Unified Communication in Heterogeneous
Automotive Control Systems

Michael Dinkel,

Daniel Fengler

BMW Group Forschung und Technik

Munchen,

Germany

+49-89-382-21623, Michael.Dinkel@bmw.de

Abstract— Current in-vehicle networks are featured
by multiple different communication systems. The dif-
ferent automotive network technologies are highly op-
timized for their special purpose. Since their applica-
tion domains have very differing requirements, com-
munication across network boundaries is not straight
forward and especially upgrading new functionality
into already existing vehicle systems is very difficult.
This paper presents the architecture and implemen-
tation of a communication system that enables the
use of very different network technologies over a sim-
ple and common API. Furthermore, the implemented
publish/subscribe middleware ensures loose compo-
nent coupling and upgradeability of applications to fu-
ture networking technologies.

Index Terms— Middleware, Messaging, Pub-
lish/subscribe, Network abstraction, Heterogeneous
systems.

. INTRODUCTION

sufficient since all requirements of the applications
were met, the communication partners where located
at the same network segment. Networked and local
communication has been kept as simple as possible
to prevent high costs per piece. With the introduc-
tion of central diagnosis applications the first software
required inter domain communication met the vehi-
cles. The result of these new demands paired with the
well known cost pressure in automobile development
has been the introduction of gateways that connect the
different network types. A central gateway provides
access to the vehicle infrastructure and translates the
commands of the diagnosis protocol to the different
networks, which results in an application specific so-
lution that leaves as much as possible of the existing
system untouched. In the course of this the gateways
have been extended by additional application specific
data that was needed for different functionality. Fig-
ure 1 depicts an overview of the current network in-

URRENT automotive computing systems havédrastructure of an upper class sedan.
reached a nearly overwhelming complexity due

to several reasons. Of course the number of appli-
cations in all domains of the vehicle has grown, bu

also the nature of the applications is beginning t
change. While the applications of the last decade havl==«}
been isolated for each domain like comfort or enter
tainment, the new generation of applications starts t
make use of the great number of sensors and actu[fsa}few«]
tors located throughout the vehicle. Due to cost pres-
sure the network technologies employed in specific «.can
domains are highly optimized for the specific needs

MOST

K-CAN Periphery byteflight

System

of the respective application domain. This means @g. 1. Onboard network of a BMW 7-series (E65)

MOST! network is very well suited for transmitting

audio signals but much to complex for very simple Here again the different networks, topologies and
devices like a door module where commonly CAN the gateways become visible. Even though the re-
and LIN® connections are used. Historically this wasulting complexity has been increased drastically, ap-
plication specific gateways possess a positive feature
for the vehicle safety: they keep domains of different
criticality to some extend separated from each other.

!Media Oriented Systems Transport
2Controller Area Network
3Local Interconnect Network

Nevertheless, the area of upcoming automotive applirakes it obvious that these bus systems are designed
cations will even more require inter domain commufor a single network segment. They provide a com-
nication and upgrades to existing systems alone is mounication service that enables sending messages to
longer sufficient. the network but not more. In contrast to that, the
In this paper we describe our approach towards MOST specification also defines the upper layers of
unified communication infrastructure for vehicle systhe 1ISO OSI model. Even the Application layer has
tems. In section two we point out the different typedveen defined and provides for easy integration by the
of heterogeneity and argue that the publish/subscrilgefinition of standard interfaces for typical infotain-
paradigm represents an adequate solution for our cument components like tuners, DVD-players, naviga-
rent problems. The architecture of a messaging midion or amplifiers. New standards and technologies
dleware that enables the transparent use of differee¢pecially in the area of wireless communication are
network technologies under a common API is pregoing to meet the automotive market and will have to
sented in section three where we point out the maime integrated somehow.
advantages of our communication infrastructure. Sec- _
tion four provides benchmark results in comparisof A 9limpse to the future
to other messaging middlewares with similar capabil- While today functionality in vehicles is always sold
ities. Related work is summarized in section five an&s @ combination of hardware and software in the fu-
section six concludes and points out future work. ture it will no longer be possible to realize applica-
tions on a single ECU. Nor will there be one ECU for
II. MASTERING HETEROGENEITY a single functionality. The automotive industry is on
. L . the way towards platforms that may execute differ-
The typical communication systems used in the au- . . .
. ent types of functionality and that support life cycle
gnanagement. The introduction of component-based
%8ftware will lead us to a new definition of the term
node can read the messages on the network and ad- ..~ ° L .
o o __application.Applicationsare defined as a set of com-
dressing is done via filtering of message identifiers

