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ABSTRACT

Uncertainty in the spatial signature of interfering signals is a

major source of performance degradation in the downlink of

a MIMO network. In general, the exact transmit covariance

matrix of the other transmitters can not be predicted correctly

in advance as the optimal strategies mutually depend on each

other. In this work, we investigate two approaches for opti-

mizing downlink transmission that are robust to interference,

while operating in absence of cross channel information at

the transmitter. Although they may seem unrelated, the two

approaches share an interesting symmetry and are both de-

rived from a more general minimax duality.

1. INTRODUCTION

The interdependence of user data rates in the downlink of a

wireless cellular network, due to interference and shared re-

sources, makes it difficult to optimize the physical layer pa-

rameters. This is especially challenging in MIMO networks

as the availability of additional degrees of freedom is directly

reflected in the spatial signature of the interference.

In theory, interference can be completely eliminated by

joint encoding over multiple transmitters, which however re-

quires a huge amount of additional complexity and signaling;

it might be difficult to implement in practice. Therefore, it

is worthwhile to consider interference coordination for single

cell signal processing, also known as coordinated beamform-

ing and scheduling, where the remaining inter-cell interfer-

ence is treated as additional noise. The spatial degrees of

freedom provided by the multiple transmit antennas can be

used for advanced interference coordination, for example by

optimization techniques [1], or by targeting the maximally

available degrees of freedom [2]. Still, these approaches are

demanding concerning the channel state information (CSI)

available at the transmitters, usually the channels between the

users and the interfering transmitters need to be known. And

yet, it is not clear, if the gains achieved do compensate for the

costs to acquire cross-channel CSI in state-of-the-art deploy-

able networks. In this work, we limit our attention to inter-

ference management that does not depend on cross-channel

CSI at the transmitter, thus avoiding additional feedback. An

example is fractional reuse [3], where interference is man-

aged by providing protected resources for cell-edge users and

allowing shared resources for those users that can afford an

increased noise level.

In general, the spatial structure of the interference plus

noise matrix can not be predicted correctly in advance and

this uncertainty is a major source of performance degrada-

tion. The degradation of the transmission rates due to un-

expected changes of the inter-cell interference is sometimes

called “flash-light” effect [4] and several ideas are suggested

to handle the problem [5]. Additionally, the uncertainty in

interference results in uncertainty in the presumed achievable

data rates of the users, which in turn causes impairments at

the higher layers, for example the scheduler or the mecha-

nism to allocate protected and unprotected bands for frac-

tional reuse.

To increase robustness for the remaining inter-cell inter-

ference we consider two possible techniques. The first one

considers interference by a worst case approximation, as for

example done for the point-to-point MIMO channel or sum-

rate maximization in [6,7]. The secondmethod uses a definite

shaping constraint on the sum covariance of the transmit sym-

bols, therefore allowing for a less pessimistic approximation

of the interference. Constraints on the sum covariance have

been addressed in literature, for example a per antenna power

constraint [8] or multiple linear constraints [9].

For both techniques we present algorithms to optimize

the downlink transmit covariances for a weighted sum of the

user rates, assuming dirty paper coding. The optimization is

performed in the dual uplink, for which we provide an uplink-

downlink relationship derived from the general minimax du-

ality under linear conic constraints introduced in [10].

1.1. System Model

Consider the downlink of a cellular network with set of users

K,K = |K| and set of transmitters T , T = |T |. For simplic-

ity, but without loss of generality, we assume that every user

hasNrx receive antennas and every transmitter hasNtx anten-

nas. The channel between user k and its serving transmitter

is Hk ∈ CNrx×Ntx and we denote the channel to an interfer-

ing transmitter t by Hkt ∈ CNrx×Ntx . For a user k and set



of interfering transmitters Ik ⊆ T , the noise plus inter-cell

interference covariance matrix is given by

Rk = Rη,k +
∑

t∈Ik

HktQtH
H
kt, (1)

where Rη,k is the receiver noise covariance at the k-th user

and Qt is the sum transmit covariance of transmitter t. The

noise plus (inter-cell) interference covariances of the users

are

R = (Rk : k ∈ K) ,

and the transmit covariances are

Q = (Qk : k ∈ K) .

