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Abstract

We unify and generalize several inequalities for the number wk of walks of length k in
graphs. The new inequalities use an arbitrary nonnegative weighting of the vertices. This
allows an application of the theorems to subsets of vertices, i.e., these inequalities consider
the number wk(S, S) of walks of length k that start at a vertex of a given vertex subset S and
that end within the same subset. In particular, we show a weighted sandwich theorem for
Hermitian matrices which generalizes a theorem by Marcus and Newman and which implies
w2a+c(S, S) · w2a+2b+c(S, S) ≤ w2a(S, S) · w2(a+b+c)(S, S), a unification and generalization
of inequalities by Lagarias et al. and by Dress & Gutman. Further, we show a theorem
for nonnegative symmetric matrices that implies w2`+p(S, S)k ≤ w2`(S, S)k−1 · w2`+pk(S, S),
which is a unification and generalization of inequalities by Erdős & Simonovits, by Dress &
Gutman, and by Ilić & Stevanović. Both results can be translated into corresponding forms
for matrix or graph densities. In the end, these results are used to generalize lower bounds
for the spectral radius and upper bounds for the energy of graphs.

1 Introduction

1.1 Notation and basic facts

Throughout the paper we assume that N denotes the set of nonnegative integers and [n] is the
set {1, . . . , n}. Let G = (V,E) be an undirected graph having n vertices, m edges and adjacency
matrix A. We investigate (the number of) walks, i.e., sequences of vertices, where each pair of
consecutive vertices is connected by an edge. Nodes and edges can be used repeatedly in the same
walk. The length k of a walk is counted in terms of edges. For k ∈ N and x, y ∈ V , we denote
by wk(x, y) the number of walks of length k that start at vertex x and end at vertex y. Since the
graph is undirected we know that wk(x, y) = wk(y, x). By wk(x) =

∑
y∈V wk(x, y) we denote the

number of all walks of length k that start at node x. Consequently, wk =
∑
x∈V wk(x) denotes

the total number of walks of length k.
It is a well known fact that the (i, j)-entry of Ak is the number of walks of length k that

start at vertex i and end at vertex j (for all k ≥ 0). Another fundamental observation about
the number of walks is that in a graph G = (V,E) for all vertices x, z ∈ V holds wk+`(x, z) =∑
y∈V wk(x, y) · w`(y, z).

1.2 Motivation and related work

1.2.1 Inequalities for the number of walks

In a paper by Feige, Kortsarz, and Peleg [FKP01] on approximating the Dense k-Subgraph Problem
the following observation was used: In a graph with n vertices and average degree d, there exist

two vertices vi, vj such that d
k
/n ≤ wk(vi, vj). In the proof, they remark that this lemma would

also follow from the following global statement: The number of walks of length k in a graph of
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average degree d can be bounded from below by n · dk ≤ wk. For a partial proof they referred
to a paper by Alon, Feige, Wigderson, and Zuckerman [AFWZ95] that only covers the case of
even values for k. However, several years before it had been noticed in a paper by Erdős and
Simonovits (and actually Godsil, see [ES82]) that this inequality can be proven for all k using the
results of Mulholland and Smith [MS59, MS60], Blakley and Roy [BR65], and London [Lon66].
Recently, we also found an article by Blakley and Dixon [BD66] that implies this result. Since
d = 2m/n = w1/w0, we can write the inequality in the following form:

Theorem 1 (Erdős & Simonovits). In undirected graphs, the following inequality holds for k ∈ N:

wk ≥ nd
k

= n

(
w1

w0

)k
or wk1 ≤ wk−10 wk.

Lagarias, Mazo, Shepp, and McKay [LMSM83] posed the question for which numbers r, s ∈ N
the inequality wr ·ws ≤ n ·wr+s holds for all graphs. A little later, they proved the inequality for
the case of an even sum r + s [LMSM84]. Hence, it could be stated in the following way:

Theorem 2 (Lagarias et al.). In undirected graphs holds for all a, b ∈ N:

w2a+b · wb ≤ w0 · w2(a+b).

