The
controlled system is given by

d

dt

(
x(t)
y(t)

)
=

(
0 1
−1 −2

)(
x(t)
y(t)

)
(5.28)

and for the initial values x(0) = x0, y(0) = y0 the solution is given by(
x(t)
y(t)

)
=

(
(x0 + y0 · t)e−t

−(x0 − y0 + y0 · t)e−t
)

(5.29)
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which for any choice of (x0, y0)
T ∈ R2 tends to (0, 0)T as time tends to infinity.

For applying Kleinmann’s method (4.12) we need to compute the inverse of the integral

S(0, T ) :=

∫ T

0
e−AτBBT e−A

T τdτ (5.30)

where without loss of generality we set t0 = 0 and T is some positive time such that (5.30) is
invertible.

For A(π,0) =

(
0 1
1 0

)
the state transition matrix is given by formula (5.23) and we obtain

S(π,0)(0, T ) =

(
−1/8

(
1 + 4T e2T − e4T

)
e−2T 1/8

(
2 e2T − 1− e4T

)
e−2T

1/8
(
2 e2T − 1− e4T

)
e−2T 1/8

(
e4T + 4T e2T − 1

)
e−2T

)
(5.31)

which has determinant

detS(π,0)(0, T ) =
1

8
(cosh(2T )− 1)− 1

4
T 2 (5.32)

=
1

8

(( ∞∑
k=0

22k

(2k)!
T 2k

)
− 1− 2T 2

)

=
1

8

( ∞∑
k=2

22k

(2k)!
T 2k

)

which for every T > 0 is greater than 0 and therefore S(π,0)(0, T ) is invertible for T > 0 (which
actually follows directly from the assumption of controllability). The inverse can be computed
as

S−1(π,0)(0, T ) =

 −2 e4T+4T e2T−1
2 e2T+4T 2e2T−1−e4T 2 2 e2T−1−e4T

2 e2T+4T 2e2T−1−e4T

2 2 e2T−1−e4T
2 e2T+4T 2e2T−1−e4T 2 1+4T e2T−e4T

2 e2T+4T 2e2T−1−e4T

 , T > 0. (5.33)

The control law due to Kleinmann is

u(t) = (A−BBTS−1(π,0)(0, T ))x(t) (5.34)

For T = 2 for example the matrix A − BBTS−1(π,0)(0, 2) has a pair of complex eigenvalues with
real part less than approximately −1.27.

Finally we will show that with the method of Bass (4.2.2) we can obtain a stabilizing feedback
control without having too much computational effort.
In order to stabilize the zero-state of system (5.24) we first have to choose an adequate λ > 0
as indicated in (4.94). We obtain

max
i

 2∑
j=1

|aij |

 = max
j

(
2∑
i=1

|aij |

)
= 1 (5.35)

and conclude that λ ≥ 2 is a sufficient choice expecting that the zero state is an exponential
stable equilibrium point of the controlled system with decay rate at least −λ. For λ = 3 we
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obtain
We solve the Lyapunov equation (4.95) for system (5.24):(

3 1
1 3

)
P + P

(
3 1
1 3

)
=

(
0 0
0 1

)
(5.36)

where P is a symmetric matrix which can be computed as

P =

(
1/96 −1/32
−1/32 17/96

)
(5.37)

with inverse

P−1 =

(
204 36
36 12

)
. (5.38)

The control law then is given by

u(t) = −BTP−1x(t) =

(
0 0
−36 −12

)
x(t) (5.39)

and the controlled system is given by

ẋ(t) = (A−BBTP−1)x(t) =

(
0 1
−35 −12

)
︸ ︷︷ ︸

Ã

x(t) (5.40)

where Ã has eigenvalues −5 and −7. Therefore the zero-state is an exponential stable equilib-
rium point of the controlled system with decay rate −5 which is better than the expected value
−3 which is guaranteed by the design of the method. Remark: The zero-state of the λ-shifted
system is exponential stable with decay rate −2.
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5.1.3 Nonlinear simple pendulum

Consider the nonlinear pendulum system

ẍ(t) + sinx(t) = 0, t ≥ 0 (5.41)

which was obtained via the Lagrange formalism and where we renamed the variables for conve-
nience. Any external forces enter this equation on the right hand side of (5.41). So the controlled
nonlinear pendulum equation reads:

ẍ(t) + sinx(t) = u(t), t ≥ 0, (5.42)

Writing system (5.41) and (5.42) as first order system we obtain

ẋ(t) = y(t) (5.43)

ẏ(t) = − sin(x(t))

for the uncontrolled system and

ẋ(t) = y(t) (5.44)

ẏ(t) = − sin(x(t)) + u(t)

for the controlled system.
To get a first glimpse of the dynamics of the system (5.43) we plot the vector field in the
(x, y)-space along the coordinate axes, which is shown in figure (5.2):
The complete phase plot is shown in figure (5.4). The origin (0, 0) of the coordinate center is a
fixed point of the system. It is stable in the sense of Lyapunov but not asymptotically stable.
So one might be interested in a control u(t) which for example makes the origin asymptotically
stable. The control u enters only in the second equation of (5.44). We can only change the ve-
locity, i.e. the second component of (x, y)T . Figure (5.2) shows the natural choice in stabilizing
the origin. This solution shown in figure (5.3) has the physical interpretation of adding friction
in form of a damping term. From figure (5.3) we see that a feedback function u(t) = −ky(t)
is a suitable choice for any k > 0. One can also expect that choosing u as feedback function
depending on x will not make the origin asymptotically stable, but – when u is depending on x
and y – might influence the decay rate.

Equation (5.41) can be solved exactly in terms of elliptic integrals. We will distinguish four kinds
of motion:

1. Pendulum swings without reaching the upright position, changing the direction of its
movement periodically

2. limit case where the pendulum tends up to the upright position without reaching it in
finite time and without changing its direction (separatrix solution),

3. pendulum rotates in one direction

4. pendulum is at rest.

The first three cases can be distinguished by using the size of the initial energy of system (5.41).
We can do this, because the total energy of the system does not depend on the time (i.e. the
total energy is a conservation law with respect to (5.41)):

d

dt
E =

d

dt
(Ekin + Epot) = ẋ(t)ẍ(t) + ẋ(t) sinx(t) = ẋ(ẍ(t) + sinx(t))

(5.41)
= 0. (5.45)
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Figure 5.2: vector field of the nonlinear pendulum along the axes

Regarding the initial value problem

ẍ(t) + sinx(t) = 0; x(0) = x0, ẋ(0) = ẋ0 (5.46)

and denoting the initial energy E0 we have due to (5.45) E = E0 and we can make the following
classification:

1. E0 < 1 and E0 6= 0: pendulum swings,

2. E = 1 and x(0) 6= π: separatrix solution,

3. E > 1: rotation

The solutions where the pendulum is at rest are obtained by direct integration. One obtains the
stable equilibrium point x = 0 and the unstable equilibrium point x = π.
Figure (5.4) shows different level sets for the energy of system (5.41). These level curves were
obtained numerically by using a Runge-Kutta-Fehlberg method of order five. In figure (5.4) the
separatrix solution consists of the two curves connecting (−π, 0) → (π, 0). Since the variable x
is 2π periodic, the points (π, 0) and (−π, 0) denote the same state of system (5.41). The upright
position is an equilibrium point, so one has to start at another point of the trajectory. The
pendulum will move in one of the two direction towards the upright position, where it slows
down as it comes closer to it. In finite time it will get arbitrarily close to the upright position,
but it will never reach it.
The closed orbits correspond to the swinging pendulum whereas the remaining solution curves
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Figure 5.3: stabilizing the origin of the nonlinear pendulum equation

belong to the case, where the pendulum rotates about the angular point.

Solution as elliptic integral

We regard case 1 where E0 < 1 and E0 6= 0 and give a mathematical description for solutions
belonging to the swinging pendulum which does not pass the upright equilibrium point:
Multiplying equation (5.41) with 2 · ẋ(t) and integrating with respect to t gives

ẋ2(t)− 2 · cosx(t) = C, (5.47)

where C is some integration constant. We can determine C in the following way. The pendulum
changes its direction when ẋ(t) = 0. Let the position be given by ±xmax. Since cosxmax =
cos−xmax we have

C = −2 cosxmax. (5.48)

We obtain from (5.47)

ẋ2(t)− 2 cos(x(t)) = 2 cosxmax (5.49)

=⇒ẋ(t) = ±
√

2 cosx(t)− 2 cosxmax, (5.50)

where different signs correspond to different directions of the pendulum movement. Separation
of variables – where we avoid an integration constant by assuming x(0) = 0 – leads to:

t =

∫ x

0

1

±
√

2 cos x̃− 2 cosxmax
dx̃ (5.51)
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Figure 5.4: level sets of the pendulum

The (non-negative) radicand can be expressed as

2 cos x̃− 2 cosxmax = 2

(
cos2

(
x̃

2

)
− sin2

(
x̃

2

))
− 2

(
cos2

(xmax

2

)
− sin2

(xmax

2

))
. (5.52)

Using the change of variables k := sin
(
xmax
2

)
and k sinψ := sin

(
x̃
2

)
one obtains

2 cos x̃− 2 cosxmax =2(1− 2k2 sin2 ψ)− 2(1− k2)
=4k2(1− sin2 ψ)

=(2k cosψ)2 (5.53)

dx̃

dψ
=
d

dψ
2 arcsin(k sinψ)

dx̃ =2
k cosψ√

1− k2 sin2 ψ
dψ (5.54)

By means of (5.53), (5.54) we can transform the integral in (5.51) into

∫ arcsin
sin (x2 )
k

0

± signum k√
1− k2 sin2 ψ

dψ (5.55)

which is an elliptic integral of the variables k and ψ.
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Separatrix solution

For the energy level E0 = 1 we obtain the separatrix solution. From equation (5.51) we can
deduct

t =

∫ x

0

1

±
√

2 cos x̃+ 2
dx̃ =

∫ x

0

1

±
√

4 cos2
(
x̃
2

)dx̃. (5.56)

For simplicity we drop the ”−” sign and regard only the equation

t =

∫ x

0

1√
4 cos2

(
x̃
2

)dx̃ (5.57)

Since x̃ ∈ (−π, π) we have cos
(
x̃
2

)
> 0 and therefore

t =

∫ x

0

1∣∣2 cos
(
x̃
2

)∣∣dx̃ =

∫ x

0

1

2 cos
(
x̃
2

)dx̃ (5.58)

The integral can be explicitly solved with Bronstein formula 325 (cf. [Bronstein and Semendja-
jew, 1991]) and we obtain

t = ln
(

sec
(x

2

)
+ tan

(x
2

))
(5.59)

The argument of the logarithm on the right hand side can be simplified to tan
(
x
4 + π

4

)
:

cos
(x

4

)
sin
(x

4

)
cos
(x

4

)
= sin

(x
4

)
cos2

(x
4

)
⇐⇒

cos
(x

4

)(
cos2

(x
4

)
− cos2

(x
4

)
+ sin

(x
4

)
cos
(x

4

))
= sin

(x
4

)
cos2

(x
4

)
⇐⇒

cos
(x

4

)(
1 + sin

(x
4

)
cos
(x

4

)
− sin2

(x
4

)
− cos2

(x
4

))
= sin

(x
4

)(
1− sin2

(x
4

))
.

Expanding both sides and rearranging them gives

cos
(x

4

)
+ 2 sin

(x
4

)
cos2

(x
4

)
− sin

(x
4

)
− 2 sin2

(x
4

)
cos
(x

4

)
=

cos2
(x

4

)
sin
(x

4

)
− sin3

(x
4

)
+ cos3

(x
4

)
− sin2

(x
4

)
cos
(x

4

)
⇐⇒(

1 + 2 sin
(x

4

)
cos
(x

4

))(
cos
(x

4

)
− sin

(x
4

))
=(

cos2
(x

4

)
− sin2

(x
4

))(
sin
(x

4

)
+ cos

(x
4

))
⇐⇒(

1 + sin
(x

2

))
cos

(
x+ π

4

)
= cos

(x
2

)
sin

(
x+ π

4

)
⇐⇒

1 + sin
(
x
2

)
cos
(
x
2

) =
sin
(
x+π
4

)
cos
(
x+π
4

) ⇐⇒
sec
(x

2

)
+ tan

(x
2

)
= tan

(
x+ π

4

)
So equation (5.59) simplifies to

t = ln
(

sec
(x

2

)
+ tan

(x
2

))
= ln

(
tan

(
x+ π

4

))
(5.60)
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Figure 5.5: separatrix solution

and we obtain the explicit formula for the trajectory x(t):

x(t) = −π + 4 arctan(et). (5.61)

Figure (5.5) shows the solution for t ∈ [0, 10].
Using the Gudermannian function gd which is defined as

gd(t) :=

∫ t

0

1

cosh(τ)
dτ (5.62)

we obtain
x(t) = 2 gd(t) (5.63)

since

gd(t) =

∫ t

0

1

cosh(τ)
dτ = arcsin(tanh(t))

= arctan(sinh(t)) = 2 arctan(tanh(t/2))

=2 arctan(et)− 1

2
π. (5.64)

Historical remark: The Gudermannian function is named after the german mathematician Christoph
Gudermann, who was a student of Gauß and later one of Weierstrass’s teachers. It links trigono-
metric functions and hyperbolic functions without using complex numbers.
The concept of uniform convergence appears for the first time in literature in one of Guder-
mann’s papers about elliptic functions in the year 1838 (cf. e.g. [Schlote, 2002]).

Linearization along the separatrix

We can give an explicit form for the state transition matrix of the linearized system along the
separatrix. Let x0(t) denote the separatrix solution −π + 4 arctan(exp(t)). Then the linearized
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system along x0(t) is given by
ẍ(t) + cos(x0(t))x(t) = 0 (5.65)

Since for every smooth differential equation

ẋ(t) = f(x(t)), x ∈ Rn (5.66)

and any solution z(t) of (5.66) we have

z̈(t) =
∂f

∂x
(z(t))ż(t) (5.67)

we know that ż(t) is a solution of the linearized system of (5.66) along the trajectory z(t).
Therefore ẋ0(t) is a solution of (5.65).

ẋ0(t) =
4et

1 + e2t
=

4

et + e−t
= 2

1

cosh(t)
= 2 sech(t). (5.68)

With the reduction method of d’Alembert we can construct a second solution for (5.65). First
we note that sech(t) > 0 ∀t ≥ 0. We make the following ansatz

y(t) := 2 sech(t)z(t) (5.69)

and obtain

ÿ(t) =

(
2
d2

dt2
sech(t) + 2 cos(x0(t))

)
z(t) + 4

d

dt
sech(t)

d

dt
z(t) + 2 sech(t)

d2

dt2
z(t) = 0 (5.70)

and since 2 sech(t) is a solution of (5.65) differential equation (5.70) simplifies to

2 sech(t)
d2

dt2
z(t) + 4

d

dt
sech(t)

d

dt
z(t) = 0 (5.71)

The substitution v(t) = d
dtz(t) leads to the scalar differential equation

2 sech(t)
d

dt
v(t) + 4

d

dt
sech(t)v(t) = 0 (5.72)

which is equivalent to
v̇(t)

v(t)
= −2

d
dt sech(t)

sech(t)
(5.73)

which has as solution
v(t) = cosh2(t) (5.74)

and therefore

z(t) =

∫
cos2(t)dt =

1

2
(t+ sinh(t) cosh(t)) + C, (5.75)

where C ∈ R is an integration constant.
A second solution of (5.65) is given by

y(t) = 2 sech(t)
1

2
(t+ sinh(t) cosh(t)) +D. (5.76)

We can choose D such that the initial condition y(0) = (0, 1)T is fulfilled and obtain for system

ẋ(t) =

(
0 1

− cos(x0(t)) 0

)
x(t), x ∈ R2, t ≥ 0 (5.77)

the state transition matrix

Φ(t, 0) =

(
sech(t) 1

2 sech(t)(t+ sinh(t) cosh(t))− 1
2

− tanh(t) sech(t) 1
2 sech(t)(cosh2(t)− t tanh(t) + 1)

)
. (5.78)
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Since the linearization of the nonlinear pendulum equation about an arbitrary point is control-
lable, we expect the linearization along the separatrix to be controllable. The method of choice
for smooth linear time-varying systems is given in theorem (3.9). In our example there must be
a t > 0 such that

[M0(t)|M1(t)] (5.79)

has rank two, where

M0(t) :=B

M1(t) :=−
(

0 1
− cos(x0(t))0

)
M0(t) +

d

dt
M0(t)

are recursively defined proposed in theorem (3.9). The matrix (5.79) simplifies to

[
0 −1
1 0

]
which has full rank.

Numerical results for the stabilization along the separatrix

We used the modified control law presented in section (4.2.6) to stabilize the nonlinear pendulum
equation along the separatrix solution.



84 CHAPTER 5. APPLICATIONS

The exact solution starts from (0, 2)T , the trajectory to be controlled starts from (−0.5, 1.5)T .
The stabilization method used is the modified control law with α = 0:

(a) in phase space (b) first component (angle) vs. time

Figure 5.6: the controlled solution and the reference trajectory (broken line, separatrix)

Figure 5.7: Control law and deviation in the single components
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The exact solution starts from (0, 2)T , the trajectory to be controlled starts from (−0.5, 1.5)T .
The stabilization method used is the modified control law with α = 2:

(a) in phase space (b) first component (angle) vs. time

Figure 5.8: the controlled solution and the reference trajectory (broken line, separatrix)

Figure 5.9: Control law and deviation in the single components
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The exact solution starts from (0, 2)T , the trajectory to be controlled starts from (0.5, 2.4)T .
The stabilization method used is the modified control law with α = 0:

(a) in phase space (b) first component (angle) vs. time

Figure 5.10: the controlled solution and the reference trajectory (broken line, separatrix)

Figure 5.11: Control law and deviation in the single components
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The exact solution starts from (0, 2)T , the trajectory to be controlled starts from (0.5, 2.4)T .
The stabilization method used is the modified control law with α = 2:

(a) in phase space (b) first component (angle) vs. time

Figure 5.12: the controlled solution and the reference trajectory (broken line, separatrix)

Figure 5.13: Control law and deviation in the single components
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The exact solution starts from (0, 2)T , the trajectory to be controlled starts from (−5,−15)T .
The stabilization method used is the modified control law with α = 0:

(a) in phase space (b) first component (angle) vs. time

Figure 5.14: the controlled solution and the reference trajectory (broken line, separatrix)

Figure 5.15: Control law and deviation in the single components
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The exact solution starts from (0, 2)T , the trajectory to be controlled starts from (−5,−15)T .
The stabilization method used is the modified control law with α = 2:

(a) in phase space (b) first component (angle) vs. time

Figure 5.16: the controlled solution and the reference trajectory (broken line, separatrix)

Figure 5.17: Control law and deviation in the single components
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5.2 Double Pendulum

5.2.1 System dynamics

We consider a mathematical double pendulum making the usual assumption (no friction, mass-
less pendulum links, motion occurs in a plane, no gravity, . . .). The two (massless) links have the

Figure 5.18: mathematical double pendulum

same length which are set equal to 1. The double pendulum is fixed at the origin of the coordi-
nate center. The first pendulum ends at the point (x1, y1), the second one rotates about (x1, y1)
and ends at the point (x2, y2). The angles are measured with respect to the negative y-axis and
ϕ1 denotes the angle corresponding to the first pendulum, ϕ2 denotes the angle corresponding
to the second pendulum. We derive the equations of motion via the Euler-Langrange formulation.