The sum transmit covariance of transmitter t is

Qt =
∑

k∈Kt
Qk, where Kt,Kt = |Kt| is the set of users

served by transmitter t. The users Kt are served with covari-

ances Qt = (Qk : k ∈ Kt) and their noise plus interference

covariances are Rt = (Rk : k ∈ Kt). The data rate of user
k is rk(Qt,Rk) and depends on (some of) the other transmit

covariances (intra-cell interference) and the noise plus inter-

cell interference covariance (1), that includes the dependence

on the transmission strategies of the interfering cells. As-

suming dirty paper coding and users sorted according to the

encoding order, the data rate is

rk(Qt,Rk) = log


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We target the optimization of a weighted sum of the data

rates,
∑

k∈K wkrk(Q,Rk), wherewk is the weight of user k.

In order to optimize the downlink transmission strategies, we

consider a virtual uplink problem, with flipped channels and

roles of receivers and transmitters inverted. For a single cell

with transmitter t, the uplink noise covariance is Ωt and the

transmit covariances are

St = (Σk : k ∈ Kt) .

The data rate of user k in the uplink is denoted as rk(St,Ωt).

1.2. Interference Prediction

We do not regard interference coordination in the spatial do-

main and therefore each transmitter chooses the best transmit

strategy for its users egoistically. For networks where each

transmitter is equipped with a single antenna it is clear that

the strategy of each transmitter is to use all available power,

which makes the interference caused to users in a neighbor-

ing cell very well predictable, for example by measurements.

As in the single antenna case, for multiple transmit antennas

each transmitter will use its full power budget, however the

spatial signature of the interference is difficult to predict. In

case the interference could be predicted correctly in advance

Rk is known for every user and the capacity achieving trans-

mit strategies can be computed by considering an effective

channel H̄k = R
−1/2
k Hk. However, it is clear that the opti-

mal transmit strategies mutually depend on each other, mean-

ing we do not know the inter-cell interference in advance and

the unpredictability of the interference causes problems for

link rate adaptation.

The state of the art approach is to use an prediction of

the inter-cell interference based on either measured ICI in the

past [5], or based on knowledge of the cross-channels. In case

the users are able to gather correct channel state information

on the channels to the interfering transmitters, a prediction

used in [3] is to assume a white transmit covariance using the

full power budget P . The predicted interference plus noise

covariance is then given by

R̃k = Rη,k +
P

Ntx

∑

t∈Ik

HktH
H
kt. (3)

A frequently observed alternative is to use a white noise ma-

trix for the prediction.

2. MINIMAX UPLINK–DOWNLINK DUALITY

Lagrangian duality for a minimax Gaussian mutual informa-

tion expression was introduced by [11] to prove the sum-

capacity of the multi-user downlink. In [10] a minimax

uplink-downlink duality for multi-user systems is introduced.

Instead of the usual power constraint, the optimization of the

downlink transmit covariances

max
Qt,Z∈Z
Q

t
�C+Z

∑

k∈Kt

wkrk(Qt,Rk),

includes a linear conic constraint on the sum covariance of a

transmitter, such that

Qt � C +Z,Z ∈ Z, (4)

whereZ is a linear subspaces ofNtx×Ntx Hermitian matrices

and C is fixed. The downlink strategies are optimized under

a worst case noise assumption. The noise covariances are

constraint by

(Rk : k ∈ Kt) ∈ Y⊥,

where Y⊥ is a linear subspace of Kt-tuple of appropriately

sized Hermitian matrices, and
∑

k∈Kt

tr (BkRk) = σ2,

with fixed (Bk : k ∈ Kt) and σ
2.

