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Abstract—Current in-vehicle networks are featured
by multiple different communication systems. The dif-
ferent automotive network technologies are highly op-
timized for their special purpose. Since their applica-
tion domains have very differing requirements, com-
munication across network boundaries is not straight
forward and especially upgrading new functionality
into already existing vehicle systems is very difficult.
This paper presents the architecture and implemen-
tation of a communication system that enables the
use of very different network technologies over a sim-
ple and common API. Furthermore, the implemented
publish/subscribe middleware ensures loose compo-
nent coupling and upgradeability of applications to fu-
ture networking technologies.

Index Terms— Middleware, Messaging, Pub-
lish/subscribe, Network abstraction, Heterogeneous
systems.

I. I NTRODUCTION

CURRENT automotive computing systems have
reached a nearly overwhelming complexity due

to several reasons. Of course the number of appli-
cations in all domains of the vehicle has grown, but
also the nature of the applications is beginning to
change. While the applications of the last decade have
been isolated for each domain like comfort or enter-
tainment, the new generation of applications starts to
make use of the great number of sensors and actua-
tors located throughout the vehicle. Due to cost pres-
sure the network technologies employed in specific
domains are highly optimized for the specific needs
of the respective application domain. This means a
MOST1 network is very well suited for transmitting
audio signals but much to complex for very simple
devices like a door module where commonly CAN2

and LIN3 connections are used. Historically this was
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sufficient since all requirements of the applications
were met, the communication partners where located
at the same network segment. Networked and local
communication has been kept as simple as possible
to prevent high costs per piece. With the introduc-
tion of central diagnosis applications the first software
required inter domain communication met the vehi-
cles. The result of these new demands paired with the
well known cost pressure in automobile development
has been the introduction of gateways that connect the
different network types. A central gateway provides
access to the vehicle infrastructure and translates the
commands of the diagnosis protocol to the different
networks, which results in an application specific so-
lution that leaves as much as possible of the existing
system untouched. In the course of this the gateways
have been extended by additional application specific
data that was needed for different functionality. Fig-
ure 1 depicts an overview of the current network in-
frastructure of an upper class sedan.

1.3. Stand der Dinge im Automobil

K-CAN
System

MOST K-CAN Periphery byteflight PT-CAN

DWA

1-Axle-

Air Spring

SZ-MK

RDC

Rain

sensor

LSZ

IHKA

AHM

PDC

SZ-MK

Fond

Chassis
Integration

Module

SHD

Wiper

Module

Controller

SH/ZH

MMI-GT

ASK

Antenna

tuner

Video

Module

NAVI

Amplifier

TEL-IF

Voice Input

System

KH_INT

CDC

MMC

COMBI

CAS

TM DD

TM DDR

SM

Driver

SM

Driver

HKL

TM DP

TM DPR

SM

Passenger

SM

Passenger

Power

Module

Vehicle

Centre

A-Pillar

left

B-Pillar

left

Seat Driver

Door

Front left

Seat rear

SIM

Diagnostic

Access

Central

Gateway

SZ-
Steering
Column

A-Pillar

right

B-Pillar

right

Door

Front right

Seat

Passenger

ACC

Module

ARS

DSC

EGS

EMF

DDE1

DME1

DDE2

DME2

ALC

EDCK

Yaw Rate

Sensor

Standard

Equipment

Optional

Equipment

Abbildung 1.1.: Bordnetz eines BMW der 7er Reihe (E65) (Quelle: BMW Archiv)

Java-Laufzeitumgebung sowie diverse Framework-Dienste, unter anderem Mechanismen
zur Kommunikation zwischen verschiedenen Bundles innerhalb des Frameworks.

Bundles im OSGi Framework können verschiedene Formen annehmen, es kann sich dabei
um Dienstkomponenten, Applikationen bis hin zu intelligenten Endgeräten, die über eine
Softwareschnittstelle angebunden sind, handeln. Eines der Ziele des OSGi Frameworks ist
es, Bundles innerhalb einer Java Virtual Machine1 zu vernetzen und Interaktionsmöglich-
keiten zu bieten. Ein weiteres entscheidendes Ziel ist es, OSGI Bundles ein hohes Maß an
Laufzeitdynamik zu ermöglichen. OSGi Bundles können jederzeit während des Betriebs in
die Laufzeitumgebung geladen und gestartet, gestoppt und aktualisiert oder deinstalliert
werden. Weder die Laufzeitumgebung noch andere Bundles müssen hierzu beendet oder
neu gestartet werden, auch wenn diese mit dem entsprechenden Bundle interagieren.

