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Abstract

This thesis is a contribution to the research field of quantum simulations of
topological phases of matter, i.e. quantum states characterized by a non-local
order parameter. The aim of the research on quantum simulations is to overcome
the difficulties encountered in the study of quantum mechanical models with
conventional numerical methods. The proposed way to accomplish this task is
the direct exploitation of controllable quantum systems whose properties, for
instance low-energy physics, mimic those of the model to be studied. We study
several problems connected to the objective of creating a quantum simulator
of topological phases of matter. In particular, we discuss how to engineer the
Hamiltonian of topological models, how to measure quantities which unravel
topological orders, and how to quantify the reliability of topological quantum
memories.

The first direction of investigation considered in this thesis regards the de-
velopment of new techniques to simulate topological states of matter with cold
atoms in optical lattices. We propose a scheme based on an unconventional use
of a bi-chromatic optical lattice to engineer the Hamiltonians of several topo-
logical insulators and of the related non-interacting relativistic models. We also
focus on the Pfaffian wavefunction, a topological state supporting non-Abelian
quasi-excitations arising in the presence of three-body interactions. We present
a proposal for the realization with optical lattices of systems characterized by
such interactions and discuss the possibility of using such a scheme to create a
topological state, such as the mentioned wavefunction.

The second line of research considered in this thesis concerns the detection
of a string operator in optical lattices. We report on an experiment, to which
we provided theoretical support, aimed at the measurement of the non-local
order parameter of a one-dimensional Mott insulator; we support the discussion
with the relevant theoretical background. Although the Mott insulator is not a
topological phase, the measurement of string observables is crucial to reveal the
non-local order of several topological states, and the developed experimental
protocol is expected to be relevant in future experiments.

The third contribution of this thesis is related to the use of topological
phases to build a quantum computer, which is a specific example of a quantum
simulator. We focus on the important problem of understanding whether it is
possible to reliably store quantum information in topological states. We con-
sider one specific class of topological quantum memories, namely those based
on a fermionic topological superconductor with zero-energy Majorana modes.
At the end of the storage period, we take into account the possibility of ap-
plying an operation aimed at the recovery of the information initially encoded
into the system and then diminished by the time evolution. In particular, we

vii



viii Abstract

develop several theoretical tools that quantify the fidelity of the best recovery
operation. We apply such tools to understand the effect of various experimen-
tally relevant decoherence processes which could act on the fermionic quantum
memory. We show that this class of quantum memories is extremely susceptible
to the presence of an environment whose action can be described with a master
equation. We also consider another decoherence process, namely the convex
combination of several Hamiltonian time evolutions, and show that in this case
the topological properties of the model protect the encoded information.



Zusammenfassung

Diese Doktorarbeit ist ein Beitrag zu Quantensimulationen topologischer Ma-
teriezustände, das heißt von Quantenzuständen, die durch einen nicht-lokalen
Ordnungsparameter beschrieben werden. Das Ziel der Forschung über Quanten-
simulatoren ist es Schwierigkeiten zu überwinden, die auftreten, wenn quanten-
mechanische Modelle mithilfe herkömmlicher numerischer Methoden untersucht
werden. Der anvisierte Weg, um diese Aufgabe zu bewerkstelligen, nutzt direkt
den hohen Grad an Kontrolle einiger Quantensysteme aus, deren Eigenschaften,
zum Beispiel ihr Verhalten bei niedrigen Energien, denen des zu untersuchenden
Systems entsprechen. Wir betrachten einige Problemstellungen, die miteinander
durch das Ziel einen Quantensimulator topologischer Materiezustände zu rea-
lisieren, verbunden sind. Insbesondere diskutieren wir wie Hamiltonoperatoren
topologischer Modelle beschrieben werden können, wie Größen, die topologi-
sche Ordnung anzeigen, gemessen werden können und wie die Verlässlichkeit
topologischer Quantenspeicher quantifiziert werden kann.

Die erste Forschungslinie, die in dieser Arbeit verfolgt wird, betrifft die Ent-
wicklung neuer Methoden, um topologische Materiezustände mit Hilfe kalter
Atome in optischen Gittern zu simulieren. Basierend auf einer unkonventio-
nellen Verwendung bichromatischer optischer Gitter, schlagen wir ein Schema
vor, um die Hamiltonoperatoren einiger topologischer Isolatoren und mit ih-
nen verwandte nicht-wechselwirkende relativistische Modelle zu simulieren. Ein
weiterer Fokus liegt auf der Pfaffschen Wellenfunktion, einem topologischen Zu-
stand, der nicht-Abelsche Quasi-Anregungen, die sich bei Anwesenheit von Drei-
Körper-Wechselwirkungen ausbilden, beschreibt. Wir stellen einen Vorschlag
zur Realisierung von Systemen, die durch derartige Wechselwirkungen beschrie-
ben werden, mithilfe optischer Gitter, vor. Darüber hinaus diskutieren wir die
Möglichkeit dieses Schema zur Präparation topologischer Zustände, zum Bei-
spiel der oben erwähnten Wellenfunktion, zu benutzen.

Die zweite Richtung unserer Untersuchungen geht um den Nachweis eines
String-Operators in optischen Gittern. Wir beschreiben ein Experiment, zu dem
wir durch die Beschreibung der theoretischer Grundlagen und die Entwicklung
theoretischer Modelle beigetragen haben. Ziel dieses Experimentes ist es den
nicht-lokalen Ordnungsparameter eines ein-dimensionalen Mott-Isolators zu be-
schreiben. Obwohl der Mott-Isolator keine topologische Phase ist, ist die Detek-
tion von String-Observablen essenziell, um die nichtlokale Ordnung mehrerer
topologischer Zustände zu beschreiben. Dies rechtfertigt die Erwartung, dass
das hier entwickelte Protokoll relevant in zukünftigen Experimenten sein wird.

Im dritten Teil dieser Arbeit geht es um die Verwendung topologischer Pha-
sen, um einen Quantencomputer zu konstruieren, der ein spezifisches Beispiel
eines Quantensimulators darstellt. Im Besonderen untersuchen wir das wich-
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x Zusammenfassung

tige Problem, zu verstehen, ob es möglich ist Quanteninformation verlässlich
in topologischen Zuständen zu speichern. Wir betrachten eine spezifische Klas-
se topologischer Quantenspeicher, nämlich Zustände, die auf einem fermioni-
schen Supraleiter mit null-Energie Majorana-Moden basieren. Die Möglichkeit
am Ende der Speicherperiode eine Operation anzuwenden, die die ursprünglich
im System codierte Information wiederherstellt, wird betrachtet. Im Speziel-
len entwickeln wir mehrere theoretische Methoden, die die Fidelität der besten
Operation zur Wiederherstellung der Information quantifizieren. Wir verwenden
diese Methoden, um die Wirkung unterschiedlicher experimentell relevanter De-
kohärenz-Prozesse, die auf den fermionischen Quantenspeicher wirken können,
zu verstehen. Wir zeigen, dass diese Klasse Quantenspeicher sehr anfällig auf
die Anwesenheit einer Umgebung, deren Wirkung durch eine Master-Gleichung
beschrieben wird, reagiert. Darüber hinaus untersuchen wir eine andere Art
von Dekohärenz-Prozess, genauer gesagt eine konvexe Kombination mehrerer
Hamiltonscher Zeitentwicklungen. In diesem Fall zeigen wir, dass die topologi-
schen Eigenschaften des Modells die codierte Information schützen.
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Introduction

Quantunque il simular sia le più volte
ripreso, e dia di mala mente indici,

si trova pur in molte cose e molte
aver fatti evidenti benefici, 1

Ludovico Ariosto, Orlando Furioso, IV 1-4

Quantum mechanics is the theory which describes the behaviour of atoms,
electrons and all constituents of matter on atomic length scales. Unfortunately,
the theoretical study of quantum mechanical systems whose number of elemen-
tary components scales as the Avogadro number is almost always challenging.
Indeed, several many-body models, originating both from very abstract prob-
lems and from attempts to understand experimental observations, are still to
be solved. One of the most severe obstacles to obtain a full understanding
of their properties is the fact that the required computational resources scale
exponentially with the size of the system, so that only small ones have been
studied exactly. Several attempts have been made to circumvent this issue.
Algorithms which do not treat the problem exactly have been proposed and
efficiently applied to solve selected models. To name the most important ones,
let us cite quantum Monte Carlo (QMC) methods [CA80], the density matrix
renormalization group (DMRG) technique [Sch11], the algorithms based on ma-
trix product states (MPS) [PGVWC07] and on projected entangled pair states
(PEPS) [VC04]. All these methods have been designed to work on conventional
computers, and in what follows we refer to them as classical simulations.

A quantum simulator is an alternative solving tool which has been proposed
in 1982 by R. P. Feynman [Fey82] and is currently at the focus of a broad area
of research. The key idea is to engineer a technological instrument which ac-
tively exploits quantum mechanics to solve quantum mechanical problems. Re-
searchers have been since interested in understanding the computational power
of such an approach. In 1996, a milestone theorem was demonstrated: it was
shown by S. Lloyd that the complicated many-body dynamics of a local Hamil-
tonian can be efficiently simulated inducing on a controllable quantum system
a reduced number of elementary time-evolutions to be engineered from out-
side [Llo96]. This digital quantum simulator is said to be universal because

1Though an ill mind appear in simulation,/ And, for the most, such quality offends;/
’Tis plain that this in many a situation/ Is found to further beneficial ends, - Translation by
William S. Rose (1823-1831); source Wikipedia.

xiii



xiv Introduction

once reprogrammed it can simulate every local Hamiltonian and it is indeed
equivalent to a quantum computer [NC04].

The difficulty of building such a device leads to the formulation of a less
demanding but still ambitious concept, namely that of analog quantum simula-
tions [BN09, HCT+11]. The idea here is to construct purpose-built setups, able
to simulate only a restricted range of models. The quantum simulator simply
emulates the system of interest, in the same fashion as fermionic atoms in a lat-
tice structure emulate electrons in a crystal: the Hamiltonian to be simulated
is mapped into the Hamiltonian of the simulator.

Not every genuine quantum system is a good candidate for a quantum sim-
ulator. Even if no generally accepted criteria have been formulated, some sci-
entists are trying to identify the relevant properties that a system should ful-
fill [HCT+11, CZ12]. We list here some of them:

1. the microscopic theoretical knowledge of such a system must be satisfac-
tory, in order to be able to understand the simulation with an ab-initio
approach.

2. Since we are interested in going beyond single-particle physics, which is
relatively well understood with present computers, the simulator must con-
tain many elementary constituents (fermions or bosons, both if possible)
and must be scalable.

3. From a general point of view, a simulation requires the manipulation of
the system, which must thus be extremely controllable. In general, it must
be possible to engineer couplings between the different components of the
system.

4. It is also desirable to be able to initialize the system in a range of different
initial states and to change the parameters of the setup in real time.

5. Finally, the desired information is to be obtained via a measurement of
the system, which must be carried out with high fidelity.

Some of the most studied experimental candidates are: cold atoms in optical
lattices, trapped ions, photons, superconducting circuits, and arrays of quantum
dots [BN09]. In this thesis we concentrate only on cold atoms in optical lattices,
which are especially suited for analog simulations2.

In general, quantum simulators have not yet managed to provide some signif-
icant information that is not obtainable with analytical approaches or classical
simulations. On the one hand, the need for quantifying the accuracy of a quan-
tum simulation is forcing each research community to benchmark the developed
setups with classical simulations. On the other one, the experimental control
of large many-body quantum systems is still challenging. However, the pace at
which the recent progresses have been obtained motivates the expectation that
important milestone experiments will be carried out in the next future.