The downlink minimax problem is

min
(Rk:k∈Kt)∈Y⊥

∑

k∈Kt

tr(BkRk)=σ2

max
Qt,Z∈Z
Q

t
�C+Z

∑

k∈Kt

wkrk(Qt,Rk). (5)



Although the constraints are convex, the rate expression (2)

in the utility renders the problem non-convex, which does not

lead to an efficient method for finding a solution. However,

there exists an equivalent uplink minimax problem

min
Ωt≻0,Ωt∈Z⊥

tr(CΩt)=σ2

max
St,(Y k:k∈Kt)∈Y

Σk�Bk+Y k∀k∈Kt

∑

k∈Kt

wkrk(St,Ωt), (6)

where Y and Z⊥ are the orthogonal subspaces of Y⊥ and Z ,

respectively. The uplink minimax problem is concave in the

transmit covariances and convex in the noise covariance and

therefore efficient methods to compute a solution are avail-

able. In the next section, we show how the minimax duality

can be used to compute robust downlink strategies.

3. ROBUST DOWNLINK STRATEGIES

As inter-cell interference is considered by the prediction, the

downlink problem decouples into individual problems per

transmitter. In the following, we introduce two methods that

allow to optimize the downlink transmit strategies such that

they are robust to interference. For both methods, we first

motivate and state the corresponding downlink optimization

problem. We then identify the parameters to reformulate the

problem as in (5), which directly gives us the correspond-

ing uplink problem structure (6). The downlink transmit co-

variances are computed by the conventional uplink-downlink

conversion, which is formulated explicitly in [12].

3.1. Worst Case Noise

As done for the point-to-point MIMO channel in [6, 7], we

use a worst case approximation of the interference plus noise,

which is obtained by assuming an arbitrary structure under a

power constraint, i. e., tr (Rk) = σ2
k . By using an effective

channel H̄k = 1
σk

Hk, we can model the the worst case ap-

proximation by tr (Rk) = 1. The constant σ2
k should be re-

lated to the thermal noise covariance and the interfering chan-

nels. In case the cross channels are known at the receiver, we

can select an upper bound by

σ2
k = tr(Rη,k)+

max

{

∑

t∈Ik

tr
(

HktQtH
H
kt

)

: tr(Qt) = P ∀t

}

, (7)

which requires to compute the maximal singular values of the

cross-channels.

The downlink transmit covariances are optimized subject

to a sum power constraint. For the worst case approximation

we obtain the following minimax problem:

min
Rt

{

max
Qt,tr(Qt

)=P

{

∑

k∈Kt

wkrk(Qt,Rk)

}

: tr (Rk)=1∀k

}

.

According to [10], the sum-power constraint can be modeled

as

C =
P

Ntx

I and Z = {Z : tr{Z} = 0} . (8)

The one dimensional orthogonal subspace is

Z⊥ = {Z : Z = λI, λ ∈ R} ,

and tr (CΩt) = 1 yieldsΩt =
1
P I . Next, we find the model

for the worst case noise approximation. First, we select Y⊥

as all Hermitian matrices (Rk : k ∈ Kt) where

tr (Rj) = tr (Rk)∀j, k ∈ Kt.

Second, if we set Bk = 1
Kt

I ∀k ∈ Kt

and
∑

k∈Kt

tr (BkRk) = 1 we have tr (BkRk) = 1
Kt

∀k ∈

Kt, which means tr (Rk) = 1 ∀k ∈ Kt.

The orthogonal subspace Y can be identified as all ma-

trices (µkI : k ∈ Kt), such that
∑

k∈Kt
µk = 0. Without

detailed discussion, we assume a problem structure such that

the least favorable noise covariances are full rank. Accord-

ing to [10], the least favorable noise covariances are the La-

grangian multipliers for the constraints

Σk � Bk + Y k ∀k ∈ Kt.

