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Abstract

Intelligent automatic human behavior analysis is an essential precondition for con-
versational agent systems that aim to enable natural, intuitive, emotionally sensitive,
and enjoyable human-computer interaction. This thesis focuses on automatic verbal
and non-verbal behavior analysis and introduces novel speech processing and ma-
chine learning architectures that are capable of inferring the spoken content as well
as the user’s affective state from the speech and video signal. The aim is to advance
the state-of-the-art in automatic speech and emotion recognition via suited Graph-
ical Model structures and context-sensitive neural network architectures. As Long
Short-Term Memory (LSTM) recurrent neural networks are known to be well-suited
for modeling and exploiting an arbitrary amount of self-learned temporal context for
sequence labeling and pattern recognition, this thesis illustrates how LSTM model-
ing can be applied for linguistic and affective information extraction from speech.
Extensive experiments concentrating on naturalistic, spontaneous, and affective in-
teractions show that the proposed LSTM-based recognition frameworks prevail over
current state-of-the-art techniques for speech and emotion recognition.
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Zusammenfassung

Intelligente automatische Analyse menschlichen Verhaltens ist eine essenzielle Vo-
raussetzung für Dialogsysteme, welche eine natürliche, intuitive, emotionssensitive
und angenehme Mensch-Maschine-Interaktion ermöglichen sollen. Diese Arbeit be-
schäftigt sich mit der automatischen verbalen und nicht-verbalen Verhaltensanalyse
und stellt neue Architekturen zur Sprachverarbeitung und zum maschinellen Lernen
vor, welche die Extraktion des gesprochenen Inhalts sowie des emotionalen Zustands
des Nutzers aus dem Sprach- und Videosignal ermöglichen. Ziel ist es, den Stand
der Technik im Bereich der automatischen Sprach- und Emotionserkennung durch
geeignete graphische Modellstrukturen und kontextsensitive neuronale Netzwerk Ar-
chitekturen voranzutreiben. Da Long Short-Term Memory (LSTM) rekurrente neu-
ronale Netze zur Sequenztranskription und Mustererkennung bekanntermaßen gut
dazu geeignet sind, ein beliebiges Maß an selbstgelerntem zeitlichem Kontext zu
modellieren und auszunutzen, zeigt diese Arbeit, wie LSTM-Modellierung dazu
verwendet werden kann, linguistische und affektive Information aus der Sprache
zu extrahieren. Umfangreiche Experimente, welche sich auf naturalistische, spon-
tane, und emotionale Interaktionen konzentrieren, zeigen, dass die vorgestellten
LSTM-basierten Erkennungssysteme den aktuellen Stand der Technik im Bereich
der Sprach- und Emotionserkennung übertreffen.
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Introduction

Despite recent advances in the design and implementation of modern interfaces for
human-machine communication, there still exists a large discrepancy between the
efficiency and versatility of interhuman communication and the way we communi-
cate and interact with computers. Humans are able to to express, perceive, process,
and memorize a rich set of behavioral cues that enable natural and multimodal com-
munication and social information exchange via speech, non-linguistic vocalizations,
facial expressions, and gestures. By contrast, interaction with computers has long
been restricted to rather unnatural input and output modalities such as keyboard or
mouse, and abstract text or sound output, respectively. This mismatch has triggered
massive research in alternative and more human-like methods for human-machine
communication, including automatic speech recognition (ASR) [183], handwriting
recognition [92], facial expression recognition [41], natural language understanding
[268], dialog management [156], speech synthesis [208], and animated virtual agents
[20]. However, today’s virtual agent systems supporting speech- and video-based
in- and output are still far from being perceived as natural, efficient, and compara-
ble to humans due to limitations in the aforementioned system capabilities. This
thesis aims to advance the state-of-the-art in the first component of a dialog sys-
tem’s processing chain: automatic human behavior analysis. Mainly focusing on
the processing of the user’s speech signal, we subdivide human behavior analysis
into verbal and non-verbal behavior analysis. While verbal behavior analysis refers
to the extraction of the spoken content encoded in the speech signal (automatic
speech recognition and keyword detection), the term ‘non-verbal behavior analysis’
subsumes the recognition of information beyond the spoken content and includes
the detection of various paralinguistic cues such as the user’s emotional state, level
of interest, etc. Recognizing and considering these non-verbal cues and affective
user states in a conversational agent framework was shown to be highly relevant for
increasing the naturalness, acceptance, joy of use, and efficiency of human-computer
interaction as this allows, e. g., virtual agents to react to the user’s emotion in an
appropriate way [49].
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1. Introduction

The aim of the SEMAINE project [206] is to build a dialog system that focuses
exactly on these non-verbal aspects of communication to enable emotionally sensi-
tive, human-like conversation about arbitrary topics. A central goal is to integrate
emotional and situational awareness into virtual agents in order to establish a basis
for future intelligent dialog systems that use the developed principles and compo-
nents for affective computing within task-oriented agent systems. The realization of
robust recognition systems for intelligent verbal and non-verbal behavior analysis as
needed in the SEMAINE framework is the central aspect dealt with in this thesis
and involves various research disciplines such as speech feature extraction, speech
and feature enhancement, machine learning, pattern recognition, multimodal data
fusion, and affective computing.

A successful integration of human behavior analysis technology into conversa-
tional agent systems like the SEMAINE system implies coping with several chal-
lenges that accompany the application of speech signal processing and interpreta-
tion in real-life scenarios: Even though ASR can reach very high accuracies for the
recognition of well articulated, read speech in well-defined clean acoustic conditions,
the influence of background noise, reverberation, as well as conversational, disfluent,
and emotional speaking styles that are to be expected in natural dialog situations,
are known to heavily downgrade recognition performance and demand for novel,
robust recognition engines that go beyond standard technology applied, e. g., in
dictation software. Similar challenges hold for the field of non-verbal human behav-
ior analysis: First studies in speech-based emotion recognition concentrated on the
classification of pre-segmented spoken utterances containing prototypical and acted
emotions that are easy to characterize with current pattern recognition techniques
and thus lead to high recognition accuracies. Yet, realistic interactions between hu-
mans or between humans and computers tend to evoke ambiguous, non-prototypical
spontaneous emotions that are hard to distinguish by state-of-the-art approaches for
affect recognition.

In this thesis, all of these challenges are addressed by exploring novel concepts
for intelligent human behavior analysis via appropriate machine learning and sig-
nal processing techniques. As speech is a dynamic process, we mainly consider
dynamic classification methods that capture the evolution of speech features over
time. We investigate ASR model architectures that deviate from the commonly
used Hidden Markov Model (HMM) framework by deriving new Graphical Model
(GM) structures that allow for a reliable detection of keywords in running speech
and for the integration of multiple complementary feature streams. A central topic
addressed and advanced in this thesis is the efficient modeling and incorporation
of temporal context information for improved human behavior analysis. Thus, we
focus on context-sensitive machine learning that models speech feature frames or
spoken utterances in the context of neighboring frames and utterances, respectively.
State-of-the-art speech and emotion recognition systems already consider contextual
information by various methods like Markov modeling of feature vectors, computa-
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tion of delta features, application of triphones, language modeling, calculation of sta-
tistical functionals of low-level features, or recurrent connections in neural networks,
aiming to model state, phoneme, and word transitions, co-articulation effects in hu-
man speech, or speech feature dynamics encoding information about the speaker’s
emotional state. However, all these techniques have their drawbacks and have little
in common with the way humans memorize and exploit context information over
time.

In [111], a promising approach to model temporal long-range context via so-called
Long Short-Term Memory (LSTM) neural networks has been proposed. LSTM net-
works consist of recurrently connected memory blocks that replace the conventional
neurons in the network’s hidden layer. They provide access to an arbitrary amount
of self-learned long-range context, overcoming the well-known vanishing gradient
problem which limits the amount of context a conventional recurrent neural network
can model. Motivated by excellent results reported in first studies that apply LSTM-
modeling for speech-based recognition tasks [93], this thesis proposes and evaluates
various techniques to incorporate the LSTM architecture into systems for verbal and
non-verbal behavior analysis.

The aims of this thesis can be summarized as follows:

• to develop, optimize, evaluate, and compare novel model architectures for im-
proved recognition of verbal and non-verbal cues in speech signals via efficient
context-sensitive machine learning based on suited Graphical Model and neural
network structures;

• to create recognition systems that are robust with respect to signal distortions
and can be applied in real-life scenarios involving realistic, non-prototypical,
and spontaneous speaking styles and emotions;

• to explore the benefit of integrating multiple information sources and modal-
ities into the behavior recognition process, including acoustic, linguistic, and
visual cues;

• to accomplish a better understanding and assessment of the role that appro-
priate long-range context modeling plays in human behavior analysis and to
establish innovative solutions proposed by the machine learning community
within the speech and affective computing communities;

• to demonstrate that the developed solutions tailored for affective computing
can be effectively transferred to other pattern recognition and sequence mod-
eling tasks and domains.

The following chapters outline in what respect these goals are addressed and
achieved:

3



1. Introduction

Chapter 2 is devoted to the theoretical background that can be seen as a basis
for the development of intelligent human behavior analysis techniques in the
following chapters. We start by looking at the architecture and specification
of the emotionally sensitive SEMAINE dialogue system which is the major mo-
tivation for the recognition modules developed in this thesis. Next, as speech
is the primarily considered modality for human behavior analysis as investi-
gated in this thesis, the most relevant prosodic, spectral, and voice quality
features are discussed. Finally, the basic concept of various pattern recogni-
tion, sequence modeling, classification, and fusion algorithms as employed in
the following chapters are explained.

Chapter 3 concentrates on verbal behavior analysis and proposes methods for vo-
cabulary independent keyword detection, conversational speech recognition,
and enhanced noise robustness. The focus will be on the development and
evaluation of novel DBN- and LSTM-based model architectures that deviate
from standard HMM approaches. Various methods for increasing the noise
robustness of speech recognition are introduced and all systems and methods
are evaluated under unified and challenging experimental conditions.

Chapter 4 focuses on non-verbal behavior analysis, meaning the recognition of
emotions or other user states such as the speaker’s level of interest. First, tech-
niques for speech-based affect recognition are proposed, including the modeling
of acoustic and linguistic cues. Furthermore, we will study the effect reverber-
ation has on emotion recognition performance. The second part of Chapter
4 deals with audio-visual approaches for assessing human affect and contains
an analysis of the sequential Jacobian in order to determine the amount of
context that is exploited by LSTM networks for emotion recognition. All ex-
periments consider natural, spontaneous, and non-prototypical emotions and
reflect recognition performances in realistic conditions.

Chapter 5 shows how methods developed for (speech-based) affective computing
can be transferred to other pattern recognition disciplines. We consider the
task of driving behavior analysis by attempting to detect driver distraction
from head tracking and driving data. Similar to the emotion recognition frame-
works developed in Chapter 4, a large set of statistical functionals is computed
from informative low-level signals and subsequently modeled and classified via
Long Short-Term Memory neural networks.

Chapter 6 summarizes the thesis by providing an overview over the developed
recognition engines, the addressed challenges, the experimental results, and
possible future work.
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2

Theoretical Background

This chapter outlines relevant theoretical background that serves as a basis for the de-
velopment of the intelligent human behavior analysis systems discussed in Chapters
3 to 5. We start with a brief motivation of natural human behavior analysis by intro-
ducing the SEMAINE system [206] – a multi-modal conversational agent framework
that takes into account the user’s verbal, non-verbal, and visual behavioral cues to
enable natural and emotion-sensitive human-machine communication (Section 2.1).
Intelligent computer interfaces like the SEMAINE system can be seen as one of the
main use cases for the speech and affect recognition techniques developed in this
thesis and thus define the requirements these techniques have to meet, including the
processing and recognition of real-life, non-prototypical, spontaneous human behav-
ior, the efficient exploitation of contextual information, and noise robustness – just
to name a few. As our main focus will be on the recognition of verbal and non-verbal
cues from the speech signal, Section 2.2 reviews a set of acoustic features commonly
used for speech and emotion recognition. Finally, Section 2.3 provides an overview
over the main machine learning techniques applied and advanced in this thesis.

2.1 The SEMAINE System

One of the key capabilities of human-computer interaction systems designed for nat-
ural, intuitive, and human-like communication is the sensitivity to emotion-related
and non-verbal cues [6, 49]. Thus, the aim of the SEMAINE project1 is to focus on
exactly these kinds of ‘social skills’ in order to advance the state-of-the-art in affect-
sensitive conversational agent systems and to pioneer dialog systems that show a
certain degree of ‘social competence’. The so-called Sensitive Artificial Listeners
(SAL) [206] developed in the project are virtual agent characters that chat with
the user about arbitrary topics without having to fulfill a certain task, i. e., with-
out having to face the constraints of typical task-oriented dialog systems, such as

1www.semaine-project.eu
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2. Theoretical Background

information kiosks or ordering systems. Both, input and output components are
multi-modal, involving speech, facial expressions, and head movements. The SAL
scenario is designed to evoke and model typical realistic ‘everyday’ emotions [50]
rather than exaggerated ‘basic’ affective states that are unlikely to occur in natural
conversations.

This implies a number of challenges comprising both, computational perception
and analysis of user behavior as well as automatic behavior generation and synthe-
sis. The system has to recognize the words spoken by the user (verbal behavior)
and the prosody with which they are spoken (non-verbal behavior). Video-based
recognition modules have to capture behavioral cues such as head movements and
facial expressions [98]. Further, the virtual agent has to show appropriate listener
behavior, such as audible and visual backchannels [304] in the form of head nods,
smiles, or short vocalizations, while the user is speaking. As soon as the system has
decided to ‘take the turn’ [200], it has to produce an utterance that fits the dialog
context and encourages the user to continue the conversation.

The challenges and requirements that arise when incorporating emotional intel-
ligence into human-computer interaction are quite different to the specifications of
first dialogue systems built in the nineties, which primarily served as human lan-
guage interfaces to information [87]. More advanced dialogues can be observed
during interaction with conversational dialog systems incorporating system goals
[3]. One example for a multi-modal dialog system including visual information and
non-verbal behavior analysis is the SmartKom system [254] – an information kiosk
with initial support for speech- and vision-based emotion recognition. Unlike purely
speech-based dialog systems, Embodied Conversational Agents (ECA) [5, 35] take
the appearance of an animated human-like face and are thus able to show expres-
sive facial behavior. As shown in [170], such expressive behavior of the ECA can
positively affect dialog success if displayed in an appropriate way. Dialog systems
that analyze the user’s expressive behavior usually focus on facial expressions and
voice and find application for example in emotion-aware voice portals [30] that de-
tect anger in the customer’s speech. Especially in ECA systems, the notion of
‘social presence’ is essential for the perceived naturalness of the conversation. So-
cial presence can be achieved by psychological involvement, behavioral engagement,
showing responsiveness, and taking into account verbal and non-verbal user behav-
ior for dialogue planning [23, 34]. Even though these aspects have partially been
considered in previous dialog systems, the SEMAINE framework is the first full-
scale conversational agent system that takes into account the user’s emotion, verbal,
and non-verbal behavior via analysis of audio and visual cues and interacts while
speaking and listening by means of a fully multi-modal one-to-one dialog setup.
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2.1. The SEMAINE System

2.1.1 Sensitive Artificial Listening

The SAL scenario was originally inspired by chat shows where hosts typically follow
a simple and effective strategy: They register the emotion of the guest before utter-
ing a phrase that has little content but makes the guest likely to adopt his or her
own emotional state. Even though this conversation strategy requires only limited
competence and language understanding, a computer system imitating this conversa-
tional behavior obviously needs automatic emotion recognition from voice and face.
By uttering stereotyped and emotionally colored expressions and considering basic
conversation strategies including turn-taking and backchanneling, a conversational
agent system then has the potential to generate a feeling of ‘social presence’ without
relying on perfect automatic speech recognition and natural language understand-
ing [207]. Another example for the human capability to have conversations that are
almost exclusively based on sensitivity to emotion are interactions taking place at
parties where emotional messages can be exchanged even though noise masks large
parts of the conversational partner’s speech. It is these kinds of emotion-driven
human conversations that are modeled in the SAL scenario. An important precon-
dition for transferring these social competences into a human-computer interaction
scenario is the definition of a representation that covers the emotional states a user
is likely to show in the considered type of interaction. Here, the SEMAINE project
focuses on the widely used affective dimensions valence (negative vs. positive emo-
tional state) and arousal (active vs. passive state) [199]. The quadrants in the
two-dimensional valence-arousal space (i. e., the four possible combinations of neg-
ative/positive and active/passive) are represented by four different SAL characters:
‘Spike’ is angry (negative-active), ‘Poppy’ is happy (positive-active), ‘Obadiah’ is
sad (negative-passive), and ‘Prudence’ is matter-of-fact (positive-passive or neutral).
Depending on the character the user currently talks to, the virtual agent system has
a preferred emotional state. In case the affect recognition components of the system
indicate that the user is in that preferred state, the system indicates approval. If
not, the system tries to evoke its preferred state in the user. This simple conversa-
tion strategy defines the system’s comments based on the current affective state of
the user and was shown to enable emotionally colored human-computer interactions
that are not focused on a specific topic but still can last for a few minutes and create
the impression that the system is listening and commenting on what the user says
[206].

2.1.2 System Architecture

Figure 2.1 shows the basic architecture of the autonomous SAL system as developed
in the SEMAINE project. A microphone and a camera capture the user’s speech
and face. From the raw signals, features are extracted using a set of feature ex-
traction components for audio and video. Speech feature extraction is performed

7



2. Theoretical Background

analysers

agent state

action proposersinterpreters candidate
action

feature extractionfeatures

speech and
video input

dialog state

user state

action selection

action

behavior
generation

behavior
data

player

audio and
video output

Figure 2.1: Architecture of the SEMAINE system.

using the on-line audio processing toolkit openSMILE [73] developed during the SE-
MAINE project at the Technische Universität München (for an overview over the
most important low-level features applied for speech-based emotion recognition, see
Section 2.2). Multiple analyzer components attempt to infer the user’s verbal and
non-verbal behavior. Most of these analyzers are classification techniques which will
be dealt with in Section 2.3 and in Chapters 3 and 4. To exploit mutual information
coming from different modalities, fusion components are applied. The interpreter
components process low-level features as well as fused analysis results in the context
of all information that is available in order to generate a current ‘best guess‘ of the
user state, dialogue state, and agent state. The task of the action proposers is to
continuously decide whether the current state information should trigger the propo-
sition of an action. As only one action can be realized at a time, an action selection
module coordinates the proposed candidate actions. Finally, a behavior generation
component creates the concrete vocal, facial, and gestural behavior that is rendered
by a player module.

In this thesis, we mostly focus on the audio input side of the system which is
indicated by a shaded box in Figure 2.1. It includes feature extraction as well as
machine learning methods for classification and human behavior analysis. For details

8



2.2. Acoustic Feature Extraction

on other components necessary to create a fully autonomous SAL system, the reader
is referred to publications such as [20, 74, 119, 154, 209, 244].

2.2 Acoustic Feature Extraction

In order to obtain a compact representation of relevant information contained in
the speech signal, acoustic features are periodically extracted prior to classification.
Before features are extracted from the speech signal, the temporal resolution of
the resulting feature vector sequence has to be defined. As we assume the signal
to be quasi-stationary within the time span represented by one feature vector, the
frame rate may not be chosen too low so that fast changes in the speech signal
can be captured. Contrariwise, a too high frame rate degrades the accuracy of
the estimated spectral features. An appropriate compromise commonly applied in
speech and emotion recognition is to extract features from overlapping time windows
of length 25 ms every 10 ms.

After windowing the raw time signal sraw, it is common practice to pre-emphasize
the signal applying the first order difference equation

spren = srawn − k · srawn−1 (2.1)

n = 1, . . . , N

to all N samples in each window. The parameter k is called the pre-emphasis
coefficient and is in the range 0 ≤ k < 1. To attenuate discontinuities at the
window edges, the samples in a window are usually tapered by multiplying the
signal segments with a Hamming window:

sn =

{
0.54− 0.46 cos

(
2π(n− 1)

N − 1

)}
· spren . (2.2)

The following sections briefly introduce a set of widely used features for speech
and emotion recognition systems. Speech recognition is mostly based on spectral fea-
tures such as Mel-Frequency Cepstral Coefficients (MFCC), whereas emotion recog-
nition frameworks tend to employ a larger set of different low-level descriptors (LLD)
that can be grouped into prosodic, spectral, and voice quality features (see [224], for
example).
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2. Theoretical Background

2.2.1 Prosodic Features

Energy

The short-time energy of a speech signal frame s1:N can be computed as follows:

E = log
N∑
n=1

s2n. (2.3)

Applying the logarithm accounts for the fact that the sensation of loudness increases
logarithmically as the intensity of a stimulus grows. Usually, the short-time energy is
normalized since parameters such as the distance to the microphone heavily influence
the intensity of the recorded signal.

Pitch

The fundamental frequency F0 (or pitch) plays an essential role in the expression of
emotions via speech and thus is an important feature in the domain of speech-based
affective computing. It can be estimated from voiced regions of speech applying
methods based either on the time-signal or on the spectral characteristics of the
signal. A popular approach focusing on the time-signal is the exploitation of the
autocorrelation function (ACF) [26]. The ACF of a signal can be interpreted as a
transformation that represents the similarity of the signal and a time-shifted version
of the signal. Hence, the value of the ACF depends on the time-shift k:

ACF s
k =

N−k∑
n=1

sn · sn+k. (2.4)

For periodic signals, a global maximum of the ACF can be found at integer
multiples of the period T0. The first maximum can be found in the origin of the
ACF of a signal with its value corresponding to the signal power of sn. If a voiced
sound is detected, the fundamental frequency can be computed as the reciprocal
value of the maximum T0. To compensate distortions caused by windowing sn (see
Equation 2.2), the ACF of the speech signal is divided by the normalized ACF of
the window function ACFw

k [26]. Thus, with fs being the sampling frequency, the
short-time fundamental frequency of a voiced signal can be written as

F0 =
fs
N
· argmax

k,k 6=0

ACF s
k

ACFw
k

. (2.5)
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2.2. Acoustic Feature Extraction

2.2.2 Spectral Features

Formants

Formants are spectral maxima that are known to model spoken content – especially
lower order formants which characterize a spoken vowel. Higher order formants
also encode speaker characteristics. Normally, formant frequencies are higher than
the fundamental frequency F0 and can be represented by their center frequency,
amplitude, and bandwidth. The spectral position of a formant was found to be
independent of the perceived fundamental frequency. To estimate the formant fre-
quencies and bandwidths, methods based on Linear Prediction Coding (LPC) can
be applied [26].

Mel-Frequency Cepstral Coefficients

MFCCs are one of the most popular feature types used in automatic speech recog-
nition as they efficiently encode spoken content while being relatively independent
of speaker characteristics. They are based on a filterbank analysis that takes into
account the non-linear frequency resolution of the human ear. Since filterbank am-
plitudes are highly correlated, a cepstral transformation is necessary to decorrelate
the features. The filters are triangular and equally spaced on a Mel-scale:

MEL(f) = 2595 · log10

(
1 +

f

700

)
. (2.6)

Before the filterbank can be applied, the time window of speech data is Fourier
transformed and the magnitude is taken. Then, the magnitude coefficients are binned
which means that each coefficient is multiplied by the corresponding filter gain with
the results being accumulated. Consequently, a bin corresponds to a weighted sum
representing the energy in the filterbank channel. Finally, Mel-frequency cepstral
coefficients ci are computed from the log filterbank amplitudes mj by applying the
Discrete Cosine Transform (DCT):

ci =

√
2

NFB

NFB∑
j=1

mj cos

(
πi

NFB

(j − 0.5)

)
. (2.7)

The parameter NFB denotes the number of filterbank channels.

Perceptual Linear Prediction

A well-known alternative to MFCCs are features based on Perceptual Linear Pre-
diction (PLP) as introduced in [106]. Unlike conventional linear prediction analysis
of speech which applies an all-pole model approximating the short-term power spec-
trum of speech equally well at all frequency regions, PLP analysis accounts for the
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2. Theoretical Background

fact that for frequencies higher than 800 Hz the spectral resolution of human hearing
decreases with frequency, whereas for amplitude levels which are typical for speech,
human perception is more sensitive to frequencies in the middle of the audible spec-
trum. PLP analysis exploits these psychophysical facts to derive features which
have been shown to be a better representation of speech than conventional linear
prediction coefficients, as they consider human perception. In [106], the auditory
spectrum used for all-pole modeling is obtained by convolving the power spectrum
with a simulated critical-band masking pattern, resampling the critical-band spec-
trum under consideration of the Bark scale, pre-emphasizing by an equal-loudness
curve, and compressing the spectrum by taking the cubic root which simulates the
intensity-loudness power law.

2.2.3 Voice Quality Features

Harmonics-to-Noise Ratio

The Harmonics-to-Noise Ratio (HNR) is a frequently used low-level descriptor for
speech-based emotion recognition. Similar to F0, it is computed from voiced regions
of the speech signal. It can be interpreted as the signal power contained in periodic
parts of the signal in relation to the power of the surrounding noise. Given a periodic
signal superposed by additive noise, the local maximum of the ACF, which does not
correspond to the origin, is determined. The value of the ACF at the local maximum
T0 then corresponds to the signal power of the periodic part of the signal. The power
of the noisy part of the signal is assumed to be the difference between the total signal
power ACF s

0 and the power of the periodic part ACF s
T0

. Consequently, the HNR in
dB can be computed as

HNR = 10 · log
ACF s

T0

ACF s
0 − ACF s

T0

. (2.8)

Jitter and Shimmer

Jitter and shimmer are further LLDs which were found to be useful for automatic
emotion recognition [139]. They reflect voice quality properties such as breathiness
and harshness and can be computed from pitch and energy contours, respectively.
Jitter (J) indicates period-to-period fluctuations in the fundamental frequency and
is calculated between successive voiced periods of the signal:

J =
|Ti − Ti+1|
1
NV

∑NV
i=1 Ti

. (2.9)

Ti and Ti+1 denote the durations of two consecutive pitch periods within an utter-
ance consisting of NV voiced frames. Shimmer (S) determines the period-to-period
variability of the amplitude and is computed as follows:
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2.3. Classification

S =
|Ai − Ai+1|
1
NV

∑NV
i=1Ai

. (2.10)

Here, Ai is the peak amplitude in the ith time window.

2.3 Classification

Once a set of relevant speech features is extracted from the signal, some sort of
classification algorithm has to be applied in order to assign a class or label to the
given pattern vector or sequence of pattern vectors. Before a classifier can be ap-
plied, it has to be trained using appropriate machine learning techniques. Usually,
a training set is available, consisting of a set of input-target pairs, i. e., data that
have been manually labeled to provide a ground truth for the machine learning al-
gorithm. These problems will be referred to as supervised learning tasks and will be
the main focus of this thesis. Other machine learning problems not considered in
the ongoing include reinforcement learning, where training is only based on positive
or negative reward values instead of classification targets, and unsupervised learning,
where training is not performed task-specifically, meaning that the algorithm has to
reveal the structure of the data ‘by inspection’.

In addition to a training set S consisting of input-target pairs (x, l) for supervised
learning, a disjoint test set S ′ is needed to evaluate the performance of the classifi-
cation algorithm on unseen data. In case the system building process includes some
sort of parameter tuning, an additional validation set used for repeated validations
of the system parameter settings ensures that the system is not optimized on the test
data, which in turn would lead to an unrealistic final performance assessment. The
overall goal is to apply the training set for minimizing a task-related error measure
evaluated on data not contained in the training set, i. e., it is important that the
classifier has good generalization properties. Generalization refers to the ability of a
classifier to transfer performance from the training set to the test set and is the oppo-
site of over-fitting which means that the algorithm tends to model only the training
data correctly and fails to learn the general classification task. A popular approach
towards error minimization for parametric algorithms is to optimize an objective
function O by incrementally adjusting the classifier’s parameters. This objective
function is usually related to the task-specific error measure used for evaluation.

The term pattern classification usually denotes the static classification of non-
sequential data, with standard methods comprising Support Vector Machines (SVM)
[45], as outlined in Section 2.3.1, or artificial neural networks (ANN) and multilayer
perceptrons (MLP) [24], as explained in Section 2.3.6. Here, an input x consists
of a real-valued vector of fixed length and a target l corresponds to one single
class out of a set of K possible classes. If a pattern classification algorithm is
trained to directly map from inputs to classes (e. g., like SVMs), it is referred to
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as a discriminant function. Alternatively, probabilistic classification determines the
conditional probabilities p(Ck|x) of the classes given the input and decides for the
most likely class:

h(x) = argmax
k

p(Ck|x). (2.11)

Here, h(x) is the classifier output and k is the index representing the class Ck. If
we design a probabilistic classifier characterized by a set of adjustable parameters
w, it results in a conditional probability distribution p(Ck|x,w) over the classes Ck.
When taking the product over the input-target pairs contained in the training set
S, we obtain

p(S|w) =
∏

(x,l)∈S

p(l|x,w). (2.12)

The application of Bayes’ theorem results in

p(w|S) =
p(S|w)p(w)

p(S)
. (2.13)

The posterior distribution p(Ck|x, S) can be obtained by integrating over all possible
values of w which, however, is infeasible in practice as w tends to be of high dimen-
sionality and since the calculation of p(Ck|x, S) is intractable. Yet, we can apply
the maximum a priori (MAP) approximation by determining a single parameter set
w′ that maximizes Equation 2.13. We can drop p(S) as it does not depend on w so
that we get

w′ = argmax
w

p(S|w)p(w). (2.14)

In case we can assume a uniform prior over the set of parameters, we can also drop
p(w) which results in the maximum likelihood (ML) vector

w? = argmax
w

p(S|w) = argmax
w

∏
(x,l)∈S

p(l|x,w). (2.15)

A popular approach for determining w? is to minimize an objective function O. If
we use the negative logarithm of p(S|w) as objective function, we obtain

O = − ln
∏

(x,l)∈S

p(l|x,w) (2.16)

which can also be written as

O = −
∑

(x,l)∈S

ln p(l|x,w). (2.17)
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2.3. Classification

As the logarithm is monotonically increasing, minimizing − ln p(S|w) has the same
effect as maximizing p(S|w).

Unlike discriminative models which directly compute p(Ck|x), generative models
first determine the class conditional probabilities p(x|Ck) and then use the Bayes
theorem as well as the class priors p(Ck) to obtain p(Ck|x). Generative techniques
have the advantage that models for the individual classes can be trained indepen-
dently from each other, while discriminative models have to be retrained as soon as
a new class is added. Yet, it is well known that discriminative approaches tend to en-
able better classification results as they focus their modeling power on determining
accurate class borders. Widely used examples for discriminative classifiers are neu-
ral networks (see Section 2.3.6), whereas Dynamic Bayesian Networks (DBN) and
Hidden Markov Models are popular examples for generative models (see Sections
2.3.2 and 2.3.3).

In this thesis, we will concentrate on the analysis of time series such as speech
signals, rather than on static classification of single input vectors x. In other words,
we will focus on sequence labeling, meaning that a sequence of labels l1:V has to be
assigned to a sequence of input data x1:T , where T is the total number of time steps
of a pattern vector sequence representing, e. g., the characteristics of the speech
signal. We assume that the length V of the label sequence is smaller or equal to the
length of the input sequence, i. e., V ≤ T . For the case V = T , there exists a label
for each input and the corresponding task can be called framewise classification (a
special case of segment classification in which each feature frame corresponds to one
segment).

The usage of context is essential for most segment classification algorithms. By
context, we mean data on either side of the segments that are to be classified. Stan-
dard pattern classifiers which are designed to process one input at a time (e. g.,
SVMs) may use context by simultaneously processing data on either side of the seg-
ment, i. e., processing an extended, stacked feature vector representing data within a
defined time-window. An important shortcoming of this approach is that the range
of relevant context is generally not known and may be different for each segment.
Recurrent neural networks (RNN) and Long Short-Term Memory [111] neural net-
works are examples for sequence labeling algorithms that model context within the
classification framework and therefore do not need the time-window approach (see
Sections 2.3.7 and 2.3.9).

The general case V ≤ T will be referred to as temporal classification in the on-
going. In contrast to framewise classification, temporal classification presumes an
algorithm that is able to decide where in the input sequence the classifications should
be made. This requires methods for determining the temporal warping, modeling the
global structure of the sequence. Examples for such temporal classifiers are Dynamic
Time Warping (DTW) [113], Hidden Markov Models [183], and Connectionist Tem-
poral Classification (CTC) [90] (see Sections 2.3.3 and 2.3.10). These techniques can
be extended in a way that they allow for processing multi-modal input at different
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frame rates and different input sequence lengths, respectively. Asynchronous Hid-
den Markov Models (AHMM) [17] and Multi-Dimensional Dynamic Time Warping
(MDDTW) [270] are two multi-modal classification frameworks that can cope with
potentially asynchronous input modalities (see Sections 2.3.4 and 2.3.5).

In the following sections, the most important classification techniques used in
this thesis will be introduced. First, in Section 2.3.1, we will briefly review the
principle of Support Vector Machines, as a popular example of a static classification
framework. Next, we will deal with Dynamic Bayesian Networks (Section 2.3.2) and
Hidden Markov Models (Section 2.3.3), which can be used for dynamic temporal
classification, being examples of generative models. Then, we switch to the multi-
modal case and introduce two methods for hybrid fusion and dynamic classification
of bi-modal inputs: Asynchronous Hidden Markov Models (Section 2.3.4) and Multi-
Dimensional Dynamic Time Warping (Section 2.3.5). The next four sections will be
devoted to neural network architectures for framewise classification: Section 2.3.6
outlines the basic principle of artificial neural networks, Section 2.3.7 introduces
recurrent neural networks, Section 2.3.8 shows how bidirectional processing can be
applied within RNNs, and Section 2.3.9 explains the concept of Long Short-Term
Memory networks for enhanced RNN-based long-range temporal context modeling.
Finally, Section 2.3.10 shows how neural networks can be used for temporal classifi-
cation, applying the Connectionist Temporal Classification technique.

2.3.1 Support Vector Machines

Support Vector Machines [45] are one of the most frequently applied techniques for
static pattern classification. They are based on the construction of a hyperplane
in a potentially high dimensional feature space, which can be used for classification
or regression. An SVM is built from a training set S consisting of I input-target
pairs (xi, li) where li is binary and represents one of two possible class labels: li ∈
{−1,+1}. To separate the two classes from each other, a hyperplane defined by all
inputs satisfying

wTx+ b = 0 (2.18)

is determined. The hyperplane is characterized by the normal vector w and the bias
b and has to meet the conditions

li = +1⇒ wTxi + b ≥ +1,

li = −1⇒ wTxi + b ≤ −1.
(2.19)

Provided that such a hyperplane exists, the boundary conditions can be normalized
and the distance between an input and the hyperplane is
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d(x) =
wTx+ b

||w||
. (2.20)

Consequently, the minimum of the distances of all training inputs to the hyperplane
can be interpreted as the so-called margin of separation and is computed as

µ(w, b) = min
i=1,...,I

|d(xi)|. (2.21)

Best class separation can be obtained for a hyperplane maximizing µ. Training
instances having the minimum distance to the hyperplane are called support vectors
xSVi . If the boundary conditions are normalized, their distance to the hyperplane is

d(xSVi ) =
1

||w||
. (2.22)

The margin of separation can be maximized using quadratic programming (also see
[45]).

In most non-trivial pattern recognition problems, there exists no hyperplane that
separates the classes in the training set without any errors. Thus, the equations 2.19
have to be extended by non-negative slack variables ξi which allow patterns to be
placed on the wrong side of the hyperplane:

li = +1⇒ wTxi + b ≥ +1− ξi,
li = −1⇒ wTxi + b ≤ −1 + ξi.

(2.23)

To obtain the optimal hyperplane, the term

1

2
wTw + C

I∑
i=1

ξi

has to be minimized, where C can be freely chosen. This optimization is usually
referred to as primal problem and is equivalent to the dual problem, consisting in
the maximization of

I∑
i=1

αi −
1

2

I∑
i=1

I∑
j=1

αiαjlilj(x
T
i xj)

with

0 ≤ αi ≤ C (2.24)

and
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I∑
i=1

αili = 0. (2.25)

The normal vector of the resulting hyperplane can then be computed as a weighted
sum of training samples with the coefficients αi:

w =
I∑
i=1

αilixi. (2.26)

With i? being the index of the input vector with the largest coefficient αi, the bias
can be calculated as

b = li?(1− ξi?)− xTi?wi? . (2.27)

Thus, all training samples with αi > 0 are support vectors. For the computation
of xTi xj the Sequential Minimal Optimization (SMO) algorithm can be used [176].
Finally, classification is performed applying the function

h(x) = sgn(wTx+ b). (2.28)

So far, we focused on linearly separable problems in which a hyperplane in the
feature space can separate classes at an acceptable error. To extend the SVM prin-
ciple to non-linear problems, the so-called kernel trick can be applied [205]. It is
based on a non-linear transformation Φ(xi) into a higher-dimensional space. This
leads to a normal vector

w =
∑
i:αi>0

αiliΦ(xi) (2.29)

and a decision function

h(x) = sgn(wTΦ(x) + b). (2.30)

For classification we need to compute

wTΦ(x) =
∑
i:αi>0

αiliΦ(xi)
TΦ(x) (2.31)

which means that we do not explicitly require the transformation Φ but can apply
a symmetric kernel function

k(xi, xj) = Φ(xi)
TΦ(xj). (2.32)

Among the most frequently used kernel functions are the polynomial kernel
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k(xi, xj) = (xTi xj)
p (2.33)

with polynomial order p and the Gaussian radial basis function (RBF)

k(xi, xj) = e
||xi−xj ||

2

2σ2 (2.34)

with standard deviation σ.
There exist various methods to extend the SVM principle to K > 2 classes,

including for example the one against all approach with K binary decisions and the
one against one approach with 1

2
·K · (K − 1) binary decisions.

2.3.2 Dynamic Bayesian Networks

While pattern classification techniques such as SVMs estimate the class label from
a given isolated pattern vector, dynamic classification approaches explicitly model
the temporal evolution of periodically extracted feature vectors to perform sequence
labeling or temporal classification (see Section 2.3). Since the speech signal is a
function of time, dynamic classifiers are well-suited to model acoustic feature vec-
tor sequences, e. g., for speech recognition [278] or framewise emotion recognition
[217]. Dynamic Bayesian Networks [165] offer a statistical modeling framework that
is widely used in speech processing. They are part of the Graphical Model paradigm
[115], which can be seen as a set of formalisms describing different types of probabil-
ity distributions. GMs consist of a set of nodes and edges. Nodes represent random
variables which can be either hidden or observed. If we speak of an observed vari-
able, we mean that its value is known, i. e., there is some data or evidence available
for that variable. An observed variable can for example be a feature vector that is
extracted from a given signal. A hidden variable currently does not have a known
value. All that is available for a hidden variable is its conditional distribution given
the observed variables. Edges – or rather missing edges – within a Graphical Model
encode conditional independence assumptions that are used to determine valid fac-
torizations of the joint probability distribution. A Bayesian Network (BN) is a
special kind of GM which has edges that are directed and acyclic. Edges point from
parent nodes to child nodes. Figure 2.2(a) shows an example for a BN consisting
of five nodes that represent random variables. Here, the variable a is a child of b,
meaning that a is conditionally dependent on b.

BN graphs as depicted in Figure 2.2(a) implicitly reflect factorizations, being
simplifications of the chain rule of probability [134]:

p(x1:N) =
∏
i

p(xi|x1:i−1) =
∏
i

p(xi|xπi). (2.35)

The second equality holds for a particular BN of N random variables, where πi
denotes the set of parents of node xi. This factorization implies that a BN can
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Figure 2.2: Examples for a Bayesian Network and a Dynamic Bayesian Net-
work with repeated template structure over time.

be characterized by a large number of conditional independence assumptions rep-
resented by missing edges in the graph. These assumptions can be exploited for
efficient probabilistic inference. Generally, the term ‘inference’ refers to the compu-
tation of the probability of a subset of random variables given the values of some
other subset of random variables. It can be used to make model-based predictions
and to learn the model parameters, e. g., by applying the expectation maximization
(EM) algorithm [57]. Exact inference tends to be computationally complex, however,
the following example shows how inference can be performed more efficiently by mak-
ing use of the conditional independence assumptions expressed via a BN: If we want
to compute p(a|e) from the joint distribution over five variables p(a, b, c, d, e), we
require both, p(a, e) and p(e). Hence, the variables b, c, and d have to be marginal-
ized or integrated away in order to obtain p(a, e). This can be done by the naive
calculation of

p(a, e) =
∑
b,c,d

p(a, b, c, d, e) (2.36)

which, however, requires extensive computational effort. Yet, if we assume a graph
as shown in Figure 2.2(a), the joint distribution can be factored as follows:

p(a, b, c, d, e) = p(a|b)p(b|c)p(c|d, e)p(d|e)p(e). (2.37)

Hence, we can compute the sum as
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p(a, e) = p(e)
∑
b

p(a|b)
∑
c

p(b|c)
∑
d

p(c|d, e)p(d|e) (2.38)

which is less computationally expensive since the sums are moved as far to the right
as possible.

As speech is a temporal process, a Bayesian Network for speech representation
must take this into account. Figure 2.2(b) shows an example for a dynamic Bayesian
Network with a repeated ‘template’ structure over time [22]. Usually, a DBN is
characterized by a ‘rolled up’ template specifying nodes and edges within one time
slice as well as by the edges between successive slices. The DBN can then be ‘unrolled’
to any length T corresponding, e. g., to the length of the speech sequence modeled
by the network.

2.3.3 Hidden Markov Models

The Hidden Markov Model is a special kind of DBN that has found many appli-
cations in temporal classification, and particularly in automatic speech recognition
[183]. It is a generative model that is trained for each class and can be used to
compute the conditional probability p(x1:T |Ck) of an observation x1:T given a class
Ck. Usually, an observation is a sequence of feature vectors which is assumed to be
generated by a Markov model. A Markov model can be regarded as a finite state
machine that can change its state once every time unit. Depending on the current
state st, a speech feature vector xt is generated from the probability density bs(xt) at
each time step t. The probability of a transition from state i to state j is represented
by the discrete probability aij. The name ‘Hidden Markov Model’ accounts for the
fact that, unlike the observation sequence x1:T which is known, the underlying state
sequence s1:T is hidden. Figure 2.3 depicts the DBN structure of an HMM with
states st and observations xt. Note that hidden variables are represented by circles
while observed variables are denoted by squares and that straight lines refer to de-
terministic conditional probability functions (CPF) while zig-zagged lines represent
random CPFs.

The required likelihood p(x1:T |Ck) can be computed by summing over all possible
state sequences:

p(x1:T |Ck) =
∑
s1:T

as0s1

T∏
t=1

bst(xt)astst+1 (2.39)

For the sake of notation simplicity a non-emitting model entry state s0 and a non-
emitting model exit state sT+1 are introduced. As an alternative to summing over
all state sequences an adequate approximation is to consider only the most likely
state sequence:
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 st-1  st  st+1

  xt-1    xt   xt+1

Figure 2.3: DBN structure of a Hidden Markov Model

p̂(x1:T |Ck) = max
s1:T

{
as0s1

T∏
t=1

bst(xt)astst+1

}
(2.40)

The recognition problem is solved when the observation x1:T is assigned to the
class Ck with the highest probability p(x1:T |Ck). We assume that all parameters aij
and bs(xt) are known for each model representing a class Ck. These parameters are
the result of a re-estimation procedure that uses a number of training examples for
each class to built the corresponding Hidden Markov Model.

In most applications the output probabilities bs(xt) are represented by Gaussian
mixture densities instead of discrete probabilities. With M being the number of
mixture components and csm denoting the weight of the mth component, the emission
probabilities can be expressed as

bs(xt) =
M∑
m=1

csmN (xt;µsm,Σsm) (2.41)

N (·;µ,Σ) is a multivariate Gaussian with mean vector µ and covariance matrix Σ.

Baum-Welch Re-Estimation

The Baum-Welch re-estimation formula is a method to determine the parameters
of an HMM [15]. If the maximum likelihood values of the means and covariances
for a state s are to be calculated, it has to be considered that each observation
vector xt contributes to the parameter values for each state since the full likelihood
of an observation sequence is based on the summation of all possible state sequences.
Thus, the Baum-Welch re-estimation formula assigns each observation to every state
in proportion to the probability of state occupancy when the vector is observed. If
Lst is the likelihood of being in state s at time t the Baum-Welch re-estimation
formula for means and covariances of a single component Gaussian distribution can
be written as
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µ̂s =

∑T
t=1 Lstxt∑T
t=1 Lst

(2.42)

and

Σ̂s =

∑T
t=1 Lst(xt − µs)(xt − µs)T∑T

t=1 Lst
. (2.43)

The extension to Gaussian mixture densities is straightforward if the mixture com-
ponents are considered as sub-states in which transition probabilities correspond to
mixture weights. For the transition probabilities a similar formula can be derived
[183].

To calculate the probabilities of state occupation Lst, the so-called Forward-
Backward algorithm is used [15, 183]. The forward probability αs(t) for a model
representing the class Ck is defined as

αs(t) = p(x1:t, st = s|Ck) (2.44)

and can be considered as the joint probability of observing the first t feature vectors
and being in state s at time t. The recursion

αs(t) =

[
S∑
i=1

αi(t− 1)ais

]
bs(xt) (2.45)

allows the efficient calculation of the forward probabilities with S denoting the num-
ber of emitting states. The backward probability βs(t) can be expressed as

βs(t) = p(xt+1:T |st = s, Ck) (2.46)

and is calculated using the recursion

βi(t) =
S∑
s=1

aisbs(xt+1)βs(t+ 1) (2.47)

The probability of state occupation can be obtained by taking the product of forward
and backward probability:

αs(t) · βs(t) = p(x1:T , st = s|Ck) (2.48)

Consequently Lst can be calculated as follows:

Lst = p(st = s|x1:T , Ck) =
p(x1:T , st = s|Ck)

p(x1:T |Ck)
=

1

p(x1:T |Ck)
· αs(t) · βs(t) (2.49)
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If we assume that the last state S has to be occupied when the last observation xT
is made, the probability p(x1:T |Ck) is equal to αS(T ). Hence, the Baum-Welch re-
estimation can now be performed as all information needed for the update formulas
2.42 and 2.43 is available.

Viterbi Decoding

The Viterbi algorithm [77], which is commonly used to perform recognition, is similar
to the algorithm for the forward probability calculation except that the summation
is replaced by a maximum operation. If for a specific model representing the class
Ck the maximum likelihood of observing vectors x1:t while being in state s at time
t is denoted by φs(t) the following recursion can be applied:

φs(t) = max
i
{φi(t− 1)ais}bs(xt) (2.50)

Thus, the estimated maximum likelihood p̂(x1:T |Ck) is equal to φS(T ). The Viterbi al-
gorithm corresponds to finding the best path through a matrix, the so-called ‘trellis’,
in which the vertical dimension represents the states and the horizontal dimension
shows the time steps. To each trellis coordinate, a probability of observing an input
xt at a time instant while being in a certain state can be assigned.

2.3.4 Asynchronous Hidden Markov Models

For some pattern recognition tasks it can be advantageous or even necessary to
simultaneously model multiple input data streams coming from different modalities
such as audio and video. If the data streams are perfectly synchronous and have the
same frame rate (e. g., obtained via upsampling of the stream with the lower sampling
rate), early fusion, i. e., feature level fusion, can be applied to model multimodal
data. Compared to late fusion (decision level fusion), this has the advantage that
mutual information can be used during training and decoding [270]. The concept
of hybrid fusion unites the advantages of both, early and late fusion by exploiting
mutual information and allowing the streams to be asynchronous. In [17], it has been
shown that the Hidden Markov Model concept can be extended to a classification
framework based on hybrid fusion by modeling the joint likelihood of two streams
via so-called asynchronous Hidden Markov Models. The two streams, each coming
from a different modality, do not necessarily have to be synchronous, so the AHMM
can be applied to a wide range of problems like multimodal meeting analysis [307],
person identification [18], audio-visual speech recognition [17], or bimodal speech
and gesture interfaces [1].

An asynchronous Hidden Markov Model allows to model p(x1:T , y1:T ′ |Ck) which
is the joint likelihood of two observation streams x1:T and y1:T ′ with lengths T and T ′,
respectively, given an AHMM representing the class Ck. Without loss of generality
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Figure 2.4: DBN structure of an asynchronous Hidden Markov Model

it is assumed that T ′ ≤ T . Similar to a standard HMM, an AHMM has S different
states st that are synchronized with stream x1:T . At each time step t a state emits
an observation from stream x1:T . At the same time a state can (with the probability
εs) also emit an observation from stream y1:T ′ . Every time a y observation is emitted,
the variable τt = 0...T ′ is incremented until the last y observation has been emitted.
Therefore τt can be seen as a second hidden variable which models the alignment
between x1:T and y1:T ′ . The additional variable τt is included by adding a third
dimension τ to the trellis. Figure 2.4 shows the DBN structure of an AHMM. Here,
the multi-modal observation variable ot subsumes both modalities, meaning that it
can consist of either only xt or of both, xt and yt. The variable et is binary and
indicates whether an observation of stream y1:T ′ is emitted or not.

To calculate the likelihood p(x1:T , y1:T ′|Ck) of a bimodal observation given a
certain AHMM representing Ck, we need a forward path variable αs,τ (t) [17] that,
unlike the corresponding forward path variable for standard HMMs, depends on
three indices which are state, alignment, and time:

αs,τ (t) = p(st = s, τt = τ, xt, yτ ). (2.51)

Provided that τ > 0 (meaning that the model has already emitted a y observa-
tion), the induction step is

αs,τ+1(t+ 1) = [1− εs] · p(xt+1|st+1 = s)
S∑
j=1

p(st+1 = s|st = j) · αj,τ+1(t)

+εs · p(xt+1, yτ+1|st+1 = s)
S∑
j=1

p(st+1 = s|st = j) · αj,τ (t).

(2.52)
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For the joint likelihood of the two observations the following termination equation
holds:

p(x1:T , y1:T ′|Ck) =
S∑
j=1

αj,T ′(T ). (2.53)

The Viterbi decoding algorithm is similar to the forward path calculation. How-
ever, the sums have to be replaced by max operators. Via backtracking the best
state-sequence and the most probable alignment of the two streams can be obtained.
When calculating the forward path variable for all possible combinations of s, τ ,
and t, the complexity of the AHMM algorithm is O(S2T ′T ) as each induction step
approximately requires S summations. If the alignment between x and y is forced
in a way that |t − T/T ′| < k, with k being a constant indicating the maximum
stretching between the streams, the complexity is reduced to O(S2Tk) [17]. In [1],
it was shown that the complexity is reduced to O(S2[TT ′ − T ′2 + T ]) if α values
that cannot be part of a valid path through the three-dimensional trellis are ignored.
The path restriction is implied by the fact that all y observations have to be emitted
until the last time step and the assumption that at every time step the number of
emitted y observations cannot be larger than the number of emitted x observations
and therefore τ ≤ t.

2.3.5 Multi-Dimensional Dynamic Time Warping

A major drawback of the AHMM is its comparably high computational complex-
ity. Thus, in [270], a less complex hybrid fusion approach based on Dynamic Time
Warping has been proposed. Generally, the DTW algorithm calculates the distance
between an input sequence xt and a reference sequence ri which can be seen as the
prototype of a certain class. As these two sequences may have different lengths or
may differ in their temporal characteristics, the DTW algorithm performs a nonlin-
ear distortion of the time axis so that the maximum correlation can be determined.
Besides the distance, which can be seen as a similarity measure between an input
pattern and a stored reference pattern, the DTW also delivers a warping function
that maps each sample of the input to the corresponding sample of the reference se-
quence. In [270], it was shown how a three-dimensional DTW (3D-DTW) algorithm
can model potentially asynchronous bimodal data, similar to the AHMM concept.
The 3D-DTW algorithm searches for the best alignment between a synchronized ref-
erence sequence r1:I , containing features of both modalities, an input sequence x1:T ,
and a secondary input sequence y1:T ′ . Their alignment can be visualized by a path
through a three-dimensional distance matrix (see Figure 2.5(a)). The projection of
the path to the i-t plane corresponds to the DTW-path that maps input stream x1:T
to the features of the first modality of reference sequence r1:I (Figure 2.5(b), middle).
Consequently, the nonlinear distortion of input stream y1:T ′ , which is compared to
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Figure 2.5: Warping function of the 3D-DTW.

the features of the second modality of r1:I can be seen in the path projection to the
i-τ plane (Figure 2.5(b), left), whereas the path in the t-τ plane represents the best
alignment between the two potentially asynchronous input streams x1:T and y1:T ′
(Figure 2.5(b), right).

For the three-dimensional DTW approach, a synchronized reference stream r1:I ,
consisting of the reference features of both modalities rA1:I and rB1:I , is used (see [270]
for details on the corresponding synchronization algorithm). The elements of the
distance matrix can be calculated as follows:

d(i, t, τ) =
N∑
n=1

[rAi,n − xt,n]2 + g ·
M∑
m=1

[rBi,m − yτ,m]2. (2.54)

The variable n = 1...N counts the features of the first input sequence x1:T , while
m = 1...M counts the features of y1:T ′ . With g, a factor to weight the distance
coming from the individual modalities is introduced. Similar to the unimodal DTW,
the best alignment can be visualized by a warping function that determines the
path through the distance matrix (Figure 2.5(a)), going from cell d(1, 1, 1) to cell
d(I, T, T ′). For the calculation of the best path, a three-dimensional accumulated
distance matrix D is needed. Its endpoint D(I, T, T ′) is equivalent to the total
accumulated distance between the reference sequence and the two input streams.
Considering a cell D(i, t, τ) with i ≥ 2, t ≥ 2, and τ ≥ 2, the accumulated distance
can be determined by choosing the best of seven possible preceding cells [270]. If cell
D(i, t, τ) is reached by a movement parallel to one of the axis, the distance d(i, t, τ) is
added to the accumulated distance of the preceding cell. In case D(i, t, τ) is reached
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by a movement parallel to one of the planes i−τ , i− t, or t−τ , the distance d(i, t, τ)
is weighted by factor two because otherwise diagonal movements would be preferred.
Consequently, d(i, t, τ) has to be weighted by factor three if cell D(i−1, t−1, τ −1)
is considered as preceding cell as this movement could also be reached by three
successive movements parallel to the three axes i, t, and τ . These considerations
result in the equation

D(i, t, τ) = min



D(i− 1, t, τ) + d(i, t, τ)
D(i, t− 1, τ) + d(i, t, τ)
D(i, t, τ − 1) + d(i, t, τ)
D(i− 1, t− 1, τ) + 2 · d(i, t, τ)
D(i− 1, t, τ − 1) + 2 · d(i, t, τ)
D(i, t− 1, τ − 1) + 2 · d(i, t, τ)
D(i− 1, t− 1, τ − 1) + 3 · d(i, t, τ)

(2.55)

(i ≥ 2, t ≥ 2, τ ≥ 2).