This thesis is a contribution to the research field of quantum simulations
of topological phases of matter, i.e. quantum states which cannot be fully
characterized by local order parameters. In this case, the paradigm introduced

2A general discussion of cold gases oriented towards the topic of quantum simulations is
given in references [JZ05, LSA+07, BDZ08, BDN12].
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by Landau, which describes quantum phase transitions via the breaking of local
symmetries, fails. Instead, the concept of topological order arises, which reflects
the presence of non-local order parameters and concerns global properties of the
system [Wen04]. The interplay between concepts from topology, the branch of
mathematics devoted to the study of global properties preserved by continuous
transformations, and quantum physics is old and well-established [Nak03a]; in
this thesis, we focus on two recent developments: topological insulators and
anyons.

Apart from posing a number of still open questions, topological states fea-
ture intriguing properties, whose experimental observation would be extremely
interesting, even if theoretically well understood. At this point it can be useful
to stress that the topic of quantum simulations closely relates to the problem of
quantum Hamiltonian engineering. As the relevant scientific literature does not
get involved with the subtlety of separating the two research fields, we refrain
from it as well, and also include within the area of quantum simulations studies
that are not strictly aimed at solving a not yet understood model.

In part I of this thesis we consider the use of cold atoms in optical lattices
as analog quantum simulators. After devoting chapter 1 to a review of optical
lattices, we consider the problem of engineering the Hamiltonians of topological
models in such systems. We begin chapter 2 with a review of the tools devel-
oped by the research community to push optical lattices beyond the bosonic
and fermionic Hubbard model, which, depending on the atomic statistics, de-
scribe naturally the system, but are unfortunately non-topological. To achieve
this goal, unconventional optical lattices, dressed, for instance, with additional
light fields, are necessary [JZ03, GD10, AAN+11, Coo11]. The first original
contribution of this thesis is the theoretical development of one such simulation
scheme [MBG+12]. The setup consists of a spin-independent optical lattice that
traps a collection of hyperfine states of the same alkaline atom, to which the
different degrees of freedom of the field theory to be simulated are mapped. We
show that dressing a bi-chromatic optical lattice (or superlattice) with Raman
transitions can allow the engineering of a spin-dependent tunneling of the atoms
between neighboring lattice sites.

The applications of this scheme are extensively presented in chapter 3. We
argue that the mentioned assisted-hopping processes can be used for the quan-
tum simulation of topological insulators, i.e. fermionic models which display
a gapped (insulating) bulk and gapless (conducting) boundary modes [HK10,
QZ11]. We devote section 3.2 to a brief review of the topic. Considerations bor-
rowed from mathematical topology can be applied to the single-particle band-
structure of these models and with their help some global properties of the
system can be related to integer numbers (or to subsets of the integer num-
bers) [Nak03a]. Since the aforementioned topological arguments are insensitive
to Hamiltonian perturbations which do not close any band gap, there exist
macroscopic properties of the topological insulators which feature an extreme
robustness.

We present a toolbox for the realization of different types of relativistic lattice
fermions, which can then be exploited to synthesize the majority of the phases
of the periodic table of topological insulators [BMR+10, MBG+12]. The exotic
phenomenology makes the experimental observation of these models interesting
per se. Moreover, some peculiar transport properties, such as spin-polarized
currents [KM05], make the realization of some topological insulators extremely
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attractive also from the applicative point of view. However, solid state samples
hosting some of the topological phases we propose to engineer have already been
produced [vK86, KBM+07, HQW+08]. We justify the need for an experiment
based on cold atoms by proposing a use in the spirit of a quantum simulation.
The measurement versatility and the possibility of directly relating such outputs
to a specific theoretical model are expected to be an advantage in this respect.
For example, we cite the problem of understanding the fate of topological insu-
lators in presence of interactions, which in cold gases can be tuned with high
confidence [WQZ10, RT10, FK11, TPB11, Gur11].

In chapter 4 we present a scheme aimed at the engineering of many-body
Hamiltonians characterized by a three-body infinite contact repulsion; in order
to do that, we exploit an optical lattice with spin-1 atoms realizing a Mott
insulator with the filling of one particle per site [MRLC10]. The idea, reminis-
cent of the connection between spin-1/2 particles and hardcore bosons [Gia04],
prescribes the local mapping of the spin degrees of freedom into the occupation
numbers of emerging quantum particles interacting via three-body repulsion. As
many-body interactions are at the heart of unconventional phenomena, three-
body interactions are a fundamental ingredient for the realization of the so-called
Pfaffian wavefunction, a topological state which is known to support anyonic
quasi-excitations [MR91, GWW92].

Anyons are particle-like quasi-excitations satisfying an unconventional statis-
tics [LM77, Wil82], i.e. neither bosonic nor fermionic; they can only exist in two
dimensions [NSS+08]. The experimental investigation of anyons is one of the
challenges of modern physics and no unquestionable observation has been per-
formed yet [WPW09, WPW10, MZF+12]. It is therefore reasonable to raise the
question of whether optical lattices can host such an interesting phenomenon.
Among the several states characterized by anyonic quasi-excitations, we focus on
the Pfaffian one. We first provide numerical evidence that corroborates the pos-
sibility of realizing such wavefunction, usually studied in the continuum space,
in a spatially discrete structure, such as an optical lattice. Unfortunately, the
Pfaffian wavefunction is not in the class of models which can be realized with
the proposed spin-1 atoms scheme, and we finally elaborate on the difficulties
encountered.

We then leave the problem of Hamiltonian engineering and move to the prob-
lem of measuring topological order in cold atomic gases. Because topological
phases lie outside the Landau paradigm, their characterization requires to probe
a non-local observable. In chapter 5, we focus on the measurement of a string
operator in an optical lattice, which is a well-defined non-local order parameter
of the one-dimensional Mott insulator [DTBA06, BDTGA08]. We report on an
experiment, to which we provided theoretical support, in which such measure-
ment was carried out in practice [ECF+11]. Although a Mott insulator is not
a topological phase, the developed experimental protocol will become of crucial
importance to characterize genuine one-dimensional topological phases, such as
the Haldane phase, in cold-atoms experiments [Hal83, dNR89].

In part II, we switch our attention to the use of topological phases for
quantum-information purposes. Indeed, some models of anyons have been
proven to support fault-tolerant universal quantum computation [Kit97]. In
such a topological quantum computer, which is a particular instance of a digital
quantum simulator, the information is processed via the creation, braiding and
annihilation of the anyons. An intermediate goal which might require less con-
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trol on the setup is represented by the use of these topologically ordered models
only to store quantum information [DKLP02]. A complete characterization of
these topological quantum memories, focussing on questions such as the stability
against thermal effects and other forms of noise and decoherence, is extremely
important, because much of the experimental and theoretical work in the field
of anyons regards such applications as a long term goal and motivation. Let
us indeed stress that the robustness of many properties of topological models,
such as the degeneracy of the ground space, has long convinced the researchers
that these were ideal systems for storing quantum information. Unfortunately,
recent studies, to which our work belongs, are showing that the action of an
external environment can have severe consequences on the performances of the
quantum memory [AFH09, CLBT10, PKSC10, Yos11, GC11].

The concepts of topological insulators and of anyonic systems are different
and not mutually exclusive. There are classes of quasi one-dimensional and
two-dimensional systems, named topological superconductors, which have both
properties [Kit01, RG00]. On the one side, they have a gapped bulk and gapless
boundary modes; on the other one, such edge modes are zero-energy Majorana
fermions which can be interchanged, or braided, and display non-Abelian statis-
tics [Iva01, AOR+11]. Such models are currently raising interest also because
their experimental realization seems to be possible in the near future [MZF+12].
In chapter 6 we review the most natural formalism for dealing with these sys-
tems, and in general with quadratic fermionic Hamiltonians, namely that of
fermionic Gaussian states [BR04, Bra05].

In chapter 7, we consider these topological superconducting model and an-
swer the question of how long quantum information can be stored reliably
in such systems. The information is encoded with the zero-energy Majorana
modes mentioned above. We develop the theoretical tools needed to quantify
the amount of information which is spoiled by a non-Hamiltonian time evolu-
tion, describing the storage time. In particular, we consider the possibility of
performing an operation after the storage period aimed at recovering the largest
amount of information from the system and moreover discuss what is the max-
imal achievable fidelity of such operation. The complete characterization of
recovery operations is one of the most original contributions of the discussion
presented in chapter 7.

Equipped with these tools, we characterize several perturbations which can
hinder the possibility of storing quantum information in these memories. We
show in a rigorous way that the topological properties of the Hamiltonian cannot
protect the information from the action of perturbations described by a large
class of physically relevant master equations.

We subsequently depart from the assumptions needed to use master equa-
tions, and consider time evolutions which can even be unitary, even if we ignore
the details of the Hamiltonian ruling such dynamics. In this case we find a
rather intriguing phenomenology. On the one side, we show that the Hamilto-
nian is able to protect the information stored in the system, namely, considering
larger systems improves the storage time of the memory. On the other one, the
recovery operation needed to extract such information from the memory is not
of the most simple class, i.e. a Gaussian operation.

In general, topological superconductors are the focus of the attention of both
the solid-state community and the quantum information one. The discussion we
present is mainly reminiscent of the methods used by the latter. Nonetheless, it
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is abstract and as such can be applied not only to solid-state implementations,
but also to alternative ones, based for example on cold atoms.

* * *

Summarizing, this thesis is organized as follows. In chapter 1 we review some
selected topics about optical lattices which are used in the thesis. In chapter 2
we present the superlattice scheme proposal for an unconventional optical lattice
which permits to realize hopping processes changing the internal state of the
atom. Some possible applications of this quantum simulator, ranging from non-
interacting relativistic theories to fermionic models, are discussed in chapter 3.
In chapter 4 we introduce a method for engineering three-body interactions
with optical lattices and elaborate on the possibility of realizing the topological
Pfaffian wavefunction. In chapter 5 we discuss the experimental measurement of
a string operator, crucial for the characterization of topological phases of matter.
Chapter 6 is devoted to the review of the properties of fermionic Gaussian states.
We use them in chapter 7 to characterize a quantum memory encoding the
information in zero-energy Majorana modes.
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Chapter 1

Optical Lattices

This chapter reviews some selected topics about optical lattices, chosen because
of their relevance in this thesis. Consequently, it is not intended to be a com-
prehensive review; the interested reader is referred to references [JZ05, LSA+07,
BDZ08] for a more exhaustive discussion.

1.1 Optical Potentials

Various experimental methods for trapping and storing ultracold gases have
been developed in the last decades1. All these methods have to cope with
the fact that atoms are charge neutral, and thus the Coulomb force cannot be
exploited. We focus here on optical dipole traps, where atoms interact with light
via their induced dipole moment and, depending on the specific light frequency,
experience a force pushing them towards high or low intensity regions [GWO00].

An atom in the presence of an external oscillating electro-magnetic field
is subjected to a potential Udip(r) due to the interaction of the electric field

E(r) = êẼ(r)e−iωt + c.c. (we consider here only one frequency ω) with the
induced atomic dipole moment p:

Udip(r) = −1

2
〈p ·E(r)〉time = −<(α(ω))E2(r); (1.1)

where α(ω) is the dynamical atomic polarizability.
The polarizability α(ω) is a complex quantity and its imaginary part de-

scribes absorption effects. Indeed, it can be associated to the absorbed power
via:

Pabs(r) = 〈ṗ ·E(r)〉time = 2ω=(α(ω))E2(r); (1.2)

or, equivalently, to an absorption scattering rate:

Γsc(r) =
2

~
=(α)E2(r). (1.3)

A quantum mechanical expression for the real part of α(ω) of a multi-level
atom in the ground state can be obtained via a perturbative treatment of the

1A general overview can be found in chapter 4 of [PS01] and references therein.
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atom-light interaction:

α(ω) =
∑
n6=0

|〈n|d̂ · ê|0〉|2
(

1

En − E0 − ~ω
+

1

En − E0 + ~ω

)
; (1.4)

where {|n〉, En} are the atomic states and energies, and d̂ is the atomic dipole
operator. It is reasonable to keep only the most relevant terms of the sum in
equation (1.4); thus, we consider the states n̄ such that En̄ − E0 ∼ ~ω and
discard the term ∝ (En̄ − E0 + ~ω)−1, which is small.