Furthermore, Lagarias et al. presented counterexamples whenever r+ s is odd [LMSM84]; but
they noted without proof, that for any graph G there is a constant c, s.t. for all r, s ≥ c the
inequality is valid.

Dress and Gutman [DG03] reported the following inequality:

Theorem 3 (Dress & Gutman). In undirected graphs holds for all a, b ∈ N:

w2
a+b ≤ w2a · w2b.

1.2.2 The spectral radius

Collatz and Sinogowitz [CS57] proved that the average degree d = 2m/n ≤ λ1 is a lower bound
for the largest eigenvalue of the adjacency matrix. Hofmeister [Hof88, Hof94] later showed that∑
v∈V d

2
v/n ≤ λ21. These bounds are equivalent to w1/w0 ≤ λ1 and w2/w0 ≤ λ21.

Three other publications with lower bounds, namely
∑
v∈V w2(v)2/

∑
v∈V d

2
v ≤ λ21 [YLT04],∑

v∈V w3(v)2/
∑
v∈V w2(v)2 ≤ λ21 [HZ05], and

∑
v∈V wk+1(v)2/

∑
v∈V wk(v)2 ≤ λ21 [HTW07] con-

sider the sum of squares of walk numbers, but do not mention the corresponding number of walks
of the double length (w4/w2 ≤ λ21, w6/w3 ≤ λ21 and w2k+2/w2k ≤ λ21).

These results were generalized by Nikiforov [Nik06] to wk+r

wk
≤ λr1 for all r ≥ 1 and even

numbers k ≥ 0.1 In particular, this implies a bound using the average number of walks of length k
and a bound regarding the growth factor for odd / even walk lengths: wr

n ≤ λr1 and w2`+1

w2`
≤ λ1

which also contains the bound of Collatz and Sinogowitz as a special case. As an upper bound

for λ1, Nikiforov [Nik06] proved that for all r ≥ 1 and k ≥ 0: λr1 ≤ maxv∈V
wk+r(v)
wk(v)

.

Nosal [Nos70] proved another lower bound for the spectral radius using the square root of the
maximum degree:

√
∆ ≤ λ1 which is generalized in the second part of this paper. Those bounds

provide an opportunity to compute lower bounds for other graph measures such as the chromatic
number (using an inequality of Hoffman 1−λ1/λn ≤ χ(G), see [Hof70]), the clique number (using
an inequality of Wilf n/(n− λ1) ≤ ω, see [Wil86]) or network-related properties like the epidemic
threshold (1/λ1, see [CWW+08]).

For a survey of bounds of the largest eigenvalue, see [CR90]. More information on applications
of graph spectra can be found in [Cve09, Cio11, VM11].

1Note that Nikiforov used odd values for k which is due to the fact that he counted vertices instead of edges for
defining wk.
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1.3 The spectral approach to the number of walks

We now briefly review the properties of the eigenvalues and eigenvectors of the graphs adjacency
matrix which were first studied by Collatz and Sinogowitz [CS57]. In particular, they investigated
relations between the spectral index and the minimum, average, and maximum degree of the graph.
Connections to the more general numbers of walks were investigated by Cvetković [Cve70, Cve71],
later also by Harary and Schwenk [HS79]. Classic books on spectral graph theory are, e.g.,
[CDS79, CDGT88, Chu97, CRS97].

Let λi (1 ≤ i ≤ n) denote the eigenvalues of the adjacency matrix A. Since A is real and
symmetric, all eigenvalues of A are real numbers and A is diagonalizable by an orthogonal matrix,
i.e., there is an orthogonal matrix U , s.t. UTAU = D is a diagonal matrix of the eigenvalues
D = diag(λ1, . . . , λn). Accordingly, the adjacency matrix can be written as A = UDUT where
the columns of U are formed by an orthonormal basis of eigenvectors (orthogonal matrices satisfy
U−1 = UT ). We also define Bi =

∑n
x=1 uxi as an abbreviation for the column sums of U .