For further equations, detailed computational complexity calculations, an extension
to four-dimensional DTW for unsynchronized reference sequences, as well as for the
derivation of a probability-based version of the 3D-DTW and experimental results,
the reader is referred to [270].

2.3.6 Artificial Neural Networks

Artificial neural networks are widely used pattern classifiers and were originally built
as computational models of the information processing paradigm of the human brain
[197, 198]. An ANN can be interpreted as a network of nodes which are joined to
each other by weighted connections. The nodes represent neurons while the weights
of the connections correspond to the strength of the synapses between the neurons of
the biological model. A frequently applied form of neural network is the multilayer
perceptron [198] whose nodes are arranged in multiple layers. Connections in an
MLP are ‘feeding forward’ from one layer to the next. An MLP for pattern recog-
nition consists of an input layer whose activations correspond to the components
of the feature vector, multiple hidden layers, and an output layer indicating the
classification result (see Figure 2.6). The hidden layers usually have neurons with
non-linear activation functions transforming the weighted sum of activations at the
input of the node. The propagation of input activations through the hidden layers
to the output is referred to as the forward pass.

For an MLP with I input nodes activated by the feature vector x, the activation
αh of a hidden unit h in the first hidden layer of the network can be computed as a
weighted sum of the inputs
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input layer hidden layers output layer

Figure 2.6: Architecture of a multilayer perceptron

αh =
I∑
i=1

ηihxi (2.56)

with ηij denoting the weight from unit i to unit j. The final activation βh after
applying the activation function fh can be written as

βh = fh(α
h). (2.57)

Two frequently used activation functions are the hyperbolic tangent and the logistic
sigmoid:

tanh(x) =
e2x − 1

e2x + 1
(2.58)

σ(x) =
1

1 + e−x
. (2.59)

Note that both of these activation functions are non-linear which implies that the
corresponding MLP is able to model non-linear classification boundaries, for example.
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Since both functions are differentiable, the network can be trained applying gradient
decent.

Once the activations of the first hidden layer are determined, the activation of a
hidden unit h in a successive hidden layer q can be calculated as

αh =
Hq−1∑
h′=1

ηh
′hβh

′
(2.60)

βh = fh(α
h) (2.61)

if Hq denotes the number of neurons in layer q. Similarly, the activation of an output
unit k corresponds to a weighted sum of activations in the last of the L hidden layers,
so that

αk =
HL∑
h=1

ηhkβh. (2.62)

In order to use the output vector o for a classification task involving K possible
classes, the common strategy is to build a network with K output units and to
normalize the output activations αk with the softmax function which results in
estimates of the class probabilities

p(Ck|x) = ok =
eα

k∑K
k′=1 e

αk′
. (2.63)

The target class label l can be represented as a binary vector which consists of only
zeros except for the entry lk which is one and thus indicates that the correct class
is Ck. Hence, the target probabilities can be expressed as

p(l|x) =
K∏
k=1

(ok)l
k

. (2.64)

In other words, the most active output units encodes the estimated class label and
can thus be used as the pattern classification result.

If we substitute Equation 2.64 into 2.17, we obtain the maximum likelihood
objective functions

O = −
∑

(x,l)∈S

K∑
k=1

lk ln ok (2.65)

(for more details, see [24]). Applying gradient decent, MLPs can be trained to mini-
mize any differentiable objective function as MLPs themselves are also differentiable
operators. To this aim, the derivative of the objective function with respect to the
network parameters (i. e., with respect to all the network weights) has to be found,
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so that the parameters can be adjusted in the direction of the negative slope. In
Equation 2.65, the objective function is defined as a sum over the complete training
set. However, to simplify the following equations, we will focus on the derivatives of
an objective function for one particular labeled training example. The computation
of the derivatives for the whole training set is straightforward, as we simply have to
sum over all training instances.

The gradient can be determined via a method called backpropagation or the
backward pass [198], which repeatedly applies the chain rule for partial derivatives.
Unlike the forward pass, which refers to the propagation of the input activations to
the network output, we now start with the output layer by calculating the derivatives
of the objective function with respect to the output nodes. If we differentiate 2.65,
we get

∂O

∂ok
= − l

k

ok
. (2.66)

Note that, according to Equation 2.63, the activation of each node in the (softmax)
output layer depends on the input to each node in the output layer. Thus, when
applying the chain rule, we obtain

∂O

∂αk
=

K∑
k′=1

∂O

∂ok′
∂ok

′

∂αk
(2.67)

as the derivative of the objective function with respect to the output activations
before application of the softmax normalization. The differentiation of Equation
2.63 with respect to αk gives

∂ok
′

∂αk
= okδkk′ − okok

′
(2.68)

where δij denotes the Kronecker delta, i. e., δij = 1 if i = j and zero otherwise.
Finally, we substitute both, Equation 2.66 and 2.68 into Equation 2.67 and get

∂O

∂αk
= ok − lk (2.69)

since
∑K

k=1 l
k = 1.

The next step is to go backwards through the hidden layers of the network,
continuing to apply the chain rule. The derivative with respect to units in the last
hidden layer is

∂O

∂βh
∂βh

∂αh
=
∂βh

∂αh

K∑
k=1

∂O

∂αk
∂αk

∂βh
. (2.70)

Thus, we have to differentiate Equations 2.57 and 2.62 and obtain

31



2. Theoretical Background

∂O

∂αh
= f ′h(α

h)
K∑
k=1

∂O

∂αk
ηhk. (2.71)

For the remaining hidden layers, we can use the recursive equation

∂O

∂αh
= f ′h(α

h)
Hq+1∑
h′=1

∂O

∂αh′
ηhh

′
. (2.72)

Provided that we have determined the derivatives of the objective function with
respect to the activations of all hidden cells we finally are able to calculate the
derivatives with respect to all the network weights by using Equation 2.56:

∂O

∂ηij
=
∂O

∂αj
∂αj

∂ηij
=
∂O

∂αj
βi. (2.73)

Now, we can update the network weights by applying the gradient decent algorithm,
i. e., by repeatedly taking fixed-size steps in the direction of the negative error gra-
dient. If w(n) corresponds to a vector of weights after the nth update, we calculate

∆w(n) = −r ∂O

∂w(n)
(2.74)

with r being the so-called learning rate that takes values between 0 and 1. To
prevent the algorithm from converging towards local minima, we add a momentum
term

∆w(n) = m∆w(n− 1)− r ∂O

∂w(n)
(2.75)

where the momentum parameter m is in the range from 0 to 1 (also see [24]).

2.3.7 Recurrent Neural Networks

When applying artificial neural networks for sequence labeling tasks in which con-
text in the form of inputs from past time steps can be exploited for enhancing the
estimation of the target label in the current time step, it is beneficial to employ
recurrent neural networks, i. e., ANNs that have cyclic connections in the hidden
layer. Self connected hidden cells used within RNNs collect (weighted) activations
not only from the input nodes but also from hidden nodes in the previous time step.
This implicitly allows a ‘memory’ of previous inputs that can be modeled in the
internal state of the network. Unlike MLPs, which can only map from input vectors
to output vectors, an RNN can theoretically map from the ‘history’ of previous input
vectors to an output vector. Figure 2.7 shows the structure of an RNN with one
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othtitot-1ht-1it-1

Figure 2.7: Architecture of a recurrent neural network with one hidden layer.
it refers to the vector of input activations at time t, ht denotes the vector of
activations in the hidden layer, and ot is the vector of output activations.

hidden layer where the hidden nodes are connected to themselves or, in other words,
to the hidden nodes of the previous time step.

For the sake of simplicity, we will focus on RNNs consisting of only one hidden
layer when deriving the forward and backward pass of the network. Instead of static,
isolated pattern vectors x representing the input of an MLP, we now consider a
sequence of input vectors x1:T with length T . Again, we denote the number of input,
hidden, and output nodes by I, H, and K. For the calculation of the activations in
the hidden layer we now have to consider both, the inputs in the current time step
and the hidden units in the previous time step. This results in

αht =
I∑
i=1

ηihxit +
H∑
h′=1

ηhh
′
βh
′

t−1. (2.76)

Again, an activation function fh is applied to obtain the final activation of hidden
unit h at time t:

βht = fh(α
h
t ). (2.77)
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To calculate the whole sequence of activations, we have to start at t = 1 and re-
cursively apply the above equations while incrementing t at every time step. The
activations βh0 are defined to be equal to zero. Similar to Equation 2.62 for MLPs,
the inputs to the output units can be calculated by summing over the weighted
hidden activations:

αkt =
H∑
h=1

ηhkβht . (2.78)

For the backward pass we require the partial derivatives of the objective function
with respect to the weights. These derivatives can be determined via backpropaga-
tion through time [266] which, similar to the backward pass for MLPs, is a repeated
application of the chain rule. Now we have to consider that the objective function
depends on the activations in the hidden layer not only via its influence on the out-
put layer, but additionally via its influence on the hidden layer in the next time step.
Thus, we obtain

∂O

∂αht
= f ′h(α

h
t )

(
K∑
k=1

∂O

∂αkt
ηhk +

H∑
h′=1

∂O

∂αh
′
t+1

ηhh
′

)
. (2.79)

As we have to calculate the complete sequence of partial derivatives, we have to
start at t = T and recursively apply the above equation while decrementing t in
each round. Similar to the forward step we assume

∂O

∂αhT+1

= 0. (2.80)

Since the weights do not change for different time steps, we have to sum over the
complete sequence to obtain the partial derivatives of the objective function with
respect to the network weights:

∂O

∂ηij
=

T∑
t=1

∂O

∂αjt

∂αjt
∂ηij

=
T∑
t=1

∂O

∂αjt
βit . (2.81)

2.3.8 Bidirectional Recurrent Neural Networks

Conventional RNNs are restricted in a way that they exclusively model past, but not
future context. However, for many tasks such as framewise labeling of phonemes
in speech signals, it is beneficial to have access to both, past and future context
information. There exists a variety of straightforward approaches to incorporate
future context into RNN-based classification. One possibility is to define a time
window of future context and add the corresponding number of future frames to
the network input. Yet, an important drawback of this method is that the range
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Figure 2.8: Structure of a bidirectional network with input i, output o, and
two hidden layers (hf and hb) for forward and backward processing. All input,
hidden, and output cells in one time step are summarized by one node denoted
as it, h

f
t / hbt , and ot, respectively.

of context is fixed in that case, i. e., the range of future context has to be specified
by hand. The same holds for approaches that introduce a defined delay between
inputs and classification targets. An additional disadvantage of networks with time
delay is the asymmetry between past and future context modeling as past context is
modeled via cyclic connections in the RNN while future context is modeled through
the time delay. Further, the network might have difficulties in ‘remembering’ the
original input and the past observations throughout the delay.

Attempting to overcome these problems, a solution based on bidirectional model-
ing was introduced in [229]. Bidirectional recurrent neural networks (BRNN) consist
of two separate recurrent hidden layers, one that processes the input sequence for-
wards (from t = 1 to t = T ) and one that processes the input in backward direction
(from t = T to t = 1). Both of these hidden layers are connected to the same output
layer (see Figure 2.8). The effect is that the network has access to the entire past and
future context while preserving the temporal synchrony between inputs and targets.

During the BRNN forward pass the input sequence is processed in opposite
directions by the two hidden layers. Only after both hidden layers have processed
the whole sequence of inputs, the output layer is updated. Hence, for each time
step from t = 1 to t = T , the activations have to be stored while the forward pass
for the forward hidden layer is performed. Then, starting at t = T until t = 1, the
forward pass of the backward hidden layer has to be carried out, again storing the
activations for each t. Finally, using the stored activations from both hidden layers,
the forward pass for the output layer can be performed.

For the backward pass, the partial derivatives of the objective function with
respect to the output layer activations have to be computed before they are used in
opposite directions within the two hidden layers (i. e., this time we start at t = T in
the forward hidden layer and at t = 1 in the backward hidden layer).
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Note that BRNNs cannot be used in every causal on-line recognition task as
future context might not be available if fully incremental processing is required.
However, bidirectional networks can nevertheless be applied for a variety of causal
and temporal tasks such as speech recognition as soon as we drop the requirement
of fully incremental classification. For example, in speech recognition it might be
acceptable to wait until the end of a sentence, or until a pause in speech, before the
speech sequence is processed.

2.3.9 Long Short-Term Memory Networks

Even though the recurrent connections in RNNs allow to model contextual infor-
mation, which makes them a more effective sequence labeling framework than, for
example MLPs or SVMs, it is known that the range of context that standard RNNs
can access is limited [110]. The reason for this is that the influence of a certain
input on the hidden and output layer of the network either blows up or decays ex-
ponentially over time while cycling around the recurrent connections of the network.
In literature, this problem is referred to as the so-called vanishing gradient problem.
The effect of this decaying sensitivity is that RNNs have difficulties in learning tem-
poral dependencies for which relevant inputs and targets are separated by more than
ten time steps [110], i. e., the network cannot remember previous inputs over longer
time spans so that it is hardly possible to model input-target dependencies that are
not synchronous. This led to various attempts to address the problem of vanishing
gradients for RNN, including non-gradient-based training [19], time-delay networks
[132, 145, 202], hierarchical sequence compression [203], and echo state networks
[114]. One of the most effective techniques is the Long Short-Term Memory archi-
tecture [111], which is able to store information in linear memory cells over a longer
period of time. LSTM is able to overcome the vanishing gradient problem and can
learn the optimal amount of contextual information relevant for the classification
task.

An LSTM hidden layer is composed of multiple recurrently connected subnets
which will be referred to as memory blocks in the following. Every memory block
consists of self-connected memory cells and three multiplicative gate units (input,
output, and forget gates). Since these gates allow for write, read, and reset opera-
tions within a memory block, an LSTM block can be interpreted as (differentiable)
memory chip in a digital computer. An illustration of the vanishing gradient problem
and its solution via LSTM can be seen in Figures 2.9(a) and 2.9(b), respectively. In
this example, the shading of the nodes indicates the sensitivity to the input at time
t − 3 (the darker the shading, the greater the sensitivity). In conventional RNNs
(Figure 2.9(a)) the sensitivity decays over time since new inputs overwrite the acti-
vation of the hidden cells. Note that, for the sake of simplicity, all input, hidden,
and output cells in one time step are summarized by one node denoted as it, ht, and
ot, respectively. Figure 2.9(b) shows a simplified architecture of an LSTM network,
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Figure 2.9: The vanishing gradient problem in RNNs: The shading of the
nodes corresponds to the hidden cell’s sensitivity to the input at t− 3. LSTM
networks are able to ‘remember’ the input at t − 3 by additional gate units
controlling the hidden cells.

where each hidden node is equipped with three different gate units, indicated by
small circles. Here, we assume that gates are either entirely open or entirely closed.
A white circle corresponds to an open gate while a black circle indicates a closed
gate. As long as the forget gate is open and the input gate is closed, the hidden
cell activation cannot be overwritten by new inputs and the input information from
time t− 3 can be accessed at arbitrary time steps by opening the output gate. Fig-
ure 2.10 contains a more detailed illustration of the architecture of a memory block
comprising one memory cell.

If αin
t denotes the activation of the input gate at time t before the activation

function fg has been applied and βin
t represents the activation after application of

the activation function, the input gate activations (forward pass) can be written as
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Figure 2.10: LSTM memory block consisting of one memory cell: the input,
output, and forget gates collect activations from inside and outside the block
which control the cell through multiplicative units (depicted as small circles);
input, output, and forget gate scale input, output, and internal state respec-
tively; fi, fg, and fo denote activation functions; the recurrent connection of
fixed weight 1.0 maintains the internal state.

αin
t =

I∑
i=1

ηi,inxit +
H∑
h=1

ηh,inβht−1 +
C∑
c=1

ηc,insct−1 (2.82)

and

βin
t = fg(α

in
t ), (2.83)

respectively. Again, the variable ηij corresponds to the weight of the connection
from unit i to unit j while ‘in’, ‘for’, and ‘out’ refer to input gate, forget gate, and
output gate, respectively. Indices i, h, and c count the inputs xit, the cell outputs
from other blocks in the hidden layer, and the memory cells, while I, H, and C are
the number of inputs, the number of cells in the hidden layer, and the number of
memory cells. Finally, sct corresponds to the state of a cell c at time t, meaning the
activation of the linear cell unit.

Similarly, the activation of the forget gates before and after applying fg can be
calculated as follows:

αfor
t =

I∑
i=1

ηi,forxit +
H∑
h=1

ηh,forβht−1 +
C∑
c=1

ηc,forsct−1 (2.84)

βfor
t = fg(α

for
t ). (2.85)
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Figure 2.11: Connections in an LSTM network consisting of two input nodes,
one memory cell with one memory block, and two output nodes.

The memory cell value αc
t is a weighted sum of inputs at time t and hidden unit

activations at time t− 1:

αc
t =

I∑
i=1

ηi,cxit +
H∑
h=1

ηh,cβht−1. (2.86)

To determine the current state of a cell c, we scale the previous state by the activation
of the forget gate and the input fi(α

c
t) by the activation of the input gate:

sct = βfor
t sct−1 + βin

t fi(α
c
t). (2.87)

The computation of the output gate activations follows the same principle as the
calculation of the input and forget gate activations, however, this time we consider
the current state sct , rather than the state from the previous time step:

αout
t =

I∑
i=1

ηi,outxit +
H∑
h=1

ηh,outβht−1 +
C∑
c=1

ηc,outsct (2.88)

βout
t = fg(α

out
t ). (2.89)

39



2. Theoretical Background

Finally, the memory cell output is determined as

βc
t = βout

t fo(s
c
t). (2.90)

Figure 2.11 provides an overview over the connections in an ‘unrolled’ LSTM
network for time steps t − 1 and t. For the sake of simplicity, this network only
contains small input and output layers (two nodes each) and just one memory block
with one cell. Note that the initial version of the LSTM architecture contained only
input and output gates. Forget gates were added later [84] in order to allow the
memory cells to reset themselves whenever the network needs to forget past inputs.
In this thesis, we exclusively consider the enhanced LSTM version including forget
gates.

Similar to standard ANNs, LSTM networks can be interpreted as differentiable
‘function approximators’ and can be trained using backpropagation through time in
combination with gradient descent [93]. For equations defining the LSTM backward
pass, the reader is referred to [89]. As shown in [93], it is possible to combine
the principles of bidirectional networks (see Section 2.3.8) and Long Short-Term
Memory, which results in bidirectional Long Short-Term Memory (BLSTM) and
allows to model long-range context in both input directions.

2.3.10 Connectionist Temporal Classification

A major limitation of the standard objective functions for RNNs is that they require
individual targets for each point in the data sequence, which in turn requires the
boundaries between segments with different labels (e. g., the phoneme boundaries
in speech) to be pre-determined. The Connectionist Temporal Classification output
layer [90] solves this problem by allowing the network to choose the location as well
as the class of each label. By summing up over all sets of label locations that yield
the same label sequence, CTC determines a probability distribution over possible
labelings, conditioned on the input sequence.

A CTC layer has as many output units as there are distinct labels for a task, plus
an extra blank unit for no label. The activations of the outputs at each time step
are normalized and interpreted as the probability of observing the corresponding
label (or no label) at that point in the sequence. Because these probabilities are
conditionally independent given the input sequence x1:T , the total probability of a
given (framewise) sequence z1:T of blanks and labels is

p(z1:T |x1:T ) =
T∏
t=1

oztt , (2.91)

where okt is the activation of output unit k at time t. In order to sum over all the
output sequences corresponding to a particular labeling (regardless of the location of
the labels) we define an operator B(·) that removes first the repeated labels and then
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the blanks from the output sequence, so that e. g., B(AA − −BBB − B) = ABB.
The total probability of the length V labeling l1:V , where V ≤ T , is then

p(l1:V |x1:T ) =
∑

z1:T :B(z1:T )=l1:V

p(z1:T |x1:T ). (2.92)

A naive calculation of Equation 2.92 is unfeasible, because the number of z1:T terms
corresponding to each labeling increases exponentially with the sequence length.
However, p(l1:V |x1:T ) can be efficiently calculated with a dynamic programming al-
gorithm similar to the forward-backward algorithm for HMMs. If we consider a
modified label sequence l′1:V ′ with the blank label added to the beginning and end,
and between each pair of labels (giving l′1:V ′ a total length of V ′ = 2V + 1), then
for segment v of l′1:V ′ and time t we define a forward variable αt(v) and a backward
variable βt(v):

αt(v) =
∑

z1:t:B(z1:t)=l1:v/2

t∏
t′=1

o
zt′
t′ (2.93)

βt(v) =
∑

zt:T :B(zt:T )=lv/2:V

T∏
t′=t+1

o
zt′
t′ . (2.94)

With these definitions it can be shown that

p(l1:V |x1:T ) =
V ′∑
v=1

αt(v)βt(v). (2.95)

The CTC objective function OCTC is defined as the negative log likelihood of the
training set S

OCTC = −
∑

(x1:T ,l1:V )∈S

ln p(l1:V |x1:T ) (2.96)

which can be calculated directly from Equation 2.95. An RNN (or LSTM) with a
CTC output layer can be trained with gradient descent by backpropagating through
time the following partial derivatives of OCTC with respect to the output activations:

∂OCTC

∂okt
=

−1

p(l1:V |x1:T )okt

∑
v∈lab(l1:V ,k)

αt(v)βt(v), (2.97)

where lab(l1:V , k) is the set of positions in l1:V where the label k occurs (see [90] for
a detailed derivation).

When a new input sequence is presented to a network trained with CTC, the
output activations (corresponding to the label probabilities) tend to form single

41



2. Theoretical Background

frame spikes separated by long intervals where the blank label is emitted. The
location of the spikes corresponds to the portion of the input sequence where the
label is detected.
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3

Verbal Behavior Analysis

In this chapter, we will focus on verbal behavior analysis as needed in human-
machine interfaces supporting speech-based interaction. Applying suitable speech
features such as those introduced in Section 2.2, this chapter proposes novel, context-
sensitive, and robust machine learning methods for the extraction of the spoken
content in a user’s utterance. First, in Section 3.1, we will concentrate on the de-
tection of keywords which is necessary for many dialogue systems using a specific
inventory of important words to infer the intention or the state of the user. Since
the SEMAINE system (see Section 2.1) represents the major use case for the key-
word spotting techniques introduced in this chapter, the evaluations of the proposed
systems will mostly consider spontaneous, conversational, emotional, and partly dis-
fluent and noisy speech which is typical for the SEMAINE scenario. Next, in Section
3.2, we will investigate advanced techniques for continuous recognition of conversa-
tional speech. Four different recognition frameworks exploiting long-range temporal
context modeling via bidirectional Long Short-Term Memory will be introduced and
evaluated. Section 3.3 is devoted to strategies for enhancing the noise robustness of
automatic speech recognition. We will review popular techniques, such as feature
enhancement based on Histogram Equalization (HEQ) or Switching Linear Dynamic
Models (SLDM) and multi-condition training, before we draw our attention to novel
robust recognition engines applying Non-Negative Matrix Factorization (NMF) as
well as Long Short-Term Memory.

3.1 Vocabulary Independent Keyword Detection

Speech interfaces allowing for hands-free and natural human-machine communica-
tion have become an integral part of modern human-computer interaction [4, 265].
Yet, since full natural language understanding is far beyond the capabilities of to-
day’s conversational agents, speech interpretation modules of dialogue systems tend
to evaluate certain relevant keywords rather than using the full automatic speech
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3. Verbal Behavior Analysis

recognition output in order to generate responses or take actions [37, 168, 180, 206,
207, 255]. Thus, for many applications it is more important to reliably detect key-
words than to process the full transcript of the spoken utterance. For example the
‘Sensitive Artificial Listeners’ implemented in the SEMAINE system [206] (see Sec-
tion 2.1) aim to infer the emotional state of the user from keywords detected in
the user’s speech. Other examples of speech-based human-machine interaction ex-
ploiting recognized keywords include conversational agents for food-ordering [255],
systems for multimodal interaction in virtual environments [168], interactive story-
telling frameworks [37], and systems for tracking conversation topics and fostering
group conversations [180].

The aim of keyword spotting is to detect a set of predefined keywords from con-
tinuous speech signals [195]. If keyword detectors need to be flexible with respect to
changes in the keyword vocabulary or if applications require the detection of certain
terms or names that are not part of our everyday speech, it is often not adequate
or not possible to apply standard large vocabulary continuous speech recognition
(LVCSR) systems employing language models to capture the keywords. For exam-
ple, if certain proper nouns (names of persons, cities, etc.) are to be detected in
continuous speech signals, often only the phonemizations of the names are known to
the system, while LVCSR language model likelihoods are not available. This makes
vocabulary independent systems very popular [151, 230, 278] – i. e., systems that
differ from conventional large vocabulary continuous speech recognition systems in
that they do not rely on a language model but exclusively on acoustic evidence in
combination with the known keyword phonemization. In this section we focus on
techniques that (unlike classical spoken term detection systems [248]) do not require
word lattices, which in turn are generated considering language model scores, but
exclusively apply acoustic models together with feature-level contextual information.

At present, most keyword detection systems apply Hidden Markov Models and
capture both, keywords and arbitrary speech segments (i. e., garbage speech) either
via whole-word models for keywords and garbage speech, or by using connected
phoneme models [124, 196]. Systems applying whole-word models are inherently not
vocabulary independent since they presume that the modeled keywords frequently
occur in the training database. Designing appropriate garbage models that capture
arbitrary non-keyword speech is challenging since a model that is flexible enough to
model any possible phoneme sequence can potentially also model phoneme sequences
that correspond to keywords.

A popular approach towards improving acoustic modeling within ASR and word
spotting systems is to combine conventional hidden Markov modeling with neural
networks [192, 247]. Such techniques can be categorized into hybrid model archi-
tectures which apply neural networks to estimate the state-posterior probabilities
of HMMs, and Tandem systems which use state- or phoneme posterior probabili-
ties generated by a neural network as features observed by an HMM [310]. Both
approaches offer a number of advantages when compared to conventional Gaussian
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mixture modeling of low-level features such as Mel-Frequency Cepstral Coefficients:
Neural networks do not make assumptions about the statistical distribution that has
to be modeled which leads to more accurate acoustic models, given sufficient learn-
ing material. Furthermore, they provide an easy method for discriminative training
and they use shared parameters to model all probability distributions (see Section
2.3.6).

Due to co-articulation effects in human speech, the integration of context model-
ing into hybrid and Tandem ASR systems is an active area of research [38, 94, 108].
Especially if high-level contextual knowledge in the form of a language model is not
available, it is important to capture lower-level context in order to enable robust
phoneme recognition. While the integration of delta features and the application of
triphone acoustic models is a common strategy to consider low-level context, some
recent studies on Tandem systems account for a fixed amount of context by stacking
a predefined number of past and future feature vectors before processing them via
Multilayer Perceptrons [94]. Other systems apply recurrent neural networks (see
Section 2.3.7) to consider neighboring feature frames for prediction [171]. However,
as detailed in Section 2.3.9, the context an RNN can model is known to be limited
to about ten frames due to the vanishing gradient problem [110]. An elegant way
to overcome the vanishing gradient problem was introduced in [111] and in Section
2.3.9: Long Short-Term Memory networks are able to model a self-learned amount
of (long-range) temporal context. Thus, LSTM or bidirectional LSTM networks are
a promising technique for improving context modeling within LVCSR and keyword
spotting systems.

The first attempt towards BLSTM-based keyword spotting using whole-word
modeling was presented in [75]. This section introduces several novel vocabulary in-
dependent keyword spotting techniques that apply the principle of Graphical Models,
Long Short-Term Memory, and Connectionist Temporal Classification [90] (see Sec-
tions 2.3.2, 2.3.9, and 2.3.10). First, in Section 3.1.1, we focus on a discriminative
approach towards keyword detection [123] and investigate how its performance can
be enhanced via BLSTM modeling [275]. Next, in Section 3.1.2, a Graphical Model
framework for vocabulary independent keyword spotting is introduced [278]. Section
3.1.3 shows, how this GM architecture can be extended to a Tandem model for im-
proved context-sensitive keyword detection [273]. Finally, two CTC-based keyword
spotting approaches are outlined in Sections 3.1.4 and 3.1.5 [280, 297]. By employing
BLSTM networks with CTC output layers, these keyword detection frameworks do
not need (potentially error-prone) phoneme-level forced alignments of speech data
for training, but can be trained on unsegmented data. Phoneme detection spikes gen-
erated by the CTC network are processed by a flexible Graphical Model architecture
building on recently introduced GM decoders [272, 278]. Thus, the system combines
the high level flexibility of Graphical Models and Dynamic Bayesian Networks with
the low-level signal processing power of BLSTM-CTC networks.

Section 3.1.6 compares the performance of the different keyword spotting ap-
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proaches on both, read and spontaneous speech. In conformance with experiments
shown in [123], the well-known TIMIT corpus [80] is used for evaluations on read
speech. As our main motivation behind the design of flexible keyword detection
approaches is their application in conversational agent scenarios such as the SE-
MAINE system, we also consider the SEMAINE database [155] for evaluations on
spontaneous and emotional speech. This scenario is considerably more challenging,
since it involves disfluent, conversational, and affective speaking styles which are
known to be difficult to recognize.

3.1.1 Discriminative Keyword Spotting Exploiting BLSTM

As argued in [123], the common approach of using Hidden Markov Models for key-
word spotting involves several drawbacks such as the suboptimal convergence of the
expectation maximization algorithm to local maxima, the assumption of conditional
independence of the observations, and the fact that HMMs do not directly maxi-
mize the keyword detection rate. For these reasons the keyword detector outlined
in this section follows [122] in using a supervised, discriminative approach to key-
word spotting, that does not require the use of HMMs. In general, discriminative
learning algorithms are likely to outperform generative models such as HMMs since
the objective function used during training more closely reflects the actual decision
task. The discriminative method described in [122] uses feature functions to non-
linearly map the speech utterance, along with the target keyword, into an abstract
vector space. It was shown to prevail over HMM modeling. However, in contrast
to state-of-the-art HMM recognizers which use triphones to incorporate information
from past and future speech frames, the discriminative system does not explicitly
consider contextual knowledge. This section shows how context information can be
built into a discriminative keyword spotter by including the outputs of a bidirec-
tional Long Short-Term Memory RNN in the feature functions. In contrast to [75],
this keyword spotting approach uses BLSTM for phoneme discrimination and not
for the recognition of whole keywords. As well as reducing the complexity of the
network, the use of phonemes makes the technique applicable to any vocabulary
independent keyword spotting task.

Discriminative Keyword Spotting

The goal of the discriminative keyword spotter investigated in this section is to
determine the likelihood that a specific keyword is uttered in a given speech sequence.
It is assumed that each keyword k consists of a phoneme sequence qk1:L with L being
the length of the sequence and q denoting a phoneme out of the domain P of possible
phoneme symbols. The speech signal is represented by a sequence of feature vectors
x1:T where T is the length of the utterance. X and K mark the domain of all possible
feature vectors and the lexicon of keywords respectively. Using a phoneme counter
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variable τ , the alignment of the keyword phonemes is defined by the start times κτ of
the phonemes as well as by the end time of the last phoneme εL: κk1:L = (κ1, ..., κL, εL).
We assume that the start time of phoneme qτ+1 corresponds to the end time of
phoneme qτ , so that ετ = κτ+1. The keyword spotter f takes as input a feature
vector sequence x1:T as well as a keyword phoneme sequence qk1:L and outputs a
real valued confidence that the keyword k is uttered in x1:T . In order to make the
final decision whether k is contained in x1:T , the confidence score is compared to
a threshold δ. The confidence calculation is based on a set of n non-linear feature
functions {φj}nj=1 which take a sequence of feature vectors x1:T , a keyword phoneme
sequence qk1:L, and a suggested alignment κk1:L to compute a confidence measure for
the candidate keyword alignment.

The keyword spotting algorithm searches for the best alignment κ1:L producing
the highest possible confidence for the phoneme sequence of keyword k in x1:T . Merg-
ing the feature functions φj to an n-dimensional vector function φ and introducing
a weight vector ω, the keyword spotter is given as

f(x1:T , q
k
1:L) = max

κ1:L
ω · φ(x1:T , q

k
1:L, κ1:L). (3.1)

Consequently, f outputs a weighted sum of feature function scores maximized over
all possible keyword alignments. This output then corresponds to the confidence
that the keyword k is uttered in the speech feature sequence x1:T . Since the number
of possible alignments is exponentially large, the maximization is calculated using
dynamic programming.

In order to evaluate the performance of a keyword spotter, it is common to
compute the Receiver Operating Characteristics (ROC) curve [16, 124] which shows
the true positive rate as a function of the false positive rate. The operating point
on this curve can be adjusted by changing the keyword rejection threshold δ. If a
high true positive rate shall be obtained at a preferably low false positive rate, the
area under the ROC curve (AUC) has to be maximized. With X+

k denoting a set
of utterances that contains the keyword k and X−k a set that does not contain the
keyword respectively, the AUC for keyword k is calculated as according to [44] as

Ak =
1

|X+
k ||X

−
k |

∑
x+1:T∈X

+
k

x−1:T∈X
−
k

I{f(x+1:T ,qk1:L)>f(x−1:T ,qk1:L)} (3.2)

and can be thought of as the probability that an utterance containing keyword k
(x+1:T ) produces a higher confidence than a sequence in which k is not uttered (x−1:T ).
Here, I{·} denotes the indicator function. When speaking of the average AUC, we
refer to

A =
1

K
∑
k∈K

Ak. (3.3)
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In [122] an algorithm for the computation of the weight vector ω in Equation 3.1 is
presented. The algorithm aims at training the weights ω in a way that they maximize
the average AUC on unseen data. One training example {qki1:L, x

+
1:T,i, x

−
1:T,i, κ

ki
1:L,i}

consists of an utterance in which keyword ki is uttered, one sequence in which
the keyword is not uttered, the phoneme sequence of the keyword, and the correct
alignment of ki. With

κ′1:L = arg max
κ1:L

ωi−1 · φ(x−1:T,i, q
ki
1:L, κ1:L) (3.4)

representing the most probable alignment of ki in x−1:T,i according to the weights
ωi−1 of the previous training iteration i− 1, a term

∆φi =
1

|X+
ki
||X−ki |

(
φ(x+1:T,i, q

ki
1:L, κ

ki
1:L)− φ(x−1:T,i, q

ki
1:L, κ

′
1:L)
)

(3.5)

is computed which is the difference of feature functions for x+1:T,i and x−1:T,i. For the
update rule of ω the Passive-Aggressive algorithm for binary classification (PA-I)
outlined in [51] is applied. Consequently, ω is updated according to

ωi = ωi−1 + αi∆φi, (3.6)

where αi can be calculated as

αi = min

{
Cu,

[1− ωi−1 ·∆φi]+
||∆φi||2

}
. (3.7)

The parameter Cu controls the aggressiveness of the update rule and [1−ωi−1 ·∆φi]+
can be interpreted as the loss suffered on iteration i. After every training step the
AUC on a validation set is computed whereas the vector ω which achieves the best
AUC on the validation set is the final output of the algorithm.

Feature Functions

As can be seen in Equation 3.1, the keyword spotter is based on a set of non-linear
feature functions {φj}nj=1 that map a speech utterance, together with a candidate
alignment, into an abstract vector space. In the following, n = 7 feature functions
which proved successful for the keyword spotter introduced in [121] are used. Yet, in
order to enhance the framewise phoneme estimates used in the first feature function
φ1, the output activations of a BLSTM network for phoneme prediction are included
into φ1. One variant is to extend φ1 to a two-dimensional function, giving an overall
feature function dimension of n = 8. In what follows five versions of the first feature
function, denoted φ1A - φ1E, are described (also see [275]).

Feature function φ1A is the same as used in [122] and is based on the hierarchical
phoneme classifier described in [55]. The classifier outputs a confidence hq(x1:T ) that
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phoneme q is pronounced in x1:T which is then summed over the whole phoneme
sequence to give

φ1A(x1:T , q1:L, κ1:L) =
L∑
τ=1

κτ+1−1∑
t=κτ

hqτ (x1:T ). (3.8)

Unlike φ1A, the feature function φ1B incorporates contextual information for the
computation of the phoneme probabilities by replacing the confidences hq(x1:T ) by
the BLSTM output activations oq(x1:T ), thus

φ1B(x1:T , q1:L, κ1:L) =
L∑
τ=1

κτ+1−1∑
t=κτ

oqτ (x1:T ). (3.9)

Since the BLSTM outputs tend to produce high-confidence phoneme probability
distribution spikes for the recognized phoneme of a frame while all other activations
are close to zero, it is beneficial to also include the probability distribution hq(x1:T )
(which – due to the hierarchical structure of the classifier – consists of multiple
rather low-confidence spikes) in the first feature function. Therefore, φ1C expands
the first feature function to a two-dimensional function which can be written as

φ1C(x1:T , q1:L, κ1:L) =

( ∑L
τ=1

∑κτ+1−1
t=κτ

hqτ (x1:T )∑L
τ=1

∑κτ+1−1
t=κτ

oqτ (x1:T )

)
. (3.10)

Alternatively, φ1D consists of a linear combination of the distributions hq(x1:T ) and
oq(x1:T ) so that

φ1D(x1:T , q1:L, κ1:L) =
L∑
τ=1

κτ+1−1∑
t=κτ

λh · hqτ (x1:T ) + λo · oqτ (x1:T ), (3.11)

with λh denoting the weight of the hierarchical classifier and λo corresponding to
the weight of the BLSTM output.

The function φ1E takes the maximum of the distributions hq(x1:T ) and oq(x1:T ).
This maintains the high-confidence BLSTM output activations as well as the multiple
rather low-confidence hypotheses of hq(x1:T ) for q-t coordinates where oq(xt) is close
to zero:

φ1E(x1:T , q1:L, κ1:L) =
L∑
τ=1

κτ+1−1∑
t=κτ

max
(
hqτ (x1:T ), oqτ (x1:T )

)
. (3.12)

Figures 3.1(a) to 3.1(d) show the outputs of feature functions φ1A, φ1B, φ1D, and
φ1E over time for an example utterance and a phoneme inventory of size 39.

The remaining feature functions φ2 - φ7 used in this section are the same as
in [122]. φ2 - φ5 measure the Euclidean distance between feature vectors at both
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Figure 3.1: Phoneme confidences over time for an example utterance when us-
ing different feature functions based on a hierarchical phoneme classifier and/or
a BLSTM phoneme classifier. φ1D is normalized and uses weights λh = 1.0 and
λo = 1.5.

sides of the suggested phoneme boundaries, assuming that the correct alignment will
produce a large sum of distances, since the distances at the phoneme boundaries are
likely to be high compared to those within a phoneme. Function φ6 scores the timing
sequences based on typical phoneme durations and φ7 considers the speaking rate
implied with the candidate phoneme alignment, presuming that the speaking rate
changes only slowly over time (see [122] for formulas).
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Figure 3.2: ROC curve for the discriminative keyword spotter (DISC) based
on feature function φ1A as introduced in [123] and the keyword spotter enhanced
via BLSTM modeling based on φ1D (DISC-BLSTM). Evaluation on the SAL
database.

Experiments and Results

To compare the performance of the discriminative keyword spotter proposed in [122]
and [123] with a keyword spotter enhanced via BLSTM modeling of phonemes,
the TIMIT corpus and its framewise phoneme annotations was used as a train-
ing database. As preliminary experiments in [275] revealed that the most effective
way to incorporate BLSTM context modeling into the first feature function is to use
a linear combination of the phoneme estimation scores produced by the hierarchi-
cal classifier hq(·) and the BLSTM phoneme predictor oq(·) with weights λh = 1.0
and λo = 1.5, we focus on feature function φ1D (see Equation 3.11) and compare
it with feature function φ1A which uses no contextual information in the form of
BLSTM phoneme estimates. The TIMIT training set was divided into five parts.
1 500 utterances were used to train the frame-based phoneme recognizer needed for
the first feature function. 150 utterances served as training set for the forced align-
ment algorithm which was applied to initialize the weight vector ω (for details see
[121]). 100 sequences formed the validation set of the forced aligner, and from the
remaining 1 946 utterances two times 200 samples (200 positive and 200 negative
utterances) were selected for training and two times 200 utterances for validation of
the discriminative keyword spotter. The feature vectors consisted of cepstral mean
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normalized MFCC features 0 to 12 with first and second order delta coefficients. As
aggressiveness parameter Cu for the update algorithm (see Equation 3.7) Cu = 1
was used. For the training of the BLSTM used for feature function φ1D, the same
1 500 utterances as for the phoneme recognizer of φ1A were chosen, however, they
were split into 1 400 sequences for training and 100 for validation. The BLSTM
input layer had a size of 39 (one for each MFCC feature) and the size of the output
layer was also 39 since the reduced set of 39 TIMIT phonemes was used. Both
hidden LSTM layers contained 100 memory blocks of one cell each. To improve
generalization, zero mean Gaussian noise with standard deviation 0.6 was added to
the inputs during training. The applied learning rate was 10−5 and the momentum
was 0.9.

The effect of replacing feature function φ1A with φ1D was evaluated on the Belfast
Sensitive Artificial Listener (SAL) database [64] containing spontaneous and emo-
tionally colored speech. For a more detailed description of the SAL database, see
[64] or [276]. 24 keywords were randomly chosen. For each keyword 20 utterances in
which the keyword is not uttered and up to 20 utterances (depending on how often
the keyword occurs in the whole corpus) which include the keyword were selected.
On average, a keyword consisted of 5.4 phonemes. As can be seen in Figure 3.2, the
BLSTM approach (using φ1D) is able to outperform the keyword spotter which does
not use long-range dependencies via BLSTM output activations. The average AUC
is 0.80 for the BLSTM experiment and 0.68 for the experiment using the original
feature function φ1A, respectively.

This result can be interpreted as a first indication that bidirectional Long Short-
Term Memory modeling can enhance the performance of keyword detection in sponta-
neous emotional speech. A detailed comparison of the two discriminative approaches
and the (partly generative) techniques outlined in Sections 3.1.2 to 3.1.5 can be found
in Section 3.1.6.

3.1.2 Graphical Models for Keyword Detection

Hidden Markov Model based keyword spotting systems [124, 196] usually require key-
word HMMs and a filler or garbage HMM to model both, keywords and non-keyword
parts of the speech sequence. Using whole word HMMs for the keywords and the
garbage model presumes that there are enough occurrences of the keywords in the
training corpus and suffers from low flexibility since new keywords cannot be added
to the system without having to re-train it. Modeling sub-units of words, such as
phonemes, offers the possibility to design a garbage HMM that connects all phoneme
models [196]. However, the inherent drawback of this approach is that the garbage
HMM can potentially model any phoneme sequence, including the keyword itself.
Better garbage models can be trained when modeling non-keyword speech with a
large vocabulary ASR system where the lexicon excludes the keyword [259]. Disad-
vantages of this method are its higher decoding complexity and the large amount
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of required training data to obtain a reasonable language model. Moreover, such
LVSCR systems presume that all keywords are contained in the language model,
which makes them less flexible than vocabulary independent systems where no in-
formation about the set of keywords is required while training the models.

In this section, a new Graphical Model design which can be used for robust
keyword spotting and overcomes most of the drawbacks of other approaches is intro-
duced. Graphical Models offer a flexible statistical framework that is increasingly
applied for speech recognition tasks [21, 22] since it allows for conceptual deviations
from the conventional HMM architecture. As outlined in Section 2.3.2, a GM –
or, more specifically, a DBN – makes use of the graph theory in order to describe
the time evolution of speech as a statistical process and defines conditional inde-
pendence properties of the observed and hidden variables that are involved in the
process of speech decoding. Apart from common HMM approaches, there exist only
a small number of methods which try to address the task of keyword spotting using
the general Graphical Model paradigm. In [144], a Graphical Model is applied for
spoken keyword spotting based on performing a joint alignment between the phone
lattices generated from a spoken query and a long stored utterance. This concept,
however, is optimized for offline phone lattice generation and bears no similarity to
the technique proposed in this section. The same holds for approaches towards GM
based out-of-vocabulary (OOV) detection [143] where a Graphical Model indicates
possible OOV regions in continuous speech.

In the following, the explicit graph representation of a GM based keyword spotter
is introduced. The GM does not need a trained garbage model and is robust with
respect to phoneme recognition errors. The approach is conceptually more simple
than a large vocabulary ASR system since it does not require a language model but
only the keyword phonemizations. By adding a further hierarchy level to a Dynamic
Bayesian Network for phoneme recognition, we derive a framework for reliably de-
tecting keywords in continuous speech. The method uses a hidden garbage variable
and the concept of switching parents [21] to model either a keyword or arbitrary
speech (also see [278]). DBNs are the Graphical Models of choice for speech recog-
nition tasks, since they consist of repeated template structures over time, modeling
the temporal evolution of a speech sequence. Conventional HMM approaches can be
interpreted as implicit graph representations using a single Markov chain together
with an integer state to represent all contextual and control information determining
the allowable sequencing. In this section, however, we focus on the explicit approach,
where information such as the current phoneme, the indication of a phoneme tran-
sition, or the position within a word is expressed by random variables. As shown
in [22], explicit graph representations are advantageous whenever the set of hidden
variables has factorization constraints or consists of multiple hierarchies.
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Figure 3.3: DBN structure of the Graphical Model used to train the keyword
spotter.

Training

The DBN used to train the keyword spotter is depicted in Figure 3.3. Compared
to the DBN that will be applied for decoding, the DBN for the training of the
keyword spotter is less complex, since so far, only phonemes are modeled. The
training procedure is split up into two stages: In the first stage, phonemes are
trained framewise, whereas during the second stage, the segmentation constraints
are relaxed using a forced alignment (embedded training).

In conformance with Figure 3.3, the following random variables are defined for
every time step t: qct is a count variable determining the current position in the
phoneme sequence, qt denotes the phoneme identity, qpst represents the position
within the phoneme, qtrt indicates a phoneme transition, st is the current state with
strt indicating a state transition, and xt denotes the observed acoustic features. Fol-
lowing the notation introduced in Sections 2.3.2 and 2.3.3, Figure 3.3 displays hid-
den variables as circles and observed variables as squares. Deterministic conditional

54



3.1. Vocabulary Independent Keyword Detection

probability functions are represented by straight lines, whereas zig-zagged lines cor-
respond to random CPFs. The grey-shaded arrow in Figure 3.3, pointing from qtrt−1
to qct is only valid during the second training cycle when there are no segmentation
constraints, and will be ignored in Equations 3.14 and 3.15. Assuming a speech
sequence of length T , the DBN structure specifies the factorization

p(qc1:T , q1:T , q
tr
1:T , q

ps
1:T , s

tr
1:T , s1:T , x1:T ) =

p(x1|s1)f(s1|qps1 , q1)p(str1 |s1)f(qtr1 |q
ps
1 , q1, s

tr
1 )f(q1|qc1)f(qps1 )f(qc1)

×
T∏
t=2

p(xt|st)f(st|qpst , qt)p(strt |st)f(qtrt |q
ps
t , qt, s

tr
t )f(qt|qct )f(qpst |strt−1, q

ps
t−1, q

tr
t−1)

× f(qct |qct−1).
(3.13)

Equation 3.13 can be simplified, yielding a more compact representation

p(qc1:T , q1:T , q
tr
1:T , q

ps
1:T , s

tr
1:T , s1:T , x1:T ) =

f(qps1 )f(qc1)
T∏
t=1

p(xt|st)f(st|qpst , qt)p(strt |st)f(qtrt |q
ps
t , qt, s

tr
t )f(qt|qct )

×
T∏
t=2

f(qpst |strt−1, q
ps
t−1, q

tr
t−1)f(qct |qct−1)

(3.14)

with p(·) denoting random conditional probability functions and f(·) describing de-
terministic CPFs. The probability of the observed sequence can then be computed
as

p(x1:T ) =
∑

qc1:T ,q1:T ,q
tr
1:T ,q

ps
1:T ,s

tr
1:T ,s1:T

p(qc1:T , q1:T , q
tr
1:T , q

ps
1:T , s

tr
1:T , s1:T , x1:T ). (3.15)

The factorization property given in Equation 3.14 is exploited in order to optimally
distribute the sums over the hidden variables into the products (see Section 2.3.2).
To this end, we apply the junction tree algorithm [115] to move the sums as far to
the right as possible which reduces computational complexity. The CPFs p(xt|st)
are described by Gaussian mixtures as common in an HMM system. Both, p(xt|st)
and p(strt |st) are learnt via EM training. strt is a binary variable, indicating whether
a state transition takes place or not. Since the current state is known with certainty,
given the phoneme and the phoneme position, f(st|qpst , qt) is purely deterministic. A
phoneme transition occurs whenever strt = 1 and qpst = S provided that S denotes the
number of states of a phoneme. This is expressed by the function f(qtrt |q

ps
t , qt, s

tr
t ).
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During training, the current phoneme qt is known, given the position qct in the
training utterance, which implies a deterministic mapping f(qt|qct ). In the first
training cycle qct is incremented in every time frame, whereas in the second cycle qct
is only incremented if qtrt−1 = 1. The phoneme position qpst is known with certainty
if strt−1, q

ps
t−1, and qtrt−1 are given.

Decoding

Once the distributions p(xt|st) and p(strt |st) are trained, a more complex GM is used
for keyword spotting (see Figure 3.4): In the decoding phase, the hidden variables wt,
wpst , and wtrt are included in order to model whole words. Further, a hidden garbage
variable gt indicates whether the current word is a keyword or not. In Figure 3.4,
dotted lines correspond to so-called switching parents [21], which allow a variable’s
parents to change conditioned on the current value of the switching parent. A
switching parent cannot only change the set of parents but also the implementation
(i. e., the CPF) of a parent. Considering all statistical independence assumptions,
the DBN can be factorized as follows:

p(g1:T , w1:T , w
tr
1:T , w

ps
1:T , q1:T , q

tr
1:T , q

ps
1:T , s

tr
1:T , s1:T , x1:T ) =

f(qps1 )p(q1|wps1 , w1, g1)f(wps1 )p(w1)

×
T∏
t=1

p(xt|st)f(st|qpst , qt)p(strt |st)f(qtrt |q
ps
t , qt, s

tr
t )f(gt|wt)f(wtrt |qtrt , w

ps
t , wt)

×
T∏
t=2

f(qpst |strt−1, q
ps
t−1, q

tr
t−1)p(qt|qtrt−1, qt−1, w

ps
t , wt, gt)f(wpst |qtrt−1, w

ps
t−1, w

tr
t−1)

× p(wt|wtrt−1, wt−1).

(3.16)

The hidden variable wt can take values in the range wt = 0...K with K being the
number of different keywords in the vocabulary. In case wt = 0 the model is in the
garbage state which means that no keyword is uttered at that time. The variable
gt is then equal to one. wtrt−1 is a switching parent of wt: If no word transition is
indicated, wt is equal to wt−1. Otherwise, a simple word bigram specifies the CPF
p(wt|wtrt−1 = 1, wt−1). In our experiments, the word bigram is simplified to a unigram
which makes each keyword equally likely. However, differing a priori likelihoods for
keywords and garbage phonemes are introduced:

p(wt = 1 : K|wtrt−1 = 1) =
K · 10a

K · 10a + 1
(3.17)

and

p(wt = 0|wtrt−1 = 1) =
1

K · 10a + 1
. (3.18)
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Figure 3.4: DBN structure of the Graphical Model for keyword spotting.

The parameter a can be used to adjust the trade-off between true positives and
false positives. Setting a = 0 means that the a priori probability of a keyword
and the probability that the current phoneme does not belong to a keyword are
equal. Adjusting a > 0 implies a more aggressive search for keywords, leading
to higher true positive and false positive rates. The CPFs f(wtrt |qtrt , w

ps
t , wt) and

f(wpst |qtrt−1, w
ps
t−1, w

tr
t−1) are similar to the phoneme layer of the GM (i. e., the CPFs

for qtrt and qpst ). However, we assume that ‘garbage words’ always consist of only
one phoneme, meaning that if gt = 1, a word transition occurs as soon as qtrt = 1.
Consequently, wpst is always zero if the model is in the garbage state. The variable qt
has two switching parents: qtrt−1 and gt. Similar to the word layer, qt is equal to qt−1
if qtrt−1 = 0. Otherwise, the switching parent gt determines the parents of qt. In case
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gt = 0 – meaning that the current word is a keyword – qt is a deterministic function
of the current keyword wt and the position within the keyword wpst . If the model
is in the garbage state, qt only depends on qt−1 using a trained phoneme bigram
P . This phoneme bigram matrix is used to model arbitrary speech and is learnt by
simply counting phoneme transitions that occur in a training corpus:

P = N − f · I. (3.19)

The bigram matrix P contains the probabilities

Pij = p(qt = j|qtrt−1 = 1, gt = 1, qt−1 = i) (3.20)

that the phoneme j occurs after phoneme i. N includes the number of phoneme
transitions nij, normalized by the number Ni of occurrences of the phoneme i in the
training corpus. All entries nij are floored to ξ:

Nij = max
(nij
Ni

,
ξ

Ni

)
. (3.21)

Since Equation 3.21 introduces a probability floor value for all possible transitions,
the subtraction of the identity matrix I weighted by ξ ensures that transitions from
phoneme i to phoneme i occur with zero probability.

Note that the design of the CPF p(qt|qtrt−1, qt−1, w
ps
t , wt, gt) entails that the GM

will strongly tend to choose gt = 0 (i. e., it will detect a keyword) once a phoneme
sequence that corresponds to a keyword is observed. Decoding such an observation
while being in the garbage state gt = 1 would lead to ‘phoneme transition penalties’
since P contains probabilities less than one. By contrast, p(qt|qtrt−1 = 1, wpst , wt, gt =
0) is deterministic, introducing no likelihood penalties at phoneme borders.