The imaginary part of the polarizability, whose ab-initio derivation would
require to take into account the infinite modes of the electromagnetic field
[CTDRG98], can be effectively evaluated by substituting the real atomic en-
ergies with a complex number, whose imaginary part represents the state life-
time: En 7→ En − i~Γn/2. Following this procedure, we get a fully complex
polarizability:

α(ω) =
∑
n̄

|〈n̄|d̂ · ê|0〉|2

En̄ − i~Γn̄/2− E0 − ~ω
. (1.5)

The used approximation requires that the state |n̄〉 can be regarded as a well-
defined state, i.e. ~Γn̄ � En̄, and that the light is not on-resonance, i.e. ~Γn̄ �
|En̄ − E0 − ~ω|, which is a more stringent condition.

Let us use formula (1.5) to obtain an explicit expression for Udip(r) and
Γsc(r); we consider for simplicity only one relevant state n̄. We obtain:

Udip(r) ∼ −1

2

|〈n̄|d̂ · ê|0〉|2

En̄ − E0 − ~ω
|Ẽ(r)|2; (1.6a)

Γsc(r) ∼ − (Γn̄/2) |〈n̄|d̂ · ê|0〉|2

(En̄ − E0 − ~ω)2
|Ẽ(r)|2. (1.6b)

These equations show the different scaling of the optical trapping, ∝ Ẽ2/(En̄−
E0 − ~ω), and of the scattering rate, ∝ Ẽ2/(En̄ −E0 − ~ω)2; this explains why
experiments, which need a small Γsc, work preferentially in the far-detuned
regime, with En̄ − E0 − ~ω as large as possible.

Moreover, the sign of En̄−E0−~ω defines the sign of Udip. In the case of red-
detuning, ~ω < En̄−E0, the minima of the potential coincide with the maxima
of the light intensity; and viceversa for the blue-detuning case, ~ω > En̄ − E0.

The potential Udip(r) has the same space-dependence of the squared elec-

tric field ∝ |Ẽ(r)|2. A periodic potential can be generated with two counter-
propagating laser beams of wavelength λ, which create a standing wave along
the propagation direction, say ẑ, with periodicity λ/2: |Ẽ(r)|2 ∝ sin2(2πz/λ).
This is the core idea at the basis of experiments with optical lattices; the last
decade has seen a flourishing of innovations on top of this simple concept.
For example, periodic potentials can be generated in one, two and three di-
mensions. Moreover, non-square geometries have also been created, the most
prominent examples being the two-dimensional honeycomb and triangular lat-
tices [SPSH+11, TGU+12]. Finally, it is also possible to realize optical super-
lattices, i.e. bi-chromatic optical lattices [FTC+07, GDF+08].

Another important experimental line of research has focussed on the devel-
opment of trapping schemes which depend on the internal atomic states. For
alkali atoms, the typical atoms employed in these experiments, the electronic



1.2 Theoretical Description of Atoms in Optical Lattices 5

ground state splits into a number of hyperfine states originating from the in-
teraction of the nuclear spin with the electronic spin [BJ83]. In order to have
a different potential for each state, the frequency of the trapping light must
be almost resonant with the first atomic excitation line, so that the internal
structure of the first electronic excited state can become relevant. In this situa-
tion, specific combinations of light polarizations and carefully selected detunings
can create periodic potentials which are completely out of phase for two differ-
ent internal states. The explicit theoretical derivation of this fact, worked out
through polarization selection rules, for alkaline and earth-alkaline-like atoms,
is reviewed in references [JZ05, GD10]. Experiments have demonstrated the
possibility of using this technique to realize entangling gates via controlled col-
lisions [MGW+03a, MGW+03b], quantum walks [KFC+09], and to do ther-
mometry of strongly correlated phases [MD10].

Still, the vicinity of a resonance can significantly increase the probability of
a scattering event, i.e. the absorption of one photon. This drawback becomes
particularly severe for some atoms, e.g. potassium, for which the atomic prop-
erties do not allow for a stable implementation of the method sketched above.
This motivated the work presented in chapter 2, where we show that a spin-
independent, and thus potentially long-lived, optical superlattice can be used
to address the different hyperfine states of the atom, like in a spin-dependent
optical lattice.

1.2 Theoretical Description of Bosonic Atoms in
Optical Lattices

Atoms trapped in a three-dimensional optical lattice are quantum objects sub-
ject to a potential:

V (r) = −V0

∑
j

sin2(k0 xj); k0 =
2π

λ
. (1.7)

The corresponding single-particle Schrödinger equation with periodic boundary
conditions can be solved working in momentum space, see e.g. [AM76]. The
spectrum displays a band structure Em(k), and the eigenfunctions ψm,k(r) are
usually called Bloch wavefunctions (see figure 1.1).

Rather than working in this basis, it is sometimes more convenient to use
another orthonormal basis, the so-called Wannier wavefunctions:

wm,R(r) =
∑
k

e−ik·Rψm,k(r); (1.8)

which can be chosen to be exponentially localized around the lattice site R, as
shown in figure 1.1 and reference [Koh59]. Notice that they are not anymore
eigenstates of the Hamiltonian. Indeed, we introduce the notation |m,R〉 for
the Wannier wavefunction wm,R(r) and write the single-particle Hamiltonian in
this basis:

Ĥ =
∑
m

∑
R,R′

Jm(R−R′)|m,R〉〈m,R′|; (1.9)

where:

Jm(R−R′) =

∫
drw∗m,R(r)

[
− ~2

2m
∇2 + V (r)

]
wm,R′(r). (1.10)
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Figure 1.1: (Left) Band structure Em(k), m ≤ 3, for a one-dimensional optical
lattice with V0 = 19.0Er. Notice that the lowest band is almost flat: this
reflects the fact that J1(R−R′) ∼ 0 even for neighboring lattice sites. (Right)
Plot of |w1,R=0(x)|2 for an exponentially localized Wannier wavefunction of the
first lattice band, m = 1.

The notation introduced in (1.9) is particularly useful if one is interested in the
low-energy properties of the model, and thus truncates the sum over the bands
to the first ones. Due to the localization of wm,R(r) around R, usually J(R−R′)
is significantly different from zero only for neighboring R and R′. The natural
energy scale for this problem is the so-called recoil energy : Er = ~2k2

0/(2M),
with M the mass of the atom and k0 = 2π/λ, whose typical order of magnitude
for alkali atoms is the kHz.

In order to study many-body effects and interactions, it is more convenient to
use a the second-quantization formalism. Statistics is relevant, and we consider
bosons [PS03]. We denote Ψ̂(r) the bosonic field operator annihilating one

particle at r; it satisfies the canonical anticommutaion relation
[
Ψ̂(r), Ψ̂(r′)

]
= 0

and
[
Ψ̂(r), Ψ̂†(r′)

]
= δ(r−r′). We introduce the bosonic operators âm,R, which

annihilate one boson in the state |m,k〉, and expand Ψ̂(r) as:

Ψ̂(r) =
∑
m,R

wm,R(r) âm,R. (1.11)

Neutral atoms at long distance interact via van der Waals attraction, which
scale as r−6, whereas at short distances the interaction is due to the overlap
of the electronic clouds and is usually modelled as a hard-core repulsion. Low-
energy interactions happen only in the s-wave channel (higher angular momenta
are frozen by a centrifugal barrier) and are described by one single parameter,
the scattering length as. Such collisions are completely characterized by a con-
tact pseudopotential. Within this pseudopotential approximation, the many-
body interaction Hamiltonian reads [BDZ08]:

Ĥint =
g

2

∫
dr Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r). (1.12)

In the limit of a strong optical lattice, i.e. of atoms confined to the lowest
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Figure 1.2: Phase diagram of the Bose-Hubbard model at zero temperature.
(a) The phase diagram comprises two phases: the Mott insulator (MI), appear-
ing for large interactions and at commensurate lattice filling; and the superfluid
(SF), appearing at low interaction. (b) Within the local density approximation,
the presence of an external trap can be regarded as a space-dependent chem-
ical potential term. The gas shows an alternating sequence of insulating and
superfluid phases, known as wedding-cake structure.

band, the final Hamiltonian for a bosonic gas is (âi ≡ â1,Ri ; n̂i ≡ â
†
i âi):

Ĥ = −J
∑
<i,j>

(
â†i âj +H.c.

)
+
U

2

∑
j

n̂j(n̂j − 1)− µ
∑
j

n̂j (1.13)

where < i, j > denotes the summation over neighboring sites, J = J(Ri −Rj)
is the hopping parameter, U = g

∫
dr|w1,R(r)|4 is the interaction energy and µ

is the chemical potential [JBC+98].
Hamiltonian (1.13) is known as the Bose-Hubbard model [FWGF89], whose

phase diagram has been widely studied. It comprises two phases, the Mott
insulator for large interactions U � J , and the superfluid for J � U (see
figure 1.2a). The two phases differ, for example, in the excitation spectrum, as
the insulating phase is gapped, and the superfluid phase is gapless. Moreover,
they can also be characterized via the diverse scaling of the correlation function
〈â†i âj〉. For the insulating phase, it is decaying exponentially:

〈â†i âj〉 ∝ e
−|Ri−Rj |/ξ; (1.14)

with a correlation length ξ diverging at the phase transition. The superfluid
phase displays long range order:

〈â†i âj〉
|Ri−Rj |→∞−−−−−−−−→ Λ0 (1.15)

and the limit value Λ0 defines the condensate fraction of the system. The fact
that Λ0 can be different from 0 is related to the spontaneous symmetry breaking
of the U(1) symmetry of the phase of the condensate. As the Mermin-Wagner
theorem forbids any such symmetry breaking in low dimensions, Λ0 is equal
to 0 in one dimension and also in two dimensions at finite temperature. The
superfluid in such cases is characterized only by the algebraic scaling of the
correlation function 〈â†i âj〉 and one speaks of quasi long range order [PS03].
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So far, we have completely neglected the contribution due to the parabolic
trapping: Vtrap = 1

2mω
2
trap|x|2. The corresponding field Hamiltonian is:

Ĥtrap =
1

2
mω2

trap

(
λ

2

)2∑
j

j2n̂j (1.16)

Within the local density approximation, the trap potential can be regarded as

a space dependent chemical potential µeff = µ− 1
2mω

2
trap

(
λ
2

)2
j2. The trapped

gas does not realize a single point of the phase diagram, but rather a cut at
fixed J/U for chemical potential smaller than the initial µ. For U � J it is
possible to create an alternance of insulating and superfluid shells, as shown in
figure 1.2b [JBC+98].

A distinguishing feature of optical lattices is the fact that both J and U
depend on the externally tunable parameter V0 via the dependence of w1,R(r)
on it. If the optical lattice is deep enough to suppress the intersite tunneling, the
limit U � J is achieved. Viceversa, in a more shallow optical lattice, interaction
effects are less pronounced and J � U . The variation of the lattice depth,
V0, can therefore induce a quantum phase transition from superfluid to Mott
insulator. Both phases have been observed; the used measurement techniques
are explained in the next section.

Let us mention that it is also possible to study the limit of a weak optical
lattice, for which the assumption of occupation of only the lowest band is not
true [BBZ03]. Remarkably, it is shown that the Mott insulator can appear also
in this limit, as soon as the number of particles is an integer multiple of the
number of sites. The theoretical model in the limit of weak optical lattice is the
sine-Gordon model [Gia04], which we briefly discuss in chapter 5.

We conclude this section with a brief paragraph on the fermionic case. The
description of fermions in optical lattices is analogous to the bosonic case. In
the limit of atoms confined to the lowest energy band and of only two possible
internal atomic states, briefly denoted as | ↑〉 and | ↓〉, we obtain the Hubbard
model:

Ĥ = −J
∑

<i,j>,σ

(
ĉ†i,σ ĉj,σ +H.c.