The number of walks of length k from vertex i to vertex j is exactly the (i, j)-entry of the
matrix power Ak = (UDUT )k = UDkUT . The total number of walks of length k is wk =

〈1n, Ak1n〉 =
〈
1n,
(
UDUT

)k
1n

〉
=
〈
1n,
(
UDkUT

)
1n
〉
, where 〈. . .〉 denotes the inner product of

the given vectors and 1n is the vector with n entries each of which is 1. The number of walks
between given vertices is therefore

wk(x, y) =

n∑
i=1

uxiuyiλ
k
i

while the number of walks starting at a given vertex is

wk(x) =

n∑
y=1

n∑
i=1

uxiuyiλ
k
i =

n∑
i=1

(
uxiλ

k
i

n∑
y=1

uyi

)
=

n∑
i=1

uxiBiλ
k
i .

Then, the total number of walks is given by

wk =

n∑
i=1

(
n∑
x=1

uxi

)2

λki =

n∑
i=1

B2
i λ

k
i .

From the diagonalization UTAU = D = diag(λ1 . . . λn) it can be seen that the i-th eigenvalue λi
and (unit) eigenvector (u1i . . . uni)

T satisfy λi =
∑

(x,y)∈E uxiuyi. An even more general statement

follows from UTAkU = (UTAU)k = Dk = diag(λk1 . . . λ
k
n): λki =

∑
x∈V,y∈V wk(x, y)uxiuyi. In

the same way it can be shown that for all i 6= j holds 0 =
∑

(x,y)∈E uxiuyj and 0 =∑
x∈V,y∈V wk(x, y)uxiuyj .

Since UTAU = U−1AU = D, the trace of A equals the trace of D. Due to the fact, that the
entries of the main diagonal are the numbers of closed walks starting and ending at the respective
nodes, we get

∑n
i=1 λi = 0 and

∑n
i=1 λ

2
i = 2m. For bipartite graphs we get even more restrictions

(there are no closed walks of odd length), i.e.,
∑n
i=1 λ

2k+1
i = 0 which goes with the fact that the

spectrum of the graph is symmetric.

2 Inequalities for the Number of Walks

2.1 The Weighted Sandwich Theorem – A unifying generalization of
inequalities by Lagarias et al. and Dress/Gutman

In this section, we assume the more general case where A is a Hermitian matrix. Then the sum of
all entries is a real number. In a more general view, also the sum of all entries for any principal
submatrix is a real number (in particular this applies to each entry on the main diagonal). In an
even more general consideration, it is also possible to assign a certain real weight to each index

3



(vertex), and to multiply rows and columns by this chosen scaling vector ~s which again yields a
real number as the sum of all entries. Of course, the same applies to the powers of the matrix.
Also the eigenvalues are all real. Further, A can be diagonalized by a unitary matrix U consisting
of n orthonormal eigenvectors of A, i.e., A = UDU∗, where U∗ is the conjugate transpose of U and
D is the diagonal matrix containing the corresponding (real) eigenvalues λi. For any real weight
vector ~s, we define Bi,~s =

∑n
x=1 sxuxi as an abbreviation for the weighted column sums of U .

We know that Ak = (UDU∗)k = UDkU∗. Let c̄ denote the complex conjugate of c ∈ C. Now,
we use the following generalized definitions for entry sums of matrix powers (instead of adjacency
matrices and numbers of walks):

wk(x, y) =
(
Ak
)
(x,y)

=

n∑
i=1

uxiūyiλ
k
i .