. L _Thunicating components that provide coherent, user-
This type of communication seems to be appropriate 9 P P

. . o erceivable functionality [1]. Software components
for the real-time requirements of control appllcatlong y (1] P

. . . can be installed, removed or updated separately or
but is usually limited to one single network segment, P b y

L . as a part of an application. This notion of applica-

The FlexRay technology uses a similar addressi % P pp . Ot applica
. ; . .. tons stresses one important thing, applications will

scheme but is based on time-triggered communication

. . o e composed of different parts that may be distrib-
as necessary for highly safety critical applications. Iﬂted over the complete vehicle. Hence an easy o use
contrast to byteflight, FlexRay, and CAN, networks P ' y

based on MOST technology are featured by a rinagmd unlfled_ communication _abs_tractlon is needed to
nable straight forward application development.

topology. While there are research projects that try to solve
Ethernet this problem by just applying a single bus system to
CAN FlexRay WithTCP/IP MOST i i i
—— — I — all ECUs in the vehicle, we are convinced that the cur-
7| Appl Appl Application Application
6 | Presentation Presentation Presentation Presentation rent COSt pressure. WI“ remain O_r even increase in the
5[Session Session Session Session future. So there will always be different network tech-
4| Transport Transport Transport Transport nOIOgieS in a vehicle since otherwise one would have
8| Network Network Network - to use the most powerful and often most costly tech-
2| DataLink Data Link Data Link Data Link | f . I d h t ” AI
+ | Physical Bhysical Physical Bhysicl nology even for simple and cheap controllers. Along

with the need for different network technologies we
Fig. 2. Comparison of network layers foresee the need for vehicle systems to support dif-
ferent architectures and different programming lan-
Figure 2 depicts a comparison of the network layguages. So from this section we conclude that hetero-
ers of different communication systems. In contrasjeneity will persist in the future and a unified commu-
to TCP/IP the automotive bus systems are much morgcation infrastructure has to be applicable to and has
than a protocol or protocol family. All of them in- to abstract from the heterogeneity of vehicle systems
clude specifications of the physical layer as well. Ino ease application development.
figure 2 one can see that the CAN and FlexRay pro- The life-cycle problematic which means that parts
tocols define the ISO OSI layers one and two, whicbf the system have very different periods of life will

not vanish in the future. The expected increase in
new applications in vehicle systems makes it even
more important to provide a solution that allows up-
dating, installing and removing software components
by loose coupling between them.

B. A communication abstraction

The search for an appropriate abstraction that ’
makes it possible to use different network technolo-
gies and ECU architectures as well as different pro-
gramming languages resulted in the publish/subscribe
paradigm. Publish/subscribe is a messaging paradigm
that enables many-to-many communication in a com- .
pletely asynchronous way. All communication part-
ners take one of the two rolgmiblisher , sender
of messages, @ubscriber receiver of messages.
Sending and receiving in a publish/subscribe system
is both featured by asynchronous behavior, which
contrasts other messaging technologies like message
gueuing or message passing. The addressing in pub-
lish/subscribe systems can be done in different ways
like content-, type- or topic based [2]. Common to all
these addressing schemes is that addressing commu-
nication partners is done indirectly which avoids the .
need for publishers to know the address and location
of their subscribers. Subscribers declare their interest
in messages assigned to a certain area of the address
space and the communication system takes care that
messages are delivered to the registered subscribers.
Publishers are able to send messages at any time.

Publish/subscribe has been identified as an appro-
priate communication paradigm that can provide a lot
of features which fit the requirements of the automo-
tive domain quite well [3]. A messaging middleware
provides for the needed abstraction of the technology
at hand. For the automotive domain a static address-
ing scheme has been chosen that divides the address
space into a hierarchy of channels that may be cre-
ated at runtime. The following gives an overview of
the reachable features:

« Loose coupling

In order to be able to update and exchange
parts of the system as independently from the

multi language capability is realized by a plat-
form independent message transfer format that
be interpreted on every involved platform. The
message format and its concrete semantics is
specific to each application domain and can be
considered an application layer protocol (OSI
layer 7).

Network-independence

A publish-subscribe messaging layer can be re-
alized on top of nearly any existing communica-
tion protocol and is therefore very well suited for
bridging different technology and protocol do-
mains.

