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Abstract—We focus on the linear beamformer design based
on quality-of-service (QoS) power minimization in the satellite
downlink with perfect and statistical channel state information
(CSI) users. Contrary to the usual rate requirements for the
perfect CSI users, we consider eitherergodic or outage con-
strained rate requirements for the statistical CSI users. Modeling
the fading channels as zero-mean Gaussian vectors with rank-
one covariance matrices, tractable ergodic mutual information
and outage probability expressions are obtained. While the
resulting outage constrained rate requirements can directly be
reformulated to equivalent signal-to-interference-and-noise-ratios
(SINRs) this is not possible for the ergodic rate constraints.
However, representing the necessary useful signal power ofeach
user as a function of the experienced interference and linearizing
this interference function, the usual SINR representation is
obtained. Based on this observation, a sequential approximation
strategy is proposed that solves a QoS power minimization with
standard SINR constraints in each iteration. In the numerical
results section, the convergence properties and the achieved
performance of this sequential QoS optimization are discussed.

Index Terms—QoS power minimization; beamforming; statis-
tical CSI; ergodic rates; outage constrained rate requirements;
satellite communication

I. I NTRODUCTION

As mentioned in [1], the achievements in themulti-user
and multi-antennatechnology of terrestrial wireless systems
have inspired researchers to explore the benefit of advanced
physical-layer designs insatellite communication(SatCom).
The reason is that this technology potentially offers increasing
link-quality and the possibility of interference reduction just
by additionally exploiting thespatial domainand without extra
cost concerning transmit power and bandwidth. This is espe-
cially important as power is a scarce resource at the satellite.
The more power is necessary to serve the users, the larger the
solar pannels and batteries have to be, which leads to higher
launching costs. Hence, the goal of research investigations are
power efficient communications and data service coverage of
future SatCom systems. In this work, we concentrate on the
well known QoS power minimization in the feed forward-
link, where transmission takes place through the satelliteto
the ground terminals. That is, given terminal-specific QoS
rate requirements shall be fulfilled using minimum satellite
transmit power.

A. Preliminary Work and Recent Advances

In accordance with recent publications, e.g., [2] and [1],
we give up the fixed-spotbeam techniqueof state-of-the art
SatCom systems in favor of modeling the forward-link as

a vector broadcast channel(BC). Thus, all the known ef-
ficient beamforming techniques can be exploited, e.g., the
linear beamforming approaches in [3] and [4]. In [2], also
the linear and non-linear restrictions for per-feed transmit
powers are taken into account. Note that the joint beamforming
is designed at the gateway which avoids power intensive
computations at the satellite.

While above approaches rely on perfect CSI for all users at
the operating gateway,robust formulationsof the considered
QoS power minimization have to be considered to cope with
SatCom system that serve alsostatistical CSIusers, e.g.,land-
mobile SatCom systems(cf. [5]). While the channel states for
static users with line of sight to the satellite are perfectly
known at the gateway, only the statistical properties of the
channels to mobile users, e.g., the covariance matrices, are
available due to the long round trip time inland-mobile Sat-
Com systems(cf. [5]). Fortunately, these covariance matrices
are essentially rank one because of the large distance from the
satellite to the ground and the local shadowing and scattering
effects around the users in urban environments. Therefore,this
work concentrates on the robust beamformer design based on
chance constrained formulationsandergodic requirements.

Chance constrained programming has recently gained im-
portance in wireless communications due to its capability of
properly describing optimizations with outage rate require-
ments (e.g., see [6], [7], [8]). However, the tractability of
these outage probabilities strongly depends on the form of the
probabilistic expression. Fortunately, the considered channel
statistics with zero-mean and rank-one covariance matrices
leads to closed-form expressions for the outage rate probability
that can directly be incorporated into the existing (perfect CSI)
QoS beamformer-design strategies.