For some index x, we define wk,~s(x) to be the weighted sum of the terms wk(x, y) for all y ∈ [n]:

wk,~s(x) =

n∑
y=1

sywk(x, y) =

n∑
y=1

sy

n∑
i=1

uxiūyiλ
k
i =

n∑
i=1

(
uxiλ

k
i

n∑
y=1

syūyi

)
=

n∑
i=1

uxiB̄i,~sλ
k
i

Then, the total (again weighted) sum of the entries is

wk,~s =

n∑
x=1

sxwk,~s(x) =

n∑
x=1

sx

n∑
i=1

uxiB̄i,~sλ
k
i =

n∑
i=1

(
B̄i,~sλ

k
i

n∑
x=1

sxuxi

)
=

n∑
i=1

Bi,~sB̄i,~sλ
k
i

Theorem 4 (Weighted Sandwich Theorem). For all a, b, c ∈ N and all weight vectors ~s ∈ Rn
holds:

w2a+c,~s · w2a+2b+c,~s ≤ w2a,~s · w2(a+b+c),~s

Proof. Consider the difference of both sides of the inequality:

n∑
i=1

Bi,~sB̄i,~sλ
2a
i

n∑
j=1

Bj,~sB̄j,~sλ
2(a+b+c)
j −

n∑
i=1

Bi,~sB̄i,~sλ
2a+c
i

n∑
j=1

Bj,~sB̄j,~sλ
2a+2b+c
j

=

n∑
i=1

n∑
j=1

Bi,~sB̄i,~sBj,~sB̄j,~s

(
λ2ai λ

2(a+b+c)
j − λ2a+ci λ2a+2b+c

j

)

=

n−1∑
i=1

n∑
j=i+1

Bi,~sB̄i,~sBj,~sB̄j,~s

(
λ2ai λ

2(a+b+c)
j − λ2a+ci λ2a+2b+c

j + λ2aj λ
2(a+b+c)
i − λ2a+cj λ2a+2b+c

i

)

=

n−1∑
i=1

n∑
j=i+1

Bi,~sB̄i,~sBj,~sB̄j,~sλ
2a
i λ

2a
j

(
λ
2(b+c)
j − λciλ2b+cj + λ

2(b+c)
i − λcjλ2b+ci

)

=

n−1∑
i=1

n∑
j=i+1

Bi,~sB̄i,~sBj,~sB̄j,~sλ
2a
i λ

2a
j

(
λ2b+cj − λ2b+ci

) (
λcj − λci

)

Note that the product of a complex number and its conjugate is a nonnegative real number.
Therefore, each term within the last line must be nonnegative, since (Bi,~sB̄i,~s), (Bj,~sB̄j,~s), λ

2a
i ,

and λ2aj are all nonnegative, and (λ2b+cj − λ2b+ci ) and (λcj − λci ) must have the same sign.

Setting ~s to the characteristic vector of an index subset S ⊆ [n] gives a relation for the sum
of entries restricted to the corresponding principal submatrix of the matrix power. In this case,
we denote the sum of the corresponding matrix entries by wk(S, S). Note, that this is different
compared to considering powers of the principle submatrix.
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Corollary 5. For all a, b, c ∈ N and all subsets S ⊆ [n] holds:

w2a+c(S, S) · w2a+2b+c(S, S) ≤ w2a(S, S) · w2(a+b+c)(S, S)

Applied to adjacency matrices of undirected graphs (where the matrix entries count the number
of walks of a certain length between vertices), the sum is restricted to the walks between vertices
in the chosen subset. The difference is that in the first case only the start and end vertices must
be in S, while in the second case only walks are counted where also the intermediate vertices come
from the subset S.

By setting S = [n] (~s = 1n), we get the sandwich theorem for the total sum of the matrix
entries:

0 ≤
∑
i,j

A2a
(i,j) ·

∑
i,j

A
2(a+b+c)
(i,j) −

∑
i,j

A2a+c
(i,j) ·

∑
i,j

A2a+2b+c
(i,j)

This special case of the statement had already been obtained by Marcus and Newman [MN62].