Experiments and Results

The DBN for keyword spotting was trained and evaluated on the TIMIT corpus in
order to enable a first insight into its performance compared to a standard HMM
keyword spotter. All feature vectors consisted of cepstral mean normalized MFCC
coefficients 1 to 12, log. energy, as well as first and second order regression coeffi-
cients. The phoneme models were composed of three hidden states each. During the
first training cycle of the GM, phonemes were trained framewisely using the training
portion of the TIMIT corpus. All Gaussian mixtures were split once 0.02% conver-
gence was reached until the number of mixtures per state increased to 16. In the
second training cycle segmentation constraints were relaxed and no further mixture
splitting was conducted (embedded training). 60 keywords were randomly chosen
from the TIMIT corpus to evaluate the keyword spotter DBN. The floor value ξ (see
Equation 3.21) was set to 10 and the trade-off parameter a (see Equation 3.17) was
varied between 0 and 10.
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Figure 3.5: Part of the ROC curve for the DBN and for the HMM keyword
spotter. Evaluation on the TIMIT database.

For comparison, a phoneme based keyword spotter using conventional HMM
modeling was trained and evaluated on the same task. Analogous to the DBN
experiment, each phoneme was represented by three states (left-to-right HMMs)
with either 16 Gaussian mixtures. Cross-word triphone models were applied in order
to account for contextual information. Like the DBN, all phoneme HMMs were re-
trained using embedded training. For keyword detection a set of keyword models
and a garbage model was defined. The keyword models estimate the likelihood of a
feature vector sequence, given that it corresponds to the keyword phoneme sequence.
The garbage model is composed of phoneme HMMs that are fully connected to each
others, meaning that it can model any phoneme sequence. Via Viterbi decoding the
best path through all models is found and a keyword is detected as soon as the path
passes through the corresponding keyword HMM. In order to be able to adjust the
operating point on the ROC curve, different a priori likelihoods are introduced for
keyword and garbage HMMs, identical to the word unigram used for the Graphical
Model.

Figure 3.5 shows a part of the ROC curve for the DBN keyword spotter and the
HMM-based keyword spotter, displaying the true positive rate (tpr) as a function of
the false positive rate (fpr). Note that due to the design of the decoder, the full ROC
curve – ending at an operating point tpr=1 and fpr=1 – cannot be determined, since
the model does not include a confidence threshold that can be set to an arbitrarily
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low value. Due to the inherent robustness with respect to phoneme recognition
errors, the DBN architecture achieves significantly higher true positive rates at equal
false positive rates, compared to the standard HMM approach. One can observe
a performance difference of up to 10 %. Conducting the McNemar’s test reveals
that the performance difference between the DBN keyword spotter and the HMM
approach is statistically significant at a common significance level of 0.01.

3.1.3 Tandem BLSTM-DBN

This section shows how the Graphical Model structure presented in Section 3.1.2
can be extended to a Tandem approach that is not only based on Gaussian mixture
modeling but additionally applies a recurrent neural network to provide improved
phoneme predictions, which can then be incorporated into the DBN [274]. As in
Section 3.1.1, the RNN uses the bidirectional Long Short-Term Memory architecture
to access long-range context information along both input directions. The aim is to
improve the keyword spotting accuracy of the DBN introduced in Section 3.1.2 by
an additional modeling of contextual information, such as co-articulation effects, via
BLSTM networks. In addition to evaluations on the TIMIT and the SAL database, a
part of the experiments in this section will deal with keyword detection in children’s
speech. Recognition of children’s speech is known to be a challenge for state-of-the-
art ASR systems since acoustic and linguistic properties strongly differ from adult
speech [85]. Typical differences in pitch, formant positions, and co-articulation led
to the development of techniques like voice transformations and frequency warping
[100, 179].

In what follows, we will apply BLSTM modeling in order to generate phoneme
predictions that are decoded together with conventional speech features in a Dy-
namic Bayesian Network and use this principle for keyword detection in a child-
robot interaction scenario (also see [293]). As the characteristics of co-articulation
in children’s speech strongly differ from co-articulation effects in adult speech [83],
BLSTM networks are applied as an efficient method of context modeling. Chil-
dren develop co-articulation skills with increasing age which leads to strong vari-
ations in the amount of temporal context that needs to be considered to capture
co-articulation for context-sensitive speech feature generation and acoustic model-
ing [153, 190]. Thus, it seems inappropriate to manually define an inflexible, fixed
amount of context, as it is commonly done when stacking multiple low-level feature
frames for neural network based feature generation [94]. By contrast, modeling con-
textual information in children’s speech via BLSTM networks allows us to learn the
proper amount of relevant context.
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Figure 3.6: Structure of the Tandem BLSTM-DBN keyword spotter.

Model Architecture

The proposed Tandem BLSTM-DBN architecture for keyword spotting is depicted
in Figure 3.6. The network is composed of five different layers and hierarchy levels
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respectively: a word layer, a phoneme layer, a state layer, the observed features,
and the BLSTM layer (nodes inside the grey shaded box). As can be seen in Figure
3.6, the DBN jointly processes speech features and BLSTM phoneme predictions.
The BLSTM layer consists of an input layer it, two hidden layers hft and hbt (one
for forward and one for backward processing), and an output layer ot. The random
variables gt, wt, w

ps
t , wtrt , qt, q

ps
t , qtrt , st, s

tr
t , and xt are identical to the random vari-

ables specified for the DBN presented in Section 3.1.2. A second observed variable
bt contains the (framewise) phoneme prediction of the BLSTM. Note that the bold
dashed lines in the BLSTM layer of Figure 3.6 do not represent statistical relations
but simple data streams. Again, we assume a speech sequence of length T , so that
the DBN structure specifies the factorization

p(g1:T , w1:T , w
tr
1:T , w

ps
1:T , q1:T , q

tr
1:T , q

ps
1:T , s

tr
1:T , s1:T , x1:T , b1:T ) =

f(qps1 )p(q1|wps1 , w1, g1)f(wps1 )p(w1)

×
T∏
t=1

p(xt|st)p(bt|st)f(st|qpst , qt)p(strt |st)f(qtrt |q
ps
t , qt, s

tr
t )f(wtrt |qtrt , w

ps
t , wt)f(gt|wt)

×
T∏
t=2

f(qpst |strt−1, q
ps
t−1, q

tr
t−1)p(wt|wtrt−1, wt−1)p(qt|qtrt−1, qt−1, w

ps
t , wt, gt)

× f(wpst |qtrt−1, w
ps
t−1, w

tr
t−1).

(3.22)

The size of the BLSTM input layer it corresponds to the dimensionality of the
acoustic feature vector xt and the vector ot contains one probability score for each
of the P different phonemes at each time step. bt is the index of the most likely
phoneme:

bt = argmax
j

(o1t , ..., o
j
t , ..., o

P
t ). (3.23)

Together with p(xt|st) and p(strt |st), the CPF p(bt|st) is learned using expectation
maximization (see [273] for details). All other CPFs are the same as in Section 3.1.2.
Again the DBN can be trained by replacing the word layer random variables with a
phoneme counter variable qct pointing to the phoneme ground truth in an phonetically
aligned training corpus (see Figure 3.3). The factorization of the corresponding DBN
for training the Tandem system can be derived similarly to Equation 3.14 as
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p(qc1:T , q1:T , q
tr
1:T , q

ps
1:T , s

tr
1:T , s1:T , x1:T , b1:T ) =

f(qps1 )f(qc1)
T∏
t=1

p(xt|st)p(bt|st)f(st|qpst , qt)p(strt |st)f(qtrt |q
ps
t , qt, s

tr
t )f(qt|qct )

×
T∏
t=2

f(qpst |strt−1, q
ps
t−1, q

tr
t−1)f(qct |qct−1).

(3.24)

The BLSTM network is trained independently with standard backpropagation
through time [266] using the exact error gradient as in [91].

Initial Experiments and Results

For initial evaluations of the proposed Tandem BLSTM-DBN keyword spotter on
read and spontaneous adult speech, the TIMIT corpus and the SAL database were
used. As in Section 3.1.2, the acoustic feature vectors consisted of cepstral mean
normalized MFCC coefficients 1 to 12, log. energy, as well as first and second order
delta coefficients. For the training of the BLSTM, 200 utterances of the TIMIT
training split were used as validation set while the net was trained on the remaining
training sequences. The BLSTM network was configured as in Section 3.1.1 and the
two-stage DBN training procedure was identical to the technique detailed in Section
3.1.2, yet, prior to evaluation on the SAL corpus, all means, variances, and weights of
the Gaussian mixture probability distributions p(xt|st), as well as the state transition
probabilities p(strt |st) were re-estimated using the training split of the SAL corpus.
Again, re-estimation was stopped once the change of the overall log likelihood of the
SAL training set fell below a threshold of 0.02 %. Details regarding the investigated
keyword spotting task on the TIMIT corpus and on the SAL database as well as the
configuration of the baseline HMM system can be found in Sections 3.1.1 and 3.1.2.

Figure 3.7(a) shows a part of the ROC curves for the baseline HMM, the DBN
introduced in Section 3.1.2, and the Tandem BLSTM-DBN keyword spotter for the
TIMIT experiment. The most significant performance gain of context modeling via
BLSTM predictions occurs at an operating point with a false positive rate of 0.1 %:
There, the Tandem approach can increase the true positive rate by 13.5 %, when
compared to the DBN without BLSTM layer. For higher values of the trade-off
parameter a (see Section 3.1.2), implying a more aggressive search for keywords,
the performance gap between the DBN and the Tandem keyword spotter becomes
smaller, as more phoneme confusions are tolerated when seeking for keywords. Fur-
thermore, both DBN architectures significantly outperform the baseline HMM ap-
proach. The ROC performance for the SAL experiment can be seen in Figure 3.7(b).
Obviously, the task of keyword detection in emotional speech is considerably harder,
implying lower true positive rates and higher false positive rates, respectively. As
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Figure 3.7: Part of the ROC curve for the baseline HMM system, the DBN key-
word spotter (without BLSTM phoneme predictions) and the Tandem BLSTM-
DBN approach.

for the TIMIT experiment, the Tandem BLSTM-DBN approach prevails over the
DBN and the HMM baseline system with a performance gain of up to 8 % when
compared to the DBN.

The FAU AIBO Emotion Corpus

To collect further evidence for achievable keyword spotting performance gains when
exploiting BLSTM for context-sensitive phoneme modeling and to examine whether
the improvements generalize to other challenging keyword detection tasks involving
children’s speech, further experiments were conducted on the FAU AIBO Emotion
Corpus, a corpus of German spontaneous speech with recordings of children at the
age of 10 to 13 years communicating with a pet robot [236]. The general framework
for this children’s speech database is child-robot communication and the elicitation
of emotion-related speaker states. The robot is Sony’s (dog-like) robot Aibo. The
basic idea has been to combine children’s speech and naturally occurring emotional
speech within a Wizard-of-Oz task. The speech is spontaneous, because the children
were not told to use specific instructions but to talk to Aibo like they would talk to a
friend. In this experimental design, the child is led to believe that Aibo is responding
to his or her commands, but the robot is actually being remote-controlled by a human
operator. The wizard causes Aibo to perform a fixed, predetermined sequence of
actions, which takes no account of what the child is actually saying. This obedient
and disobedient behavior provokes the children in order to elicit emotional behavior.
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3.1. Vocabulary Independent Keyword Detection

The data was collected from 51 children (21 male, 30 female) aged 10 to 13
years from two different schools (Mont and Ohm); the recordings took place in the
respective class-rooms. The total vocabulary size is 1.1 k. Each recording session
took around 30 minutes; in total there are 27.5 hours of data. The recordings contain
large amounts of silence, which are due to the reaction time of Aibo. After removing
longer pauses, the total amount of speech is equal to 8.9 hours. All recordings were
split into turns using a pause threshold of ≥ 1 s. For the (speaker-independent)
keyword spotting experiments, all speech recorded at the Ohm school are used for
training (6 370 turns), apart from two randomly selected Ohm-sessions which are
used for validation (619 turns). The sessions recorded at the Mont school are used
for testing (6 653 turns, see also Table 3.1).

Keywords

The keyword vocabulary consists of three different categories: words expressing
positive valence, words expressing negative valence, and command words (see Table
3.2). Keywords indicating positive or negative valence were included to allow the
Aibo robot to be sensitive to positive or negative feedback from the child. Such
keywords can also be used as linguistic features for automatic emotion recognition
[13, 14, 210, 236]. Examples are (German) words like fein, gut, böse, etc. (Engl.:
fine, good, bad). Command words like links, rechts, hinsetzen, etc. (Engl.: left, right,
sit down) were included so that the children are able to control the Aibo robot via
speech. The dictionary contains multiple pronunciation variants as well as multiple
forms of the (lemmatized) keywords listed in Table 3.2. For example the word
umdrehen (Engl.: turn around) can also be pronounced as umdrehn and verbs do
not necessarily have to be uttered in the infinitive form (e. g., gehen (Engl.: go) can
also be geh, gehst, or geht). In order to allow a fair comparison between techniques
that depend on frequent keyword occurrences in the training set (such as the CTC
method introduced in [75] which will be included in our experimental study) and
the vocabulary independent approaches, only those command words or emotionally
relevant words that occurred at least 50 times (incl. variants) in the FAU Aibo
Emotion Corpus were included in the vocabulary. In total, there are 82 different
entries in the dictionary which are mapped onto exactly 25 keywords as listed in
Table 3.2.

Table 3.1: Size of the training, validation, and test set: school in which the
children were recorded, number of turns, number of words, and duration.

set school turns words duration

training Ohm 6 370 22 244 4.5 h
validation Ohm 619 2 516 0.5 h
testing Mont 6 653 23 641 3.9 h
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Table 3.2: Keywords

category German keywords translation

positive valence brav, fein, gut, schön well-behaved/good, fine, good, nice

negative valence böse, nein, nicht bad, no, not

commands aufstehen, bleiben, drehen, gehen, stand up, keep, turn, go,
geradeaus, hinsetzen, kommen, straight, sit down, come,
laufen, links, rechts, setzen, stehen, run, left, right, sit, stand,
stehenbleiben, stellen, stopp, stand still, put, stop,
tanzen, umdrehen, weiterlaufen dance, turn around, keep running

In the test set, 85.6 % of the turns contain at least one keyword; 40.6 % of the
turns contain two or more keywords. The average number of keywords contained in
a turn is 1.4 and the average number of words per turn is 3.6.

System Parametrization and Training

Five different keyword spotting techniques will be evaluated in the following: the
Tandem BLSTM-DBN approach introduced in this section [273], the CTC method
as proposed in [75], the DBN outlined in Section 3.1.2 [278], a conventional phoneme-
based HMM system, and a multi-stream HMM approach that incorporates BLSTM
phoneme predictions as an additional discrete stream of observations (for further de-
tails on the implementation of the multi-stream approach, see Section 3.2.2). Using
a set of 25 keywords, we will investigate the performance of the respective techniques
focusing on the task of keyword detection in a child-robot interaction scenario.

The acoustic feature vectors used for all keyword detectors consisted of cepstral
mean normalized MFCC coefficients 1 to 12, log. energy, as well as first and sec-
ond order delta coefficients. The BLSTM network was trained on the framewise
phoneme segmentations of the training set. Since the corpus is only transcribed at
the word level, an HMM system was applied in order to obtain the phoneme-level
forced alignments. The BLSTM input layer had a size of 39 (one for each feature)
and the size of the output layer was 65 since a set of 54 German phonemes is mod-
eled, with additional targets for silence, short pause, breathing, coughing, laughing,
unidentifiable phonemes, noise, human noise, nasal hesitation, vocal hesitation, and
nasal+vocal hesitation. Both hidden layers (for forward and backward processing)
consisted of one backpropagation layer with 65 hidden cells and two LSTM layers
with 130 and 65 memory blocks, respectively. Each memory block consisted of one
memory cell. Input and output gates used hyperbolic tangent (tanh) activation
functions, while the forget gates had logistic activation functions.

The BLSTM network was trained with standard backpropagation through time.
Again, a learning rate of 10−5 was used. To improve generalization, zero mean
Gaussian noise with standard deviation 0.6 was added to the inputs during training.
Before training, all weights of the BLSTM network were randomly initialized in the
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3.1. Vocabulary Independent Keyword Detection

range from -0.1 to 0.1. Training was aborted as soon as no improvement on the
validation set (two Ohm-sessions) could be observed for at least 50 epochs. Finally,
the network that achieved the best framewise phoneme error rate on the validation
set was chosen. The resulting frame error rate on the test set is 15.1 %. Note that
for the BLSTM-DBN system, the validation set was exclusively used to determine a
stop criterion for BLSTM training and not to tune parameters such as the number
of memory blocks.

The DBN was trained applying the two-stage approach explained in Section 3.1.2:
During the first training cycle of the DBN, models for phonemes and non-linguistic
vocalizations were trained framewisely using the Ohm-sessions of the FAU Aibo
Emotion Corpus. All Gaussian mixtures were split once the change of the overall
log likelihood of the training set became less than 0.02 %. The number of mixtures
per state was increased to eight. All models were composed of three hidden states.

In order to compare the performance of the Tandem model to a CTC keyword
spotter based on whole-word modeling as proposed in [75], a BLSTM network with
CTC output layer was trained. The output layer consisted of one output node
per keyword and an additional output unit for the non-keyword event (see Section
2.3.10). As for the Tandem model, the BLSTM-CTC network consisted of one
backpropagation layer and two LSTM layers for each input direction (size 65, 130,
and 65, respectively). Network training was conducted exactly in the same way
as for the Tandem approach. The only difference is that the CTC network uses
keywords rather than phonemes as targets. Note that this leads to empty target
sequences for training turns which contain no keywords.

As a baseline experiment, the performance of a phoneme-based keyword spotter
using conventional HMM modeling was evaluated. Analogous to the DBN, each of
the 54 phonemes was represented by three states (left-to-right HMMs) with eight
Gaussian mixtures. Increasing the number of mixture components to more than
eight did not result in better recognition accuracies. HMMs for non-linguistic events
consisted of nine states. Cross-word triphone models were applied in order to model
co-articulation. Details on the keyword detection technique used within the baseline
HMM can be found in the experimental part of Section 3.1.2.

To investigate the performance gain when including the discrete BLSTM phone
prediction bt (see Equation 3.23) as an additional feature into the baseline HMM
framework, the HMM-based system was extended to a multi-stream recognizer mod-
eling MFCC and BLSTM observations in independent feature streams. As for the
Tandem BLSTM-DBN approach, MFCC observations are modeled via Gaussian
mixtures while the BLSTM feature is modeled using the discrete emission probabil-
ity distribution p(bt|st). Thus, the BLSTM-HMM system can be interpreted as a
combined continuous-discrete multi-stream HMM (also see Section 3.2.2).
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Results

All five keyword spotting approaches were evaluated on children’s speech as con-
tained in the Mont-sessions of the FAU Aibo Emotion Corpus. Since only the
Ohm-sessions are used during training, the experiments are completely speaker-
independent. Figure 3.8 shows a part of the ROC curves for the baseline HMM,
the multi-stream BLSTM-HMM, the DBN as introduced in Section 3.1.2, the CTC
method proposed in [75], as well as for the Tandem BLSTM-DBN. Since the CTC
framework offers no possibility to adjust the trade-off between a high true positive
rate and a low false positive rate, we only get one operating point in the ROC space,
corresponding to a true positive rate of 85.2 % at a false positive rate of 0.23 %.
This operating point lies almost exactly on the ROC curve of the Tandem BLSTM-
DBN so that both techniques can be characterized as equally suited for detecting
keywords in the given child-robot interaction scenario. Note, however, that unlike
the CTC method, the Tandem approach is more flexible as far as changes in the
keyword vocabulary are concerned: As both, the BLSTM network and the DBN
are phoneme-based, the Tandem model is vocabulary independent. By contrast,
the CTC network is trained on whole words, which implies that the whole network
would have to be re-trained if a vocabulary entry is to be changed. If a higher false
positive rate can be tolerated, the Tandem approach achieves a keyword detection
rate of up to 95.9 %. As can be seen in Figure 3.8, the Tandem model prevails
over the baseline HMM system. The performance difference is most significant at
lower false positive rates: When evaluating the ROC curve at a false positive rate
of 0.4 %, the absolute difference in true positive rates is larger than 12 %. This indi-
cates that for our children’s speech scenario, modeling context via Long Short-Term
Memory leads to better results than conventional triphone modeling. In general,
for the investigated children’s speech scenario, considering contextual information
during decoding seems to be essential, since the DBN approach which models only
monophones leads to a lower ROC performance when compared to the triphone
HMM system and to systems applying LSTM. At lower false positive rates, model-
ing the co-articulation properties of children’s speech by applying the principle of
Long Short-Term Memory also boosts the performance of the HMM approach which
can be seen in the ROC curve for the multi-stream BLSTM-HMM. Yet, the overall
performance is slightly better for the Tandem system.

Figures 3.9(a) to 3.9(d) show the performance of the five different keyword detec-
tion approaches when tested on different fractions of the FAU Aibo Emotion Corpus.
Figure 3.9(a) considers exclusively the 17 female speakers of the Mont school while
Figure 3.9(b) shows the word spotting performance for the eight male speakers. For
female speakers we can observe a significantly larger performance gap between the
multi-stream BLSTM-HMM technique and the Tandem BLSTM-DBN than when
considering male speakers, for which both BLSTM-based methods perform almost
equally well. Generally, the Tandem approach as proposed in this section prevails
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Figure 3.8: Evaluation on the FAU Aibo Emotion Corpus (25 keywords): part
of the ROC curve for the baseline HMM system, the multi-stream BLSTM-
HMM, the DBN keyword spotter (without BLSTM phoneme predictions), the
CTC approach, and the Tandem BLSTM-DBN technique. The operating
points correspond to a = 0, 1, 2, 3, etc. (linear interpolation).

over the baseline HMM system for both, female and male speakers – especially at
lower false positive rates. Figures 3.9(c) and 3.9(d) contain the results for younger
(age between 10 and 11 years) and older children (age between 12 and 13 years), re-
spectively. The baseline HMM leads to almost equal performance for both, younger
and older children, however, the multi-stream HMM performs significantly better for
the younger age group. Again, the Tandem BLSTM-DBN consistently leads to bet-
ter results when compared to the HMM system, indicating that the Tandem system
is suitable for both genders and different age groups. Generally we can observe that
the performance of techniques such as the DBN system, the (multi-stream) HMM
approach, and the CTC method shows a higher dependency on the childrens’ age
and gender than the proposed Tandem BLSTM-DBN.

Table 3.3 shows the average true positive rates for individual keywords at a false
positive rate of 1 %. Keywords are grouped into words expressing positive valence,
words expressing negative valence, and command words, according to Table 3.2. For
all keyword spotting systems, we observe the same trend: Command words seem to
be easier to detect than words related to valence. Besides differences in phonetic
composition and lengths of keywords, a plausible reason for this phenomenon is
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(b) male speakers
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(c) younger children (age 10-11)
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(d) older children (age 12-13)

Figure 3.9: ROC curves for the different keyword spotting systems evaluated
on female speakers, male speakers, younger children (age between 10 and 11
years), and older children (age between 12 and 13 years).

that pronunciations of ‘positive’ or ‘negative’ words tend to be emotionally colored
while command words are rather pronounced in a neutral or emphatic way. Fur-
thermore, for most recognition engines, words expressing negative valence lead to
higher error rates than words associated with positive valence. Since the FAU Aibo
Emotion Corpus contains emotion annotations at the word-level, it is possible to
analyze which emotions are typically assigned to which keyword. Table 3.4 shows
the emotion class distributions for each word category: A considerable percentage of
‘positive’ and ‘negative’ keywords are pronounced in a motherese (positive valence)
and angry (negative valence) way, respectively, whereas most of the command words
are annotated as neutral or emphatic. Similar results were observed by [210], where
emotional children’s speech led to higher error rates.

70



3.1. Vocabulary Independent Keyword Detection

Table 3.3: True positive rates (tpr) for the DBN, HMM, BLSTM-HMM, and
BLSTM-DBN keyword spotter at a false positive rate of 0.01: mean and stan-
dard deviation (std.) of the true positive rates for individual keywords ex-
pressing positive/negative valence or command words; weighted (WAv) and
unweighted average (UAv) true positive rate for the complete set of keywords;
‘unweighted’ refers to the true positive rate averaged over all keywords while
‘weighted’ means the average of the true positive rates weighted by the number
of occurrences of the individual keywords.

DBN HMM BLSTM-HMM BLSTM-DBN
tpr mean std. mean std. mean std. mean std.

pos. valence 0.716 0.281 0.724 0.223 0.595 0.317 0.741 0.280
neg. valence 0.535 0.264 0.576 0.272 0.702 0.244 0.662 0.213
commands 0.817 0.182 0.858 0.118 0.929 0.051 0.926 0.070
UAv 0.767 0.222 0.803 0.178 0.848 0.194 0.865 0.166
WAv 0.859 0.897 0.930 0.940

Table 3.4: Emotions assigned to the keyword categories in %: angry, moth-
erese, emphatic, and neutral.

[%] angry motherese emphatic neutral

positive valence 0 23 0 77
negative valence 15 0 16 69
commands 4 1 9 86
all 4 2 9 85

3.1.4 Hybrid CTC-DBN

A further technique applying BLSTM for phoneme-based keyword detection was
introduced in [280]. In contrast to the discriminative approach (Section 3.1.1) and
the Tandem method (Section 3.1.3), this technique includes a CTC output layer
and thus can be trained on unsegmented data. Similar to the Tandem model, the
hybrid CTC-DBN approach makes use of a DBN layer to decode the phoneme string
detected by the CTC network. The DBN is trained to explicitly learn and model
typical phoneme confusions, deletions, and insertions that occur in the CTC layer
which allows the network to detect keywords even if the pronunciation differs from
the keyword phonemizations in the dictionary. A major difference between the hy-
brid CTC-DBN outlined in this section and the Tandem model described in Section
3.1.3 is that the DBN used in the hybrid CTC-DBN model exclusively decodes the
phonemewise CTC predictions and not the framewise BLSTM output in combina-
tion with the MFCC features. Further, there is an important difference between
the hybrid CTC-DBN and the CTC keyword spotter proposed in [75], since the
CTC-DBN is trained on phonemes rather than on whole keywords. This implies
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Figure 3.10: Hybrid CTC-DBN architecture for training.

that, similar to the other approaches outlined in Sections 3.1.1 to 3.1.3, the hybrid
CTC-DBN can be applied for vocabulary independent keyword detection and the
keyword inventory does not have to be considered during system training.

Again, the keyword spotting system consists of two major components: a bidi-
rectional Long Short-Term Memory recurrent neural net and a Dynamic Bayesian
Network. The BLSTM network can access long-range context information along
both input directions and uses a Connectionist Temporal Classification output layer
[90] to localize and classify the phonemes, while the DBN is applied for keyword
detection.

Training

Figure 3.10 shows the DBN model architecture that is used for training the hybrid
CTC-DBN keyword detector. The grey-shaded box represents the BLSTM-CTC
layer comprising an input layer it, two hidden layers hft and hbt (forward and back-
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ward direction), and an output layer ot. Note that even though the BLSTM network
produces an output activation for every feature frame index, only the non-blank la-
bels are forwarded to the DBN. To simplify the notation in this section, we use a
counter variable τ which is synchronized with the CTC label predictions rather than
with the feature frame index. Time index t is synchronized with the feature frames.
In order to indicate that not every feature frame xt triggers a CTC label prediction
lτ , Figure 3.10 uses the variable ε denoting the number of feature frames that lie
between the CTC outputs lτ−1 and lτ . Similarly, ε′ represents the number of frames
between lτ and lτ+1. Within the DBN layer the following random variables are de-
fined for every τ : qτ is the current phoneme index corresponding to the phoneme
annotation of the training sequence, qcτ is a simple count variable containing the
current position within the ground truth phoneme string, and the binary variables
dτ and iqτ indicate deletions and insertions, respectively. With L being the length of
the CTC output phoneme sequence, the DBN structure in Figure 3.10 corresponds
to the factorization

p(l1:L, q1:L, q
c
1:L,d1:L, i

q
1:L) =

L∏
τ=1

p(lτ |qτ )f(qτ |qcτ )p(dτ )p(iqτ )f(qc1|d1, i
q
1)

L∏
τ=2

f(qcτ |qcτ−1, dτ , iqτ ).
(3.25)

The probability of the observed label sequence l1:L can then be computed by sum-
ming over all hidden variables. The CPF f(qcτ |qcτ−1, dτ , iqτ ) defines that the count
variable qcτ is incremented by one at every step τ in case dτ and iτ are equal to zero.
Otherwise, if there is a deletion (dτ = 1), qcτ is incremented by two, whereas an
insertion implies that qcτ = qcτ−1. Thus, apart from training the CTC network, the
goal of the training phase is to learn the CPFs p(lτ |qτ ), p(dτ ), and p(iqτ ) (i. e., to
learn substitution, deletion, and insertion probabilities).

Decoding

Figure 3.11 shows the DBN decoding architecture for keyword spotting based on
hybrid CTC-DBN modeling. Recall that dotted lines within the DBN layer represent
so-called switching parent dependencies which allow a variable’s parents (and CPFs)
to change conditioned on the current value of the switching parent. The DBN for
decoding contains five additional hidden variables: wτ denotes the identity of the
current word, wpsτ is the position within the word, wtrτ indicates a word transition, cτ
represents a ‘cut’ variable that is equal to one as soon as there is a deletion at the end
of a keyword, and a hidden garbage variable gτ indicates whether the current word
is a keyword or not. According to Figure 3.11, we get the following factorization:

73



3. Verbal Behavior Analysis

p(l1:L, q1:L, w1:L, w
ps
1:L, w

tr
1:L, d1:L, i

q
1:L, c1:L, g1:L) =

p(w1)f(wps1 |d1, i
q
1)p(q1|w1, w

ps
1 , g1, c1, i

q
1)

×
L∏
τ=1

p(lτ |qτ )f(wtrτ |wτ , wpsτ )f(cτ |wτ , wpsτ )f(gτ |wτ )p(dτ |gτ )p(iqτ |gτ )

×
L∏
τ=2

p(wτ |wτ−1, wtrτ−1)f(wpsτ |w
ps
τ−1, w

tr
τ−1, dτ , i

q
τ )p(qτ |qτ−1, wτ , wpsτ , gτ , cτ , iqτ ).

(3.26)

As in Section 3.1.2, the hidden variable wτ can take values between 0 and K, with
K being the number of different keywords. The CPFs for gτ , w

tr
τ , wτ are the same as

for the DBN outlined in Section 3.1.2. A word transition occurs whenever wps = P ,
if P is the number of phonemes contained in wτ . If a keyword is detected, qτ is
known, given wτ and wpsτ . Otherwise, for garbage speech, a phoneme bigram defines
p(qτ |qτ−1). The same holds for the case when an insertion occurs while a keyword
is decoded (iqτ = 1), or when the last phoneme of a keyword is deleted (dτ = 1 and
cτ = 1). Similar to the variable qcτ in the DBN for training, the increment of wpsτ is
controlled by the insertion and the deletion variable. The ‘cut’ variable cτ is equal to
one if wpsτ exceeds P , meaning that the last phoneme of a keyword has been deleted.

Experiments and Results

The hybrid CTC-DBN keyword spotter was trained and evaluated on the TIMIT
corpus. As in Section 3.1.3, 200 utterances of the TIMIT training split were used as
validation set for determining when to abort training, and the remaining utterances
as training set. The size of the CTC output layer was 40, representing 39 phonemes
plus one blank label. The network consisted of three hidden layers per input direc-
tion: a backpropagation layer composed of 78 hidden cells and two hidden LSTM
layers containing 128 and 80 memory blocks respectively. Each memory block con-
sisted of one cell. A learning rate of 10−4 was used and the keyword spotting task
was the same as in Section 3.1.2. Again, the performance of the baseline HMM is
given for comparison.

Moreover, the benefit of the DBN decoder in comparison to a trivial phoneme
string search on the raw CTC output was evaluated. Figure 3.12 shows a part of the
ROC curve for the CTC-DBN keyword spotter, the HMM based keyword spotter,
as well as for a simple string matching approach, tolerating a Levenshtein distance
of 1 and 2, respectively. It can be seen that the hybrid CTC-DBN decoder not only
prevails over CTC string matching but also outperforms the HMM approach by up
to 7 % (at a false positive rate of 0.4 %). For higher a priori keyword likelihoods the
performance gap becomes smaller as more phoneme confusions are tolerated during
the keyword search.
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Figure 3.11: Hybrid CTC-DBN architecture for keyword spotting.

3.1.5 Tandem CTC-DBN

In this section, a novel Tandem CTC-DBN keyword spotting technique that com-
bines the advantages of the methods proposed in [280] (see Section 3.1.4) and [273]
(see Section 3.1.3) is introduced. I. e., the model can be trained on unsegmented
data and – unlike the hybrid approach in [280] – applies framewise modeling within
the DBN layer.
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Figure 3.12: Part of the ROC curve using the hybrid CTC-DBN, the baseline
HMM, and a simple string search on the CTC phoneme output. Evaluation on
the TIMIT database.

Decoding

The corresponding CTC-DBN architecture of the decoder can be seen in Figure
3.13. Again, the model consists of multiple hierarchy levels (word, phoneme, state,
observation, and BLSTM-CTC layer). Unlike the BLSTM network used in Section
3.1.3, the BLSTM-CTC network does not generate phoneme estimates for every
frame but rather outputs spikes as explained in Section 2.3.10. Thus, the observed
variable zt contains the phoneme prediction of the BLSTM and lspt indicates whether
a spike corresponding to a phoneme prediction is produced by the BLSTM in the
current time step. The DBN therefore interprets zt and lspt as observed ‘higher level
features’. Analogous to Equation 3.23, zt is the index of the most likely phoneme:

zt = argmax
j

(o1t , ..., o
j
t , ..., o

P
t , o

blank
t ). (3.27)

If the BLSTM output layer displays a blank label, the binary variable lspt is equal
to zero, otherwise a phoneme is detected and lspt equals one (see Figure 3.14 for an
example).
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Figure 3.13: Structure of the Tandem CTC-DBN keyword spotter.
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The DBN structure depicted in Figure 3.13 corresponds to the factorization

p(g1:T , w1:T , w
tr
1:T , w

ps
1:T , q1:T , q

tr
1:T , q

ps
1:T , s

tr
1:T , s1:T , x1:T , z1:T , l

sp
1:T ) =

f(qps1 )p(q1|wps1 , w1, g1)f(wps1 )p(w1)

×
T∏
t=1

p(xt|st)p(zt|qt, lspt )f(st|qpst , qt)f(qtrt |q
ps
t , qt, s

tr
t )p(strt |st)f(gt|wt)

× f(wtrt |qtrt , w
ps
t , wt)

×
T∏
t=2

f(qpst |strt−1, q
ps
t−1, q

tr
t−1)p(wt|wtrt−1, wt−1)p(qt|qtrt−1, qt−1, w

ps
t , wt, gt)

× f(wpst |qtrt−1, w
ps
t−1, w

tr
t−1).

(3.28)

As can be seen in Figure 3.13, the CTC spike indicator variable lspt serves as a
switching parent of the CTC observation zt: If a spike (indicating the detection of a
phoneme) is observed, lspt triggers a statistical dependency p(zt|qt, lspt = 1) that tells
the DBN to use the CTC output during decoding. Otherwise, if lspt = 0, the DBN
ignores the CTC observation zt. Since the conditional dependency p(zt|qt, lspt = 1)
is learned during training, the DBN also learns typical CTC phoneme confusions
which introduces a certain robustness with respect to errors in the BLSTM-CTC
prediction and implicitly controls whether, for a given phoneme, xt or zt has more
influence on inference. All other statistical relations between random variables in
the word, phoneme, and state layer of the CTC-DBN depicted in Figure 3.13 are
identical to the CPFs outlined in Section 3.1.2.

The Graphical Model applied for learning the random CPFs p(xt|st), p(strt |st),
and p(zt|qt, lspt = 1) can be derived similarly to the GM in Section 3.1.2 by omitting
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the word layer and introducing a count variable qc. Again, the training procedure
is split up into two stages: In the first stage phonemes are trained framewise, while
during the second stage, a forced alignment is used. For a training sequence of length
T , we get the factorization

p(qc1:T , q1:T , q
tr
1:T , q

ps
1:T , s

tr
1:T , s1:T , x1:T , z1:T , l

sp
1:T ) =

f(qps1 )f(qc1)
T∏
t=1

p(xt|st)p(zt|qt, lspt )f(st|qpst , qt)p(strt |st)f(qtrt |q
ps
t , qt, s

tr
t )f(qt|qct )

×
T∏
t=2

f(qpst |strt−1, q
ps
t−1, q

tr
t−1)f(qct |qct−1).

(3.29)

In what follows, a detailed evaluation of the Tandem CTC-DBN keyword detector
is shown.

3.1.6 Evaluation and Discussion

To get an impression of the keyword spotting accuracies obtained when applying
the techniques outlined in Sections 3.1.1 to 3.1.5, all methods were evaluated on two
different keyword detection tasks, aiming to consider a variety of different speaking
styles and using the same training and test conditions for all systems. Both tasks
focus on vocabulary independent keyword spotting, i. e., the keyword vocabulary is
not known during the training phase of the models.

Databases

The first task was to detect a set of 60 randomly selected keywords in the TIMIT test
set. The TIMIT corpus consists of read speech and features speaker-independent test
and training sets. Its total vocabulary size is 4.9 k. As training set for the TIMIT
experiment all 3 696 utterances contained in the official TIMIT training partition
were used. In conformance with [278], [273], and [280], only those utterances that
contain at least one keyword were considered as test set (321 out of 1 680 TIMIT
test utterances). The average length of a TIMIT training utterance is 3.0 s and
the average length of a test utterance is 3.2 s. 21 out of the 60 randomly chosen
keywords did not occur in the training partition. Note that the keyword inventory
was randomly chosen, independent of whether the keywords occur in the training
database or not. In total, there are 305 keyword occurrences in the TIMIT training
set and 354 in the test set.

As a considerably more challenging scenario, all keyword detection techniques
were also trained and evaluated on the freely available SEMAINE database [155]
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(www.semaine-db.eu), which contains emotionally colored, spontaneous, and con-
versational speech recorded during interactions between a user and a Wizard-of-Oz
conversational agent (or operator). The audiovisual SEMAINE corpus was originally
recorded to study natural social signals that occur in conversations between humans
and artificially intelligent agents. It has been used as training material for the devel-
opment of the SEMAINE system [206] (see Section 2.1). During the creation of the
database, the Sensitive Artificial Listener scenario as explained in Section 2.1.1 was
used. It involves a user interacting with emotionally stereotyped characters whose
responses are stock phrases keyed to the user’s emotional state rather than the con-
tent of what he/she says. For the recordings, the participants are asked to talk in
turn to the four SAL characters introduced in Section 2.1.1. The data used in the
following experiments is based on the ‘Solid-SAL’ part of the SEMAINE database,
i. e., the users do not speak with artificial agents but instead with human operators
who pretend to be the agents (Wizard-of-Oz setting). Further details on the inter-
action scenario can be found in [155] and [221]. Because we assume that the SAL
agent has no language understanding, a few rules necessarily govern this type of
interaction. The most important of these is that the agent (operator) cannot answer
questions. However, the operators are instructed that the most important aspect of
their task is to create a conversation that has a natural style; strict adherence to
the rules of a SAL engagement was secondary to this so that the interactions would
produce a rich set of conversation-related behaviors.

As for the TIMIT experiment, evaluations on the SEMAINE corpus are based
on audio data with 16 kHz and 16 bits per sample. Recordings for the SEMAINE
database were captured with a close-talking microphone (AKG HC 577 L). The task
was to detect 40 different randomly selected keywords. The speaker-independent
SEMAINE test set consists of recording sessions 3, 5, 12, 14, and 20 (640 utterances
from the user) and the remaining 14 recording sessions were used for training (4898
utterances from both, user and operator). Note that for this task, all 640 test
utterances are considered, i. e., also utterances that contain no keywords. In the
SEMAINE training partition, the average length of an utterance is 4.0 s and the
average length of a test utterance is 3.9 s. In total, 20 different speakers are contained
in the SEMAINE database. Training and test splits of the SEMAINE task are
speaker-independent, meaning that the five speakers in the test sessions do not occur
in the training partition. In contrast to the TIMIT keyword spotting task, all of the
randomly chosen keywords for the SEMAINE task occur in the training database.
The total number of keyword occurrences in the SEMAINE training partition is 2 669
and the number of keyword occurrences in the SEMAINE test set is 394. Due to the
challenging speech characteristics in the SEMAINE corpus (disfluent, spontaneous,
emotional speech spoken in different accents) the word error rate (WER) obtained
with a standard ASR system is extremely high, e. g., with a conventional tied-state
cross-word triphone HMM system trained on the SEMAINE training data, the WER
is as high as 64 %. The total vocabulary size of the SEMAINE corpus is 3.6 k.
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3.1. Vocabulary Independent Keyword Detection

To learn the weight vector ω for the discriminative keyword spotting approach
(see Sections 3.1.1), two times 200 disjunct keywords were randomly selected – one
time for learning ω and one time for validating the current weight vector ω. Note that
for each of the two times 200 keywords one utterance containing, and one utterance
not containing the respective keyword were selected (as described in Section 3.1.1).
Those utterances were randomly chosen from the training set of the TIMIT corpus
and the SEMAINE database, respectively.

All keywords consisted of at least three phonemes. Keyword pronunciations were
obtained from the CMU dictionary and alternative pronunciation variants as con-
tained in the CMU dictionary were also included. By focusing on small keyword vo-
cabularies we consider conditions which are typical for human-machine communica-
tion applications (for example conversational agent scenarios such as the SEMAINE
system [206]) and many command detection tasks. Still, all investigated approaches
do not use whole-word modeling and thus are applicable for larger vocabularies as
well.

Parametrization

The feature vectors xt applied for all tasks and keyword spotting systems consisted
of cepstral mean normalized MFCC coefficients 1 to 12, log. energy, as well as first
and second order delta coefficients. As phoneme inventory P the CMU set of 39
phonemes together with short pause and silence was used. For the SEMAINE task,
additional models trained on the non-linguistic vocalizations breathing, laughing, and
sighing were included.

As a baseline experiment, the performance of a phoneme-based keyword spotter
using conventional HMM modeling in combination with a phoneme bigram was
evaluated. Each phoneme was represented by three states (left-to-right HMMs)
with 16 Gaussian mixtures. HMMs for non-linguistic events consisted of nine states.
Cross-word triphone models were applied to model context in the HMM system.

As in Section 3.1.1, λh = 1 and λo = 1.5 was chosen for the discriminative
approaches (see Equation 3.11). According to past experience [280], the BLSTM
networks were configured to have three hidden layers: one backpropagation layer of
size 78 and two LSTM layers consisting of 128, and 80 memory blocks, respectively.
Each memory block consisted of one memory cell. For BLSTM training a learning
rate of 10−5 was used while for CTC training a learning rate of 10−4 was chosen.
Training was aborted as soon as no improvement on a validation set (200 randomly
selected utterances from the training sets of the respective tasks) could be observed
for at least 50 epochs, and the network that achieved the best phoneme error rate
on the validation set was selected. The DBNs were trained applying the two-stage
technique outlined in Section 3.1.2. All DBN phoneme models consisted of three
states with 16 Gaussian mixtures.
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Figure 3.15: TIMIT keyword spotting task: part of the ROC curve for differ-
ent keyword detection approaches.

Results

Figure 3.15 shows a part of the ROC curve for the TIMIT experiment, i. e., the true
positive rate (tpr) is shown as a function of the false positive rate (fpr). Focusing on
rather low fpr values seems reasonable when considering for example conversational
agents as target application: Missing a few keywords is less critical than wrongly
detecting a large number of keywords that are not uttered by the user and will cause
false decisions by the dialogue management processing the keyword spotter output.

For false positive rates between 0.2 and 0.4 %, the best vocabulary indepen-
dent approach is the Tandem CTC-DBN proposed in Section 3.1.5. For higher and
lower fpr-values the BLSTM-DBN (Section 3.1.3) achieves comparable true positive
rates. Both BLSTM-based Tandem techniques are able to outperform the DBN-
method (see Section 3.1.2) which indicates that long-range context modeling leads
to improved keyword spotting performance. The hybrid CTC-DBN method (Section
3.1.4) prevails over the baseline HMM but cannot compete with the Tandem models.
For the two discriminative approaches (‘DISC’ and ‘DISC-BLSTM’), the benefit of
integrating BLSTM phoneme predictions is also clearly visible which confirms pre-
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Figure 3.16: SEMAINE keyword spotting task: part of the ROC curve for
different keyword detection approaches.

vious studies on discriminative keyword spotting [275]. The AUC obtained for the
discriminative technique is 0.99, corresponding to results reported for the TIMIT
task in [123].

The results for the SEMAINE keyword spotting task can be seen in Figure 3.16.
For such challenging tasks involving highly spontaneous and emotionally colored,
disfluent speech, context modeling seems to be even more important: For lower
false positive rates, the approaches applying only monophone modeling (i. e., the
discriminative keyword spotter and the DBN) lead to lower true positive rates than
the triphone HMM-baseline. The AUC for the ‘DISC’-approach is 0.95. The hy-
brid CTC-DBN exclusively relying on the CTC predictions is obviously not suited
for spontaneous speech while the Tandem BLSTM-DBN and CTC-DBN perform
comparably well and prevail over the HMM approach. Best performance on the
SEMAINE task can be obtained with the discriminative BLSTM keyword spotter
outlined in Section 3.1.1 [275].

In order to compare keyword detection accuracies for a defined range of accept-
able false positive rates, let us introduce a ‘local AUC’ (lAUC) which corresponds to
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Table 3.5: Local AUC (lAUC) obtained for the TIMIT and the SEMAINE
task when using different keyword detection approaches.

TIMIT SEMAINE
model architecture lAUC0.01

0.001 lAUC0.1
0.01

Tandem CTC-DBN 0.9089 0.7317
Tandem BLSTM-DBN 0.9060 0.7341
DBN 0.8889 0.6961
DISC-BLSTM 0.8886 0.7558
DISC 0.8477 0.7239
hybrid CTC-DBN 0.8461 0.5799
HMM 0.8036 0.7020

the AUC between a lower fpr boundary εl and an upper fpr boundary εu, normalized
by the maximum AUC (εu-εl) in that range. In other words, we define

lAUCεu
εl

=
AUCεu

εl

εu − εl
(3.30)

which is equal to 1 for perfect keyword detection. For the TIMIT task we analyze
lAUC0.01

0.001, while for the more challenging SEMAINE task, we allow higher false
positive rates up to 0.1. Table 3.5 shows the lAUC-values obtained for the different
model architectures, confirming the results illustrated in Figures 3.15 and 3.16.

A large absolute performance difference between the TIMIT and the SEMAINE
task is observed for all approaches and is comprehensible given the different speaking
styles contained in the two corpora. Even though certain relative differences can be
seen (e. g., purely discriminative modeling (‘DISC-BLSTM’) is best suited for emo-
tional speech while combined discriminative-generative modeling (CTC-DBN) pre-
vails for read speech), we can consistently see an improvement via BLSTM phoneme
predictions – independent of speech characteristics and recognition frameworks.

The aim of this section was to investigate how long-range context modeling
via Long Short-Term Memory recurrent neural networks can improve the perfor-
mance of vocabulary independent keyword detection and to provide an overview
over advanced discriminative and generative keyword spotting techniques that ex-
clusively rely on acoustic evidence and do not require an in-domain language model
[123, 273, 275, 278, 280, 297]. In order to combine the advantages of framewise Tan-
dem BLSTM-DBN modeling and Connectionist Temporal Classification, a novel
Tandem CTC-DBN keyword spotter that exploits the principle of Long Short-Term
Memory and does not presume presegmented data for training was introduced in
Section 3.1.5. The experiments in this section aimed to evaluate the keyword spot-
ting accuracies of seven different approaches on the TIMIT and the SEMAINE
database and demonstrated that the best vocabulary independent keyword spotting
performance on read speech can be obtained with the proposed Tandem CTC-DBN

84



3.2. Conversational Speech Recognition

approach. For spontaneous speech, purely discriminative modeling in combination
with BLSTM prevails over all other investigated methods.

3.2 Conversational Speech Recognition

The accuracy of systems for automatic speech recognition heavily depends on the
quality of the features extracted from the speech signal. Thus, during the last
decades, a variety of methods were proposed to enhance commonly used MFCC or
PLP features, especially in noisy conditions. As indicated in Section 3.1, a popular
technique that has become state-of-the-art in modern ASR systems, is to apply a
neural network to generate phoneme or phoneme state posteriors which in turn can
be used as ‘Tandem’ features [107].

While first experiments on Tandem ASR systems concentrated on using the
logarithmized and decorrelated activations of the output layer of recurrent neural
networks or multi-layer perceptrons as probabilistic features, recent studies report
performance gains when extracting the activations of a narrow hidden layer within
the network as so-called ‘bottleneck’ features [95]. This implies the advantage that
the size of the feature space can be chosen by defining the size of the network’s
bottleneck layer. Consequently, the dimension of the feature vectors is independent
of the number of network training targets. The linear outputs of the bottleneck layer
are usually well decorrelated and do not have to be logarithmized.

Since human speech is highly context-sensitive, both, the ASR front- and back-
end need to account for contextual information in order to produce acceptable recog-
nition results. Standard recognizer back-ends consider context by applying triphones,
using language models, and via the Markov assumption in Hidden Markov Models
or general Graphical Models. Feature-level context is usually modeled by appending
derivatives of low-level features and by presenting a number of successive stacked
feature frames to the neural network for Tandem feature extraction. Furthermore,
the extraction of long-term features is an active area of research [245]. In Tandem
systems, context can also be modeled within the neural network, e. g., by using
recurrent connections. Motivated by the promising results obtained for vocabulary
independent keyword spotting exploiting LSTM (see Section 3.1.6), we now focus on
continuous recognition of conversational speech and investigate how traditional ASR
systems can be improved via phoneme estimates or features produced by LSTM and
BLSTM networks. First, in Section 3.2.1, a Tandem BLSTM-HMM system [279]
modeling BLSTM phoneme estimates as additional feature is proposed. Section 3.2.2
introduces a multi-stream HMM architecture [281] in which both, continuous MFCC
and discrete BLSTM features are decoded as independent data streams. Next, in
Section 3.2.3, we examine a BLSTM front-end [291] integrating continuous, logarith-
mized, and decorrelated BLSTM features into an ASR system. Finally, in Section
3.2.4, a novel Bottleneck-BLSTM feature extractor [292, 296] uniting the principles
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Figure 3.17: Architecture of the Tandem BLSTM-HMM decoder.

of bottleneck features, LSTM, and bidirectional speech modeling is outlined. All of
the proposed context-sensitive ASR systems are compared and evaluated on sponta-
neous conversational speech in Section 3.2.5.

3.2.1 Tandem BLSTM-HMM

In this section, we want to investigate the potential of BLSTM phoneme model-
ing for continuous speech recognition in a challenging conversational ASR scenario
by applying a Tandem BLSTM-HMM system similar to the Tandem BLSTM-DBN
keyword spotter presented in Section 3.1.3. As in Section 3.1.3, a Tandem sys-
tem generating BLSTM phoneme predictions which are incorporated into an HMM
framework is created [279]. This allows us to combine Long Short-Term Memory
and triphone modeling and leads to higher word accuracies when using the system
for decoding continuous, noisy, and spontaneous speech as contained in the COSINE
corpus [240, 241].

System Architecture

The structure of the Tandem decoder can be seen in Figure 3.17: st and xt represent
the HMM state and the acoustic (MFCC) feature vector, respectively, while bt corre-
sponds to the discrete phoneme prediction of the BLSTM network (shaded nodes).
The HMM uses bt as observation, in addition to the MFCC features. xt also serves
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as input for the BLSTM and the size of the BLSTM input layer it corresponds to the
dimensionality of the acoustic feature vector. At each time step, the vector of output
activations ot produced by the framewise BLSTM phoneme predictor contains one
probability score for each of the P different phonemes. Analogous to Equation 3.23,
bt is the index of the most likely phoneme:

bt = argmax
j

(o1t , ..., o
j
t , ..., o

P
t ). (3.31)

Thus, at every time step t, the BLSTM generates a phoneme prediction according
to Equation 3.31 and the HMM observes both, xt and bt using learned emission
probabilities p(xt, bt|st).

Recall that the usage of bidirectional context implies a short look-ahead buffer,
meaning that recognition cannot be performed truly on-line. Yet, in many ASR
scenarios it is sufficient to obtain an output, e. g., at the end of an utterance, so that
both, forward and backward context can be used during decoding.

Experiments and Results

For the experiments presented in this section, the COnversational Speech In Noisy
Environments (COSINE) corpus [241] was used. The COSINE corpus is a relatively
new database which contains multi-party conversations recorded in real world en-
vironments. The recordings were captured on a wearable recording system so that
the speakers were able to walk around during recording. Since the participants were
asked to speak about anything they liked and to walk to various noisy locations, the
corpus consists of natural, spontaneous, and highly disfluent speaking styles partly
masked by indoor and outdoor noise sources such as crowds, vehicles, and wind.
The recordings were captured using multiple microphones simultaneously, however,
to match most application scenarios, we exclusively consider speech recorded by a
close-talking microphone (Sennheiser ME-3).

All ten transcribed sessions, containing 11.40 hours of pairwise conversations and
group discussions were used. The 37 speakers are fluent, but not necessarily native
English speakers. Each speaker participated in only one session and the speakers’
ages range from 18 to 71 years (median 21 years).

For the experiments, the recommended test set (sessions 3 and 10) comprising
1.81 hours of speech was applied. Sessions 1 and 8 were used as validation set and
the remaining six sessions made up the training set. The vocabulary size is 4.8 k
and the out-of-vocabulary rate in the test set is 3.4 %.