Communication multiplicity

The publish/subscribe paradigm allows having
multiple publishers and subscribers for the same
channel. Also joining and leaving a channel
at runtime is possible. With the use of pub-
lish/subscribe messaging applications become
extensible without changes at the existing com-
ponents. The data is accessible via the channel
indirection and the M-to-N semantics of pub-
lish/subscribe allows adding new publishers or
subscribers for a channel very easily.

Location transparency

With publish/subscribe messaging the senders
(publishers) and receivers (subscribers) of mes-
sages do not need to know each other in terms
of addresses or object references. The indirec-
tion of channels or topics offers location trans-
parency.

Unique service interface

The publish/subscribe paradigm offers great po-
tential for a unified abstraction for communica-
tion between different technology domains. By
the means of QoS it becomes possible to really
use the same way of communicating in very dif-
ferent situations like real-time, continuous data
streaming or just sending high priority or reli-
able messages. This functionality can be used in
the same way in all different domains.

IIl. PROTOTYPE ARCHITECTURE

others as possible a communication middleware The following have been the main aspects of het-
has to provide loose component coupling. Pukerogeneity that should be addressed by our messaging
lish/subscribe provides this loose coupling sinceniddleware: 1) bridginglifferent platforms proces-

publishers and subscribers do not need to knosor
each other’s address or reference[2].
« Language and platform independence

architectures and programming languages, 2)

abstracting fromdifferent communication networks
topology, underlying protocols and schemes of ad-

In principle messaging mechanisms are indepeiressing, 3) being suitable falifferent application
dent from a specific programming language. Theequirementsand 4) providing ainiform communi-

cation interfacehat makes no difference in remote orB. RemoteBroker Layer

local use. .
The RemoteBroker layer has two main tasks: the

gl remote data storage and message encoding.

a) Remote Data StorageThe remote data stor-
age keeps per channel information about the remote
Remote Broker publishers and subscribers. For the sake of system
robustness all remote broker instances in the distrib-
uted systems keep a global view on the systems infor-
Transmn@wenm @ mation. For each channel, we store the address and
transport adapter of subscribers.

Broker

Broker Interface @

)

Transport Transport Transport

Fig. 3. BrokerSystem: layered architecture Remote Broker g

mmmmmmmy

AbstractAddress

Figure 3 gives an overview of the layered architec-

ture of our publish/subscribe middleware. The inter- repres:entation >| realAddress Q

face for applications is exactly the same regardless of '
remote or local communication. We aimed at achiev-

ing good performance also for local communication I\]
on the same machine. Hence, the broker is separated | --FEER

into two layers so that we have the possibility touse 1 RS '

it locally for loosely coupled and asynchronous com- ' understands
munication on the same node without the help of the

RemoteBroker and transport layers. The functional-9: 4 Structure of abstract addresses

ity of transcoding messages into the common trans-
port format is located in the remote broker layer and

can be considered a plug-in. Local communicatiofl v the add ; bscrib blish
can hence be performed by very efficient local methogY the address of a remote subscriber or publisher

calls whereas more complex mechanisms can be usl%t also '_[he _transport adapter that is us_ed to commu-
for remote communication. nicate with it. Addresses are stored in the special

type AbstractAddress, see Figure 4, that encapsulates

the network-specific address information and medi-
A. Broker Layer ates between the remote broker and the network spe-

The broker layer provides the application interfaceific transport adapters. The remote broker can han-

and manages the address space of the local host. Tdie any form of encapsulated concrete address by the
address space is hierarchically structured and is symse of abstract addresses. Thus our architecture is ex-
chronized with remote hosts on every change likeensible by new types of transport adapters without
adding or removing a channel. Subscribers can subhanging the remote broker layer.
scribe to leaves and branches of the tree formed by b) Message Encoding: The abstraction from

hierarchical channel names. For a subscription toge systems heterogeneity has been realized by defin-
channel that contains sub-channels all messages #ig a generic message format in a standardized way.
delivered inCIuding the ones pUbIlShEd to the SUtDue to the use of ASN4 and its basic encoding
channels. A priority driven queue is used as comyles (BER) application messages are transmitted in
mon resource for both sending and delivering megrneutral transport representaticend thus are under-
sages. The priority queue is separated into two se§tandable on different types of network nodes. In this
tions, one for real-time messages and the other opgy there may be optimized message representations
for non-real-time messages. Real-time messages @@t are highly suitable for the specific environment
always delivered before all other messages.A threagh each node but communication is still possible due

pool provides worker threads for delivering messageg the common understanding and representation of
from the queue. If there are remote subscribers for@essages on the wire.