From figure (5.18) we have the simple relations

x1 = sinϕ1 (5.80)

y1 = cosϕ1 (5.81)

x2 = sinϕ1 + sinϕ2 (5.82)

y2 = cosϕ1 + cosϕ2 (5.83)

such that for the velocity v1 of the first pendulum and the velocity v2 of the second one the
following relations hold

v21 = ẋ21 + ẏ21 = ϕ̇2
1 sin2 ϕ1 + ϕ̇2

1 cos2 ϕ1 = ϕ̇2
1 (5.84)

v22 = ẋ22 + ẏ22 =
(
ϕ̇2
1 cos2 ϕ1 + ϕ̇2

2 cos2 ϕ2

)2
+ (ϕ̇1(− sinϕ1) + ϕ̇2(− sinϕ2))

2

= ϕ̇2
1 + ϕ̇2

2 + 2ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2). (5.85)

The kinetic energy Ekin and the potential energy Epot of the double pendulum system are given
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by

Ekin =
1

2
v21 +

1

2
v22 =

1

2
ϕ̇2
1 +

1

2

(
ϕ̇2
1 + ϕ̇2

2 + 2ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2)
)

= ϕ̇2
1 +

1

2
ϕ̇2
2 + ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2) (5.86)

Epot = − cosϕ1 − (cosϕ1 + cosϕ2)

= −2 cosϕ1 − cosϕ2. (5.87)

The Langrangian L of the double pendulum system is defined as

L(ϕ1, ϕ2, ϕ̇1, ϕ̇2) := Ekin − Epot = ϕ̇2
1 +

1

2
ϕ̇2
2 + ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2) + 2 cosϕ1 + cosϕ2. (5.88)

Using ϕ = (ϕ1, ϕ2)
T and ϕ̇ = (ϕ̇1, ϕ̇2)

T we can derive the equations of motion by evaluating the
Euler-Lagrange equations

d

dt

(
∂L

∂ϕ̇
(ϕ, ϕ̇)

)
− ∂L

∂ϕ
(ϕ, ϕ̇) = 0. (5.89)

We have

∂L

∂ϕ̇1
(ϕ, ϕ̇) = 2ϕ̇1 + ϕ̇2 cos(ϕ1 − ϕ2)

d

dt

∂L

∂ϕ̇1
(ϕ, ϕ̇) = 2ϕ̈1 + ϕ̈2 cos(ϕ1 − ϕ2)− ϕ̇2 sin(ϕ1 − ϕ2)(ϕ̇1 − ϕ̇2)

∂L

∂ϕ1
(ϕ, ϕ̇) = −ϕ̇1ϕ̇2 sin(ϕ1 − ϕ2) + 2 sinϕ1

∂L

∂ϕ̇2
(ϕ, ϕ̇) = ϕ̇2 + ϕ̇1 cos(ϕ1 − ϕ2)

d

dt

∂L

∂ϕ̇2
(ϕ, ϕ̇) = ϕ̈2 + ϕ̈1 cos(ϕ1 − ϕ2) + ϕ̇1 sin(ϕ1 − ϕ2)(ϕ̇2 − ϕ̇1)

∂L

∂ϕ2
(ϕ, ϕ̇) = − sinϕ2 + ϕ̇1ϕ̇2 sin(ϕ1 − ϕ2)

and with the Euler-Lagrange equation (5.89) we obtain the equations of motion of the mathe-
matical double pendulum:

2ϕ̈1 + ϕ̈2 cos(ϕ1 − ϕ2) + ϕ̇2
2 sin(ϕ1 − ϕ2) + 2 sinϕ1 = 0 (5.90)

ϕ̈2 + ϕ̈1 cos(ϕ1 − ϕ2)− ϕ̇2
1 sin(ϕ1 − ϕ2) + sinϕ2 = 0. (5.91)

which can be written as
D(ϕ)ϕ̈+ C(ϕ, ϕ̇)ϕ̇+ g(ϕ) = 0 (5.92)

where

D(ϕ) =

(
2 cos(ϕ1 − ϕ2)

cos(ϕ1 − ϕ2) 1

)
(5.93)

C(ϕ, ϕ̇) =

(
0 ϕ̇2 sin(ϕ1 − ϕ2)

−ϕ̇1 sin(ϕ1 − ϕ2) 0

)
(5.94)

g(ϕ) =

(
2 sinϕ1

sinϕ2

)
. (5.95)
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Remark: Note that D(ϕ) is symmetric and D(ϕ)11 > 0. Since det(D(ϕ)) = 2 − cos2(ϕ1 − ϕ2)
is positive as well, D(ϕ) is positive definite for all ϕ. This form is useful in showing that local
controllability around the equilibrium points with a scalar control input. We give a more general
proof for the pendulum with n links in theorem C.1 of appendix C.3.

Introducing new variables ω1 = ϕ̇1 and ω2 = ϕ̇2 in order to rewrite the equations of motion as
system of first order.
From (5.91) we have

ω̇2 = − sinϕ2 + ω2
1 sin(ϕ1 − ϕ2)− ω̇1 cos(ϕ1 − ϕ2) (5.96)

and inserting into (5.90) yields

ω̇1(2− cos2(ϕ1 − ϕ2)) = sinϕ2 cos(ϕ1 − ϕ2)− ω2
1 cos(ϕ1 − ϕ2) sin(ϕ1 − ϕ2)−

− ω2
2 sin(ϕ1 − ϕ2)− 2 sinϕ1. (5.97)

Using the trigonometric relations

2 cos(ϕ1 − ϕ2) sinϕ2 = sinϕ1 − sin(ϕ1 − 2ϕ2) (5.98)

2 cos2(ϕ1 − ϕ2) = 1 + cos(2ϕ1 − 2ϕ2) (5.99)

and solving for ω̇1 we obtain

ω̇1 =
−3 sinϕ1 − sin(ϕ1 − 2ϕ2)− 2 sin(ϕ1 − ϕ2)(ω

2
2 + ω2

1 cos(ϕ1 − ϕ2))

3− cos(2ϕ1 − 2ϕ2)
(5.100)

From (5.90) we have

ω̇1 = −1

2
ω̇2 cos(ϕ1 − ϕ2)−

1

2
ω2
2 sin(ϕ1 − ϕ2)− sinϕ1 (5.101)

and inserting into (5.91) yields

ω̇2(cos2(ϕ1 − ϕ2)− 2) =− ω2
2 cos(ϕ1 − ϕ2) sin(ϕ1 − ϕ2)− 2 cos(ϕ1 − ϕ2) sinϕ1−

− 2ω2
1 sin(ϕ1 − ϕ2) + 2 sinϕ2. (5.102)

Together with the trigonometric relations (5.98) and (5.99) we obtain

ω̇2 =
2 sin(ϕ1 − ϕ2)(2ω

2
1 + 2 cosϕ1 + ω2

2 cos(ϕ1 − ϕ2)

3− cos(2ϕ1 − 2ϕ2)
(5.103)

and the equations of motions are given by the system of first order differential equations
ϕ̇1 = ω1

ϕ̇2 = ω2

ω̇1 =
−3 sinϕ1−sin(ϕ1−2ϕ2)−2 sin(ϕ1−ϕ2)(ω2

2+ω
2
1 cos(ϕ1−ϕ2))

3−cos(2ϕ1−2ϕ2)

ω̇2 =
2 sin(ϕ1−ϕ2)(2ω2

1+2 cosϕ1+ω2
2 cos(ϕ1−ϕ2))

3−cos(2ϕ1−2ϕ2)
.

(5.104)
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5.2.2 Discussion of the linearized double pendulum

Linearization along a trajectory (ϕ̃1, ϕ̃2, ω̃1, ω̃2)
T yields the linear differential equation

d

dt


ϕ1

ϕ2

ω1

ω2

 =


0 0 1 0
0 0 0 1
a31 a32 a33 a34
a41 a42 a43 a44



ϕ1

ϕ2

ω1

ω2

 (5.105)

where the entries aij , 3 ≤ i ≤ 4, 1 ≤ j ≤ 4 are given by

a31 = − 2

(
−3 sin (ϕ̃1)− sin (ϕ̃1 − 2 ϕ̃2)− 2 sin (ϕ̃1 − ϕ̃2)

(
ω̃2
2 + ω̃2

1 cos (ϕ̃1 − ϕ̃2)
))

(3− cos (2 ϕ̃1 − 2 ϕ̃2))
2 (sin (2 ϕ̃1 − 2 ϕ̃2))

−1 +

+
−2 cos (ϕ̃1 − ϕ̃2)

(
ω̃2
2 + ω̃2

1 cos (ϕ̃1 − ϕ̃2)
)

+ 2 (sin (ϕ̃1 − ϕ̃2))
2 ω1

2

3− cos (2 ϕ̃1 − 2 ϕ̃2)
−

− 3 cos (ϕ̃1) + cos (ϕ̃1 − 2 ϕ̃2)

3− cos (2 ϕ̃1 − 2 ϕ̃2)
(5.106)

a32 =
2 cos (ϕ̃1 − 2 ϕ̃2) + 2 cos (ϕ̃1 − ϕ̃2)

(
ω̃2
2 + ω̃2

1 cos (ϕ̃1 − ϕ̃2)
)
− 2 (sin (ϕ̃1 − ϕ̃2))

2 ω̃2
1

3− cos (2 ϕ̃1 − 2 ϕ̃2)
+

+ 2

(
−3 sin (ϕ̃1)− sin (ϕ̃1 − 2 ϕ̃2)− 2 sin (ϕ̃1 − ϕ̃2)

(
ω̃2
2 + ω̃2

1 cos (ϕ̃1 − ϕ̃2)
))

(3− cos (2 ϕ̃1 − 2 ϕ̃2))
2 (sin (2 ϕ̃1 − 2 ϕ̃2))

−1 (5.107)

a33 = − 4
sin (ϕ̃1 − ϕ̃2) ω̃1 cos (ϕ̃1 − ϕ̃2)

3− cos (2 ϕ̃1 − 2 ϕ̃2)
(5.108)

a34 = − 4
sin (ϕ̃1 − ϕ̃2) ω̃2

3− cos (2 ϕ̃1 − 2 ϕ̃2)
(5.109)

a41 = 2
cos (ϕ̃1 − ϕ̃2)

(
2 ω̃2

1 + 2 cos (ϕ̃1) + ω̃2
2 cos (ϕ̃1 − ϕ̃2)

)
3− cos (2 ϕ̃1 − 2 ϕ̃2)

+

+ 2
sin (ϕ̃1 − ϕ̃2)

(
−2 sin (ϕ̃1)− ω̃2

2 sin (ϕ̃1 − ϕ̃2)
)

3− cos (2 ϕ̃1 − 2 ϕ̃2)
−

− 4
sin (ϕ̃1 − ϕ̃2)

(
2 ω̃2

1 + 2 cos (ϕ̃1) + ω̃2
2 cos (ϕ̃1 − ϕ̃2)

)
sin (2 ϕ̃1 − 2 ϕ̃2)

(3− cos (2 ϕ̃1 − 2 ϕ̃2))
2 (5.110)

a42 = − 2
cos (ϕ̃1 − ϕ̃2)

(
2 ω̃2

1 + 2 cos (ϕ̃1) + ω̃2
2 cos (ϕ̃1 − ϕ̃2)

)
3− cos (2 ϕ̃1 − 2 ϕ̃2)

+

+ 2
(sin (ϕ̃1 − ϕ̃2))

2 ω̃2
2

3− cos (2 ϕ̃1 − 2 ϕ̃2)
+

+ 4
sin (ϕ̃1 − ϕ̃2)

(
2 ω̃2

1 + 2 cos (ϕ̃1) + ω̃2
2 cos (ϕ̃1 − ϕ̃2)

)
sin (2 ϕ̃1 − 2 ϕ̃2)

(3− cos (2 ϕ̃1 − 2 ϕ̃2))
2 (5.111)

a43 = 8
sin (ϕ̃1 − ϕ̃2) ω̃1

3− cos (2 ϕ̃1 − 2 ϕ̃2)
(5.112)

a44 = 4
sin (ϕ̃1 − ϕ̃2) ω̃2 cos (ϕ̃1 − ϕ̃2)

3− cos (2 ϕ̃1 − 2 ϕ̃2)
. (5.113)

The matrix resulting from the linearization along a trajectory usually depends on the time.
In case the reference trajectory reduces to a single point, the matrix of the linearization is
independent of the time.
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Controllability of the linearization around an arbitrary point

The linearization around a given point (ϕ∗1, ϕ
∗
2, ω
∗
1, ω

∗
2)T can be seen as a special case of lin-

earization along a trajectory with (ϕ̃1, ϕ̃2, ω̃1, ω̃2)
T = (ϕ∗1, ϕ

∗
2, ω
∗
1, ω

∗
2)T and we obtain the linear

control system which can be written as

d

dt


ϕ1(t)
ϕ2(t)
ω1(t)
ω2(t)

 =


0 0 1 0
0 0 0 1
a∗31 a∗32 a∗33 a∗34
a∗41 a∗42 a∗43 a∗44



ϕ1(t)
ϕ2(t)
ω1(t)
ω2(t)

+


0 0
0 0
1 0
0 1

u(t). (5.114)

It is easy to see that due to the Kalman rank condition (3.11) we have global controllability of
the linearization independent of the choice of (ϕ∗1, ϕ

∗
2, ω
∗
1, ω

∗
2)T since we have

rank[B|A(ϕ∗1,ϕ
∗
2,ω
∗
1 ,ω
∗
2)
B| . . .] = rank


0 0 1 0 . . .
0 0 0 1 . . .
1 0 0 0 . . .
0 1 0 0 . . .

 = 4. (5.115)

Due to theorem (3.20) the nonlinear system (5.104) is locally controllable at its equilibrium
points.

5.2.3 Stability of the equilibria

For (ϕe1, ϕ
e
2, ω

e
1, ω

e
2) to be an equilibrium point the right-hand side of (5.104) must vanish, which

is the case if and only if

ωe1 = ωe2 = 0 (5.116)

−3 sin(ϕe1)− sin(ϕe1 − 2ϕe2) = 0 (5.117)

sin(ϕe1 − ϕe2) cos(ϕe1) = 0 (5.118)

From the second equation we can see that either

ϕe1 = k · π + ϕe2, k ∈ Z (5.119)

must hold or
ϕe1 =

π

2
+ k · π, k ∈ Z. (5.120)

Since for (5.120) the first term −3 sin(ϕe1) of (5.117) attains its maximum in absolute value
which is always greater than the second term − sin(ϕe1 − 2ϕe2). Therefore an equilibrium point
(ϕe1, ϕ

e
2) must satisfy (5.119).

Inserting (5.119) into (5.117) leads to

0 =− 3 sin(ϕe2 + kπ)− sin(ϕe2 + kπ − 2ϕe2)

⇐⇒ 0 =− 3 sin(ϕe2 + kπ) + sin(ϕe2 − kπ)

⇐⇒ 0 =− 2 cos(kπ)︸ ︷︷ ︸
=(−1)k

sin(ϕe2) (5.121)

(5.122)

and since ϕe2 is 2π-periodic it has to be either 0 or π such that we obtain the equilibrium points

(0, 0, 0, 0), (0, π, 0, 0), (π, 0, 0, 0), (π, π, 0, 0) (5.123)

which can be physically interpreted as follows:
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• (0, 0, 0, 0) both pendulum links point downward,

• (0, π, 0, 0) the first pendulum link points downward, whereas the second one points upward,

• (π, 0, 0, 0) the first pendulum link points upward, whereas the second one points downward,

• (π, π, 0, 0) both pendulum links point upward.

For the equilibrium point (0, 0, 0, 0)T we obtain the linear system

d

dt


ϕ1(t)
ϕ2(t)
ω1(t)
ω2(t)

 =


0 0 1 0
0 0 0 1
−2 1 0 0
2 −2 0 0


︸ ︷︷ ︸

=:A(0,0,0,0)


ϕ1(t)
ϕ2(t)
ω1(t)
ω2(t)

 (5.124)

where the matrix A(0,0,0,0) has eigenvalues ±
√

2−
√

2 · i,±
√

2 +
√

2 · i ∈ C and due to theorem
(4.9) the zero-solution of (5.124) is stable but not asymptotically stable.

For the equilibrium points (π, 0, 0, 0)T , (0, π, 0, 0)T , (π, π, 0, 0)T the system matrices of the linear
systems are given by

A(π,0,0,0) :=


0 0 1 0
0 0 0 1
2 −1 0 0
2 −2 0 0

 (5.125)

A(0,π,0,0) :=


0 0 1 0
0 0 0 1
−2 1 0 0
−2 2 0 0

 (5.126)

A(π,π,0,0) :=


0 0 1 0
0 0 0 1
2 −1 0 0
−2 2 0 0

 (5.127)

where

• A(π,0,0,0) has eigenvalues ±2
1
4 ,±2

1
4 · i and therefore the zero-solution is unstable,

• A(0,π,0,0) has eigenvalues ±2
1
4 ,±2

1
4 · i, the zero-solution is unstable,

• A(π,π,0,0) has eigenvalues ±
√

2 +
√

2,±
√

2−
√

2 and again the zero-solution is unstable.