All experiments are speaker-independent, meaning that training and testing were
performed on data by different speakers. The feature vectors xt consisted of MFCC
coefficients 1 to 12, log. energy, and first and second order regression coefficients. To
compensate for stationary noise effects, cepstral mean normalization was applied.
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Table 3.6: Framewise phoneme error rate using the COSINE corpus and
different network architectures: BLSTM, LSTM, BRNN, and RNN consisting
of one and three hidden layers per input direction.

network hidden frame error rates [%]
type layers train validation test

BLSTM 3 23.64 35.76 33.59
LSTM 3 30.28 42.89 41.09
BRNN 3 48.74 50.60 49.49
RNN 3 52.37 53.11 51.09

BLSTM 1 26.79 38.16 37.02
LSTM 1 37.69 44.46 42.21
BRNN 1 51.10 51.80 50.09
RNN 1 53.17 54.64 52.85

In order to train and evaluate the quality of phoneme prediction, various network
architectures were investigated. As the networks were trained on framewise phoneme
targets, an HMM system was applied to obtain phoneme borders via forced align-
ment. Four different network architectures were evaluated: conventional recurrent
neural networks, bidirectional neural networks, unidirectional LSTM networks, and
bidirectional LSTM networks. Furthermore, two different variants of the respective
architectures were investigated. The first one used a single hidden layer (per input
direction) composed of 128 hidden cells and memory blocks, respectively. Each mem-
ory block consisted of one memory cell. The second one used the network topology
also applied for evaluations in Section 3.1.6, i. e., three hidden layers of size 78, 128,
and 80, respectively. The LSTM and BLSTM using three hidden layers per input
direction consisted of one backpropagation layer (size 78) and two LSTM layers (size
128 and 80).

For training the common learning rate of 10−5 and a momentum of 0.9 was used.
Zero mean Gaussian noise with standard deviation 0.6 was added to the inputs dur-
ing training in order to enhance the generalization capabilities of the networks. The
networks were trained on the standard (CMU) set of 41 different English phonemes,
including targets for silence and short pause. Training was aborted as soon as no
improvement on the validation set (sessions 1 and 8) could be observed for at least
50 epochs, and the network that achieved the best framewise phoneme error rate on
the validation set was chosen as final network.

Table 3.6 shows the framewise error rates on the test, validation, and training set
of the COSINE corpus obtained with the different network architectures. Generally,
bidirectional context prevails over unidirectional context, LSTM context modeling
outperforms conventional RNN architectures, and using three hidden layers leads to
better performance than using only one hidden layer. The best error rate can be
achieved with a BLSTM network consisting of three hidden layers (35.76 % on the
validation set and 33.59 % on the test set).
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Table 3.7: Word accuracies (WA) on the COSINE test set for different Tandem
models and the baseline HMM recognizer.

network type layers WA [%]

BLSTM 3 45.04
LSTM 3 44.46
BRNN 3 42.59
RNN 3 43.79

BLSTM 1 44.27
LSTM 1 43.82
BRNN 1 42.95
RNN 1 43.02

baseline - 43.36

For continuous speech recognition, the BLSTM phoneme prediction feature is in-
corporated into an HMM framework for LVCSR where each phoneme is represented
by three emitting states (left-to-right HMMs) with 16 Gaussian mixtures. The initial
monophone models consisted of one Gaussian mixture per state. All initial means
and variances were set to the global means and variances of all feature vector com-
ponents (flat start initialization). The monophone models were then trained using
four iterations of embedded Baum-Welch re-estimation. After that, the monophones
were mapped to tied-state cross-word triphone models with shared state transition
probabilities. Two Baum-Welch iterations were performed for re-estimation of the
triphone models. Finally, the number of mixture components of the triphone models
was increased to 16 in four successive rounds of mixture doubling and re-estimation
(four iterations in every round). In each round the newly created mixture compo-
nents were copied from the existing ones, mixture weights were divided by two, and
the means were shifted by plus and minus 0.2 times the standard deviation. Both,
acoustic models and a bigram language model were trained on the training set of
the COSINE corpus.

For the sake of simplicity, the BLSTM phoneme prediction feature was modeled
using the same Gaussian mixture framework as for the continuous MFCC features.
Since the prediction feature can be interpreted as a discrete index whose absolute
value is not correlated to any intensity but rather encodes the most likely phoneme at
a given time step, the weights of the Gaussians are used to represent the likelihood
of a certain phoneme prediction while being in a given HMM state. By training
the weights of the Gaussians, the HMM learns typical phoneme confusions of the
BLSTM network that are visible as (lower weighted) Gaussian components in the
respective distributions. Generally, the trained Gaussian distributions tend to form
single Gaussians of low variance and high weight (‘spikes’) corresponding to the
correct phoneme prediction in a given state as well as the most frequent confusions,
and high variance Gaussians of low weight that build a ‘floor value’ for the phoneme
predictions that are not modeled by sharp spikes in the distribution.
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Table 3.7 shows the word accuracies on the COSINE test set which were obtained
for Tandem modeling using the different network architectures explained before. We
can observe a similar trend as for framewise phoneme recognition (Table 3.6): The
best performance is achieved with a Tandem model using a BLSTM network that
consists of three hidden layers (word accuracy 45.04 %), leading to a significant im-
provement over the HMM baseline. By contrast, incorporating the phoneme predic-
tions of a conventional RNN leads to similar, or even slightly lower word accuracies
when compared to the baseline HMM.

3.2.2 Multi-Stream BLSTM-HMM

Building on the Tandem technique proposed in Section 3.2.1, which uses BLSTM
phoneme predictions as additional feature vector components, this section intro-
duces a multi-stream BLSTM-HMM architecture that models the BLSTM phoneme
estimate as a second independent stream of observations. As shown in [281], the
proposed multi-stream approach allows for more accurate modeling of observed
phoneme predictions and outperforms the Tandem strategy outlined in [279] when
trained and tested on the COSINE corpus [241]. An on-line version of the proposed
multi-stream technique is applied in the SEMAINE system (version 3.0, see Section
2.1), and is available as part of the open-source speech processing toolkit openSMILE
[73].

Furthermore, we investigate how feature frame stacking affects the performance
of LSTM-based phoneme recognition and Tandem continuous speech recognition,
aiming to determine whether learned or predefined context leads to better accuracies
(also see [295]). Different bi- and unidirectional network architectures with and
without Long Short-Term Memory employing varying ranges of predefined feature-
level context are evaluated.

System Architecture

The structure of the multi-stream decoder can be seen in Figure 3.18: Again, bt
corresponds to the discrete phoneme prediction of the BLSTM network (see Equation
3.31). In every time frame t the HMM uses two independent observations: the
MFCC features xt and the BLSTM phoneme prediction feature bt. With yt = [xt; bt]
being the joint feature vector consisting of continuous MFCC and discrete BLSTM
observations and the variable λ denoting the stream weight of the first stream (i. e.,
the MFCC stream), the multi-stream HMM emission probability while being in a
certain state st can be written as

p(yt|st) =

[
M∑
m=1

cstmN (xt;µstm,Σstm)

]λ
× p(bt|st)2−λ. (3.32)
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Figure 3.18: Architecture of the multi-stream BLSTM-HMM decoder.

Thus, the continuous MFCC observations are modeled via a mixture of M Gaussians
per state while the BLSTM prediction is modeled using a discrete probability distri-
bution p(bt|st). The index m denotes the mixture component, cstm is the weight of
the m’th Gaussian associated with state st, and N (·;µ,Σ) represents a multivariate
Gaussian distribution with mean vector µ and covariance matrix Σ. The distribution
p(bt|st) is trained to model typical phoneme confusions that occur in the BLSTM
network. In our experiments, we restrict ourselves to the 15 most likely phoneme
confusions per state and use a floor value of 0.01 for the remaining confusion likeli-
hoods.

Feature Frame Stacking

A straightforward method to model temporal context within neural networks is to
stack a fixed number of n successive frames, so that a sequence of feature vectors is
presented to the network at each time step. In MLP-based Tandem ASR systems,
it is common to stack an equal number of past and future feature frames around the
central feature vector xt. Thus, a sliding window from t− (n− 1)/2 to t+ (n− 1)/2
is applied to merge n successive feature vectors of size N to an n · N dimensional
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Figure 3.19: Example of a neural network processing n stacked feature frames.

extended feature vector x′t, i. e.,

x′t = [xt−n−1
2

; . . . xt; . . . xt+n−1
2

]

for
n− 1

2
< t ≤ T − n− 1

2
.

(3.33)

In order to obtain valid vectors for t ≤ (n−1)/2 and t > T − (n−1)/2, the first and
the last feature vector of x1:T has to be copied (n− 1)/2 times. Figure 3.19 shows a
schematic example of a network processing n frames to produce a vector of output
activations ot at time t. The network consists of three hidden layers, an input layer
of size n ·N and an output layer of size P .

Experiments and Results

All networks were trained on framewise phoneme targets obtained via HMM-based
forced alignment of the COSINE training set. Feature vectors xt consisted of 39
normalized MFCC features as in Section 3.2.1. For feature frame stacking, sliding
windows of lengths up to n = 9 – which is typical for Tandem ASR systems [94]
– were evaluated. This corresponds to stacked feature vectors of size 351. Four
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Table 3.8: Framewise phoneme error rates (FER) on the COSINE validation
and test set using different network architectures and stack sizes of 1 to 9
frames.

FER [%] number of frames

network type 1 3 5 7 9

validation set
BLSTM 32.27 32.81 33.42 33.79 34.29
LSTM 40.57 40.84 40.76 40.50 40.26
BRNN 43.62 42.84 43.65 44.05 43.17
RNN 52.18 52.29 50.94 51.40 51.22

test set
BLSTM 30.04 30.86 31.89 31.84 32.02
LSTM 38.21 38.36 37.81 37.67 37.43
BRNN 43.07 41.97 42.39 43.04 41.83
RNN 51.12 50.47 49.21 49.47 48.82

different network architectures were investigated: conventional recurrent neural net-
works, bidirectional neural networks, unidirectional LSTM networks, and bidirec-
tional LSTM networks. Analogous to [281], all networks consisted of three hidden
layers (per input direction) with a size of 78, 128, and 80 hidden units, respectively.
The training procedure was identical to the network training applied in Section 3.2.1.

Table 3.8 shows the framewise phoneme error rates when applying different neural
network architectures and stack sizes of 1 to 9 feature frames. For bidirectional
LSTM networks the error rate increases from 30.04 % to 32.02 % as more successive
frames are simultaneously processed. Hence, BLSTM networks seem to learn context
better if feature frames are presented one by one and the increased size of the input
layer rather harms recognition performance. For unidirectional LSTM networks we
observe a different trend: The error rate slightly decreases from 38.21 % to 37.43 %
as more frames are processed. This is most likely due to the (small amount of)
future context information which is available to the LSTM networks if stacking is
used and which is not available for fully causal LSTMs observing only one frame per
time step. Still, the error rate is notably lower for BLSTM networks. In contrast to
BLSTM networks, both, BRNNs and RNNs profit from feature frame stacking: Error
rates decrease from 43.07 % to 41.83 % and from 51.12 % to 48.82 %, respectively.
This indicates that even though recurrent networks can model a limited amount of
context, it is beneficial to introduce a predefined amount of temporal context in the
form of stacked feature vectors. However, if we compare the performance of LSTM
and RNN architectures, we see that learned LSTM long-range context prevails over
feature frame stacking.

Applying the multi-stream BLSTM-HMM system, the word accuracy on the CO-
SINE test set when using the network type with the best framewise phoneme error
rate (i. e., the BLSTM architecture) was evaluated. The underlying HMM system
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Table 3.9: Word accuracies (WA) on the COSINE test set when applying
different multi- and single-stream systems with three hidden LSTM layers (L-
L-L) or with one backpropagation and two LSTM layers (B-L-L) and different
frame stack sizes (# frames).

system hidden
architecture layers # frames WA [%]

multi-stream BLSTM-HMM [295] L-L-L 1 48.01
multi-stream BLSTM-HMM L-L-L 9 47.17
multi-stream BLSTM-HMM [281] B-L-L 1 46.50
single-stream BLSTM-HMM [279] B-L-L 1 45.04
triphone HMM - 1 43.36

was configured as in [281] and the stream weight variable was set to λ = 1.1. Starting
from the multi-stream system presented in [281], which used a standard backpropa-
gation layer as first hidden layer in the BLSTM network, we observe that replacing
the backpropagation layer with a third LSTM layer increases the word accuracy
(WA) from 46.50 % to 48.01 % (see Table 3.9). The multi-stream system prevails
over the single-stream Tandem approach introduced in [279] (WA of 45.04 %, see
Section 3.2.1) and outperforms standard triphone HMMs using only MFCC vectors
as observations (WA of 43.36 %). As observed for framewise phoneme classification,
feature frame stacking leads to less accurate phoneme estimates if BLSTM networks
are applied. This results in a decrease of the word accuracy for continuous speech
recognition (WA of 47.17 % for stack size n = 9).

3.2.3 BLSTM Front-End for Tandem ASR

In this section, an alternative approach towards BLSTM feature generation for Tan-
dem ASR is presented. We replace the discrete phoneme prediction feature used in
Sections 3.2.1 and 3.2.2 by the continuous logarithmized vector of BLSTM output
activations and merge it with low-level MFCC features. By that we obtain extended
context-sensitive Tandem feature vectors that – given appropriate dimensionality
reduction and decorrelation via principal component analysis (PCA) – were shown
to give improved results when evaluated on the COSINE [241] and the Buckeye [175]
corpora [291].

BLSTM Feature Extraction

The flowchart in Figure 3.20 provides an overview over the ASR system employing
BLSTM feature extraction. Cepstral mean and variance normalized MFCC features,
including coefficients 1 to 12, logarithmized energy, as well as first and second order
temporal derivatives, build a 39-dimensional feature vector which serves as input
for the BLSTM network. The common framerate of 10 ms and a window size of
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Figure 3.20: Tandem BLSTM front-end incorporated into an HMM-based
ASR system.

25 ms are used. The BLSTM network is trained on framewise phoneme targets and
thus generates a vector of output activations whose entries correspond to estimated
phoneme posteriors. Since the network uses a ‘softmax’ activation function for the
output layer (see Equation 2.63), the output activations are approximately gaussian-
ized via mapping to the logarithmic domain. The number of BLSTM features per
time frame corresponds to the number of distinct phoneme targets (41 for the CO-
SINE experiment). Merging BLSTM features and the original normalized MFCC
features into one large feature vector, we obtain 80 Tandem features that are pro-
cessed via principal component analysis in order to decorrelate and compress the
feature space. The final feature vector is forwarded to an HMM-based ASR system
generating the word hypothesis.

Figures 3.21(a) to 3.21(d) show the processing steps for an example speech se-
quence. The MFCC feature vectors are hardly correlated and approximately follow
a Gaussian distribution (Figure 3.21(a)). Due to the softmax activation function
generating the outputs of the BLSTM phoneme predictor, the network tends to
produce sharp spikes that indicate the presence of a particular phoneme at a partic-
ular timestep (Figure 3.21(b)). To gaussianize the outputs, the logarithm is applied
(Figure 3.21(c)). Finally, BLSTM and MFCC features are merged and the resulting
feature vector sequence is decorrelated via PCA (Figure 3.21(d)).

Experiments and Results

At first, different variants of the proposed Tandem recognizer were trained and
evaluated on the COSINE corpus. The underlying BLSTM network was the same
as employed for generating the discrete phoneme prediction feature in Section 3.2.2
[295], i. e., the network consisted of three hidden LSTM layers per input direction
(size of 78, 128, and 80, respectively) and each LSTM memory block contained one
memory cell.

Only the first 40 principal components of the PCA-processed Tandem feature
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Figure 3.21: Figure 3.21(a): Normalized MFCC features (including deltas and
double deltas) over time; Figure 3.21(b): Raw output activations of the BLSTM
network. Mapping to the logarithmic domain (Figure 3.21(c)), subsequent con-
catenation of MFCC features, and PCA transformation (Figure 3.21(d)). Only
the principal components corresponding to the 40 largest eigenvalues are shown.

vector were used as input for the HMM recognizer, i. e., the principal components
corresponding to the 40 largest eigenvalues. Hence, the HMM back-end was based
on the same number of features as the BLSTM-based recognizers proposed in [279,
281, 295]. In conformance with [295], the HMM system consisted of left-to-right
HMMs with three emitting states per phoneme and 16 Gaussian mixtures per state.
Tied-state cross-word triphone models with shared state transition probabilities were
applied, together with a back-off bigram language model, all trained on the training
partition of the COSINE corpus.

In Table 3.10, the results on the COSINE test set are summarized. Exclusively
applying the raw output activations as BLSTM features leads to a word accuracy
of 40.76 %. A slight improvement can be observed when taking the logarithm of
the estimated phoneme posteriors (WA of 41.24 %). Decorrelation via PCA further
increases the word accuracy to 44.18 % for 40 principal components. Finally, the
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Table 3.10: COSINE test set: word accuracies (WA) obtained for the BLSTM
front-end with and without taking the logarithm (log) of the BLSTM output
activations, decorrelation via PCA, and including MFCC features in the final
feature vector (prior to PCA); results are obtained using only the first 40 prin-
cipal components.

model architecture log PCA MFCC WA [%]

BLSTM front-end + HMM 7 7 7 40.76
BLSTM front-end + HMM 3 7 7 41.24
BLSTM front-end + HMM 3 3 7 44.18
BLSTM front-end + HMM 3 3 3 48.51

multi-stream BLSTM-HMM [295] - 7 3 48.01
multi-stream BLSTM-HMM [281] - 7 3 46.50
Tandem BLSTM-HMM [279] - 7 3 45.04
HMM - 7 3 43.36

best BLSTM front-end performance is observed for the system as shown in Fig-
ure 3.20, i. e., an HMM processing PCA-transformed feature vectors that contain
both, the original MFCC features and the logarithmized BLSTM activations (WA
of 48.51 % for 40 principal components). This system prevails over the initial [281]
and enhanced [295] version of a multi-stream BLSTM-HMM modeling MFCCs and a
discrete BLSTM phoneme prediction feature as two independent data streams. Also
a comparable single-stream HMM system modeling the BLSTM prediction as addi-
tional discrete feature (WA of 45.04 %, see Section 3.2.1 [279]) as well as a baseline
HMM processing only MFCC features (43.36 %) are outperformed by the BLSTM
front-end.

3.2.4 Bottleneck-BLSTM Front-End

As indicated in Section 3.2, so-called bottleneck features [95] are becoming more
and more popular within Tandem ASR systems. Rather than employing the log-
arithmized and decorrelated activations of the output layer of neural networks as
probabilistic features, bottleneck front-ends extract the activations of a narrow hid-
den layer within the network. Thus, the size of the resulting feature space can be
chosen by adjusting the size of the network’s bottleneck layer so that the dimen-
sion of the feature vectors is independent of the number of network training targets.
Furthermore, the outputs of the bottleneck layer tend to be well decorrelated and
do not have to be logarithmized. In this section, we examine how bidirectional
LSTM networks can be combined with the bottleneck principle to design a robust
and efficient ASR front-end for context-sensitive feature extraction. The Bottleneck-
BLSTM system is evaluated on the COSINE and the Buckeye databases in Section
3.2.5 [292, 296].
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Figure 3.22: Bottleneck-BLSTM front-end incorporated into an HMM-based
ASR system.

System Overview

The considered Bottleneck-BLSTM feature extractor can be seen as a combination of
bidirectional LSTM modeling for improved context-sensitive Tandem feature genera-
tion and bottleneck front-ends. The bottleneck principle allows to generate Tandem
feature vectors of arbitrary size by using the activations of the hidden (bottleneck)
layer as features – rather than the logarithmized output activations corresponding
to the estimated phoneme or phoneme state posteriors. Since we focus on bidirec-
tional processing, we have two bottleneck layers: one within the network processing
the speech sequence in forward direction and one within the network for backward
processing. Figure 3.22 shows the system flowchart of an ASR system based on
Bottleneck-BLSTM features. Again, 39 cepstral mean and variance normalized
MFCC features are extracted from the speech signal. These features serve as in-
put for a Bottleneck-BLSTM network that is trained on framewise phoneme targets.
During feature extraction, the activations of the output layer are ignored; only the
activations of the forward and backward bottleneck layer are processed (i. e., the
memory block outputs of the bottleneck layers). Together with the original MFCC
features, the forward and backward bottleneck layer activations are concatenated to
one feature vector which is then decorrelated by PCA.

Bottleneck-BLSTM Feature Extraction

Figure 3.23 illustrates the detailed structure of the applied Bottleneck-BLSTM front-
end. The input activations of the network correspond to the normalized MFCC
features. Three hidden LSTM layers are used per input direction. Best performance
could be obtained when using a hidden layer of size 78 (two times the number of
MFCC features) as first hidden LSTM layer, a second hidden layer of size 128, and
a comparably narrow third hidden layer, representing the bottleneck (size 20 to 80).
The connections between the bottleneck layers and the output layer are depicted in
grey, indicating that the activations of the output layer (ot) are only used during
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Figure 3.23: Architecture of the Bottleneck-BLSTM front-end.

network training and not during Bottleneck-BLSTM feature extraction. To obtain
the final decorrelated feature vectors, PCA is applied on the joint feature vectors
consisting of forward and backward bottleneck layer activations and MFCCs xt.

3.2.5 Evaluation and Discussion

For Bottleneck-BLSTM feature extraction according to the flowchart in Figure 3.22,
a number of different network architectures were evaluated. At first, a BLSTM
network with a first and third hidden layer of size 128 and a second (bottleneck)
layer of sizes 20, 40, and 80 was considered. Best performance could be obtained
with a relatively large bottleneck of size 80 (for detailed results, see [296]). Next,
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Figure 3.24: Word accuracy (WA) on the COSINE test set as a function of the
number of principal components; results are obtained using PCA-transformed
feature vectors that contain logarithmized BLSTM activations and MFCC fea-
tures.

networks such as the one depicted in Figure 3.23 were trained and validated, i. e.,
networks consisting of a first and second hidden layer of size 78 and 128, respectively,
with the third hidden layer used as bottleneck – again evaluating sizes 20, 40, and 80.
Network training parameters were set exactly as for the Tandem BLSTM front-end
(see Section 3.2.3). Again, only the first 40 principal components were used as final
feature vector. The best word accuracy on the COSINE test set was 49.51 % and
was achieved with a 78-128-80 hidden layer topology, using the activations of the
third hidden layer as features. Thus, prior to PCA, the extended bottleneck feature
vector is composed of 199 features (80 activations from the forward hidden layer, 80
activations from the backward hidden layer, and 39 MFCC features). Note that the
best hidden layer topology for the Bottleneck-BLSTM front-end was the same as
used for Tandem front-end investigated in Section 3.2.3.

Figure 3.24 shows the effect the number of PCA coefficients used as features
has on recognition performance for evaluations on the COSINE test set. When
applying Tandem BLSTM features, we observe comparable word accuracies for fea-
ture vector dimensionalities between 35 and 45, with two maxima for 37 coeffi-
cients (WA of 48.73 %) and 40 coefficients (WA of 48.51 %). When employing the
Bottleneck-BLSTM feature extractor, we can see a clear global maximum of WA for
39-dimensional feature vectors (WA of 49.92 %). For feature vector sizes larger than
37, the bottleneck system prevails over the Tandem BLSTM front-end.

To investigate the effect of Long Short-Term Memory and bidirectional modeling,
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the BLSTM networks in Figures 3.20 and 3.22 were replaced by unidirectional LSTM
networks and bi- or unidirectional RNNs, respectively. For experiments on the
COSINE database, all LSTM, BRNN, and RNN-based front-ends applied the 78-
128-80 hidden layer topology. Prior to using the Tandem and bottleneck features
for continuous ASR, the framewise phoneme recognition accuracy of the underlying
neural network architectures was evaluated. As can be seen in the second column of
Table 3.11, bidirectional LSTM networks perform notably better than unidirectional
LSTM nets and that LSTM architectures outperform conventional RNNs.

All word accuracies shown in Table 3.11 are based on feature vectors of size 39
(except for the results taken from [279] and [295], which are obtained using 39+1
features, see Sections 3.2.1 and 3.2.2). The third column of Table 3.11 shows the
word accuracies for systems trained and evaluated on the COSINE corpus. When
applying bidirectional processing, front-ends using bottleneck activations from the
third hidden layer outperform Tandem systems processing the logarithmized out-
put activations. For both front-end types RNN architectures cannot compete with
LSTM architectures, which shows the importance of long-range context modeling
in challenging spontaneous and disfluent speech scenarios. The Bottleneck-BLSTM
features (leading to a WA of 49.92 %) prevail over comparable BLSTM features
based on continuous output activations (48.23 %), as well as over the multi-stream
BLSTM-HMM technique [295] applying combined continuous-discrete modeling of
MFCC features and BLSTM phoneme predictions (48.01 %). The performance dif-
ference between the front-ends applying Bottleneck-BLSTM features and BLSTM
features derived from the output activations is statistically significant at the 0.002
level when using a z-test as described in [235]. For comparison, the last two rows of
Table 3.11 again show the performance of the continuous-discrete BLSTM Tandem
system introduced in [279] (45.04 %) and the word accuracy of a baseline HMM
processing only MFCC features (43.36 %).

To verify whether word accuracy improvements obtained via BLSTM features can
also be observed for other spontaneous speech scenarios, experiments were repeated
applying the Buckeye corpus [175] (without further optimizations). The Buckeye
corpus contains recordings of interviews with 40 subjects, who were told that they
were in a linguistic study on how people express their opinions. The corpus has been
used for a variety of phonetic studies as well as for ASR experiments [263]. Similar
to the COSINE database, the contained speech is highly spontaneous. The 255
recording sessions, each of which is approximately 10 min long, were subdivided into
turns by cutting whenever a subject’s speech was interrupted by the interviewer,
or once a silence segment of more than 0.5 s length occurred. The same speaker
independent training, validation, and test sets as defined in [263] were used. The
lengths of the three sets are 20.7 h, 2.4 h, and 2.6 h, respectively, and the vocabulary
size is 9.1 k. Since the transcriptions of the Buckeye corpus also contain the events
laughter, noise, vocal noise, and garbage speech, the size of the network output
layers was increased by four from 41 to 45. Thus, the size of the third hidden layer
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Table 3.11: Framewise phoneme accuracies (FPA) and word accuracies (WA)
for different recognition systems processing activations from the (third) hid-
den layer (bottleneck) [296], activations from the output layer [291], discrete
BLSTM phoneme predictions [279, 295], or conventional MFCCs (HMM). Train-
ing and evaluation on the COSINE database or on the Buckeye corpus. Results
for bottleneck and Tandem front-ends are based on 39-dimensional feature vec-
tors.

COSINE Buckeye
model architecture FPA [%] WA [%] FPA [%] WA [%]

Bottleneck-BLSTM front-end [296] 69.96 49.92 69.89 58.21
Bottleneck-LSTM front-end 61.79 45.94 61.52 52.53
Bottleneck-BRNN front-end 56.93 41.39 53.40 49.28
Bottleneck-RNN front-end 48.88 40.74 47.05 48.78

BLSTM front-end [291] 69.96 48.23 69.89 57.80
LSTM front-end 61.79 46.68 61.52 53.86
BRNN front-end 56.93 40.67 53.40 48.64
RNN front-end 48.88 40.14 47.05 48.21

multi-stream BLSTM-HMM [295] 69.96 48.01 69.89 56.61
Tandem BLSTM-HMM [279] 66.41 45.04 69.89 55.91
HMM 56.91 43.36 53.20 50.97

was also increased from 80 to 90 to have roughly twice as many memory blocks as
phoneme targets in the last hidden layer. As shown in the last column of Table
3.11, the baseline HMM achieves a word accuracy of 50.97 % which is comparable
to the result reported in [263] (49.99 %). Accuracies for the Buckeye experiment
are notably higher than for the COSINE task since the Buckeye corpus contains
speech which is less disfluent and noisy than in the COSINE database. Performance
can be boosted to up to 58.21 % when applying the proposed Bottleneck-BLSTM
feature extraction. General trends are similar to the COSINE experiment: Again,
the Bottleneck-BLSTM principle prevails over the BLSTM multi-stream approach
employed in [295].

Finally, it was examined whether part of the performance gap between RNN and
BLSTM network architectures can be attributed to the higher number of trainable
weights in the BLSTM networks rather than to the more effective context learning
abilities of BLSTM front-ends. To this end, an MLP that consists of three layers with
sizes 321, 527 and 330 – resulting in a network with 370 345 weights – was trained.
The ratio of the sizes of the hidden layers is similar to the BLSTM network with the
78-128-80 hidden layer topology and the total number of weights is comparable to
the BLSTM network applied for the COSINE experiment which has 369 249 weights.
As the word accuracy obtained with the resulting MLP front-end is 42.72 %, which
is slightly lower than for the baseline HMM trained and evaluated on COSINE, we
can conclude that simply increasing the size of the network does not lead to better
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recognition performance.

This section aimed to show how speech recognition in challenging scenarios can
be improved by applying bidirectional Long Short-Term Memory modeling within
the recognizer front-end. BLSTM networks are able to incorporate a flexible, self-
learned amount of contextual information in the feature extraction process which
was shown to result in enhanced probabilistic features, prevailing over conventional
RNN or MLP features. We investigated ASR systems, which exclusively use a dis-
crete BLSTM phoneme estimate as additional feature as well as front-ends that
generate feature vectors from the continuous logarithmized and PCA-transformed
vector of BLSTM output activations. Fusing this concept with the bottleneck tech-
nique enables the generation of a well decorrelated and compact feature space that
carries information complementary to the original MFCC features. The experiments
presented in this section focused on the recognition of spontaneous, conversational,
and partly disfluent, emotional, or noisy speech which usually leads to very poor
ASR performance. Yet, the Bottleneck-BLSTM technique is able to increase word
accuracies from 43.36 to 49.92 % and from 50.97 to 58.21 % for the COSINE and the
Buckeye task, respectively.

3.3 Noise Robustness

Enhancing the noise robustness of automatic speech recognition is still an active
area of research since one of the most severe limitations of ASR systems is their
restricted applicability whenever speech is superposed with background noise [65,
125, 163, 226]. To improve recognition performance in noisy surroundings, different
stages of the recognition process can be optimized: As a first step, filtering or
spectral subtraction can be applied to enhance the signal before speech features are
extracted. Well known examples for such approaches are the advanced front-end
feature extraction (AFE) [71] scheme, Unsupervised Spectral Subtraction (USS)
[133], or methods based on Non-Negative Matrix Factorization [260]. Then, suitable
noise robust features have to be extracted from the speech signal to allow a reliable
distinction between the phonemes or word classes in the vocabulary of the recognizer.
Apart from widely-used features like MFCCs, the extraction of Tandem features as
outlined in Section 3.2 was shown to be effective in noisy conditions [108, 283]. The
third stage is the enhancement of the obtained features to remove the effects of noise.
Normalization methods like Cepstral Mean Subtraction (CMS) [184], Mean and
Variance Normalization (MVN) [249], or Histogram Equalization [53] are techniques
to reduce distortions of the cepstral domain representation of speech. Alternatively,
model-based feature enhancement approaches can be applied to compensate the
effects of background noise. Using a Switching Linear Dynamic Model to capture
the dynamic behavior of speech and a Linear Dynamic Model (LDM) to describe
additive noise, is the strategy of the joint speech and noise modeling concept in [65]
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which aims to estimate the clean speech features from the noisy signal.
The derivation of speech models can be considered as the next stage in the

design of a speech recognizer. Even though most systems are based on Hidden
Markov Models [183], numerous alternative speech modeling concepts such as Hidden
Conditional Random Fields (HCRF) [182], Switching Autoregressive Hidden Markov
Models (SAR-HMM) [70], and Autoregressive Switching Linear Dynamical Systems
(AR-SLDS) [158] have been proposed in recent years.

Speech models can be adapted to noisy conditions when the training of the
recognizer is conducted using noisy training material. Since the noise conditions
during the test phase of the recognizer are not known a priori, equal properties of
the noises for training and testing hardly occur in reality. However, in case the
recognizer is designed for a certain field of application such as an in-car speech
recognizer, the approximate noise conditions are known to a certain extent and
methods like matched or multi-condition training can be applied [287].

This section outlines a number of different strategies to improve the recognition
of noisy speech. First, in Section 3.3.1, an overview over well-known techniques for
noise robust speech recognition is provided by evaluating different popular speech
and feature enhancement techniques on a simple isolated digit recognition task. Here,
the main focus is on feature enhancement via a Switching Linear Dynamic Model
which is known to give excellent results in various noisy ASR scenarios [58, 65,
225, 227, 286]. Next, we concentrate on the SEMAINE scenario and investigate
how keyword detection in conversational, noisy speech can be improved by multi-
condition training [288]. Since the experiments in Sections 3.1 and 3.2 showed
that BLSTM modeling of speech results in impressive keyword spotting and ASR
performance gains, Section 3.3.3 is devoted to BLSTM-based Tandem ASR systems,
aiming to enhance noise robustness by context-sensitive recognition frameworks. In
Section 3.3.4, we examine different methods to integrate Long Short-Term Memory
into an ASR system and combine them with Non-Negative Matrix Factorization and
Non-Negative Sparse Classification (NSC) [81] to design a recognition system that
can be applied in noisy multisource environments [301]. Finally, in Section 3.3.5,
evaluations on the CHiME task [39] are shown.

3.3.1 Switching Linear Dynamic Models

Feature enhancement techniques attempt to determine the clean speech features
from the observed noisy features. This can be done by either using a priori knowledge
about how noise affects speech features (Cepstral Mean Normalization, Histogram
Equalization [53]) or by building general models for speech and noise (model-based
feature enhancement). Recently, extensive evaluations of different noisy speech recog-
nition scenarios [226] led to the finding that modeling speech with a Switching Linear
Dynamic Model for model-based feature enhancement as introduced in [65] leads to
good results. Feature enhancement algorithms that use an SLDM for speech mod-
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eling overcome some of the drawbacks of techniques using, e. g., Gaussian Mixture
Models (GMM) or HMMs, since the dynamics of the SLDM capture the smooth
time evolution of speech and do not produce artifacts such as sharp single frame
transitions.

Modeling of Speech and Noise

As in [65], a Switching Linear Dynamic Model is used to capture the dynamics
of clean speech. Similar to HMM-based approaches to model clean speech, the
SLDM assumes that the signal passes through various states. Conditioned on the
state sequence, the SLDM furthermore enforces a continuous state transition in the
feature space. The modeling of noise is done by a simple Linear Dynamic Model
obeying the following system equation:

xt = Axt−1 + b+ vt. (3.34)

The matrix A and the vector b express how the noise process evolves over time, vt
represents a Gaussian noise source, and xt denotes the feature vector. As LDM are
time-invariant, they are suited for modeling signals like colored stationary Gaussian
noise. The following equations can be used to characterize the LDM:

p(xt|xt−1) = N (xt;Axt−1 + b, C) (3.35)

p(x1:T ) = p(x1)
T∏
t=2

p(xt|xt−1). (3.36)

Here, N (xt;Axt−1 + b, C) is a multivariate Gaussian with mean vector Axt−1 + b
and covariance matrix C.

The modeling of speech is realized by a more complex dynamic model which also
includes a hidden state variable st at each time t. Now, A and b depend on the state
variable st:

xt = A(st)xt−1 + b(st) + vt. (3.37)

Consequently, every possible state sequence s1:T describes an LDM which is non-
stationary due to A and b changing over time. Time-varying systems like the evolu-
tion of speech features over time can be described adequately by such models. The
SLDM can be described as follows:

p(xt, st|xt−1) = N (xt;A(st)xt−1 + b(st), C(st)) · p(st) (3.38)

p(x1:T , s1:T ) = p(x1, s1)
T∏
t=2

p(xt, st|xt−1). (3.39)
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To train the parameters A(s), b(s) and C(s) of the SLDM conventional EM tech-
niques are used (see [65]). In order to obtain a relationship between the noisy ob-
servation and the hidden speech and noise features, an observation model has to be
defined. In the following, we assume an observation model corresponding to the zero
variance observation model with signal to noise ratio (SNR) inference introduced in
[66], where speech and noise mix linearly in the time domain corresponding to a
non-linear mixing in the cepstral domain.

A possible approximation to reduce the computational complexity of posterior
estimation is to restrict the size of the search space applying the generalized pseudo-
Bayesian (GPB) algorithm [9]. The GPB algorithm is based on the assumption
that the distinct state histories whose differences occur more than r frames in the
past can be neglected. Consequently, if T denotes the length of the sequence and
S represents the number of hidden states, the inference complexity is reduced from
ST to Sr with r � T .

If xt denotes the clean speech features and yt represents the observed noisy
features, the Gaussian posterior p(xt, y1:t) obtained by the GPB algorithm can be
used to obtain estimates of the moments of xt. Those estimates represent the de-
noised speech features and can be used for speech recognition in noisy environments.
The clean features are assumed to be the Minimum Mean Square Error (MMSE)
estimate E[xt|y1:t]:

E[xt|y1:t] ∼=
∫
xtp(xt, y1:t)dxt∫
p(xt, y1:t)dxt

. (3.40)

Experiments and Results

The digits ‘zero’ to ‘nine’ from the TI 46 Speaker Dependent Isolated Word Corpus
[62] are used as speech database for the noisy digit recognition task (for a detailed
description of the database, see [226]). All utterances in the test partition of the
corpus have been superposed by car noise that was recorded in different cars and at
different speeds, resulting in SNR levels between -32 and 5 dB (see [226]). In spite
of SNR levels reaching far below 0 dB, speech in the noisy test sequences is still
well audible since the recorded noise samples are lowpass signals with most of their
energy in the frequency band from 0 to 500 Hz. Consequently, there is no full overlap
of the spectrum of speech and noise. Two further noise types were considered: a
mixture of babble and street noise at SNR levels 12 dB, 6 dB, and 0 dB and additive
white Gaussian noise at SNR levels 20 dB, 10 dB, and 0 dB.

For every digit, an HMM was trained on the clean training corpus to build an
isolated word recognizer. Each model consisted of eight states with a mixture of
three Gaussians per state. 13 Mel-frequency cepstral coefficients as well as their
first and second order derivatives were extracted as features. Attempting to remove
the effects of noise, various speech and feature enhancement strategies were applied:
Cepstral Mean Subtraction, Mean and Variance Normalization, Histogram Equal-
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Table 3.12: Mean isolated digit recognition rates in [%] for different noise types
and noise compensation strategies. For each noise type, results are averaged
over all evaluated SNR levels. Methods are sorted by mean recognition rate.

noise type
speech / feature enhancement method clean car babble white

Switching Linear Dynamic Model [65] 99.92 99.52 99.29 87.79
Histogram Equalization [53] 99.92 98.21 96.53 77.50
Mean and Variance Normalization 99.84 94.86 93.32 79.06
Cepstral Mean Subtraction 99.84 96.96 97.18 72.22
Unsupervised Spectral Subtraction [133] 99.05 93.52 92.27 53.19
Wiener Filtering [71] 100.0 87.85 92.84 64.14
none 99.92 75.09 88.37 63.67

Autoregressive SLDS [158] 97.37 47.24 78.51 93.32
Switching Autoregressive HMM [70] 98.10 54.26 83.16 41.91

ization, Switching Linear Dynamic Models, Unsupervised Spectral Subtraction, and
Wiener Filtering. For the training of the global SLDM capturing the clean speech
dynamics, all available clean training sequences were used. The SLDM speech model
consisted of 32 hidden states. An utterance-specific LDM for noise modeling was
derived from the first and last ten frames of the noisy test utterance and consisted
of a single Gaussian mixture component.

As can be seen in Table 3.12, in most cases the recognition rate for clean speech
is >99 %. For stationary lowpass noise like the car and babble noise types, the
best average recognition rate can be achieved when enhancing the speech features
using a global Switching Linear Dynamic Model for speech and a Linear Dynamic
Model for noise. For speech disturbed by white noise, the best recognition rate
(93.3 %, averaged over the different SNR conditions) is reached by the autoregressive
Switching Linear Dynamical System introduced in [158]. An AR-SLDS models the
noisy speech signal in the time domain as an autoregressive process and can be
applied alternatively to HMMs. It can be interpreted as a fusion of a SAR-HMM
[70] with an SLDS [226]. The AR-SLDS used in the experiment is based on a
10th order SAR-HMM with ten states. Yet, this concept is not suited for lowpass
noise at negative SNR levels: For the car noise type a poor recognition rate of
47.2 %, averaged over all car types and driving conditions, was obtained for AR-
SLDS modeling. A possible reason for this is that the AR-SLDS assumes that the
additive noise has a flat spectrum (see [158]), which is not true for the lowpass noise
types.

The experiments in this section showed that SLDM-based feature enhancement
is an effective method to remove the effects of additive noise. Further experiments
conducted in [286] revealed that the SLDM concept also leads to improved ASR when
incorporated into an LVCSR system for conversational speech recognition. Yet, it
is important to note that since the LDM for noise modeling has to be trained on
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data containing noise only, the applicability of model-based feature enhancement
such as the SLDM technique is restricted to scenarios in which some form of a priori
knowledge about the noise source exists. By contrast, simpler feature normalization
techniques like CMS, MVN, or HEQ can be applied independently of whether there
exists some information about the noise characteristics that are expected during
recognition.

3.3.2 Multi-Condition Training

So far, we have mostly focused on speech and feature enhancement methods enhanc-
ing the noise robustness of the ASR front-end. However, to obtain the best possible
recognition performance in noisy conditions, also the back-end of the recognizer
needs to be designed in a way that the sensitivity to noise is minimized. A simple
and efficient method to improve the noise robustness of the speech recognition back-
end is to use matched or multi-condition training strategies [287] by incorporating
noisy training material which reflects the noise conditions expected while running
the system. In this section, we focus on the SEMAINE scenario (see Section 2.1)
in which keywords have to be robustly detected even if the user’s speech signal is
distorted, e. g., by people talking in the background. We will investigate to what
extent models that have been trained on noisy data can maintain the recognition
performance in noisy conditions characterized by different realistic SNR levels.

Experiments and Results

In what follows, we investigate the true positive and false positive rates for keyword
detection when including noisy speech material in the training process. For all
experiments, a part of the training material consisted of unprocessed versions of the
SEMAINE database (recordings 1 to 10, see Section 3.1.6), the SAL corpus [64],
and the COSINE database [241]. This speech material will be referred to as clean
in the ongoing (even though the COSINE corpus was partly recorded under noisy
conditions). In addition to the ‘clean’ models, different extensions of the training
material were evaluated by adding distorted versions of the SEMAINE and the SAL
corpus. To this end, the clean speech was superposed with additive babble noise from
the NOISEX database at different SNR levels: 15 dB, 10 dB, and 5 dB. For evaluation,
clean and distorted versions of the SEMAINE database (recordings 11 to 19) were
used. Since conversational agents such as the SEMAINE system are often used while
other people talk in the background, an evaluation scenario including babble noise
is most relevant for our application. A set of 173 keywords and three different non-
linguistic vocalizations (breathing, laughing, and sighing) were considered. Keyword
detection was based on simply searching for the respective words in the most likely
ASR hypothesis. The applied trigram language model was trained on the SEMAINE
corpus (recordings 1 to 10), the SAL database, and the COSINE database (total
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Figure 3.25: ROC operating points obtained for different acoustic models
when tested on clean speech and speech superposed by babble noise at 15, 10,
and 5 dB SNR; acoustic models were trained on unprocessed versions of the
SEMAINE, SAL, and COSINE corpus (‘clean’) and on noisy versions of the
SEMAINE and SAL corpus using different SNR level combinations (babble
noise).

vocabulary size 6.1 k). 13 cepstral mean normalized MFCC features along with first
and second order temporal derivatives were extracted from the speech signals every
10 ms. All cross-word triphone HMMs consisted of three emitting states with 16
Gaussian mixtures per state. For non-linguistic vocalizations, HMMs consisting of
9 states were trained.

Figures 3.25(a) to 3.25(d) show the ROC operating points for clean test material
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as well as for speech superposed with babble noise at 15 dB, 10 dB, and 5 dB SNR,
respectively, when using different acoustic models. As can be seen in Figure 3.25(a),
models exclusively trained on clean speech lead to the best performance for clean
test data. We obtain a true positive rate of 56.58 % at a false positive rate of 1.89 %
which is in the range of typical recognition rates for highly disfluent, spontaneous,
and emotionally colored speech [273]. Including noisy training material slightly
increases the false positive rate to up to 2.20 % at a small decrease of true positive
rates. Yet, when evaluating the models on speech superposed by babble noise, multi-
condition training significantly increases the true positive rates. A good compromise
between high true positive rates and low false positive rates in noisy conditions can be
obtained by applying the acoustic models denoted as ‘clean, 15 dB, 10 dB’ in Figures
3.25(a) to 3.25(d), i. e., models trained on the clean versions of the SEMAINE, SAL,
and COSINE corpus, on the SEMAINE and SAL database superposed by babble
noise at 15 dB SNR, and on the 10 dB versions of the SEMAINE and SAL database.
For test data superposed by babble noise, this training set combination leads to the
highest average true positive rate (41.66 %) at a tolerable average false positive rate.

3.3.3 BLSTM Frameworks for Noise Robust ASR

The aim of this section is to examine whether Tandem ASR architectures similar to
the keyword spotter introduced in Section 3.1.3, which incorporates context informa-
tion in the form of phoneme predictions by a bidirectional Long Short-Term Memory
network, are more robust with respect to background noise than conventional HMM
or DBN-based recognizers. The target application dealt with in this section is noise
robust spelling recognition – a functionality that is needed in voice command appli-
cations whenever the speech input cannot be restricted to a fixed set of words. For
example in-car internet browsers which are already available in today’s upper class
cars, demand for fast, intuitive, and optionally hands-free operation. While basic
browser commands may be covered by a few keywords, entering a URL via speech
input presumes an ASR system that also allows for spelling. However, since many
letters such as “b” and “d” sound fairly similar, spelling recognition in the presence
of driving noise is very challenging – even for humans. In contrast to natural speech,
spelling recognition cannot be improved by the usage of a language model but ex-
clusively relies on discriminating the acoustic patterns of different letter utterances.
Only for simplified cases such as matching the spelled sequence against a stored
dictionary [162] ‘language information’ can be used.

As shown in Section 3.3.1, strategies for noise compensation, like the SLDM
proposed in [65], lead to good performance for speech utterances with predefined
speech on- and offset. Yet, their real-life applicability relies on proper discrimination
between speech and noise segments [226]. Especially in the interior of a car, where
SNR levels are typically negative, voice activity detection is a non-trivial task.

In this section, a Tandem decoder which combines BLSTM neural networks and
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DBNs is evaluated with respect to its noise robustness in a spelling recognition task
[283]. The modeling of long-range context information is used to learn typical in-
car noise characteristics, allowing a better discrimination between speech and noise
in the time and frequency domain. Similar to the recognition engine outlined in
Section 3.1.3, the Tandem recognizer uses the phoneme predictions of a BLSTM net
together with conventional MFCC features to reliably detect spelled letter sequences
in driving noise. The resulting model architecture can not only cope with extremely
low SNR levels but also with a mismatch between noise conditions during training
and testing.

Tandem BLSTM-DBN Decoder

The Tandem BLSTM-HMM decoder for spelling recognition is depicted in Figure
3.26. Since the DBN is based on whole-word modeling of spelled letters, rather than
on phoneme modeling, we only have a state and a word layer, which is the main
difference between the DBN shown in Figure 3.26 and the keyword spotter DBN
in Figure 3.6 consisting of a state, phoneme, and word layer. Furthermore, as the
spelling recognizer does not distinguish between garbage speech and keywords, there
is no ‘garbage variable’ gt in the DBN. Similar to the Tandem keyword spotter, wtrt−1
is a switching parent of wt and controls whether wt is equal to wt−1. If wtrt−1 indicates
a word transition, a word bigram which makes each word equally likely, but assumes
a short silence between two words (or, in our case, between two letters), is used.

Note that the BLSTM network is trained on phoneme targets rather than on
words representing spelled letters. This means that the vector ot contains one prob-
ability score for each of the P different phonemes contained in the letters ‘a’ to
‘z’. Again, bt is the index of the most likely phoneme (see Equation 3.23). The
CPFs p(xt|st) are described by Gaussian mixtures while p(bt|st) and p(strt |st) are
represented by discrete CPFs.

Experiments and Results

For the evaluation of the noise robustness of the Tandem BLSTM-DBN spelling
recognizer, the letter utterances from ‘a’ to ‘z’ from the TI 46 Speaker Dependent
Isolated Word Corpus [62] were used to generate a large set of spelling sequences.
The database contains utterances from 16 different speakers – eight females and eight
males. Per speaker, 26 utterances were recorded for every letter. Ten samples are
used for training and 16 for testing. Consequently, the overall isolated letter training
corpus consists of 4 160 utterances while the test set contains 6 656 samples. In order
to obtain connected spelling sequences, the isolated letters from every speaker were
randomly combined to sequences including between three and seven letters. The
silence at the beginning and at the end of the isolated letters was not cut, leading
to short silence segments in between the letters. Each individual letter utterance
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Figure 3.26: Architecture of the Tandem BLSTM-DBN for spelling recogni-
tion.

occurs only once within the whole corpus of connected letters. The resulting corpus
consists of 839 sequences for training and 1 354 for testing.

Out of the clean spelling utterances, noisy sequences were generated by superpos-
ing the speech signal with different in-car noise types as in Section 3.3.1 (see [283] for
the resulting SNR histograms). Three different road surfaces in combination with
typical velocities have been considered: a smooth city road at 50 km/h, a highway
drive at 120 km/h, and a road with big cobbles at 30 km/h.

Feature vectors xt consisted of 12 cepstral mean normalized MFCC features to-
gether with log. energy as well as first and second order delta coefficients. Best
results could be obtained when applying a simple FIR highpass filter with a cut-off
frequency of 200 Hz in order to partly remove frequency bands that correspond to
motor drone etc. before extracting the acoustic features. However, filtering was only
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Table 3.13: Spelling recognition accuracies for the Tandem BLSTM-DBN and
the DBN (matched and mismatched condition).

training test accuracy [%]
condition condition DBN BLSTM-DBN

clean clean 98.19 98.80
city city 92.64 96.55

highway highway 84.06 91.15
cobbles cobbles 81.65 91.96

city highway 60.50 77.13
city cobbles 64.38 79.70

highway city 54.25 87.51
highway cobbles 59.09 85.44
cobbles city 79.07 90.34
cobbles highway 74.32 87.58

mean 74.82 88.62

conducted prior to the extraction of the feature vectors xt processed by the DBN
layer of the Tandem recognizer, whereas the BLSTM network processed MFCC fea-
tures from unfiltered speech before providing the phoneme prediction bt as additional
feature for the DBN layer.

Each letter HMM consisted of eight states while silence was modeled with three
states. In addition to the ‘clean’ model, one BLSTM-DBN system was trained for
every noise condition using the corresponding noisy training material. The BLSTM
input layer had a size of 39 (one input for each acoustic feature) and the size of
the output layer was 25, corresponding to the 25 different phonemes occurring in
the spelled letters from ‘a’ to ‘z’. The network was trained on the forced aligned
framewise phoneme transcriptions of the spelling sequences. Both hidden LSTM
layers contained 100 memory blocks of one cell each.

Table 3.13 shows the word accuracies for the Tandem BLSTM-DBN recognizer
and the corresponding DBN without a BLSTM layer. The first column shows the
noise type during training and the second column contains the noise condition dur-
ing testing. The upper half of the table indicates the matched condition case which
is valid whenever the recognition system has exact information about the current
velocity and road surface. In the lower half of the table, the mismatched condition
case (when noise types during training and testing are different) can be seen. Note
that a model trained on perfectly clean data fails in noisy test conditions since the
silence model will tolerate no signal variance at all, which would lead to permanent
insertion errors. In clean conditions both recognizer architectures show almost per-
fect performance. As soon as the speech signal is corrupted by noise, performance
decreases. In the matched condition case the BLSTM-DBN outperforms the DBN
by up to 10 %. Also for the mismatched condition case, the Tandem recognizer is far
more robust with respect to noise than the DBN. The greatest improvement can be
observed for a recognizer trained on the highway noise type and tested on a smooth
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inner city road. There, the Tandem architecture can increase accuracy by 33 %.

In general, we can conclude that BLSTM modeling in a Tandem ASR frame-
work can not only enhance performance in relatively clean conditions as examined
in Section 3.1.3, but also leads to better noise robustness. A similar conclusion
could be drawn in [298] where a Tandem BLSTM-DBN model for connected digit
recognition was proposed and evaluated on the well-known Aurora 2 task [109]. A
major difference between the recognizer introduced in [298] and the BLSTM-DBN
investigated in this section is that the connected digit recognizer evaluated in [298]
uses a DBN that only observes the BLSTM prediction bt, rather than both, xt and
bt. Thus, the low-level features xt only serve as input for the BLSTM network. In
conformance with the baseline HMM defined for the Aurora 2 task [109], the DBN
for digit recognition applies 16 states per digit model and three states for modeling
silence. It was trained on clean data and evaluated on the ‘set A’ test fraction of the
Aurora database. On average, the BLSTM-based Tandem model could outperform
the baseline HMM system by 7.1 % (see [298]).

3.3.4 Combining NMF and BLSTM for Robust ASR in Mul-
tisource Environments

As discussed in Section 3.3, speech enhancement techniques can be applied prior to
feature extraction to compensate the effect of noise. In the last decade, monaural
source separation techniques by Non-Negative Matrix Factorization have emerged
as a promising solution that is portable across application scenarios and acoustic
conditions [72, 105, 186, 189, 233]. For instance, the 2006 CHiME Challenge [42]
featured an NMF-based approach for cross-talk separation that used speaker models
(speech dictionaries) in a supervised NMF framework [204]. In this section, we focus
on a convolutive extension of NMF that has delivered promising results for speech
denoising (see [233]), and use its capability to model spectral sequences correspond-
ing to the words encountered in the 2011 PASCAL CHiME Challenge recognition
task [39].

In addition to speech enhancement techniques, a number of advanced feature
extraction approaches have emerged as alternatives to conventional speech features
such as MFCCs (see [291], for example). As shown in Section 3.2, an effective
approach to enhance the front-end of recognition systems is the application of
probabilistic features generated by a neural network that is trained on phoneme
or phoneme state targets. Such Tandem systems unite the advantages of discrimina-
tive modeling via neural networks and generative frameworks such as HMMs [107].
Due to their ability to exploit long-range context information for phoneme or word
prediction, LSTM networks were proven to be especially suited for improving ASR
accuracy in challenging conditions [281].

An alternative way to generate framewise phoneme or word predictions that can
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be processed in an HMM-based back-end is Non-Negative Sparse Classification (see
[81]). If the speech dictionaries are appropriately labeled – e. g., by correspondence
to words, phonemes, or HMM states – the activations of their entries directly re-
veal content of the utterance if sparsity constraints are followed. This has been
successfully exploited for exemplar-based techniques in speech decoding [81, 112].