Therefore these constraints will be binding with equality,

which yields

Σk = Bk + Y k =
1

Kt
I + µkI

This means that all uplink transmit covariances are white.

Furthermore, we have
∑

k∈Kt
tr (Σk) = 1 and we obtain

the following uplink problem:

max
St

{

∑

k∈Kt

wkrk(St,
1

P
I) :Σk=PkI, Pk≥0∀k,

∑

k∈Kt

Pk=1

}

,

which can be reformulated as

max
St

{

∑

k∈Kt

wkrk(St, I) :Σk=1PkI, Pk≥0∀k,
∑

k∈Kt

Pk=P

}

.

3.2. Shaping Constraint

Our second approach is to reduce the uncertainty in the inter-

ference by imposing a shaping constraint on the sum transmit

covariance, that is Qt � C , where C is a design parameter.

A reasonable choice is for exampleC = P
Ntx

I , which we use

in this work. This allows for a less pessimistic approxima-

tion of the interference, especially if knowledge on the inter-

fering channels is available at the receiver. In case the chan-

nel state information is error free and all basestations fully

exploit the constraint Qt � P
Ntx

I , the prediction by (3) is

correct. Although the shaping constraint reduces the set of al-

lowed transmit covariances, we still keep the so much desired



abilities for coordination of intra-cell interference by adaptive

MIMO transmission, allowing us to serve multiple users on

the same resource or multiple streams per user. The noise

covariances are computed by (3) and the downlink problem

with shaping constraint is

max
Qt

{

∑

k∈Kt

wkrk(Qt,Rk) : Qt �
P

Ntx

I

}

. (9)

Let Y⊥ be all Kt-tuples of matrices (µRk : k ∈ Kt). By
selecting Bk = I ∀k and

∑

k∈Kt

tr (BkRk) = 1, we must

have µ = 1 and the least favorable noise covariances are

fixed to (Rk : k ∈ Kt). The orthogonal subspace Y implies

that (Y k : k ∈ Kt) can be freely chosen, only constraint

by
∑

k∈Kt
tr (RkY k) = 0. Further, we have Bk = I

and Σk � Bk + Y k, which is equivalent to the constraint

tr (RkΣk) = 1. By using effective channels H̄k = R
−1/2
k Hk

this constraint becomes a sum power constraint on the uplink

transmit covariances, i. e.,
∑

k∈Kt
tr (Σk) = 1.

The downlink problemwith shaping constraint (9) directly

admits the structure in (5). We identify Z = {0} and Z⊥ =
CNtx×Ntx . As C = P

Ntx
I , we have tr(Ωt) =

1
P . This gives us

the uplink minimax problem

min
Ωt,tr(Ωt)=

1

P

{

max
St

{

∑

k∈Kt

wkrk(St,Ωt) :
∑

k∈Kt

tr (Σk)=1

}}

,

which can be reformulated as

min
Ωt,tr(Ωt)=1

{

max
St

{

∑

k∈Kt

wkrk(St,Ωt) :
∑

k∈Kt

tr (Σk)=P

}}

,

Theminimax uplink problem for the shaping constraint trans-

mit covariance method can be formulated such that the solu-

tion is a saddle point of a function, which is convex in the

noise Ωt and concave in the transmit covariances St. This

allows for efficient algorithms to compute a solution. Both,

the least favorable noise and the set of uplink covariances can

be freely chosen under a sum-power constraint.

3.3. Interpretation

The two approaches share an interesting symmetry; while the

worst case interference approach is a minimax problem with

power constraints in the downlink it becomes a pure maxi-

mization in the uplink. The shaping constraint approach in

turn is a pure maximization problem in the downlink, while

the corresponding uplink problem is a minimax problem.

For the worst case noise technique, both the noise co-

variances and the transmission matrices can be freely chosen,

only subject to a power constraint. In the associated uplink

problem, this leaves a power allocation as the only degree of

freedom for the transmit covariances.