If we have an explicit form of the state transition matrix, theorem (4.5) can be used to determine
stability properties.
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For A(0,0,0,0) the state transition matrix ΦA(0,0,0,0)
(t, t0) for t ≥ t0 has entries

Φ11 = 1/2 cos

(√
2−
√

2 (t− t0)
)

+ 1/2 cos

(√
2 +
√

2 (t− t0)
)

(5.128)

Φ12 = 1/4
√

2

(
− cos

(√
2 +
√

2 (t− t0)
)

+ cos

(√
2−
√

2 (t− t0)
))

(5.129)

Φ13 = (

√
2−
√

2)−1
(

1/2 sin

(√
2 +
√

2 (t− t0)
)√

2− 1/2 sin

(√
2 +
√

2 (t− t0)
))
−

(5.130)

− 1/4

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)√

2 + sin

(√
2−
√

2 (t− t0)
)

(

√
2−
√

2)−1

Φ14 = −1/4

√
2−
√

2 sin

(√
2 +
√

2 (t− t0)
)

+ 1/4

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)

(5.131)

Φ21 = 1/2
√

2

(
− cos

(√
2 +
√

2 (t− t0)
)

+ cos

(√
2−
√

2 (t− t0)
))

(5.132)

Φ22 = 1/2 cos

(√
2−
√

2 (t− t0)
)

+ 1/2 cos

(√
2 +
√

2 (t− t0)
)

(5.133)

Φ23 = −1/2

√
2−
√

2 sin

(√
2 +
√

2 (t− t0)
)

+ 1/2

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)

(5.134)

Φ24 = (

√
2−
√

2)−1
(

1/2 sin

(√
2 +
√

2 (t− t0)
)√

2− 1/2 sin

(√
2 +
√

2 (t− t0)
))
−

(5.135)

− 1/4

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)√

2 + sin

(√
2−
√

2 (t− t0)
)

(

√
2−
√

2)−1

Φ31 = (

√
2−
√

2)−1
(
−2 sin

(√
2−
√

2 (t− t0)
)
− 1/2 sin

(√
2 +
√

2 (t− t0)
)√

2

)
(5.136)

+ 1/2

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)

+ 1/2

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)√

2

Φ32 = (

√
2−
√

2)−1
(
−1/2

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)√

2−
√

2 + sin

(√
2−
√

2 (t− t0)
))

+

(5.137)

+ 1/2 sin

(√
2 +
√

2 (t− t0)
)

(

√
2−
√

2)−1 − 1/4

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)√

2

Φ33 = 1/2 cos

(√
2−
√

2 (t− t0)
)

+ 1/2 cos

(√
2 +
√

2 (t− t0)
)

(5.138)

Φ34 = 1/4
√

2

(
− cos

(√
2 +
√

2 (t− t0)
)

+ cos

(√
2−
√

2 (t− t0)
))

(5.139)
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Φ41 = −
√

2 +
√

2 sin

(√
2−
√

2 (t− t0)
)
− 1/2

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)√

2+

(5.140)

+ (2 sin

(√
2−
√

2 (t− t0)
)

+ sin

(√
2 +
√

2 (t− t0)
)

)(

√
2−
√

2)−1

Φ42 =

(
−2 sin

(√
2−
√

2 (t− t0)
)
− 1/2 sin

(√
2 +
√

2 (t− t0)
)√

2

)
(

√
2−
√

2)−1+

(5.141)

+ 1/2

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)

+ 1/2

√
2 +
√

2 sin

(√
2−
√

2 (t− t0)
)√

2

Φ43 = 1/2
√

2

(
− cos

(√
2 +
√

2 (t− t0)
)

+ cos

(√
2−
√

2 (t− t0)
))

(5.142)

Φ44 = 1/2 cos

(√
2−
√

2 (t− t0)
)

+ 1/2 cos

(√
2 +
√

2 (t− t0)
)

(5.143)

Since both the sine and cosine function are bounded, every single component of the state transi-
tion matrix is bounded. There exists an uniform upper bound for all entries of the state transition
matrix, say C:

|Φij | ≤ C <∞, i, j ∈ {1, . . . , 4}. (5.144)

We then have

‖ΦA(0,0,0,0)
(t, t0)‖2 = max

x∈R4,‖x‖2=1
‖ΦA(0,0,0,0)

(t, t0)x‖2 (5.145)

≤ max
x∈R4,‖x‖2=1

√
4(Cx1 + Cx2 + Cx3 + Cx4)2 (5.146)

≤ 2C max
x∈R4,‖x‖2=1

‖x‖2 = 2C <∞ (5.147)

showing that the origin is uniformly stable with respect to the system

ẋ(t) = A(0,0,0,0)x(t). (5.148)

The origin is not asymptotically stable, since Φ11 is nonvanishing for t→∞. We have

‖ΦA(0,0,0,0)(t, t0)‖2 = max
x∈R4,‖x‖2=1

‖ΦA(0,0,0,0)(t, t0)x‖2 (5.149)

≥ ‖ΦA(0,0,0,0)(t, t0)(1, 0, 0, 0)T ‖2 ≥ |Φ11(t, t0)| (5.150)

which implies that ‖ΦA(0,0,0,0)(t, t0)‖2 6→ 0 as t→∞.
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For A(π,0,0,0) the state transition matrix ΦA(π,0,0,0)
has entries

Φ11 = 1/2 cos
(

4
√

2t− 4
√

2t0

)
+ 1/4 e−

4√2t+ 4√2t0 + 1/4 e
4√2t− 4√2t0 − 1/2

√
2 cos

(
4
√

2t− 4
√

2t0

)
+

(5.151)

+ 1/4
√

2e
4√2t− 4√2t0 + 1/4

√
2e−

4√2t+ 4√2t0

Φ12 = 1/8
√

2
(

2 cos
(

4
√

2t− 4
√

2t0

)
− e

4√2t− 4√2t0 − e−
4√2t+ 4√2t0

)
(5.152)

Φ13 = 1/8
4
√

2
(

2
√

2 sin
(

4
√

2t− 4
√

2t0

)
−
√

2e−
4√2t+ 4√2t0 +

√
2e

4√2t− 4√2t0 − 2 e−
4√2t+ 4√2t0

)
+

(5.153)

+ 1/8
4
√

2
(
−4 sin

(
4
√

2t− 4
√

2t0

)
+ 2 e

4√2t− 4√2t0
)

Φ14 = −1/8
4
√

2
(
−2 sin

(
4
√

2t− 4
√

2t0

)
− e−

4√2t+ 4√2t0 + e
4√2t− 4√2t0

)
(5.154)

Φ21 = −1/4
√

2
(

2 cos
(

4
√

2t− 4
√

2t0

)
− e

4√2t− 4√2t0 − e−
4√2t+ 4√2t0

)
(5.155)

Φ22 = 1/2 cos
(

4
√

2t− 4
√

2t0

)
+ 1/4 e−

4√2t+ 4√2t0 + 1/4 e
4√2t− 4√2t0 + 1/2

√
2 cos

(
4
√

2t− 4
√

2t0

)
−

(5.156)

− 1/4
√

2e
4√2t− 4√2t0 − 1/4

√
2e−

4√2t+ 4√2t0

Φ23 = 1/4
4
√

2
(
−2 sin

(
4
√

2t− 4
√

2t0

)
− e−

4√2t+ 4√2t0 + e
4√2t− 4√2t0

)
(5.157)

Φ23 = 1/8
4
√

2
(

2
√

2 sin
(

4
√

2t− 4
√

2t0

)
−
√

2e−
4√2t+ 4√2t0 +

√
2e

4√2t− 4√2t0 + 2 e−
4√2t+ 4√2t0

)
+

(5.158)

+ 1/8
4
√

2
(

4 sin
(

4
√

2t− 4
√

2t0

)
− 2 e

4√2t− 4√2t0
)

Φ31 = 1/4
4
√

2
(

2
√

2 sin
(

4
√

2t− 4
√

2t0

)
− e−

4√2t+ 4√2t0 − 2 sin
(

4
√

2t+
4
√

2t0

)
+ e

4√2t− 4√2t0
)

+

(5.159)

+ 1/4
4
√

2
(
−
√

2e−
4√2t+ 4√2t0 +

√
2e

4√2t− 4√2t0
)

Φ32 = −1/8 23/4
(

2 sin
(

4
√

2t− 4
√

2t0

)
− e−

4√2t+ 4√2t0 + e
4√2t− 4√2t0

)
(5.160)

Φ33 = 1/2 cos
(

4
√

2t− 4
√

2t0

)
+ 1/4 e−

4√2t+ 4√2t0 + 1/4 e
4√2t− 4√2t0 − 1/2

√
2 cos

(
4
√

2t− 4
√

2t0

)
+

(5.161)

+ 1/4
√

2e
4√2t− 4√2t0 + 1/4

√
2e−

4√2t+ 4√2t0

Φ34 = 1/8
√

2
(

2 cos
(

4
√

2t− 4
√

2t0

)
− e

4√2t− 4√2t0 − e−
4√2t+ 4√2t0

)
(5.162)

Φ41 = 1/4 23/4
(

2 sin
(

4
√

2t− 4
√

2t0

)
− e−

4√2t+ 4√2t0 + e
4√2t− 4√2t0

)
(5.163)

Φ42 = −1/4
4
√

2
(

2 sin
(

4
√

2t− 4
√

2t0

)
+ e−

4√2t+ 4√2t0 − e
4√2t− 4√2t0 + 2

√
2 sin

(
4
√

2t− 4
√

2t0

))
−

(5.164)

− 1/4
4
√

2
(
−
√

2e−
4√2t+ 4√2t0 +

√
2e

4√2t− 4√2t0
)

Φ43 = −1/4
√

2
(

2 cos
(

4
√

2t− 4
√

2t0

)
− e

4√2t− 4√2t0 − e−
4√2t+ 4√2t0

)
(5.165)

Φ44 = 1/2 cos
(

4
√

2t− 4
√

2t0

)
+ 1/4 e−

4√2t+ 4√2t0 + 1/4 e
4√2t− 4√2t0 + 1/2

√
2 cos

(
4
√

2t− 4
√

2t0

)
−

(5.166)

− 1/4
√

2e
4√2t− 4√2t0 − 1/4

√
2e−

4√2t+ 4√2t0
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Because of

‖ΦA(π,0,0,0)(t, t0)‖2 = max
x∈R4,‖x‖2=1

‖ΦA(π,0,0,0)(t, t0)x‖2 (5.167)

≥ ‖ΦA(π,0,0,0)(t, t0)(1, 0, 0, 0)T ‖2 (5.168)

Now since Φ11 is unbounded in t we have supt≥t0 ‖ΦA(π,0,0,0)‖2 6<∞ and therefore the origin is
an unstable equilibrium point with respect to the system

ẋ(t) = A(π,0,0,0)x(t). (5.169)

In an analogous way one can show that the origin is unstable with respect to the systems

ẋ(t) = A(0,π,0,0)x(t) (5.170)

and

ẋ(t) = A(π,π,0,0)x(t). (5.171)

5.2.4 Stabilization

We regard the control problem

ẋ(t) = A(π,0,0,0)x(t) +Bu(t) (5.172)

with B =


0 0
0 0
1 0
0 1

 and the usual assumptions on u.

Method of Bass

First we will apply the method of Bass (4.2.2) to find a suitable (feedback) control ũ such that
the zero-solution is stable with respect to the system

ẋ(t) = A(π,0,0,0)x(t) +Bũ(t). (5.173)

First we need to choose a λ ∈ R such that (4.94) holds:

λ > max
i

4∑
j=1

|aij | = 4

proposing that λ = 5 is a suitable choice. Now solving equation

(A(π,0,0,0) + λI)P + P (A(π,0,0,0) + λI)T = BBT (5.174)

with λ = 5 and the assumption P = P T we obtain (numerically)

P =


0.0022 0.0001 −0.0109 −0.0006
0.0001 0.0019 0.0000 −0.0093
−0.0109 0.0000 0.1044 0.0014
−0.0006 −0.0093 0.0014 0.0965

 (5.175)
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and according to the theory of Bass (4.2.2) ũ(t) = −BTP−1x(t) is a stabilizing control law and
the controlled linear system with system matrix (A(π,0,0,0)+λI−BBTP−1) has an exponentially

stable zero-solution and with system matrix A(π,0,0,0)−BBTP−1 the zero-solution is stable with
decay rate at least −λ which is −5 here.
A numerical verification shows that all eigenvalues of (A(π,0,0,0) +λI −BBTP−1) have real part

smaller than −3 and all eigenvalues of A(π,0,0,0) −BBTP−1 have real part smaller than −8. As
for the the simple pendulum the (exponential) decay rate obtained by applying the method of
Bass is better than expected from theory (which would be −5 here).

Pole-shifting

Another way of designing a stabilizing feedback control ũ(t) = Fx(t) is the pole-shifting method.
Instead of giving an upper bound for the eigenvalues’ real parts as in the method of Bass we
will predefine the eigenvalues in this method. We have seen now in two examples that a system
stabilized with the method of Bass may decay much more faster than predicted by the theory.
The method of pole-shifting avoids this problem:
We are looking for a 2 × 4 matrix F such that all eigenvalues of A(π,0,0,0) + BF have negative
real part. For example we could try to choose F such that for the characteristic polynomial we
obtain

ρA(π,0,0,0)+BK(λ)
!

= (λ+ 1)4, (5.176)

with −1 as an eigenvalue of multiplicity 4. Together with F =

(
f11 f12 f13 f14
f21 f22 f23 f24

)
equation

(5.176) reads as

λ4 + (−f24 − f13)λ3+ (−f22 − f23f14 + f24f13 − f11)λ2 + (−2 f14 − f14f21 + f23 − f23f12 − 2 f13+
(5.177)

f13f22 + 2 f24 + f24f11)λ− 2− 2 f12 + f21 − f21f12 − 2 f11 + 2 f22 + f22f11
!

= λ4 + 4λ3 + 6λ2 + 4λ+ 1

Equating coefficients gives 4 equations for 8 unknowns. So the problem of pole placement via
state feedback is underdetermined. In [Kautsky et al., 1985] the extra degrees of freedom are
used to minimize the sensitivities of the closed-loop poles to perturbations in A(π,0,0,0) and K.
The only restriction is that the multiplicities of the eigenvalues of A(π,0,0,0) + BF are at most
the rank of B.
Since B has rank 2 we want A(π,0,0,0) + BF to have eigenvalues −1 and −2 with multiplicity 2
each. The algorithm proposed in [Kautsky et al., 1985] then leads to

F =

(
−4 1 −3 0
−2 0 0 −3

)
(5.178)

and the feedback control is then given by

u(t) = Fx(t) =

(
−4 1 −3 0
−2 0 0 −3

)
x(t) (5.179)

which makes the zero-solution stable with respect to (5.173).
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5.2.5 Swing-up and balancing with a single control law

We will distinguish between ”position” and ”configuration” when talking about the state of the
system. Figuratively speaking, ”position” is a snapshot of the double pendulum system, it is
a static description of the positions of the pendulum links. With ”configuration” we want to
describe the exact state of the system including the velocities of the pendulum links. A position
at time t can be described by the vector (ϕ1(t), ϕ2(t))

T and the corresponding configuration
is given by the state vector (ϕ1(t), ϕ2(t), ω1(t), ω2(t))

T . The control law we use swings up the
double pendulum from different starting configurations and balances the position where both
links of the double pendulum point upright. We will refer to this position as ”upup-position”
and in general ”direction1direction2-position” will denote the position where the first link points
in direction1 and the second link points in direction2.

The mathematical model of consideration is obtained by adding a control term to the nonlinear
model derived in the previous section:

d

dt


ϕ1(t)
ϕ2(t)
ω1(t)
ω2(t)

 =


ω1

ω2
−3 sinϕ1−sin(ϕ1−2ϕ2)−2 sin(ϕ1−ϕ2)(ω2

2+ω
2
1 cos(ϕ1−ϕ2))

3−cos(2ϕ1−2ϕ2)
2 sin(ϕ1−ϕ2)(2ω2

1+2 cosϕ1+ω2
2 cos(ϕ1−ϕ2))

3−cos(2ϕ1−2ϕ2)

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

=:B

u(t) =: f(z, u).

(5.180)
Here u is a vector-valued function with two components and z(t) = (ϕ1(t), ϕ2(t), ω1(t), ω2(t))

T .
From the physical point of view it makes sense to add the input to the variables ω1 and ω2,
which represent the velocities of the links. It does not make much sense to add the control input
to the variables ϕ1 and ϕ2 which represent the positions of the links. A simple reason is for
example that ϕ1 and ϕ2 do not contain information about whether the corresponding pendulum
link is swinging up or down whereas the variables ω1 and ω2 contain this information in form of
a positive or negative sign. We will discuss the choice of the matrix B in (5.2.6). We will also
discuss in (5.2.6) whether it is necessary for B to have two columns (fully actuated) or whether
it would suffice to use a suitable B with only one column (underactuated case). We will use the
modified control law presented in (4.2.6):
We are interested in swinging up the double pendulum and balancing it at its upright position
(π, π, 0, 0). We will use the modified control law (4.2.6) to perform this task. In a first attempt
we just use the equilibrium point (π, π, 0, 0)T as target ”trajectory”. In this case our control
law becomes very simple since linearizing the uncontrolled system (5.180) about the equilibrium

point (π, π, 0, 0)T gives A := ∂f
∂z (z, u)

∣∣∣
zT=(π,π,0,0)

as system matrix of the linearization.

We will discuss these results before in a second attempt we try to use the dynamics of the
uncontrolled double pendulum and compare the results with the results of the first attempt.
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5.2.6 Simulation results and discussion

Before discussing the results we will present the simulation results obtained by applying the
control law presented above. We used different initial data for our computations and ran each
simulation with two different values for the parameter α. In particular we chose α = 0 and α = 2.
Each simulation runs for 10 time units and the matrix H−1α used in our control is updated every
2 time units (δk = δ = 2 ∀ k ∈ N0). The simulation results will be presented in a series of figures
each consisting of three subfigures. For the first part we will only show the results for the first
5 time units, since all the interesting dynamics take place within this time interval.

Figure 5.19: setup of the single figures

Figure (5.19) shows one of these figures consisting of three subfigures. It is organized in the
following way:

• Subfigure 1 shows the solution of the controlled problem,

• Subfigure 2 shows the solution of the ”target state” or ”trajectory” . In our case the
”target state” will be the upup-position of the double pendulum. As ”target trajectory”
or reference trajectory we will choose the solution of uncontrolled nonlinear model of the
double pendulum with initial data (1, 2, 0, 0)T .

• Subfigure 3 shows both the solution of the controlled and uncontrolled problem. The target
solution is shown as gray broken line ”– · –”.