In the case where S only contains one index (or vertex) v, this yields the statement for the
entries on the main diagonal (which correspond to closed walks in the case of adjacency matrices):

0 ≤ A2a
(v,v) ·A

2(a+b+c)
(v,v) −A2a+c

(v,v) ·A
2a+2b+c
(v,v)

Generalized graph density: For a graph G having n ≥ 2 vertices and m edges the density ρ
is defined as the fraction of present edges: ρ = m

(n
2)

= 2m
n(n−1) . Accordingly, a generalized k-th

order density can be defined (see [Kos05]) using the number of length-k walks: ρk = wk

n(n−1)k (with

ρ0 = 1 and ρ1 = ρ). The Sandwich Theorem directly implies the following inequality:

w2a+c · w2a+2b+c

[n(n− 1)2a+c] · [n(n− 1)2a+2b+c]
≤

w2a · w2(a+b+c)

[n(n− 1)2a] ·
[
n(n− 1)2(a+b+c)

]
Corollary 6. For all a, b, c ∈ N holds:

ρ2a+c · ρ2a+2b+c ≤ ρ2a · ρ2(a+b+c)

The same method can be applied for more general matrices, e.g., for adjacency matrices of
graphs where loops are allowed and the corresponding denominator is nk+1 instead of n(n− 1)k.

2.2 A unifying generalization of the inequalities by Erdős/Simonovits,
Dress/Gutman, and Ilić/Stevanović

We now show a generalization of Theorem 1 (the inequality of Erdős and Simonovits) which is at
the same time another generalization of Theorem 3 (the inequality of Dress and Gutman). As we
will see, the new theorem also generalizes two inequalities by Ilić and Stevanović. While our first
proof [HKM+11] used a theorem of Blakley and Roy [BR65], we later [HKM+12] found a paper
by Blakley and Dixon [BD66] that allows a more direct proof using the following theorem:

Theorem 7 (Blakley & Dixon [BD66]). For any positive integer q, nonnegative real n-vector u
and nonnegative real symmetric n× n-matrix S holds:

〈u, Su〉q+1 ≤ 〈u, u〉q〈u, Sq+1u〉.

Now, we apply Theorem 7 to a nonnegative matrix S = Ap and a nonnegative vector u
consisting of the values w`,~s(v) (cf. definitions before the Weighted Sandwich Theorem), and
setting q = k − 1 (note that for 〈u, u〉 6= 0 and q ∈ {−1, 0} both sides are equal). To satisfy the
restrictions, it is sufficient to assume that A and ~s are nonnegative.
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Theorem 8. For every nonnegative real symmetric matrix A, nonnegative weight vector ~s, and
k, `, p ∈ N, the following inequality holds if k ≥ 2 or w2`,~s > 0:

wk2`+p,~s ≤ wk−12`,~s · w2`+pk,~s.

For all matrices with w2`,~s > 0, this is equivalent to(
w2`+p,~s

w2`,~s

)k
≤
w2`+pk,~s

w2`,~s
and

(
w2`+p,~s

w2`,~s

)k−1
≤
w2`+pk,~s

w2`+p,~s
.

If the matrix is the adjacency matrix of a graph G = (V,E) and ~s is the characteristic vector
of a vertex subset S ∈ V , then ~w`,~s(v) is the vector of walks of length ` that start at vertex v and
end at a vertex of this subset S. This way, each of the length-k walks from vertex x to vertex y
is multiplied by w`,~s(x) and w`,~s(y), i.e., the number of length-` walks starting at a vertex of S
and ending at x and the number of length-` walks starting at y and ending at a vertex of S, resp.
This results in counting the walks of length k that are extended at the beginning and at the end
by all possible walks of length `, i.e., walks of length k + 2`, that start and end at vertices of S
(where the intermediate vertices may also come from V \ S).

Corollary 9. For every graph G = (V,E), vertex subset S ⊆ V , and k, `, p ∈ N, the following
inequality holds if k ≥ 2 or w2`(S, S) > 0:

w2`+p(S, S)k ≤ w2`(S, S)k−1 · w2`+pk(S, S).