Hierzu definiert die OSGi Spezifikation ein Komponentenmodell, das diese Ziele erreichen
kann. Kernkomponenten sind hierbei das Life-Cycle Management und die Service Regi-
stry des OSGi Frameworks. Das Life-Cycle Management regelt das dynamische Starten
und Stoppen von Bundles und bietet eine wohldefinierte Ereignisstruktur, die es ermög-
licht, andere Bundles über Statuswechsel zu informieren. Die zweite Kernkomponente ist
die Service Registry. Sie bietet Bundles ein Kooperationsmodell an, über das Dienste in
das Framework exportiert oder Dienste anderer Bundles entsprechend importiert werden
können [OSGI ALLIANCE 2004a]. Zusätzlich können Ressourcen verteilt werden, um von
anderen Bundles genutzt zu werden, ohne dass diese redundant eingeführt werden müs-
sen. Besonders durch die Export-/Importfunktionalität werden über lokale Methodenauf-
rufe Kommunikationsstrukturen zwischen einzelnen Bundles hergestellt, wie in Abbildung

1Oder auch kurz JVM. Eine JVM ist die Laufzeitumgebung für Java-basierte Anwendungen.
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Fig. 1. Onboard network of a BMW 7-series (E65)

Here again the different networks, topologies and
the gateways become visible. Even though the re-
sulting complexity has been increased drastically, ap-
plication specific gateways possess a positive feature
for the vehicle safety: they keep domains of different
criticality to some extend separated from each other.



Nevertheless, the area of upcoming automotive appli-
cations will even more require inter domain commu-
nication and upgrades to existing systems alone is no
longer sufficient.

In this paper we describe our approach towards a
unified communication infrastructure for vehicle sys-
tems. In section two we point out the different types
of heterogeneity and argue that the publish/subscribe
paradigm represents an adequate solution for our cur-
rent problems. The architecture of a messaging mid-
dleware that enables the transparent use of different
network technologies under a common API is pre-
sented in section three where we point out the main
advantages of our communication infrastructure. Sec-
tion four provides benchmark results in comparison
to other messaging middlewares with similar capabil-
ities. Related work is summarized in section five and
section six concludes and points out future work.

II. M ASTERING HETEROGENEITY

The typical communication systems used in the au-
tomotive domain provide quite simple broadcasting
communication. On the CAN bus for example, every
node can read the messages on the network and ad-
dressing is done via filtering of message identifiers.
This type of communication seems to be appropriate
for the real-time requirements of control applications
but is usually limited to one single network segment.
The FlexRay technology uses a similar addressing
scheme but is based on time-triggered communication
as necessary for highly safety critical applications. In
contrast to byteflight, FlexRay, and CAN, networks
based on MOST technology are featured by a ring
topology.
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Fig. 2. Comparison of network layers

Figure 2 depicts a comparison of the network lay-
ers of different communication systems. In contrast
to TCP/IP the automotive bus systems are much more
than a protocol or protocol family. All of them in-
clude specifications of the physical layer as well. In
figure 2 one can see that the CAN and FlexRay pro-
tocols define the ISO OSI layers one and two, which

makes it obvious that these bus systems are designed
for a single network segment. They provide a com-
munication service that enables sending messages to
the network but not more. In contrast to that, the
MOST specification also defines the upper layers of
the ISO OSI model. Even the Application layer has
been defined and provides for easy integration by the
definition of standard interfaces for typical infotain-
ment components like tuners, DVD-players, naviga-
tion or amplifiers. New standards and technologies
especially in the area of wireless communication are
going to meet the automotive market and will have to
be integrated somehow.

A. A glimpse to the future

While today functionality in vehicles is always sold
as a combination of hardware and software in the fu-
ture it will no longer be possible to realize applica-
tions on a single ECU. Nor will there be one ECU for
a single functionality. The automotive industry is on
the way towards platforms that may execute differ-
ent types of functionality and that support life cycle
management. The introduction of component-based
software will lead us to a new definition of the term
application.Applicationsare defined as a set of com-
municating components that provide coherent, user-
perceivable functionality [1]. Software components
can be installed, removed or updated separately or
as a part of an application. This notion of applica-
tions stresses one important thing, applications will
be composed of different parts that may be distrib-
uted over the complete vehicle. Hence an easy to use
and unified communication abstraction is needed to
enable straight forward application development.