message the message is delivered to the RemoteBro-
ker layer. 4 Abstract Syntax Notation One

Transport
reference

xe}
<)
g
@
=

Since there may be multiple different transport
dapters used for communication we have to store not

Broker Message

Transport Broker Application
Header Header Message

Transport Message

Fig. 5. Message structure

Java we chose to run the benchmarks on Windows
2000 and on SuUSE Linux 9.1. The exchanged mes-
sages should give a broad view of possible applica-
tions. So we decided to use two different message
sizes: 1) a payload of 8 Bytes ASCII data and 2) a

payload of 1 Megabyte binary data. Our assessment
included both remote comparison with IMS messag-

Figure 5 depicts the structure of application mesy,, oo|ytions and local comparison with typical Java
sages, the header added to each message at the br%?ﬁmunication means

layer, and the transport specific message header. Our

prototype is flexible enough to cope with any kind

of encoding for the application message. The brd® Benchmark results

ker header adds header fields like the channel name Figure 6 presents the results of the remote com-
unigue message identifier, priority, time-stamp, reaparison with other open source JMS implementations.
time flag, and version numbers for the message amkrsistence features have been deactivated on all com-
the version of the broker system. petitors where possible. One can see that in the re-
mote case our modular architecture does not prevent
good results. Sending messages via UDP can per-

The utilization of different network technologiesform even better for small messages while large mes-

becomes possible by abstracting the message prfges can not be send via UDP. We can see that only

ker from the underlying transport service, see figt- e MantaRay implementation performs better in both

ure 3. While the remote broker component man:-ise (I:asels than the.TC;_P vei;]smn of the_Broker_tSr?/s;Lem.
ages the generic information about the address spac%r ocal communication the comparison wi €

with its publishers and subscribers, each transpo‘ﬂvIS implementations has alsq been done *?“tOUTprO'
adapter has specific knowledge of the underlying pré(—)typ? outperformed all other |mplemgnta_t|ons since
tocols and networks. Discovery of other nodes OH avoids marshaliing for local communications.

the network also belongs to the tasks of the trans———

port adapters since the procedure may vary for each %
different network. For our prototype we developed |
transport adapters for TCP/IP and for Bluetooth us-| ‘=
ing the L2CAP protocol to show the protocol inde- | =
pendence. The TCP/IP adapter uses a discovery based +° " ° ° & & .
on IP-multicasts and is able to make use of the UDP - !
protocol for messages with the real-time flag.

C. Transport Layer

1400,00

1200,00
1000.00

2 80000

£

£ 600,00

400,00

200,00

0,00

(a) 10.000 text messages (b) 500 binary messages

Fig. 6. Benchmark results for remote communication
IV. BENCHMARKS

As a proof-of-concept the broker architecture has—
been implemented in a modular way as bundles for .

0,035

a Java/OSGi platform. We compared our imple- | 2%

£ 0020

mentation called the BrokerSystem with several open 1 wifs
source JMS-messagifignmplementations like Open-
JMS, ActiveMQ, MantaRay, and UberMQ for the re- (o) 100000 ext (©) 10,000 bnary messages
mote use case over a TCP-IP transport adapter. Fl% 7. Benchmark results for local communication

the benchmarks we chose a setup of two nodes to ex-

change messages and measured the round-trip time okjnce the JMS-implementations are mostly meant
a message from one node to the other. The two nodgs remote usage we also compared the BrokerSys-
have been standard PC hardware (Pentium4 2,6GHgm with Java/RMI and direct local method invoca-
1GB RAM) connected via a 100MBit Ethernet run-jong (LMI). In contrast to RMI our prototype does
ning TCP/IP. Since our prototype is implemented iyot need to encode the messages into transfer repre-

sentation for local communication. The BrokerSys-
tem performs only 3.5 times slower than local method

0,050
0,045
0,040
0,035

2 0,030 =

£ 0025

E 0,020
0015

0,010} 0007
0,004

0010
0,005
0,000

5Logical Link Control and Adaptation Protocol
5Java Message Service

calls in Java which sums up to 0.018 milliseconds itocated on their home network. Hence a commu-
the test environment. As depicted in figure 7 RMI isiication mechanism is needed that is able to bridge
a lot slower for both text and binary messages. Rdetween different network technologies transparently.
motely RMI performs a little better than our proto-The publish/subscribe paradigm provides an abstrac-
type. tion from different network technologies. Message
based communication is well suited for abstracting