For all graphs with w2`(S, S) > 0, this is equivalent to(
w2`+p(S, S)

w2`(S, S)

)k
≤ w2`+pk(S, S)

w2`(S, S)
and

(
w2`+p(S, S)

w2`(S, S)

)k−1
≤ w2`+pk(S, S)

w2`+p(S, S)
.

For ` = 0, we obtain an inequality which compares the average number of walks (per vertex)
of lengths p and pk:

Corollary 10. For every graph G = (V,E), vertex subset S ⊆ V with |S| ≥ 1, and k, p ∈ N, the
following inequalities hold:

wp(S, S)k ≤ |S|k−1wpk(S, S) and

(
wp(S, S)

|S|

)k
≤ wpk(S, S)

|S|
.

As a special case (` = 0 and p = 1) we get w1(S, S)k ≤ wk(S, S) · w0(S, S)k−1 where w1(S, S)
is the number of edges in the subgraph induced by S and w1(S, S)/w0(S, S) = w1(S, S)/|S| is the
average degree in this subgraph.

If the chosen subset S contains only a single vertex v, then we get a statement about closed
walks using v:

Corollary 11. For every graph G = (V,E), vertex v ∈ V , and k, `, p ∈ N, the following inequality
holds if k ≥ 2 or w2`(v, v) > 0:

w2`+p(v, v)k ≤ w2`+pk(v, v) · w2`(v, v)k−1.

Under the respective conditions w2`(v, v) > 0 and w2`+p(v, v) > 0 this is equivalent to(
w2`+p(v, v)

w2`(v, v)

)k
≤ w2`+pk(v, v)

w2`(v, v)
and

(
w2`+p(v, v)

w2`(v, v)

)k−1
≤ w2`+pk(v, v)

w2`+p(v, v)

If the subset S includes all of the vertices, then we get the following result:
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Corollary 12. For all graphs and k, `, p ∈ N the following inequality holds if k ≥ 2 or w2` > 0:

wk2`+p ≤ wk−12` · w2`+pk.

For all graphs with w2` > 0, this is equivalent to(
w2`+p

w2`

)k
≤ w2`+pk

w2`
and

(
w2`+p

w2`

)k−1
≤ w2`+pk

w2`+p

Setting k = 2 leads to w2
2`+p ≤ w2`+2p · w2` and therefore results in Theorem 3 published by

Dress and Gutman. Furthermore, Corollary 12 is a generalization of the two inequalities

M1

n
≥ 4m2

n2
and

M2

m
≥ 4m2

n2

for the Zagreb indices M1 and M2 that were proposed by Ilić and Stevanović [IS09]. These bounds
are just the same as

w2

w0
≥ w2

1

w2
0

and
w3/2

w1/2
≥ w2

1

w2
0

.

Additionally, the theorem implies the following special case for ` = 0, which is interesting on
its own since it compares the average number of walks (per vertex) of lengths p and pk:

Corollary 13. For graphs with at least one node and k, p ∈ N, the following inequalities hold:

wkp ≤ nk−1wpk and
(wp

n

)k ≤ wpk

n .

As a special case (` = 0 and p = 1) we get wk1 ≤ wk · wk−10 which is (by w1/w0 = 2m/n = d̄)
exactly Theorem 1 reported by Erdős and Simonovits.

3 Lower Bounds For the Spectral Radius

3.1 The lower bound

In the following, we are considering powers of a nonnegative symmetric matrix A. The Perron-
Frobenius Theorem guarantees that the spectral radius equals the largest eigenvalue. Hence,
[λ1(A)]k = λ1(Ak). The Rayleigh-Ritz Theorem implies

λ1(A) = max
||x||6=0

xTAx

xTx
.