)
+ U

∑
i

n̂i,↑n̂i,↓ − µ
∑
i,σ

n̂i,σ (1.17)

The field operators are fermionic and satisfy canonical anticommutation rela-

tions: {ĉi,σ, ĉj,τ} = 0 and
{
ĉi,σ, ĉ

†
j,τ

}
= δσ,τδi,j . The model highlights the fact

that the dominant interaction is still described by a contact pseudopotential,
but only between species with different spin. In the case of atoms with the
same spin, the Pauli exclusion principle forbids s-wave interactions, so that in
the experimentally relevant limit of a dilute and cold gas, the negligence of
interactions between atoms with the same spin is a good approximation.

1.3 Measurement Techniques

In order to characterize the phase transition from Mott-insulator to superfluid,
it is crucial to have access to the quantum correlations of the gas, like 〈â†i âj〉.
As we have seen, the two quantum phases are characterized by two different
scalings, summarized by equations (1.14) and (1.15).
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Figure 1.3: Experimental observation of the quantum phase transition from a
superfluid to a Mott insulator in three -dimensional optical lattices. The im-
ages represent

∫
nTOF(x)dz for V0 equal to (a) 0Er, (b) 3Er, (c) 7Er, (d) 10Er,

(e) 13Er, (f) 14Er, (g) 16Er and (h) 20Er. In (a), the Bose-Einstein conden-
sate shows a peaked momentum distribution. Raising an optical lattice, which
destroys full translational invariance, leads to the creation of secondary peaks
(b)-(e); this is a signature of the superfluid phase. For higher intensities (f)-(h),
the Mott insulating phase sets in and the absence of long range order is reflected
by a featureless momentum distribution. Reproduction from [GME+02].

In this respect, an established measurement technique is the so-called time-
of-flight, which consists in suddenly releasing the gas from the trap [BDZ08]. Af-
ter a fall of time t, usually some ms, the gas is described by a three-dimensional
density distribution nTOF(x) which carries information about the in-trap mo-
mentum distribution. Let us consider the mapping k = mx/(~t), which de-
scribes a ballistic expansion (m is the atomic mass); one obtains:

〈nTOF(x)〉 =
(m
~t

)3

|w̃(k)|2G(k); G(k) =
∑
R,R′

eik·(R−R
′)〈a†RaR′〉; (1.18)

where G(k) is the in-trap momentum distribution and w̃(k) is the Fourier trans-
form of the Wannier wavefunction. This measurement technique has been
used, for example, to distinguish the Mott insulator from the superfluid (see
figure 1.3).

Another possibility for measuring the superfluid-Mott transition, is to look
at the excitation spectrum of the cloud. In reference [GME+02] this quantity is
probed by applying a potential gradient to the system. If the system is gapped,
a small potential gradient is not able to perturb the quantum state and after
the removal of the perturbation it returns to the initial state. Experimental
measurements in the Mott phase clearly identify both the gap and the excitation
energy to the second excited state. Moreover, the superfluid phase shows a
higher sensibility to such external perturbation.

The last years have seen the development of a completely new technique,
called in-situ microscopy, which combines the standard experimental setup with
high-quality lenses, allowing to observe and to actively manipulate the gas with
single-site precision. This tool can also be used to characterize the Mott insula-
tor. In this section we limit the discussion to the description of the measurement
technique, whereas in chapter 5 we elaborate on the relation between the phases
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of the Bose-Hubbard model and the quantities measurable by this setup, i.e. all
the functions of the parity of the number of atoms in each site.

The technique has been developed independently by two research groups and
so far applied only to bosons in one- or two-dimensional optical lattices [BGP+09,
SWE+10]. After the quantum state of interest has been prepared, the lattice
depth is abruptly raised to an extremely high value V0 ∼ 103Er and the gas
is illuminated with high intensity laser beams. This procedure realizes a mea-
surement of the parity of the number of atoms for each site and the initial
many-body state is projected to a Fock state. The experimental sequence does
not perform a measurement of the number of atoms for each site because pairs
of atoms are lost due to inelastic light-induced collisions. The atomic fluores-
cence, i.e. the set of photons absorbed and then spontaneously re-emitted by
the atom, is detected and carries information about the presence of the atom.
Therefore, one can observe either one atom left in the site, which means that
the initial number of atoms was odd, or an empty site, corresponding to an even
initial number. The repetition of this procedure can lead to the experimental
evaluation of the expectation values of operators which are functions of the local
parity.

The described setup can also be used for the manipulation of atoms sitting
in specific lattice sites. Roughly speaking, the imaging apparatus can be used
in the opposite direction to focus a laser beam on a specific site and selectively
modify the internal state of the atom positioned there. This possibility has been
demonstrated experimentally [WES+11].

1.4 Optical Lattices as Quantum Simulators

In this section we list the properties of optical lattices which make them a
promising candidate as an analogue quantum simulator.

• The microscopic theoretical knowledge of optical lattices is detailed. First,
atomic physics is advanced enough to be able to identify and classify the
atomic states which are relevant for these experiments [BJ83]. Second,
the light-atom interaction, which is at the heart of any trapping and ma-
nipulation technique, has been extensively investigated, both theoretically
and experimentally [CTDRG98]. Although the experimental setup always
introduces some forms of uncertainty, it is not exaggerated to state that
given an experiment it is possible to write down the equations of its dy-
namics with a high fidelity.

• Optical lattices can access the many-body strongly-correlated regime. The
paradigmatic example is the experimental study of the quantum phase
transition from the Mott to the superfluid phase [GME+02]. Moreover,
the research community has extensively focussed on the possibility of en-
gineering different many-body Hamiltonians via the extreme versatility of
optical lattices. We discuss these ideas in the next subsection.

• The usual initial state for experiments with optical lattices is a thermal
state with temperature of the order of some nK. Moreover, optical super-
lattices have been successfully exploited for initializing states appearing
less naturally, like: a density wave [TCF+12], a three-dimensional array
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of plaquette resonating valence bond states [NCA+12], and excited states
of a Bose-Hubbard chain [CBP+12].

• Finally, optical lattices allow for high-fidelity experiments, from the ini-
tialization to the final measurement. The fully quantitative comparison
between theory and experiments done in reference [TPG+10] validated
the use of optical lattices as quantum simulators of the three-dimensional
Bose-Hubbard model. A quantum Monte Carlo (QMC) simulation of such
a model is compared to the experimental data for a three-dimensional op-
tical lattice, and the thermal properties of the phase diagram are studied.
This kind of analysis is necessary in order to put experiments accessing
models which cannot be numerically investigated on the most solid ground
and should be further pursued.

On the other side, the study of the effects of noise, inhomogeneities and
other disturbances on the outcome of the quantum simulation has recently
started [HCT+11]. The authors propose the analysis of the effects of disor-
der on a measurable quantity, the two-body correlations, for the Ising model in
a transverse magnetic field. This is a research program which should receive
attention in the future.

At the present stage, an experiment in which an optical lattice addresses
a physical regime theoretically unaccessible is still missing. Some work in this
direction has been carried out in the study of the interplay of disorder with
interactions [GDF+08, DZR+10, DLM+11], but the golden age of optical lattices
as quantum simulators is yet still to come.

1.4.1 Versatility of Optical Lattices

We now discuss the versatility of optical lattices, i.e. we list the parameters
which can be controlled from outside and which make optical lattices an ap-
pealing candidate for an analogue quantum simulator.

• Quantum statistics. Optical lattices have been loaded both with bosons,
fermions, and Bose-Fermi mixtures. This has allowed, for example, the
study of both the Bose-Hubbard and the finite-temperature Hubbard
model [SHW+08, JSG+08].

• Spin and multi-level physics. The study of the ground state of atomic
gases whose internal degrees of freedom, usually called spins, has not been
frozen is one of the present experimental challenges. Whereas condensa-
tion phenomena demonstrate the cooling of the spatial degrees of freedom,
the cooling of the spin degrees of freedom has still not been accomplished.
This prevents, for example, the possibility of studying the spin-order of
the ground state of the Hubbard model. In chapter 4 we will discuss an
idea to study effective three-body interactions via spin physics.

• Lattice geometry and dimensionality. Optical lattices have been realized in
one, two and three spatial dimensions. As argued in section 1.1, different
laser configuration can also lead to non-square lattices. A new technique
exploits the described microscope to project with holographic methods
any lattice geometry on the atomic cloud [BGP+09].
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• Intersite tunneling. The easiest way to change the hopping parameter J
is to vary the depth of the optical lattices (see section 1.2). The need
for the simulation of gases coupled to static gauge fields, e.g. magnetic
fields, has lead to the development of methods which can create, for in-
stance, complex hopping constants. Proposals can be grouped into three
areas: methods implementing laser-assisted tunnelling, methods exploit-
ing a dynamical shaking and methods taking advantage of the orbital
physics of higher lattice bands. We extensively describe these techniques
in section 2.1

• On-site interactions. Feshbach resonances allow the tuning of the scatter-
ing length as, i.e. of the strength of on-site interactions, via application
of external magnetic fields or intense optical fields [CGJT10].

• Long-range interactions. There are some ways, all of them still under
development, to overcome the fact that usual gases display a contact in-
teraction. On one side, there are atoms with strong magnetic dipole mo-
ments, such as 52Cr, which naturally interact with r−3 and which have
been recently loaded in optical lattices [PBM+11, MBH+11]. On the other
one, the experimental community is also working on Rydberg atoms, i.e.
atoms excited to electronic state with a high principal quantum num-
ber [VBR+11], characterized by a strong electric dipole moment.

• Disorder. The construction of bi-chromatic optical lattices with wave-
lengths which are not commensurate creates a quasi-random periodic po-
tential, where the depth of each site is quasi-randomly shifted [GDF+08].
This configuration has been used for the study of the interplay of disorder
and interactions.



Chapter 2

An Optical Superlattice
Scheme

In this chapter, we suggest to use a spin-independent bi-chromatic optical lat-
tice dressed with suitable Raman transitions as a platform for quantum simu-
lations [MRLC10, MBG+12]. We present a concrete proposal to create a three-
dimensional optical lattice trapping a multi-species atomic gas, and to tailor
arbitrary spin-dependent hopping processes. We show how this setup can break
the SU(2) invariance of the hopping rates of the atomic hyperfine states with a
spin-independent lattice, and that a slight complication can even allow for the
realization of hopping processes which modify the atomic hyperfine state. Pos-
sible applications of such a scheme will be discussed in chapters 3 and 4. The
idea was conceived in a discussion with Dr. U. Schneider, whose contribution is
gratefully acknowledged.

This chapter is organized as follows: we start with a brief review of experi-
mental approaches appeared in the literature for realizing non-standard optical
lattices. In section 2.2, we describe qualitatively our proposal. Further analysis
and technical details are given in section 2.3, where we also present some numer-
ical results to support our study. Final remarks on the proposal are presented
in section 2.4.

2.1 Beyond Standard Hopping Processes

After the experimental observation of the controlled Mott insulator - superfluid
phase transition of the Bose-Hubbard model in optical lattices [GME+02], much
effort has been devoted to the development of new ideas and schemes for the
engineering of more exotic models. We briefly review some of the main ideas
appeared in the literature to develop unconventional optical lattices which can
address key-problems of many-body quantum physics, high-energy physics and
statistical mechanics. Because of the amplitude of the subject, a complete
review goes beyond the purpose of this thesis; we concentrate only on non-trivial
hopping processes, selecting some pioneering ideas with a strong experimental
focus.

13
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2.1.1 Laser-Assisted Tunneling

One of the most apparent drawbacks of using cold atoms as quantum simu-
lators is the difficulty of coupling their spatial degrees of freedom to exter-
nal magnetic fields, preventing e.g. the direct simulation of the quantum Hall
physics [Eza00]. It was early pointed out that dressing the optical lattice with
momentum-transferring Raman couplings leads to a complex space-dependent
hopping parameter [JZ03] which corresponds exactly to the discrete version of
the kinetic energy of particles coupled to a magnetic field. The proposal was
recently revisited and adapted to earth-alkaline atoms, as bosonic Yb [GD10].
These works inspired the first experimental observation of a strong staggered
magnetic field in an optical lattice [AAN+11]. Methods for rectifying the mag-
netic fields are discussed in [GD10].