V. RELATED WORK typical automotive networks since it supports their

Concerning the in-vehicle domain other re_usua}l form of commu_nlcatlon. _
searchers have also identified that current low-level YWith our prototype implementation we have shown

protocols are inadequate for upcoming applicationg@t We can overcome heterogeneity of different

and their communication needs. A few studies haJ¥P€s: The layered architecture enables the transpar-
focused on the CAN bus as a very popular autom&nt use of different networks while the ASN.1 based
tive bus system. For Example the work described iff2nsPortencoding ensures that messages can be inter-
[4] tries to port the Jini technology to the CAN bus,preted on different nodes running different operating

and discovered that the very design of Jini itself madgyStems and clients written in different programming
assumptions about the use of TCP and UDP. This dlgnguages. Bridging dn‘ferept network technologles
not prevent the porting of Jini to CAN, but imposeohas been shown by connecting a TCP network with a

a significant source of inefficiency and messiness ipluétooth domain. The benchmark results are satis-
substituting the wire protocols. In [5] the IP-protocolfCtOrY since this was a proof of concept implementa-

has been ported to the CAN bus and enables IP-basi! @nd there has been no optimization yet.

communication between CAN nodes and the Internet, FOT the future we are going to implement trans-
The work in [3] realized an efficient implementationPO't adapters for automotive networks like CAN and

for the publish/subscribe model on the CAN. The reMOST. We are going to include our messaging mid-

maining issue with these works is that they focuseﬂleware into embedded devices and address the sub-

solely on the CAN bus. The interoperation bet\NeeP'f’Ct of net_work redur_1_dgncy and better QoS modeling

different automotive bus systems has been out of f&nd real-time capabilities.

cus. One of the first ideas when thinking about a uni-

fied information exchange would be to use the Inter- REFERENCES

net Protocol (IP) for all domains. IP has been the basi$] Michael Dinkel and Uwe Baumgarten, “Modeling nonfunc-

for the work in [6]. But since applications of the in- tional requirements: a basis for dynamic systems manage-

vehicle domain have to cope with very low-cost parts \r/nvent," iNSEAS '05: Proceeo_llngs_of the Second Ir_wternatlonal
.)) ' orkshop on Software Engineering for Automotive Systems

IP is currently not an option for control applications new York, N, USA, 2005, pp. 1-8, ACM Press.

inside the vehicle. Today it is unrealistic to exchangg] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui,

the proven protocols in all different technology do- ;’J}“I:i/ Agnej't\)ﬂa[i?m*ée'\;fféarrec, ; “Tge manycfsaceRS Iogspub-
H H Ish/subscribe,” | omputin urveys . y

mains. So what can be (_jo_ne is to add a further ab- hp. 114131 ACM Press,rl)\leWgYork, N{(’ EJSAl,ngos.

straction on top of the existing protocols as done o) joerg Kaiser and Michael Mock, “Implementing the

example in [5] with IP as additional layer on top of real-time publisher/subscriber model on the controller

CAN. In such an approach we have to consider band- grea nethrE_ (CAN)’ dinRProlcejedinélg_s c_E thz (Z:nd Int.

H H H H H mp. on ect-oriente eal-time distribute omputin
W|d_th and packet sizes especially in the real-time do- (IéOFI)?CQQ,)Seiint-Man, France, May 1999, pp. 172_18p1. 9
main. An IP packet of 1500 Bytes for example has t?4] Meredith Beveridge, “Jini on the control area network (can):
be fragmented into 215 CAN packets of 8 bytes size. a case study in portability failure,” M.S. thesis, Carnegie
As stated in [5] one byte has been used for sequence Mellon University, 3 2001.
numbering. So from an automotive point of view 451 Michael Ditze“, Rei_nhard B_ernhardi, Guido Kmper, and Peter
communication abstraction has to be lightweight and Altenbernd, f’prtlng the |nt§rnet protocol to the contrpller

) i : area network,” ir2nd International Workshop on Real-Time
extremely scalable to fit the wide range of different | aNs in the Internet Age (RTLIA2002003.

embedded communication systems combined in a sii¢} Gerardo Pardo-Castellote, Stefaan Sonck Thiebaut, Mark
gle vehicle. Hamilton, a_nd Henry Cho_i, “Real-timt_e qulish-subscribe
protocol for ip-based real-time communication,” Tech. Rep.,
Real-Time Innovations, Inc., September 2001.
VI. CONCLUSION AND FUTURE WORK

Future applications will increasingly have the re-
quirement to access sensors or actuators that are not