In this section, various BLSTM- and NMF/NSC-based ASR architectures that
are robust with respect to noise and reverberation are presented and compared.
Both, front-end features and back-end decoding of the system are enhanced by using
long-range context, exploiting the source separation capabilities of NMF/NSC to
complement the context modeling by BLSTM networks. In addition to Tandem
BLSTM features, CTC networks that can be used as an alternative to HMMs and
can be trained on unsegmented speech data [90] are evaluated on the CHiME task in
Section 3.3.5. Further, we examine how the multi-stream BLSTM-HMM recognizer
presented in Section 3.2.2 can be enhanced by employing speaker adapted BLSTM
predictors.

All systems are evaluated on the PASCAL CHiME corpus [39] which was designed
to allow researchers a comparison of their ASR systems in a noisy and reverberated
multisource environment. Building on the contribution of the Technische Universität
München to the 2011 PASCAL CHiME Challenge [260], we investigate alternative
BLSTM-based speech recognition architectures and improve previous results by fully
speaker adapted BLSTM networks and Non-Negative Sparse Classification (see also
[301]).

The CHiME Corpus

The 2011 PASCAL CHiME Challenge [39] task is to recognize voice commands
of the form command–color–preposition–letter–digit–adverb, e. g., “set white by U
seven again”, spoken in a noisy living room. The vocabulary size is 51. For best
comparability with the challenge results, we evaluate by the official challenge com-
petition measure, which is keyword accuracy, i. e., the recognition rate of letters
(25 spoken English letters excluding ‘W’) and digits (0–9). The challenge task is
speaker dependent. The CHiME corpus contains 24 200 utterances (34 speakers),
subdivided into a training (17 000 utterances), development, and test set (3 600 ut-
terances each). These utterances have been created by convolving recordings from
the Grid corpus [43] with a binaural room impulse response (BRIR). A different
BRIR has been used for each set. The BRIR was measured at a position two meters
directly in front of a binaural mannikin. Different BRIRs are obtained by varying
the room configuration (e. g., doors open/closed, curtains drawn/undrawn). The
development and test sets have been mixed with genuine binaural recordings from
a domestic environment, which have been obtained over a period of several weeks
in a house with two small children. On top of a quasi-stationary noise floor there
are abrupt changes such as appliances being turned on/off, impact noises such as
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banging doors, and interfering speakers. The six signal-to-noise ratios employed in
the challenge range from 9 dB down to -6 dB in steps of 3 dB; note that the range
of SNRs has not been constructed by scaling the speech or noise amplitudes, but
instead by choosing different noise segments. More details on the domestic audio
corpus and the mixing process can be found in [39]. For the challenge, six hours of
pure background noise (divided into seven subsets which were recorded on different
days) were provided in addition to the noisy speech. All these data are publicly
available at http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html.

Convolutive NMF for Speech Enhancement

In addition to using LSTM-based ASR architectures in the back-end, the ASR en-
gines evaluated in Section 3.3.5 employ speech enhancement by convolutive Non-
Negative Matrix Factorization as in [260]. This is to exploit two – arguably comple-
mentary – model-based approaches to coping with noise: using context information
in the LSTM back-end, and retrieving a clean speech estimate in the front-end.

The NMF speech enhancement approach is based on the assumption that speech
is corrupted by additive noise:

V = V (s) + V (n), (3.41)

where V ∈ RM×N
+ is an observed magnitude spectrogram of noisy speech, V (s) is

the (true) spectrogram of the speech signal, and V (n) is the (true) noise spectro-
gram. Furthermore, we assume that both, the speech and noise spectrograms, can
be modeled as convolutions of base spectrograms (dictionaries) X(s)(j) ∈ RM×P

+ ,
j = 1, . . . , R(s), respectively X(n)(j), j = 1, . . . , R(n), with non-negative activations

H(s) ∈ RR(s)×N
+ , H(n) ∈ RR(n)×N

+ :

V
(s)
:,t ≈

R(s)∑
j=1

min{P,t}∑
p=1

H
(s)
j,t−p+1X

(s)
:,p (j), (3.42)

V
(n)
:,t ≈

R(n)∑
j=1

min{P,t}∑
p=1

H
(n)
j,t−p+1X

(n)
:,p (j), (3.43)

for 1 ≤ t ≤ N . Let X:,j, symbolize the j-th column of X as a column vector.
Defining

W (s)(p) = [X
(s)
:,p+1(1) · · · X(s)

:,p+1(R
(s))], (3.44)

p = 0, . . . , P − 1 and W (n)(p) analogously, one obtains an NMF-alike notation of
this signal model. Here, the approximation of V (s) and V (n) is denoted by Λ(s) and

Λ(n), and
p→
· introduces a matrix ‘shift’ where the entries are shifted p spots to the
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right, filling with zeros from the left:

V ≈ Λ(s) + Λ(n)

=
P−1∑
p=0

W (s)(p)
p→

H(s) +
P−1∑
p=0

W (n)(p)
p→

H(n). (3.45)

In the remainder of this section, we assume that both, W (s)(p) and W (n)(p)
can be estimated from training data. The speech enhancement problem is thus
reduced to finding non-negative coefficients (activations) H(s) and H(n) that match

the observed spectra in V – then, the estimated clean speech spectrogram V̂ (s) is
obtained by filtering the observed spectrogram V

V̂ (s) =
Λ(s)

Λ(s) + Λ(n)
⊗ V (3.46)

where the symbol ⊗ corresponds to the elementwise matrix product. To jointly
determine a solution for H(s) and H(n), we iteratively minimize the element-wise sum
of the β-divergence dβ between the observed spectrogram V and the approximation
Λ := Λ(s) + Λ(n):

dβ(V |Λ) =
N∑
i=1

M∑
j=1

dβ(Vi,j|Λi,j), (3.47)

starting from a (Gaussian) random solution. In NMF-based speech enhancement,
using d1 (equivalent to the generalized Kullback-Leibler divergence) is very popular
([186, 233, 267]), since it seems to provide a good compromise between separation
quality and computational effort.

The minimization of d1 (Equation 3.47) is performed by the multiplicative update
algorithm for convolutive NMF proposed by [233] and [257], which can be very
efficiently implemented using linear algebra routines employing vectorization. Note
that the asymptotic complexity of this algorithm is polynomial (O(RMNP )), and
linear in each of R := R(s) + R(n), M , N , and P . All experiments in Section 3.3.5
were performed with the NMF implementations found in the open-source toolkit
openBliSSART [261] which was developed at the Technische Universität München.

Non-Negative Sparse Classification

As an alternative method to obtain framewise word predictions from a low-level
speech feature vector sequence, the principle of Non-Negative Sparse Classification
can be applied. It is based on decomposition in the spectral domain rather than
long-range context modeling of speech features; similarly to supervised NMF speech
enhancement, the main idea is to use the results of spectral factorization directly
for speech recognition by determining the sources which contribute to a mixed ob-
servation. To this end, the non-negative activation weights of dictionary atoms are
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determined by applying sparse NMF. As the identities of the atoms correspond to
the phonetic content, phone or word classification can be performed based on the
activation weights. In the NSC experiments presented in Section 3.3.5, atoms rep-
resent sampled spectrogram patterns and thus are called ‘exemplars’. This is in
contrast to the approach pursued for speech enhancement, where atoms are learned
from training data – in fact, using the very same NSC approach for source separa-
tion has been shown to be inferior to the convolutive NMF enhancement pursued
in this section [82]. Thus, while there is some methodological overlap between NSC
and NMF enhancement, the parametrizations of the algorithms are considerably dif-
ferent and further improvements can be expected when combining them. Further
details on the applied NSC technique can be found in [81] and [112].

For NSC, 26 Mel-scale spectral magnitude bands were used as features, employing
the common frame size of 25 ms and a 10 ms frame shift. Exemplar windows spanning
20 frames were applied. Each window was factorized independently as in [112]. Other
factorization options, including weighting of features, sparsity penalty values and the
number of iterations were exactly set as by [112]. For the sparse classification task,
5 000 speaker-dependent speech exemplars and 5 000 noise exemplars were extracted
from the training data. This combined speech-noise basis was kept fixed during NMF
iterations. After receiving the sparse activation weight vector for each window, the
weights and the predetermined label sequences encoding the phonetic information of
speech exemplars were used to construct a state likelihood matrix for the observation.
For details on this NSC setup and its standalone recognition results in a hybrid ASR
system see [112]. In this section, we determine the most likely word identity nt for
each frame t of the observation by summing state likelihoods corresponding to each
word. The resulting sequence of word predictions is then used as a feature stream
in a multi-stream decoder.

Evaluated ASR systems

In what follows, the basic architecture of the recognition systems evaluated in Section
3.3.5 will be outlined.

• Baseline HMM

The baseline recognition system, as provided by the 2011 CHiME Challenge
organizers, employs 51 word-level HMMs [39]. The HMMs use a left-to-right
model topology with no state skips. In order to model the different lengths of
the words in the vocabulary, two states per phoneme are used. This results
in a varying number of states per word (between 4 and 10). State emission
probabilities are modeled using seven Gaussian mixture components per state
with diagonal covariance matrices.

The models are trained starting with a single Gaussian and applying iterative
mixture splitting and EM training. After each EM iteration, the number of
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Figure 3.27: Flowchart of the Tandem BLSTM-HMM recognizer processing
speech enhanced via NMF.

mixture components is increased by splitting the component with the largest
mixture weight. This is repeated until the final number of seven Gaussian
mixtures is reached. For recognition, the baseline system uses a grammar
which strictly follows the grammar of the Grid corpus utterances.

Several minor modifications of the baseline HMM system were evaluated, in-
cluding a larger number of Gaussian mixtures (up to 15) and the incorporation
of a silence model. However, as these changes of the baseline recognizer did
not result in an increased keyword recognition accuracy on the development
set, the HMM system as provided by the CHiME Challenge organizers was
employed as baseline system.

The features used for the baseline HMMs consist of standard 39-dimensional
cepstral mean normalized MFCCs (12 Mel-cepstral coefficients and the loga-
rithmic energy plus the corresponding delta and acceleration coefficients) com-
puted from overlapping frames with a frame length of 25 ms and a frame shift
of 10 ms.

• Tandem BLSTM-HMM Approach

As a first attempt to improve the baseline HMM system via feature-level
BLSTM modeling, a BLSTM front-end similar to the context-sensitive feature
extractor introduced in Section 3.2.3 is evaluated as extension of the stan-
dard MFCC features. Thus, a BLSTM network for framewise word prediction
(without CTC) was trained, i. e., the network inputs correspond to the 39 cep-
stral mean normalized MFCC features and the resulting output activations
represent the posterior probabilities of the 51 words. In each time frame, we
obtain a vector of 51 output activations which is logarithmized and appended
to the original 39-dimensional MFCC feature vector, resulting in 90 Tandem
features per time step. Next, these features are decorrelated using principal
component analysis and only the first 40 principal components are applied
for HMM-based recognition. A flowchart of the Tandem BLSTM front-end
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Figure 3.28: Flowchart of the multi-stream BLSTM-HMM recognizer process-
ing speech enhanced via NMF.

processing NMF-enhanced speech can be seen in Figure 3.27.

• CTC System

Using a CTC output layer, a word hypothesis can be obtained without HMM
decoding (see Section 2.3.10). Hence, a CTC back-end, replacing the baseline
HMM system was built. Again, output activations represent occurrences of
words. Note that purely CTC-based recognition is rather suited for small to
medium vocabulary tasks, since for large vocabulary ASR the network output
layer would get too large. The recognition grammar of the CTC framework is
not restricted in any way, meaning that any word can be detected at any time.
To determine the keyword recognition rate, we simply take the first letter and
digit that are detected in an utterance. Applying the CTC recognizer, two
different front-ends were evaluated: the conventional MFCC features and the
Tandem BLSTM-MFCC feature extractor explained before.

• Multi-Stream BLSTM-HMM

The multi-stream BLSTM-HMM recognizer outlined in Section 3.2.2 [281] is a
further method to integrate LSTM modeling into speech decoding. Employing
the same framewise BLSTM word predictor as used within the Tandem front-
end, a discrete word prediction feature bt can be generated for each time step.
Similar to Equation 3.31, bt corresponds to the index of the estimated word
that can be obtained by determining the maximum BLSTM output activation:

bt = argmax
w

(o1t , ..., o
w
t , ..., o

V
t ). (3.48)

In every time frame t the multi-stream HMM uses two independent obser-
vations: the MFCC features xt and the BLSTM word prediction feature bt.
Again, yt = [xt bt] denotes the joint feature vector and the variables λ1 and
λ2 represent the stream weight of the MFCC stream and the BLSTM stream,
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respectively, so that the multi-stream HMM emission probability for state st
is

p(yt|st) =

[
M∑
m=1

cstmN (xt;µstm,Σstm)

]λ1
× p(bt|st)λ2 (3.49)

(also see Section 3.2.2). One advantage of the multi-stream approach compared
to the Tandem features is that the BLSTM can be integrated without time-
consuming re-estimation of Gaussian mixture components.

Using the development set, the stream weights were optimized independently
for speaker independent and speaker adapted BLSTM nets, resulting in an
optimum of λ1 = 1.3 and λ2 = 0.7 for speaker independent networks and
λ1 = 1.1 and λ2 = 0.9 for speaker dependent networks. Figure 3.28 shows a
flowchart of the multi-stream BLSTM-HMM.

• Triple-Stream HMM Exploiting BLSTM and NSC Word Predictions

To exploit both, the BLSTM-based word prediction feature and the word pre-
diction obtained via Non-Negative Sparse Classification in addition to the
MFCC feature stream, a triple-stream HMM architecture, which can be seen
in Figure 3.29 was implemented. Similar to the multi-stream recognition archi-
tecture described in Section 3.2.2, the HMM uses continuous MFCC features
as well as the discrete BLSTM feature bt and the word prediction obtained
by NSC (nt) as three independent streams of observations. In contrast to the
NSC-only decoder proposed in [112], using NSC in a multi-stream approach
along with MFCC and BLSTM predictions can be useful to exploit the prop-
erties of spectral (such as additiveness) and cepstral representation (such as a
degree of speaker independence) in parallel.

The triple-stream HMM emission probability in a certain state st can be writ-
ten as

p(yt|st) =

[
M∑
m=1

cstmN (xt;µstm,Σstm)

]λ1
× p(bt|st)λ2 × p(nt|st)λ3 . (3.50)

Best results on the development set could be obtained when Mel-frequency
bands (MFB) that are computed from the raw speech signal (i. e., the signal not
enhanced via NMF) are used as input for Non-Negative Sparse Classification
(see also Figure 3.29). Stream weights were set to λ1 = λ2 = λ3 = 1.
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Figure 3.29: Flowchart of the triple-stream recognizer exploiting word predic-
tions obtained via BLSTM and NSC.

3.3.5 Evaluation and Discussion

The experiments presented in this section aim to compare and evaluate the different
BLSTM- and NMF/NSC-based noise robust ASR approaches proposed in Section
3.3.4 on the 2011 PASCAL CHiME Challenge [39] task.

Preprocessing

The binaural audio signals were down-mixed from stereo to mono by averaging chan-
nels. For NMF speech enhancement, they were transformed to the spectral domain
by short-time Fourier transformation using a window size of 64 ms (corresponding to
1 024 samples at a sample rate of 16 kHz) and 75 % overlap, i. e., 16 ms frame shift.
This kind of parametrization has been proven to deliver excellent results in speech
enhancement [186, 233] at an acceptable computational effort. The square root of
the Hann function is used for windowing both in forward and backward transforma-
tion in order to reduce artifacts. As in [260], the Mel filter bank for MFCC feature
extraction was modified to have a cutoff frequency of 5 000 Hz.

Dictionaries for NMF-based Speech Enhancement

As mentioned in Section 3.3.4, the applied approach for NMF speech enhancement
uses convolutive bases of both, speech and noise which are learned from training
data. However, in contrast to purely unsupervised learning algorithms for speech
dictionaries as proposed, e. g., in [204] using basic NMF and in [233] using convolutive
NMF, knowledge about the speech recognition task is exploited already in dictionary
learning. This is partly motivated by the study in [185] which showed that in the
context of speech enhancement for large vocabulary continuous speech recognition,
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incorporating phonetic information into NMF by using phoneme-dependent speech
dictionaries is highly beneficial. However, in contrast to that study, which uses single
spectra to model phonemes, convolutive NMF is exploited for the fact that it is very
well suited for capturing spectral sequences corresponding to words [232]. Hence,
convolutive NMF appears to be particularly suited to the small vocabulary CHiME
recognition task.

In summary, each dictionary entry corresponds to a ‘characteristic’ spectrogram
of a certain word (R(s) = 51) that is learned from training examples. Since speaker-
dependent dictionaries are used for the separation, the characteristic spectrograms
are obtained from the training set by convolutive NMF as follows. For each of the 34
speakers, the forced alignments obtained by the baseline HMM-MFCC recognizer on
the noise-free training set of the CHiME corpus was used to extract all occurrences
of each word (51 words in total). Then, for each speaker k ∈ {1, . . . , 34} and word
w ∈ {1, . . . , 51}, the magnitude spectra were concatenated into a matrix T (s,k,w),
which was reduced to convolutive base ω(s,k,w)(p) by a 1-component convolutive
NMF,

T (s,k,w) ≈
P−1∑
p=0

ω(s,k,w)(p)
p→

h(s,k,w), (3.51)

to form a speaker-dependent dictionary

W (s,k)(p) = [ω(s,k,1)(p) · · · ω(s,k,51)(p)]. (3.52)

The parameter P was set to 13 through inspection of the word lengths in the CHiME
corpus training set. This corresponds to a spectrogram of a 256 ms signal segment
at 64 ms window size and 16 ms frame shift.

In contrast to the speech, the background noise is assumed to be highly variable.
Thus, to create a noise dictionary as general as possible, the set of training noise
(approximately 6 hours) available for the challenge was sub-sampled, selecting 4 000
random segments of 256 ms length, concatenated into a spectrogram T (n), and re-
duced to a dictionary W (n)(p). In analogy to the speech dictionary, it contains 51
characteristic noise spectrograms (R(n) = 51).

Training and Network Parametrization

For increased robustness, multi-condition training (MCT) is performed by adding
noisy speech to the training data. This noisy training data is obtained by mixing all
17 000 training utterances with random segments of the training noise provided in
the CHiME corpus. Thus, the complete clean and noisy training database consists
of 34 000 utterances. Since the training noise provided by the CHiME Challenge
organizers consists of seven different background noise recordings, a larger MCT
training set of 136 000 utterances was also evaluated. This set comprised the clean
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training utterances as well as seven different noisy versions of the training material,
created by superposing the clean utterances with random segments of all seven noise
recordings. However, since the performance gain compared to the smaller MCT set
was found to be relatively small (at the cost of an increased training time) the smaller
MCT set of 34 000 utterances was used for all further experiments.

The BLSTM network applied for generating the Tandem features and the esti-
mates bt for the multi-stream systems was trained on framewise word targets ob-
tained via HMM-based forced alignment of the clean training set. By contrast, the
CTC network was trained on the unsegmented ground truth transcription of the
training corpus. Similar to the network configuration used in [281], the BLSTM
network consisted of three hidden LSTM layers (per input direction) with a size of
78, 150, and 51 hidden units, respectively. Each LSTM memory block contained one
memory cell. The remaining training configurations were the same as those used in
[281].

Speaker Adaptation

Various techniques to create speaker adapted recognition systems were investigated:
First, speaker dependent HMMs were created by adapting means and variances of
the speaker-independent HMMs and performing additional EM iterations using the
training utterances for each speaker. This procedure is equivalent to the one applied
for the baseline CHiME Challenge results. Second, mean-only MAP adaptation as
employed by [260] was applied. Note that for all speaker adaptation methods, only
material from the training set was used.

Finally, also the BLSTM and CTC networks were adapted by performing addi-
tional training epochs using only the training utterances of the respective speaker.
All network weights were initialized with the weights of the speaker independent
networks and training was aborted as soon as no further improvement on the de-
velopment set could be observed. Note that for experiments using multi-condition
training, multi-condition training data was also used for speaker adaptation.

Development Set Results

Table 3.14 shows the keyword recognition accuracies obtained for the various sys-
tem combinations on the development set of the CHiME corpus. The first row
corresponds to the challenge baseline result (56.30 % mean accuracy) using MFCC
features and speaker adapted HMMs [39]. Applying multi-condition training in-
creases the mean performance to 69.85 %. A further gain is obtained by convolutive
NMF as detailed in Section 3.3.4, leading to an average accuracy of 80.92 % for a
comparable HMM system and to 82.65 % for a MAP adapted recognizer.

• The effect of speaker adaptation: As expected, all speaker adaptation tech-
niques increase the keyword recognition accuracies of the respective systems.
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Table 3.14: Development set: Keyword recognition accuracies [%] for different
SNR levels applying NMF, multi-condition training (MCT), MFCC, Tandem
BLSTM-MFCC, or word prediction features (bt, nt) in combination with HMM,
CTC, or multi-stream (MS) back-ends. Speaker adaptation techniques: MAP
adaptation of HMMs and re-training of BLSTM, CTC, and/or HMM recogniz-
ers. ?no MCT.

speaker adaptation SNR mean

N
M

F

F
e
a
tu

re
s

B
a
ck

-e
n
d

B
L
S
T
M

C
T
C

H
M
M

M
A
P

-6 dB -3 dB 0dB 3dB 6dB 9dB

7 MFCC? HMM - - 3 7 31.08 36.75 49.08 64.00 73.83 83.08 56.30

7 MFCC HMM - - 3 7 47.25 55.67 66.33 76.08 84.67 89.08 69.85

3 MFCC HMM - - 7 7 63.75 66.33 71.67 75.92 79.92 81.58 73.20

3 MFCC HMM - - 3 7 70.33 76.08 80.08 83.17 88.08 87.75 80.92

3 MFCC HMM - - 3 3 73.58 77.33 82.17 84.25 88.58 90.00 82.65

3 MFCC CTC - 7 - - 71.00 73.67 79.50 82.42 87.25 88.75 80.43

3 MFCC CTC - 3 - - 77.00 81.00 84.58 87.50 90.58 92.08 85.46

3 Tandem HMM 7 - 7 7 75.75 78.05 83.42 85.73 89.58 90.58 83.85

3 Tandem HMM 7 - 3 7 74.08 79.72 83.58 86.56 89.17 91.83 84.16

3 Tandem HMM 7 - 3 3 77.09 80.38 84.50 87.48 91.00 92.75 85.53

3 Tandem HMM 3 - 3 3 78.34 84.72 87.08 89.73 92.33 93.92 87.69

3 Tandem CTC 7 7 - - 74.08 78.42 81.92 85.17 88.42 89.67 82.95

3 Tandem CTC 7 3 - - 75.92 79.58 83.58 87.08 90.50 90.75 84.57

3 Tandem CTC 3 3 - - 79.17 84.25 87.00 89.67 92.08 93.42 87.60

3 MFCC, bt MS-HMM 7 - 7 7 77.08 80.33 84.17 88.08 89.25 90.92 84.97

3 MFCC, bt MS-HMM 7 - 3 7 78.67 81.75 85.67 88.67 90.83 92.58 86.36

3 MFCC, bt MS-HMM 7 - 3 3 81.50 83.00 86.75 90.58 92.25 93.67 87.96

3 MFCC, bt MS-HMM 3 - 3 3 83.36 86.73 90.00 91.49 94.08 95.00 90.11

3 MFCC, bt, nt MS-HMM 3 - 3 3 86.04 89.48 92.67 94.57 96.25 96.58 92.60

For the baseline MFCC-HMM system, a large improvement from 73.20 % to
80.92 % is observed when adapting HMMs by re-training the models employing
speaker-specific training material. A further 1.73 % (absolute) gain is reached
by MAP adaptation of the HMMs. Interestingly, the performance difference
between speaker-independent HMMs and re-trained speaker adapted HMMs
is considerably smaller when BLSTM-modeling is applied in the front-end
(83.85 % vs. 84.16 % for the Tandem BLSTM-HMM front-end and 84.97 % vs.
86.36 % for the multi-stream BLSTM-HMM). This indicates that BLSTM fea-
tures are less speaker-specific than conventional MFCCs. Also for CTC back-
ends, speaker adaptation boosts recognition performance (80.43 % vs. 85.46 %
when using MFCC features and 82.95 % vs. 84.57 % when applying Tandem
features). Finally, also framewise BLSTM word predictors tend to produce bet-
ter Tandem features / word estimates when speaker-specific training material
is used to adapt the networks.

• MFCC features vs. Tandem features: Tandem features based on bidirectional
Long Short-Term Memory modeling (see Section 3.2.3) consistently outper-
form standard MFCC features: Using speaker adapted networks, performance
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can be boosted from 82.65 to 87.69 % for an HMM system and from 85.46
to 87.60 % for a CTC back-end. Note, however, that the performance gain
achieved via Tandem features is much smaller when applying a CTC back-
end. Thus, BLSTM modeling in the front- and back-end seem to be not fully
complementary.

• HMM vs. CTC back-end: Replacing the HMM back-end by a CTC network
as outlined in Section 2.3.10 enhances ASR performance (82.65 vs. 85.46 % for
speaker adapted systems). However, when applying context-sensitive Tandem
features, the performance difference between HMMs and CTC networks dis-
appears, which indicates that also HMMs can reach improved performance if
long-range context is modeled on the feature level.

• Methods for BLSTM-modeling: Overall, the configurations shown in Table 3.14
reflect three different methods to integrate BLSTM context-modeling into an
ASR system: using Tandem BLSTM-MFCC features in the front-end, applying
a BLSTM-based CTC back-end, and exploiting BLSTM word predictions in
a multi-stream HMM framework. When comparing the keyword recognition
performances of the individual methods, we see that incorporating BLSTM-
modeling in a CTC back-end (85.46 % accuracy) is less effective than employ-
ing Tandem features (up to 87.69 % accuracy). The highest average keyword
accuracy achieved with systems not performing NSC is 90.11 % and can be
obtained with the speaker adapted multi-stream BLSTM-HMM outlined in
Section 3.2.2. Hence, the multi-stream architecture seems to be the most ef-
fective strategy of applying bidirectional Long Short-Term Memory for noise
robust small-vocabulary ASR.

• Non-Negative Sparse Classification: The last line of Table 3.14 shows the key-
word recognition accuracy of the triple-stream architecture which, in addition
to the BLSTM word prediction, also takes into account the word prediction nt
generated via Non-Negative Sparse Classification as described in Section 3.3.4.
Compared to the best BLSTM-based multi-stream system (90.11 % accuracy),
the triple-stream approach enables a remarkable increase in recognition per-
formance, leading to an average accuracy of 92.60 %. Thus, we can conclude
that performance gains achieved via BLSTM word predictors and NSC word
predictors are complementary to a certain degree.

Test Set Results

Results on the CHiME test set are shown in Table 3.15. Generally, the same trends
as for the development set can be observed. Applying convolutive NMF, multi-
condition training, speaker adaptation, BLSTM modeling, and NSC leads to an
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Table 3.15: Test set: Keyword recognition accuracies [%] for different SNR lev-
els applying NMF, multi-condition training (MCT), MFCC, Tandem BLSTM-
MFCC, or word prediction features (bt, nt) in combination with HMM, CTC,
or multi-stream (MS) back-ends. Speaker adaptation techniques: MAP adap-
tation of HMMs and re-training of BLSTM, CTC, and/or HMM recognizers.
?no MCT.
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7 MFCC HMM? - - 3 7 30.33 35.42 49.50 62.92 75.00 82.42 55.93

7 MFCC HMM - - 3 7 47.67 56.25 67.42 76.50 82.42 88.50 69.82

3 MFCC HMM - - 7 7 65.92 68.33 75.33 77.67 79.92 83.33 75.08

3 MFCC HMM - - 3 7 72.08 76.50 82.08 84.25 87.17 89.17 81.88

3 MFCC HMM - - 3 3 75.58 79.25 84.08 87.67 88.33 90.58 84.25

3 MFCC CTC - 7 - - 70.83 76.25 80.17 84.25 86.00 88.50 81.00

3 MFCC CTC - 3 - - 74.92 79.25 83.33 88.08 89.50 90.92 84.33

3 Tandem HMM 7 - 7 7 75.67 79.22 82.08 87.81 88.17 89.92 83.81

3 Tandem HMM 7 - 3 7 76.00 79.97 84.25 87.48 88.58 91.75 84.67

3 Tandem HMM 7 - 3 3 77.67 80.72 84.75 88.56 90.00 92.00 85.62

3 Tandem HMM 3 - 3 3 80.42 85.64 89.17 91.57 93.00 94.25 89.01

3 Tandem CTC 7 7 - - 73.33 77.67 80.83 85.83 86.58 90.25 82.42

3 Tandem CTC 7 3 - - 74.42 79.50 82.50 87.58 87.25 91.58 83.81

3 Tandem CTC 3 3 - - 80.00 84.33 87.25 90.75 91.92 93.75 88.00

3 MFCC, bt MS-HMM 7 - 7 7 76.58 81.33 83.00 88.25 89.08 91.17 84.90

3 MFCC, bt MS-HMM 7 - 3 7 79.00 82.75 86.58 89.42 89.58 92.67 86.67

3 MFCC, bt MS-HMM 7 - 3 3 80.33 83.50 86.67 90.00 90.25 92.92 87.28

3 MFCC, bt MS-HMM 3 - 3 3 82.92 87.15 90.25 93.66 93.92 94.83 90.45

3 MFCC, bt, nt MS-HMM 3 - 3 3 84.75 88.31 92.08 93.91 95.67 96.42 91.86

impressive increase of keyword recognition accuracy from 55.93 to 91.86 %. Note
that when evaluating the test set, the Tandem BLSTM-HMM system as well as
the BLSTM-based CTC back-end can both almost reach the performance of multi-
stream BLSTM-HMM decoding with an average accuracy of 89.01 and 88.00 %,
respectively. However, as for the development set evaluations, the most efficient
way to integrate BLSTM is the multi-stream architecture (accuracy of 90.45 %).
Again, NSC further improves performance (significance level < 0.005), so that the
best result of 91.86 % is obtained with the triple-stream model. This approach
slightly outperforms the best CHiME Challenge contribution of 91.65 % average
accuracy which was reported in [56]. The system described in [56] is the result of
a combination of three different systems exploiting spatial, spectral, and temporal
modeling of speech and noise, in addition to dynamic variance adaptation.

3.4 Summary and Outlook

Automatic verbal behavior analysis is an essential precondition for speech-based
human-machine interfaces incorporated into conversational agents such as the SE-
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MAINE system (see Section 2.1). This chapter provided an overview over recent
progress in the field of automatic speech recognition, aiming to advance the state-
of-the-art in the extraction of the spoken content from speech signals containing
spontaneous, conversational, and partly emotional, noisy, and reverberated speech.
We focused on three major ASR-related topics, including reliable keyword spotting
(Section 3.1), continuous recognition of conversational speech in challenging scenar-
ios (Section 3.2), and robustness with respect to noise and reverberation (Section
3.3). In all three research fields, we explored novel context-sensitive machine learning
methods that go beyond the standard ASR method of using well-known features such
as MFCCs for HMM-based speech decoding. Efficient exploitation of contextual in-
formation within speech recognition systems is known to be an important aspect that
can increase recognition accuracy. While conventional ASR systems model context
on multiple levels by including delta features, stacking successive feature frames for
probabilistic MLP feature generation, applying triphone HMMs for co-articulation
modeling, and using language models in addition to acoustic models, this chapter
showed how recognition systems can be enhanced by incorporating a technology de-
veloped for context-sensitive sequence labeling with neural networks: the so-called
Long Short-Term Memory architecture (see Section 2.3.9). LSTM networks are able
to model a flexible amount of temporal long-range contextual information that can
be exploited in multiple stages of the speech recognition process.

First, in Section 3.1.1, a discriminative keyword spotter [123] was enhanced by
integrating phoneme predictions generated by a bidirectional LSTM network [275].
This vocabulary independent keyword spotting approach is not based on Hidden
Markov Models, but on a set of non-linear feature functions and a discriminative
learning strategy. Exploiting BLSTM could significantly increase the AUC as shown
in experiments on the SAL corpus of emotional human-machine conversations. Next,
Section 3.1.2 showed how a Graphical Model can be used for the task of keyword
spotting. We derived the explicit graph representation of a GM that can be used
to train phoneme models and extended the graph in a way that a set of defined
keywords can be reliably detected in continuous speech. The aim was to encode
all model assumptions via hidden variables and conditional probability functions
in a unified GM framework and to create a basis for investigating architectural
modifications and refinements in the following sections. A major advantage of using
Graphical Models in general, and explicit graph representations in particular, is that
they allow for rapid prototyping if the potential of new model architectures shall be
investigated (as done in [273], for example). The Graphical Model was designed
in a way that it overcomes most of the drawbacks of standard keyword spotting
techniques. The model is vocabulary independent meaning that during the training
phase no knowledge about the specific set of keywords the system shall be applied
for, is necessary. This implies that the GM can be trained on any corpus, no matter
if and how many times the keywords occur in the training database. It is only in
the testing phase that the model needs to know the pronunciations of the keywords
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(also see [278]). Moreover, in contrast to many other approaches, the proposed GM
does not need an explicitly trained garbage model. It rather uses a hidden garbage
variable that serves as a switching parent of the phoneme node in the network. Thus,
the model can switch between keywords and non-keyword parts of a speech sequence
without requiring a model that was trained on ‘garbage speech’.

Applying the DBN structure introduced in Section 3.1.2, Section 3.1.3 showed
how the keyword spotter can be extended to a Tandem BLSTM-DBN. The idea
was to unite the high-level flexibility of Graphical Models and the low-level context-
sensitive sequence labeling capabilities of BLSTM networks to build a keyword spot-
ting system prevailing over the DBN approach. Experiments for the evaluation of
the concept focused on a child-robot interaction scenario and investigated the benefit
of flexible co-articulation modeling in children’s speech via BLSTM networks [293].
The comparison of the Tandem approach with other state-of-the-art keyword spot-
ting techniques showed that the BLSTM-DBN can achieve the same performance
as a recently proposed Connectionist Temporal Classification approach [75], which,
however, is less flexible since it is based on whole-word modeling. Furthermore, the
Tandem technique outperformed an HMM system that is based on triphone modeling
rather than on Long Short-Term Memory. Further experiments demonstrated that
the proposed Tandem technique is equally well suited for female and male children
and that the word spotting performance of the Tandem BLSTM-DBN shows no de-
pendency on the age of the children, while other approaches lead to larger variations
of the ROC curves for different age groups and genders. Co-articulation modeling
via bidirectional Long Short-Term Memory was shown to increase recognition per-
formance when compared to pure triphone or monophone modeling – especially for
younger children who tend to show more variability in their speech production.

Sections 3.1.4 and 3.1.5 introduced two further keyword spotters based on DBNs
and BLSTM networks [280]. In contrast to the Tandem BLSTM-DBN, these tech-
niques apply the principle of Connectionist Temporal Classification (see Section
2.3.10), which means that the models can be trained on unsegmented data. Finally,
in Section 3.1.6, all of the proposed vocabulary independent keyword detectors were
evaluated and compared on two different keyword spotting tasks. All considered
approaches exclusively rely on acoustic evidence and do not require an in-domain
language model [123, 273, 275, 278, 280, 297]. It was found that the best vocab-
ulary independent keyword spotting performance on read speech can be obtained
with the Tandem CTC-DBN approach outlined in Section 3.1.5. For spontaneous
speech, purely discriminative modeling in combination with BLSTM prevails over
all other investigated methods (see Section 3.1.1).

Section 3.2 demonstrated that BLSTM networks cannot only be applied for
enhanced keyword detection, but also for traditional ASR tasks such as the tran-
scription of continuous speech signals. Again, we mainly focused on challenging
conversational speaking styles which tend to lead to high ASR error rates. Ex-
periments showed how speech recognition can be improved by applying BLSTM
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modeling – either within the recognizer front-end for context-sensitive feature gener-
ation [279, 291, 296], or as part of a multi-stream HMM back-end [281]. As BLSTM
networks incorporate a self-learned amount of contextual information in the feature
extraction process, we were able to obtain enhanced probabilistic features, prevail-
ing over conventional RNN or MLP features. We examined systems using a discrete
BLSTM phoneme estimate as additional feature as well as Tandem architectures
processing probabilistic feature vectors that are derived from the continuous loga-
rithmized and PCA-transformed vector of BLSTM output activations. Evaluations
in Section 3.2.5 revealed that fusing the BLSTM concept with the so-called bottle-
neck technique [94] enables the generation of a well decorrelated and compact feature
space that leads to the best ASR accuracies.

As the third major topic within the field of verbal behavior analysis, Section
3.3 was devoted to techniques that increase the noise robustness of ASR. Sections
3.3.1 and 3.3.2 dealt with different popular approaches such as feature enhancement
via SLDM and multi-condition training [65, 226, 287], before Section 3.3.3 exam-
ined how Long Short-Term Memory networks can be applied for noise robust ASR
[283, 298]. Next, in Section 3.3.4 various LSTM-based frameworks for robust speech
recognition that can be applied in high levels of non-stationary background noise and
reverberation were proposed. In addition to well-known techniques such as speaker
adaptation and multi-condition training, the systems applied convolutive NMF for
speech enhancement as well as LSTM to efficiently exploit contextual information.
Three different methods to integrate bidirectional LSTM modeling into speech decod-
ing were evaluated: First, we considered a Tandem front-end employing framewise
BLSTM word posterior probabilities as features. Second, we examined a CTC-ASR
system that uses BLSTM modeling in the back-end and does not need HMMs. Third,
a multi-stream system that decodes MFCC features and BLSTM word predictions
was built. All three system variants achieved remarkable performance on the CHiME
Challenge task, which consists of recognizing digits and letters in a noisy and rever-
berated multisource environment. Best accuracy could be reached by a fully speaker
adapted triple-stream technique which uses Non-Negative Sparse Classification in
addition to BLSTM and achieves a 4 % (absolute) performance gain compared to
the original challenge submission of the Technische Universität München [260]. As
discussed in more detail in [264], this remarkable performance can be attributed to
exploitation of complementary methods for noise robustness in different components
of the system (NMF speech enhancement, NSC, and BLSTM context modeling). An-
other interesting result was that CTC networks can be a promising alternative to
HMM-based back-ends. The proposed system prevails over previously introduced
methods (e. g., [149]) and outperforms the best technique introduced in the context
of the PASCAL CHiME Challenge 2011 [56].

The main conclusion of Chapter 3 is that bidirectional Long Short-Term Memory
is a promising machine learning architecture that, if integrated into systems for au-
tomatic speech recognition, can significantly reduce error rates via context-sensitive
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decoding of speech features. Impressive performance gains could be observed in mul-
tiple ASR disciplines, including keyword spotting, LVCSR, and noise robust ASR.
The experiments in this chapter show the importance of close collaborations between
the machine learning community and the ASR community, or, in other words, the
necessity of uniting theory and application. Ideas such as the LSTM technique are of
limited relevance if their application is restricted to initial proof of concept studies,
but become fruitful as soon as they are intelligently integrated into applications like
ASR where they replace outdated approaches (such as MLPs, in our example). A
clear confirmation of this conclusion can be seen, e. g., in Section 3.3.5, which shows
evaluations on the PASCAL CHiME Challenge 2011 task: The idea of LSTM con-
text modeling contributes to a recognition engine that achieves the best recognition
results reported until the time of writing.

Of course there are multiple possibilities to improve LSTM-based speech recog-
nition in the future. It would be interesting to investigate combinations of the
techniques discussed in this chapter, e. g., by fusing multiple prediction sequences
via hybrid fusion methods as outlined in Sections 2.3.4 and 2.3.5. To analyze and un-
derstand co-articulation effects in speech on the one hand and the degree of context
modeled by LSTM phoneme predictors on the other hand, it might be interesting to
examine the sequential Jacobian [89], i. e., the influence of past RNN inputs on the
output at a given time step in the phoneme sequence. Moreover, future work should
focus on hierarchical BLSTM topologies and on networks trained on phoneme state
targets as alternative to phoneme targets. Language modeling with BLSTM net-
works could be an effective way to enhance word-level context usage. Furthermore,
future studies should be devoted to developing a better integration of system compo-
nents such as BLSTM, NSC, and NMF, i. e., of recognition and enhancement. This
could be achieved by iterative methods exploiting decoded phonetic information in
speech enhancement and vice versa, such as in [185].
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Non-Verbal Behavior Analysis

In natural emotion-sensitive human-agent conversation scenarios, such as in the SE-
MAINE set-up outlined in Section 2.1, not only verbal, but also non-verbal aspects
of communication play an important role. When speaking of non-verbal behavior,
we refer to conveyed information that goes beyond the spoken content and includes
everything that is affect- and emotion-related. Humans have different ways and use
different modalities to express emotions or emotion-related states. In multimodal di-
alogue systems, speech and vision are the most important modalities to be exploited
for inferring the affective state of the user. They allow for an automatic estimation
of a user’s emotion via analysis of speaking style, facial expression, etc. which in
turn can be forwarded to the dialogue manager. Based on the estimated user state,
the dialogue system can react to the user’s current emotion and select appropriate
system responses (see also Section 2.1.1 and Figure 2.1).

This chapter introduces machine learning techniques for automatic non-verbal
behavior analysis as needed in emotionally intelligent human-computer interaction
systems. Based on suitable acoustic low-level speech descriptors such as those men-
tioned in Section 2.2, Section 4.1 focuses on emotion recognition from the speech
signal. In addition to acoustic descriptors like prosodic, spectral, and voice quality
features, we will also exploit linguistic features, i. e., information extracted from
the recognized spoken content in a user’s utterance. Thus, keyword spotters and
speech recognizers as outlined in Chapter 3 can be interpreted as linguistic feature
extractors needed within emotion recognition systems. In Section 4.2, we investi-
gate audio-visual appraoches towards affect recognition by considering also visual
features encoding a user’s facial expression. Since human emotion is highly context-
sensitive, most of the proposed recognition engines will include machine learning
frameworks for long-range temporal context modeling, such as the Long Short-Term
Memory architecture explained in Section 2.3.9 and advanced in Chapter 3.
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4.1 Speech-Based Affect Recognition

For the design of intelligent environments which enable natural human-machine
interaction, it is important to consider the principles of interhuman communication
as the ideal prototype [252]. While automatic speech recognition is already an
integral part of most intelligent systems such as virtual agents, in-car interfaces, or
mobile phones, a lot more pattern recognition modules are needed to close or at
least narrow the gap between the human ability to permanently observe and react
to the affective state of the conversational partner in a socially competent way, and
the straightforwardness of system responses generated by today’s state-of-the-art
human-computer interfaces [49]. Thus, automatic emotion recognition (AER) is an
essential precondition to make e. g. virtual agents more human-like and to increase
their acceptance among potential users [174, 231, 306].

Even though researchers report outstanding recognition accuracies when trying
to assign an affective state to an emotionally colored speech turn [33, 223], sys-
tems that apply automatic emotion recognition still are only rarely found in every
day life. The main reason for this is that emotion recognition performance is of-
ten overestimated: Apart from examples such as call-center data [60, 138, 173],
databases for interest recognition [228], or other spontaneous speech evaluations
[12, 103, 216, 238, 253], most speech-based AER systems are trained and tested
on corpora that contain segmented speech turns with acted, prototypical emotions
that are comparatively easy to assign to a set of pre-defined emotional categories
[29, 69, 152]. Often, only utterances that have been labeled equally by the majority
of annotators are used to evaluate AER performance. Yet, these assumptions fail
to reflect the conditions a recognition system has to face in real-life usage. Next
generation AER systems must be able to deal with non-prototypical speech data
and have to continuously process naturalistic and spontaneous speech as uttered by
the user (e. g., as in the Interspeech 2009 Emotion Challenge [219]). More specifi-
cally, a real-life emotion recognition engine has to model ‘everything that comes in’,
which means it has to use all data as recorded, e. g., for a dialogue system, media
retrieval, or surveillance task by using an open microphone setting. According to
[237], dealing with non-prototypicality is “one of the last barriers prior to integration
of emotion recognition from speech into real-life technology”. Thus, in this section
we investigate speech-based systems for emotion recognition which are able to cope
with spontaneous, non-prototypical, and partly unsegmented speech.

In contrast to static classification scenarios for which pattern classifiers such as
Support Vector Machines (see Section 2.3.1) are applied, modern AER is influenced
by the growing awareness that context plays an important role in expressing and
perceiving emotions [10, 282]. Human emotions tend to evolve slowly over time and
utterances observed in isolation might not be sufficient to recognize the expressed
emotion. This motivates the introduction of some form of context-sensitivity in emo-
tion classification frameworks. For example, it was shown that AER performance
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in dyadic interactions profits from taking into account speech cues from the past
utterance of a speaker and his interlocutor [136]. As first shown in [276], capturing
temporal long-range dependencies via Long Short-Term Memory modeling (see Sec-
tion 2.3.9) can enhance the prediction quality of an AER system and is superior to
static SVM modeling. Hence, this section mainly focuses on LSTM-based recogni-
tion of emotion and emotion-related states like the ‘level of interest’ (Section 4.1.3).
This concept is able to model emotional history and – as shown in Section 4.1.2 –
enables a completely novel approach towards RNN-based affect recognition that uses
low-level features on a frame basis instead of turnwise computed statistical function-
als or fixed length feature vector sequences, as applied in other context-independent
RNN systems [166].

Section 4.1.1 introduces a speech-based emotion recognition framework using
LSTM and investigates the tasks of estimating the quadrant of a continuous two-
dimensional emotional space spanned by the two emotional dimensions valence and
arousal. The degree of valence indicates whether the current emotion is rather
positive or negative, while the degree of arousal refers to ‘excited’ vs. ‘calm’. Alter-
natively to quantizing the valence-arousal space to four quadrants, the derivation of
data-driven clusters in the emotional space is examined in Section 4.1.1 [277]. In
Section 4.1.2, a combined acoustic-linguistic emotion recognition system is proposed
[294]. Different LSTM-based modeling techniques are contrasted, including frame-
wise and turnwise modeling as well as uni- and bidirectional context exploitation.
Next, in Section 4.1.3, we concentrate on estimating a user’s level of interest (LOI)
[300] using acoustic and linguistic cues in combination with a BLSTM network as
back-end. Finally, Section 4.1.4 deals with speech-based recognition of affect in
reverberated environments [302].

4.1.1 Data-Driven Clustering in Emotional Space

In most cases, annotators of databases that are used to train and evaluate emotion
recognition engines either focus on assigning discrete classes like anger, happiness, or
neutral to the emotionally colored speech turns [11, 29] or they try to use continuous
scales for predefined emotional dimensions such as valence, arousal, or dominance
[64, 97]. Yet, both strategies are suboptimal: In the first case the class division
has to be determined in advance, e. g., by defining emotional prototypes that typi-
cally occur in a given database. This implies inflexible, fixed classes that can only be
changed by combining or splitting certain classes to reduce or increase the ‘emotional
granularity’ [228]. Annotating and modeling emotional dimensions is more flexible
and precise since annotation tools like FEELtrace [47] enable a quasi-infinite reso-
lution of human affect. Yet, when evaluating and processing the output of emotion
recognizers that provide continuous values for valence, arousal, etc., the emotional
continuum has to be discretized again, e. g., in order to reduce the multiplicity of
possible system responses of an emotionally sensitive virtual agent. A common
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practice is to use a mapping to quadrants such as positive-active, positive-passive,
negative-active, and negative-passive [177]. However, these classes often do not opti-
mally reflect typical emotional states that occur within the training data or are to
be expected when applying the emotion recognition engine in a real-world scenario.
For example in [48], the positive-passive quadrant had to be excluded since it did
not occur in the training set. This suggests that a categorization of affective sates
in the valence-arousal space should not just involve a simple discretization of the
axes but rather closely investigate continuous annotations of the training examples
to find meaningful classes.

In this section, we investigate a data-driven clustering of the valence-arousal
space in order to find classes that better fit the data on which the recognizer is
trained, and to optimally model the affective states that actually occur in the specific
recognition task. Between two and six emotional states are determined via k-means
clustering of the training data. We consider two databases with completely different
distributions in emotional space: The Belfast Sensitive Artificial Listener (SAL)
database [64] where the occurrence of positive and negative emotions is relatively
balanced, and TV talkshow data from the Vera am Mittag (VAM) corpus [97] which
contains mainly negative emotions. For emotion recognition, both databases imply
the great challenge of having to deal with all data – as observed and recorded – and
not only with manually selected ‘emotional prototypes’ as in many other databases.

Databases

The first database is the Belfast Sensitive Artificial Listener corpus which is part of
the HUMAINE database [64]. We consider a subset which contains 25 recordings
in total from four speakers (two male, two female) with an average length of 20
minutes per speaker. The data contains audio-visual recordings from natural human-
computer conversations that were recorded through a SAL interface designed to let
users work through a range of emotional states. Data has been labeled continuously
in real-time by four annotators with respect to valence and arousal using a system
based on FEELtrace [47]. The adjusted values for valence and arousal were sampled
every 10 ms to obtain a temporal quasi-continuum. As continuous ground truth
label, the mean of the four annotators was used.

The 25 recordings have been split into turns using an energy-based voice activity
detection. A total of 1 692 turns is accordingly contained in the database. The
turns were randomly divided into training (1 102 turns) and test (590 turns) splits
for the experiments. Both sets contain all speakers, thus results are not speaker
independent, which in turn would not be feasible with only four speakers. Labels
for each turn were computed by averaging the frame level valence and arousal labels
over the complete turn.

Finally, k-means clustering (with Euclidean distance) was conducted to find be-
tween two and six clusters and the corresponding class borders in a two-dimensional
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Figure 4.1: Annotations of the speech turns in the SAL and VAM databases
with cluster midpoints and class borders (dashed lines) determined via k-means
clustering.

valence-arousal space. Figure 4.1(a) shows the cluster midpoints obtained for four
clusters (black points) as well as the annotations of all utterances in the training set
in terms of small circles. While three clusters roughly correspond to the common
quadrants, one cluster centre marks an emotional state of neutral valence and slightly
negative arousal which can hardly be assigned to one of the quadrants but obviously
represents a typical affective user state when interacting with virtual agents.

The second emotional speech corpus used in this section is the VAM database [97].
It contains 947 spontaneous and emotionally coloured utterances from 47 guests of
the German talkshow ‘Vera am Mittag’ and was recorded from unscripted, authentic
discussions. For speaker independent evaluation ten speakers were randomly selected
for testing while utterances from the remaining 37 speakers were used as training
set. A large number of labelers was used to obtain continuous transcriptions for the
emotional dimensions valence and arousal (17 labelers for one half of the data, six
for the other).

Due to the topics discussed in the talkshow (friendship crises, defalcation, etc.)
mostly negative emotions occur in the database. This points out the need to deter-
mine emotional clusters that are representative for affective states occurring within
the database. Of course we cannot expect an emotion recognition or automatic TV-
show annotation system trained on the valence dimension of VAM data to reliably
detect utterances of positive valence, since such speech turns hardly occur in the
corpus. In the case of four clusters, all cluster midpoints represent negative valence
(see Figure 4.1(b)).
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Table 4.1: 39 acoustic low-level descriptors.

feature group features in group #

signal energy root mean-square and log. energy 2
pitch F0, two measures for probability of voicing 3
voice quality Harmonics-to-Noise Ratio 1
cepstral MFCC 16
time signal zero-crossing-rate, max. / min. value, DC component 4
spectral energy in bands 0-250 Hz, 0-650 Hz, 250-650 Hz, 1000-4000 Hz 4

10 %, 25 %, 50 %, 75 %, and 90 % roll-off 5
centroid, flux, and relative position of max. and min. 4

sum: 39

Feature Extraction

Table 4.1 lists the 39 acoustic low-level descriptors that were extracted from the
audio signal to train and evaluate the emotion recognition system. Additionally,
first and second order temporal derivatives were used, resulting in 117 features.
51 statistical functionals such as maximum, minimum, mean, quartiles, percentiles,
centroids, etc. have been applied, so that the total set consists of 5 967 features.
To reduce the feature space dimensionality, relevant features were determined via
Correlation-based Feature Subset (CFS) selection. The main idea of CFS is that
useful feature subsets should contain features that are highly correlated with the
target class while being uncorrelated with each other (for further details, see [101]
and [269]). Depending on the classification task, between 102 and 132 features
have been automatically selected for the SAL experiment and between 132 and 155
features have been selected for the VAM experiment. All features were normalized
to have zero mean and unit variance.

Experiments and Results

In [276], a regression technique was used to train LSTM networks for the prediction
of continuous values for valence and arousal under consideration of emotional history.
In the following, such networks will be referred to as Regression-LSTMs. As an al-
ternative to the regression technique, LSTM networks were discriminatively trained
on the discrete clusters in a way that the size of the output layer corresponds to the
number of different emotional clusters that shall be distinguished. Thus, for a given
speech turn, the activations of the network outputs indicate the probability of the
corresponding cluster. The size of the input layer is equal to the number of acoustic
features. One hidden LSTM layer containing 100 memory blocks was used. Similar
to the networks applied for speech recognition in Chapter 3, zero mean Gaussian
noise with standard deviation 0.6 was added to the inputs during training to enhance
generalization. All networks were trained using Resilient Propagation (rProp) [191].