For a vertex subset S ⊆ V and a vertex v ∈ V , we define w`(S, v) =
∑
s∈S w`(s, v) =∑

s∈S w`(v, s) = w`(v, S) to be the number of walks of length ` from v to any vertex in S (or vice
versa). Let ~w`(S) denote the vector with entries w`(S, v) for all v ∈ V , then we conclude for a
subset S ⊆ V with w`(S) > 0:

[λ1(A)]k = λ1(Ak) ≥ ~w`(S)TAk ~w`(S)

~w`(S)T ~w`(S)
=
w2`+k(S, S)

w2`(S, S)

Theorem 14. For arbitrary graphs, the spectral radius of the adjacency matrix satisfies the fol-
lowing inequality:

λ1 ≥ max
S⊆V,w`(S)>0

k

√
w2`+k(S, S)

w2`(S, S)

The case ` = 0 and S = {v} corresponds to the form λ1 ≥ maxv∈V
k
√
wk(v, v), i.e., this is an

even more general form of the lower bound λ1 ≥
√

∆ by Nosal [Nos70].
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3.2 Monotonicity for even walk lengths

We now show that the new inequality for the spectral radius yields better bounds with increasing
walk lengths if we restrict the walk lengths to even numbers. Correspondingly, we define a family
of lower bounds in case w2`(S, S) > 0:

Fk,`(S) = 2k

√
w2k+2`(S, S)

w2`(S, S)

Lemma 15. For k, `, x, y ∈ N with k ≥ 1 holds

max
S⊆V

Fk+x,`+y(S) ≥ max
S⊆V

Fk,`(S)

Proof. To show maxS⊆V Fk+x,`+y(S) ≥ maxS⊆V Fk,`(S) it is sufficient to show Fk+x,`+y(S) ≥
Fk,`(S) for each S ⊆ V .

First we show monotonicity in k, i.e., k+1

√
w2(k+1)+2`(S,S)

w2`(S,S)
= F 2

k+1,` ≥ F 2
k,` = k

√
w2k+2`(S,S)
w2`(S,S)

.

For the base case k = 1, it is sufficient to show that

w2(1+1)+2`(S, S)

w2`(S, S)
≥
(
w2+2`(S, S)

w2`(S, S)

)2

.

This inequality is equivalent to w4+2`(S, S) · w2`(S, S) ≥ w2+2`(S, S)2 which follows from the
Weighted Sandwich Theorem. What is left to show is

w2(k+2)+2`(S, S)

w2`(S, S)

/
w2(k+1)+2`(S, S)

w2`(S, S)
≥
w2(k+1)+2`(S, S)

w2`(S, S)

/
w2k+2`(S, S)

w2`(S, S)

This inequality is equivalent to w2(k+2)+2`(S, S) · w2k+2`(S, S) ≥ w2(k+1)+2`(S, S)2 which again
follows from the Weighted Sandwich Theorem.

Now we show monotonicity in `, i.e., k

√
w2k+2(`+1)(S,S)

w2(`+1)(S,S)
= F 2

k,`+1 ≥ F 2
k,` = k

√
w2k+2`(S,S)
w2`(S,S)

. This

is equivalent to w2k+2(`+1)(S, S) ·w2`(S, S) ≥ w2k+2`(S, S) ·w2(`+1)(S, S) which again follows from
the Weighted Sandwich Theorem.

Theorem 8 (Corollaries 12 and 11) directly imply additional monotonicity results for our new
bound, as well as for Nikiforov’s bound:

p

√
w2`+p(S, S)

w2`(S, S)
≤ pk

√
w2`+pk(S, S)

w2`(S, S)
which implies

p

√
w2`+p(v, v)

w2`(v, v)
≤ pk

√
w2`+pk(v, v)

w2`(v, v)
and

p

√
w2`+p

w2`
≤ pk

√
w2`+pk

w2`

In contrast to Lemma 15, these inequalities provide a monotonicity statement for certain odd walk
lengths, too.

3.3 Generalized upper bounds for the energy of graphs

The total π-electron energy Eπ plays a central role in the Hückel theory of theoretical chemistry.
In the case that all molecular orbitals are occupied by two electrons this energy can be defined as

Eπ = 2
∑n/2
i=1 λi. For bipartite graphs, this is equal to

∑n
i=1 |λi| since the spectrum is symmetric.