Ergodic robust formulations for the considered problem
were already considered in [9], [10], [11]. The difficulty isthat
the ergodic rate requirements cannot be represented in terms
of some SINR constraints. Thus, straightforwardly applying
the usual perfect CSI optimizations is impossible. Due to this
property and the fact that no convex reformulations are known
for the ergodic rate requirements, a globally optimalbranch-
and-boundapproach was applied in [10] that, however, has
exponential complexity. The other references consider bounds
on the ergodic rates which are clearly suboptimal, but lead to
efficient algorithms with quadratic convergence speed. In this
work, we propose a locally optimal sequential approximation
strategy that has tractable complexity.



B. Contributions and Structure

We present a locally optimal sequential approximation strat-
egy for the robust QoS power minimization in the satellite
downlink with perfect CSI and statistical CSI users. To this
end, we propose a robust QoS power minimization formu-
lation with rate based chance constraints and ergodic rate
requirements for the statistical CSI users in Section III. While
the chance constrained QoS formulations can be equivalently
reformulated into minimum SINR requirements, this is not
possible for the ergodic rate constraints (see Section IV).
Therefore, approximations with SINR structure are created
that are based on a first order Taylor expansion w.r.t. the
experienced interference of the specific user. Based on these
SINR approximations for the ergodic users, we are able
to approximate the original problem via a standard QoS
power minimization with SINR constraints that in turn can be
solved with the usual efficient methods for perfect CSI. This
motivates a sequential approximation method for the initial
QoS power minimization, where in each iteration a standard
SINR constrained power minimization problem is solved (see
Section V). The numerical simulations in Section VI indicate
that this (locally optimal) sequential approximation method
converges in only a few iterations when starting from an initial
feasible point. Moreover, it achieves the global optimum in
small satellite system setups.

II. SYSTEM MODEL

Modeling the satellite feed forward-link as a vector BC,
K users are simultaneously served by theN -antenna satellite
in the considered carrier. The satellite linearly precodesthe
independent unit-variance data signalssk ∼ NC(0, 1) with
the beamforming vectorstk ∈ CN , k ∈ {1, . . . ,K} and
simultaneously transmits the superposition of the outcomes to
theK receivers. Userk’s received signal is given by

yk = h
H
k tk + h

H
k

∑

i6=k

tisi + nk

and suffers from zero-mean unit-variance additive Gaussian
noise nk ∼ NC(0, 1). Here, hH

k ∈ C1×N denotes the
frequency flat fading channel vector corresponding to userk.

Note that the channel stateshk are only available for static
users. For mobile users, the gateway is only aware of the
statistics of the fading channel that are modeled as zero-
mean Gaussian vectors with rank-one covariance matrices,
i.e., hk ∼ NC(0,Chk

) with Chk
= vkv

H
k . The channel

signaturevk is the scaled dominant eigenvector ofChk
. This

model is appropriate when assuming mobile users in an urban
environment and the satellite works at Ka-band (cf. [5]). That
is, the spatial signatures of the channels remain essentially
constant due to the large distance from the satellite to the
ground and the slow movement of the mobiles. The signal of
far distant large scatterers, e.g., mountains and skyscrapers,
can be neglected due to the additional path loss and delays.
However, the norm and phase of the channels strongly depends
on the position of the mobile, the surrounding scatterers, and
the heavy shadowing in urban environments.

III. QUALITY OF SERVICE OPTIMIZATION

For perfect channel state information, the minimization of
the total average transmit power under minimumquality-of-
service(QoS) rate requirementsρk, k ∈ {1, . . . ,K} reads as

minimize P (t1, . . . , tK)

subject to rk(t1, . . . , tK) ≥ ρk ∀k ∈ {1, . . . ,K},
(QoS)

where the transmit powerP (t1, . . . , tK) =
∑K

k=1 ‖tk‖
2
2 and

the ratesrk(t1, . . . , tK) are both functions of the precoding
vectorstk, with k ∈ {1, . . . ,K}.