For both databases, the performance of discriminatively trained LSTMs, the
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Table 4.2: Results (in [%]) for the discrimination of 2, 3, 4, 5, and 6 emotional
clusters as well as for the 4 quadrants (4q) when using discriminatively trained
LSTM networks (LSTMd), Regression-LSTMs (LSTMr), Support Vector Ma-
chines (SVM), or a ‘dummy’ feature (for chance reference); results are shown
for the SAL and VAM database; best F1-measures are highlighted.

database SAL VAM

# of clusters 2 3 4 5 6 4(q) 2 3 4 5 6 4(q)

LSTMd

accuracy 77.1 61.0 50.7 41.4 40.0 50.5 82.1 71.3 59.0 45.6 48.2 74.4
recall 67.1 55.5 46.4 40.1 37.5 48.1 80.7 75.8 63.0 50.3 47.4 41.3

precision 77.1 59.5 44.6 36.3 35.2 51.6 75.8 69.2 59.5 47.6 47.6 36.8

F1-measure 71.7 57.4 45.5 38.1 36.3 49.8 78.2 72.3 61.2 48.7 47.5 38.9

LSTMr

accuracy 70.8 47.1 30.9 38.0 27.5 34.9 85.6 72.3 52.8 43.1 43.6 67.2

recall 58.9 48.6 33.4 33.0 27.8 58.9 80.8 71.5 55.5 45.9 41.3 38.8

precision 64.3 50.0 31.0 34.5 24.3 35.4 80.0 71.4 57.8 49.2 32.7 42.5
F1-measure 61.5 49.3 32.2 33.8 26.0 35.6 80.4 71.5 56.6 47.5 36.5 40.6

SVM
accuracy 66.1 51.4 38.6 30.0 27.1 41.4 81.5 68.7 53.8 46.2 45.1 71.8

recall 55.3 46.6 38.1 30.3 26.0 41.4 75.1 70.5 56.8 50.1 45.0 41.1
precision 57.6 43.7 34.6 27.9 23.7 42.2 74.4 67.6 56.0 49.2 43.2 48.1

F1-measure 54.9 42.0 32.8 25.2 21.8 38.9 74.7 68.9 56.1 47.9 43.3 40.1

dummy
accuracy 68.3 60.2 44.1 31.7 30.7 35.9 76.4 51.8 43.1 28.2 33.9 52.3
recall 50.0 33.3 25.0 20.0 16.7 25.0 50.0 33.3 25.0 20.0 16.7 25.0

Regression-LSTMs as used in [276], and SVMs was evaluated on six different emo-
tion recognition tasks: the distinction of two to six emotional clusters as well as the
assignment to one of the four quadrants in the valence-arousal space. The SVMs
used a polynomial kernel function of degree 1 and Sequential Minimal Optimiza-
tion (see Section 2.3.1). In contrast to the discriminative LSTM and SVM, the
Regression-LSTM outputs continuous values for valence and arousal which were dis-
cretized afterwards, according to the clusters and quadrants they would have been
assigned to using the minimum Euclidean distance. In order to be able to carry out
feature selection separately for valence and arousal, two separate networks (one for
valence and one for arousal) have been trained for Regression-LSTM-based emotion
recognition while for the discriminative LSTM and for SVM only one classifier has
been trained directly on the discrete cluster or quadrant indices to jointly classify
valence and arousal.

Table 4.2 shows the performance of the different classifiers for six different recog-
nition tasks using the two databases. For chance reference, the results obtained
through a single constant ‘dummy’ feature resulting in picking the majority class at
any time are included. Note that due to unbalanced class distributions, accuracy
is a rather inappropriate performance measure. Thus, the F1-measure (harmonic
mean between unweighted recall and unweighted precision) was used for perfor-
mance comparison. As can be seen, the discriminative LSTM outperforms both,
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the Regression-LSTM and SVM. Since in the SAL database all quadrants are suffi-
ciently ‘occupied’ (see Figure 4.1(a)), the F1-measure for the discrimination of four
quadrants is slightly higher than for the discrimination of four emotional clusters.
However, this is not true for the VAM corpus. Here, two quadrants are almost unoc-
cupied (see Figure 4.1(b)), which leads to better F1-measures for the discrimination
of four clusters and highlights the importance of defining class borders according
to the application and the database, respectively, rather than just discretizing emo-
tional space to equidistant fields. Apart from the quadrant discrimination and the
task of distinguishing two clusters in the VAM corpus, the discriminative LSTM
again prevails over the Regression-LSTM and the SVM.

On both datasets, the absolute F1-measure is rather low compared to results for
the discrimination of ‘prototypical emotions’ as published in [223], for example. Yet,
in real-life applications of emotion recognition, not only unambiguous emotions have
to be classified. The challenge for next-generation emotion recognition systems is
rather to develop advanced classifiers using long-range context to continuously deal
with all data, as it is necessary for the scenarios considered in this section.

4.1.2 Acoustic-Linguistic Emotion Recognition

As the Sensitive Artificial Listener scenario (see Section 2.1.1) is of utmost relevance
for human non-verbal behavior analysis as needed in the SEMAINE system (see
Section 2.1), this section focuses on emotion recognition using the SAL database.
Unlike in Section 4.1.1, where we considered emotion recognition from acoustic fea-
tures only, we now extend our analysis to combined acoustic-linguistic recognition of
affect. Since the experiments in Section 4.1.1 revealed that in the SAL database, all
four quadrants in the emotional space are occupied, we abstain from finding clusters
in the emotional space and address the problem of predicting the quadrant of the
emotional space (again spanned by the two dimensions valence and arousal), which
best describes the current affective state of the speaker. Consequently, the contin-
uum of emotional states is reduced to the four quadrants which can be described
as happy/excited (I), angry/anxious (II), sad/bored (III), and relaxed/serene (IV)
in order to keep the affective state information as simple as possible. A further
motivation for quadrant quantization of the continuous emotional space is to re-
duce the number of possible system responses for the emotion dependent dialogue
management of virtual agents, since at some stage, a categorical decision about the
user’s emotion has to be made before determining a suitable system output. The
AER framework outlined in this section is optimized for usage within virtual agent
scenarios such as the SEMAINE system [206, 294], which demands for incremen-
tal real-time emotion estimation. Applications like the SEMAINE system require
customized and immediate feedback based on the emotional state of the user, and
responses have to be prepared already before the user has finished speaking. This,
however, would hardly be feasible using traditional static classification approaches
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4.1. Speech-Based Affect Recognition

like SVMs which classify segmented or fixed length speech segments at the end of a
speech turn. Instead, incremental processing demands for techniques that operate
on short speech segments while incorporating an adequate and gradually increasing
amount of contextual information.

The experimental part of this section shows that the LSTM principle allows to
use low-level features on a frame basis as alternative to turnwise computed statisti-
cal functionals of low-level features for classification and regression. The principle of
framewise emotion estimation is related to strategies for speech recognition, where
the temporal evolution of low-level descriptors is not only captured by functionals
of features but by the classifier. Such an approach has many advantages: It allows
for incremental real-time emotion estimation from speech as it is needed for emo-
tionally sensitive virtual agents and does not need to operate on supra-segmental
units of speech (as in almost any other method [214, 239, 306]). Moreover, the
precondition of perfect segmentation is not needed anymore and the AER system
can update the emotion prediction while the user is speaking. The Long Short-Term
Memory RNN architecture copes with the fact that speech emotion is a phenomenon
observed over a longer time window. Typical units of analysis for static classifiers
are complete sentences, sentence fragments (i. e., chunks), or words [236]. Yet, find-
ing the optimal unit of analysis is still an active area of research [215, 222, 223].
Unlike HMM-based methods [217, 251] which also focus on low-level features and
perform best-path decoding on the complete input fragment, the LSTM technique
offers the great advantage that the amount of contextual information that is used
for emotion recognition is learned during training. In order to refine and update the
estimation of a user’s emotion once the complete spoken utterance is available, we
also investigate the usage of bidirectional context (see Section 2.3.8).

In addition to the acoustic features, the system presented in this section also
uses linguistic features derived from a Tandem BLSTM-DBN keyword spotter as
introduced in Section 3.1.3. Keywords which are correlated to the user’s emotion
are detected to provide a binary linguistic feature vector that is fused with the
acoustic features.

In what follows, we investigate the accuracy of predicting the quadrants of the
emotional space as well as the ability to distinguish high from low arousal and valence,
respectively. Furthermore, we evaluate the AER performance when considering
neutrality as a fifth emotional state. We consider both, turnwise and framewise
classification using BLSTM, LSTM, SVM, and conventional RNN architectures –
with and without linguistic features. In addition to continuously estimating valence
and arousal before assigning the prediction to one of the four quadrants, we also
investigate discriminative training on the quadrants (as in Section 4.1.1).
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Figure 4.2: Architecture of the acoustic-linguistic affect recognition system.

System Architecture

In Figure 4.2, a flowchart of the considered incremental affect recognition system
is shown. Depending on whether framewise or turnwise processing is used, the
openSMILE feature extraction module [73] provides either low-level descriptors or
statistical functionals of acoustic low-level features to the LSTM network for emotion
estimation. Additionally, MFCC features are provided to both components of the
Tandem keyword spotter, consisting of a DBN and a further LSTM network for
phoneme prediction. Together with the produced phoneme predictions, the MFCC
features are observed by the DBN, which then can detect the occurrence of a relevant
keyword (i. e., a word that is relevant for valence or arousal prediction). Both, the
discrete keyword feature and the acoustic features extracted by openSMILE are used
by an LSTM network to predict the user’s current emotion.

Acoustic Feature Extraction

The 28 low-level descriptors extracted from the audio signal for time-continuous
emotion recognition are summarized in Table 4.3 (column ‘C’). The descriptors were
extracted every 20 ms for overlapping frames with a frame-length of 32 ms. First
order regression coefficients are appended to the 28 low-level descriptors, resulting
in a 56 dimensional feature vector for each frame.

For turn-based emotion recognition experiments, we follow the traditional ap-
proach of generating a large set of features by applying statistical functionals to
low-level descriptor contours. Thus, alternatively, an extended set of 39 low-level
descriptors detailed in Table 4.3 (column ‘T’) is extracted, first and second order
delta coefficients are appended, and 36 functionals are applied to each of the result-
ing 117 low-level descriptor contours, resulting in a total of 4 212 features. The 36
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4.1. Speech-Based Affect Recognition

Table 4.3: 28 low-level audio features for time-continuous emotion analysis
(C) and 39 features for turn-based recognition (T); features in italics are used
for both, continuous and turn-based recognition.

feature group features in group #(C) #(T)

signal energy root mean-square and log. energy 1 2
pitch F0, two measures for probability of voicing 1 3
voice quality Harmonics-to-Noise Ratio 1 1
cepstral MFCC 0, MFCC 1-12, MFCC 13-15 12 16
time signal zero-crossing-rate, max. / min. value, DC component 1 4
spectral energy in bands 0-250Hz, 0-650Hz, 250-650Hz, 1000-

4000Hz
4 4

10 %, 25 %, 50 %, 75 %, and 90 % roll-off 5 5
centroid, flux, and relative position of max. and min. 3 4

sum: 28 39

functionals include maximum / minimum values and relative positions, range (max.-
min.), mean and mean of absolute values, max.-mean, min.-mean, quartiles and
inter-quartile ranges, 95 % and 98 % percentiles, standard deviation, variance, kur-
tosis, skewness, centroid of contour, linear regression coefficients and approximation
error, quadratic regression coefficients and approximation error, zero-crossing-rate,
25 % down-level time, 75 % up-level time, rise-time, and fall-time (see also [294]).

The 4 212 features for turn-based emotion recognition are reduced to relevant fea-
tures for arousal and valence independently by a Correlation-based Feature Subset
selection (see Section 4.1.1). Conducting CFS for turn-based emotion recognition
via regression resulted in 60 features being selected for arousal and 64 features for
valence. As termination criterion a maximum of five non-improving nodes before
terminating the greedy hill climbing forward search was considered (see [269]). Bi-
nary targets for arousal and valence (high vs. low) led to the selection of 110 and
55 features, respectively. For the discriminative four-class quadrant classification
task 121 features were selected, and for the five-class task applying CFS resulted in
123 selected features. For framewise emotion recognition the full set of 28 · 2 = 56
features was used without further reduction. As in Section 4.1.1, all features (turn-
based functionals and low-level features) were standardized to have zero mean and
unit standard deviation. These parameters were computed from the training data
only and applied to both, training and test data.

Linguistic Feature Extraction

Not only acoustic features, but also spoken or written text carries information about
the underlying affective state [8, 40, 67]. This is usually reflected in the usage of
certain words or grammatical alterations. A number of approaches exist for this anal-
ysis: keyword spotting [46, 68], rule-based modeling [146], Semantic Trees [309], La-
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tent Semantic Analysis [88], Transformation-based Learning [303], World-knowledge
Modeling [147], key-phrase spotting [218], and Bayesian Networks [28, 193]. Two
methods seem to be predominant, presumably because they are shallow representa-
tions of linguistic knowledge and have already been frequently employed in automatic
speech processing: (class-based) N-Grams [7, 59, 137, 178] and vector space mod-
eling [13, 213]. In emotion recognition, mostly unigrams have been applied so far
[59, 137]. The technique applied in this section is related to Bag of Words (BoW)
modeling [13, 120, 213] via keyword spotting, however, when applying framewise
emotion recognition, only one keyword can be present at a given time frame. In
the case of turnwise AER, the linguistic feature vector can contain more than one
keyword. This would enable techniques like (Bag of) N-Gram modeling or other
forms of linguistic information integration [210], which however were not used in
order to allow a fair comparison between framewise and turnwise affect recognition.

For combined acoustic and linguistic AER, the acoustic feature vector is extended
by appending binary linguistic features. Each binary feature corresponds to the oc-
currence of one of the 56 keywords that were shown to be correlated to either valence
or arousal. Note that using a single linguistic feature containing the current word
identity in form of a word index would not be feasible with LSTM networks since
they assume that the absolute value of a feature is always correlated or proportional
to the ‘intensity’ of the corresponding feature. This, however, would not be true for
a ‘word index feature’.

When applying framewise acoustic-linguistic analysis, a short buffer has to be in-
cluded in order to allow the keyword spotter to provide the binary features after the
keyword has been decoded. Yet, this causes only a short delay as linguistic features
can still be delivered while the user is speaking. In order to reduce the vocabulary to
a small set of emotionally meaningful keywords, CFS feature selection was applied
on the training set. Pace Regression [258] based CFS used the continuous labels for
valence and arousal for Bag of Words keyword selection with a minimum term fre-
quency of two (without stemming). Keywords like again, angry, assertive, very etc.
were selected for arousal, and typical keywords correlated to valence were, e. g., good,
great, lovely, or totally. For keyword spotting, the Tandem BLSTM-DBN outlined
in Section 3.1.3 was applied. Phoneme models were trained on the TIMIT database
and adapted using the training split of the SAL database to allow a better modeling
of emotionally colored speech. All means, variances, and weights of the Gaussian
mixture probability distributions p(xt|st), as well as the state transition probabili-
ties p(strt |st) were re-estimated until the change of the overall log likelihood of the
SAL training set became less than 0.02 % (see also Sections 3.1.2 and 3.1.3). The
BLSTM network of the Tandem keyword spotter consisted of 100 memory blocks of
one cell each for each input direction. All other DBN and BLSTM parameters cor-
respond exactly to those applied in Section 3.1.3. Using these settings, the keyword
spotter achieved a true positive rate of 0.59 at a false positive rate of 0.05 on the
test partition of the SAL corpus.
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Figure 4.3: Turnwise annotations of the SAL database.

Experiments and Results

In all of the following experiments, the SAL database (see Section 4.1.1) was applied
for training and testing. More details on the annotation process and database char-
acteristics can be found in [294]. In order to fit the requirements of the SEMAINE
dialogue management [206], the recognition framework was designed in a way that
it estimates the current quadrant in the two-dimensional valence-arousal space. In
addition to quadrant classification, we also investigate a five-class task including a
‘neutral’ state, as well as the (two-class) discrimination of low and high valence and
arousal, respectively. The distribution of the averaged continuous-valued labels can
be seen in Figure 4.3. The dashed circle (with a radius of 0.33, dividing the axes
into thirds) in the center of the valence-arousal space marks a fifth region which
represents a neutral emotional state. For the five-class task, the coordinates that lie
within this circle will be considered as belonging to a fifth, neutral class.

For quadrant prediction two different strategies were followed: First, LSTM
networks for regression were trained to obtain continuous predictions for valence
and arousal which were then mapped onto one of the four quadrants. In order
to perform feature selection independently for both, the valence and the arousal
dimension, separate networks were used for the two dimensions. Alternatively, the
continuous labels for the emotional dimensions were mapped before training the
network in order to allow a discriminative training on the quadrants, following the
strategy applied in Section 4.1.1. These two strategies were also evaluated for the
five-class task and for both of the two-class tasks (discrimination of low vs. high
arousal and valence, respectively).

For each of the two techniques, traditional turnwise classification with statisti-
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cal functionals of acoustic features and framewise classification using only low-level
features was evaluated. The gain of appending the binary keyword feature vector
for combined acoustic-linguistic affect recognition was examined for every recognizer
configuration.

The size of the LSTM input layer corresponds to the number of selected acoustic
and linguistic features, while the size of the output layer is equal to the number of
regression/classification targets (one, two, four, and five, respectively). Each LSTM
network consists of one hidden layer with 50 memory blocks of one LSTM cell each.
The BLSTM networks have two hidden layers of 50 memory blocks, one for each
direction (forwards, backwards). For the acoustic-linguistic experiments, the LSTM
network size was increased to 70 memory blocks due to the increased size of the
combined acoustic-linguistic feature vector. The networks were trained applying
Resilient Propagation. Prior to training, all weights were randomly initialized in the
range from -0.1 to 0.1. Since the training converged faster for turnwise classification,
turnwise training was aborted after 10 epochs, whereas the training procedure for
framewise classification was aborted after 250 epochs.

Before mapping the (B)LSTM predictions ot onto quadrants, they were smoothed
using a first order low-pass filter to obtain the filtered predictions ost :

ost = αost−1 + (1− α) · ot. (4.1)

An α of 0.99 was used for time-continuous emotion recognition and an α of 0.7 was
used for turn-based recognition. Both values were optimized on the training set.

Alternatively to Regression-LSTMs, Support Vector Regression (SVR) was per-
formed for comparison [96, 269, 276]. The SVR used a polynomial kernel function of
degree 1 and Sequential Minimal Optimization. The discriminatively trained LSTM
networks were compared to Support Vector Machines instead of SVR. Since SVR
and SVM do not model contextual information, only turnwise classification was
evaluated in this case. In order to determine the gain of Long Short-Term Memory
modeling, also conventional RNN classification were evaluated for comparison. The
RNNs were trained in the same way as the LSTM networks, however, the network
consisted of 50 hidden neurons instead of the 50 one-cell LSTM memory blocks.

Furthermore, inter-labeler consistency was evaluated as an upper benchmark for
automatic emotion recognition. To obtain an impression of human emotion predic-
tion, the annotations of one labeler were compared to the mean of the annotations
of the remaining three labelers. This was done for all of the four labelers so that
eventually the average inter-labeler consistency could be determined. As a further
evaluation of inter-labeler agreement, Table 4.4 shows the kappa values for the four
different annotators. Since each of the kappa values is larger than 0.4, the labeler
agreement can be characterized as sufficiently high.

Table 4.5 shows the recognition result for the assignment of quadrants using the
regression method and the discriminative technique, respectively. Results for the
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Table 4.4: Kappa values for the four different annotators in the SAL database
(turnwise quadrant labeling); ILA: inter-labeler agreement.

κ 1 2 3 4

ILA 0.68 0.67 0.67 0.60
1 0.49 0.48 0.46
2 0.48 0.45
3 0.52

five-class task which also considers a ‘neutral’ state (see Figure 4.3) can be seen in
Table 4.6, and Table 4.7 contains the results for separate classification of the degree
of arousal and valence (i. e., positive vs. negative arousal and valence, respectively).
Again, the F1-measure was applied as main performance measure. Compared to
emotion recognition on prototypical speech turns (as in [223], for example), the
overall performance is significantly lower. Yet, the accuracies are in the order of
magnitude that is typical for real-life experiments, attempting to classify natural,
non-prototypical, and ambiguous emotional speech turns [219].

A rating of the prediction quality can be obtained when comparing the best result
in Table 4.5 (framewise BLSTM classification using acoustic and linguistic features)
with the prediction performance of a human labeler (lab, frame in Table 4.5): When
comparing the annotation of a single labeler to the mean of the annotations of the
remaining three labelers, the obtained average F1-measure (57.4 %) is only 7 % higher
than the F1-measure of the best classifier (50.4 %). This reflects the ambiguity of
perceived emotion and the resulting low degree of inter-labeler agreement. A further
reason for the low annotator F1-measure is that a high amount of utterances are
near the class borders (see Figure 4.3). Consequently, those speech turns are hard
to assign, even for human annotators.

The best F1-measure for valence (72.2 %) is notably below the average ‘perfor-
mance’ or consensus of a human labeler (85.7%). However, the best recognition
result for arousal (68.9 %) is only 2.2 % below the inter-human labeling consistency
(71.1 %). For the five-class task, the performance gap between the best classifier and
human labelers is 8.6 % (see Table 4.6).

In what follows, we will analyze the results in Tables 4.5 - 4.7 with respect to
six different aspects: the number of emotion classes, the difference between regres-
sion and discriminative training, the gain of LSTM context modeling, the benefit
of including bidirectional context, the difference between turnwise and framewise
classification, and the integration of linguistic features.

• Four quadrants vs. five classes: The best F1-measure for quadrant classifica-
tion can be obtained when using a discriminative BLSTM for turnwise pre-
diction with acoustic features (51.3 %, see Table 4.5). However, additionally
modeling the ‘neutral’ state can lead to a comparable prediction performance
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Table 4.5: Regression and discriminative (B)LSTM and RNN performance,
SVR/SVM performance, and average labeler (lab) consistency for quadrant
classification using turnwise or framewise prediction with acoustic (A) or
acoustic-linguistic (A+L) features: accuracy (acc.), unweighted recall (rec.),
unweighted precision (prec.), and F1-measure (F1) in [%].

Regression Discriminative
model unit features acc. rec. prec. F1 acc. rec. prec. F1

quadrants
BLSTM turn A 37.1 34.9 35.5 35.2 49.3 51.3 51.2 51.3
BLSTM turn A+L 41.0 36.9 37.8 37.3 47.6 48.6 46.8 47.7
BLSTM frame A 41.7 44.8 42.0 43.3 42.5 43.9 41.3 42.5
BLSTM frame A+L 48.2 51.6 49.3 50.4 39.0 37.4 37.1 37.2

LSTM turn A 37.3 37.9 35.4 36.6 48.6 47.4 48.2 47.8
LSTM turn A+L 38.6 38.4 39.8 39.7 44.9 49.1 48.3 48.7
LSTM frame A 31.2 33.4 37.2 35.2 37.4 38.0 38.1 38.1
LSTM frame A+L 34.2 30.7 37.9 33.9 32.0 37.8 32.6 35.3

RNN turn A 33.7 34.8 34.7 34.7 46.3 47.2 47.2 47.2
RNN turn A+L 37.1 35.5 36.7 36.1 45.9 46.5 45.8 46.1
RNN frame A 31.0 36.9 33.8 35.3 28.3 32.1 30.9 31.5
RNN frame A+L 28.2 31.7 34.8 33.2 22.1 28.2 27.3 27.7

SVR/SVM turn A 28.8 30.0 27.3 28.6 39.0 39.6 41.2 40.4
SVR/SVM turn A+L 33.3 32.2 30.4 31.3 37.8 38.5 36.7 37.6

lab turn 62.0 59.2 58.7 58.9
lab frame 59.2 58.3 56.7 57.4

(47.2 %, see Table 4.6). Interestingly, for the five-class task framewise regres-
sion prevails. Obviously, the higher number of class borders a discriminative
classifier has to face in the five-class experiment downgrades performance signif-
icantly. As can be seen in Table 4.6, a BLSTM network modeling all five classes
benefits from frame by frame modeling of the fineness of emotional dynamics
via regression. Tables 4.8 and 4.9 show typical confusions when distinguishing
four and five classes, respectively. In both cases, the best prediction quality can
be obtained for quadrant II (angry/anxious). Table 4.9 demonstrates that, due
to the non-prototypicality of emotions in the SAL corpus, almost all quadrants
are most frequently confused with the neutral state. An impression of the pre-
diction quality for more prototypical utterances (or utterances with emotions
of higher intensity) can be obtained when masking the last column and the last
line of Table 4.9: Quadrant-quadrant confusions obviously occur less frequent
than quadrant-neutral confusions. Another interesting aspect is the effect of
emotional intensity – and thus indirectly prototypicality – of the test set on
the obtained recognition performance: When using the Regression-BLSTM
for framewise prediction with acoustic and linguistic features (trained on all
training data and characterized by the five-class confusion matrix in Table 4.9)
and evaluating only those utterances that are not annotated as ‘neutral’, the
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Table 4.6: Regression and discriminative (B)LSTM and RNN performance,
SVR/SVM performance, and average labeler (lab) consistency for the quad-
rant/neutral five-class task using turnwise or framewise prediction with
acoustic (A) or acoustic-linguistic (A+L) features: accuracy (acc.), unweighted
recall (rec.), unweighted precision (prec.), and F1-measure (F1) in [%].

Regression Discriminative
model unit features acc. rec. prec. F1 acc. rec. prec. F1

quadrants + neutral
BLSTM turn A 37.9 34.1 38.6 36.2 39.8 40.1 38.4 39.2
BLSTM turn A+L 40.9 30.6 39.5 34.5 41.9 41.8 41.7 41.7
BLSTM frame A 34.6 39.3 34.3 36.6 28.0 25.3 29.5 27.2
BLSTM frame A+L 44.2 49.4 45.2 47.2 29.0 32.3 25.8 28.7

LSTM turn A 36.0 35.1 32.5 33.7 40.0 38.7 36.0 37.3
LSTM turn A+L 39.0 30.0 35.5 32.5 41.9 41.5 37.1 39.2
LSTM frame A 29.0 28.3 32.5 30.3 27.8 28.6 29.6 29.1
LSTM frame A+L 33.2 30.4 30.3 30.4 30.4 30.0 24.7 27.1

RNN turn A 35.1 30.9 33.2 32.0 38.0 39.8 35.4 37.5
RNN turn A+L 36.8 30.8 34.4 32.5 39.0 41.6 37.1 39.2
RNN frame A 35.6 21.1 41.4 27.9 28.7 24.3 25.0 24.6
RNN frame A+L 36.8 20.5 41.0 27.4 27.0 25.6 26.4 26.0

SVR/SVM turn A 32.8 25.5 24.9 25.2 34.8 35.8 35.2 35.5
SVR/SVM turn A+L 32.0 25.2 24.9 25.0 34.8 35.9 35.0 35.4

lab turn 56.8 55.1 53.7 54.3
lab frame 56.3 56.9 54.9 55.8

resulting quadrant prediction F1-measure is 58.2 %. On the other hand, when
evaluating only those turns that are annotated as ‘neutral’, the F1-measure for
quadrant prediction is as low as 34.3 %. For very ‘intense’ test utterances that
are labeled as having an absolute value of arousal and valence that is higher
than 0.5, the obtained quadrant prediction F1-measure is 85.1 %.

• Regression vs. discriminative training: For almost every experimental setting
we can observe that discriminative training prevails for turnwise recognition
while regression prevails for framewise recognition. Complete turns that are
characterized by statistical functionals of features can be distinguished better
with a discriminative technique. On the other hand, when predicting a class
frame by frame the network fails to model ‘label transitions’ when discrimina-
tively trained on the discrete labels. For framewise prediction, modeling the
smooth progression of valence and arousal is necessary before mapping the
output activations to quadrants.

• LSTM context modeling vs. RNN and SVM: For both, framewise and turnwise
prediction, the LSTM architecture outperforms a conventional RNN in most
cases. The major reason for this is the vanishing gradient problem (see Section
2.3.9) which limits the amount of context a recurrent neural network can access.
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Table 4.7: Regression and discriminative (B)LSTM and RNN performance,
SVR/SVM performance, and average labeler (lab) consistency for classifica-
tion of valence and arousal (high vs. low) using turnwise or framewise
prediction with acoustic (A) or acoustic-linguistic (A+L) features: accuracy
(acc.), unweighted recall (rec.), unweighted precision (prec.), and F1-measure
(F1) in [%].

Regression Discriminative
model unit features acc. rec. prec. F1 acc. rec. prec. F1

arousal
BLSTM turn A 64.8 65.0 64.9 64.9 68.3 68.9 68.8 68.9
BLSTM turn A+L 64.1 64.3 64.1 64.2 66.4 66.5 66.4 66.4
BLSTM frame A 64.0 64.1 64.1 64.1 62.8 63.6 64.0 63.8
BLSTM frame A+L 65.7 65.7 65.6 65.6 58.0 57.9 57.8 57.9

LSTM turn A 59.8 60.9 61.3 61.1 63.4 64.8 65.6 65.2
LSTM turn A+L 60.2 60.7 60.7 60.7 65.3 66.2 66.5 66.4
LSTM frame A 56.4 57.2 57.4 57.3 50.0 50.8 50.8 50.8
LSTM frame A+L 59.1 59.9 60.1 60.0 56.3 56.8 56.9 56.9

RNN turn A 54.6 55.1 55.2 55.2 61.7 63.0 63.8 63.4
RNN turn A+L 55.6 56.4 56.5 56.5 61.5 62.9 63.7 63.3
RNN frame A 53.4 55.1 56.4 55.7 50.6 52.7 53.8 53.3
RNN frame A+L 49.3 49.4 49.4 49.4 54.4 55.2 55.4 55.3

SVR/SVM turn A 53.8 53.3 53.3 53.3 55.8 56.7 56.8 56.8
SVR/SVM turn A+L 55.5 55.2 55.8 55.2 54.4 55.2 55.3 55.3

lab turn 68.6 70.6 71.6 71.1
lab frame 67.7 69.4 70.1 69.8

valence
BLSTM turn A 56.5 58.0 58.3 58.1 63.7 64.6 64.7 64.7
BLSTM turn A+L 60.0 61.1 61.4 61.3 71.2 71.8 71.7 71.7
BLSTM frame A 65.8 64.0 64.7 64.3 63.8 65.1 64.8 65.0
BLSTM frame A+L 72.8 72.2 72.1 72.2 55.0 58.4 59.7 59.0

LSTM turn A 61.0 62.5 62.9 62.7 56.4 59.4 63.4 61.3
LSTM turn A+L 58.8 60.3 60.9 60.6 66.8 68.5 70.1 69.3
LSTM frame A 55.9 57.4 57.4 57.4 65.3 66.3 65.9 66.1
LSTM frame A+L 63.6 57.7 67.3 62.1 58.3 56.1 56.6 56.4

RNN turn A 58.8 60.3 60.8 60.5 67.5 67.9 67.8 67.9
RNN turn A+L 62.9 64.2 64.8 64.5 69.5 70.5 70.6 70.5
RNN frame A 60.9 63.6 64.3 63.9 57.5 60.3 61.0 60.6
RNN frame A+L 57.5 62.0 66.0 63.9 64.2 64.6 64.2 64.4

SVR/SVM turn A 53.1 55.0 55.6 55.3 61.4 63.5 65.7 64.6
SVR/SVM turn A+L 56.0 57.5 58.0 57.8 59.3 61.4 62.9 62.1

lab turn 88.6 88.4 88.6 88.6
lab frame 86.0 85.8 85.6 85.7

Using no contextual information at all leads to comparatively low performance
as can be seen in the SVR and SVM experiments.

• Unidirectional vs. bidirectional context: Independent of the classification task,
bidirectional context mostly prevails over unidirectional context. Both, regres-
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Table 4.8: Confusion matrix for the best quadrant classification setting (dis-
criminative BLSTM for turnwise prediction with acoustic features only); rows:
ground truth; columns: predictions (white to black represents 0-100 %).

% I II III IV
I 54 25 12 9

II 21 67 9 3

III 27 22 47 4

IV 31 21 9 39

Table 4.9: Confusion matrix for the best ‘quadrants + neutral’ (N) classifi-
cation setting (regression BLSTM for framewise prediction with acoustic and
linguistic features); rows: ground truth; columns: predictions (white to black
represents 0-100 %).

% I II III IV N
I 40 8 3 25 24

II 9 80 1 2 8

III 1 14 48 12 25

IV 13 4 6 40 37

N 11 16 10 22 41

sion and discriminative BLSTM networks outperform all other models (LSTM,
RNN, SVR, and SVM) for the discrimination of five, four, and two classes
(numbers in bold face in Tables 4.5 - 4.7).

• Turnwise vs. framewise classification: As already mentioned, turnwise predic-
tion can successfully be combined with discriminative learning, while frame-
wise emotion recognition is rather suited for predictors based on regression.
For both strategies, modeling contextual information is essential. When addi-
tionally modeling ‘neutrality’, the best result can be obtained with framewise
prediction (see Table 4.6). Note that the amount of contextual information
a BLSTM network models is a lot more flexible when framewise prediction
is applied, since the temporal granularity is higher than it is for turnwise
recognition. This can be seen as the major reason why framewise recognition
outperforms turnwise prediction if Regression-BLSTM networks are used.

• Acoustic features vs. combined acoustic and linguistic features: When inspect-
ing Table 4.5, one can assert that the Regression-LSTM seems to profit more
from the inclusion of linguistic features. In some cases the quadrant predic-
tion performance of the discriminative classifier is even degraded when adding
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Figure 4.4: Prediction of arousal (black) using a Regression-LSTM and
ground truth (grey) over all turns of the test set (only acoustic features used).

keyword features. Obviously, the presence of single keywords is not discrimi-
native enough in this case. Linguistic features are rather suited for modeling
tendencies within a continuous scale for valence and arousal. When modeling
‘neutrality’ as a fifth class, also the discriminative BLSTM profits from linguis-
tic features (while this is not the case for the discriminative four-class task).
This supports the finding that a performance gain through keyword features
presumes a certain level of granularity of the prediction targets.

As an example for emotion recognition using regression, Figure 4.4 shows the
turnwise arousal predictions of a Regression-LSTM before the output activations
are mapped onto quadrants. Prediction and ground truth are correlated with a
correlation coefficient of 0.56, leading to an F1-measure of 61.1 % (see Table 4.7)
when distinguishing positive and negative arousal for every speech turn.

4.1.3 Acoustic-Linguistic Recognition of Interest

Detecting whether a user is interested or disinterested can be relevant for many
applications of human-computer interaction, including sales and advertisement sys-
tems, virtual guides, or conversational agents. Recently investigated use-cases for
automatic interest recognition comprise topic switching in infotainment or customer
service systems [228], meeting analysis, and tutoring systems [164]. In the light
of this growing amount of research on interest-related affective computing, the or-
ganizers of the Interspeech 2010 Paralinguistic Challenge [220] defined an interest
recognition task with unified system training and test conditions in order to make
the recognition approaches developed by different researchers easily comparable. In
the Affect Sub-Challenge, the task is to automatically predict a user’s level of interest
from the speech signal applying a pre-defined acoustic feature set and (optionally)
linguistic information. Participants used the Audiovisual Interest Corpus recorded
at the Technische Universität München (“TUM AVIC”) [228]. It contains highly

152



4.1. Speech-Based Affect Recognition

spontaneous speech from face-to-face commercial presentations and reflects the con-
ditions a real-life interest recognition system has to face. The challenge task was to
predict a speaker’s level of interest by suited regression techniques.

This section shows how contextual information can be exploited for enhanced
acoustic-linguistic interest recognition by employing the LSTM neural network ar-
chitecture. Similar to the experiments on emotion recognition discussed in Section
4.1.2, a bidirectional LSTM network is applied to model how the user’s interest level
evolves over time. Yet, in contrast to LSTM-based emotion recognition systems
which contain one hidden layer [294], we investigate Bottleneck -BLSTM networks
by using three hidden layers with a narrow middle layer (the ‘bottleneck’) [299]. As
outlined in Section 3.2.4, bottleneck networks can be incorporated into systems for
automatic speech recognition where they can be applied for feature dimensionality
reduction within Tandem systems [94, 296], i. e., speech recognizers that use RNNs
or MLPs to generate features. For the interest recognition system proposed in this
section, the bottleneck principle is combined with the BLSTM technique to gener-
ate a compact feature representation within the BLSTM network. In addition to
acoustic features, the Bottleneck-BLSTM network processes linguistic information
obtained from an ASR module.

Database

The following experiments are based on the TUM AVIC corpus [228] which has
also been used for the Affect Sub-Challenge of the Interspeech 2010 Paralinguistic
Challenge [220]. In the scenario setup, an experimenter and a subject are sitting
on opposite sides of a desk. The experimenter plays the role of a product presenter
and leads the subject through a commercial (car) presentation. The subject’s role
is to listen to explanations and topic presentations of the experimenter, ask several
questions of his/her interest, and actively interact with the experimenter considering
his/her interest in the addressed topics.

The ‘level of interest’ is annotated for every turn using five levels of interest
from disinterest to curiosity (LOI -2, -1, 0, 1, 2). Further, the spoken content
as well as non-linguistic vocalizations have been transcribed. For the Interspeech
2010 Paralinguistic Challenge, the ground truth has been established by shifting to
a continuous scale obtained by averaging the single annotator LOI. In accordance
with the scaling applied in other corpora, the original LOI scale reaching from -2 to
+2 is mapped to the interval from -1 to 1.

The speech data from the 21 speakers (3 880 turns) were split into speaker in-
dependent training, development, and test sets. The training set consists of 1 512
turns and 51.7 minutes of speech, respectively, and comprises four female and four
male speakers, while the development set contains 1 161 turns, corresponding to 43.1
minutes of speech (three female and three male speakers). The test set includes 1 207
turns and 42.7 minutes of speech, respectively (three female and four male speakers).
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Figure 4.5: Structure of the bottleneck networks used for interest recognition.

More details on the TUM AVIC corpus can be found in [220].

Bottleneck-BLSTM Nets

Building on recent successes of LSTM-based affective computing and speech recog-
nition [281, 289, 294], Long Short-Term Memory RNNs were applied for context-
sensitive interest recognition as well as within the ASR engine for linguistic feature
generation. As in the emotion recognition system depicted in Figure 4.2, a fea-
ture extractor provides MFCC features to a BLSTM network which computes a
phoneme prediction. Together with the MFCC features, those phoneme predictions
are decoded by the multi-stream HMM introduced in Section 3.2.2, which outputs
linguistic features. Both, linguistic features and acoustic features are processed by
a second BLSTM network which infers the final level of interest prediction.

In the following, we consider a combination of the LSTM principle and bottleneck
network architectures. As explained in Section 3.2.4, bottleneck MLPs or RNNs
consist of (at least) three hidden layers with a narrow layer in the middle. In ASR,
bottleneck systems process features that are obtained from the linear outputs of the
neurons in the bottleneck layer, i. e., only the first two hidden layers are involved
during feature extraction. This offers the advantage that by choosing the size of the
bottleneck layer, the dimensionality of the feature vector can be defined. Thus, the
network implicitly performs dimensionality reduction and generates decorrelated and
compressed features – independent of the number of training targets and without
the need for explicit decorrelation and dimensionality reduction techniques such as
PCA. Unlike static techniques based on PCA (or MLPs), combining LSTM and

154



4.1. Speech-Based Affect Recognition

bottleneck architectures enables context-sensitive feature compression.
For interest recognition, five-layer Bottleneck-LSTMs as shown in Figure 4.5 are

applied. The networks are composed of an input layer whose size corresponds to
the dimensionality of the acoustic-linguistic feature vector, three hidden layers in-
cluding the bottleneck layer in the middle, and an output layer consisting of one
node whose activation indicates the estimated level of interest. Unlike in bottleneck
ASR systems, where the third hidden layer is only used during network training and
not during decoding / feature generation, the networks applied for interest recogni-
tion in this section employ all layers and thus perform dimensionality reduction and
decorrelation within the network.

Acoustic and Linguistic Feature Extraction

The acoustic features applied in this section correspond to the baseline feature set
of the Interspeech 2010 Paralinguistic Challenge [220]. Again, they are extracted
via the real-time speech analysis toolbox openSMILE [73]. 1 582 acoustic features
are obtained in total by systematic ‘brute-force’ feature generation in three steps:
First, 38 low-level descriptors (see [220]) are extracted at 100 frames per second
with varying window type and size (Hamming and 25 ms, respectively, for all but
pitch which is extracted using a Gaussian window and a window size of 60 ms)
and smoothed by simple moving average low-pass filtering with a window length
of three frames. Next, their first order regression coefficients are added. Then, 21
statistical functionals are applied to each low-level feature stream in order to capture
time-varying information in a fixed-length static feature vector for each instance in
the database. Note that 16 zero-information features (e. g., minimum F0, which
is always zero) are discarded. Finally, the two single features ‘number of pitched
segments’ and turn duration are added.

For linguistic feature extraction, the multi-stream BLSTM-HMM ASR system
detailed in Section 3.2.2 is applied. The main idea of this technique is to enable
improved recognition accuracies by incorporating context-sensitive phoneme predic-
tions generated by a BLSTM network into the speech decoding process (see also
[281]).

Via early fusion, the linguistic information extracted by the multi-stream speech
recognizer is fused with the supra-segmental acoustic features. To obtain linguistic
feature vectors from the ASR output, a standard Bag of Words technique is em-
ployed – similar to the approach explained in Section 4.1.2. For each word in a
segment, the term frequency is computed. Only words with a minimum term fre-
quency of two throughout the training set are considered (152 words). A vector
space representation of the word string is built from the word’s term frequencies.

To reduce the size of the fused acoustic-linguistic feature space prior to subse-
quent dimensionality reduction and decorrelation within the bottleneck network, a
cyclic Correlation-based Feature Subset Selection based on the TUM AVIC training
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Table 4.10: Size of the hidden layers for networks with one hidden layer and
bottleneck networks processing acoustic (A) or combined acoustic-linguistic
(A+L) information.

size of hidden layers
classifier bottleneck A A+L

BLSTM yes 32-6-32 32-8-32
LSTM yes 64-12-32 64-16-32
BRNN yes 32-6-16 32-8-16
RNN yes 64-12-16 64-16-16

BLSTM no 32 32
LSTM no 64 64
BRNN no 16 16
RNN no 32 32

set is conducted. As a result, 92 selected acoustic features are obtained and the
combined acoustic-linguistic feature vectors are of size 123.

Experiments and Results

Various neural network architectures were evaluated with respect to their suitabil-
ity for acoustic and acoustic-linguistic interest recognition: conventional recurrent
neural networks, bidirectional recurrent neural networks, LSTM networks, and bidi-
rectional LSTM networks. For each network type, architectures with one hidden
layer (as used in Section 4.1.2) and bottleneck structures consisting of three hidden
layers were considered. The number of memory blocks (or hidden nodes) per layer
was optimized on the development set and can be seen in Table 4.10. For exam-
ple, the Bottleneck-BLSTM processing acoustic and linguistic features applied 32
memory blocks in the first and third hidden layer and contained a bottleneck layer
of size eight. Networks processing only acoustic features used slightly less memory
blocks in the bottleneck layer (six for bidirectional networks). Note that simply
increasing the number of hidden cells in networks consisting of one hidden layer
or applying networks with an equal number of hidden cells (or memory blocks) in
all three hidden layers led to lower performance on the development set than bot-
tleneck architectures. The number of input nodes corresponds to the number of
selected acoustic or combined acoustic-linguistic features. All memory blocks of the
(B)LSTMs were composed of one memory cell. The networks had one (regression)
output node whose activation represents the predicted level of interest.

For improved generalization, Gaussian noise was added to the inputs during
training (standard deviation of 1.2). Note that all input features were z-normalized
before being processed by the networks. Means and standard deviations for z-
normalization were computed from the training set. The multi-stream ASR system
was parametrized as in [281]. Both, the multi-stream acoustic models and a back-off
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Table 4.11: Results for interest recognition as defined in the Affect Sub-
Challenge [220]: cross correlation obtained for different network architectures
when using either acoustic (A) or combined acoustic-linguistic (A+L) informa-
tion with and without bottleneck structure; baseline results reported in [220]
when applying unpruned REP-Trees with and without correlation-based fea-
ture selection (CFS); results reported in [116] and [79] when using SVM and
GMM, respectively.

cross correlation
classifier CFS bottleneck A A+L

BLSTM yes yes 0.459 0.504
LSTM yes yes 0.454 0.479
BRNN yes yes 0.427 0.440
RNN yes yes 0.434 0.433

BLSTM yes no 0.442 0.475
LSTM yes no 0.431 0.459
BRNN yes no 0.406 0.438
RNN yes no 0.422 0.439

REP-Trees yes - 0.439 0.435
REP-Trees [220] no - 0.421 0.423

SVM [116] no - - 0.428

GMM [79] no - 0.390 -

bigram language model were trained on the TUM AVIC training and development
set (vocabulary size of 1.9 k).

Table 4.11 shows the results obtained on the Interspeech 2010 Paralinguistic
Challenge (more precisely the Affect Sub-Challenge) when applying the different
context-sensitive neural network architectures. In conformance with [220], the cross
correlation (CC) between the ground truth level of interest and the predicted level of
interest was chosen as evaluation criterion. Note that the mean linear error (MLE)
is not reported, since the MLE strongly depends on the variance of the ground
truth labels and is hardly suited for revealing the accuracy of the predictions. As
an example, when evaluating a (‘dummy’) classifier that always predicts the mean
of the training set ground truth labels, we obtain an MLE of 0.148 (which is only
0.002 below the MLE reported in [220]), while we get a CC of zero.

All results reflect the recognition performance on the TUM AVIC test set, when
training the predictors on the training and development partition of the TUM AVIC
corpus. Using only the training set did not lead to satisfying results since the neu-
ral network architectures require a comparatively large amount of training data for
generalization. Incorporating linguistic information leads to higher cross correla-
tions for all network architectures which is in line with results shown in Section
4.1.2. Furthermore, Bottleneck-(B)LSTM architectures consistently outperform net-
works with one hidden layer. The best performance can be obtained when applying
Bottleneck-BLSTM networks processing both, acoustic and linguistic features (CC
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of 0.504). Bidirectional LSTM modeling gives slightly better results than unidi-
rectional LSTM, which indicates that also future information (if available) can be
efficiently exploited for interest recognition. The performance difference between
LSTM-based architectures and conventional RNN techniques reveals that the abil-
ity to model long-term temporal context is beneficial for the classification task.

For comparison, also the Paralinguistic Challenge baseline result (CC of 0.421,
obtained with unpruned REP-Trees in Random-Sub-Space meta-learning [220]) is
shown in Table 4.11. The REP-Trees approach profits from feature selection via
CFS but cannot compete with the Bottleneck-BLSTM technique. Results obtained
for BLSTM modeling are notably better than the highest cross correlation that
has been reported for the Affect Sub-Challenge so far (CC of 0.428 using SVMs in
combination with acoustic and linguistic information [116]) and prevail over the CC
reported in [79] for GMMs.

4.1.4 Emotion Recognition in Reverberated Environments

As discussed in Section 4.1, past research on AER has mostly been restricted to
prototypical, acted, and speaker dependent emotion recognition. The focus of to-
day’s research is on speaker independence and on affective state estimation from
non-prototypical, spontaneous speech as it is needed for real-life applications [211].
Reflecting these challenging conditions, which typically lead to recognition accura-
cies that are lower than those reported for prototypical emotions, the Interspeech
2009 Emotion Challenge [219] has been organized to define unified system training
and test conditions involving spontaneous emotion recognition during child-robot
interaction. Yet, one simplification of the Emotion Challenge task that might not
necessarily hold for real-life systems is the restriction to speech captured by close-
talk microphones. The effect of speech signal distortions caused by reverberation or
background noise has been largely neglected in the Emotion Challenge – and gener-
ally in the field of speech-based emotion recognition. Only a few studies address the
topic of noise robust AER, e. g., [243]. The impact of reverberation on AER from
acoustic cues has been investigated in [262].

In this section, research on affect recognition from reverberated speech [262] is
extended to systems that apply both, acoustic and linguistic features obtained via
an ASR module. We examine how different microphones and room acoustics affect
the quality of the ASR output on the one hand, and the accuracy of combined
acoustic-linguistic emotion recognition on the other hand. To this end, emotional
child-robot interaction speech as contained in the FAU Aibo Emotion Corpus [236] is
considered in combination with different artificial and real reverberation conditions.
Furthermore, matched, mismatched, and multi-condition training are investigated
to increase the robustness of the proposed recognition engine.
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Database

The German FAU Aibo Emotion Corpus [236] with 8.9 hours of spontaneous, emo-
tionally colored children’s speech comprises recordings of 51 children at the age of
10 to 13 years from two different schools (see also Section 3.1.3, where the FAU Aibo
Emotion Corpus is used for keyword spotting experiments). Speech was transmit-
ted with a wireless head set (UT 14/20 TP SHURE UHF-series with microphone
WH20TQG) and recorded with a DAT-recorder. The sampling rate of the signals is
48 kHz; quantization is 16 bit. The data is downsampled to 16 kHz.

As explained in Section 3.1.3, the children were given five different tasks where
they had to direct Sony’s dog-like robot Aibo to certain objects and through a
given ‘parcours’. The children were told that they could talk to Aibo the same
way as to a real dog. However, Aibo was remote-controlled and followed a fixed,
pre-determined course of actions, which was independent of what the child was
actually saying. At certain positions Aibo disobeyed in order to elicit negative
forms of emotions. The corpus is annotated by five human labelers on the word
level using 11 emotion categories that have been chosen prior to the labeling process
by iteratively inspecting the data. The units of analysis are not single words, but
semantically and syntactically meaningful chunks (2.66 words per chunk on average,
see [236]). Heuristic algorithms were used to map the decisions of the five human
labelers on the word level onto a single emotion label for the whole chunk. The
emotional states that can be observed in the corpus are rather non-prototypical,
emotion-related states than ‘pure’ emotions. Mostly, they are characterized by low
emotional intensity.

Acoustic and Linguistic Feature Extraction

A set of 384 segmental acoustic features suited for static chunk-level classification
was extracted. These features exactly correspond to those used for the Interspeech
2009 Emotion Challenge baseline (Classifier Sub-Challenge) and include MFCCs,
prosodic, and voice quality features (see [219]). Note that none of the Challenge
participants could outperform the baseline features in the Feature Sub-Challenge
[211].

To create linguistic features for early fusion with the chunk-level acoustic features,
the chunk-level ASR results (i. e., reclassification of the training set, and recognition
of the test set), were converted into a vector space representation by forming Bag of
Words vectors counting term frequencies. The components of the BoW vectors repre-
sent all words occurring in the reclassification of the training set by the ASR engine.
As a result, the BoW feature space differs among training conditions. The BoW
size ranges from 198 (training on room microphone data) to 379 (multi-condition
training) since the ground truth transcriptions available in the FAU Aibo Emotion
Corpus were intentionally not used for building linguistic features, both to enforce
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realism, and to adapt to typical ASR confusions in the varying acoustic conditions.
Two different ASR systems for linguistic feature generation were evaluated: a

standard single-stream HMM system applying cross-word triphone acoustic models
and the multi-stream BLSTM-HMM system introduced in Section 3.2.2.

Experiments and Results

Along the lines of the Interspeech 2009 Emotion Challenge [219], the complete cor-
pus was used for the experiments reported in this section (i. e., not just chunks
containing prototypical emotions). Yet, due to technical problems with the video
camera recording the reverberated ‘room microphone’ data, only 17 076 of the 18 216
chunks could be used. Thus, the training set comprises 9 190 chunks and the test
set consists of 7 886 chunks. The 2-class problem with the two main classes negative
valence (NEG) and the default state idle (IDL, i. e. neutral) was considered. A
summary of the challenge task and results is given in [211].

As the children of one school were used for training and the children of the other
school for testing, the partitions feature speaker independence, which is needed in
most real-life settings, but can have a considerable impact on classification accuracy.
Furthermore, this partitioning provides realistic differences between the training
and test data on the acoustic level due to the different room characteristics. Finally,
it ensures that the classification process cannot adapt to socio-linguistic or other
specific behavioral cues. Note that – as it is typical for realistic data – the two
emotion classes are highly unbalanced (5 642 NEG-chunks vs. 11 434 IDL-chunks).

The data which was used for the 2009 Emotion Challenge was recorded with
a close-talk microphone and will be called ‘close-talk’ (CT) in the following. Ad-
ditionally, during creation of the FAU Aibo Emotion Corpus, the experiment was
filmed with a video camera for documentary purposes. The child was not facing the
microphone, and the camera was approximately 3 m away from the child. Thus, the
audio channel of the videos is reverberated and contains background noises, e. g.,
the noise of Aibo’s movements. While the recordings for the training set took place
in a normal, rather reverberant class room, the recording room for the test set was
a recreation room, equipped with curtains and carpets, i. e., with more favorable
acoustic conditions. Thus, the data set provides realistic differences between train-
ing and test data on the acoustic level. This version will be called ‘room microphone’
(RM).

Another version [150] of the corpus was created using artificial reverberation:
The data of the close-talk version was convolved with 12 different impulse responses
recorded in a different room using multiple speaker positions (four positions arranged
equidistantly on one of three concentric circles with the radii 60, 120, and 240 cm)
and alternating echo durations T60 ∈ {250 ms, 400 ms} spanning 180◦. The training
and test set were evenly split in twelve parts, of which each was reverberated with
a different impulse response, to enforce a roughly equal distribution of the impulse
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responses among the training and test set instances. This version will be called
‘close-talk reverberated’ (CTRV).

The acoustic feature vectors processed by the ASR system consisted of cepstral
mean normalized MFCC coefficients 1 to 12, log. energy, as well as first and second
order delta coefficients. The framewise BLSTM phoneme predictor of the multi-
stream system was trained on forced aligned (framewise) phoneme targets of the
FAU Aibo Emotion Corpus training set. According to past studies [281], three
hidden layers of size 56, 150, and 56 were chosen, to model 53 German phonemes as
well as silence, short pause, and non-verbal events. All other parameters of the multi-
stream ASR system, such as the stream weight of the BLSTM phoneme prediction
feature stream, were configured as in [281]. The underlying HMM system applied
phoneme models consisting of three emitting states (left-to-right HMMs) with eight
Gaussian mixtures. Initial monophones HMMs were mapped to tied-state cross-word
triphone models with shared state transition probabilities. The acoustic models and
a back-off bigram language model were trained on the training set of the FAU Aibo
Emotion Corpus.

Table 4.12 shows the word accuracies when applying standard triphone acoustic
models and the multi-stream BLSTM-HMM approach, respectively. Four different
ASR training conditions were considered: training on data recorded by the close-talk
microphone (CT), artificially reverberated data (CTRV), data recorded by the room
microphone (RM), and all data (CT + CTRV + RM). Accuracies are consistently
higher for the multi-stream model with performance gains of up to 16 % (absolute)
when training on RM data and testing on CTRV data. This indicates that BLSTM
context modeling within the multi-stream technique leads to higher robustness with
respect to different reverberation conditions. However, also for ‘friendly’ scenarios,
e. g, training and testing on data recorded by close-talk microphones, the multi-
stream model prevails over standard HMMs (word accuracy of 87.03 % vs. 85.28 %).
These accuracies are notably higher than those reported in [212], for example. As
expected, matched condition training performs best, with the exception that RM
data is best recognized using models trained on data reflecting all three acoustic
conditions. Generally, multi-condition training leads to high accuracies for all test
conditions and achieves the best average ASR performance (WA of 76.6 % for the
multi-stream model).