Each figure consisting of these three subfigures shows the state of the system at a certain
time. We will call such a figure ”frame”. For better readability and comparability of the results
belonging to the same initial data but to different values for α we rescaled the time. For the
graphic presentation of the simulation results we will refer to frames rather then speaking of
time (1 time unit =̂ 200 frames).
Originally the simulation results were obtained by MATLAB and saved as movie. The numbering
of the frames presented here is the same as that in the movies obtained by the matlab simulation.
The first frame of each series will always show the the position at the beginning of the simulation
(frame 0), the last frame of each series will show the position at the end of the simulation.
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initial data for controlled system: (0, 0, 0, 0)T , simulation time: 5 time units, α = 0:

(a) frame 0 (b) frame 25

(c) frame 50 (d) frame 75

(e) frame 100 (f) frame 125

(g) frame 150 (h) frame 175

(i) frame 200 (j) frame 250

(k) frame 300 (l) frame 1000

Figure 5.20: Swing-up from downdown-position to upup-position and balancing (α = 0)
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Initial data (0, 0, 0, 0)T and α = 0

Figure 5.21: Control law and deviation in the single components
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initial data for controlled system: (0, 0, 0, 0)T , simulation time: 5 time units, α = 2:

(a) frame 0 (b) frame 5

(c) frame 10 (d) frame 15

(e) frame 20 (f) frame 25

(g) frame 30 (h) frame 35

(i) frame 40 (j) frame 50

(k) frame 75 (l) frame 1000

Figure 5.22: Swing-up from downdown-position to upup-position and balancing (α = 2)
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Initial data (0, 0, 0, 0)T and α = 2

Figure 5.23: Control law and deviation in the single components
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initial data for controlled system: (0, π, 0, 0)T , simulation time: 5 time units, α = 0:

(a) frame 0 (b) frame 20

(c) frame 40 (d) frame 60

(e) frame 80 (f) frame 100

(g) frame 150 (h) frame 200

(i) frame 250 (j) frame 300

(k) frame 350 (l) frame 1000

Figure 5.24: Swing-up from downup-position to upup-position and balancing (α = 0)
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Initial data (0, π, 0, 0)T and α = 0

Figure 5.25: Control law and deviation in the single components
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initial data for controlled system: (0, π, 0, 0)T , simulation time: 5 time units, α = 2:

(a) frame 0 (b) frame 5

(c) frame 10 (d) frame 15

(e) frame 20 (f) frame 25

(g) frame 30 (h) frame 40

(i) frame 50 (j) frame 75

(k) frame 100 (l) frame 1000

Figure 5.26: Swing-up from downup-position to upup-position and balancing (α = 2)
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Initial data (0, π, 0, 0)T and α = 2

Figure 5.27: Control law and deviation in the single components
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For our simulation we chose two different initial configurations. The stable equilibrium point,
where both pendula point downward (downdown-position) and the unstable equilibrium position
where the first pendulum points downward and the second one upward (downup-position). For
these examples the initial velocities of the pendulum links were assumed to be zero.
For each starting configuration we ran the simulation with two different values for the parameter
α. We chose 0 and 2 for the simulations.
We succeeded in swinging up the double pendulum and balance it in the upup-position with a
single control law. As expected a higher value for the parameter α leads to a faster ”convergence”
to the upup-position. Starting from the downdown-position and choosing α = 2 the double
pendulum can be stabilized at the upup-position about 4.5 times faster than with α = 0. The
price for the faster convergence to the upper equilibrium point is a significant increase in the
magnitude of the control input u. Comparing figures (5.21) and (5.23) we see that for α = 2 the
maximum value of the control function u is roughly about 20 times higher than the maximum
value attained for α = 0. In fact in this example the parameter α can only be used in a very
narrow range to get better results with respect to the time needed to stabilize the upup-position,
since exorbitantly high control inputs would be needed. The following table shows the largest
value of ‖u‖ for different values for α. With framemax we give roughly the time [in frames] which
is needed until the upper equilibrium state is reached in good approximation:

α 0 2 4 8 10

maxt ‖u(t)‖ 9 222 950 4473 7604

framemax 300 75 40 20 15

The control law we propose is based on control laws designed for linear autonomous systems (see
[Kleinmann, 1970] and (4.12) and linear time-varying systems (see [Cheng, 1979] and (4.15)).
We recall that the nonlinear system (5.180) is locally controllable around the equilibrium point
(π, π, 0, 0), since its linearization around this equilibrium point is completely controllable (cf.
theorem (3.20)), which was shown via the Kalman controllability criteria (3.11): The system
matrix of the linearization at (z0)T = (π, π, 0, 0)T is given by

A :=
∂f

∂z
(z, u)

∣∣∣∣
z=(π,π,0,0)T

=


0 0 1 0
0 0 0 1
2 −1 0 0
−2 2 0 0

 (5.181)

and the matrix

[B|AB|A2B|A3B] =


0 0 1 0 0 0 2 −1

0 0 0 1 0 0 −2 2

1 0 0 0 2 −1 0 0

0 1 0 0 −2 2 0 0

 (5.182)

has rank 4 and therefore the linear control system

d

dt
z(t) =


0 0 1 0
0 0 0 1
2 −1 0 0
−2 2 0 0

 z(t) +


0 0
0 0
1 0
0 1

u(t), z ∈ R4, t ∈ R (5.183)

is completely controllable due to Kalman and the nonlinear system (5.180) is locally controllable
in an environment around (π, π, 0, 0)T .
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Local stability of the controlled system

Once the double pendulum is close to the equilibrium point z0 where both links point upright,
the proposed control law (4.130) guarantees convergence to this equilibrium point:
Since z0 is an equilibrium point of the uncontrolled nonlinear system f(z, 0) we obtain by Taylor
series expansion (cf. proof of theorem (4.16))

ż(t) = f(z, u)− f(z0, 0) (5.184)

= A(z(t)− z0) +Bu(t) + o(z(t)− z0, u(t), t) (5.185)

Inserting our control law (4.130) and using the fact that in our special case H̃α(tk, δk) = Hα for
all k ∈ N0, leads to

ż(t) = (A−BBT H̃−1α )(z(t)− z0) + o(z(t)− z0(t), t) (5.186)

where our regularity assumptions guarantee that

lim
‖z(t)−z0‖→0

sup
t≥t0

‖o(z(t)− z0(t), t)‖
‖z(t)− z0‖

= 0. (5.187)

All eigenvalues of A − BBT H̃−1α have real part < −1 such that with the help of theorem (4.9)
this establishes (global) stability of the system

ż(t) = (A−BBT H̃−1α )(z(t)− z0) (5.188)

and therefore local stability around z0 (and u0 = 0) of the system

ż = f(z, u). (5.189)

A numerical Lyapunov function candidate for global convergence

We will propose a Lyapunov function candidate and give some numerical results. Unfortunately I
am not able to proof mathematically that the proposed function is actually a Lyapunov function.
Instead we will discuss some properties of the suggested function in relation with the divergence
of f .

For the divergence of the right hand side f of the controlled double pendulum system (5.180)
we can give the following upper bound for x 6= (π, π, 0, 0)T :

div f = − traceBBTH−1α + 4(ω2 − ω1)
sin(ϕ1 − ϕ2) cos(ϕ1 − ϕ2)

3− cos(2ϕ1 − 2ϕ2)

= − traceBBTH−1α + 4(ω2 − ω1)
sin(2ϕ1 − 2ϕ2)

6− 2 cos(2ϕ1 − 2ϕ2)

≤ − traceBBTH−1α + (ω2 − ω1)

Since BBTH−1α is symmetric and positive definite we have

− traceBBTH−1α < 0 (5.190)

and therefore div f < 0 if
ω2 − ω1 < traceBBTH−1α . (5.191)
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Since H−1α = H−10 e4αξ for some ξ ∈ [0, 2] this can always be guaranteed by choosing a suitable
α > 0.
Note that although for every initial condition we can choose an appropriate α > 0 such that for
our control law u and the initial value z0 we have div f(z0, u) < 0 it may happen that for later
times condition (5.191) is violated.
We propose the following function as Lyapunov function candidate for the equilibrium point
(π, π, 0, 0)T with respect to system (5.180)

V (z(t)) :=
1

2
‖z1(t)− π‖2 +

1

2
‖z2(t)− π‖2. (5.192)

The condition V (z(t)) > 0 for z(t) ∈ R4 \ {(π, π, 0, 0)T } and V ((π, π, 0, 0)T ) = 0 holds. For the
derivative we have

V̇ (z(t)) =

〈(
z1(t)− π
z2(t)− π

)
,

(
ż1(t)
ż2(t)

)〉
(5.193)

or using the variables (ϕ1(t), ϕ2(t), ω1(t), ω2(t))
T = z(t)

V̇ (ϕ1(t), ϕ2(t), ω1(t), ω2(t)) =

〈(
ϕ1(t)− π
ϕ2(t)− π

)
,

(
ω1(t)
ω2(t)

)〉
(5.194)

An analytical estimation of this derivative is complicated because for estimating the terms
ω1(t), ω2(t) we would need an analytical representation of H−1α . For our simulation we obtain
the following numerical results for V (z(t)):



5.2. DOUBLE PENDULUM 115

(a) initial condition z0 = (0, 0, 0, 0)T , α = 0 (b) initial condition z0 = (0, 0, 0, 0)T , α = 2

(c) initial condition z0 = (0, π, 0, 0)T , α = 0 (d) initial condition z0 = (0, π, 0, 0)T , α = 2

Figure 5.28: Lyapunov function candidate
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We will give a further example where our Lyapunov function candidate fails to be a decaying
function. We chose the initial value zT0 = (0, 0,−10, 50) with α = 0 and α = 1. One can observe
from the numerical computations that for the case α = 0 the condition (5.191) does not hold
for all times and that our Lyapunov function candidate fails to be decaying. So our assumption
is that V̇ (z(t)) < 0 if (5.191) holds for all times. For α = 1 condition (5.191) is not violated and
our Lyapunov function candidate is decaying everywhere:

(a) initial condition z0 = (0, 0,−10, 50)T , α = 0 (b) initial condition z0 = (0, 0, .10, 50)T , α = 1

Figure 5.29: Lyapunov function candidate and divergence of f
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Bad condition as an obstruction for the underactuated case

Nonlinear underactuated control is an important field of control theory. There are several reasons
why one might be interested in underactuated control. For example if one or even more of the
actuators fail one is interested in the question whether the remaining control components are
sufficient to control the system. Practical aspects may also play an important role. For example
a double pendulum system, where forces to both pendulum links can be applied, is much more
complicated to realize, then a double pendulum system, where only a force to the first link is
applied. Such an underactuated control for the nonlinear double pendulum system was designed
in [Fantoni and Lozano, 2002][pp. 53-72]. It is based on a Lyapunov approach and results in an
oscillating control law (see figure 5.30), which brings the double pendulum close to the upup-
position. For the balancing part a linear controller was used.

Figure 5.30: Nonlinear underactuated control by Fantoni / Lozano for swinging up the double
pendulum. The figure shows the scalar valued control which represents the force applied to the
first link. [Fantoni and Lozano, 2002][p.70].

The oscillations are due to the controller design. Fantoni and Lozano wanted to design a con-
troller, which does not need high gains. The highest value for the control is attained for swinging
up the first link to its upright position. Then the first link more or less stays in its upright po-
sition while the second pendulum link is brought to its upright position by adding only a small
portion of energy so that with every ”swing” the second link becomes closer to the upright
position. When it is finally close enough to the upright position a linear feedback controller is
applied for the balancing part.

This example shows that an underactuated control of the nonlinear double pendulum system
is possible. On the other hand the control law is designed in two steps, the first brings the
pendulum close to the equilibrium where both pendulum links point upright (swinging up part)
- the second balances the double pendulum at its upup-position (balancing part). Up to my
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knowledge there is no underactuated control for the double pendulum, which can achieve both
parts with a single control law.
We wanted to design such a control, which swings the double pendulum up and balances it with
only one control law, where no switching would be needed. Unfortunately in the underactuated
case the controllability Gramian turns out to be ill conditioned - being a real obstacle for our
approach to work:
The linearized system

d

dt
z(t) =


0 0 1 0
0 0 0 1
2 −1 0 0
−2 2 0 0


︸ ︷︷ ︸

A

z(t) +


0
0
1
0


︸ ︷︷ ︸
B

u(t), z ∈ R4, t ∈ R (5.195)

is completely controllable, since the Kalman matrix

[B|AB|A2B|A3B] =


0 1 0 2

0 0 0 −2

1 0 2 0

0 0 −2 0

 (5.196)

has full rank, which means that the nonlinear underactuated double pendulum system

d

dt


ϕ1(t)
ϕ2(t)
ω1(t)
ω2(t)

 =


ω1

ω2
−3 sinϕ1−sin(ϕ1−2ϕ2)−2 sin(ϕ1−ϕ2)(ω2

2+ω
2
1 cos(ϕ1−ϕ2))

3−cos(2ϕ1−2ϕ2)
2 sin(ϕ1−ϕ2)(2ω2

1+2 cosϕ1+ω2
2 cos(ϕ1−ϕ2))

3−cos(2ϕ1−2ϕ2)

+


0
0
1
0

u(t). (5.197)

is locally controllable around its equilibrium point (π, π, 0, 0)T .
For our algorithm to work it is crucial that the matrixHα(ti, δi) is invertible for every ti, i = 1, . . ..
Since we are interested in steering the system to an equilibrium point, this condition reduces to
finding a positive δ such that Hα(0, δ) is invertible. We will show that for α = 0 such an δ > 0

exists: Note that the matrix A has eigenvalues ±
√

2−
√

2, ±
√

2 +
√

2. Therefore a regular
transformation matrix T exists such that A = TDT−1


0 0 1 0
0 0 0 1
2 −1 0 0
−2 2 0 0

 =



1/4 1/4 1/4 1/4

1/2 1+
√
2

2+
√
2

−1/2 1+
√
2

2+
√
2

1/2 1+
√
2

2+
√
2

−1/2 1+
√
2

2+
√
2

−1/4 −2+
√
2√

2−
√
2

1/4
√
2√

2−
√
2
−1/2 1√

2−
√
2(2+

√
2)
−1/2 1+

√
2√

2−
√
2(2+

√
2)

1/2 −1+
√
2√

2−
√
2
−1/2 1√

2−
√
2

−1/2 −1+
√
2√

2−
√
2

1/2 1√
2−
√
2


·

(5.198)

·



√
2−
√

2t 0 0 0

0
√

2 +
√

2t 0 0

0 0 −
√

2−
√

2t 0

0 0 0 −
√

2 +
√

2t

 ·
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·



1 1/2 2+
√
2

1+
√
2

−1/2
(2+
√
2)(−2+

√
2)√

2−
√
2

−1/2
(1+
√
2)(−2+

√
2)√

2−
√
2

1/2
√
2(2+

√
2)

1+
√
2

−1/2 2+
√
2

1+
√
2

−1/2
(2+
√
2)(−2+

√
2)√

2−
√
2(1+

√
2)

1/2 −2+
√
2√

2−
√
2

1 1/2 2+
√
2

1+
√
2

1/2
(2+
√
2)(−2+

√
2)√

2−
√
2

1/2
(1+
√
2)(−2+

√
2)√

2−
√
2

1/2
√
2(2+

√
2)

1+
√
2

−1/2 2+
√
2

1+
√
2

1/2
(2+
√
2)(−1+

√
2)(−2+

√
2)√

2−
√
2

−1/4
√
2(2+

√
2)(−2+

√
2)√

2−
√
2(1+

√
2)



where D is a diagonal matrix. For α = 0 we have

H0(0, t) =

∫ t

0
e−AτBBT e−A

T τ dτ (5.199)

= T

∫ t

0
e−DτTBBTT−T e−Dτ dτT T (5.200)

such that H0(0, t) is invertible if and only if
∫ t
0 e−DτTBBTT−T e−Dτ dτ is invertible. This in-

tegral can be explicitly solved with the symbolic toolbox of matlab, the entries of this matrix
T−1H0(0, t)T

−T are given by

(
T−1H0(0, t)T

−T )
11

= −1/4

√
2−
√

2

(
−3− 2

√
2 + 3 e−2

√
2−
√
2t + 2 e−2

√
2−
√
2t
√

2

)
(
T−1H0(0, t)T

−T )
21

= −1/4
−3− 2

√
2 + 3 e

−t
(√

2+
√
2+
√

2−
√
2
)

+ 2 e
−t
(√

2+
√
2+
√

2−
√
2
)√

2

(1 +
√

2)
(
2−
√

2
)−3/2(

T−1H0(0, t)T
−T )

31
=
(
−1/2 + 1/4

√
2
)(

2 +
√

2
)2
t(

T−1H0(0, t)T
−T )

41
= −1/4

√
2−
√

2

(
−2−

√
2 + 2 e

−t
(√

2−
√
2−
√

2+
√
2
)

+ e
−t
(√

2−
√
2−
√

2+
√
2
)√

2

)
(
T−1H0(0, t)T

−T )
12

= −1/4
−3− 2

√
2 + 3 e

−t
(√

2+
√
2+
√

2−
√
2
)

+ 2 e
−t
(√

2+
√
2+
√

2−
√
2
)√

2(
2−
√

2
)−3/2

(1 +
√

2)

(
T−1H0(0, t)T

−T )
22

= −1/8

(
2 +
√

2
)5/2 (−1 + e−2

√
2+
√
2t
)

(
3 + 2

√
2
) (

1 +
√

2
)2

(
T−1H0(0, t)T

−T )
32

= 1/4

√
2−
√

2

(
−2−

√
2 + 2 e

t
(√

2−
√
2−
√

2+
√
2
)

+ e
t
(√

2−
√
2−
√

2+
√
2
)√

2

)
(
T−1H0(0, t)T

−T )
42

= 1/4

(
−1 +

√
2
) (

2 +
√

2
)2 (−2 +

√
2
)
t

1 +
√

2
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(
T−1H0(0, t)T

−T )
13

=
(
−1/2 + 1/4

√
2
)(

2 +
√

2
)2
t(

T−1H0(0, t)T
−T )

23
= 1/4

√
2−
√

2

(
−2−

√
2 + 2 e

t
(√

2−
√
2−
√

2+
√
2
)

+ e
t
(√

2−
√
2−
√

2+
√
2
)√

2

)
(
T−1H0(0, t)T

−T )
33

= 1/4

√
2−
√

2

(
−3− 2

√
2 + 3 e2

√
2−
√
2t + 2 e2

√
2−
√
2t
√

2

)
(
T−1H0(0, t)T

−T )
43

= 1/4
√

2

√
2−
√

2

(
−1 + e

t
(√

2+
√
2+
√

2−
√
2
))

(
T−1H0(0, t)T

−T )
14

= −1/4

√
2−
√

2

(
−2−

√
2 + 2 e

−t
(√

2−
√
2−
√

2+
√
2
)

+ e
−t
(√

2−
√
2−
√

2+
√
2
)√

2

)
(
T−1H0(0, t)T

−T )
24

= 1/4

(
−1 +

√
2
) (

2 +
√

2
)2 (−2 +

√
2
)
t

1 +
√

2(
T−1H0(0, t)T

−T )
34

= 1/4
√

2

√
2−
√

2

(
−1 + e

t
(√

2+
√
2+
√

2−
√
2
))

(
T−1H0(0, t)T

−T )
44

= −1/4

√
2 +
√

2

(
3− 2

√
2− 3 e2

√
2+
√
2t + 2 e2

√
2+
√
2t
√

2

)
which – due to maple – has rank 4 for every t > 0. Unfortunately, this matrix is ill conditioned.
The following table gives some values for the condition number κ(H0(0, t)) = ‖H−10 (0, t)‖∞‖H0(0, t)‖∞
for some values t > 0

t 0.5 1 1.5 2

κ(H0(0, t)) 3.7 · 106 2.5 · 105 1.5 · 105 2.3 · 105

Since Hα(0, t) = H0(0, t) · e4ξ for some ξ ∈ [−t, 0] we have that all Hα(0, t) for α ≥ 0 are ill
conditioned. Therefore our attempt fails to work in the underactuated case.
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Starting nearby a solution which comes close to the upper equilibrium point by its
natural dynamics

We regard a trajectory which starts in position (0, 0)T but with velocities different from zero
such that the uncontrolled motion of the double pendulum comes at least close to the upper
equilibrium configuration. This ”natural movement” of the double pendulum is used as tar-
get/reference trajectory for the control law. The idea behind this approach is that once we are
close to the reference trajectory we can use the dynamics of the uncontrolled double pendulum
to swing it up by just stabilizing the solution of the controlled pendulum equation along this
solution.

Remark: Since it is not possible to find a solution for the nonlinear double pendulum such that
the upper equilibrium point is reached in finite time (it does not exist!), we choose an initial
condition, which brings the double pendulum close to the desired equilibrium point. When the
solution is close enough, we will take as new reference trajectory the upper equilibrium state.
In this way we guarantee that the controlled solution does not only swing-up but balances the
pendulum in the upup-position.