Besides the achievable data rates, common QoS metrics are
the users’ SINRs. Due to their bijective relationship, i.e.,

rk = log2(1 + SINRk,pCSI), (1)

with the kth user’s (perfect CSI) SINR given by

SINRk,pCSI =
|hH

k tk|
2

1 +
∑

i6=k |h
H
k ti|

2
, (2)

the optimization in (QoS) can equivalently be written as a
power minimization with the SINR constraints

SINRk,pCSI≤ 2ρk − 1. (3)

Solutions for this equivalent formulation are given in [3],
[4]. Furthermore, equivalently reformulating above SINR
constraints in terms of theminimum mean square errors
(MMSEs), i.e., MMSEk = 1/(1+SINRk), feasibility of (QoS)
can easily be verified. That is, rewriting the rate constraints as
MMSEk ≤ εk = 2−ρk , k ∈ {1, . . . ,K}, the feasible region
of the requirements-tuple(ε1, . . . , εK) is a polytope with box
constraints0 ≤ εk ≤ 1 ∀k ∈ {1, . . . ,K} and the half-space
constraint

∑K
k=1 εk ≥ K −N [12, Theorem 1].

However, this work considers thathk is only available for
perfect CSI usersk ∈ P ⊆ {1, . . . ,K}. For the statistical
CSI usersk ∈ S = {1, . . . ,K} \ P, only the spatial channel
signaturesvk are known at the gateway, why we cannot rely
on (1) for these users. For some of these usersk ∈ Q ⊆ S,
robust designs shall be based on the reliability that the rate
targetsρk are achieved with some minimal probability. That
is, the chance constraintsPr{rk ≥ ρk} ≥ τk are employed for
k ∈ Q, with τk ∈ [0, 1] being the required minimal probability
that the target is met. For the remaining usersk ∈ E = S \Q,
the ergodic rate constraintsRk = Ehk

[rk] ≥ ρk are used
(cf. [10], [11]). Given these three different rate requirements
for static and mobile users, the QoS optimization reads as

minimize
K
∑

i=1

‖ti‖
2
2

subject to rk ≥ ρk k ∈ P

Pr{rk ≥ ρk} ≥ τk k ∈ Q

Rk ≥ ρk k ∈ E

(Q)

Note that (QoS) is a non-convex problem in the original BC
formulation and might become infeasible whenN < K and
too largeρk are chosen.



The perfect CSI rates in (1), the reliability probability
Pr{rk ≥ ρk}, and the ergodic ratesRk = E[rk] are neither
convex nor concave functions of{tk}Kk=1. To overcome this
difficulty, the perfect CSI rate requirements are transformed
to their SINR based counterparts as seen above. In the next
section, it is shown that ‘SINR’ like terms are also available
for the rate based chance constraints and approximations of
the ergodic rate constraints in (Q). This enables applying a
sequential approximation approachas detailed in Section V.

IV. CONSTRAINT SET REFORMULATION

We show that the chance constraints in (Q) can directly
be transformed to SINR constraints and the ergodic rate
constraints can be approximated with ‘signal-to-interference-
plus-noise-ratio’ constraints.

A. Chance Constrained Rate Requirements

To reformulate the chance constraint in (Q) as respective
SINR requirement, we first rewrite the constraint as

Pr{rk ≤ ρk} ≤ 1− τk, (4)

with Pr{rk ≤ ρk} being theoutage probability—the proba-
bility that the rate requirementρk is not satisfied. Since we
can writehk ∼ vkwk with wk ∼ NC(0, 1), above outage
probability can equivalently be expressed as

Pr{rk ≤ ρk} = Pr

{

|wk|
2 ≤

2ρk − 1

|vH
k tk|

2 − (2ρk − 1)Ik

}

with Ik =
∑

i6=k |v
H
k ti|

2 denoting the average experienced
interference of userk. Note thatλk = |wk|2 is aχ2-distributed
random variable with two degrees of freedom andE[λk] =
1. The cumulative distribution functionof λk reads as (e.g.,
see [13])

Fλk
(θ) = Pr{λk ≤ θ} = 1− exp(−θ).