While there are research projects that try to solve
this problem by just applying a single bus system to
all ECUs in the vehicle, we are convinced that the cur-
rent cost pressure will remain or even increase in the
future. So there will always be different network tech-
nologies in a vehicle since otherwise one would have
to use the most powerful and often most costly tech-
nology even for simple and cheap controllers. Along
with the need for different network technologies we
foresee the need for vehicle systems to support dif-
ferent architectures and different programming lan-
guages. So from this section we conclude that hetero-
geneity will persist in the future and a unified commu-
nication infrastructure has to be applicable to and has
to abstract from the heterogeneity of vehicle systems
to ease application development.

The life-cycle problematic which means that parts
of the system have very different periods of life will



not vanish in the future. The expected increase in
new applications in vehicle systems makes it even
more important to provide a solution that allows up-
dating, installing and removing software components
by loose coupling between them.

B. A communication abstraction

The search for an appropriate abstraction that
makes it possible to use different network technolo-
gies and ECU architectures as well as different pro-
gramming languages resulted in the publish/subscribe
paradigm. Publish/subscribe is a messaging paradigm
that enables many-to-many communication in a com-
pletely asynchronous way. All communication part-
ners take one of the two rolespublisher , sender
of messages, orsubscriber receiver of messages.
Sending and receiving in a publish/subscribe system
is both featured by asynchronous behavior, which
contrasts other messaging technologies like message
queuing or message passing. The addressing in pub-
lish/subscribe systems can be done in different ways
like content-, type- or topic based [2]. Common to all
these addressing schemes is that addressing commu-
nication partners is done indirectly which avoids the
need for publishers to know the address and location
of their subscribers. Subscribers declare their interest
in messages assigned to a certain area of the address
space and the communication system takes care that
messages are delivered to the registered subscribers.
Publishers are able to send messages at any time.

Publish/subscribe has been identified as an appro-
priate communication paradigm that can provide a lot
of features which fit the requirements of the automo-
tive domain quite well [3]. A messaging middleware
provides for the needed abstraction of the technology
at hand. For the automotive domain a static address-
ing scheme has been chosen that divides the address
space into a hierarchy of channels that may be cre-
ated at runtime. The following gives an overview of
the reachable features:

• Loose coupling
In order to be able to update and exchange
parts of the system as independently from the
others as possible a communication middleware
has to provide loose component coupling. Pub-
lish/subscribe provides this loose coupling since
publishers and subscribers do not need to know
each other’s address or reference[2].

• Language and platform independence
In principle messaging mechanisms are indepen-
dent from a specific programming language. The

multi language capability is realized by a plat-
form independent message transfer format that
be interpreted on every involved platform. The
message format and its concrete semantics is
specific to each application domain and can be
considered an application layer protocol (OSI
layer 7).

• Network-independence
A publish-subscribe messaging layer can be re-
alized on top of nearly any existing communica-
tion protocol and is therefore very well suited for
bridging different technology and protocol do-
mains.

• Communication multiplicity
The publish/subscribe paradigm allows having
multiple publishers and subscribers for the same
channel. Also joining and leaving a channel
at runtime is possible. With the use of pub-
lish/subscribe messaging applications become
extensible without changes at the existing com-
ponents. The data is accessible via the channel
indirection and the M-to-N semantics of pub-
lish/subscribe allows adding new publishers or
subscribers for a channel very easily.

• Location transparency
With publish/subscribe messaging the senders
(publishers) and receivers (subscribers) of mes-
sages do not need to know each other in terms
of addresses or object references. The indirec-
tion of channels or topics offers location trans-
parency.

• Unique service interface
The publish/subscribe paradigm offers great po-
tential for a unified abstraction for communica-
tion between different technology domains. By
the means of QoS it becomes possible to really
use the same way of communicating in very dif-
ferent situations like real-time, continuous data
streaming or just sending high priority or reli-
able messages. This functionality can be used in
the same way in all different domains.

III. PROTOTYPE ARCHITECTURE

The following have been the main aspects of het-
erogeneity that should be addressed by our messaging
middleware: 1) bridgingdifferent platforms, proces-
sor architectures and programming languages, 2)
abstracting fromdifferent communication networks,
topology, underlying protocols and schemes of ad-
dressing, 3) being suitable fordifferent application
requirements, and 4) providing auniform communi-



cation interfacethat makes no difference in remote or
local use.
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Fig. 3. BrokerSystem: layered architecture

Figure 3 gives an overview of the layered architec-
ture of our publish/subscribe middleware. The inter-
face for applications is exactly the same regardless of
remote or local communication. We aimed at achiev-
ing good performance also for local communication
on the same machine. Hence, the broker is separated
into two layers so that we have the possibility to use
it locally for loosely coupled and asynchronous com-
munication on the same node without the help of the
RemoteBroker and transport layers. The functional-
ity of transcoding messages into the common trans-
port format is located in the remote broker layer and
can be considered a plug-in. Local communication
can hence be performed by very efficient local method
calls whereas more complex mechanisms can be used
for remote communication.