For the constrained transmit covariance problem we ob-

serve the opposite, for given noise covariances and a shaping

constraint on the sum-transmit covariance, we obtain an up-

link problem with arbitrary uplink noise and arbitrary trans-

mit covariances, subject up to power constraints.

3.4. Cross Channel Measurement and Feedback

Clearly, for the worst case noise approximation, we do not

rely on cross channel CSI at the transmitter, but it may be

used at the receiver to compute the worst case power con-

stant σ2
k , for example by (7). Still, no additional feedback is

required as the constant σ2
k can be implicitly considered by

feedback of an effective channel H̄k = 1
σk

Hk. A disadvan-

tage of the worst approximation is that it usually is way too

pessimistic, as the worst case noise for all receivers may be

impossible to realize by the interfering transmitters. As an

improvement one could explicitly model the feasible noise

covariances by considering the cross channels and power con-

straints on the interfering transmitters, for example by a

straight forward extension of [6]. This would however require

cross channel CSI at the transmitter, which should allow for

more advanced interference coordination methods. For the

shaping constraint approach, the interference plus noise ma-

trix can be predicted at the receiver, for example by (3) if the

cross-channels are known. By considering effective channels

H̄k = R
−1/2
k Hk no additional feedback is needed. Correctly

knowing the interference in advance is not only a big advan-

tage for rate allocation, but also avoids algorithmic impair-

ments in higher layer mechanisms such as the resource allo-

cation for fractional reuse. Indeed one of the main drawbacks

in the scheme presented in [3] is the non-robust interference

prediction, which can be avoided by using one of the robust

methods presented here.

3.5. Numerical Simulations

For numerical simulations we consider a scenario with two

transmitters that serve two users each. Every user has two

receive antennas and the transmitters are equipped with four

transmit antennas. To evaluate the performance, we average

over multiple realizations of complex Gaussian i.i.d channels

and regard the average sum spectral efficiency. As a reference

we use the approach based on interference prediction. Con-

trary to the robust approaches, for the interference prediction

approach the rates computed under the prediction can not be

guaranteed and we set the rate to zero in case the achievable

rate for the true interference is lower than expected (outage).

From the results in Figure 1, we can see that the shaping con-

straint approach outperforms the interference prediction ap-

proach for high transmit power, as it can avoid outages by

being robust to uncertainty in the interference. Although the

worst case approach is robust, its performance is not compet-

itive; the worst assumption seams to be over pessimistic.
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Fig. 1. Simulation Results

4. CONCLUSIONS AND OUTLOOK

In this work, we derived twomethods to compute robust down-

link transmission strategies. Either the unknown interference

is considered by a worst case approximation, or the uncer-

tainty is reduced by limiting the set of allowed transmit co-

variances. As a result interference can be better predicted

in the neighboring cells. For both methods, we can state an

equivalent uplink problem, that allows to compute the opti-

mal solution efficiently. To the best of our knowledge, these

approaches have not been previously suggested for multi-user

transmission. The worst case noise approach extends ex-

isting results for point-to-point links to multi-user systems,

while the shaping constraint approach generalizes the uplink-

downlink duality with multiple trace constraints to a general

conic constraint.

The presented algorithms are not applicable for deploy-

able networks, due to the high complexity of dirty paper cod-

ing and as the algorithms to find the solutions may not al-

low for real time implementation. Still, the simulation results

indicate that a shaping constraint on the downlink transmit

covariance has the potential to increase robustness and per-

formance. This motivates to find less complex methods that

are actually implementable, where the insights obtained in

this work might be helpful.

As a possible new direction, one could investigate ap-

proaches that are between the two extremes presented here,

for example where the interference is known to be from a

certain subspace, which could be enforced by an artificial

constraint. Thus, our result could be extended to new applica-

tions in the field of robust transmission strategies or cognitive

radio networks.
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