For the solution of the uncontrolled pendulum equation we used the initial condition z(0) =
(0, 0,−3.02, 4.76)T . The tracks of the two pendulum bobs are shown in figure (5.31):
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Figure 5.31: tracks of the pendulum bobs of the reference trajectory
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initial data for controlled system: (0, 0, 0, 0)T , simulation time: 8 time units (800 frames),
α = 0:

(a) frame 0 (b) frame 25

(c) frame 50 (d) frame 75

(e) frame 100 (f) frame 125

(g) frame 150 (h) frame 175

(i) frame 200 (j) frame 250

(k) frame 300 (l) frame 350

Figure 5.32: Part I: Swing-up along a trajectory and balancing (α = 0)
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initial data for controlled system: (0, 0, 0, 0)T , simulation time: 8 time units (800 frames),
α = 0:

(a) frame 375 (b) frame 400

(c) frame 425 (d) frame 450

(e) frame 500 (f) frame 525

(g) frame 550 (h) frame 575

(i) frame 600 (j) frame 625

(k) frame 650 (l) frame 800

Figure 5.33: Part II: Swing-up along a trajectory and balancing (α = 0)
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Initial data (0, 0, 0, 0)T and α = 0

Figure 5.34: Control law and deviation in the single components
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initial data for controlled system: (0, 0, 0, 0)T , simulation time: 8 time units (800 frames),
α = 0:

(a) frame 0 (b) frame 10

(c) frame 25 (d) frame 50

(e) frame 60 (f) frame 75

(g) frame 90 (h) frame 100

(i) frame 125 (j) frame 150

(k) frame 200 (l) frame 800

Figure 5.35: Swing-up and balancing (α = 0)
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Initial data (0, 0, 0, 0)T and α = 0

Figure 5.36: Control law and deviation in the single components
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5.3 Triple Pendulum

5.3.1 System dynamics

We consider a mathematical triple pendulum with the same simplifications as for the double
pendulum. We obtain the triple pendulum by ”‘adding”’ a further pendulum link of length 1 to

Figure 5.37: mathematical triple pendulum

the double pendulum described above. The equations of motion can be derived as follows:

From figure (5.37) we have

x1 = sinϕ1 (5.201)

y1 = cosϕ1 (5.202)

x2 = sinϕ1 + sinϕ2 (5.203)

y2 = cosϕ1 + cosϕ2 (5.204)

x3 = sinϕ1 + sinϕ2 + sinϕ3 (5.205)

y3 = cosϕ1 + cosϕ2 + cosϕ3 (5.206)

such that for the velocities we obtain

v21 = ẋ21 + ẏ21 =ϕ̇2
1 (5.207)

v22 = ẋ22 + ẏ22 =ϕ̇2
1 + ϕ̇2

2 + 2ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2)

v32 = ẋ23 + ẏ23 =ϕ̇2
1 + ϕ̇2

2 + ϕ̇2
3+

+ 2ϕ̇1ϕ̇2(cosϕ1 cosϕ2 + sinϕ1 sinϕ2)

+ 2ϕ̇1ϕ̇3(cosϕ1 cosϕ3 + sinϕ1 sinϕ3)

+ 2ϕ̇2ϕ̇3(cosϕ2 cosϕ3 + sinϕ2 sinϕ3)
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The kinetic energy Ekin and the potential energy Epot of the triple pendulum system are given
by

Ekin =
1

2
v21 +

1

2
v22 +

1

2
v23 (5.208)

=
3

2
ϕ̇2
1 + ϕ̇2

2 +
1

2
ϕ̇2
3+

+ 2ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2) + ϕ̇1ϕ̇3 cos(ϕ1 − ϕ3) + ϕ̇2ϕ̇3 cos(ϕ2 − ϕ3)

Epot =− 3 cosϕ1 − 2 cosϕ2 − cosϕ3. (5.209)

The Langrangian L of the triple pendulum system is then defined as

L(ϕ1, ϕ2, ϕ̇1, ϕ̇2) :=Ekin − Epot

=
3

2
ϕ̇2
1 + ϕ̇2

2 +
1

2
ϕ̇2
3 + 2ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2) + ϕ̇1ϕ̇3 cos(ϕ1 − ϕ3)+ (5.210)

+ ϕ̇2ϕ̇3 cos(ϕ2 − ϕ3) + 3 cosϕ1 + 2 cosϕ2 + cosϕ3

which could as well have been obtained by the general formula for the n-pendulum where n = 3
as derived in appendix C as equation (C.4).
Using ϕ = (ϕ1, ϕ2, ϕ3)

T and ϕ̇ = (ϕ̇1, ϕ̇2, ϕ̇3)
T we can derive the equations of motion by evalu-

ating the Euler-Lagrange equations

d

dt

(
∂L

∂ϕ̇
(ϕ, ϕ̇)

)
− ∂L

∂ϕ
(ϕ, ϕ̇) = 0. (5.211)

We have

∂L

∂ϕ̇1
(ϕ, ϕ̇) =3ϕ̇1 + 2ϕ̇2 cos(ϕ1 − ϕ2) + ϕ̇3 cos(ϕ1 − ϕ3)

d

dt

∂L

∂ϕ̇1
(ϕ, ϕ̇) =3ϕ̈1 + 2ϕ̈2 cos(ϕ1 − ϕ2) + 2ϕ̇2 sin(ϕ1 − ϕ2)(ϕ̇2 − ϕ̇1)+

+ ϕ̈3 cos(ϕ1 − ϕ3) + ϕ̇3 sin(ϕ1 − ϕ3)(ϕ̇3 − ϕ̇1)

∂L

∂ϕ1
(ϕ, ϕ̇) =− 2ϕ̇1ϕ̇2 sin(ϕ1 − ϕ2)− ϕ̇1ϕ̇3 sin(ϕ1 − ϕ3)− 3 sinϕ1

∂L

∂ϕ̇2
(ϕ, ϕ̇) =2ϕ̇2 + 2ϕ̇1 cos(ϕ1 − ϕ2) + ϕ̇3 cos(ϕ2 − ϕ3)

d

dt

∂L

∂ϕ̇2
(ϕ, ϕ̇) =2ϕ̈2 + 2ϕ̈1 cos(ϕ1 − ϕ2) + 2ϕ̇1(ϕ̇2 − ϕ̇1) sin(ϕ1 − ϕ2)+

+ ϕ̈3 cos(ϕ2 − ϕ3) + ϕ̇3(ϕ̇3 − ϕ̇2) sin(ϕ2 − ϕ3)

∂L

∂ϕ2
(ϕ, ϕ̇) =2ϕ̇1ϕ̇2 sin(ϕ1 − ϕ2)− ϕ̇2ϕ̇3 sin(ϕ2 − ϕ3)− 2 sinϕ2

∂L

∂ϕ̇3
(ϕ, ϕ̇) =ϕ̇3 + ϕ̇1 cos(ϕ1 − ϕ3) + ϕ̇2 cos(ϕ2 − ϕ3)

d

dt

∂L

∂ϕ̇3
(ϕ, ϕ̇) =ϕ̈3 + ϕ̈1 cos(ϕ1 − ϕ3) + ϕ̇1(ϕ̇3 − ϕ̇1) sin(ϕ1 − ϕ3)+

+ ϕ̈2 cos(ϕ2 − ϕ3) + ϕ̇2(ϕ̇3 − ϕ̇2) sin(ϕ2 − ϕ3)

∂L

∂ϕ3
(ϕ, ϕ̇) =ϕ̇1ϕ̇3 sin(ϕ1 − ϕ3) + ϕ̇2ϕ̇3 sin(ϕ2 − ϕ3)− sinϕ3
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and with the Euler-Lagrange equation (5.211) we obtain the equations of motion of the mathe-
matical triple pendulum:

3ϕ̈1+2ϕ̈2 cos(ϕ1−ϕ2)+2ϕ̇2
2 sin(ϕ1−ϕ2)+ϕ̈3 cos(ϕ1−ϕ3)+ϕ̇2

3 sin(ϕ1−ϕ3)+3 sinϕ1 = 0 (5.212)

2ϕ̈2+2ϕ̈1 cos(ϕ1−ϕ2)−2ϕ̇2
1 sin(ϕ1−ϕ2)+ϕ̈3 cos(ϕ2−ϕ3)+ϕ̇2

3 sin(ϕ2−ϕ3)+2 sinϕ2 = 0 (5.213)

ϕ̈3 + ϕ̈1 cos(ϕ1−ϕ3)− ϕ̇2
1 sin(ϕ1−ϕ3) + ϕ̈2 cos(ϕ2−ϕ3)− ϕ̇2

2 sin(ϕ2−ϕ3) + sinϕ3 = 0 (5.214)

Introducing the variables ωi(t) = d
dtϕi(t) for i ∈ {1, 2, 3} we obtain the first order differential

equation system

d

dt



ϕ1

ϕ2

ϕ3

ω1

ω2

ω3



=



ω1

ω2

ω3

−
(
2 cos2(ϕ1 − ϕ3)− 6− 4 cos(ϕ1 − ϕ2) cos(ϕ2 − ϕ3) cos(ϕ1 − ϕ3) + 4 cos2(ϕ1 − ϕ2)

+3 cos2(ϕ2 − ϕ3)
)−1 (−4ω2

2 sin(ϕ1 − ϕ2) + 2ω2
2 sin(ϕ1 − ϕ2) cos2(ϕ2 − ϕ3)

−2ω2
3 sin(ϕ1 − ϕ3) + ω2

3 sin(ϕ1 − ϕ3) cos2(ϕ2 − ϕ3)− 6 sinϕ1 + 3 sinϕ1 cos2(ϕ2 − ϕ3)
−4 cos(ϕ1 − ϕ2)ω

2
1 sin(ϕ1 − ϕ2) + 2 cos(ϕ1 − ϕ2)ω

2
3 sin(ϕ2 − ϕ3) + 4 cos(ϕ1 − ϕ2) sinϕ2

+2 cos(ϕ1 − ϕ2) cos(ϕ2 − ϕ3)ω
2
1 sin(ϕ1 − ϕ3) + 2 cos(ϕ1 − ϕ2) cos(ϕ2 − ϕ3)ω

2
3 sin(ϕ2 − ϕ3)

−2 cos(ϕ1 − ϕ2) cos(ϕ2 − ϕ3) sinϕ3 − 2 cos(ϕ1 − ϕ3)ω
2
1 sin(ϕ1 − ϕ3) + 2 cos(ϕ1 − ϕ3)

· cos(ϕ2 − ϕ3)ω
2
1 sin(ϕ1 − ϕ2)− cos(ϕ1 − ϕ3) cos(ϕ2 − ϕ3)ω

2
3 sin(ϕ2 − ϕ3)

−2 cos(ϕ1 − ϕ3) cos(ϕ2 − ϕ3) sinϕ2 − 2 cos(ϕ1 − ϕ− 3)ω2
2 sin(ϕ2 − ϕ3)

+2 cos(ϕ1 − ϕ3) sinϕ3)
−
(
2 cos2(ϕ1 − ϕ3)− 6− 4 cos(ϕ1 − ϕ2) cos(ϕ2 − ϕ3) cos(ϕ1 − ϕ3) + 4 cos2(ϕ1 − ϕ2)

+3 cos2(ϕ2 − ϕ3)
)−1 (−3 cos(ϕ2 − ϕ3) cos(ϕ1 − ϕ3) sinϕ1 − 3 cos(ϕ2 − ϕ3)ω

2
2 sin(ϕ2 − ϕ3)

−3 cos(ϕ2 − ϕ3)ω
2
1 sin(ϕ1 − ϕ3)− 2 cos(ϕ2 − ϕ3) cos(ϕ1 − ϕ3)ω

2
2 sin(ϕ1 − ϕ2)

− cos(ϕ2 − ϕ3) cos(ϕ1 − ϕ3)ω
2
3 sin(ϕ1 − ϕ3) + 3 cos(ϕ2 − ϕ3) sinϕ3 + 2 sinϕ2·

· cos2(ϕ1 − ϕ3)− 3ω2
3 sin(ϕ2 − ϕ3) + 6ω2

1 sin(ϕ1 − ϕ2)− 6 sinϕ2 − 2ω2
1 sin(ϕ1 − ϕ2)

· cos2(ϕ1 − ϕ3) + 2 cos(ϕ1 − ϕ2) cos(ϕ1 − ϕ3)ω
2
2 sin(ϕ2 − ϕ− 3) + 2 cos(ϕ1 − ϕ2)

·ω2
3 sin(ϕ1 − ϕ3) + 4 cos(ϕ1 − ϕ2)ω

2
2 sin(ϕ1 − ϕ2)− 2 cos(ϕ1 − ϕ2) cos(ϕ1 − ϕ3) sinϕ3

+2 cos(ϕ1 − ϕ2) cos(ϕ1 − ϕ3)ω
2
1 sin(ϕ1 − ϕ3) + 6 cos(ϕ1 − ϕ2) sinϕ1

+ω2
3 sin(ϕ2 − ϕ3) cos2(ϕ1 − ϕ3)

)(
2 cos2(ϕ1 − ϕ3)− 6− 4 cos(ϕ1 − ϕ2) cos(ϕ2 − ϕ3) cos(ϕ1 − ϕ3) + 4 cos2(ϕ1 − ϕ2)

+3 cos2(ϕ2 − ϕ3)
)−1 (

6 cos(ϕ2 − ϕ3) cos(ϕ1 − ϕ2) sinϕ1 + 6 cos(ϕ2 − ϕ3)ω
2
1 sin(ϕ1 − ϕ2)

−3 cos(ϕ2 − ϕ3)ω
2
3 sin(ϕ2 − ϕ3) + 4 cos(ϕ2 − ϕ3) cos(ϕ1 − ϕ2)ω

2
2 sin(ϕ1 − ϕ2)

+2 cos(ϕ2 − ϕ3) cos(ϕ1 − ϕ2)ω
2
3 sin(ϕ1 − ϕ3)− 6 cos(ϕ2 − ϕ3) sinϕ2 + 2 cos(ϕ1 − ϕ3)

· cos(ϕ1 − ϕ2)ω
2
3 sin(ϕ2 − ϕ3)

+4ω2
1 sin(ϕ1 − ϕ3) cos2(ϕ1 − ϕ2)− 4 cos(ϕ1 − ϕ3)ω

2
2 sin(ϕ1 − ϕ2) + 4ω2

2 sin(ϕ2 − ϕ3)
· cos2(ϕ1 − ϕ2) + 4 cos(ϕ1 − ϕ3) cos(ϕ1 − ϕ2) sinϕ2 − 4 sinϕ3 cos2(ϕ1 − ϕ2)
−2 cos(ϕ1 − ϕ3)ω

2
3 sin(ϕ1 − ϕ3)− 6 cos(ϕ1 − ϕ3) sinϕ1 − 4 cos(ϕ1 − ϕ3)
· cos(ϕ1 − ϕ2)ω

2
1 sin(ϕ1 − ϕ2)

−6ω2
2 sin(ϕ2 − ϕ3)− 6ω2

1 sin(ϕ1 − ϕ3) + 6 sinϕ3

)


where we denote the right hand side as f(ϕ1, ϕ2, ϕ3, ω1, ω2, ω3).

The steady states of this equation can be obtained by setting ω1, ω2 and ω3 as well as their
time-derivatives equal to zero. An easier way to find the steady states is to use formula (C.13),
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which directly shows that the condition to be satisfied is

sinϕi = 0⇐⇒ ϕi ∈ {0, π} for i ∈ {1, 2, 3} (5.215)

since ϕi ∈ [0, 2π), such that the equilibrium states are

(0, 0, 0), (π, 0, 0), (0, π, 0), (0, 0, π),

(π, π, 0), (π, 0, π), (0, π, π), (π, π, π).

This means the mathematical triple pendulum can only be permanently at rest if and only if all
the pendulum links point either up or down.

5.3.2 Discussion of the linearized triple pendulum

Linearizing along the trajectory (ϕ̃1, ϕ̃2, ϕ̃3, ω̃1, ω̃2, ω̃3) yields the linear differential equation

d

dt
(ϕ1, ϕ2, ϕ3, ω1, ω2, ω3)

T = A(ϕ̃1,ϕ̃2,ϕ̃3,ω̃1,ω̃2,ω̃3)(ϕ1, ϕ2, ϕ3, ω1, ω2, ω3)
T (5.216)

where

A(ϕ̃1,ϕ̃2,ϕ̃3,ω̃1,ω̃2ω̃3) =
∂f

∂(ϕ1, ϕ2, ϕ3, ω1, ω2, ω3)
(ϕ̃1, ϕ̃2, ϕ̃3, ω̃1, ω̃2ω̃3) (5.217)

is in general a non-autonomous 6× 6 matrix where the first 3 rows are given by

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

. . .
. . .

. . .



Controllability of the linearization around a point

For the special case that the trajectory (ϕ̃1, ϕ̃2, ϕ̃3, ω̃1, ω̃2ω̃3) reduces to a single point (ϕ∗1, ϕ
∗
2, ϕ
∗
3, ω
∗
1, ω

∗
2, ω

∗
3)

the constant linear control system

d

dt
(ϕ1, ϕ2, ϕ3, ω1, ω2, ω3)

T = A(ϕe1,ϕ
e
2,ϕ

e
3,ω

e
1,ω

e
2,ω

e
3)

(ϕ1, ϕ2, ϕ3, ω1, ω2, ω3)
T +



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

u(t)

(5.218)
is completely controllable as shown in appendix (C.4).
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5.3.3 Stability of the equilibria

For (ϕe1, ϕ
e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3)T = (0, 0, 0, 0, 0, 0)T we obtain

A(ϕ
e
1, ϕ

e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−3 2 0 0 0 0
3 −4 1 0 0 0
0 2 −2 0 0 0

 (5.219)

with 3 pairs of complex conjugate eigenvalues each with real part zero. Therefore the zero-
solution of the linear system (5.216) is stable but not asymptotically stable.

For (ϕe1, ϕ
e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3)T = (π, 0, 0, 0, 0, 0)T we obtain

A(ϕ
e
1, ϕ

e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3 −2 0 0 0 0
3 −4 1 0 0 0
0 2 −2 0 0 0

 (5.220)

with two pairs of complex conjugate eigenvalues with real part zero and two real eigenvalues,
one of them less than zero, such that the zero-solution of (5.216) is unstable in this case.

For (ϕe1, ϕ
e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3)T = (0, π, 0, 0, 0, 0)T we obtain

A(ϕ
e
1, ϕ

e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−3 2 0 0 0 0
−3 4 −1 0 0 0
0 2 −2 0 0 0

 (5.221)

again with two pairs of complex conjugate eigenvalues with real part zero and two real eigen-
values, one of them less than zero, such that the zero-solution of (5.216) is unstable in this case
as well.

For (ϕe1, ϕ
e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3)T = (0, 0, π, 0, 0, 0)T we obtain

A(ϕ
e
1, ϕ

e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−3 2 0 0 0 0
3 −4 1 0 0 0
0 −2 2 0 0 0

 (5.222)

with two pairs of complex conjugate eigenvalues with real part zero and two real eigenvalues,
one of them less than zero, such that the zero-solution of (5.216) is unstable.
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For (ϕe1, ϕ
e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3)T = (π, π, 0, 0, 0, 0)T we obtain

A(ϕ
e
1, ϕ

e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3 −2 0 0 0 0
−3 4 −1 0 0 0
0 2 −2 0 0 0

 (5.223)

with a pair of complex conjugate eigenvalues with real part zero and four real eigenvalues, two
of them less than zero, such that the zero-solution of (5.216) is unstable.

For (ϕe1, ϕ
e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3)T = (π, 0, π, 0, 0, 0)T we obtain

A(ϕ
e
1, ϕ

e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3 −2 0 0 0 0
3 −4 1 0 0 0
0 −2 2 0 0 0

 (5.224)

again with a pair of complex conjugate eigenvalues with real part zero and four real eigenvalues,
two of them less than zero, such that the zero-solution of (5.216) is unstable.