To investigate the impact of ASR performance on emotion recognition, linguis-
tic and joint acoustic-linguistic analysis by early feature-level fusion was evaluated,
using the SimpleLogistic algorithm [131] implemented in the Weka toolkit [102]. It
is based on boosting of one-dimensional regression functions, implicitly performing
a feature relevance analysis and selection. This technique seems to be particularly
suited for feature-level fusion dealing with varying reliability of features according
to acoustic conditions. The number of boosting iterations was cross-validated on
the training set, using the default parameters in the Weka toolkit for straightfor-
ward reproducibility. Since the class distribution in the training set of the FAU
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Table 4.12: ASR word accuracies for different training and test conditions.
The best result per test condition is highlighted.

test condition
word accuracy [%] single-stream HMM multi-stream BLSTM-HMM

training condition CT CTRV RM mean CT CTRV RM mean

CT 85.28 79.21 28.66 64.38 87.03 80.48 43.97 70.49
CTRV 82.86 82.03 48.82 71.24 85.33 84.52 56.83 75.56
RM 13.35 33.78 53.00 33.38 25.77 49.79 57.82 44.46
CT + CTRV + RM 83.05 81.11 61.21 75.12 83.76 82.13 63.90 76.60

Aibo Emotion Corpus is heavily unbalanced, the Synthetic Minority Oversampling
Technique (SMOTE) was applied. Unlike the AER engines presented in Sections
4.1.1 to 4.1.3, the AER strategy investigated in this section does not use long-range
temporal context modeling via LSTM networks, as the pre-determined progression
of obedient and disobedient actions performed by the Aibo robot tends to lead to
easily predictable dynamics in the succession of the child’s emotion that could be
learned by the LSTM network. This would mean a very database-specific simplifica-
tion that does not carry over to other child-robot interaction scenarios. Thus, every
training and test instance was processed in isolation and a classifier not modeling
‘emotional history’ was applied.

The left half of Table 4.13 presents the unweighted accuracies (UA) for emo-
tion recognition by BoW linguistic features obtained from single-stream HMM ASR,
both with and without acoustic features. For reference, also the results by acoustic
features only are shown. For CT, CTRV, and multi-condition training, these are
similar to the ones obtained by SVMs in [262]; for RM training, however, the Sim-
pleLogistic classifier yields a significant (p < 0.005) performance gain over SVM in
the CT (66.32 vs. 61.61 % UA) and RM (64.96 vs. 62.72 % UA) test cases. Best
average performance is achieved by multi-condition training (64.95 % UA).

Furthermore, linguistic features on their own result in a remarkable performance:
When using ASR features from CT data for training, 64.76 % and 64.92 % UA are
achieved in the CT and CTRV test conditions, respectively. Overall, a strong corre-
lation with the word accuracies from Table 4.12 can be seen, with multi-condition
training showing best average performance (62.22 % UA) once more.

Finally, by fusion of acoustic and linguistic information a significant (p < 0.005)
performance improvement over acoustic features, from 67.90 % to 70.08 % UA is
observed for matched condition CT training and testing. While for RM testing,
the clean acoustic-linguistic classifier prevails over both pure acoustic and linguistic
analysis (60.94 % UA vs. 59.83 % and 54.67 %, respectively), this is not the case for
CTRV testing, where a drop in performance (59.27 % vs. 64.92 % UA) compared to
linguistic features is observed, which is arguably caused by the poor performance of
acoustic features in that particular setup (53.99 % UA). Remarkably, on average over
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Table 4.13: Unweighted accuracies (UA) for acoustic, linguistic, and combined
acoustic-linguistic classification of the test set by feature-level fusion with BoW
vectors. The best result per test condition is highlighted.

UA [%] test condition
training condition CT CTRV RM mean CT CTRV RM mean

acoustic
CT 67.90 53.99 59.83 60.57
CTRV 59.97 67.22 60.27 62.48
RM 66.32 63.03 64.96 64.77
CT + CTRV + RM 68.20 66.24 60.40 64.95

single-stream HMM multi-stream BLSTM-HMM

linguistic
CT 64.76 64.92 54.67 61.45 65.21 64.53 56.54 62.10
CTRV 63.59 63.15 58.05 61.59 63.90 63.58 58.74 62.07
RM 55.47 58.06 60.20 57.91 56.44 59.96 60.64 59.01
CT + CTRV + RM 63.38 62.99 60.29 62.22 64.07 63.28 60.44 62.60

acoustic + linguistic
CT 70.08 59.27 60.94 63.43 70.32 59.34 62.19 63.95
CTRV 60.28 68.55 62.44 63.76 60.34 68.61 63.05 64.00
RM 65.86 63.58 65.41 64.95 65.80 64.05 65.43 65.09
CT + CTRV + RM 68.92 67.96 62.48 66.46 69.16 67.84 62.96 66.65

all test conditions, fused acoustic-linguistic analysis using multi-condition training
(66.46 % UA) considerably outperforms linguistic (62.22 %) and acoustic analysis
(64.95 % UA). The best performance on RM, i. e., realistically reverberated, data is
obtained by fused acoustic-linguistic analysis trained on RM (65.41 % UA) – note
that this is not matched condition training in a strict sense, since the training and
test set were recorded in different acoustic settings. This suggests that whenever
the acoustic conditions that the emotion classifier has to face are known to a certain
degree (corresponding to CT and CTRV testing), multi-condition training is most
promising; for unknown conditions (RM testing), training on realistically reverber-
ated data is to be preferred, even if that data does not exactly match the acoustic
conditions to be faced.

The right half of Table 4.13 shows the results for linguistic and acoustic-linguistic
AER when applying the multi-stream BLSTM-HMM speech recognizer for linguistic
feature generation. For almost all training and test conditions, we observe higher
accuracies than for the recognition engine using conventional HMM ASR. Trends
are similar to those for the single-stream HMM, i. e., matched condition training
performs best while multi-condition training leads to the best average accuracy.
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4.2 Audio-Visual Affect Recognition

Humans express and perceive emotion through the complex interplay of multiple
modalities [126, 157]. Thus, considering multiple modalities when trying to automat-
ically assess the emotional state of a user can give a more complete description of
the expressed emotion and generally tends to lead to more accurate results than uni-
modal techniques [160]. Since most of today’s computer systems are equipped with
microphones and cameras, audio and video are the most important non-obtrusive
modalities based on which affect recognition can be performed. Audio and video
channels can provide complementary information and tend to improve recognition
performance if they are used in a combined multimodal setup [228]. This led to a
large number of studies investigating audiovisual non-verbal behavior analysis (e. g.,
[221]).

Similar to Section 4.1, which concentrates on purely speech-based approaches
towards affect recognition, this section shows how multimodal emotion recognition
can be improved via temporal context modeling applying Long Short-Term Memory
networks. Now, we focus on audio-visual AER systems by integrating informa-
tion from the video channel. We investigate both, feature-level (Section 4.2.1) and
decision-level fusion (Section 4.2.3) of audio and video. In Section 4.2.1, various
classification approaches such as Support Vector Machines, Hidden Markov Models,
and Long Short-Term Memory networks are compared and evaluated with respect
to their performance in assessing human affect based on speech and facial marker
information [161, 289]. Next, in Section 4.2.2, we analyze the so-called sequential Ja-
cobian of trained BLSTM networks for emotion recognition in order to determine the
amount of context that is modeled by BLSTM networks used for context-sensitive
AER in Section 4.2.1 [290]. Finally, Section 4.2.3 shows how acoustic, linguistic,
and facial movement features can be exploited to recognize affect in an audio-visual
LSTM-based classification framework [284].

4.2.1 Emotion Recognition from Speech and Facial Marker
Information

This section describes a multimodal emotion recognition framework that merges
audio-visual information at the feature level and uses LSTM networks to model
long-range temporal dependencies [289]. Again, we focus on the recognition of di-
mensional emotional labels, valence and arousal, instead of categorical emotional
tags, such as ‘anger’ or ‘happiness’. The applied database for system training and
testing also includes non-prototypical data; meaning utterances that are labeled dif-
ferently by different annotators and may not have a categorical label. We classify a
variety of emotional manifestations, which may include ambiguous emotions, subtle
emotions, or mixtures of emotions. As discussed in Section 4.1, this allows for a
more realistic AER performance assessment, since a real-life system has to classify
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all data that is recorded. The acoustic and facial feature extraction applied in this
section is based on the technique introduced in [160]. Yet, in contrast to [160], the
considered approach does not use phoneme-dependent models or viseme information
and thus does not rely on the correct phoneme transcription.

In the following experiments, a large multimodal and multisubject acted database
[31] is used. It was collected so as to contain emotional manifestations that are non-
prototypical and resemble as much as possible real-life emotional expression. In
addition to classifying the degree of valence and arousal separately, we also investi-
gate the modeling of clusters in the emotional space (as in Section 4.1.1). We com-
pare the recognition performance of bidirectional LSTM networks to a conventional
SVM approach and to fully-connected HMMs. Short-term context is incorporated
into the HMM framework using a first-order ‘language model’, based on emotional
state transition probabilities as observed in the training set.

Database

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) database [31] con-
tains approximately 12 hours of audio-visual data from five mixed gender pairs of
actors, male and female (ten subjects in total). It includes detailed face informa-
tion obtained from motion capture as well as video and audio of each session. Two
techniques of actor training were used; scripts and improvisation of hypothetical
scenarios. The goal was to elicit emotional displays that resemble natural emotional
expression. Dyadic sessions of approximately five minute length were recorded and
were later manually segmented into utterances. Each utterance was annotated into
nine categorical (such as anger, happiness, or neutrality) as well as dimensional tags
(valence, arousal, dominance), by multiple human annotators. In contrast to the
SAL database (see Section 4.1.2), the dimensional tags in the IEMOCAP database
are not in the range from -1 to 1 but take integer values that range from one to five.
The dimensional tag of an utterance is the average of the tags given by at least two
annotators. In the following, we focus on the classification of valence and arousal,
so that all the available data can be used – even utterances for which there was no
inter-annotator agreement and no categorical label, respectively. Such data are a
relatively large portion of the database (approximately 17 % of the total utterances).

Feature Extraction and Selection

The IEMOCAP database comprises detailed facial marker information, as illustrated
in Figure 4.6. Face markers are normalized for head rotation and translation and
the marker at the tip of the nose is defined as the local coordinate center of each
frame. The (x,y,z) coordinates from 46 facial markers are used. In order to obtain
a low-dimensional representation of the facial marker information, principal feature
analysis (PFA) [148] is applied. This method performs principal component analy-
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Figure 4.6: Facial marker positions.

sis as a first step and selects features (here marker coordinates) so as to minimize
the correlations between them. 30 features are selected because the PCA transfor-
mation explains more than 95 % of the total variability, and the first derivatives
are appended, resulting in a 60-dimensional representation. In addition, the facial
features are normalized per speaker in order to smooth out individual facial charac-
teristics that are unrelated to emotion. The speaker normalization approach consists
of finding a mapping from the individual average face to the general average face.
This is achieved by shifting the mean value of each marker coordinate of each sub-
ject to the mean value of that marker coordinate across all subjects. The feature
selection and normalization framework is described in detail in [159].

From the speech signal, a variety of low-level features are extracted: 12 MFCC co-
efficients, 27 Mel-Frequency Band coefficients, pitch, and energy. In addition, their
first derivatives are computed. All the audio features are normalized using mean
and variance standardization (the statistics are computed from the corresponding
training set). The audio and visual features are extracted at the same framerate of
25 ms, with a window size of 50 ms. Since the evaluation experiments are organized
in a cyclic leave-one-speaker-out (LOSO) cross validation, all the normalization con-
stants for the audio and video features, as well as the PCA transforms, are computed
in a subject-independent way from the training set of each fold.

For LSTM and SVM classification, a set of utterance-level statistical functionals
computed from the low-level acoustic and visual features are used. These function-
als include means, standard deviations, linear and quadratic regression parameters
(slope, offset, linear/quadratic approximation error), maximum and minimum posi-
tions, skewness, kurtosis, quartiles, inter-quartile ranges, and percentiles. In order
to reduce the size of the resulting feature space, a cyclic CFS feature selection is
performed, using the training set of each fold. This results in an automatic selection
of between 66 and 224 features, depending on the classification task and the fold.
For the valence classification task, on average 84 % of the selected features are facial
features, whereas for classification of the degree of arousal, only 44 % of the features
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Table 4.14: Distribution of the features selected via CFS for the classification
of valence and arousal as well as for the discrimination of 3, 4, and 5 clusters
in emotional space.

feature group valence arousal 3 clusters 4 clusters 5 clusters

pitch 5 % 4 % 3 % 4 % 3 %
energy 0 % 1 % 1 % 1 % 1 %
MFCC 4 % 21 % 11 % 11 % 10 %
MFB 7 % 30 % 18 % 19 % 21 %
lower face 63 % 32 % 50 % 49 % 48 %
upper face 21 % 12 % 17 % 16 % 17 %

selected via CFS are facial features. This underlines the fact that visual features
tend to be well-suited for determining valence while acoustic features rather reveal
the degree of arousal. For a detailed analysis of the selected features see Table 4.14.

Experiments and Results

The valence and arousal annotations in the IEMOCAP database range from one to
five and can be non-integer, since the decisions of two evaluators are averaged for
each utterance label. In the following experiments, we examine the classification
of three levels of valence (negative, neutral, and positive, corresponding to ratings
{1,1.5,2}, {2.5,3,3.5}, and {4,4.5,5}, respectively) and arousal (low, medium, and
high, again corresponding to {1,1.5,2}, {2.5,3,3.5}, and {4,4.5,5}). The class sizes
are not balanced since medium values of labels are more common than extreme val-
ues. We also consider the joint classification of the emotional dimensions by building
three, four, and five clusters in the valence-arousal space. As in Section 4.1.1, the
cluster midpoints in the emotional space are determined by applying the k-means
algorithm on the annotations of the respective training sets. The ground truth of
every utterance is assigned to one of the clusters using the minimum Euclidean dis-
tance between its annotation and the cluster midpoints. The intuition for clustering
the valence-arousal space is to build classifiers that provide richer and more com-
plete emotional information, that can correspond to generic emotional tags. For
example, as can be seen in Figure 4.7, the coordinates of the cluster midpoints are
interpretable: When considering three clusters, the midpoints roughly correspond
to the affective states ‘angry’, ‘neutral/sad’, and ‘happy’. The average standard
deviation of the cluster centroid coordinates across the ten folds is as low as 0.05.

The applied LSTM networks consist of 128 memory blocks with one memory cell
per block. The number of input nodes corresponds to the number of different features
per utterance whereas the number of output nodes corresponds to the number of
target classes. Zero mean Gaussian noise with standard deviation 0.6 was added to
the inputs during training to improve generalization. All networks are trained using
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Figure 4.7: Annotations of the IEMOCAP training set for fold 1 with cluster
midpoints (black circles) and resulting class borders (dotted lines) for the 3-
class task; a small amount of random noise is added to the annotations for
visualization purposes.

a learning rate of 10−5. The bidirectional networks contain 128 memory blocks per
input direction. As abort criterion for training, the classification performance on a
validation set was evaluated. The validation set consisted of the utterances of two
randomly selected speakers from the training split.

As an alternative classification approach, a dynamic, generative classification
framework using Hidden Markov Models was examined. The motivation is to model
the underlying dynamics of audio-visual emotional expression. Fully-connected 3-
state HMMs were trained for the facial and vocal modality, as well as for the audio-
visual setup. For each classification task, one HMM was trained for each class
using the training utterances and during the test stage, the most probable class
was recognized. Here, frame-level features were used, as opposed to the BLSTM
experiments where statistical functionals of features were processed. For the facial
HMMs, a 60-dimensional feature vector was used, containing 30 normalized PFA
features and their first derivatives. For the vocal HMMs, a 58-dimensional feature
vector containing 27 normalized MFBs, normalized pitch and energy values and
their first derivatives was applied. Audio-visual HMMs were built by combining
the synchronous face and speech features at the feature level (118 dimensions). In
order to have a rough, local description of the past emotional context, a first-order
‘language model’ (LM) was incorporated into the HMM classification framework.
Specifically, from the training set of each fold, the number of transitions for each pair
of the classes was counted. In that way, an estimate of the transition probabilities
from one class to the other can be obtained. During the test stage, the class that
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Table 4.15: Recognition performances in [%] for discriminating three levels of
valence and arousal using audio (A) and visual (V) features: accuracy (acc.),
unweighted recall (rec.), precision (prec.), and F1-measure (F1).

classifier features acc. rec. prec. F1

valence
HMM A 47.08 47.11 48.20 47.62
HMM V 55.53 60.07 56.77 58.29
HMM A+V 59.27 58.81 61.68 60.17
HMM+LM A+V 61.07 62.85 61.11 61.91
SVM A+V 61.49 61.50 63.59 61.45
LSTM A+V 62.35 63.77 63.80 63.66
BLSTM A+V 63.92 64.71 65.87 65.18

arousal
HMM A 55.06 61.68 50.93 55.77
HMM V 43.87 51.86 47.48 49.30
HMM A+V 51.33 52.56 60.16 55.90
HMM+LM A+V 57.65 57.62 57.75 56.89
SVM A+V 70.53 50.39 60.30 51.30
LSTM A+V 68.84 50.58 58.45 53.89
BLSTM A+V 67.31 52.53 58.46 55.18

maximizes the product of the class probability for the current utterance, and the
transition probability from the previous class to the current class was selected.

Furthermore, we compare the performance of the BLSTM networks to static
classification of utterance level feature functionals via Support Vector Machines.
The SVMs have a polynomial kernel (degree 1) and are trained using the Sequential
Minimal Optimization algorithm.

The experiments are organized in a cyclic leave-one-speaker-out cross validation.
The mean and standard deviation of the number of test and training utterances
across the folds is 498±60 and 4475±61, respectively. For each fold, the accuracy and
the (unweighted) precision, recall, and F1 measure were computed. The presented
recognition results are the subject-independent averages over the ten folds.

Table 4.15 shows the recognition performances for discriminating three levels of
valence and arousal, respectively. The unimodal HMM results confirm the general
experience that facial features tend to be more important for valence classification
while acoustic features are well-suited for arousal classification. Generally, multi-
modal classification outperforms unimodal AER. The best F1-measure for valence
can be obtained using a BLSTM network (65.18 %), and the performance for unidirec-
tional LSTM networks is only slightly lower (F1-measure of 63.66 %). This indicates
that modeling the long-range context between successive utterances is very impor-
tant. Incorporating a bigram language model into the HMM recognition framework,
also leads to a performance gain, which again underlines the importance of context
modeling. For arousal, we observe a lower performance of LSTM modeling. A major
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Table 4.16: Recognition performances in [%] for discriminating three, four,
and five clusters in emotional space using audio (A) and visual (V) features: ac-
curacy (acc.), unweighted recall (rec.), precision (prec.), and F1-measure (F1).

classifier features acc. rec. prec. F1

3 clusters
HMM A+V 67.03 66.87 67.99 67.37
HMM+LM A+V 67.03 66.89 68.04 67.41
SVM A+V 68.91 68.58 69.20 67.95
LSTM A+V 70.17 69.54 71.20 70.33
BLSTM A+V 72.31 71.88 72.84 72.34

4 clusters
HMM A+V 55.70 55.93 55.69 55.73
HMM+LM A+V 56.87 56.33 56.44 56.31
SVM A+V 60.77 58.36 59.12 57.10
LSTM A+V 63.69 61.00 62.86 61.87
BLSTM A+V 64.30 61.92 63.85 62.78

5 clusters
HMM A+V 49.94 50.94 48.87 49.76
HMM+LM A+V 50.81 50.99 50.17 50.41
SVM A+V 51.49 49.52 50.99 48.55
LSTM A+V 56.19 53.89 56.25 55.00
BLSTM A+V 56.31 53.76 56.13 54.84

reason for this is the imbalance of the class distribution: The majority of utterances
are labeled as ‘medium arousal’ so that the amount of training data for the remain-
ing two arousal classes is insufficient (also see Figure 4.7). For the arousal task, the
HMM+LM framework handles this class imbalance better and achieves the highest
performance (F1-measure of 56.89 %).

A more balanced class distribution and a better class separability can be obtained
when jointly classifying valence and arousal by assigning the utterances to clusters
that are learned in a data-driven way: For the distinction between three clusters,
BLSTM networks achieve an F1-measure of 72.34 % (see Table 4.16). For four and
five clusters they achieve F1-measures of 62.78 % and 55.00 % respectively. For all
cluster prediction tasks, we observe similar trends: LSTM modeling prevails over
HMM and SVM classification and bidirectional context outperforms unidirectional
context (except for the five-cluster task, where there is no significant difference
between LSTM and BLSTM). The HMM+LM and SVM classification frameworks
achieve comparable, and lower, results.

In general, the BLSTM framework which is able to incorporate long-range bidi-
rectional context information, prevails over other classification frameworks which use
no or limited contextual emotional information, such as the SVM and the HMM+LM
respectively.
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4.2.2 Sequential Jacobian Analysis

Since BLSTM neural networks can make use of an arbitrary, self-learned amount
of past and future contextual information (see Section 2.3.9), they seem well suited
for emotion recognition applications where modeling the emotional history during
a conversation is of interest [161]. As shown in the last sections, the application
of BLSTM networks for speech-based [32, 294] and audio-visual [167, 289] emotion
recognition enables performance gains in context-sensitive AER when compared to
systems that do not make use of context information, such as context-free HMM or
SVM-based approaches. Yet, the actual amount of contextual information that is
exploited within a BLSTM network for emotion classification has not been investi-
gated so far and networks are often seen as a ‘black box’ being less transparent than,
e. g., HMM systems. This section presents a methodology first, to systematically
determine the amount of context that is used by BLSTM networks to classify utter-
ances of a speaker during a conversation and, second, to examine the extent that
this available context contributes to the overall BLSTM performance [290]. The
goal is to better understand the effect of BLSTM modeling of human emotions and
to gain insights supporting future AER system design. For the analyses, the same
audio-visual recognition framework and database as introduced in Section 4.2.1 is
applied.

Experiments and Results

Again, we aim to assess speaker independent AER performance of BLSTM networks
when carrying out a cyclic leave-one-speaker-out cross validation on the IEMOCAP
database. Both, the recognition task and the emotion recognition system are the
same as in Section 4.2.1. To investigate the importance of having meaningful avail-
able context information during BLSTM network training and decoding, all BLSTM
classification experiments were repeated using randomly shuffled data. Specifically,
the utterances of a given conversation are processed in arbitrary order so that the
network is not able to make use of meaningful context information. As can be seen
in Table 4.17, this downgrades recognition performance (average F1-measure) for
all classification tasks. To test the statistical significance of this result, a paired t-
tests was performed to compare the average F1-measures, leading to the result that
BLSTM networks perform significantly worse (p=0.05) when the input utterances
are randomly shuffled. The performance gap suggests that the good performance of
the BLSTM classifiers is to a large extent due to their ability to effectively learn an
adequate amount of relevant emotional context from past and future observations.
It can also be interpreted as evidence that learning to incorporate temporal context
information is relevant for human emotion modeling.

An impression of the amount of contextual information that is used by the
BLSTM network can be gained by measuring the sensitivity of the network out-
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Table 4.17: Recognition performances in [%] for BLSTM networks and five
different classification tasks. BLSTM networks trained on the original sequence
of utterances and on utterances that are randomly shuffled, using audio (A) and
visual (V) features: accuracy (acc.), unweighted recall (rec.), precision (prec.),
and F1-measure (F1).

classifier features acc. rec. prec. F1

valence
BLSTM A+V 63.92 64.71 65.87 65.18
BLSTM(shuffled) A+V 59.80 58.97 60.46 59.63

arousal
BLSTM A+V 67.31 52.53 58.46 55.18
BLSTM(shuffled) A+V 69.18 46.39 60.20 52.15

3 clusters
BLSTM A+V 72.31 71.88 72.84 72.34
BLSTM(shuffled) A+V 68.02 66.69 69.08 67.84

4 clusters
BLSTM A+V 64.30 61.92 63.85 62.78
BLSTM(shuffled) A+V 61.51 57.95 60.72 59.24

5 clusters
BLSTM A+V 56.31 53.76 56.13 54.84
BLSTM(shuffled) A+V 53.25 50.95 53.17 51.94

puts to the network inputs. When using feedforward neural networks, this can be
done by calculating the Jacobian matrix J whose elements Jki correspond to the
derivatives of the network outputs ok with respect to the network inputs xi. To
extend the Jacobian to recurrent neural networks, we have to specify the timesteps
(representing utterances) at which the input and output variables are measured.
Thus, we calculate a four-dimensional matrix called the sequential Jacobian [89] to
determine the sensitivity of the network outputs at time t to the inputs at time t′:

Jkitt′ =
∂okt
∂xit′

. (4.2)

Figure 4.8(a) shows the derivatives of the network outputs at time t = 16 with
respect to the different network inputs (i. e., features) at different timesteps t′ for a
randomly selected session consisting of 30 utterances when using a BLSTM network
for the discrimination of five emotional clusters. Since we use BLSTM networks for
utterance-level prediction, each timestep corresponds to one utterance. Note that
the absolute magnitude of the derivatives is not important. We are rather interested
in the relative magnitudes of the derivatives to each other, since this determines
the sensitivity of outputs with respect to inputs at different timesteps. Of course
the highest sensitivity can be detected at timestep t′ = 16, which means that the
current input has the most significant influence on the current output. However,
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(b) Absolute values of the derivatives.

Figure 4.8: Derivatives of the network outputs at time t = 16 with respect
to the different network inputs at different timesteps t′; randomly selected ses-
sion consisting of 30 utterances (BLSTM network for the discrimination of five
emotional clusters).
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Figure 4.9: Derivatives summed up over all inputs and normalized.

also for timesteps smaller or greater than 16, derivatives different from zero can
be found. This indicates that also past and future utterances affect the current
prediction. As positive and negative derivatives are of equal importance, Figure
4.8(b) shows the absolute values of the derivatives in Figure 4.8(a). Finally, Figure
4.9 displays the corresponding derivatives summed up over all inputs and normalized
to the magnitude of the derivative at t′ = 16.

In order to systematically evaluate how many past and future inputs are rele-
vant for the current prediction, we determine how many utterances before and after
the current utterance (e. g., utterance 16 in the example given in Figure 4.9) have
a sensitivity greater or equal to 3 % of the maximum sensitivity. To this end, we
calculate projections of the sequential Jacobian as in Figure 4.9 for each timestep
t in each session and each fold. Figure 4.10(a) shows the number of relevant past
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(a) BLSTM network trained on utterances in the correct order.
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(b) BLSTM network trained on randomly shuffled data.

Figure 4.10: Average number of relevant past and future utterances depen-
dent on the position in the sequence when using a BLSTM network for the
discrimination of five emotional clusters (3 % sensitivity-threshold).

and future utterances dependent on the position in the sequence (i. e., dependent
on the utterance number within a session) when using a BLSTM network for the
discrimination of five clusters in the emotional space (the corresponding figures for
the other classification tasks are very similar and are omitted). The number of past
utterances for which the sensitivity lies above the 3 % threshold increases approxi-
mately until the eighth utterance in a session. As more and more past utterances
become available, the graph converges to a value of between seven and eight, mean-
ing that roughly seven to eight utterances of past context are used for a prediction.
For the first few emotion predictions the network uses about eight utterances of fu-
ture context. The slight decrease of the number of used future utterances for higher
utterance numbers (i. e., for utterances occurring later in a session) is simply due
to the fact that some sessions consist of less than 30 utterances, which means that
towards the end of a session, less future utterances are available on average. Figure
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Figure 4.11: Average number of relevant past utterances dependent on the
sensitivity-threshold; straight lines: utterances in correct order; dashed lines:
randomly shuffled data.

4.10(b) shows the number of relevant preceding and successive utterances for the
BLSTM network trained on randomly shuffled data. As can be seen, the amount
of used context is less than for the BLSTM trained on correctly aligned utterances.
Even though no reasonable emotional context can be learned when training on ar-
bitrarily shuffled data, the network still uses context. One reason for this could be
that BLSTM attempts to learn other session-specific characteristics, such as speaker
characteristics.

Figure 4.11 shows the number of relevant past utterances when considering differ-
ent classification tasks and sensitivity-thresholds from 1 to 10 %. Again, we can see
that networks trained on randomly shuffled data use less context (see dashed lines
in Figure 4.11) while the amount of context exploited for the different classification
tasks is relatively similar.

4.2.3 Emotion Recognition from Acoustic, Linguistic, and
Facial Movement Features

According to [99], ‘second generation’ AER systems have to focus on realistic human
behavior data and need to model the complexity, subtlety, continuity, and dynam-
ics of human emotions. As discussed in Section 4.1.1, we are currently observing a
shift from modeling prototypical emotional categories such as anger or happiness to
viewing human affect in a continuous orthogonal way by defining emotional dimen-
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sions including for example arousal and valence. This allows researchers to model
emotions either in a fully value-continuous way (e. g., via regression approaches as in
[96, 276]) or by using discretized emotional dimensions, for example for the discrim-
ination of high vs. low arousal or positive vs. negative valence (see Section 4.1.2).
Systems applying the latter approach have the advantage of detecting a defined set
of user states which can be easily used as input for automatic dialog managers that
have to decide for an appropriate system response given a certain affective state of
the user [206].

The 2011 Audio/Visual Emotion Challenge [221] focuses on exactly these kinds
of discretized emotional dimensions. More specifically, this challenge was organized
to provide research teams with unified training, development and test data sets that
can be used to compare individual approaches applying a defined test scenario and
defined performance measures. The task was to classify two levels of arousal, ex-
pectation, power, and valence from audio-visual data as contained in the SEMAINE
database [155]. Compared to rather ‘friendly’ test conditions as considered in the
early days of emotion recognition research [217], this scenario is exceedingly chal-
lenging and typically leads to results from below chance-level accuracies to around
70 % accuracy for a two-class task.

In this section, an LSTM-based AER framework exploiting acoustic, linguistic,
and visual information is introduced. In contrast to the system proposed in Sec-
tion 4.2.1, which is based on facial marker information, we now consider a fully
automatic audio-visual recognition framework in which facial movement features
are extracted without the need for facial markers [284, 285]. Focusing on the Audio-
visual Sub-Challenge of the 2011 Audio/Visual Emotion Challenge, we investigate
which modalities contribute to the discrimination between high and low levels of
arousal, expectation, power, and valence. Furthermore, we analyze which emotional
dimensions benefit the most from unidirectional and bidirectional Long Short-Term
Memory modeling. By comparing the obtained results with all other contributions
to the Audiovisual Sub-Challenge task, an overview over recent approaches towards
audiovisual emotion recognition is provided, including an analysis of their strengths
and weaknesses with respect to the modeling of the different emotional dimensions.

The audio-visual LSTM technique is evaluated on both, the development set

Table 4.18: Overview of the SEMAINE database as used for the 2011 Au-
dio/Visual Emotion Challenge [221].

Train Develop Test Total

# Sessions 31 32 32 95
# Frames 501 277 449 074 407 772 1 358 123
# Words 20 183 16 311 13 856 50 350
Avg. word duration [ms] 262 276 249 263
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and the official test set of the Audiovisual Sub-Challenge. This allows a comparison
with various other methods proposed for this task so far, including Support Vector
Machines [201, 221], extreme learning machine based feedforward neural networks
(ELM-NN) [36], AdaBoost [169], Latent-Dynamic Conditional Random Fields (LD-
CRF) [187], Gaussian Mixture Models [127], and a combined system consisting of
multilayer perceptrons and HMMs [86].

Database

The freely available audio-visual SEMAINE corpus1 [155] was collected to investigate
social signals that typically occur during interactions between humans and virtual
agents (see also Section 3.1.6). For the recordings, the participants were asked to
speak to the four different emotionally stereotyped characters introduced in Section
2.1.1. The data used for the 2011 Audio/Visual Emotion Challenge2 is based on
the ‘Solid-SAL’ recordings, i. e., human operators imitated the behavior of artificial
agents. Further details on the interaction scenario can be found in [221].

Video was recorded at 49.979 frames per second at a spatial resolution of 780
x 580 pixels and 8 bits per sample, while audio was recorded at 48 kHz with 24
bits per sample. Both, the user and the operator were recorded from a frontal view
by both a greyscale camera and a color camera. In addition, the user is recorded
by a greyscale camera positioned on one side of the user to capture a profile view
of the whole scene, including their face and body. Audio and video signals were
synchronized with an accuracy of 25 µs.

The 24 recordings considered in the Audio/Visual Emotion Challenge consisted
of three to four character conversation sessions each and were split into three speaker
independent partitions: a training, development, and test partition each consisting of
eight recordings. As the number of character conversations varies between recordings,
the number of sessions is different per set: The training partition contains 31 sessions,
while the development and test partitions contain 32 sessions. Table 4.18 shows the
distribution of data in sessions, video frames, and words for each partition.

In what follows, we exclusively focus on the Audiovisual Sub-Challenge of the
emotion challenge. Thus, the applied test set consists only of the sessions that are
intended for this sub-challenge, meaning only 10 out of the 32 test sessions. For the
challenge, the originally continuous affective dimensions arousal, expectation, power,
and valence were redefined as binary classification tasks by testing at every frame
whether they are above or below average. As argued in [76], these four dimensions
account for most of the distinctions between everyday emotion categories. Arousal is
the individual’s global feeling of dynamism or lethargy and subsumes mental activity
as well as physical, preparedness to act as well as overt activity. Expectation also
subsumes various concepts that can be separated as expecting, anticipating, being

1www.semaine-db.eu
2www.avec2011-db.sspnet.eu
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Figure 4.12: Examples for low and high arousal, expectation, power, and
valence.

valence
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Figure 4.13: Series of word-level screenshots of a user together with the
corresponding valence annotation.

taken unaware. Power subsumes two related concepts, power and control. Valence
subsumes whether the person rated feels positive or negative about the things, people,
or situations at the focus of his/her emotional state. Figure 4.12 shows example
screenshots for low and high arousal, expectation, power, and valence. In Figure
4.13, a series of word-level screenshots of a user and the corresponding valence
annotation can be seen. A detailed description on the annotation process can be
found in [221].

The word timings were obtained by running an HMM-based speech recognizer
in forced alignment mode on the manual transcripts of the interactions. The recog-
nizer used tied-state cross-word triphone left-right (linear) HMM models with three
emitting states and 16 Gaussian mixture components per state.

Audio Feature Extraction

The applied acoustic feature extraction approach is based on a large set of low-level
descriptors and derivatives of LLD combined with suited statistical functionals to
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capture speech dynamics within a word. All features and functionals are computed
using the openSMILE toolkit [73]. The audio feature set is identical to the 2011
Audio/Visual Emotion Challenge baseline acoustic feature set applied in [221] and
consists of 1 941 features, composed of 25 energy and spectral related low-level de-
scriptors x 42 functionals, 6 voicing related LLD x 32 functionals, 25 delta coefficients
of the energy/spectral LLD x 23 functionals, 6 delta coefficients of the voicing re-
lated LLD x 19 functionals, and 10 voiced/unvoiced durational features. Details on
the LLD and functionals are given in [221].

Linguistic and Non-Linguistic Feature Extraction

Linguistic features are extracted using the SEMAINE 3.0 ASR system [206]. It
applies openSMILE as front-end to extract 13 MFCCs together with first and second
order temporal derivatives every 10 ms (window size 25 ms). The HMM back-end is
based on the open-source Julius decoder [135]. A back-off bigram language model
as well as the tied-state triphone acoustic models were trained on the COSINE
corpus [241], the SAL database [64], and the training set of the SEMAINE database
[155]. All of these corpora contain spontaneous, conversational, and partly emotional
speech. The phoneme HMMs consist of three states with 16 Gaussian mixtures per
state. Models for non-linguistic vocalizations (laughing, breathing, sighing) consist
of nine emitting states.

Typically, one (key)word is detected for every audio chunk (which correspond to
single words), however the recognizer is not restricted to detect exactly one word,
thus, insertions and deletions are possible. From the detected sequence of words, a
Bag of Words vector is computed. The general procedure is as follows:

• a word list (also including non-linguistic vocalizations) is built from all the
recognized words in the training and development set,

• words that occur less than 10 times in the union of training and development
set are removed from the word list,

• the dimensionality of the Bag of Words vector equals the size of the remaining
word list (141 words),

• for the current chunk a Bag of Words vector is built by setting each element
corresponding to a detected word to the word confidence score; all other ele-
ments in the vector are set to zero; if the recognizer output for one word is
empty, all elements of the vector are set to zero.

Visual Feature Extraction

In order to compute the visual low-level features applied in the proposed LSTM-
based audio-visual emotion recognition framework we go through the steps depicted
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Figure 4.14: Basic steps for the computation of the low-level visual features.

in the block diagram in Figure 4.14. Note that only data from the frontal view color
camera is used. In Block 1, the face is detected by a Viola Jones face detector [250].
From the detected face a histogram is built for tracking (Block 2 in Figure 4.14). The
face detected in the first frame is cut out and transformed into the hue-saturation-
value (HSV) color space and the entries of the histogram M are computed:

M(h, s, v) =
∑
x,y


1 if TH(x, y) = h ∩ TS(x, y) = s

∩ TV (x, y) = v

0 else

(4.3)

where T is the detected face region that is taken as template. The indices h, s, and
v denote hue, saturation, and value, respectively. Each of the three components of
the HSV color model has 20 bins in the histogram. For each pixel I(x, y) in the
current image the probability of a facial pixel can be approximated by

pf (x, y) =
M(IH(x, y), IS(x, y), IV (x, y))

N
, (4.4)

with N being the number of template pixels that have been used to create the
histogram. The face is considered as detected when there is a sufficiently large
amount of facial pixels in the upper half of the image. Subsequently, the face is
tracked with a camshift tracker [27] which takes the probability image as input.
The location, the size, and the orientation of the face are computed according to
[27]. One advantage of the camshift tracker is that it is comparatively robust which is
important for a reliable facial movement feature extraction. Furthermore, it operates
fast and also computes the tilt of the head, as can be seen in Figure 4.14.

Subsequently, the face is cut out and the tilt is undone (Block 3). The face in
the up-right pose is compared to the previous frame. Note that the tilt θ itself is
used as one facial low-level feature. In Block 4, 98 facial movement features are
extracted as follows. The optical flow between the rectified face and the face of
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Previous frame Optical flow Next frame

Figure 4.15: Example for optical flow computation: Between the frames there
is a substantial change in the mouth region.

the previous frame is computed. As an example, Figure 4.15 depicts a subject that
opens its mouth. In this case the y-values of the rectangles of the lip region are
high. The cut out face is then subdivided into 7 × 7 = 49 rectangles. For each of
these rectangles the average movement in x- and y-direction is computed. These
movements are further features in addition to the tilt θ, so that a total of 99 visual
low-level features are extracted per frame.

In order to map the sequence of frame-based video features to a single vector
describing the word-unit, statistical functionals are applied to the frame-based video
features and their first order delta coefficients. This step is conceptually the same
as for the audio features, except that different functionals are used, considering
the different properties of the video features. Note that words shorter than 250 ms
are expanded to 250 ms which means that the time windows containing very short
words can contain (fractions of) other words. The following functionals are applied
to frame-based video features: arithmetic mean (for delta coefficients: arithmetic
mean of absolute values), standard deviation, 5% percentile, 95% percentile, and
range of 5% and 95% percentile. Fewer functionals as for audio features are used
to ensure a similar dimensionality of the video feature vector and the audio feature
vector. The resulting per-word video feature vector has 5× 2× 99 = 990 features.

Figure 4.16 shows the importance of the subregions of the face for the video-
based discrimination between high and low arousal, expectation, power, and valence.
Importance was evaluated employing the ranking-based information gain attribute
evaluation algorithm implemented in the Weka toolkit [102]. As input for the ranking
algorithm, all 990 features extracted from each instance in the training set were used
together with the ground truth annotation of the respective emotional dimension. In
Figure 4.16, the shading of the facial regions indicates the importance of the features
corresponding to the respective region. As expected, the small remaining background
parts are less important than the subregions containing facial information. Within
the face, the eye regions contain slightly more information. Overall, we observe
that relevant information about a subject’s emotional state can be found in multiple
regions of the face and not just in the upper or lower face, corresponding to the eye
and mouth region, respectively.
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Figure 4.16: Importance of facial regions for video feature extraction ac-
cording to the ranking-based information gain attribute evaluation algorithm
implemented in the Weka toolkit [102]. Information gain is evaluated for each
emotional dimension. The shading of the facial regions indicates the importance
of the features corresponding to the respective region.
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Figure 4.17: System architecture for early fusion of acoustic, linguistic, and
video features.

System Architecture

Figure 4.17 shows the overall system architecture of the LSTM-based audio-visual
emotion recognition framework applying early (i. e., feature-level) fusion. The openS-
MILE audio feature extractor provides framewise MFCC features for the speech
recognition module as well as statistical functionals of acoustic features for the LSTM
network. In addition to audio features, the network also processes the linguistic fea-
ture vector provided by the ASR system and video features computed by the facial
feature extractor to generate the current emotion prediction.
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Experiments and Results

All experiments were carried out on the Audiovisual Sub-Challenge task as described
in [221]. To gain first insights concerning the optimal combination of modalities (i. e.,
acoustic, linguistic, and visual features) and the number of training epochs needed
for LSTM network training, initial experiments were performed using the training set
for network training and the development set for testing, before the actual challenge
task was considered which consists in training on the union of the training and the
development set and testing on the test set. The task is to discriminate between
high and low arousal, expectation, power, and valence. As the class distribution in
the training set is relatively well balanced, the official challenge measure is weighted
accuracy, i. e., the recognition rates of the individual classes weighted by the class
distribution. However, since the instances of the development and test sets are partly
unbalanced with respect to the class distributions, unweighted accuracies (equivalent
to unweighted average recall) are also reported. This imbalance holds in particular
for the Audio and Audio-Visual Sub-Challenge as they consider word-level modeling
rather than frame-based recognition.

We investigate the performance of both, bidirectional LSTMs and unidirectional
LSTM networks for fully incremental on-line audio-visual affect recognition. Sepa-
rate networks were trained for each emotional dimension. The following modality
combinations were considered: acoustic features only, video features only, acoustic
and linguistic features (including non-linguistic vocalizations), acoustic and video
features, as well as acoustic, (non-)linguistic, and video features.

All LSTM networks consist of 128 memory blocks and each memory block con-
tains one memory cell. Again, the number of input nodes corresponds to the number
of different features per speech segment and the number of output nodes corresponds
to the number of target classes, i. e., two output nodes were used, representing high
and low arousal, expectation, power, and valence, respectively. To prevent over-
fitting of the neural networks to the training data, a small amount of noise (Gaussian
noise with standard deviation 0.6) was added to the inputs at each training epoch.
As in previous experiments, all networks were trained using a learning rate of 10−5.
The bidirectional networks consist of two hidden layers (one for forward and one
for backward processing) with 128 memory blocks per input direction. Parameters
such as learning rate and the number of memory blocks were configured according
to experience with similar recognition tasks (see [289], for example). To validate
whether better recognition performance can be obtained when changing the number
of memory blocks, hidden layer sizes of between 80 and 160 memory blocks were
evaluated on the development set. Yet, for none of the modality combinations a
modified hidden layer size could significantly outperform networks using the default
setting of 128 memory blocks. The resulting number of variables that need to be
estimated during network training is equivalent to the number of weights in the
network, e. g., an LSTM network that processes the full feature set consisting of
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Table 4.19: Development set of the Audiovisual Sub-Challenge; no feature
selection: weighted accuracies (WA) and unweighted accuracies (UA) for the
discrimination of high and low arousal, expectation, power, and valence using
acoustic (A), linguistic (L), and video (V) features combined with different
classifiers. LF: late fusion; the best weighted accuracies for each emotional
dimension are highlighted.

arousal expectation power valence mean
classifier features WA UA WA UA WA UA WA UA WA

BLSTM A 68.5 69.3 64.3 53.5 66.1 53.3 66.3 56.1 66.3
BLSTM A+L 67.8 69.0 64.8 52.0 65.5 53.9 66.3 56.2 66.1
LSTM A 68.5 68.6 66.1 55.9 64.7 56.1 65.6 55.2 66.2
LSTM A+L 68.2 68.8 65.2 51.9 66.2 55.0 63.8 55.9 65.9
SVM [221] A 63.7 64.0 63.2 52.7 65.6 55.8 58.1 52.9 62.7

BLSTM V 62.3 62.9 62.3 51.8 55.2 53.0 63.3 60.5 60.8
LSTM V 60.3 61.3 60.4 57.7 57.0 50.4 64.0 57.9 60.4
SVM [221] V 60.2 57.9 58.3 56.7 56.0 52.8 63.6 60.9 59.5

BLSTM A+V 67.7 68.0 63.1 53.4 60.6 55.0 67.2 61.8 64.7
BLSTM A+L+V 66.9 67.0 66.2 57.3 63.4 52.3 65.9 61.5 65.6
LSTM A+V 68.0 67.5 65.7 57.7 63.8 54.7 65.5 59.5 65.8
LSTM A+L+V 67.4 66.8 65.3 56.7 61.7 54.2 67.6 62.8 65.5

BLSTM (LF) A+V 67.9 69.3 65.0 53.2 64.0 55.5 69.8 61.3 66.7
BLSTM (LF) A+L+V 67.0 68.6 65.7 51.6 63.6 55.7 69.8 61.2 66.5
LSTM (LF) A+V 62.6 64.3 67.6 57.6 65.1 56.0 68.2 57.7 65.9
LSTM (LF) A+L+V 66.3 67.4 63.9 58.1 66.0 53.9 66.4 58.2 65.7

acoustic, linguistic, and video information has 2 094 210 weights.

As abort criterion for training, the classification performance on the development
set was periodically evaluated and the network which achieved the best results on
the development set was used. The number of training epochs needed until the best
performance was reached was around 30 epochs for recognition of expectation, power,
and valence, and 60 epochs for arousal classification. All input features were mean-
and variance normalized with means and variances computed from the training set.

Alternatively to early fusion of modalities on the feature level, also a simple late
fusion (LF) technique was considered. The late fusion approach consisted in training
separate networks for each modality and summing up the output activations of the
respective networks before deciding about the estimated class that can be inferred
from the highest (overall) output activation.

Table 4.19 shows both, weighted accuracies (WA) and unweighted accuracies
(UA) obtained when training on the training set of the 2011 Audio/Visual Emotion
Challenge and testing on the development set. Results are shown for BLSTMs,
LSTM networks, and for the SVM approach applied in [221] and various modality
combinations are considered. Note that the results for SVMs processing audio and
video data are missing as they are not reported in [221]. For the Audiovisual Sub-
Challenge, the development set data has been used in [221] only to train the fusion
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Table 4.20: Development set of the Audiovisual Sub-Challenge; CFS feature
selection: weighted accuracies (WA) and unweighted accuracies (UA) for the
discrimination of high and low arousal, expectation, power, and valence using
acoustic (A), linguistic (L), and video (V) features combined with different
classifiers. LF: late fusion; the best weighted accuracies for each emotional
dimension are highlighted.

arousal expectation power valence mean
classifier features WA UA WA UA WA UA WA UA WA

BLSTM A 71.3 70.2 66.2 51.0 66.0 56.4 65.9 60.6 67.4
BLSTM A+L 73.7 74.4 66.1 53.1 64.6 55.7 65.8 57.2 67.6
LSTM A 70.4 69.8 67.7 54.6 64.9 58.8 63.1 55.3 66.5
LSTM A+L 71.9 71.1 63.1 55.5 66.6 56.3 64.7 56.9 66.6

BLSTM V 59.8 58.8 66.2 50.1 64.1 57.5 63.3 56.0 63.4
LSTM V 62.7 61.5 66.0 50.1 70.2 62.4 64.3 52.7 65.8

BLSTM A+V 67.8 69.5 64.3 52.3 60.1 57.0 64.7 58.8 64.2
BLSTM A+L+V 69.9 70.7 63.3 50.4 61.9 56.1 61.4 55.9 64.1
LSTM A+V 69.7 70.8 64.5 52.0 63.5 56.8 62.4 53.0 65.0
LSTM A+L+V 70.4 71.3 65.7 53.3 63.5 55.9 62.9 53.2 65.6

BLSTM (LF) A+V 68.5 67.5 66.7 50.4 64.2 52.7 69.1 60.6 67.1
BLSTM (LF) A+L+V 72.3 72.3 66.6 50.9 64.4 54.0 67.9 58.5 67.8
LSTM (LF) A+V 65.7 63.7 67.4 52.1 68.0 58.6 66.8 54.8 67.0
LSTM (LF) A+L+V 64.8 63.5 67.1 54.9 68.1 57.3 65.7 56.4 66.4

engine – this, however, is not necessary for the proposed LSTM-based recognition
engine since it uses either early fusion or a simple late fusion scheme that does not
require training.

The performance difference between unidirectional and bidirectional LSTM net-
works is comparatively small. In some cases (e. g., classification of arousal using
acoustic and linguistic features), LSTM networks perform even slightly, but not
significantly better than BLSTM nets. This means that modeling only past con-
text does not necessarily downgrade recognition results compared to bidirectional
modeling, which is important for incremental on-line applications in which future
context is not available due to real-time constraints. The performance of the dif-
ferent feature groups (acoustic, linguistic, video) heavily depends on the considered
emotional dimension. For arousal, the best WA of 68.5 % is obtained for acoustic
features only, which is in line with previous studies showing that audio is the most
important modality for assessing arousal [289]. However, the classification of expec-
tation seems to benefit from including visual information as the best WA (67.6 %)
is reached for LSTM networks applying late fusion of audio and video modalities.
Similar to arousal, power is best classified via speech-based features. Bidirectional
networks for classifying power cannot be enhanced by linguistic features, however,
for unidirectional modeling WA significantly increases from 64.7 % to 66.2 % when
using linguistics in addition to audio features. For valence, the inclusion of video
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information helps, leading to a WA of 69.8 % when using BLSTM networks and
audio-visual data. The effectiveness of the emotion recognition approaches using
only video information also depends on the emotional dimension. For arousal and
expectation, BLSTM modeling of facial movement features prevails, while for power
and valence, we observe slightly, but not significantly better results for SVM-based
classification of local appearance descriptors as proposed in [221] and for unidirec-
tional LSTM modeling. On average the best performance on the development set
is obtained for bidirectional processing and acoustic and visual features (mean WA
of 66.7 %). Yet, in this case there is no significant difference between bi- and uni-
directional processing, as LSTM networks achieve almost the same WA on average
(66.5 %). For each emotional dimension, context modeling via LSTM increases accu-
racies compared to the static SVM-based technique applied in [221]. Furthermore,
late fusion tends to prevail over early fusion.

To investigate whether a smaller feature space leads to better recognition perfor-
mance, all evaluations on the development set were repeated applying a Correlation-
based Feature Subset Selection [269] for each modality combination. The correspond-
ing results can be seen in Table 4.20. For most settings, CFS does not significantly
improve the average weighted accuracy. However, for recognition based on video
only, CFS leads to a remarkable performance gain, increasing the average WA from
60.4 % to 65.8 % for unidirectional LSTM networks.

The results for the official Audiovisual Sub-Challenge test set can be seen in
Table 4.21. Networks were trained on the training and development set. Accord-
ing to optimizations on the development set, the number of training epochs was 60
for networks classifying arousal and 30 for all other networks. Networks process-
ing video data only are based on a video feature set reduced via CFS, whereas for
all other networks, no CFS was applied. All network parameters (number of mem-
ory blocks, learning rate, etc.) were identical to the previous set of experiments
on the development set. BLSTM and LSTM modeling was compared to all other
approaches proposed for the Audiovisual Sub-Challenge, including Support Vector
Machines [201, 221], extreme learning machine based feedforward neural networks
[36], AdaBoost [169], Latent-Dynamic Conditional Random Fields [187], Gaussian
Mixture Models [127], and a combined system consisting of MLPs and HMMs [86].
Note, however, that these classification techniques do not necessarily use the same
set of audio (and video) features, thus, Table 4.21 compares the overall approaches
of different research groups rather than the effectiveness of the different classifiers.
Similar to our experiments on the development set, audio features lead to the best
result for arousal classification. When applying LSTM modeling we reach a WA of
71.2 % which is the best result reported for this task so far. Also for BLSTM-based
classification of expectation using facial movement features, the obtained WA of
68.6 % is higher than what is reported for other techniques. For power, audio-visual
classification with Latent-Dynamic Conditional Random Fields as proposed in [187]
could not be outperformed. For valence, the audio features used in [201] lead to
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Table 4.21: Test set of the Audiovisual Sub-Challenge: weighted accuracies
(WA) and unweighted accuracies (UA) for the discrimination of high and low
arousal, expectation, power, and valence using acoustic (A), linguistic (L), and
video (V) features combined with different classifiers. LF: late fusion; the best
weighted accuracies for each emotional dimension are highlighted.

arousal expectation power valence mean
classifier features WA UA WA UA WA UA WA UA WA

BLSTM A 69.2 69.1 63.1 54.6 59.6 52.9 68.7 57.4 65.2
LSTM A 71.2 71.2 57.6 48.7 57.4 50.4 68.7 59.5 63.7
SVM [201] A 59.8 59.7 63.6 50.0 57.9 48.4 70.2 54.9 62.9
ELM-NN [36] A 52.0 52.3 63.7 50.1 62.2 50.7 69.1 50.0 61.8
AdaBoost [169] A 57.6 57.5 62.2 49.6 54.2 47.9 60.3 47.6 58.6
LDCRF [187] A 60.9 60.4 53.2 44.1 56.8 45.7 60.9 45.8 57.9
GMM [127] A 55.3 55.2 56.1 50.7 49.1 45.3 50.9 48.4 52.9

BLSTM V 43.1 42.9 68.6 62.0 44.8 41.0 51.7 52.4 52.1
LSTM V 48.6 48.7 65.6 60.2 37.6 35.8 60.8 52.2 53.1
SVM [52] V 47.8 47.4 62.0 54.8 57.9 47.4 69.6 50.2 59.3
LDCRF [187] V 53.2 53.1 46.8 43.2 57.3 50.5 59.3 50.7 54.1

BLSTM A+V 58.3 58.1 64.1 59.5 46.9 45.4 51.1 45.4 55.1
BLSTM A+L+V 58.8 58.6 60.8 54.8 46.9 44.0 57.1 50.2 55.9
LSTM A+V 56.3 56.2 61.6 54.1 46.7 45.8 61.2 53.9 56.5
LSTM A+L+V 57.9 57.8 64.0 58.6 47.6 44.8 55.7 47.9 56.3
SVM [221] A+V 67.2 67.2 36.3 48.5 62.2 50.0 66.0 49.2 57.9
LDCRF [187] A+V 65.6 65.3 53.4 49.2 62.9 58.3 59.5 49.6 60.3
MLP [86] A+V 54.1 54.3 58.5 57.8 42.7 40.0 44.8 35.9 50.0

BLSTM (LF) A+V 69.5 69.4 63.6 54.5 55.8 49.3 69.6 59.2 64.6
BLSTM (LF) A+L+V 63.3 63.2 62.9 53.0 53.1 48.4 57.6 46.9 59.2
LSTM (LF) A+V 67.8 67.8 58.3 48.9 57.5 50.3 68.7 59.3 63.1
LSTM (LF) A+L+V 70.3 70.3 62.5 52.2 56.0 50.4 69.2 58.5 64.5

the highest accuracy (70.2 %). When computing the average WA, we observe that a
remarkable average performance can be obtained for systems exclusively processing
audio data (for an overview over the statistical significance of the performance differ-
ence between the audio-based approaches, see Table 4.22). This suggests that even
though video information helps for some emotional dimensions (such as expecta-
tion), on average acoustic features contribute the most to the assessment of affective
states in the SEMAINE scenario. Interestingly, in the evaluations on the test set,
the performance gap between early and late fusion of modalities via LSTM networks
is significantly more pronounced than in the initial experiments on the development
set. The average WA values we obtain for BLSTMs (65.2 %) and LSTMs (63.7 %)
processing acoustic features prevail over all other approaches applied for this task
by the challenge participants. Thus, similar to Section 4.2.1, we can conclude that
the LSTM architecture is well suited for modeling affect in human conversations
and that the exploitation of long-range temporal context not only helps humans to
judge a conversational partner’s emotional state but also increases the accuracy of
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Table 4.22: Statistical significance of the average performance difference be-
tween the audio-based classification approaches denoted in the column and the
approaches in the table header (evaluations on test set of the Audiovisual Sub-
Challenge); ‘-’: not significant; ‘o’ significant at 0.1 level; ‘+’: significant at
0.05 level; ‘++’: significant at 0.001 level. Significance levels are computed
according to the z-test described in [235].