A. Broker Layer

The broker layer provides the application interface
and manages the address space of the local host. The
address space is hierarchically structured and is syn-
chronized with remote hosts on every change like
adding or removing a channel. Subscribers can sub-
scribe to leaves and branches of the tree formed by
hierarchical channel names. For a subscription to a
channel that contains sub-channels all messages are
delivered including the ones published to the sub-
channels. A priority driven queue is used as com-
mon resource for both sending and delivering mes-
sages. The priority queue is separated into two sec-
tions, one for real-time messages and the other one
for non-real-time messages. Real-time messages are
always delivered before all other messages.A thread
pool provides worker threads for delivering messages
from the queue. If there are remote subscribers for a
message the message is delivered to the RemoteBro-
ker layer.

B. RemoteBroker Layer

The RemoteBroker layer has two main tasks: the
remote data storage and message encoding.

a) Remote Data Storage:The remote data stor-
age keeps per channel information about the remote
publishers and subscribers. For the sake of system
robustness all remote broker instances in the distrib-
uted systems keep a global view on the systems infor-
mation. For each channel, we store the address and
transport adapter of subscribers.

Remote Broker

Transport

AbstractAddress

reference

realAddress

points at

understands

generates

representation

Fig. 4. Structure of abstract addresses

Since there may be multiple different transport
adapters used for communication we have to store not
only the address of a remote subscriber or publisher
but also the transport adapter that is used to commu-
nicate with it. Addresses are stored in the special
type AbstractAddress, see Figure 4, that encapsulates
the network-specific address information and medi-
ates between the remote broker and the network spe-
cific transport adapters. The remote broker can han-
dle any form of encapsulated concrete address by the
use of abstract addresses. Thus our architecture is ex-
tensible by new types of transport adapters without
changing the remote broker layer.

b) Message Encoding: The abstraction from
the systems heterogeneity has been realized by defin-
ing a generic message format in a standardized way.
Due to the use of ASN.14 and its basic encoding
rules (BER) application messages are transmitted in
aneutral transport representationand thus are under-
standable on different types of network nodes. In this
way there may be optimized message representations
that are highly suitable for the specific environment
on each node but communication is still possible due
to the common understanding and representation of
messages on the wire.

4Abstract Syntax Notation One



Application 

Message

Broker 

Header

Transport 

Header

Broker Message

Transport Message

Fig. 5. Message structure

Figure 5 depicts the structure of application mes-
sages, the header added to each message at the broker
layer, and the transport specific message header. Our
prototype is flexible enough to cope with any kind
of encoding for the application message. The bro-
ker header adds header fields like the channel name,
unique message identifier, priority, time-stamp, real-
time flag, and version numbers for the message and
the version of the broker system.

C. Transport Layer

The utilization of different network technologies
becomes possible by abstracting the message bro-
ker from the underlying transport service, see fig-
ure 3. While the remote broker component man-
ages the generic information about the address space
with its publishers and subscribers, each transport
adapter has specific knowledge of the underlying pro-
tocols and networks. Discovery of other nodes on
the network also belongs to the tasks of the trans-
port adapters since the procedure may vary for each
different network. For our prototype we developed
transport adapters for TCP/IP and for Bluetooth us-
ing the L2CAP5 protocol to show the protocol inde-
pendence. The TCP/IP adapter uses a discovery based
on IP-multicasts and is able to make use of the UDP
protocol for messages with the real-time flag.

IV. B ENCHMARKS

As a proof-of-concept the broker architecture has
been implemented in a modular way as bundles for
a Java/OSGi platform. We compared our imple-
mentation called the BrokerSystem with several open
source JMS-messaging6 implementations like Open-
JMS, ActiveMQ, MantaRay, and UberMQ for the re-
mote use case over a TCP-IP transport adapter. For
the benchmarks we chose a setup of two nodes to ex-
change messages and measured the round-trip time of
a message from one node to the other. The two nodes
have been standard PC hardware (Pentium4 2,6GHz,
1GB RAM) connected via a 100MBit Ethernet run-
ning TCP/IP. Since our prototype is implemented in

5Logical Link Control and Adaptation Protocol
6Java Message Service

Java we chose to run the benchmarks on Windows
2000 and on SuSE Linux 9.1. The exchanged mes-
sages should give a broad view of possible applica-
tions. So we decided to use two different message
sizes: 1) a payload of 8 Bytes ASCII data and 2) a
payload of 1 Megabyte binary data. Our assessment
included both remote comparison with JMS messag-
ing solutions and local comparison with typical Java
communication means.