For (ϕe1, ϕ
e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3)T = (0, π, π, 0, 0, 0)T we obtain

A(ϕ
e
1, ϕ

e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−3 2 0 0 0 0
−3 4 −1 0 0 0
0 −2 2 0 0 0

 (5.225)

with a pairs of complex conjugate eigenvalues with real part zero and four real eigenvalues, two
of them less than zero, such that the zero-solution of (5.216) is unstable.

For the last equilibrium state (ϕe1, ϕ
e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3)T = (π, π, π, 0, 0, 0)T we obtain

A(ϕ
e
1, ϕ

e
2, ϕ

e
3, ω

e
1, ω

e
2, ω

e
3) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3 −2 0 0 0 0
−3 4 −1 0 0 0
0 −2 2 0 0 0

 (5.226)

with no complex eigenvalues and three of the six real eigenvalues less than zero, therefore system
(5.216) is unstable.

The number of eigenvalues with real part smaller than zero corresponds to the number of pen-
dulum links which are pointed upward.
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5.3.4 Stabilization

The model of consideration is the linear control system

ẋ(t) = A(π,0,0,0,0,0)x(t) +Bu(t) (5.227)

with B =


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 and the usual assumptions on u.

Method of Bass

We apply the method of Bass (4.2.2) to find a feedback control ũ such that the zero-solution is
stable with respect to the system

ẋ(t) = A(π,0,0,0,0,0)x(t) +Bũ(t). (5.228)

First we need to choose a λ ∈ R such that (4.94) holds:

λ > max
i

6∑
j=1

|aij | = 8

proposing that λ = 9 is a suitable choice. Now solving equation

(A(π,0,0,0,0,0) + λI)P + P (A(π,0,0,0,0,0) + λI)T = BBT (5.229)

with λ = 9 and the assumption P = P T we obtain (numerically)

P =



0.0004 0.0000 0.0000 −0.0032 −0.0001 0.0000
0.0000 0.0003 0.0000 0.0000 −0.0029 −0.0001
0.0000 0.0000 0.0003 0.0000 0.0000 −0.0030
−0.0032 0.0000 0.0000 0.0566 0.0002 0.0000
−0.0001 −0.0029 0.0000 0.0002 0.0543 0.0005
0.0000 −0.0001 −0.0030 0.0000 0.0005 0.0549

 (5.230)

and according to the theory of Bass (4.2.2) ũ(t) = −BTP−1x(t) is a stabilizing control law
and the controlled linear system with system matrix (A(π,0,0,0,0,0) + λI − BBTP−1) has an

exponentially stable zero-solution and with system matrix A(π,0,0,0,0,0) − BBTP−1 the zero-
solution is stable with decay rate at least −λ which is −9 here.
A numerical verification shows that all eigenvalues of (A(π,0,0,0,0,0) + λI − BBTP−1) have real

part smaller than −7.5 and all eigenvalues of A(π,0,0,0,0,0)−BBTP−1 have real part smaller than
−16.5. As for the the simple and double pendulum the (exponential) decay rate obtained by
applying the method of Bass is better than expected from theory (which would be −9 here).

Pole-shifting

The method of Bass guarantees a minimum decay rate. It does not provide an upper bound for
this rate, which in practical purposes may be undesirable. Whenever technical systems interact
with human beings it is essential to limit physical forces. For example one should set an upper
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bound for elevators as well for the velocity as for the acceleration to avoid accidents.
The pole-shifting method allows us to predefine the location of the eigenvalues of the controlled
system and therefore the decay rate. We look for a feedback control ũ(t) = Fx(t) with a 3 × 6
matrix F such that all eigenvalues of A(π,0,0,0,0,0) + BF have negative real part, which can
be chosen in advance. For example we could try to choose F such that for the characteristic
polynomial we obtain

ρA(π,0,0,0,0,0)+BK(λ)
!

= (λ+ 1)6, (5.231)

with −1 as an eigenvalue of multiplicity 4. Together with F =

f11 f12 f13 f14 f15 f16
f21 f22 f23 f24 f25 f26
f31 f32 f33 f34 f35 f36


equation (5.231) becomes

λ6 + (−f36 − f25 − f14)λ5 + (−f35f26 − f34f16 + f25f14 + f36f14 − f24f15 − f22 + 3− f33
+f36f25 − f11)λ4 + (−f24f12 − f34f13 + f25f11 + f33f14 + f14f22 + f36f22 − f26f32 − f15f21
−f35f23 + f36f11 − f31f16 + f33f25 + f36f24f15 − f34f15f26 + f35f26f14 − f35f24f16 − f36f25f14
−6 f14 − 3 f15 + 2 f24 + f25 − 2 f26 − f35 − f36 + f34f16f25)λ

3 + (−6− 3 f35f16 − 2 f24f16

+2 f34f26 − 3 f36f25 + 3 f36f15 + 2 f14f26 − 2 f24f15 + 2 f25f14 + 4 f36f14 − f34f15 − 4 f34f16

−2 f36f24 + 3 f35f26 + f35f14 + f33f22 + f33f11 + f31f16f25 − f31f15f26 − f34f15f23 − f35f24f13
−f35f16f21 + f35f26f11 + f34f16f22 + f36f24f12 + f26f32f14 − f36f14f22 − f36f25f11 − f34f26f12
+f35f23f14 + f34f13f25 + f36f15f21 − f33f25f14 − f32f24f16 + f33f24f15 − 6 f11 − 3 f12 + 2 f21

+f22 − 2 f23 − f32 − f33 + f22f11 − f21f12 − f31f13 − f32f23)λ2 + (−2 f24f12 − 4 f34f13

−2 f24f13 + f32f14 + 2 f34f23 − 2 f36f21 + 2 f11f26 − 2 f16f21 − 3 f32f16 + 3 f33f15 + 2 f25f11

−f31f15 + 4 f33f14 + 2 f14f22 − f34f12 − 3 f36f22 − 2 f33f24 + 3 f36f12 + 3 f26f32 − 2 f15f21

+3 f35f23 + 2 f31f26 + 2 f14f23 + 4 f36f11 + f35f11 − 3 f35f13 − 4 f31f16 − 3 f33f25 + f31f16f22

−f31f26f12 − f31f15f23 + f36f21f12 + f31f13f25 + f26f32f11 − f32f16f21 − f32f24f13 + f32f23f14

−f34f12f23 − 6 f14 − 6 f15 − 6 f16 + 4 f24 + 6 f25 + 6 f26 + 2 f34 + 3 f35 + 6 f36 − f35f21f13
+f34f13f22 + f33f24f12 + f33f15f21 + f35f23f11 − f33f25f11 − f33f14f22 − f36f22f11)λ
− 6 + f33f21f12 − f31f12 + 2 f31f23 − 3 f32f13 − f33f22f11 + 4 f33f11 + 3 f33f12 − 2 f33f21

− 3 f33f22 + f32f23f11 − f31f12f23 − f32f21f13 − 6 f11 − 6 f12 − 6 f13 + 4 f21 + 6 f22 + 6 f23

+ 2 f31 + 3 f32 + 6 f33 + f31f13f22 + 2 f22f11 − 2 f21f13 + 2 f23f11 + f32f11 − 2 f21f12 − 4 f31f13

+ 3 f32f23
!

= λ6 + 6λ5 + 15λ4 + 20λ3 + 15λ2 + 6λ+ 1 (5.232)

Equating coefficients gives 6 equations for 18 unknowns, which means that the problem of
pole placement here is underdetermined. We use the matlab command ”place” which uses an
algorithm described in [Kautsky et al., 1985]. It uses the extra degrees of freedom to minimize
the sensitivities of the closed-loop poles to perturbations in A(π,0,0,0,0,0) and F . In this method
the only restriction is that the multiplicities of the eigenvalues of A(π,0,0,0,0,0) +BF are at most
the rank of B.
Since B has rank 3 we want A(π,0,0,0,0,0) +BF to have eigenvalues −1 and −2 with multiplicity
3 each. The algorithm proposed in [Kautsky et al., 1985] then leads to

F =

−5 2 0 −3 0 0
3 −6 1 0 −3 0
0 −2 0 0 0 −3

 (5.233)
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and the feedback control is then given by

u(t) = Fx(t) =

−5 2 0 −3 0 0
3 −6 1 0 −3 0
0 −2 0 0 0 −3

x(t) (5.234)

which makes the zero-solution stable with respect to (5.228).

5.3.5 Stabilizing upright position via the linear model

Since we are interested in swinging up the pendulum to its unstable position where all three
pendulum links point upward, we will apply the method of Bass and the pole shifting method
to the linear control problem

ẋ(t) = A(π,π,π,0,0,0)x(t) +Bu(t). (5.235)

with the same B as in (5.228). Using the linear model for stabilizing around the equilibrium
point (π, π, π, 0, 0, 0) makes only sense if the state of the triple pendulum is already close to this
equilibrium.

Method of Bass

Condition (4.94) suggests as for the example above that

λ > max
i

6∑
j=1

|aij | = 8

λ = 9 is a suitable choice.
We have to solve the Lyapunov equation

(A(π,π,π,0,0,0) + λI)P + P (A(π,π,π,0,0,0) + λI)T = BBT (5.236)

with λ = 9 and assuming P is symmetric. We obtain

P =



0.0004 0.0000 0.0000 −0.0032 0.0001 0.0000
0.0000 0.0004 0.0000 0.0001 −0.0033 0.0001
0.0000 0.0000 0.0004 0.0000 0.0001 −0.0032
−0.0032 0.0001 0.0000 0.0566 −0.0009 0.0000
0.0001 −0.0033 0.0001 −0.0009 0.0570 −0.0006
0.0000 0.0001 −0.0032 0.0000 −0.0006 0.0563

 (5.237)

and according to the theory of Bass (4.2.2) ũ(t) = −BTP−1x(t) is a stabilizing control law
and the controlled linear system with system matrix (A(π,π,π,0,0,0) + λI − BBTP−1) has an

exponentially stable zero-solution and with system matrix A(π,0,0,0,0,0) − BBTP−1 the zero-
solution is stable with decay rate at least −λ which is −9 here.
A numerical verification shows that all eigenvalues of (A(π,π,π,0,0,0) + λI − BBTP−1) have real

part smaller than −6 and all eigenvalues of A(π,π,π,0,0,0) −BBTP−1 have real part smaller than
−15.
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Pole-shifting

As in the example above we want the controlled system to have the triple eigenvalues −1 and
−2. By the pole-shifting method we obtain the feedback matrix

F =

−5 2 0 −3 0 0
3 −6 1 0 −3 0
0 2 −4 0 0 −3

 (5.238)

and the stabilizing feedback control
ũ(t) = Fx(t). (5.239)

In order to compare the method of Bass with the pole-shifting method, we use the (numerical)
eigenvalues of A−BBTP−1 for the design of the feedback matrix FB:

FB =

−366.8477 2.0000 0 −38.1595 0 0
3.0000 −290.1057 1.0000 0 −33.8405 0

0 2.0000 −319.7099 0 0 −36.0000

 (5.240)

Now A−BBTP−1 has infinity norm ≈ 360 whereas A+BFB has infinity norm ≈ 402.
Comparing the input gains we have to compare the infinity norms of −BTP−1 and FB where
we obtain ‖BTP−1‖∞ ≈ 362 whereas ‖FB‖∞ ≈ 407.

5.3.6 Simulation

In the following examples we want to swing up the triple pendulum to its unstable equilibrium
point (π, π, π, 0, 0, 0)T and balance it at this position, a problem that is often referred to as
inverted triple pendulum. We use the modified control law presented in (4.130) and in a first
attempt we choose the desired equilibrium point as reference trajectory x0(t). As for the double
pendulum we choose as initial configuration the stable equilibrium point (0, 0, 0, 0, 0, 0)T running
the matlab simulation for 10 time units with α = 0 and α = 2. The matrix H̃−1α is updated
every two time units and therefore it has to be computed only 5 times for each simulation
(δk = 2 ∀ k =⇒ tk = 2k, k = 0, 1, . . . , 4).
We repeat the simulation with the same parameters (simulation time 10 time units, δk = 2; tk =
2k, k = 0, 1, . . . , 4, α ∈ {0, 2}) for the ”semistable” starting configuration (0, π, 0, 0, 0, 0)T to
observe how the triple pendulum ”unfolds” from its downupdown-position to swing up to the
upupup-position.
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(a) frame 0 (b) frame 25

(c) frame 50 (d) frame 75

(e) frame 100 (f) frame 125

(g) frame 150 (h) frame 175

(i) frame 200 (j) frame 250

(k) frame 300 (l) frame 1000

Figure 5.38: Swing-up from downdowndown-position to upupup-position and balancing (α = 0)
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Initial data (0, 0, 0, 0, 0, 0)T and α = 0

Figure 5.39: Control law u

Figure 5.40: Error in state variables u

Figure 5.41: Error in velocity variables
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(a) frame 0 (b) frame 5

(c) frame 10 (d) frame 15

(e) frame 20 (f) frame 25

(g) frame 30 (h) frame 40

(i) frame 50 (j) frame 60

(k) frame 80 (l) frame 1000

Figure 5.42: Swing-up from downdowndown-position to upupup-position and balancing (α = 2)
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Initial data (0, 0, 0, 0, 0, 0)T and α = 2

Figure 5.43: Control law u

Figure 5.44: Error in state variables u

Figure 5.45: Error in velocity variables
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(a) frame 0 (b) frame 10

(c) frame 20 (d) frame 30

(e) frame 40 (f) frame 50

(g) frame 100 (h) frame 150

(i) frame 200 (j) frame 250

(k) frame 300 (l) frame 1000

Figure 5.46: Swing-up from downupdown-position to upupup-position and balancing (α = 0)
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Initial data (0, π, 0, 0, 0, 0)T and α = 0

Figure 5.47: Control law u

Figure 5.48: Error in state variables u

Figure 5.49: Error in velocity variables
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(a) frame 0 (b) frame 5

(c) frame 10 (d) frame 20

(e) frame 25 (f) frame 30

(g) frame 35 (h) frame 40

(i) frame 45 (j) frame 50

(k) frame 75 (l) frame 1000

Figure 5.50: Swing-up from downupdown-position to upupup-position and balancing (α = 2)
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Initial data (0, π, 0, 0, 0, 0)T and α = 2

Figure 5.51: Control law u

Figure 5.52: Error in state variables u

Figure 5.53: Error in velocity variables
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The modified control law (4.130) successfully swings up the triple pendulum for these two initial
configurations, showing that actually the basin of attraction for the stabilization of this trivial
trajectory is pretty large. A higher value of α leads to a faster convergence to the desired state
at the cost of higher control inputs.
In the next examples we try to use the natural dynamics of the triple pendulum for the swingup
part, meaning we choose an initial configuration where all pendulum links point downward
having initial velocities such that the motion of the uncontrolled triple pendulum comes close
to the desired equilibrium state (which of course cannot be reached in finite time since it is an
equilibrium state). Finding the proper initial velocities can be done for example by a numerical
brute force method by randomly guessing initial velocities on the manifold implicitly defined by
different potential energy levels for the starting configuration and the desired equilibrium state.

Figure 5.54: Motion of an upswinging triple pendulum without control

Figure (5.54) shows the motion x̃ of the uncontrolled pendulum with initial velocities
(1.1720, 0.9876, 2.1372)T . To reach the almost upright position two ”swings” are performed. Af-
ter the first swing (see frame 300) the triple pendulum is close to the upright position but needs
another ”dive” before actually becoming really close to it (frame 900).

We will take two different reference trajectories, the first one following the first swing only
(until time approximately 3.26) and the second one following both swings until time reaches
approximately 9.34.
We compare the energy needed by evaluating the integral∫ 12

0
u(t)Tu(t)dt (5.241)

and finally we compare how these solution perform ”against” the trivial reference trajectory
consisting of the equilibrium point.

The simulation is ran for 12 time units with δk = 1∀k =⇒ tk = k for k = 0, . . . , 11 such that the
matrix H̃−1k is updated 12 times for each simulation. We chose δk smaller than in the simulations
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before since the reference trajectory is more complicated in this case (although it would even
work with δk = 2).

(a) frame 0 (b) frame 50

(c) frame 100 (d) frame 150

(e) frame 200 (f) frame 250

(g) frame 300 (h) frame 350

(i) frame 400 (j) frame 450

(k) frame 500 (l) frame 550
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(a) frame 600 (b) frame 650

(c) frame 700 (d) frame 750

(e) frame 800 (f) frame 850

(g) frame 900 (h) frame 950

(i) frame 1000 (j) frame 1050

(k) frame 1100 (l) frame 1200

Figure 5.55: Swing-up to upupup-position and balancing (α = 0) along trajectory belonging to
initial data (0, 0, 0, 1.1720, 0.9876, 2.1372)T
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Figure 5.56: Control law u

Figure 5.57: Error in state variables u

Figure 5.58: Error in velocity variables
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Initial data (0.3,−0.3, 0.3, 1, 0.8, 2)T and α = 0

(a) frame 0 (b) frame 50

(c) frame 100 (d) frame 150

(e) frame 200 (f) frame 250

(g) frame 300 (h) frame 350

(i) frame 400 (j) frame 450

(k) frame 500 (l) frame 1200

Figure 5.59: Swing-up to upupup-position and balancing by following a solution of the uncon-
trolled system until frame 324; initial data (0, 0, 0, 1.1720, 0.9876, 2.1372)T
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Figure 5.60: Control law u

Figure 5.61: Error in state variables u

Figure 5.62: Error in velocity variables



152 CHAPTER 5. APPLICATIONS

We want to compare these two methods with the method by choosing as reference trajectory
simply the equilibrium point (π, π, π, 0, 0, 0)T . The motion of the controlled triple pendulum with
the same initial condition as with simulations run before is shown in figure 5.63 where it can be
seen that it moves up like a simple pendulum more or less. The components of the control input

Figure 5.63: motion of controlled triple pendulum to the inverted position

u are shown in 5.64 showing that neglecting the natural dynamics of the triple pendulum leads
to high input gains due to the feedback term (x(t)− x0(t)) in the control law where x0(t) is the
feedback term. This term is small when x0(t) is a solution of the uncontrolled system starting
near the initial configuration of the controlled problem, why it is large, when taking as reference
trajectory the inverted pendulum and the initial configuration of the controlled problem is not
close to it. Figure (5.64) reflects the latter situation while (5.56), (5.60) show that only small
input gains are necessary in the first case.