LSTM SVM ELM-NN AdaBoost LDCRF GMM [127]

BLSTM o + ++ ++ ++ ++
LSTM - + ++ ++ ++
SVM [201] - ++ ++ ++
ELM-NN [36] + ++ ++
AdaBoost [169] - ++
LDCRF [187] ++

automatic affect sensing in human-computer interaction.

4.3 Summary and Outlook

Automatic non-verbal human behavior analysis is needed for intelligent systems
that take into account the affective state of the user in order to enable natural
and emotion-sensitive human-computer interaction. This chapter provided insights
into novel speech-based and audio-visual machine learning techniques that exploit
acoustic, linguistic, visual, and context information to recognize human emotions
in spontaneous interactions. Rather than modeling discrete categorical emotions
like ‘happiness’ or ‘anger’, this chapter focused on dimensional representations of
affect by considering emotional dimensions such as valence and arousal. In Section
4.1.1, data-driven clustering of the valence-arousal space was investigated as an
alternative to quadrant-based quantization. Depending on the application scenario,
such ‘clusters’ in the emotional space can represent typical affective states in a more
appropriate way [277].

Next, in Section 4.1.2 a novel technique for speech-based emotion estimation as
needed for the SEMAINE system (see Section 2.1) was introduced [294]. In contrast
to many other studies that report recognition results for the static classification
of acted speech turns representing emotional prototypes, the experiments presented
in Section 4.1.2 can be seen as a realistic evaluation of recognition accuracy under
real-life conditions, where non-prototypical speech has to be classified using powerful
techniques of dynamic speech modeling. The considered approach combines acoustic
features obtained by the openSMILE on-line feature extractor with binary linguistic
features produced by a Tandem BLSTM-DBN (see Section 3.1.3), which are then
classified by a Long Short-Term Memory recurrent neural net. As outlined in Sec-
tion 2.3.9, the LSTM architecture allows for the modeling of long-range contextual
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information and thus enables a new technique of incremental affect recognition that
does not require the computation of statistical functionals of features but captures
the temporal evolution indirectly through LSTM memory cells. As an alternative
to regression-based AER, a discriminatively trained LSTM system was created to
distinguish quadrants of the emotional space. The prediction quality of the proposed
system was shown to be comparable to the degree of consistency between different
human labelers.

Section 4.1.3 introduced a speech-based framework for the assessment of a user’s
level of interest based on acoustic and linguistic information. Again, we exploit con-
textual knowledge via bidirectional Long Short-Term Memory networks to model
how the user’s interest evolves over time. Combining the BLSTM technique with
the idea of bottleneck nets by designing LSTM networks with multiple hidden layers
(including a narrow bottleneck layer in the middle) was shown to enable the gener-
ation of a compact low-dimensional feature representation within the network and
to lead to improved interest recognition results. The Bottleneck-BLSTM strategy
achieved remarkable results on the Interspeech 2010 Paralinguistic Challenge task
[220], outperforming all other methods which have been proposed for this task so
far [299].

In Section 4.1.4, we analyzed the effect of reverberation on automatic speech
and emotion recognition in a child-robot interaction scenario involving spontaneous
speech and non-prototypical emotions [302]. As expected, reverberation tends to
degrade acoustic, linguistic, and combined acoustic-linguistic emotion recognition
performance, however, the usage of reverberated training material can largely com-
pensate the decrease of both, speech and emotion recognition accuracy. Multi-
condition training leads to good performance for all reverberation conditions and
reaches accuracies comparable to matched condition training. This shows that in-
cluding reverberated data in the training set leads to more robust models – even
if the training conditions do not exactly match the acoustic conditions during test-
ing. Applying the multi-stream BLSTM-HMM ASR system detailed in Section 3.2.2,
acoustic-linguistic AER accuracies of up to 70.3 % can be obtained for the recogni-
tion of negative emotions, which corresponds to results that were previously only
reported for the fusion of multiple recognition engines [212].

As also facial features derived from the video signal can contain valuable infor-
mation about the affective state of a user, Section 4.2 was devoted to audio-visual
approaches towards non-verbal behavior analysis – again focusing on LSTM-based
techniques for context-sensitive learning. First, in Section 4.2.1, a multi-modal
framework for affect recognition from acoustic and facial marker features was inves-
tigated [289]. Various challenging subject-independent classification tasks revealed
that BLSTM modeling prevails over conventional dynamic or static classification
strategies.

In the light of Sections 4.1 and 4.2.1, which showed that context modeling via
BLSTM networks is well-suited for emotion recognition applications, Section 4.2.2
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introduced a methodology to analyze the amount of past and future context that is
used by a BLSTM network to predict the emotional expression of a spoken utterance.
In addition, we investigated the contribution of contextual information to the overall
BLSTM performance, by randomly shuffling the order of utterances within a conver-
sation so that the network fails to learn and exploit meaningful context. Systematic
evaluations of the sequential Jacobian of trained BLSTM networks revealed that
approximately eight past (and if available, also future) utterances are considered
by the network as contextual information, when using a 3 % sensitivity-threshold
as defined in [290]. When the input utterances are randomly shuffled, the BLSTM
network uses fewer past and future utterances (around six). Emotion recognition
results showed that performance significantly decreases when networks are trained
on randomly shuffled data. This suggests that good performance of BLSTM-based
approaches is due to the networks’ ability to learn an adequate amount of relevant
emotional context around the current observation. When such meaningful context
is not present, performance degrades.

Finally, in Section 4.2.3, we considered an automatic emotion recognition frame-
work exploiting acoustic, linguistic, and visual information in affective interactions
[284]. LSTM context modeling was exploited to discriminate between high and low
levels of arousal, expectation, power, and valence using statistical functionals of
a large set of acoustic low-level descriptors, linguistic information (including non-
linguistic vocalizations), and facial movement features. To get an impression of the
effectiveness of context-sensitive LSTM-based audio-visual emotion recognition com-
pared to other recently published approaches, the system was trained and evaluated
on data sets defined in the 2011 Audio/Visual Emotion Challenge [221]. For the
emotional dimensions arousal and expectation, the proposed framework led to the
best accuracies reported so far (71.2 % and 68.6 %, respectively). Averaged over all
four emotional dimensions, we obtained a (weighted) accuracy of 65.2 % via bidirec-
tional LSTM modeling of acoustic features, which is higher than all other average
accuracies reported for this task in literature up to now. The absolute values of the
reported accuracies seem low in comparison to easier scenarios, such as the discrim-
ination of acted, prototypical emotions. However, the considered scenario reflects
realistic conditions in natural interactions and thus highlights the need for further
research in the area of affective computing in order to get closer to the human
performance in judging emotions.

Future studies should consider to examine the potential of multi-task learning,
i. e., learning phonemes and the affective state simultaneously. Furthermore, the con-
text analysis method used in Section 4.2.2 to analyze BLSTM modeling of affective
human-human conversations should also be applied to other databases and scenar-
ios, such as human-computer interactions, human-robot dialogues, and call-center
data. This could help to gain insights regarding the flexibility and adaptiveness of
LSTM context modeling, as well as the characteristics of different emotion recogni-
tion use-cases. Future research in the area of video feature extraction should include
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the application of multi-camera input to be more robust to head rotations. The fa-
cial movements captured by multiple 2D cameras can be combined to predict 3D
movement via deformable 3D models. Concerning the 2011 Audio/Visual Emotion
Challenge, it would be interesting to fuse the results of all challenge participants
to make use of the potentially complementary information generated by the individ-
ual techniques. To obtain the best possible recognition performance, future studies
should also investigate which feature-classifier combinations lead to the best results,
e. g., by combining the LSTM framework outlined in Section 4.2.3 with other audio
or video features proposed for the 2011 Audio/Visual Emotion Challenge.

In addition to the mentioned approaches for future improvements, there will be
a lot more aspects to consider before emotion-sensitive systems show a degree of
naturalness that is comparable to human-human communication. Yet, even though
the amount of social competence an advanced emotion recognition framework can
incorporate into a virtual agent remains limited and cannot fully compete with
human affect recognition quality, the principle of integrating long-range context
information can be seen as a further step towards making virtual agents more human-
like.
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5

Driving Behavior Analysis

So far, we have focussed on (mostly speech-based) verbal and non-verbal behav-
ior analysis in human-computer interaction scenarios. This chapter shows that the
context-sensitive machine learning techniques considered and advanced in this thesis
can also be successfully applied in other domains of human behavior analysis that
involve signals which strongly differ from the speech signals processed by algorithms
and models introduced in Chapters 3 and 4. As pattern recognition is increasingly
used in the automotive domain, we will now concentrate on driving behavior analysis
and transfer the methods established in the field of affective computing (see Chapter
4) to driver distraction detection. Recognizing whether a driver is distracted or not
plays an important role for the design of lane-keeping assistance systems which may
be more acceptable to users if the assistance was adaptive to the driver’s state. Thus,
this chapter introduces a novel technique for on-line detection of driver’s distraction,
modeling the long-range temporal context of driving and head tracking data. Again,
Long Short-Term Memory recurrent neural networks (see Section 2.3.9) are applied
as an efficient technique to capture the dynamics of successive pattern vectors. Fol-
lowing a strategy similar to the emotion recognition engines proposed in Chapter 4,
LSTM modeling is combined with large-scale feature functional computation by the
openSMILE toolkit [73]. The following sections show that this approach enables a
reliable, subject-independent detection of driver inattention with an accuracy of up
to 96.6 %, outperforming conventional approaches such as Support Vector Machines
[271].

5.1 Driver Distraction Detection

Driver inattention is one of the major factors in traffic accidents. The National
Highway Traffic Safety Administration estimates that in 25 % of all crashes some
form of inattention is involved [256]. Distraction (besides drowsiness), as one form
of driver inattention, may be characterized as: “any activity that takes a driver’s
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attention away from the task of driving” [188]. Causes for driver inattention are for
example the use of wireless devices or passenger related distractions [61]. Although
over the last few years many European countries have prohibited, for instance, the
use of wireless devices while driving, it should not be expected that the amount of
distraction in driving will necessarily decrease. Even without the distractions caused
by mobile devices, the amount of distraction due to in-car information systems will
increase. Thus, original equipment manufacturers and automotive suppliers will
need to find a way to deal with this problem.

One method that aims to minimize crashes rather than distractions is the devel-
opment of new driver assistant systems [78, 242]. With the evolution of adequate
lane tracking, lane-keeping assistance systems were introduced into the market re-
cently. These systems track the lane markings in front of the vehicle and compute
the time until the vehicle will cross the marking. If the driver does not show an
intention of leaving the lane by using the indicator, the systems will use directed
steering torques on the steering wheel to guide the car to the middle of the lane.
Authors of several studies reported overall effects of lane departure warning systems
on lane-keeping performance [2, 128, 194]. Even though different kinds of warnings
can be helpful, participants in [2] judged the lane departure warning system to be
annoying in some circumstances. The reason why those systems are annoying for
some drivers is easy to explain. That is, lane-keeping assistance aims at preventing
the driver from making unintended lane departures. However, these systems do not
yet respond to the driver’s state or his intent but to lane markings and the car’s
speed. This implies that warnings can be triggered if attentive drivers intentionally
change lanes but forget to use the indicator or if certain maneuvers that are exe-
cuted with full attention require lane crossings. Thus, if it was possible to recognize
a driver’s state reliably, the system would give just as much assistance as the driver
needed. This would allow for a greater safety margin without irritating the driver
with false alarms in normal driving situations.

In [25] three main approaches to such a recognition are discussed: monitoring
of driver’s perception, monitoring of driver steering and lane-keeping behavior, and
the recognition of the driver’s involvement in a secondary task itself. In recent years,
several techniques trying to estimate the driver to be distracted have been published.
However, the majority of approaches are developed and evaluated using data that
was captured in a driving simulator and not in a real vehicle, where data is much
more noisy and complex than it is in a simulator scenario [54, 140, 141, 246, 308]. A
considerable number of studies concentrate on the detection and modeling of fatigue
or stress as important causes for inattention (e. g., [63, 104, 117, 118]). However, as
shown in [308], also visual distraction downgrades driving performance.

In order to detect distraction or inattention while driving, different classifica-
tion techniques can be found in literature. The predominant approach is to use
static classifiers such as Support Vector Machines [140, 142] (see Section 2.3.1). A
promising approach can be found in [130] where SVM are used to detect driver dis-
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traction based on data captured in real traffic conditions, resulting in accuracies of
65 - 80 %. In this study, features are computed from fixed-length time windows, i. e.,
the amount of context that is incorporated into the classification decision is prede-
fined. In [141], the authors show that time-dependencies are highly relevant when
predicting the current state of a driver: Modeling the dynamics of driver behavior
by using a Dynamic Bayesian Network (see Section 2.3.2) rather than a static net-
work led to accuracies of around 80 %. Similar approaches towards driver behavior
or driver state estimation that model contextual information via DBNs or Markov
models can also be found in [129] and [172]. Other popular classification strategies
include the application of fuzzy logic [181], multiple adaptive regression trees [246],
or neural networks [54, 63].

This section introduces a framework for on-line driver distraction detection based
on modeling contextual information in driving and head tracking data captured dur-
ing test drives in real traffic. Similar to the emotion recognition systems outlined
in Chapter 4, the approach is based on Long Short-Term Memory RNNs, exploit-
ing their ability to capture the long-range temporal evolution of data sequences
(see Section 2.3.9). We investigate both, ‘sample-wise’ classification based on low-
level signals and ‘frame-wise’ classification using statistical functionals of the signals.
Evaluations in Section 5.1.3 show that using low-level signals for driver distraction
detection is hardly feasible with conventional recurrent neural networks where the
amount of accessible context information is limited.

5.1.1 Driving Data and Signals

In order to collect data that represents a distracted drivers’ behavior in realistic
driving situations, 30 participants (12 female and 18 male) were recruited [271].
The subjects were 23 to 59 years old and had driven at least 10 000 kilometers in
the last 12 months. An Audi A6 was used as the experimental car. The car was
equipped with the Audi Multimedia System (see Figure 5.1) and an interface to
measure Controller Area Network (CAN)-Bus data. Additionally, a head tracking
system [25] was installed, which was able to measure head position and head rotation.
This data was also sent on CAN-Bus. Head tracking systems are not common in
vehicles today, but promising research in systems for driver state detection will lead
to a higher installation rate in serial cars in the near future.

Eight typical tasks on the Multimedia Interface were chosen as distraction con-
ditions:

• radio: adjust the radio sound settings

• CD: skip to a specific song

• phonebook: search for a name in the phonebook
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Figure 5.1: Audi A6 Cockpit.

• navigation-point of interest: search for a nearby gas station

• phone: dial a specific phone number

• navigation: enter a city in the navigation device

• TV: switch the TV mode to ‘PAL’

• navigation-sound: adjust the volume of navigation announcements

These kinds of visual and manual distractions that are typical when operating in-
vehicle information systems. Purely mental forms of distraction or inattention (such
as ‘being lost in thought’) were excluded since they are comparably hard to elicit and
detect. Also tasks leading to auditory distraction (e. g. talking to a passenger) were
not included in the database as they are generally considered as lower-risk activities
[305].

The main functions (e. g., navigation, CD/TV, and radio) are available through
eight so-called hardkeys which are located on the right- and left-hand side of the
control button (see Figure 5.1). In each main menu, special functions (e. g. sound
settings in the radio menu) can be selected by the four so-called softkeys which
surround the control button. These special functions differ between the main menus.
The functions assigned to the softkeys are shown in the corners of the display which
is located in the middle console. Most inputs are done using the control button. By
turning the control button left or right it is possible to scroll up and down in lists
while pushing the button selects highlighted items. For typing letters (navigation)
or digits (phone) the so-called speller is used, whereas symbols are arranged in a
circle and can be selected by turning and pushing the control button.

The procedure for the experiment was as follows: After a training to become
familiar with the car each participant drove down the same country road eight times
(one time per task) while performing secondary tasks on the in-vehicle information
system. Each task was performed only once per drive and only the time from the
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beginning of the task to the end of the task was recorded as a ‘distracted drive’.
On another two runs the drivers had to drive down the road with full attention
on the roadway (‘baseline’ runs). In order to account for sequential effects, the
order in which the conditions were presented was randomized for each participant.
During each drive CAN-Bus data (including head tracking data) were logged. The
experiments were performed on a German country road with an average road width
of 3.37 m and continuous road marking. The route is straight (apart from two slight
turns), consists of one lane per direction, and leads through a forest. During the
experiments oncoming traffic was present, however, the overall traffic density was
moderate. Participants drove during the daytime under different weather conditions
(mostly dry). Overall, 53 runs while driving attentively and 220 runs while the
drivers were distracted could be measured (some runs had to be excluded due to
logging problems). The ‘attentive’ runs lasted 3 134.6 seconds altogether, while
9 145.8 seconds of ‘distracted’ driving were logged. Thus, the average duration of
attentive and distracted runs was 59.2 seconds and 41.6 seconds, respectively. At
an average speed of roughly 100 km/h, this corresponds to distances of 1.64 km and
1.16 km, respectively. An analysis of the influence on lane-keeping of the different
in-vehicle information system interaction tasks [25] indicated that the tasks can be
characterized as distracting in general.

Three different classification tasks are considered for the estimation of distrac-
tion: the binary decision whether a driver is distracted or not (‘two-class problem’),
the discrimination between no, medium, and a high degree of distraction (‘three-
class problem’), and the discrimination between six levels of distraction (‘six-class
problem’). For the binary problem, all tasks (i. e., runs during which the tasks were
performed) were labeled as ‘distracted’ compared to driving down the road with full
attention (‘attentive’). Since all participants were asked to judge the level of distrac-
tion of a certain task (meaning the difficulty of the task) on a scale between 1 (easy)
and 5 (difficult), these individual judgments were used to model also the degree of
distraction as a six-class problem (‘attentive’ plus five levels of distraction). For the
three-class problem, difficulties 1 to 3 as well as difficulties 4 and 5 were clustered
together. Thus, the system for driver distraction detection is trained to predict the
subjective ratings of distraction assigned by the participants using different levels of
granularity. Even though the system outputs an estimate of the subjective level of
distraction every few milliseconds, the level of distraction is defined by drive, mean-
ing that we assign the same level of distraction to each time step of a certain drive.
This has the effect that the classifier considers long-term context and predicts the
driver state according to the overall difficulty of the task and the resulting level of
distraction. It is assumed that during the ‘distracted’ runs the driver is continuously
engaged in the task, even if there are short periods of attention which are of course
necessary while driving. By characterizing distraction on a per-drive basis, these
short intervals of attention are smoothed out in order to model the driver state on
a long-term basis, which in turn is desired when using driver state estimations for
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adaptive lane-keeping assistance. Six signals were chosen:

• steering wheel angle (SA)

• throttle position (TP)

• speed (SP)

• heading angle (HA, angle between the longitudinal axis of the vehicle and the
tangent on the center line of the street)

• lateral deviation (LD, deviation of the center of the car from the middle of the
traffic lane)

• head rotation (HR, rotation around the vertical axis of the car)

The first three (SA, TP, and SP) are direct indicators of the driver behavior. Many
studies prove the fact that visually distracted drivers steer their car in a different
way than attentive drivers do. The same applies for throttle use and speed (an
overview can be found in [305]). The car’s heading angle and its lateral deviation in
the lane rely on the amount of attention the driver is allocating to the roadway and
may hence give useful information about distraction. Head rotation of the driver is
an indicator of the driver’s visual focus [234]. While using the Multimedia Interface,
which is located in the middle console just below the dashboard, the main rotation
of the head is to the right. Thus, the heading angle of head rotation is the most
promising indicator of the head tracking signals.

5.1.2 Distraction Detection from Driving and Head Track-
ing Data

The main architecture of the proposed system for driver distraction classification can
be seen in Figure 5.2. In the following we will denote all signals prior to statistical
functional computation as low-level signals with synchronized time index n (and
time index n′ prior to synchronization) whereas t is the frame index referring to the
time windows over which statistical functionals are calculated. In Section 5.1.3 we
investigate both, the direct modeling of low-level signals sn (including the first and
second derivatives) and the modeling of statistical functionals of those signals (xt).
In other words, we examine the performance of driver distraction detection with and
without the processing unit represented by the dotted box in Figure 5.2.

A camera capturing the road in front of the vehicle provides a video signal v1n′
which is processed by the lane departure warning system to compute the current
lateral deviation sLDn′ and heading angle sHAn′ . The head rotation sHRn′ is determined
by a head tracking system that processes the signal v2n′ recorded by a second camera
facing the driver. Steering wheel angle sSAn′ , throttle position sTPn′ , and speed sSPn′ are
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captured by the corresponding sensors and sent to the CAN-Bus together with sLDn′ ,
sHAn′ , and sHRn′ .

The sample frequencies of the six signals represented by scn′ range from 10 to
100 Hz. Thus, the data sequences are linearly intrapolated in order to obtain a uni-
form frequency of 100 Hz before being synchronized. From the resulting interpolated
and synchronized signal vector sin first and second order regression coefficients (i. e.
first and second temporal derivatives δsin and δδsin) are calculated for every time
step n and each component of the low-level signal vector sin. Thus, together with
δsin and δδsin, we have 3× 6 = 18 low-level data sequences at this stage.

As mentioned before, an alternative to directly using the low-level signals sn =
[sin, δs

i
n, δδs

i
n] as inputs for LSTM-based driver state classification every 10 ms is

to compute a set of statistical functionals over longer time windows and use those
functionals xt as a basis for classification. Here, t refers to the index of the frame
which contains functionals extracted from a time window of three seconds. As
frame rate 500 ms are used resulting in a frame overlap of 2.5 seconds. Depending on
whether or not this kind of framewise processing is used, either xt or sn is normalized
to have zero mean and variance one. All means and variances are determined from
the training set.

The normalized signals x′t or s′n are then used as inputs for the LSTM network,
meaning that the individual components of the vectors x′t / s′n represent the activa-
tions of the input nodes of the network at a given time step n or frame t. Conse-
quently, the LSTM network has as many input nodes as there are components in
the vectors x′t and s′n, respectively. The number of output nodes of the network cor-
responds to the number of distinct classes in the classification task. Three different
classification tasks are investigated: the discrimination between two, three, and six
different levels of distraction. Thus, the LSTM network has either two, three, or
six output nodes. The activation of the output nodes ot / on corresponds to the
likelihood that the respective class (or distraction level) is observed at a given time
step. To obtain an estimate zt or zn of the level of driver distraction at each frame or
time step, we simply take the class corresponding to the maximum network output
activation.

As mentioned before, two different strategies for driver distraction detection
are considered: Firstly, the low-level signals, together with their first and second
temporal derivatives are used for samplewise classification every 10 ms. Secondly,
frame-wise classification is applied by computing statistical functionals every 500 ms
from both, the low-level signals and their derivatives (55 functionals per input signal,
see Tables 5.1 and 5.3) with one frame spanning three seconds. Temporal derivatives
of the low-level signals are calculated according to the following formula:

δsin =

∑D
d=1 d · (sin+d − sin−d)

2 ·
∑D

d=1 d
2

. (5.1)
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Figure 5.2: System architecture of the driver distraction detection system.

The parameter D is set to one. For the calculation of the second derivative δδsin we
simply applied Equation 5.1 to δsin. Applying the openSMILE toolkit [73], a set of
55 statistical functionals is computed for each of the 18 low-level signals as a basis for
the framewise classification task. Thus, we obtain a 990-dimensional feature vector
for each 500 ms frame.

Using the validation partitions (see Section 5.1.3), each, CFS feature selection
is applied to these functionals in order to reduce the dimensionality of the feature
space by focussing on the most relevant features [269]. Since the driver distraction
estimation experiments are arranged in a 30-fold cyclic leave-one-driver-out cross-
validation, feature selection has to be conducted 30 times for each classification task
(two- three- and six-class problem). On average, 33.8 features are selected for a
given classification task and fold (see Table 5.3). Insights into the usefulness of

200



5.1. Driver Distraction Detection

Table 5.1: Statistical functionals grouped into categories with abbreviations
as used in Table 5.2.

functionals abbreviation

Extremes
maximum, minimum max, min
range (max - min) range
distance between maximum and mean distmax
distance between minimum and mean distmin

Regression
linear regression coefficients 1 and 2 lregc1/2
arithmetic mean of linear regression error mlrege
quadratic mean of linear regression error qmlrege
quadratic regression coefficients 1, 2, and 3 qregc1/2/3
arithmetic mean of quadratic regression error mqrege
quadratic mean of quadratic regression error qmqrege

Means
arithmetic mean mean
arithmetic mean of non-zero values nzmean
arithmetic mean of absolute non-zero values nzmeanabs
geometric mean of non-zero values nzgmean

Percentiles
quartiles 1, 2, and 3 (25 %, 50 %, and 75 %) q1, q2, q3
interquartile range 1-2, 2-3, and 1-3 iqr1-2/2-3/1-3

Peaks
mean of peaks pkmean
distance between mean of peaks and mean pkmmd

others
number of non-zero values (normalized) nnz
zero crossing rate zcr
mean crossing rate mcr

the computed signal-functional combinations can be gained by ranking the features
according to the number of folds in which they are selected via CFS. Such a rank-
ing can be found in Table 5.2 where the 30 most frequently selected features are
listed for each classification task. As assumed, functionals computed from the head
rotation signal provide the most reliable features for the detection of driver distrac-
tion caused by the operation of the Multimedia Interface. According to Table 5.2,
several different functionals such as minimum, mean, distance between the mean
of the peaks and the mean, quartiles, interquartile ranges, or linear and quadratic
regression coefficients are suited to extract useful information from the head rota-
tion signal. Other frequently selected features are based on the second temporal
derivative of the steering wheel angle (δδSA). This indicates that sudden abrupt
movements of the steering wheel – which are necessary to correct the orientation of
the car in case the driver does not continuously focus on the street – are a good indi-
cator for distraction. Features computed from the heading angle are mostly selected
for the two-class problem and seem less relevant as soon as a finer level of granu-
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5. Driving Behavior Analysis

Table 5.2: Ranking of the 30 most frequently selected signal-functional com-
binations for the discrimination of two, three, and six levels of distraction.
Numbers display the number of folds in which the corresponding feature was
selected via CFS. δ and δδ indicate first and second temporal derivatives, re-
spectively. Abbreviations in capital letters indicate the underlying low-level
signal: steering wheel angle (SA), throttle position (TP), speed (SP), heading
angle (HA), lateral deviation (LD), or head rotation (HR). Abbreviations in
lower case letters represent the functionals (see Table 5.1).

2 classes 3 classes 6 classes

feature # feature # feature #

HR-min 30 HR-min 30 HR-min 30
HR-pkmmd 30 HR-pkmmd 30 SA-max 30
HR-q1 30 HR-q1 30 HR-q1 30
HR-iqr1-2 30 HR-iqr1-2 30 HR-iqr1-2 30
HR-iqr2-3 30 HR-iqr2-3 30 HR-iqr2-3 30
HR-iqr1-3 30 HR-iqr1-3 30 δδSA-max 30
HR-lregc2 30 HR-lregc2 30 δδSA-min 30
HR-qregc3 30 HR-qregc3 30 HR-mqrege 30
HR-mqrege 30 HR-mqrege 30 SA-min 29
δδSA-nzgmean 30 δδSA-nzgmean 30 δδSA-nzgmean 29
LD-max 28 LD-max 30 HR-iqr1-3 29
HR-q2 27 HR-mlrege 30 HR-lregc2 29
HR-mlrege 26 HR-q2 29 SP-pkmean 29
δδSA-distmax 26 δδSA-min 29 HR-q2 28
HR-mcr 23 δδSA-pkmean 29 HR-mlrege 28
δδSA-pkmmd 23 δδSA-pkmmd 29 HR-qregc3 28
HR-pkmean 22 SA-min 29 δδSA-pkmmd 27
δHR-nzgmean 22 HR-mcr 28 SA-pkmean 26
δHA-pkmean 20 HR-qmqrege 28 HR-mcr 24
HR-qmqrege 19 δHR-nzgmean 28 δHR-nzgmean 24
δδSA-distmin 19 HR-nzmean 25 δδLD-min 24
HR-nzmean 18 SA-max 24 LD-max 23
HR-distmin 17 SP-pkmean 24 δLD-min 23
HA-nzmeanabs 16 SA-pkmean 23 HR-qmqrege 22
HR-qmlrege 16 HR-pkmean 23 δSA-min 22
δδSA-pkmean 16 HR-distmin 22 δSA-max 20
δδSA-range 14 HR-mean 21 δLD-max 19
HR-mean 13 HR-qmlrege 21 δδSA-range 19
δδSA-zcr 13 δδSA-max 21 HR-mean 18
SA-max 12 δδSA-nnz 21 HR-nzmean 18

larity is to be modeled for driver state estimation. By contrast, features based on
the lateral deviation signal tend to be rather suited for the six-class task: Four out
of the 30 most frequently selected features are based on the lateral deviation when
modeling six classes, whereas for the two- and three-class task only the maximum
lateral deviation (LD-max) is frequently selected. Speed and throttle position are
only rarely selected as can also be seen in Table 5.3.
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5.1. Driver Distraction Detection

Table 5.3: Left-hand side: functional categories and number of calculated
functionals per data stream (each stream consists of the low-level signal, first,
and second order regression coefficients); right-hand side: average number of
features selected via CFS for the individual data streams: steering wheel angle
(SA), throttle position (TP), speed (SP), heading angle (HA), lateral deviation
(LD), and head rotation (HR). All numbers are averaged over all 30 leave-one-
subject-out folds and all classification tasks.

number of functionals average number of selected features

type total SA TP SP HA LD HR total

Extremes 3×7 3.4 0.5 0.3 0.5 1.0 1.7 7.4
Regression 3×9 0.1 0.1 0.6 0.1 0.2 5.6 6.7
Means 3×7 2.3 0.1 0.1 1.2 0.0 2.6 6.3
Percentiles 3×6 0.1 0.0 0.3 0.1 0.6 5.0 6.2
Peaks 3×4 1.9 0.2 0.4 0.7 0.2 1.7 5.1
others 3×22 0.6 0.1 0.1 0.1 0.1 1.1 2.0

sum 3×55 8.4 1.1 1.8 2.7 2.0 17.8 33.8

5.1.3 Evaluation and Discussion

For all driver distraction detection experiments in this section, a driver independent
cross-validation approach was used. The number of folds was equal to the number
of drivers in the database (see Section 5.1.1). In each fold the test set consisted of
a single driver (that is, all runs recorded for this person; up to two baseline runs
and eight runs with task) while six other drivers were chosen randomly to form a
validation set (containing nine to twelve baseline runs and 41 to 47 runs with tasks).
The data of the remaining persons made up the training set (39 to 42 baseline runs,
166 to 172 runs with task).

Three different class distributions were evaluated. In each of these distributions,
the baseline runs are treated as a single class. The runs with distracting tasks either
make up another single class (two-class problem) or are split into two or five classes,
based upon the individual, subjective rating of the difficulty of the respective task
(three-class and six-class problem). In case of the three-class problem, one class
consists of all runs rated with difficulties one to three (easy to medium), another
one of all runs with difficulties four or five (difficult). In the six-class problem, each
class corresponds to a single level of difficulty.

In order to investigate the effect of long-range contextual information modeling
by using a hidden layer with LSTM architecture (i. e. using memory blocks instead
of hidden cells, see Section 2.3.9), both, LSTM networks and conventional RNNs
were trained and evaluated using the same configuration. LSTMs and RNNs had
an input layer with as many nodes as there are features and a hidden layer with
100 memory blocks or neurons, respectively. Each memory block consisted of one
cell. The number of output nodes is equal to the number of classes. Each network
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Table 5.4: Classification of driver distraction using LSTM networks, standard
RNNs, and SVMs that process either low-level signals with first and second
order regression coefficients or statistical functionals of the signals and regres-
sion coefficients: accuracy (acc.), unweighted recall (rec.), unweighted precision
(prec.), and F1-measure (F1) for the subject-independent discrimination of two,
three, and six levels of distraction.

classifier features acc. rec. prec. F1

two classes
LSTM low-level signals 91.6 89.7 90.8 90.1
LSTM functionals 96.6 95.0 97.2 96.0
RNN low-level signals 74.6 60.0 68.3 63.2
RNN functionals 94.9 92.9 95.0 93.8
SVM functionals 91.8 88.0 90.6 89.1

three classes
LSTM low-level signals 54.4 62.1 63.0 62.0
LSTM functionals 60.4 70.2 70.1 70.1
RNN low-level signals 42.1 46.6 46.4 45.6
RNN functionals 62.5 67.9 65.7 66.5
SVM functionals 61.6 65.8 64.6 64.9

six classes
LSTM low-level signals 43.3 39.0 38.7 38.1
LSTM functionals 45.4 42.6 41.0 40.7
RNN low-level signals 37.8 30.9 30.6 29.5
RNN functionals 44.7 41.4 36.4 38.0
SVM functionals 43.5 39.2 35.2 36.7

is trained for up to 50 training iterations, applying an early stopping method. That
is, training is instantly terminated if no improvement on the validation set could
be achieved within the last ten iterations. To improve generalization, zero mean
Gaussian noise with standard deviation 0.4 was added to the inputs during training.
The networks were trained with on-line gradient descent, using a learning rate of
10−5 and a momentum of 0.9.

For comparison, all experiments employing the computed functionals as input
data were repeated using Support Vector Machines with Sequential Minimal Op-
timization. The best results were achieved with a radial basis function as kernel.
Table 5.4 shows the results for samplewise classification of driver distraction every
10 ms using the low-level signals together with regression coefficients and for clas-
sification every 500 ms applying functionals computed over 3000 ms time windows.
Note that due to the imbalance in the class distribution, the F1-measure (harmonic
mean of precision and recall) is a more adequate performance measure than accuracy.
When using the low-level data, LSTM networks achieve an average F1-measure of
90.1 % for the two-class task and clearly outperform standard RNNs (63.2 %). The
major reason for this is the inability of standard RNNs to model long-range time
dependencies, which in turn is essential when using the low-level signal as a basis for
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samplewise classification. When applying statistical functionals, the temporal evo-
lution of the data streams is captured by the features (to a certain extent), leading
to an acceptable performance of RNNs and SVMs (93.8 % and 89.1 %, respectively).
Still, the best F1-measure is obtained with LSTM networks (96.0 %). The same
holds for the three- and six-class problem, where Long Short-Term Memory model-
ing leads to an F1-measure of 70.1 % and 40.7 %, respectively, which is remarkable
when considering that the participants’ ratings of the level of distraction are highly
subjective. The performance gap between SVM and LSTM classification can most
likely be attributed to the fact that LSTM networks are able to model a flexible and
self-learned amount of contextual information which seems to be beneficial for driver
state estimation, while the context that is modeled by SVMs is limited to 3000 ms
and is exclusively captured by the features via statistical functionals and not by the
classifier.

5.2 Summary and Outlook

This section introduced a technique for on-line driver distraction detection that
uses Long Short-Term Memory recurrent neural nets to continuously predict the
driver’s state based on driving and head tracking data. The considered recognition
framework is able to model the long-range temporal evolution of either low-level
signals or statistical functionals in order to reliably detect inattention, and can be
seen as a basis for adaptive lane-keeping assistance. Experiments in Section 5.1.3
revealed that the proposed technique detects inattention with an accuracy of up
to 96.6 %, corresponding to an F1-measure of 96.0 %. LSTM modeling prevails
over conventional RNN networks and Support Vector Machines. From this point of
view, an adaption of lane-keeping assistance systems which is based on driver state
estimation seems to be a viable and promising approach.

In spite of the high accuracies obtained when operating the proposed driver
distraction detection system in defined conditions, such as driving down a relatively
straight country road or highway, the output of driver state estimation will of course
be less accurate as soon as the driving behavior gets more complex, as for example
when changing lanes or turning while driving in a city. Thus, a system for distraction
detection as the one presented in this chapter can only be used if the current driving
scenario roughly matches the training data, as it would be the case for most country
roads. Similarly, a strong mismatch between the distraction characteristics observed
during training and other potential sources of distraction that are not covered by
the evaluation experiments might degrade the system performance and limit the
applicability of distraction detection. However, even though negative performance
offsets have to be expected under some circumstances and will, e. g., justify the
additional usage of GPS information as a further indicator of when to activate and
deactivate lane-keeping assistance, the experiments show that modeling contextual

205



5. Driving Behavior Analysis

information is beneficial for driver distraction detection and that the principle of
Long Short-Term Memory is an elegant way to cope with this finding.

Future experiments should include the incorporation of bidirectional context for
incremental refinement of driver state estimations. Moreover, alternative network
topologies such as the bottleneck architecture (see Section 4.1.3) should be consid-
ered to gain further improvements.
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Summary

The aim of this thesis was to create and evaluate novel machine learning architec-
tures in order to enhance the accuracy of systems for automatic verbal and non-
verbal behavior analysis. Such systems can be applied for speech and affective state
recognition, e. g., within conversational agents to enable natural, emotion-sensitive
human-machine interaction. An important requirement for human behavior recogni-
tion techniques that are designed for real-life application is robustness with respect
to various challenging but realistic conditions such as conversational, spontaneous,
disfluent, and emotional speaking styles, reverberation and background noise, as well
as non-prototypical ambiguous emotions as they typically occur in natural interac-
tions. To cope with these challenges, powerful modeling architectures are needed,
which motivates the transfer of effective solutions developed by the machine learning
community to the domain of intelligent human behavior analysis. One key strategy
to improve verbal and non-verbal behavior analysis is the efficient exploitation of con-
textual information. Thus, the focus of this thesis was on context-sensitive machine
learning techniques such as Long Short-Term Memory RNNs [84, 93, 111] which al-
low for enhanced long-range temporal context modeling within neural networks. To
enable the best possible recognition performance for various behavior analysis tasks,
including keyword detection, continuous speech recognition, (audio-visual) emotion
recognition, interest recognition, etc., this thesis showed how the LSTM principle can
be combined with front-ends supporting large-scale on-line speech feature extraction
[73], statistical functional computation, Non-Negative Matrix Factorization [261],
and facial movement feature extraction [284] and with recognition back-ends com-
prising Dynamic Bayesian Networks [278], discriminative learning strategies [123],
Connectionist Temporal Classification [90], and multi-stream models [281].

After an introduction of the theoretical background the developed human be-
havior analysis components are based on (Chapter 2), the goal of Chapter 3 was to
advance the state-of-the-art in keyword spotting, continuous speech recognition, and
noise robust speech recognition – i. e., verbal behavior analysis. Five different key-
word detection techniques based on discriminative learning, hierarchical Graphical
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Models, and Long Short-Term Memory were proposed and evaluated [273, 275, 278,
280, 293]. Various experiments showed that the integration of phoneme modeling
via LSTM networks increases keyword detection accuracies. For read speech, best
performance could be obtained with the Tandem CTC-DBN outlined in Section 3.1.5
while for spontaneous speech a combination of discriminative keyword spotting and
bidirectional Long Short-Term Memory as proposed in Section 3.1.1 led to the best
results. Next, different methods to integrate BLSTM context-modeling into HMM
systems for conversational speech recognition were investigated [279, 281, 291, 296].
Evaluations on the COSINE database and on the Buckeye corpus revealed that the
most effective technique for BLSTM-based continuous recognition of spontaneous
speech is the Bottleneck-BLSTM front-end introduced in Section 3.2.4. It unites
the principles of LSTM context exploitation, bottleneck networks, and bidirectional
speech modeling and increases word accuracies by 6.6 % and 7.2 % (absolute) on
the COSINE and the Buckeye task, respectively, when compared to a standard
MFCC-HMM system. Finally, various approaches towards enhancing the noise ro-
bustness of ASR systems were examined, including Switching Linear Dynamic Mod-
els [286], multi-condition training [287], Tandem BLSTM-HMM systems [298], and
Non-Negative Matrix Factorization [301]. Impressive noisy speech recognition ac-
curacies could be obtained with a novel triple-stream system [301] featuring NMF
speech enhancement [260], Non-Negative Sparse Classification [81], and multi-stream
BLSTM-HMM modeling [281]: On the CHiME Challenge 2011 task [39], which con-
sists in noisy speech recognition in multisource environments, the system introduced
in Section 3.3.4 achieved an average word accuracy of 91.86 % which is the best result
reported for the challenge task so far [301].

In Chapter 4, we concentrated on non-verbal behavior analysis, meaning recogni-
tion of paralinguistic and affective states (emotion, interest, etc.). Similar to Chap-
ter 3, a major goal was to improve emotion recognition performance in challenging
conditions via appropriate LSTM context modeling. Extensive experiments were
devoted to the investigation of different aspects of affect modeling and recognition
from speech, including emotion representation (continuous emotional dimensions vs.
clusters in the emotional space), the unit of analysis (frame- vs. turn-level), the
gain of incorporating linguistic information in addition to acoustic features, and
the effect of context modeling. It was shown that (B)LSTM-based recognition en-
gines prevail over systems that use no or limited contextual information, i. e., SVMs,
SVR, or conventional recurrent neural networks [294]. Similar observations could be
made for the task of automatically estimating a user’s level of interest from acous-
tic and linguistic features: BLSTM modeling as used within the recognition engine
introduced in Section 4.1.3 led to the best interest recognition results ever reported
for the Interspeech 2010 Paralinguistic Challenge task [299, 300]. The proposed
context-sensitive speech-based emotion recognition framework can be extended to a
multi-modal system processing speech and facial marker information for enhanced,
audio-visual emotion recognition as shown in Section 4.2.1. Again, BLSTM mod-
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eling of statistical functionals of low-level voice and face features outperformed al-
ternative approaches using RNNs, BRNNs, SVMs, or HMMs [161, 289]. In Section
4.2.2, a methodology to investigate the amount of context information used within
an audio-visual BLSTM emotion recognition system was explained [290]. Finally,
a fully automatic emotion recognition system exploiting acoustic, linguistic, facial
movement, and BLSTM context information was proposed in Section 4.2.3. The
system achieved the best average recognition accuracy that has been reported so
far for the Audiovisual Sub-Challenge of the 2011 Audio/Visual Emotion Challenge
[284].

To illustrate that the proposed methodology used for affective computing can be
successfully transferred to other pattern recognition disciplines which are not based
on speech signal processing but on completely different time-continuous signals, a
system using segment-wise statistical functional computation via the openSMILE
toolkit [73] as well as context-sensitive sequence labeling with LSTM networks was
created for the task of driver distraction detection from head-tracking and driving
data (Chapter 5). The system was able to detect driver distraction with an accuracy
of up to 96.6 % and outperforms methods applying RNNs or SVMs [271].

In summary, it can be observed that replacing or enhancing widely-used static
or dynamic machine learning techniques such as SVMs or HMMs with advanced
context-sensitive techniques like LSTM networks seems beneficial for a wide range
of different pattern recognition disciplines in which the consideration of past (and
possibly future) temporal context helps to infer the class encoded in the current
observation. The dynamics or the temporal evolution of observed feature vectors
that are part of a continuous stream of data plays an essential role in all of the hu-
man behavior analysis tasks considered in this thesis. In speech recognition, context
in the form of language information / word transition likelihoods, co-articulation
effects, and phoneme or phoneme state transitions has to be exploited to reach
acceptable recognition accuracies. Similarly, when designing emotion recognition
engines that continuously predict the user’s emotional state, e. g., during a conversa-
tion, the temporal evolution of affect has to be modeled to reliably assess the user’s
emotion. The LSTM architecture is a very effective technique for modeling long-
range context and to learn the amount of relevant context from training data. Even
though the recognition systems and experiments detailed in Chapters 3 to 5 cover
only selected pattern recognition tasks, the results show that LSTM-based sequence
modeling clearly outperforms state-of-the-art techniques as the outlined recognition
frameworks led to the best results in various international research challenges (Inter-
speech 2010 Paralinguistic Challenge [220], 2011 PASCAL CHiME Challenge [39],
2011 Audio/Visual Emotion Challenge [221]) [284, 299, 301]. This should motivate
researchers working on various related pattern recognition systems to transfer the
proposed context-sensitive machine learning approaches and model architectures to
their domains in order to benefit from the findings contained in this thesis.

In addition to the application of the proposed techniques for other tasks and
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scenarios, there are a lot of thinkable and promising possibilities to enhance human
behavior analysis in the future. For example, in the field of speech recognition,
future studies should consider language modeling with LSTM networks. Context-
sensitive neural networks might also be employed for speech feature enhancement,
e. g., by training a Regression-LSTM network to map from noisy speech feature
vectors to clean features. Furthermore, it seems promising to investigate CTC-based
phoneme modeling also for large-vocabulary continuous speech recognition. Finally,
context-sensitive multi-task learning of phonemes and emotional or paralinguistic
speaker states or traits could increase the overall recognition performance compared
to modeling phonemes only. An interesting approach towards further improving
emotion recognition accuracies is to combine different front- end back-ends, e. g., as
proposed by the various participants of the 2011 Audio/Visual Emotion Challenge.
This allows for investigations concerning the complementarity of different ideas to
enhance features and recognition engines for the automatic assessment of human
affect from speech and video information. When applying context-sensitive emotion
recognition systems, it might also be possible to move from time-continuous emotion
recognition to emotion detection (or ‘spotting’) and to use, e. g., Graphical Model
architectures developed for keyword spotting for the task of emotion detection.
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Acronyms

3D-DTW. . . . . . . three-dimensional Dynamic Time Warping
ACF . . . . . . . . . . . autocorrelation function
AER . . . . . . . . . . . automatic emotion recognition
AFE . . . . . . . . . . . advanced front-end feature extraction
AHMM. . . . . . . . .Asynchonous Hidden Markov Model
ANN . . . . . . . . . . . artificial neural network
AR-SLDS . . . . . . Autoregressive Switching Linear Dynamical Systems
ASR . . . . . . . . . . . automatic speech recognition
AUC . . . . . . . . . . . area under the ROC curve
BLSTM . . . . . . . . bidirectional Long Short-Term Memory
BN. . . . . . . . . . . . .Bayesian Network
BoW . . . . . . . . . . . Bag of Words
BRIR . . . . . . . . . . binaural room impulse response
BRNN . . . . . . . . . bidirectional recurrent neural network
CAN . . . . . . . . . . . Controller Area Network
CC. . . . . . . . . . . . . cross correlation
CFS. . . . . . . . . . . .Correlation-based Feature Subset selection
CMS . . . . . . . . . . . Cepstral Mean Subtraction
CPF . . . . . . . . . . . conditional probability function
CT. . . . . . . . . . . . . close-talk
CTC . . . . . . . . . . . Connectionist Temporal Classification
CTRV. . . . . . . . . .close-talk reverberated
DBN . . . . . . . . . . . Dynamic Bayesian Network
DCT . . . . . . . . . . . Discrete Cosine Transform
DISC. . . . . . . . . . .discriminative keyword spotter
DTW . . . . . . . . . . Dynamic Time Warping
ECA . . . . . . . . . . . Embodied Conversational Agent
ELM-NN . . . . . . . extreme learning machine based feedforward neural network
EM . . . . . . . . . . . . expectation maximization
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Acronyms

FER . . . . . . . . . . . framewise phoneme error rate
FIR . . . . . . . . . . . . finite impulse response
FPA . . . . . . . . . . . framewise phoneme accuracy
fpr . . . . . . . . . . . . . false positive rate
GM . . . . . . . . . . . . Graphical Model
GMM . . . . . . . . . . Gaussian Mixture Model
GPB . . . . . . . . . . . generalized pseudo-Bayesian
HA. . . . . . . . . . . . .heading angle
HCRF. . . . . . . . . .Hidden Conditional Random Fields
HEQ . . . . . . . . . . . Histogram Equalization
HMM . . . . . . . . . . Hidden Markov Model
HNR . . . . . . . . . . . Harmonics-to-Noise Ratio
HR. . . . . . . . . . . . .head rotation
HSV . . . . . . . . . . . hue-saturation-value
IDL . . . . . . . . . . . . idle / neutral emotional state
IEMOCAP . . . . . Interactive Emotional Dyadic Motion Capture
ILA . . . . . . . . . . . . inter-labeler agreement
lAUC . . . . . . . . . . local AUC
LD . . . . . . . . . . . . . lateral deviation
LDCRF . . . . . . . . Latent-Dynamic Conditional Random Fields
LDM . . . . . . . . . . . Linear Dynamic Model
LF . . . . . . . . . . . . . late fusion
LLD . . . . . . . . . . . low-level descriptor
LM. . . . . . . . . . . . .language model
LOI . . . . . . . . . . . . level of interest
LOSO . . . . . . . . . . leave-one-speaker-out
LPC . . . . . . . . . . . Linear Prediction Coding
LSTM. . . . . . . . . .Long Short-Term Memory
LVCSR. . . . . . . . . large vocabulary continuous speech recognition
MAP. . . . . . . . . . .maximum a priori
MCT. . . . . . . . . . .multi-condition training
MDDTW . . . . . . Multi-Dimensional Dynamic Time Warping
MFB . . . . . . . . . . . Mel-frequency bands
MFCC . . . . . . . . . Mel-Frequency Cepstral Coefficients
ML. . . . . . . . . . . . .maximum likelihood
MLE . . . . . . . . . . . mean linear error
MLP . . . . . . . . . . . multilayer perceptron
MMSE . . . . . . . . . Minimum Mean Square Error
MVN. . . . . . . . . . .Mean and Variance Normalization
NEG . . . . . . . . . . . negative valence
NMF. . . . . . . . . . .Non-Negative Matrix Factorization
NSC . . . . . . . . . . . Non-Negative Sparse Classification
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Acronyms

OOV . . . . . . . . . . . out-of-vocabulary
PCA . . . . . . . . . . . principal componenet analysis
PFA. . . . . . . . . . . .principal feature analysis
PLP. . . . . . . . . . . .Perceptual Linear Prediction
RBF . . . . . . . . . . . radial basis function
RM . . . . . . . . . . . . room microphone
RNN . . . . . . . . . . . recurrent neural network
ROC . . . . . . . . . . . Receiver Operating Characteristics
rProp . . . . . . . . . . Resilient Propagation
SA . . . . . . . . . . . . . steering wheel angle
SAL. . . . . . . . . . . .Sensitive Artificial Listener
SAR-HMM. . . . . Switching Autoregressive Hidden Markov Models
SLDM. . . . . . . . . .Switching Linear Dynamic Model
SMO . . . . . . . . . . . Sequential Minimal Optimization
SMOTE. . . . . . . . Synthetic Minority Oversampling Technique
SNR . . . . . . . . . . . signal to noise ratio
SP . . . . . . . . . . . . . speed
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[126] J. Kim and E. André, “Emotion recognition based on physiological changes in
listening music,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 30, no. 12, pp. 2067–2083, 2008.

[127] J. C. Kim, H. Rao, and M. A. Clements, “Investigating the use of formant
based features for detection of affective dimensions in speech,” in Proc. of
First International Audio/Visual Emotion Challenge and Workshop (AVEC
2011) held in conjunction with ACII, Memphis, Tennessee, USA, 2011, pp.
369–377.

[128] K. Kozak, J. Pohl, W. Birk, J. Greenberg, B. Artz, M. Blommer, L. Cathey,
and R. Curry, “Evaluation of lane departure warnings for drowsy drivers,” in
Proc. of Human Factors and Ergonomics Society 50th Annual Meeting, San
Francisco, USA, 2006.

[129] T. Kumagai and M. Akamatsu, “Prediction of human driving behavior using
dynamic bayesian networks,” IEICE Transactions on Information Systems, vol.
E89D, no. 2, pp. 857–860, 2006.
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[296] M. Wöllmer, B. Schuller, and G. Rigoll, “A novel Bottleneck-BLSTM front-
end for feature-level context modeling in conversational speech recognition,”
in Proc. of ASRU, Waikoloa, Big Island, Hawaii, 2011, pp. 36–41.
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