Simulating a magnetic field in optical lattices can be regarded as a special
case of simulation of a background gauge field coupled to the cold gas. Much
effort has been devoted to the generalization of these schemes from the Abelian
case (magnetic field) to non-Abelian ones. Reference [OBS+05] accomplishes
this by considering many internal atomic sublevels. The idea has been further
elaborated in [GSN+10] combining optical potentials and atom chips, where the
simulation of time-reversal invariant topological insulators (Spin-Hall effect) has
suggested.

Recently, the new concept of optical flux lattices has been introduced [Coo11].
A two-level atom is considered and the desired gauge field is engineered via adi-
abatic following of one internal state. The idea, already well known in the
literature [DGJO11], is here specified to atomic clouds dressed with periodic
space-dependent laser fields. Atoms adiabatically move either in space-periodic
potentials (lattices) and experience either an effective magnetic field with a
strong flux density [Coo11], or in a band structure with nontrivial Z2 topologi-
cal order [BC11].

From an historical perspective, the possibility of using laser-assisted tun-
neling has already been envisaged in 2002 in [RDJ02] for a different purpose,
i.e. the study of particle number fractionalization in a one-dimensional optical
lattice.

2.1.2 Dynamical Shaking

The hopping parameter of an optical lattice can also be tuned via dynamical
shaking of the setup. It has been theoretically and experimentally shown that
this technique can lead not only to the suppression of the inter-site tunneling,
but even to the change of sign of the hopping parameter [EWH05, LSC+07].
The shaking of the lattice is expected to create a Floquet quasi-energy spectrum
in which the tunneling matrix element is renormalized to a new value.

The simplicity and versatility of the technique make it especially appeal-
ing for the study of frustrated two-dimensional systems. In triangular lattices,
for instance, its application only along a selected direction produces a lattice
with hopping parameters whose sign depends on the tunnelling direction. The
technique has been successfully exploited in both experiments and theoretical
proposals to study classical and quantum models with highly non-trivial prop-
erties [EHSP+10, SOLT+11].
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Figure 2.1: Optical superlattice potential of equation (2.1) in the two-
dimensional case, with parameters V0 = 10Er and ξ = 1. Left: the potential is
characterized by a square geometry of main minima; in the middle of each link
an intermediate minimum is also present. Right: if the lattice is deep enough,
the spectrum of the system features two energy bands whose Wannier functions
are localized in the main minima and in the secondary minima, as plotted in
the figure. Reproduced from [MBG+12].

2.1.3 Orbital Physics

Finally, optical lattices with atoms populating higher-lattice bands automati-
cally display anisotropies and non-trivial effects in the hopping parameters. This
is essentially due to the orbital degeneracy and to the symmetries of the vari-
ous Wannier wavefunctions. Experiments are now moving the first steps in this
direction, with the first observations of multiorbital superfluidity in different
optical lattices [WOH11, SPLS+12]. It was suggested that this unconventional
properties could be exploited for the study of nearly flatbands with nontrivial
topology [SGKDS11].

2.2 The Setup and the Idea

Let us now discuss in some details the scheme that we propose, which can allow
the realization of non-trivial hopping matrices via laser-assisted methods.

We consider the following atomic three-dimensional optical potential

V (x) = −V0

∑
j∈{1,2,3}

[
cos2(qxj) + ξ cos2(2qxj)

]
, (2.1)

where x = (x1, x2, x3), q = 2π/λL (λL is the wavelength of the laser), and
where V0, ξ > 0 represent the potential amplitudes. The low-energy structure
of this potential is a cubic array of main minima separated by “secondary”
minima located in the middle of each lattice link (see figure 2.1). We note
that additional higher-order minima are also present, but will not play any
role in the phenomena discussed in the following. Due to the specific form
of the potential in equation (2.1), the Hamiltonian can be divided into three
independent terms, each one depending on one of the three couples of conjugate
operators, {xi, pi}i∈1,2,3. Consequently, the Bloch functions of the n-th band
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Figure 2.2: Sketch of the atomic structure of 40K: from the electronic structure
(L is the electronic angular momentum) to the fine structure (J = L+S, where
S is the electronic spin) to the hyperfine structure (F = J + I, where I is the
nuclear spin). The latter is drawn in the specific case of an external magnetic
field present. The last box shows the optical spin-independent potential which
traps equally all the hyperfine levels. Reproduced from [MBG+12].

with energy En(p), can be written as ψn,p(x) =
∏
j ψn,pj (xj). In order to

discuss the effects occurring on the scale of one lattice site, Wannier functions
can be introduced for each band (see also section 1.2):

wn,R(x) =
1

V

∫
e−iR·pψn,p(x)dp = wn,R1

(x1)wn,R2
(x2)wn,R3

(x3).

This setup can be used for the simulation of a lattice field theory, where
the field operators are identified with the atomic creation and annihilation op-
erators written in the Wannier basis and restricted to the lowest energy band.
These states are localized in the main minima of the lattice. Conversely, higher
energy bands provide auxiliary levels that shall be used as a resource to tailor
the tunneling processes. The main result of this chapter is the claim that a
complicated though not unfeasible combination of current technologies can lead
to the realization of the following Hamiltonian:

Ĥsys =
∑
rν

∑
ττ ′

tν â
†
r+ντ ′ [Uν ]τ ′τ ârτ +

∑
r

∑
ττ ′

Ω â†rτ ′ [Λ]τ ′τ ârτ + H.c. (2.2)

where â
(†)
r,τ are fermionic operators satisfying canonical anticommutation rela-

tions. Here, we are considering a multi-species fermionic scenario with many

hyperfine levels of the same atom: â
(†)
rτ annihilates (creates) one fermion with

hyperfine spin τ localized in the main minima of the superlattice at r = m1a1 +
m2a2 + m3a3, where mj ∈ {1...Lj}, Lj stands for the number of lattice sites
along the xj axis, and aj is the lattice spacing in the j-th direction. The param-
eter tν stands for the strength of the laser-assisted tunneling in the ν̂ direction,
with ν ∈ {a1,a2,a3}, which shall be described below. The operators Uν de-
scribe the tunneling from r to r + ν, and are a common feature in lattice gauge
theories. We have also included an on-site Raman term Λ, of strength Ω, that
induces a certain transition between the hyperfine states. In this chapter we use
Gaussian units and ~ = 1.

Let us note that the control of the homogeneous tunneling for a single-
species atomic gas is straightforward, and would not even require the super-
lattice (ξ = 0) [KMS+05]. Moving to a many-species case, one runs into the



2.2 The Setup and the Idea 17

Figure 2.3: Sketch of a laser-assisted tunneling induced in the presence of a
superlattice. Two physical hyperfine states belonging to the F = 9/2 manifold
are connected via Raman couplings with the intermediate level of an auxiliary
state belonging to the F = 7/2 manifold. If the coupling is detuned enough,
the F = 7/2 level can be adiabatically eliminated: no population is left there
and an effective coupling is engineered between neighboring sites. Left: scheme
for a spin-preserving (i.e. diagonal) hopping. Right: scheme for a spin-flipping
hopping. Reproduced from [MBG+12].

problem that a general hopping matrix also entails terms flipping the atomic
hyperfine spin (simply referred as spin in the following), which are not easily
engineered. Here, we propose to realize such couplings by combining Raman
transfers and a bi-chromatic superlattice (ξ 6= 0 in equation (2.1)). The pro-
posal can be applied to all the alkalis notwithstanding their bosonic or fermionic
nature. In the following, however, we shall focus in the fermionic scenario, which
is best explained with the following practical example.

Let us consider an ultra-cold cloud of non-interacting 40K atoms in the
presence of a magnetic field of intensity B. Such field lifts the spin degeneracy
within the two atomic hyperfine manifolds of the ground state, F = 9/2 and
F = 7/2, according to the following relations (see also figure 2.2):

E9/2,mF = +gF µB B mF E7/2,mF = ∆HF − gF µB B mF (2.3)

where mF is the projection of the hyperfine spin along the quantization axis
defined by the magnetic field, µB is the Bohr magneton, gF is the hyperfine
Landé Factor, and ∆HF stands for the hyperfine splitting. These hyperfine
levels are all trapped into the same spin-independent optical potential (2.1).
Depending on the lattice theory we want to simulate, we select a subset of
these hyperfine levels described theoretically by creation-annihilation operators
in the lattice sites. We then identify such fields with the components of the
lattice field theory to be simulated. This leads us to divide the hyperfine levels
into two subsets: the subset of “physically meaningful” states, which belong to
the hyperfine manifold F = 9/2, and the usually larger subset of auxiliary levels
that shall be used to assist the tunneling and create the desired hopping matrix.

Regarding the hopping matrix in equation (2.2), we address each of its ma-
trix elements [Uν ]τ ′τ separately. Given a matrix element – i.e. identified the
initial and final hyperfine levels τ and τ ′ – we choose an auxiliary level be-
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λL ∼ 738 nm Er = h2

2mλL
9.17 kHz

V0 10 Er ξ 1
〈E1〉 −13.909 ∗ 3 Er 〈E2〉 −13.909 ∗ 2− 6.364 Er
∆E1 0.024 Er ∆E2 0.995 Er
∆E1 216.7 Hz ∆E2 9120.1 Hz
∆HF 1.286 GHz gF µB 0.22 ∗ 1.34 MHz/G

〈E2 − E1〉 69.160 kHz Staggering 10 kHz

Table 2.1: Numerical values of a possible three-dimensional optical bi-chromatic
superlattice (2.1) for 40K used in section 2.3 for numerical simulations. We
characterize the properties of the two energy bands, which exhibit Wannier
functions localized respectively in the main and secondary minima, by listing
the energy expectation value 〈Ei〉 of the most localized Wannier function and the
bandwidth ∆Ei. Finally, we argue that atoms trapped in optical lattices show
a hierarchy of typical energies which can be actively exploited for engineering
non-trivial hopping processes.

longing to the hyperfine manifold F = 7/2 trapped in the middle of the link.
These levels provide intermediate “bus” states that shall be used as a resource
to assist the tunneling as follows. The couplings between the atoms in the
main sites, R1, and the “bus” states, R2, are realized via optical two-photon
Raman processes transferring a net momentum qt. They have a mathematical
expression proportional to the overlap integral of the initial and final Wan-
nier functions:

∫
w∗n2,R2

(x)eiqt·xwn1,R1
(x)dx. This integral is not zero because

of the term eiqt·x, which is of course relevant only if 2π/|qt| is of the order
of the lattice spacing. Since this regime cannot be achieved with microwave
transitions, one is motivated to employ two-photon Raman transitions. It is
possible to eliminate adiabatically the intermediate level and obtain an effective
four-photon coupling between neighboring sites (see figure 2.3). We stress that
different matrix elements can be engineered at the same time thanks to the
magnetic-field splitting of the hyperfine levels (2.3): the involved atomic tran-
sitions become non-degenerate and can be individually addressed with different
Raman couplings. Furthermore, the use of coherent laser light for the Raman
transitions entails the additional advantage of being able to deal with complex
phases, and thus to realize complex gauge structures at will. The realization of
the non-diagonal matrix elements requires the lattice to be slightly staggered,
a technique discussed also in reference [GD10]. The on-site term Λ in equa-
tion (2.2) can be performed with technology based on microwave transitions,
or Raman transitions carrying negligible momentum. Furthermore, these terms
can also be exploited to correct spurious on-site couplings which may be induced
by the laser scheme. Summarizing, this proposal tries to exploit a hierarchy of
energies characterizing atomic gases in optical lattices in order to assist the
tunneling between neighboring sites with controlled adiabatic eliminations (see
table 2.1).

We stress here that the proposal does not exploit any selection rule on the
polarization properties of the light, but rather relies only on energy-based se-
lection rules, i.e. on the detuned atomic transitions induced by the magnetic
field. Even though in low-dimensional setups the specific experimental imple-
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mentation could benefit from polarization selection rules, they are not necessary
and there is no fundamental limitation to the extension of the setup to more
dimensions.