To compare the energy consumption of these methods we used the cost functional (5.241)∫
simulation time

uT (t)u(t)dt (5.242)

which not only measures the consumed energy but also penalizes for high values of the control
input u. The results for the three different kinds of motion are given in table (5.1).
We recall that x̃ is the solution trajectory of the uncontrolled pendulum with initial data
(0, 0, 0, 1.1720, 0.9876, 2.1372)T .

reference trajectory x∗ = (π, π, π, 0, 0, 0)T x̃ until 3.26 then x∗ x̃ until 9.34 then x∗

energy consumption 170.36 16.67 11.91

Table 5.1: Energy consumption for x0 = (0.3,−0.3, 0.3, 1, 0.8, 2)T
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Figure 5.64: control input without using the ”natural dynamics”

Using the natural dynamics of the triple pendulum can significantly reduce the amount of energy
needed to swing it up. Even if we only partially use a solution of the uncontrolled system we
can get pretty good results: using only the first of the two swings we can swing up the triple
pendulum much more faster for only moderate higher costs. It is a ”feature” of this special
solution trajectory that it exhibits the possibility to ”get off earlier”. In this example we started
with an initial value near the initial value for reference trajectory. If we start in the stable
equilibrium point we obtain

reference trajectory x∗ = (π, π, π, 0, 0, 0)T x̃ until 3.26 then x∗ x̃ until 9.34 then x∗

energy consumption 155.74 37.94 33.15

Table 5.2: Energy consumption for x0 = (0, 0, 0, 0, 0, 0)T



Appendix A

The Bang-Bang Principle

A motivation for the bang-bang-principle is the following scenario. Whenever one tries to change
a systems state with limited resources as fast as possible it seems to be useful to use as much
of the available resources as possible at every time. For many applications this is certainly true,
for example heating water until it cooks or bringing a car from A to B on a straight road. But
there are also examples of optimal controls, which are not bang-bang. Nevertheless whenever
there is a suitable admissible control, then there is also a suitable admissible bang-bang control.
Although the bang-bang-principle can be applied more generally, we will only show it using the
example of the linearized pendulum. For a general theory cf. e.g. [LaSalle, 1960]. We show that
whenever there is a control u(τ) ∈ Ω solving (2.10), then there is a bang-bang control û(τ) ∈ Ω̂
solving (2.10).
We define the sets

Ω := {u, |u| ≤ 1}, Ω̂ := {u, |u| = 1}. (A.1)

We restrict ourselves to measurable controls u in the interval [0, tmax]. So Ω̂ ⊂ Ω is the set
of admissible bang-bang-controls. Using the equivalence between problem (2.10) and problem
(2.13) it suffices to show that the following sets are equal

R(t) = {
∫ t

0
Y (τ)u(τ)dτ, u ∈ Ω}, R̂(t) := {

∫ t

0
Y (τ)û(τ)dτ, û ∈ Ω̂}. (A.2)

The new introduced set R̂(t) denotes the reachability set under the restriction that only admis-
sible bang-bang controls are used. Because of the trivial relation Ω̂ ( Ω it is clear that R̂(t) is
included in the reachability set R(t). To show that we actually have set equivalence we have to
show the other inclusion R(t) ⊂ R̂(t).

Let E be a measurable subset of the interval [0, t], where tmax ≥ t > 0 is arbitrary but fixed.
In addition, let E be the Borel-σ-algebra in [0, t]. Furthermore Y (τ) = Φ−1(τ, 0)B ∈ R2 an
integrable vector valued function defined on [0, t]. Then

µ : E→ R2, µ(E) 7→
∫
E
Y (τ)dτ

defines a vector measure. We denote the range of this vector measure as Rµ(t). Due to a the-
orem of Lyapunov [Lyapunov, 1940], [Halmos, 1948] the range of every countable additive and
finite vector measure which maps into a finite dimensional euclidean space is closed and convex.
Therefore Rµ(t) is closed and convex. We will see that closedness and convexity are also prop-
erties of the set R̂(t):
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For every element û ∈ Ω̂ there is a set E ∈ E so that û can be represented as 2χE − 1 where
χE is the characteristic function of E. Such a set E always exists because û was supposed to be
measurable. For example one could choose the set {û = 1} which belongs to E.
Multiplication with Y (τ) and integration from 0 to t leads to

R̂(t) 3
∫ t

0
û(τ)Y (τ)dτ =

∫ t

0
2χE(τ)Y (τ)dτ −

∫ t

0
Y (τ)dτ

= 2

∫
E
Y (τ)dτ −

∫ t

0
Y (τ)dτ

= 2µ(E)−
∫ t

0
Y (τ)dτ.

With Ȳ (t) :=
∫ t
0 Y (τ)dτ we have for arbitrary, but fixed t:

R̂(t) = 2Rµ(t)− Ȳ (t). (A.3)

It follows from the equality of these sets that R̂(t) is closed and convex.

We now show the desired inclusion R(t) ⊂ R̂(t). For every element z(t) ∈ R(t) we will construct
a sequence {zm(t)}m∈N ⊂ R̂(t) converging to z(t).

Let z(t) ∈ R(t) be arbitrary. We can represent z(t) as

z(t) =

∫ t

0
Y (τ)u(τ)dτ, u ∈ Ω. (A.4)

Now define β(τ) := 1
2(u(τ) + 1) and z̄(t) := 1

2(z(t) + Ȳ (t)). The auxiliary function β(τ) assumes
only values lying in the interval [0, 1]. It is chosen so that the following equality holds

z̄(t) =

∫ t

0
Y (τ)β(τ)dτ. (A.5)

We now construct a sequence converging to z̄(t) which will be used to construct the desired
sequence converging to z(t). With

Ej(t) :=

{
τ | j − 1

m
t ≤ β(τ) ≤ j

m
t

}
∀j ∈ {1..m} (A.6)

we define

z̄m(t) :=

m∑
j=0

j

m

∫
Ej

Y (τ)dτ, m ∈ N

converging to z̄(t):

lim
m→∞

|z̄(t)− z̄m(t)| ≤ lim
m→∞

m∑
j=1

∫
Ej

(
j

m
− β(τ)

)
|Y (τ)|dτ

≤ lim
m→∞

1

m

m∑
j=0

∫
Ej

|Y (τ)|dτ = lim
m→∞

1

m

∫ t

0
|Y (τ)|dτ = 0,



156 APPENDIX A. THE BANG-BANG PRINCIPLE

since Y (τ) is integrable on [0, t]. When z̄m(t) converges to z̄(t) then zm(t) := 2z̄m(t) − Ȳ (t)
converges to z(t). It remains to show that zm(t) actually lie in R̂(t). As zm(t) were defined with
the help of z̄m(t), it suffices to show that z̄m(t) ∈ Rµ(t). To see this we define

Fj(t) :=
m⋃
i=j

Ei

and because of
⋃m
j=1 Fj =

⋃m
j=1 jEj we obtain

z̄m(t) =
m∑
j=1

j

m

∫
Ej

Y (τ)dτ =
1

m

m∑
j=1

∫
Fj

Y (τ)dτ (A.7)

which is a convex combination of elements of Rµ(t) and therefore z̄(t) ∈ Rµ(t). With (A.3) we
see that the limit z(t) of {zm(t)} has to lie in R̂(t) since all terms of {zm(t)} lie in this (closed)
set. Since z(t) was an arbitrary element of R(t) this means that we have verified

R(t) ⊂ R̂(t) (A.8)

and together with the trivial inclusion R̂(t) ⊂ R(t) the two sets are equal, which concludes the
proof.
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An iterative procedure to determine
the time-optimal control for linear
systems

We consider the linear time-varying control normal system

d

dt
x(t) = A(t)x(t) +B(t)u(t) (B.1)

with initial data x(0) = x0, where x is a n-vector, A a n×n-matrix, B a n× r-matrix both with
continuous entries and u is a r-dimensional vector-valued control function, where r ≤ n. The
set of admissible controls is a compact nonempty subset U of Rr. Eaton proposes a numerical
algorithm to determine this time-optimal control u∗ (cf. [Eaton, 1962]). Let z be a n-dimensional
continuous vector-valued function depending on t. Suppose there is a control function ũ such
that z(t̃) = x(t̃, ũ(t̃)) for a finite time t̃. Then, there exists a finite time t∗ ≤ t̃ and a control
function u∗ such that z(t∗) = x(t∗, u∗(t∗)). In this case we have

Φ−1(t∗, 0)z(t∗)− x0 =

∫ t∗

0
Y (τ)u∗(τ)dτ. (B.2)

As shown in the introduction (cf. [LaSalle, 1960, Hermes and LaSalle, 1969]) u∗ is essentially
unique. For the control function u∗ and a normal η∗ ∈ Rn we must have:〈∫ t∗

0
Y (τ)u∗(τ)dτ, η∗

〉
= max

u∈U

〈∫ t∗

0
Y (τ)u(τ)dτ, η∗

〉
= max

u∈U

∫ t∗

0
(η∗TY (τ)u(τ))dτ. (B.3)

which is maximal for
u∗(τ) = sgn η∗TY (τ). (B.4)

The algorithm of Eaton approximates the normal η∗ and therefore determines the optimal con-
trol u∗ which gives the optimal time t∗. The main idea is to construct a sequence of support
planes to the boundary of the reachability set at time tm which contains the trajectory point of
the moving target at time tm. The normal vector to the boundary point of R(tm) is given by
ηm. This normal vector is used to construct the next support plane at time tm+1. The sequence
{tm}m∈N will be a to t∗ convergent nondecreasing sequence such that the sequence {ηm}m∈N
will converge to η∗.
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The left hand side of (B.2) can be understood as a continuous time dependent function g(t).
Since optimal controls are of the form

u(t) = sgn
(
ηTY (τ)

)
, η ∈ Rn with ‖η‖ = 1

one can define for these control functions the right hand side of (B.2) as function v depending
continuously on t and on η:

g(t) := Φ−1(t, 0)z(t)− x0, v(t, η) :=

∫ t

0
Y (τ)u(τ)dτ =

∫ t

0
Y (τ) sgn(ηTY (τ))dτ. (B.5)

The difference between left and right hand side defines a function E(t, η) := g(t)− v(t, η) which
vanishes in t∗. The reachability set Rv(t) of v is continuous, strictly monotonically increasing
and convex. In addition this set is closed and its boundary moves continuously in time.
For the moment η is an arbitrary normed vector in Rn. Since u(τ) = sgn(ηTY (τ)) maximizes
ηT v(t, η) we know that v(t, η) is a boundary point of Rv(t) with η an outward normal to a sup-
port hyperplane through v(t, η). With (B.1) being normal we also know, that the reachability
set Rv(t) and the support hyperplane have only this point v(t, η) in common. Our initial guess
for η1 has to be chosen such that the support plane to R(t1) contains g(t1). We omit the details
and just give the iteration rule.

The algorithm: The construction rule is given by

ηm+1 =
ηm + kmE(tm, ηm)

‖ηm + kmE(tm, ηm)‖
, m ≥ 1 (B.6)

where km can be determined as follows:

start

km := 1

calculate (E(tm, ηm+1), ηm+1)

is result > 0?
take the

half of km

stop
return km

no

yes



Appendix C

The multi-pendulum with n links

C.1 A Lagrangian for the n-pendulum

Figure C.1: n-pendulum

For the i-th pendulum the position is given by the coordinates

xi =

i∑
j=1

sinϕj , yi =

i∑
j=1

cosϕj . (C.1)
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The velocity of the i-th pendulum is given by

v2i =

i∑
j=1

ϕ̇2
j +

i−1∑
j=1

i∑
k=j+1

2ϕ̇jϕ̇k cos(ϕj − ϕk). (C.2)

The kinetic energy Ekin and potential energy Epot are given by:

Ekin =
1

2

n∑
j=1

v2j , Epot = −
n∑
j=1

(n+ 1− j) cosϕj . (C.3)

The Lagrangian for the n-pendulum can be explicitly expressed as

Ln(ϕ1, . . . , ϕn, ϕ̇1, . . . , ϕ̇n) =
1

2

n∑
i=1

(n+ 1− i)
(
ϕ̇2
i + 2 cosϕi

)
+ (C.4)

+
n−1∑
i=1

n∑
j=i+1

(n+ 1− j)ϕ̇iϕ̇j cos (ϕi − ϕj)

Proof. by induction over n:
For n = 1 (simple pendulum) we obtain

L1(ϕ1, ϕ̇1) =
1

2
ϕ̇2
1 + cosϕ1. (C.5)

in accordance to (5.7).

Let us assume that formula (C.4) holds for the n-pendulum and let us show that the Lagrangian
of the (n+ 1)-pendulum can be expressed with formula (C.4).

Ln+1 = Ln +
1

2
v2n+1 +

n+1∑
i=1

cosϕi (C.6)

=
1

2

n∑
i=1

(n+ 1− i)
(
ϕ̇2
i + 2 cosϕi

)
(C.7)

+

n−1∑
i=1

n∑
j=i+1

(n+ 1− j)ϕ̇iϕ̇j cos (ϕi − ϕj) +

=
1

2

n+1∑
i=1

ϕ̇2
i +

n∑
i=1

n+1∑
j=i+1

ϕ̇iϕ̇j cos (ϕi − ϕj) +
n+1∑
i=1

cosϕi

=
1

2

n+1∑
i=1

(n+ 2− i)
(
ϕ̇2
i + 2 cosϕi

)
+

+

n∑
i=1

n+1∑
j=i+1

(n+ 2− j)ϕ̇iϕ̇j cos (ϕi − ϕj) (C.8)
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C.2 Euler-Lagrange equations

The Euler-Lagrange equations for the n-pendulum are given by

d

dt

(
∂Ln
∂ϕ̇

(ϕ, ϕ̇)

)
− ∂Ln

∂ϕ
(ϕ, ϕ̇) = 0. (C.9)

where Ln(ϕ, ϕ̇) is the just computed Lagrangian (C.4).

For i ∈ {1, . . . , n} we obtain

∂Ln
∂ϕ̇i

=(n+ 1− i)ϕ̇i +

n∑
l=i+1

(n+ 1− l)ϕ̇l cos(ϕi − ϕl)+ (C.10)

+
i−1∑
k=1

(n+ 1− i)ϕ̇k cos(ϕk − ϕi)

where the sum
∑n

l=i+1(n+ 1− l)ϕ̇l cos(ϕi − ϕl) = 0 for i = n.

d

dt

∂Ln
∂ϕ̇i

=(n+ 1− i)ϕ̈i +
n∑

l=i+1

(n+ 1− l) (ϕ̈l cos(ϕi − ϕl)− ϕ̇l sin(ϕi − ϕl)(ϕ̇i − ϕ̇l)) + (C.11)

+

i−1∑
k=1

(n+ 1− i) (ϕ̈k cos(ϕk − ϕi)− ϕ̇k sin(ϕk − ϕi)(ϕ̇k − ϕ̇i))

∂Ln
∂ϕi

=− (n+ 1− i) sinϕi −
n∑

l=i+1

(n+ 1− l)ϕ̇iϕ̇l sin(ϕi − ϕl)+ (C.12)

+
i−1∑
k=1

(n+ 1− i)ϕ̇kϕ̇i sin(ϕk − ϕi).

The i-th component of (C.9) then reads

(n+ 1− i)(ϕ̈i + sinϕi)+

+

n∑
l=i+1

(n+ 1− l)
(
ϕ̈l cos(ϕi − ϕl) + ϕ̇2

l sin(ϕi − ϕl)
)

+

+

i−1∑
k=1

(n+ 1− i)
(
ϕ̈k cos(ϕk − ϕi)− ϕ̇2

k sin(ϕk − ϕi)
)

= 0. (C.13)

C.3 A first order system for the n-pendulum

The Euler-Lagrange equations consist of n differential equations of second order which can be
written in the form

D(ϕ)ϕ̈+ C(ϕ, ϕ̇)ϕ̇+ g(ϕ) = 0 (C.14)
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where with the abbreviations ckm and skm for cos(ϕk − ϕm) and sin(ϕk − ϕm) respectively it
follows from (C.13) that

D(ϕ) =



n (n− 1)c12 (n− 2)c13 . . . . . . c1n
(n− 1)c21 (n− 1) (n− 2)c23 . . . . . . c2n
(n− 2)c31 (n− 2)c32 (n− 2) (n− 3)c34 . . . c3n
...

...
...

. . . . . . . . .

2c(n−1)1
...

... 2c(n−1)(n−2) 2 c(n−1)n
cn1 cn2 cn3 . . . . . . cnn


(C.15)

C(ϕ, ϕ̇) =



0 (n− 1)s12ϕ̇2 (n− 2)s13ϕ̇3 . . . . . . s1nϕ̇n
−(n− 1)s21ϕ̇1 0 (n− 2)s23ϕ̇3 . . . . . . s2nϕ̇n
−(n− 2)s31ϕ̇1 −(n− 2)s32ϕ̇2 0 (n− 3)s34ϕ̇4 . . . s3nϕ̇n
...

...
...

. . . . . . . . .

−2s(n−1)1ϕ̇1
...

... 2s(n−1)(n−2)ϕ̇n−2 0 s(n−1)nϕ̇n
−sn1ϕ̇1 −sn2ϕ̇2 −sn3ϕ̇3 . . . . . . 0


(C.16)

g(ϕ) =


n sinϕ1

(n− 1) sinϕ2
...

2 sinϕn−1
1 sinϕn

 (C.17)

Now, since ckm = cmk, D(ϕ) is a symmetric matrix. Furthermore it is positive definite (see
e.g. [Murray et al., 1994][Lemma 4.2.]) and therefore invertible. We can write the equations of
motion as a first order system:

d

dt

(
ϕ
ϕ̇

)
=

(
ϕ̇

−D−1(ϕ) (C(ϕ, ϕ̇)ϕ̇+ g(ϕ))

)
= f(ϕ, ϕ̇). (C.18)

C.4 The linearized n-pendulum

The Jacobian of the right hand side of (C.18) is given by

Jf (ϕ, ϕ̇) =

(
0 I

− ∂
∂ϕ [D−1(ϕ)(C(ϕ, ϕ̇)ϕ̇+ g(ϕ)] ∂

∂ϕ̇ [D−1(ϕ)(C(ϕ, ϕ̇)ϕ̇+ g(ϕ)]

)
. (C.19)

which for an equilibrium point ϕ∗ simplifies to(
0 I

−D−1(ϕ∗) ∂
∂ϕg(ϕ∗) 0

)
(C.20)

since we have

ϕ∗i ∈ {0, π} ∀ i ∈ {1, . . . , n} (C.21)

due to (C.13). Inserting (C.21) into (C.16) and (C.17) obtain

C(ϕ∗, ·) = 0 (C.22)
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as well as
g(ϕ∗) = 0. (C.23)

The linearized system around a fixed point ϕ∗ can be obtained via Taylor series expansion and
a change of variables ψ = ϕ− ϕ∗:

d

dt

(
ψ

ψ̇

)
=

(
0 I

−D−1(ϕ∗) ∂
∂ϕg(ϕ∗) 0

)(
ψ

ψ̇

)
. (C.24)

Theorem C.1. The linear control system

d

dt

(
ψ

ψ̇

)
=

(
0 I

−D−1(ϕ∗) ∂
∂ϕg(ϕ∗) 0

)(
ψ

ψ̇

)
+


0
0
...
0
1

u (C.25)

is globally controllable for any fixed point ϕ∗ of (C.18) with a scalar control input u.

Before beginning with the proof let us introduce the operator ”form”:

Definition C.2. operator form

form :=


R(n,m) → {0, 1}(n,m)

S 7→ formS =

{
0 for sij = 0

1 otherwise
, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(C.26)

We will need the following properties of the form-operator:
For S ∈ R(n,n) and any diagonal matrix Λ ∈ R(n,n) with nonzero diagonal elements we have

form(ΛS) = form(S) (C.27)

form(SΛ) = form(S) (C.28)

(C.29)

Note that

form(S) = form S̃ 6⇒ form(SS̃) = form(S2) (C.30)

form(SΛS) 6= form(S2) (C.31)

which can be seen by choosing for example n = 2 and S =

(
1 1
0 1

)
and

(
1 −1
0 1

)
and Λ =(

1 0
0 −1

)
.