A. Benchmark results

Figure 6 presents the results of the remote com-
parison with other open source JMS implementations.
Persistence features have been deactivated on all com-
petitors where possible. One can see that in the re-
mote case our modular architecture does not prevent
good results. Sending messages via UDP can per-
form even better for small messages while large mes-
sages can not be send via UDP. We can see that only
the MantaRay implementation performs better in both
use cases than the TCP version of the BrokerSystem.
For local communication the comparison with the
JMS implementations has also been done but our pro-
totype outperformed all other implementations since
it avoids marshalling for local communications.
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Fig. 6. Benchmark results for remote communication
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Fig. 7. Benchmark results for local communication

Since the JMS-implementations are mostly meant
for remote usage we also compared the BrokerSys-
tem with Java/RMI and direct local method invoca-
tions (LMI). In contrast to RMI our prototype does
not need to encode the messages into transfer repre-
sentation for local communication. The BrokerSys-
tem performs only 3.5 times slower than local method



calls in Java which sums up to 0.018 milliseconds in
the test environment. As depicted in figure 7 RMI is
a lot slower for both text and binary messages. Re-
motely RMI performs a little better than our proto-
type.

V. RELATED WORK

Concerning the in-vehicle domain other re-
searchers have also identified that current low-level
protocols are inadequate for upcoming applications
and their communication needs. A few studies have
focused on the CAN bus as a very popular automo-
tive bus system. For Example the work described in
[4] tries to port the Jini technology to the CAN bus,
and discovered that the very design of Jini itself made
assumptions about the use of TCP and UDP. This did
not prevent the porting of Jini to CAN, but imposed
a significant source of inefficiency and messiness in
substituting the wire protocols. In [5] the IP-protocol
has been ported to the CAN bus and enables IP-based
communication between CAN nodes and the Internet.
The work in [3] realized an efficient implementation
for the publish/subscribe model on the CAN. The re-
maining issue with these works is that they focused
solely on the CAN bus. The interoperation between
different automotive bus systems has been out of fo-
cus. One of the first ideas when thinking about a uni-
fied information exchange would be to use the Inter-
net Protocol (IP) for all domains. IP has been the basis
for the work in [6]. But since applications of the in-
vehicle domain have to cope with very low-cost parts
IP is currently not an option for control applications
inside the vehicle. Today it is unrealistic to exchange
the proven protocols in all different technology do-
mains. So what can be done is to add a further ab-
straction on top of the existing protocols as done for
example in [5] with IP as additional layer on top of
CAN. In such an approach we have to consider band-
width and packet sizes especially in the real-time do-
main. An IP packet of 1500 Bytes for example has to
be fragmented into 215 CAN packets of 8 bytes size.
As stated in [5] one byte has been used for sequence
numbering. So from an automotive point of view a
communication abstraction has to be lightweight and
extremely scalable to fit the wide range of different
embedded communication systems combined in a sin-
gle vehicle.

VI. CONCLUSION AND FUTURE WORK

Future applications will increasingly have the re-
quirement to access sensors or actuators that are not

located on their home network. Hence a commu-
nication mechanism is needed that is able to bridge
between different network technologies transparently.
The publish/subscribe paradigm provides an abstrac-
tion from different network technologies. Message
based communication is well suited for abstracting
typical automotive networks since it supports their
usual form of communication.

With our prototype implementation we have shown
that we can overcome heterogeneity of different
types. The layered architecture enables the transpar-
ent use of different networks while the ASN.1 based
transport encoding ensures that messages can be inter-
preted on different nodes running different operating
systems and clients written in different programming
languages. Bridging different network technologies
has been shown by connecting a TCP network with a
Bluetooth domain. The benchmark results are satis-
factory since this was a proof of concept implementa-
tion and there has been no optimization yet.

For the future we are going to implement trans-
port adapters for automotive networks like CAN and
MOST. We are going to include our messaging mid-
dleware into embedded devices and address the sub-
ject of network redundancy and better QoS modeling
and real-time capabilities.
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