2.3 Realization of Spin-Dependent Hopping Pro-
cesses

In this technical section, we theoretically and numerically confirm the qualitative
scheme presented above. We study two simple but important cases: the real-
ization of diagonal and non-diagonal hopping matrices for a two-species atomic
gas. These can be considered as the main building blocks needed to realize any
tunneling process even in situations with more than two atomic species.

2.3.1 Coupling Between Different Hyperfine Manifolds

We start discussing the explicit expression of the coupling realised with an
optical Raman transition between two different hyperfine levels of the ground
state L = 0 via elimination of the manifold of excited states L = 1, where L is the
electronic angular momentum. Atomic levels are addressed with the notation
|L,α, k〉, where α labels the hyperfine degrees of freedom (see also figure 2.2 for
some insights on the internal structure of 40K) and k are the quantum numbers
of the center-of-mass wavefunction. The Raman coupling between two states
|0αk〉 and |0α′ k′〉 is:

Ω̃α′k′;αk(t) = −1

2

∑
|1 β q〉

〈k′|e−ip2·x|q〉〈q|eip1·x|k〉 ·

· c∗2α′β ‖µ‖∗2 E∗2 E1 ‖µ‖1 c1αβ · e−i(ω1−ω2)t ·

·
(

1

E1βq − E0αk − ~ω1
+

1

E1βq − E0α′k′ − ~ω2

)
(2.4)

where ELαk is the energy of the level |L,α, k〉 and ωi and pi are the energy and
momentum of the i-th laser. The coupling realized by the i-th laser between the
internal atomic states |0α〉 and |1β〉 is described by ‖µ‖i, Ei and ciαβ according
to the notation of reference [GWO00]. The sum over the excited states is limited
to the first excited manifold because we consider lasers far-detuned from higher
excited levels. In the case of a spin-independent lattice, lasers can be detuned
from the first excited manifold L = 1 of even some tens of THz: in this case the
expression in equation (2.4) can be simplified. Indeed, the energy differences
at the denominators depend only slightly on the internal structure of the levels
(they can differ at most for some GHz): once E1βq −E0α′k′ is substituted with
the 0-th order energy difference between excited and ground states ∆E10, we
can write:
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Ω̃α′k′;αk(t) = −1

2

(
〈k′|e−i(p2−p1)·x|k〉

∆E10 − ~ω1
+
〈k′|e−i(p2−p1)·x|k〉

∆E10 − ~ω2

)
·

·
∑
β

c∗2α′β ‖µ‖∗2 E∗2 E1 ‖µ‖1 c1αβ e−i(ω1−ω2)t =

= Sk′k Ωα′α e
−iωt (2.5)

This expression clearly factorizes the following contributions:

• the time-dependence of the effective coupling and its effective frequency,
which is the difference between the frequencies of the two lasers ω =
ω1 − ω2.

• The dependence on the center-of-mass degrees of freedom:

Sk′k = 〈k′|e−i(p2−p1)·x|k〉,

where p1 and p2 are the momenta of the two lasers. The very simplified
expression for the center-of-mass part of the coupling Sk′k comes from the
substitution of

∑
q |q〉〈q| with the identity on the center-of-mass Hilbert

space.

• The dependence on the initial and final internal states and on the polar-
ization properties of light, Ωα′α, which is a function of the dipole matrix
elements between the initial (final) state and the excited levels.

Next, we specify (2.5) to the superlattice setup of section 2.2, i.e. we will
consider Raman transitions in presence of lattices characterized by a Wannier
function trapped in the middle of each link.

2.3.2 Developing an Effective “6-Level Model”

Let us address the simulation a theory characterized by two-component fields.
Following the discussion of section 2.2, we take two states of the F = 9/2
manifold of 40K, for instance |9/2; mF = 7/2〉 and |9/2; mF = 9/2〉, and map
them into the theory to be simulated. Here and in the following subsections,
we discuss the laser-assisted hopping in the diagonal case (mF preserved while
hopping) and non-diagonal case (mF flipped while hopping).

For the diagonal case, we develop the “6-level model” depicted in figure 2.4.
We consider one physically meaningful state, say |F = 9/2,mF = 9/2〉, and one
auxiliary state, say |F = 7/2,mF = 7/2〉. Moreover, we consider different Wan-
nier states for each of them, two localized in main sites (k = 1 and 3) and
one in the intermediate link (k = 2). The model includes the effects of un-
desired couplings and additional levels, and its limitations, together with the
approximations on which it relies, will be discussed at the end of the paragraph.
We can identify the states with the short notation |F, k〉 rather than with the
longer previous one |0αk〉. Below, we give an analytical estimate of the popu-
lation transfer rate, whereas in the next subsections we present the numerical
time-evolution for physically interesting cases.
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Figure 2.4: The “6-level model” used to model the spin-preserving (diagonal)
hopping of F = 9/2,mF = 9/2. The auxiliary state F = 7/2,mF = 7/2 has
been chosen. The center-of-mass quantum number is k. Energies are not to
scale; the orders of magnitude of the parameters are the following: d ∼ 10÷100
kHz, δ ∼ 100 ÷ 300 kHz and ∆ ∼ 1 ÷ 10 GHz. We propose to adiabatically
eliminate the upper manifold and to study the dynamics of the lowest one with
an effective Hamiltonian Hpert (2.10). Reproduced from [MBG+12].

The model is parametrized by six relevant couplings between the differ-
ent Wannier functions Sk′k (see figure 2.4), whose properties are listed be-
low. We exploit the existence of theorems which assure the possibility, in our
case, of considering three real and exponentially localized Wannier functions
wj(x), j ∈ {1, 2, 3} [Koh59]. We write the parameters Sk′k factorizing out the
space dependence of the coupling eiqt·xj , where xj is the position of the point
around which the Wannier function wj(x) is localized,

Sk′k = eiqt·xk
∫
w∗k′(x− xk′ + xk)eiqt·xwk(x)dx; (2.6)

S1,1 = S3,3 6= S2,2; S1,3, S3,1 ∼ 0. (2.7)

The parameters S1,1 and S2,2 describe two on-site couplings, whereas S1,2 is
the coupling between a main site and an intermediately trapped state (see fig-
ure 2.4). The last relation states that couplings between neighboring main sites
are negligible. The relation between the other four overlap factors depends on
the particular experimental situation. In the simplest case of a single Raman
transition inducing all the couplings, we get

S1,2 = S2,1 = e2iqt·x1eiqt·(x3−x1)S∗3,2 = e2iqt·x1eiqt·(x3−x1)S∗2,3. (2.8)

In order to make this scheme simpler, we assume qt = 2qL, and thus eiqt·(x2−x1) =
1. As we will argue below, transferring a momentum which does not fulfill this
requirement is not a problem since the resulting phase can be gauged away.
The phase 2qt · x1 can also be put to zero for the moment, since its role only
becomes important when one needs to give a phase to different matrix ele-
ments. In the following, we will also consider situations where the coupling
between the lattice sites 2 and 3 could be induced by lasers propagating in
the opposite direction due to staggering of the second site, so that one can as-
sume S1,2 = S2,1 = S3,2 = S2,3. Taking these considerations into account, the
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Hamiltonian reads as follows (see figure 2.4 for the definitions of δ, ∆ and ω):

H = d |9/2, 2〉〈9/2, 2|+ (∆ + d)|7/2, 2〉〈7/2, 2|+
+∆ (|7/2, 1〉〈7/2, 1|+ |7/2, 3〉〈7/2, 3|) +

+Ωe−iωt [S1,2 (|7/2, 2〉〈9/2, 1|+ |7/2, 1〉〈9/2, 2|) +

+ S∗1,2 (|7/2, 2〉〈9/2, 3|+ |7/2, 3〉〈9/2, 2|) +

+ S1,1 (|7/2, 1〉〈9/2, 1|+ |7/2, 3〉〈9/2, 3|) +

+ S2,2 |7/2, 2〉〈9/2, 2| ] + H.c. (2.9)

Once we apply the unitary transformation

Γ(t) = exp[i d (|9/2, 2〉〈9/2, 2|+ |7/2, 2〉〈7/2, 2|) t],

the three levels |9/2, k〉 become degenerate. In case the three inequalities
|Si,jΩ|/(δ − d)� 1 are fulfilled, it is possible to use second-order perturbation
theory in order to develop an effective Hamiltonian describing the dynamics
within the sub-manifold we are interested in, namely

Hpert/Ω
2 = −

(
|S1,1|2

δ − d
+
|S1,2|2

δ

)
[|9/2, 1〉〈9/2, 1|+ |9/2, 3〉〈9/2, 3|] +

−
(
|S2,2|2

δ − d
+ 2
|S1,2|2

δ − 2d

)
|9/2, 2〉〈9/2, 2|+

−
S 2

1,2

δ
|9/2, 3〉〈9/2, 1| + H.c.+

−
[
S∗1,2 S1,1

2

(
1

δ − d
+

1

δ − 2d

)
eidt +

S∗2,2 S1,2

2

(
1

δ − d
+

1

δ

)
eidt
]
·

· [|9/2, 2〉〈9/2, 1|+ |9/2, 2〉〈9/2, 3|] + H.c. (2.10)

Remarkably enough, this Hamiltonian leads to the desired transfer rate of pop-
ulation from level |9/2, 1〉 to |9/2, 3〉, and viceversa. The main contribution is
the direct coupling

− J (1)
13 e

i2φ = −|S1,2|2Ω2

δ
ei2φ; φ = argS1,2. (2.11)

A second contribution, which in our system will prove to be not-negligible, comes
from a sort of “adiabatic elimination” of the level |9/2, 2〉, namely

− J (2)
13 = − 〈9/2, 3|Hpert|9/2, 2〉 〈9/2, 2|Hpert|9/2, 1〉

〈9/2, 2|Hpert|9/2, 2〉 − 〈9/2, 1|Hpert|9/2, 1〉+ d
. (2.12)

Accordingly, we have derived the desired effective Hamiltonian where the Raman
lasers assist the hopping of the physically meaningful F = 9/2 levels, after the
auxiliary F = 7/2 bus states have been adiabatically eliminated. In the following
sections, we shall address the range of validity of the approximations leading to
this Hamiltonian, and compare it with the exact numerical investigation of the
initial Hamiltonian (2.9).

We want to stress here that even if the integrals in the definition (2.6) of
the Skk′ can be complex numbers, this does not have any physical influence on
this proposal. Indeed, even if the effective coupling between neighboring main
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sites −J was complex, its spatially uniform phase can be gauged away with a
space-dependent unitary transformation (even in the case of periodic boundary
conditions). Conversely, the non-uniform phase coming from the eiqt·xk factor,
which arises when qt is not parallel to the direction of the hopping it assists,
cannot be gauged away even in presence of open boundary conditions. Such a
phase, which is not related to the fact that the integrals in (2.6) are complex, can
be used to simulate an external uniform magnetic field [JZ03, GD10]. Finally,
we underline that in our setup, where the tunneling along each axis is induced by
lasers propagating parallel to the axis itself, both complex phases can be gauged
away. In order to simulate a magnetic field, therefore, one should move slightly
away from this configuration and engineer a Raman coupling whose effective
transmitted momentum does not run parallel to the links of the lattice.

2.3.3 Range of Validity of the “6-Level Model”

The presented “6-level model” strongly relies on two approximations:

1. considering the bands of the lattice as being flat;

2. neglecting delocalized higher-energy free states.

If these approximations are not justified for a given experimental configuration,
spurious population transfers to next-neighboring sites would arise.