Hence, an explicit form of (4) is given by

(2ρk − 1)
/(

|vH
k tk|

2 − (2ρk − 1)Ik
)

≤ − ln(τk).

This inequality can in turn be written as the SINR constraint

SINRk,outage=
|vH

k tk|
2

1
− ln(τk)

+ Ik
≥ 2ρk − 1. (5)

Here, SINRk,outage has obviously the same properties as
SINRk,pCSI in (2), namely, it is a fraction of the useful signal
power over a positive and linearly increasing function in
the interferenceIk. The only difference to the perfect CSI
structure is that the effective ‘noise’ variance1/(− ln(τk))
depends on the reliability probabilityτk in (5).

B. Ergodic Rate Requirements

Next, we consider the ergodic rate requirements

Rk = E[rk] ≥ ρk. (6)

Due toChk
= vkv

H
k , an explicit expression for thekth user’s

ergodic rate reads as

Rk =
1

ln(2)

[

h
(

|vH
k tk|

2 + Ik
)

− h (Ik)
]

. (7)
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Figure 1. A plot of the functiong(c, x) together with the upper bound
g(c, x) ≤ (ec+γ −1)(1+x) and the lower boundg(c, x) ≥ (ec −1)(1+x).

Here, Ik =
∑

i6=k |v
H
k ti|

2 and the functionh : R+ → R+

is defined ash(x) , e
1
x E1

(

1
x

)

, whereE1(x) =
∫∞

x
e−t

t
dt

denotes the exponential integral function (e.g., see [14],[15]).
Unfortunately, a direct reformulation of (6) does not result

in the same SINR structure as for perfect CSI in (3) and the
chance constraint formulation in (5). That is, by reformulating
the ergodic constraint such that the average received useful
signal |vH

k tk|
2 over a function of the interferenceIk has to

meet some minimum requirement, we obtain

|vH
k tk|

2

g(ln(2)ρk, Ik)
≥ 1, (8)

where the continuous function

g(c, x) = h−1
(

c+ h(x)
)

− x

is non-linear and (non-convex) increasing inx (cf. Fig. 1). In
fact, g(c, x) appears to be concave inx, but a rigorous proof
for this observation is still missing.

To obtain some SINR like version of (8), a linear approxi-
mation ofg(c, x) is required. For this purpose, we apply the
first order Taylor expansion

g(c, x) ≈ g(c, x′) +
∂g(c, x)

∂x

∣

∣

∣

x=x′
(x− x′),

with the partial derivative being

∂g(c, x)

∂x
=

(

h−1(c+ h(x))
)2

h−1(c+ h(x)) − c− h(x)

x− h(x)

x2
− 1,

Then, the ergodic constraint in (8) can be approximated via

SINRk,ergodic=
|vH

k tk|
2

βk

αk

+ Ik
≥ αk, (9)

with αk = ∂g(ln(2)ρk,Ik)
∂Ik

∣

∣

Ik=I′
k

and βk = g(ln(2)ρk, I
′
k) −

αkI
′
k. Since the functiong(c, x) is close to linear inx, this

approximation is accurate whenever the optimalIk is close to
the linearization pointI ′k. Note that the SINR targetαk in (9)
depends onI ′k and the ergodic rate targetρk and appears to
approacheln(2)ρk −1 for I ′k →∞ (see Fig. 1).