This motivated the definition of graph energy as E(G) =
∑n
i=1 |λi|. First bounds for this quantity

were given by McClelland [McC71]:
√

2m+ n(n− 1)|detA|2/n ≤ E(G) ≤
√

2mn.
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Later, several other bounds were published [Gut01]. A younger result is the following [HTW07]:
the energy of a connected graph G with n ≥ 2 vertices is bounded by

E(G) ≤

√∑
v∈V wk+1(v)2∑
v∈V wk(v)2

+

√
(n− 1)

(
2m−

∑
v∈V wk+1(v)2∑
v∈V wk(v)2

)
We note that this corresponds to

E(G) ≤
√
w2k+2

w2k
+

√
(n− 1)

(
2m− w2k+2

w2k

)
We now deduce a generalized bound from the lower bound for the spectral radius. Since λ1 ≥ 0

the definition of the graph energy can be written as

E(G) = λ1 +

n∑
i=2

|λi|

≤ λ1 +

√√√√(n− 1)

n∑
i=2

λ2i

≤ λ1 +
√

(n− 1) (2m− λ21)

where the last two lines follow from the inequality (
∑n
k=1 ak)

2 ≤ n·
∑n
k=1 a

2
k and the fact

∑n
i=1 λ

2
i =

2m.
Since the function f(x) = x +

√
(n− 1)(2m− x2) has derivative f ′(x) = 1 −

√
n−1x√
2m−x2

and is

therefore monotonically decreasing in the interval
√

2m/n ≤ x ≤
√

2m we have

√
2m ≥ λ1 ≥ Fk,`(V ) ≥ F1,0(V ) =

√
w2

w0
≥
√
w1

w0
=

√
2m

n

which implies f(λ1) ≤ f (Fk,`(V )) and thus

E(G) ≤ f(λ1) ≤ f (Gk,`)

≤ 2k

√
w2k+2`

w2`
+

√
(n− 1)

(
2m− k

√
w2k+2`

w2`

)
Similarly, we have

√
2m ≥ λ1 ≥ Fk,`(S) ≥ F1,0(S) =

√
w2(S, S)

w0(S, S)
≥

√
w1(S, S)

w0(S, S)
=

√
|E(G[S])|
|S|

which implies for each set S having average degree of the induced subgraph d(G[S]) ≥ d = 2m/n
that f(λ1) ≤ f (Fk,`(S)) and thus

E(G) ≤ f(λ1) ≤ f (Fk,`(S))

≤ 2k

√
w2k+2`(S, S)

w2`(S, S)
+

√√√√(n− 1)

(
2m− k

√
w2k+2`(S, S)

w2`(S, S)

)

Since w2(S,S)
w0(S,S)

≥ w1(S,S)
2

w0(S,S)2
(Sandwich Theorem), the same applies if w1(S,S)

w0(S,S)
= d(G[S]) ≥

√
2m
n .

For S = {v}, we get

√
2m ≥ λ1 ≥ Fk,`(v) ≥ F1,0(v) =

√
w2(v, v)

w0(v, v)
=
√
dv
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which implies for each node v having degree dv ≥ d = 2m/n that f(λ1) ≤ f (Fk,`(v)) and thus

E(G) ≤ f(λ1) ≤ f (Fk,`(v))

≤ 2k

√
w2k+2`(v, v)

w2`(v, v)
+

√√√√(n− 1)

(
2m− k

√
w2k+2`(v, v)

w2`(v, v)

)
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379. Birkhäuser, 2011.

[CR90] Dragoš M. Cvetković and Peter Rowlinson. The largest eigenvalue of a graph: A
survey. Linear and Multilinear Algebra, 28(1):3–33, October 1990.

[CRS97] Dragoš M. Cvetković, Peter Rowlinson, and Slobodan K. Simić. Eigenspaces of
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