The approximation (1) is required to fulfill the core idea of the proposal,
namely the adiabatic elimination of the intermediate level. This is demonstrated
with a model which considers only a subset of the Hilbert space spanned by the
real eigenstates of the Hamiltonian (Bloch functions), considering just three of
their linear combinations (the Wannier functions wk=1(x), w2(x) and w3(x)).
This is equivalent to approximating the dispersion laws of the band as being
flat, neglecting thus possible curvature effects, and is legitimated as long as the
width of the band is much smaller than the detuning of the transition δ − d.
In case the degeneracy of the Bloch functions cannot be assumed, all the Bloch
functions should be considered in order to quantitatively estimate the spurious
effects cited above. In general, this issue sets a trade-off for the relative depth
ξ of the secondary lattice in (2.1): on one hand, a shallow lattice (ξ < 1) is
desirable because the Wannier function of the intermediate minimum wk=2(x) is
not strongly localized and laser-induced transitions are favored (|S1,2| ∼ |S1,1|).
On the other hand, the more the wavefunction is delocalized, the more the band
bends, eventually becoming parabolic at k = 0 with a bandwidth comparable
to the detuning. In our numerical simulations we consider ξ = 1, which is a
reasonable middle-way.

Regarding the issue (2), higher-energy bands could become important in the
presence of intense Raman transitions Ω and large detunings δ−d, which couple
them to the lowest-band states. The presented analytical and numerical studies
do not take into account these effects since they consider only three Wannier
functions and effectively only two bands, even though including bands with
localized Wannier functions would just imply a renormalization of the numer-
ical coefficients Sk,k′ . A different problem is the case of high-energy strongly
parabolic bands, whose Wannier functions are not strongly localized. The ef-
fect of such states is not considered by our model, which is that of spreading
population among many next- and further-neighboring main sites. From an
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Figure 2.5: Left: sketch of the scheme proposed for the realization of a diagonal
hopping matrix (Energies are not to scale). Raman coupling 1 (2) connects
the |F = 9/2,mF = 9/2〉 (|F = 9/2,mF = 7/2〉) states to their auxiliary state.
Detuning allows independent control of the hopping rates. Right: exact time-
evolution of the “6-levels model” (2.9), showing the coherent population transfer
between sites 1 and 3 of the spin state |F = 9/2,mF = 9/2〉. The parameters
used are listed in table 2.2. The inset shows the maximal populations of the six
considered levels labeled |F, k〉 as in (2.9) and shows that only a small fraction
of the population is lost in auxiliary levels. Reproduced from [MBG+12].

experimental point of view, we expect a trade-off to arise between a large de-
tuning regime, allowing powerful lasers and strong effective couplings with noisy
spurious population transfers, and a small detuning one, with clean but small
couplings.

2.3.4 Diagonal Hopping Matrix

We now explicitly study the possibility of realizing a diagonal tunneling matrix.
We numerically simulate the Hamiltonian (2.9) with a simple Runge-Kutta al-
gorithm. We did not include in the simulation hyperfine states different from
|F = 9/2,mF = 9/2〉 and |F = 7/2,mF = 7/2〉 because they are strongly de-
tuned from those we are considering. However, for completeness, we include
the presence of a second Raman coupling which would be needed to induce the
hopping of |F = 9/2; mF = 7/2〉 and check that it is unimportant.

We show in figure 2.5 the numerical results. The realistic parameters used
in this simulation are listed in table 2.2. The population is coherently trans-
ferred between two neighboring levels and only a negligible fraction is lost in
auxiliary states. Regarding the validity of the “6-levels model”, for the lattice
considered here, the bandwidths of the two bands are respectively 0.2 kHz and
9.1 kHz, which should be compared with the considered detuning of 300 kHz.
In these and the following simulations, the employed numerical values have only
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Level: |F,mF , k〉 Energy Parameters
|9/2; 9/2; 1〉 gFµBBmF ∆HF 1.285 GHz
|9/2; 9/2; 2〉 gFµBBmF + d µFB 40 MHz
|9/2; 9/2; 3〉 gFµBBmF d 69.160 kHz
|7/2; 7/2; 1〉 ∆HF − gFµBBmF S1,1 0.46
|7/2; 7/2; 2〉 ∆HF − gFµBBmF + d S1,2 0.07 + i0.13
|7/2; 7/2; 3〉 ∆HF − gFµBBmF S2,2 0.16

# Raman Ω ω
1 49.5 kHz E|7/2;7/2;2〉 − E|9/2;9/2;1〉 − 300 kHz
2 49.5 kHz E|7/2;5/2;2〉 − E|9/2;7/2;2〉 − 300 kHz

J
(1)
13 J

(2)
13 Estimated T Numerical T

176 Hz 17 Hz 0.018 s 0.017 s

Table 2.2: Parameters used for the numerical simulation of the diagonal hopping
in subsection 2.3.4. We list the numerical values of all the main parameters
characterizing the atomic transitions and the Raman couplings. The first Raman
coupling induces the hopping of the F = 9/2, mF = 9/2 whereas the second
one addresses the F = 9/2, mF = 7/2 (such states were however not considered
in the simulation).

Level: |F,mF , k〉 Energy Parameters
|9/2; 9/2; 1〉, |9/2; 7/2; 1〉 gFµBBmF ∆HF 1.285 GHz
|9/2; 9/2; 2〉, |9/2; 7/2; 2〉 gFµBBmF + d µFB 40 MHz
|9/2; 9/2; 3〉, |9/2; 7/2; 3〉 gFµBBmF + 15 kHz d 69.160 kHz
|7/2; 7/2; 1〉, |7/2; 5/2; 1〉 ∆HF − gFµBBmF S1,1 0.46
|7/2; 7/2; 2〉, |7/2; 5/2; 1〉 ∆HF − gFµBBmF + d S1,2 0.07 + i0.13
|7/2; 7/2; 3〉, |7/2; 5/2; 1〉 ∆HF − gFµBBmF + 15 kHz S2,2 0.16

# Raman Ω ω
1 49.5 kHz ∼ E|7/2;7/2;2〉 − E|9/2;9/2;1〉 − 300 kHz
2 49.5 kHz ∼ E|7/2;5/2;2〉 − E|9/2;7/2;1〉 − 300 kHz
3 49.5 kHz ∼ E|7/2;7/2;2〉 − E|9/2;7/2;3〉 − 300 kHz

Table 2.3: Parameters used for the numerical simulation of the non-diagonal
hopping in subsection 2.3.5. We list the numerical values of the main param-
eters characterizing atomic transitions and Raman couplings. The reported
frequencies of the Raman couplings are approximate because some additional
tuning is needed to compensate the different Stark shift for states with k = 1
and k = 3 arising due to Raman dressing in presence of staggering. Perfect
matching the atomic transition becomes difficult and imperfections are respon-
sible for the not clean population transfer in figure 2.7. Larger staggering values
would help.
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Figure 2.6: Left: the realization of a spin-flipping hopping matrix suffers from
the problem that undesired on-site spin-flipping processes could spontaneously
arise. Right: the solution to this problem comes from the introduction of a
staggered lattice. The on-site spin-flipping process is detuned from the atomic
transition and its contribution is negligible with respect to the hopping process,
which is resonant with the atomic transition. Reproduced from [MBG+12].

an illustrative purpose and other regimes could be considered.
To estimate for the accuracy of the assisted hopping matrix, we compute the

fidelity of generating a particular target spin state at site k = 3 in the internal
state {Ft,mF,t}, i.e. |ψt〉 = |3, Ft,mF,t〉, for an atom that is initially populating
the site k = 1 in the internal state {Fi,mF,i}, i.e. |ψi〉|1, Fi,mF,i〉. Such fidelity
can be quantified defining

F2 = max
τ
|〈ψt|ψ(τ)〉|2, (2.13)

with |ψ(τ)〉 the time evolved state, which is the amplitude of the oscillations
between the sites between which the hopping acts. For the presented simulation
the fidelity of the stimulated hopping process is F2 > 97%. Therefore, these
results confirm the plausibility of our scheme to induce a laser-assisted tunneling
between the atoms sitting in the main minima of the optical lattice. To make
the simulation toolbox reacher, we now address the possibility to control a spin-
dependent hopping process.

2.3.5 Non-Diagonal Hopping Matrix

In order to study the realization of the non-diagonal hopping matrix, we consider
an enlarged 12-levels model, which is a generalization of the previous one taking
into account more hyperfine states. We want now to transfer population between
the manifolds |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉 and consider as
auxiliary states |F = 7/2,mF = 7/2〉 and |F = 7/2,mF = 5/2〉.

A big issue which must be solved to engineer such a hopping is the appear-
ance of undesired spin-flipping terms induced by the laser (see figure 2.6). In
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Figure 2.7: Left: sketch of the scheme proposed for the realization of a non-
diagonal hopping matrix (Energies are not to scale). Raman couplings 1, 2 and
3 connect the |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉 states to the aux-
iliary states. Detuning allows independent control of the hopping rates. Right:
exact time-evolution of the “12-levels model” introduced in subsection 2.3.5 and
generalizing (2.9). We show the coherent population transfer between sites 1
and 3 of the spin state |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉. The pa-
rameters used are listed in table 2.2. The inset shows the maximal populations
of the twelve considered levels labeled |F,mF , k〉 and shows that only a fraction
of the population is lost in auxiliary levels. Reproduced from [MBG+12].

this paper we consider the possibility of staggering the lattice with an additional
optical field, in order to lift the degeneracy between the different sites of the
optical lattice, in the same fashion of [GD10]. Such a staggering can be done
also in three dimensions since the cubic lattice is bipartite, and we consider
staggering values of 10− 15 kHz.

Figure 2.7 sketches the experimental scheme we have in mind and shows
the exact time evolution of the population transfer between the two levels of
F = 9/2 in two neighboring sites. Interestingly enough, we show a flip of the
Zeeman spin during the tunneling process, and thus obtain the promised spin-
dependent hopping matrix. The parameters of the simulation can be found
in table 2.3. The fidelity of the simulated hopping process is F2 > 88%. A
meaningful estimate is made here difficult by the fast oscillations appearing on
top of the slow Rabi oscillations; we give here a lower bound, given by the lower
envelope of the curve.

In comparison with figure 2.5, the Rabi oscillations of figure 2.7 present
additional fast oscillations of small amplitude; and also do not reach perfect
state transfer. The reason can be found in the inset of figure 2.7, which
shows that a fraction of the population has been transferred to the states
|F = 9/2;mF = 7/2; 1〉 and |F = 9/2; 9/2; 3〉. This is the result of the on-site
spin-flipping transitions which have to be avoided using the lattice staggering.
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The fact that they are not completely suppressed means that the simulation
uses parameters which are not optimal; in particular, the system would benefit
from larger staggering values. Finally, we also mention that the lattice stag-
gering introduces an asymmetry between the two sites. As a consequence, the
different ac-Stark shifts of the levels with k = 1 and k = 3 due to the Raman
beams must be accounted when selecting the laser frequencies. We note that
these corrections turn out to be crucial for achieving an optimal population
transfer.

We have demonstrated that the Raman-assisted tunneling scheme leads to
both diagonal and non-diagonal tunneling events. Note that the achieved fideli-
ties above F2 > 88% highlight the accuracy of our scheme, and show that only
energy-based selection rules, together with lattice staggering, suffice to allow
the desired tunneling.

2.4 From a Spin-Dependent Hopping to a Quan-
tum Simulator

In the previous section, we discussed how the superlattice geometry could be
used to create non-trivial hopping processes on each link. Here we want to
assemble these ingredients and discuss how to use them to engineer a quantum
simulator in arbitrary dimensions.

First of all, we stress that the lasers needed to engineer the hopping along
one direction must transfer momentum along that same direction (see equa-
tion (2.7)). Therefore, just by controlling the beam propagation directions, we
can tailor different tunneling processes along each axis. This is an important
feature which will be largely exploited in the proposals listed in chapter 3 (see
for example tables 3.1 and 3.3, which list the different hopping matrices that
must be engineered for each particular model of interest). This kind of direction-
ality selection rule is also responsible for avoiding the population of higher-order
minima which do not lie on the edges of the unit lattice cell. Since they are
not connected to the main minima by a line parallel to a Cartesian axis, we do
not consider any momentum transfer along such direction, and thus the formal
orthogonality of the Wannier functions localized in those minima is never lifted.