Algorithm 1 Iterative QoS power minimization with ergodic
rate requirements

Require: hk ∀k ∈ P, vk ∀k ∈ S, I(0)k ∀k ∈ E, ǫ← 10−4

1: repeat
2: n← n+ 1
3: SINR approximation of the ergodic constraints (9) with

αk = ∂
∂x

g(ln(2)ρk, x)|x=I
(n−1)
k

βk = g
(

ln(2)ρk, I
(n−1)
k

)

− αkI
(n−1)
k

4: Solving the QoS sub-problem (QA) optimally
(

{t
(n)
κ }, P

(n)
opt

)

= QA
(

{ρκ}, {τκ}, {ακ}, {βκ}
)

5: Update of the interference values
I
(n)
k =

∑

i6=k |v
H
k ti|

2 ∀k ∈ E

6: until |I(n)k − I
(n−1)
k | < ǫ ∀k ∈ E

7: return t
(n)
k ∀k ∈ {1, . . . ,K}, Popt

V. SEQUENTIAL APPROXIMATION APPROACH

Based on the SINR reformulations in (3) and (5) for the
perfect CSI and the reliability rate requirements, respectively,
and the SINR approximation of the ergodic constraints in (9),
we can approximate (Q) via the standard SINR formulation

minimize
K
∑

i=1

‖ti‖
2
2

subject to SINRk,pCSI≥ 2ρk − 1 ∀k ∈ P,
SINRk,outage≥ 2ρk − 1 ∀k ∈ Q,
SINRk,ergodic≥ αk ∀k ∈ E.

(QA)

This standard power minimization with SINR constraints can
in turn be solved via the usual methods and algorithms. That is,
either we reformulate (QA) into a second order cone problem
and apply standard interior-point solvers as in [4], or we apply
the uplink-downlink SINR duality and a fixed point algorithm
in the dual uplink as proposed in [3]. Moreover, feasibility
of (QA) can be tested in the same way as for the totally perfect
CSI scenario when defining the MMSE targets asεk = 2−ρk

for k ∈ P ∪Q andεk = 1
/

(1 + αk) for k ∈ E.
We remark that the optimal solution of (QA) is in general

not a solution of the original QoS power minimization in (Q).
However, whenever the optimal solution of (QA), denoted as
(t⋆1, . . . , t

⋆
K , Popt) = QA

(

{ρκ}, {τκ}, {ακ}, {βκ}
)

, results in
interference valuesI⋆k =

∑

i6=k |v
H
k t

⋆
i |

2 that satisfyI⋆k = I ′k
for all k ∈ E, then(t⋆1, . . . , t

⋆
K) is a locally optimal solution

for the initial power minimization problem (Q).
This motivates a sequential (convex) approximation algo-

rithm, where in then-th iteration (Q) is approximated with the
SINR constrained power minimization in (QA) that is based
on the interference valuesI(n−1)

k =
∑

i6=k |v
H
k t

(n−1)
i |2 for

k ∈ E, with (t
(n−1)
1 , . . . , t

(n−1)
K ) being the outcome of the

previous iteration (see Algorithm 1). As a starting point, we
use an initial feasible set{I(0)k }k∈E. To this end, we replace
the ergodic rates in (Q) with their upper bounds (cf. [10])

Rk = log2

(

1 +
|vH

k
tk|

2

1+
∑

i6=k
|vH

k
ti|2

)

≥ Rk,
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Figure 2. Minimal Power and Interference vs. number of iterations until
convergence for aK = N = 4, E = {1, . . . , K}, and above targets.

and solve the resulting approximate optimization problem.
Then, the obtained beamforming vectors are scaled with a
common factor such that all rate constraints in (Q) are sat-
isfied. By this two step procedure we obtain an initial feasible
tuple of precoders(t(0)1 , . . . , t

(0)
K ) [10, Proof of Theorem 1]

and, therewith, we can calculate feasible interference values
asI(0)k =

∑

i6=k |v
H
k t

(0)
i |

2 for k ∈ E. Using this initialization,
an exemplary convergence behavior for aK = N = 4
antenna scenario with only ergodic rate requirements, i.e.,
E = {1, . . . , 4}, is shown in Fig. 2. We see that the trans-
mit power as well as the individual interference values are
decreasing in each iteration.