But if S is symmetric we actually have

form(STΛS) = form(SΛS) = form(S2) (C.32)

form((ΛS)n) = form(Sn) (C.33)

form((SΛ)n) = form(Sn) (C.34)

Let T ∈ R(n,n) be a tridiagonal matrix with nonzero elements on the super- and subdiagonal
and ei the i-th unit vector in Rn then

form(T s · en) = form(en + en−1 + . . .+ en−s), for 1 ≤ s ≤ n− 1 (C.35)
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Proof of theorem C.1.
In [Lam and Davison, 2006] it is proofed that the linearization of the inverted n-pendulum is
controllable. We follow the argumentation of this proof and ”generalize” the result for an arbi-
trary equilibrium state of the n-pendulum.

For linear autonomous systems like (C.25) we use the Kalman controllability test, which states
that (C.25) is globally controllable if and only if for

A :=

(
0 I

−D−1(ϕ∗) ∂
∂ϕg(ϕ∗) 0

)
; B :=


0
0
...
0
1

 ∈ R(1,2n) (C.36)

the matrix

K := [B|AB|A2B| . . . |An−1B] (C.37)

has rank 2n.
Define

Ã := −D−1(ϕ∗) ∂
∂ϕ

g(ϕ∗) ∈ R(n,n); B̃ :=


0
0
...
1

 ∈ R(1,n) (C.38)

then – due to the special structure of A and B – we have

[B|AB|A2B| . . . |An−1B] =

[
0 B̃ 0 ÃB̃ 0 Ã2B̃ . . . 0 Ãn−1B̃

B̃ 0 ÃB̃ 0 Ã2B̃ 0 . . . Ãn−1B̃ 0

]
(C.39)

which directly implies that it will be sufficient to check if the rank of

K̃ =
[
B̃ ÃB̃ Ã2B̃ . . . Ãn−1B̃

]
(C.40)

is n.

We will show that the matrix K̃ has the form
0 0 . . . . . . ∗
0 0 . . . ∗ ∗
...

. . . . . . ∗ ∗
0 ∗ . . . ∗ ∗
∗ ∗ . . . ∗ ∗

 (C.41)

where ∗ are nonzero entries. Therefore K̃ has rank n which will conclude the proof.
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We define the following matrices:

D+ =



n (n− 1) (n− 2) . . . . . . 1
(n− 1) (n− 1) (n− 2) . . . . . . 1
(n− 2) (n− 2) (n− 2) (n− 3) . . . 1
...

...
...

. . . . . . . . .

2
...

... . . . 2 1
1 1 1 . . . . . . 1


∈ R(n,n) (C.42)

L+ =


1 0 . . . . . . 0
1 1 . . . 0 0
...

...
. . . 0 0

1 1 . . . 1 0
1 1 . . . 1 1

 ∈ R(n,n) (C.43)

U+ =LT (C.44)

D−i = diag(1, 1, . . . , −1︸︷︷︸
i−th position

, . . . , 1) ∈ R(n,n) (C.45)

g+ = diag(n, n− 1, . . . , 1) ∈ R(n,n) (C.46)

For the n-pendulum the physical interpretation of an equilibrium point is that all pendulum
links are pointing either downward (angle 0) or pointing upward (angle π) which in combination
gives 2n different equilibrium states.
For the ”most unstable” equilibrium point ϕ+ = (π, π, π, 0, 0, 0)T , where all links point upward,
we have D(ϕ+) = D+ and ∂

∂ϕg(ϕ+) = g+. The inverse D−1+ is given by the tridiagonal matrix

D−1+ =



1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1
−1 2


(C.47)

and since g+ is a diagonal matrix with nonvanishing diagonal elements we have

form(D−1+ ) = form(−D−1+ g+). (C.48)

and due to (C.35) for the Kalman matrix K̃+ for A+ = −D−1+ g+ and B̃ = en we obtain

form(K̃+) =


0 0 . . . . . . 1
0 0 . . . 1 1
...

...
. . . 1 1

0 1 . . . 1 1
1 1 . . . 1 1

 ∈ {0, 1}(n,n) (C.49)

In [Seber, 2007] it is stated that the upper left entry of (C.47) is a 2 which is wrong due to the
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following observation which proofs the correctness of (C.47):

D+ =U+ · L+ (C.50)

D−1+ =(U+ · L+)−1 = L−1+ · U−1+ (C.51)

=



1
−1 1

−1 1
. . .

. . .

−1 1
−1 1





1
−1 1

−1 1
. . .

. . .

−1 1
−1 1



T

(C.52)

=



1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1
−1 2


(C.53)

Starting from the inverted n-pendulum let us change the k-th pendulum position from the
upright to the downright position. From the equations (C.15) and (C.17) we can see that for the
new equilibrium state ϕ̂ we obtain

D̂ =D(ϕ̂) = D−kD+D−k (C.54)

ĝ =g(ϕ̂) = D−kg+ (C.55)

and we obtain

D̂−1 =(D−kD+D−k)
−1 (C.56)

=D−kD
−1
+ D−k since D−1−k = D−k (C.57)

form D̂ = form(D−kD+D−k) = form(D+) (C.58)

form(ĝ) = form(D−kg+) = form(g+) (C.59)

form(−D̂−1ĝ) = form(−D−1+ g+) (C.60)

such that −D̂−1ĝ is still a tridiagonal matrix with nonzero entries on the diagonal and on the sub-
and superdiagonal. For the Kalman matrix K̂ belonging to the pair (−D̂−1ĝ, B̃) we therefore
still obtain

form(K̂) = form(K+) (C.61)

which shows controllability of the linearization around those equilibrium points of the n-pendulum
where all pendulum links point upward except one pointing downward.
Now let ϕ̄ be an arbitrary equilibrium point of the n-pendulum. Let I denote the set containing
the number s if the s-th pendulum link points downward.
Define

P :=
∏
s∈I

D−s (C.62)

which is well defined since the factors commute and therefore the ordering is not important.
Again we have P−1 = P as D−1−s = D−s for 1 ≤ s ≤ n.
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Now for ϕ̄ we obtain

D̄ =D(ϕ̄) = PD+P (C.63)

ḡ =g(ϕ̄) = Pg+ (C.64)

and we obtain

D̄−1 =(PD+P )−1 (C.65)

=PD−1+ P since P−1 = P (C.66)

form D̄ = form(PD+P ) = form(D+) (C.67)

form(ḡ) = form(Pg+) = form(g+) (C.68)

form(−D̄−1ḡ) = form(−D−1+ g+) (C.69)

such that −D̄−1ḡ is tridiagonal with nonzero entries on the diagonal and on the sub- and
superdiagonal. For K̄ belonging to the pair (−D̄−1ḡ, B̃) we obtain

form(K̄) = form(K+) (C.70)

showing that K̄ has full rank concluding the proof.

Remark: A consequence of the above theorem is that the n-pendulum is locally controllable near
its equilibrium points by controlling the n-th pendulum link only. From the practical point of
view it is nearly impossible to control the n-th pendulum link and one is rather interested in
controlling the first pendulum link instead. The result of the above theorem still holds if we take
B = eT1 and can be proved in the same way.

Theorem C.3. Controllability of the fully actuated linearized n-pendulum
The linear control system

d

dt
(ϕ1, . . . , ϕn, ω1, . . . , ωn)T = A(ϕ1, . . . , ϕn, ω1, . . . , ωn)T +Bu, (C.71)

is completely controllable, where A is the linearization of (C.18) around an arbitrary point of the

phase space, B =

(
0 · In
In

)
and u is an n-dimensional control input with the usual assumptions.

Proof. From (C.18) and (C.13) we see that for all points of the state space the first n rows of the
linearization matrix are given by [0 · In|In]. But then [B|AB] already has rank 2n and therefore
due to Kalman (3.11) we have complete controllability.



Appendix D

Pontrjagin’s maximum principle

The time-optimal solution (2.15) for linear time-varying systems can also be obtained via the
Pontrjagin maximum principle. Following the work of Pontrjagin, Gamkrelidze et al. [Pontrjagin
et al., 1962] we introduce the Hamiltonian:

H(ψ, x, u) = 〈ψ,A(t)x+B(t)u〉 (D.1)

and consider

ẋ = ∂H
∂ψ = A(t)x+B(t)u (D.2)

ψ̇ = ∂H
∂x = −ψA(t) (D.3)

with all assumptions made in (B.1). If we take again Φ(t, 0) as solution of Ẋ(t) = A(t)X(t), X(0) =
I then it is not difficult to see that Φ−1(t, 0) is a solution of (D.3) and the general solution is
ηTΦ−1(t, 0).
We define

M(ψ, x) := max
u∈U
H(ψ, x, u) (D.4)

The Pontrjagin maximum principle states, that if u∗ is a time-optimal control we have for some
nontrivial solution of (D.3)

H(ψ(t), x(t, u∗), u∗(t)) =M(ψ(t), x(t, u∗)) a.e. (D.5)

Using the definition of M and recalling Y (t) = Φ−1(t, 0)B(t) we have

M(ψ, x) = ψ(t)A(t)x+ max
u∈U

ψ(t)B(t)u

= ψ(t)A(t)x+ ψ(t)B(t)u∗(t) where

u∗(t) = sgn(ψ(t)B(t)) = sgn(ηTΦ−1(t, 0)B(t)) = sgn(ηTY (t))

maximizesM giving the same solution as in (B.1). The vector η is determined by the initial value.

In fact the Pontrjagin maximum principle is much stronger and even holds for some nonlinear
problems. We will state Pontrjagin’s result here for the autonomous problem. For a proof or the
nonautonomous case refer to [Pontrjagin et al., 1962].
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D.1 Problem statement

We are given a system of differential equations

dxi
dt

= fi(x1, . . . , xn, ui, . . . , ur) = fi(x, u), i = 1, . . . , n; r ≤ n (D.6)

representing for example the law of motion of a certain object with coordinates x1, . . . xn which
are functions of the time t. They define the state vector x = (x1, . . . , xn) of system (D.6)
as elements of an n-dimensional vector space X. The controls u are of the form u = u(t) =
(u1(t), . . . , ur(t)), where ui are scalar-valued functions of the time t. Here we call a control
admissible if it is piecewise continuous with range in a predefined set U . In vector notation we
have

dx

dt
= f(x, u) (D.7)

where f(x, u) is the vector with components f1(x, u), . . . , fn(x, u). Here and in (D.6) the func-
tions fi are defined for x ∈ X (for example X = Rn) and for u ∈ U (e.g. U = [−1, 1]r ⊂ Rr).
We will assume that the functions fi and ∂fi

∂xj
, i, j = 1, . . . , n exist and are continuous on the

direct product X × U . Then - given a certain control u = u(t) and an initial value x(t0) = x0 -
the solution x(t) is uniquely determined, continuous and piecewise differentiable. Sometimes to
show the explicit dependence on the chosen control function u it will be denoted as x(t, u).
We say the control ũ defined on [t1, t2] transfers the system from x1 to x2 if the solution x(t, ũ)
is defined for all t ∈ [t1, t2] and we have x(t1, ũ) = x1 and x(t2, ũ) = x2.
Given an additional function

f0(x1, . . . , xn, u1, . . . , ur) = f0(x, u) (D.8)

such that f0 and ∂f0
∂xi
, i = 1, . . . , n are well-defined and continuous on all of X × U then the

optimal control problem reads as [Pontrjagin et al., 1962][p. 13]:

We are given two points x1 and x2 in the phase space X. If there are admissible control functions
u = u(t) which transfer system (D.6) (or which is the same (D.7)) from state x1 to state x2 in
finite time, find a control function for which the functional

J :=

∫ t1

t0

f0(x(t), u(t))dt (D.9)

takes on the least possible value. Here, x(t) is the solution of (D.7) with initial condition
x(t0) = x0 and corresponding to control function u = u(t). t1 is the time at which the solu-
tion takes on the value x2.

Remarks:

1. For f0(x, u) ≡ 1 the functional J is equal to t1 − t0 and minimizing J means minimizing
the transition time from x0 to x1.

2. For fixed states x1 and x2 the upper and lower limits t0 and t1 are not fixed numbers but
depend on the choice of the control function u(t).

3. Since dealing with an autonomous system, we can relocate the initial time t0 for the control
function everywhere on the time-axis. This is because u(t + h) defined on [t0 − h, t1 − h]
has the same effect as u(t) defined on [t0, t1] for all real amounts h.
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4. As a consequence any part of an optimal trajectory is an optimal trajectory: Let u(t) be
an optimal control on the time interval [t0, t1] bringing the system from state x1 to state
x2. Then for any τ1, τ2 ∈ [t0, t1] with t0 < τ1 < τ2 < t1 the control u(t) on the interval
[τ1, τ2] is an optimal control bringing the system from state x(τ1) to state x(τ2).

Pontrjagin’s maximum principle gives a necessary condition for control functions which are
optimal in the above sense. It will be convenient to reformulate the problem as follows:
We adjoin a new coordinate x0 varying according to the law

dx0
dt

= f0(x1, . . . , xn, u1, . . . , ur) (D.10)

where f0 is the above introduced function. Adjoining this differential equation to the system of
differential equations (D.6) gives

dxi
dt

= fi(x1, . . . , xn, ui, . . . , ur) = fi(x, u), i = 0, . . . , n; r ≤ n (D.11)

where the right hand side does not depend on x0. The enhanced state vector is x̃ = (x0, x1, . . . , xn) =
(x0, x) which is an element of the enhanced (n+1)-dimensional vector space X̃. In vector notation
(D.11) reads as

dx̃

dt
= f̃(x, u) (D.12)

where f̃ = (f0, f) ∈ X̃ is the vector with coordinates f0, f1, . . . , fn.
Define x̃0 = (0, x0) and again let u(t) be a control transferring system (D.7) from state x1 at
time t0 to state x2 at time t1. Then the solution of (D.12) with initial condition x̃(t0) = x̃0
corresponding to this control function u(t) is defined on the time interval [t0, t1] and we have

x0 =

∫ t

t0

f0(x(τ), u(τ))dτ

x = x(t).

In particular for t = t1 this results in

x0 =

∫ t1

t0

f0(x(τ), u(τ))dτ = J

x = x(t1) = x2

meaning the solution x̃(t) with initial condition x̃(t0) = x̃0 passes through the point (J, x1) ∈ X̃
at t = t1. We define G to be the line in X̃ which is parallel to the x0-axis (x0 denotes the coor-
dinate here and not the initial value of the original problem formulation) and goes through the
point (0, x1) ∈ X̃. We can then reformulate the optimal control problem as follows [Pontrjagin
et al., 1962][p. 15]:

In the (n + 1)-dimensional phase space X̃ the point x̃0 = (0, x0) and the line G are given.
Among all admissible controls u = u(t) having the property that the corresponding solution x̃(t)
of (D.12) with initial condition x̃(t0) = x̃0 intersects G, find one whose point of intersection
with G has the smallest coordinate x0.
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D.2 The maximum principle

Consider the following system of differential equations

dxi
dt

= fi(x1, . . . , xn, u1, . . . , ur) = fi(x, u), i = 0, . . . , n; r ≤ n (D.13)

dψi
dt

= −
n∑

α=0

∂fα(x, u)

∂xi
ψα, i = 0, . . . , n (D.14)

where ψ1, . . . , ψn are auxiliary variables. Regarding a control function u = u(t) on [t0, t1] and the
uniquely determined solution x̃(t) of (D.13) with initial value x̃(t0) = x̃0 system (D.14) becomes

dψi
dt

= −
n∑

α=0

∂fα(x(t), u(t))

∂xi
ψα, i = 0, . . . , n (D.15)

which is a linear homogeneous differential equation admitting for any initial condition a unique
solution ψ = (ψ1, . . . , ψn). As u(t) was supposed to be piecewise continuous, the functions ψi
are piecewise continuously differentiable.
Introducing a new function

H(ψ, x, u) = 〈ψ, f̃(x, u)〉 =

n∑
α=0

ψα · fα(x, u), (D.16)

we can combine (D.13) and (D.14) as Hamiltonian system with Hamiltonian H:

dxi
dt

=
∂H
∂ψi

, i = 0, 1, . . . , n (D.17)

dψi
dt

= −∂H
∂xi

, i = 0, 1, . . . , n (D.18)

Regarding H as a function of u we define

M(ψ, x) = sup
u∈U
H(ψ, x, u) (D.19)

Theorem D.1. Pontrjagin’s maximum principle
Let u(t), t0 ≤ t ≤ t1 be an admissible control such that the corresponding solution x̃(t) of
(D.13) starts in x̃0 at time t0 and passes at time t1 through a point on the line G ⊂ X̃. In
order that u(t) is an optimal control and x̃(t) is an optimal trajectory in the sense that the
functional J in (D.9) is minimized - it is necessary that there is a nonzero continuous solution
ψ(t) = (ψ1(t), . . . , ψn(t)) of (D.14) such that

1. For all t ∈ [t0, t1] the function H(ψ(t), x(t), u) of the variable u ∈ U attains its maximum:

H(ψ(t), x(t), u(t)) =M(ψ(t), x(t))

2. ∀t ∈ [t0, t1] the following relations hold:

ψ0(t) ≤ 0 M(ψ(t), x(t)) = 0.
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D.3 Example: Time-optimal solution for a linear autonomous
system

We consider the two-dimensional linear autonomous system

dx1
dt

= x2 (D.20)

dx2
dt

= u |u| ≤ 1.

Here the state vector x = (x1, x2) is an element of X = R2 and the control u is a function of
the time t with range in the compact set U = [−1, 1] ⊂ R. We want to bring the system from a
given initial value x0 to the origin (0, 0) of the phase space in minimum time.
Due to (D.16) the Hamiltonian then is

H(ψ, x, u) = ψ1 · x2 + ψ2 · u (D.21)

and the differential system for the auxiliary variables are

dψ1

dt
= 0 (D.22)

dψ2

dt
= −ψ1

which can be solved by direct integration to obtain

ψ1 = η1 (D.23)

ψ2 = η1 − η2 · t, η1, η2 ∈ R constants.

The Hamiltonian attains is maximum for

u(t) = sgnψ2(t) = sgn(η1 − η2 · t). (D.24)

So we know that a time-optimal control for (D.20) (if it exists) has to be bang-bang, changing
sign at most one time.
Using the techniques of Hermes and LaSalle from chapter (1) we obtain the following results:
Reformulating problem (D.20) in vector notation yields

dx

dt
=

(
0 1
0 0

)
x(t) +

(
0
1

)
u(t) (D.25)

where the system matrices are A :=

(
0 1
0 0

)
and B :=

(
0
1

)
. The fundamental solution for

Ẋ(t) = AX(t) with X(0) = I is given by Φ(t, 0) =

(
1 t
0 1

)
with everywhere defined inverse

Φ−1(t, 0) =

(
1 −t
0 1

)
such that Y (t) := Φ−1(t, 0)B =

(
−t
1

)
. Hence system (D.25) is normal

and time-optimal controls exist and are bang-bang. The reachability set is strictly convex and
the initial value defines a normal vector η such that the optimal control has the form u(t) =
sgn ηTY (t) = η1 − η2 · t in accordance to the result of Pontrjagin’s maximum principle.
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