VI. N UMERICAL RESULTS

For numerical simulations, we consider a GEO-stationary
satellite with a rectangular antenna array ofN elements. The
K users are randomly placed within 1° to 21°east and 40° to
56°north. Moreover, we differentiated two system setups:fully
loaded systemswith K = N , e.g.,K = N = 4 andK = N =
64, andoverloaded systemswith K > N , e.g., small systems
with K = 6 andN = 4 and large systems withK = 80 and
N = 64. Within these geometric models, we used the free
space path loss model for determining values of{hk}k∈P and
{vk}k∈S that are normalized with a common factor.

To analyze the convergence behavior of Algorithm 1, we
have performed simulations with solely statistical CSI users
that have ergodic rate requirements, i.e.,E = {1, . . . ,K}
and P = Q = ∅, and 100 channel realizations. The basic
targets of the users are chosen to beρ′2i−1 = 1 andρ′2i = 2,
i ∈ {1, . . . ,K/2}, which we scaled with some common factor
ρ0 such thatρk = ρ0ρ

′
k. For the histogram in Fig. 3, where the

necessary iterations until convergence are depicted, we calcu-
lated the minimum transmit power forρ0 ∈ {0.25, 0.5, 1, 2, 4}
in the fully loaded system and forρ0 ∈ {0.25, 0.5, 1} in the
overloaded system. We can see that the required number of
iterations slightly increases with the system dimension, but
remains small (below 16) for all observed scenarios. This
indicates fast convergence of the proposed algorithm.

Another aspect is the achieved performance of the proposed
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algorithm. To this end, we have performed simulations in
the small systems to be able to compute the global optimal
solutions, since the branch and bound method in [10] is
exponential in|E|. Here, we depict only the results for an
overloaded systemwith K = 6, N = 4, andK/2 statistical
CSI users. All these statistical CSI users had either reliability
or ergodic rate requirements and above basic targetsρ′k.

In Fig. 4, the minimal transmit power is plotted over the
common target factorρ0. We remark that all depicted points
ρ0 were feasible for the robust power minimization (Q). For
the ergodic constraint case, we depict theupper boundand
the lower boundfor the minimum transmit power from [11],
the globally optimal solution, and thesequential (convex)
approximation(SCA) approach. Note that each point of the
bound curves is obtained via a single SINR constrained power
minimization, contrary to the SCA curve points that require
a sequence of these power minimizations. However, with this
increased complexity, we exactly meet the global optimum in
the considered scenario. This indicates that the SCA method
has the potential to achieve the global optimum with tractable
complexity. Similar observations were made for the fully
loaded scenario withK = N = 4 and |E| = 2.

For the case with only reliability rate constraints for the
|S| = 3 statistical CSI users, we depicted curves withτk = τ
for all k ∈ Q and τ ∈ {0.99, 0.90} in Fig. 4. We see
that the minimum achievable transmit power strongly depends
on τ ∈ (0, 1) as expected, since the effective noise term
in (5) is increasing withτ . That means, the more reliable the
transmission has to be, the more transmit power is required.

VII. C ONCLUSION AND OUTLOOK

We considered the stochastically robust beamformer design
in the satellite downlink based on QoS power minimization
with reliability and ergodic rate constraints. To get alongwith
the ergodic requirements, we proposed a sequential (convex)
approximation procedure that solves a standard SINR con-
strained power minimization in each iteration. Starting from
an initial feasible point, this procedure locally optimally solves
the initial problem and, thus, potentially achieves the global
optimum with reasonable complexity. The performance and

0.2 0.4 0.6 0.8 1

0

10

20

30

40

−5

common target factorρ0

m
in

im
um

P
in

dB

lower bound
global optimum
SCA approach
upper bound
outageτk = 0.99

outageτk = 0.90

Figure 4. Minimal Power for a scenario withK = 6, N = 4, and 3
statistical CSI users with either ergodic or reliability rate requirements.

the fast convergence motivate a detailed analysis of the ergodic
‘SINR’ constraints and its approximation in future work.
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