Due to the very general formulation of the superlattice potential, the setup is
well-suited also to work in two and one dimensions. Moreover in one dimension
it is possible to use polarization selection rules to selectively couple different
atomic levels. In order to favor the experimental realization of this setup, it
is important to characterize the most interesting simulatable one-dimensional
systems, where the presence of more symmetries can lower the experimental
intricacies. We partially address this question in chapter 3, where we argue that
several one-dimensional topological insulators can be realized. In a three- or two-
dimensional case, only energy-based selection rules are reliable; the discussion in
section 2.3 already showed that these are enough. Let us stress that if the spin
quantization axis B̂, given by the external magnetic field, is not chosen along
a highly symmetric axis of the lattice, even a Raman coupling polarized with
respect to its propagation axis, i.e. one of the axes of the lattice, can contain all
the polarizations in the basis of B̂. As sketched in figure 2.8, the polarization
matching the addressed transition will drive it whereas the other ones, being
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Figure 2.8: The scheme does not rely on any polarization selection rule and
therefore does not face any fundamental problem once considered in two and
three dimensions. If the Raman coupling is not polarized with respect to the
quantization axis of the hyperfine levels, all the polarizations are present, even
if with different intensities. The first and second Raman couplings drive there-
fore an effective population transfer between two states with different hyperfine
spin even without engineering polarized couplings; energy detuning is enough.
Reproduced from [MBG+12].

detuned, will have negligible effect.

Unfortunately, energy-based selection rules do not prevent, in the case of
spin-flipping hopping rates, spurious on-site spin-flipping couplings. We pro-
posed to solve this issue by staggering the optical lattice, i.e. lifting the de-
generacy of the lattice sites of some tens of kHz (see also the discussion in
reference [GD10]). One should also mention that the diagonal hopping matrix
can still be engineered in presence of such staggering, with the only additional
issue of using two Raman couplings (as in the non-diagonal case) to match the
energy difference between sites.

Regarding the form of the staggering potential, we propose to use a separa-
ble one: Vst1(x) = V (x) − V2

∑
i cos2

(
qxi
2

)
. The separability of the potential

Vst1 allows us to apply the developed theory and in particular the directionality
selection rule. The absolute value of the energy differences between neighbor-
ing sites is ∼ V2, which is what we studied in subsection 2.3.5. A calcula-
tion done using equation (2.6) shows that given the propagation direction of
the Raman couplings, the effective hopping does not depend on whether the
initial site was the staggered one or not. Alternatively, we also considered
explicitly the case of a two-dimensional lattice staggered by a non-separable
potential: Vst2(x) = V (x) − V2 cos2

(
qx1+qx2+qx3

2

)
, which may be of some ex-

perimental relevance. The corresponding two- and three-dimensional Wannier
functions are not anymore a product of one-dimensional ones and a Raman
coupling can induce hopping in the direction transverse to its propagation. We
computed numerically the band-structure and Bloch functions of the staggered
two-dimensional system for the proposed lattice parameters. The wavefunctions
differ from those of the case V2 = 0.0 by less than 1% of the averaged maxima of
the wavefunctions. This leads us to the conclusion that they can be nicely ap-
proximated by product wavefunctions, for which the directionality selection rule
applies. Spurious couplings in the orthogonal directions introduce noise which
is negligible with respect to the fidelity of the non-diagonal hopping discussed
in section 2.3.5.

Each of the matrix elements of the hopping matrix is realized via an effective
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four-photon process. This means that the spin of the atom can be flipped
of at most |∆mF | = 4: a careful analysis is needed in case one is interested
in simulating a theory with more than 4 fields, because some hopping matrix
elements might be not engineerable.

Finally, the description given in this proposal is essentially at the single-
particle level where no many-body effects have been used. As a consequence,
the proposal works both for bosons and fermions.

Before concluding, we would like to mention some possible technical issues
which should be addressed before running an experiment. First, in the ab-
sence of an efficient taming of the atomic interactions, which has been assumed
through the whole chapter, the gas could be collisionally unstable; spin exchange
and dipolar relaxation could indeed populate non-physical states or even lead to
losses. A quantification of such effects strongly depends on the chosen atomic
system and goes therefore beyond the scope of this chapter. Such an estimate
would also identify the regime of controlled interactions in which the quantum
simulator would explore interacting relativistic field theories and interacting
topological insulators (chapter 3). We leave this topic for future work.

Second, in the previous sections the possibility of realizing the needed Raman
coupling has been always assumed, this technique being currently developed in
cold-atom laboratories. We mention here the lifetime issue which one would
face in presence of transitions which are not enough detuned from the excited
states. This issue also requires accurate system-dependent quantification before
setting up an experiment and goes beyond the scope of this thesis.

* * *

This concludes the description of the optical superlattice proposal. We have
provided the relevant results supporting the initial claim that it is indeed pos-
sible to realize a system whose low-energy structure is described by Hamilto-
nian (2.2). In the next two chapters we will discuss some possible applications
of the system.



Chapter 3

Non-Interacting Relativistic
Theories and Topological
Insulators

In this chapter we discuss some applications of the optical superlattice scheme
presented in chapter 2 as a quantum simulator [BMR+10, MBG+12]. In partic-
ular, we focus on non-interacting lattice field theories for relativistic fermions
[Kog83] and topological insulators [HK10, QZ11].

The task of an analog quantum simulator is to engineer a system described
by an effective Hamiltonian Ĥeff that reproduces faithfully the properties of
the model to be simulated. In our case, this model corresponds to relativistic
fermions Ĥrel, or topological insulators Ĥtop. The resource to be used is the
control over the setup, which we have argued previously to be described by the
Hamiltonian (2.2), rewritten here for reading convenience,

Ĥsys =
∑
rν

∑
ττ ′

tν â
†
r+ντ ′ [Uν ]τ ′τ ârτ +

∑
r

∑
ττ ′

Ω â†rτ ′ [Λ]τ ′τ ârτ +H.c. (3.1)

where â
(†)
r,τ are fermionic operators satisfying canonical anticommutation rela-

tions.
The main objective of this chapter is to provide concrete recipes for the

values of:

1. the optical lattice dimension D;

2. the tunneling strengths tν ;

3. the spin-dependent hopping matrices Uν ;

4. the on-site Raman transitions Ω,Λ;

such that the Hamiltonian of equation (3.1) simulates the desired physics:

Ĥsys({tν , Urν ,Λ,Ω}) → Ĥeff ≈ Ĥrel, Ĥtop.

Phases of matter displaying non-conventional properties are usually associ-
ated to interactions. Graphene [CNGP+09] and the integer quantum Hall ef-
fect (IQHE) [vK86] are relevant exceptions; they are satisfactorily described by

31
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quadratic, and thus non-interacting, fermionic Hamiltonians and still display
characteristics, e.g. transport properties, which deviate from standard solid-
state theory. The low-energy excitations of graphene display properties similar
to those of massless relativistic fermions, since the Fermi surface is composed
of two isolated points and their energy depends linearly on the momentum. In
the IQHE, a two-dimensional electron gas subject to a strong magnetic field
displays a robust quantization of the transverse conductivity σxy = n · e2/h,
where n ∈ Z.

Graphene and IQHE can be considered as the paradigmatic examples of
effective relativistic theories in condensed-matter systems, and of topological
insulators, respectively. In this chapter we show that the optical superlattice
scheme can be used as a quantum simulator of these phenomena: in section 3.1
we focus on non-interacting relativistic theories; in section 3.2 we address topo-
logical insulators.

Even if these models can be solved exactly with classical methods, designing
a setup mimicking their properties is the first step towards the use of a quantum
simulator to answer related open problems, as for instance that of interacting
topological insulators. We elaborate on this in section 3.3.

The work presented in this chapter has significantly benefited from the col-
laboration with Dr. A. Bermudez and Dr. N. Goldman under the supervision
of Prof. M. Lewenstein and Prof. M. A. Martin-Delgado; their contribution is
gratefully acknowledged.

3.1 Relativistic Lattice Fermions

The properties of a relativistic spin-1/2 fermion with mass m are described by
the Dirac Hamiltonian [PS95]:

Ĥ =

∫
dr Ψ̂(r)†HDIΨ̂(r), HDI = cα · p +mc2β; (3.2)

where αν , β are the so-called Dirac matrices fulfilling the Clifford algebra:

{αν , αµ} = 2δνµ, {αν , β} = 0;

and c stands for the speed of light. Here, Ψ̂(r)(†) is the ND-component fermionic
field operator satisfying canonical anticommutation relations, where ND = 2 for
one and two spatial dimensions, and ND = 4 for three spatial dimensions.

We now consider the Hamiltonian in (3.1) and discuss a tuning of the pa-
rameters which let it resemble the field theory in (3.2). It is worth mentioning
that the optical superlattice scheme is strictly non-relativistic, being composed
of a cold atomic gas, and that its physics is only effectively relativistic. For
instance, the effective speed of light is ceff ≈ 5 · 10−6 ÷ 5 · 10−5 m/s and has
therefore no connection with the real one, c ∼ 299 · 106 m/s.

3.1.1 Massless and Massive Dirac Fermions

The number of atomic fermionic species to be considered is ND. We propose
to engineer translationally invariant hopping operators, Uν = eiφναν , according
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D αx αy αz β Γ ΘT

1 σx σz αx iσy
2 σx σy σz iσy
3 σz ⊗ σx σz ⊗ σy σz ⊗ σz σx ⊗ I2 −iαxαyαz iI2 ⊗ σy

Table 3.1: Quantum simulator of Dirac fermions. Hopping matrices of the
optical superlattice are defined as Uν = exp[iφναν ], and αν are listed in the
table for different spatial dimensions D. We also list the Dirac matrices β,
which are relevant for the massive case, and the matrices Γ and ΘT, useful for
discussing the symmetry of the model.

to the SU(ND) group. For the particular choices specified in table 3.1, the
momentum-space representation of Hamiltonian (3.1) is

Ĥ =
∑
k∈BZ

Ψ̂†k

(∑
ν

2tν cosφν cos(kνa)I + 2tν sinφν sin(kνa)αν

)
Ψ̂k; (3.3)

where Ψk is the multicomponent fermionic operator comprising the atomic levels
involved in the simulation, k is defined within the first Brillouin zone (BZ) and
a is the lattice constant.

For φν = π/2, the energy spectrum develops ND = 2D degeneracy points,
Kd, where the energy bands touch: E(Kd) = 0. Around these points Kd =
(dxπ/a, dyπ/a, dzπ/a), where dν ∈ {0, 1} is a binary variable, the low-energy
excitations of the atomic gas are described by the effective Hamiltonian:

Ĥeff =
∑
d

∑
pd

Ψ̂†(pd)Hd
DI Ψ̂(pd), Hd

DI(pd) = cαd · pd; (3.4)

where pd = k −Kd represents the momentum around the degeneracy points,
(αd)ν = (−1)dναν are the Dirac matrices listed in table 3.1. The role of the
effective speed of light, c = 2txa = 2tya = 2tza, is played by the Fermi velocity;
since a ≈ 500 nm and tν ≈ 102 ÷ 103 Hz we obtain the estimates presented
above. Therefore, the Fermi surface of the half-filled gas consists of a set of
isolated points, the so-called Dirac points, and the low-energy excitations around
those points behave according to the Hamiltonian of massless Dirac fermions in
equation (3.4).

The number of relativistic fermionic species is ND, each located around a
different Dirac point, and it is even. The doubling of fermionic species is a
well-known phenomenon in lattice gauge theories [Kog83], where the fermions
in equation (3.4) are called naive Dirac fermions [KS81]. As predicted by the
Nielsen-Ninomiya theorem [NN80, NN81], the doubling cannot be avoided with-
out breaking an underlying symmetry of the model.

For D odd, such symmetry is the chiral symmetry (see table 3.1 for the
definition of the Γ matrix):

[Γ , HDI] = 0. (3.5)

There is no chiral symmetry for D even [Kap09]; let us briefly elaborate on this.
The generators of the Lorentz group, i.e. the matrices which leave the Minkowski
metric ηµν unchanged, can be written in terms of the D+ 1 γµ matrices, which
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are defined by the following relation: {γµ, γν} = 2ηµν . A possible explicit
construction is given using the αν and β matrices already introduced: γ0 = β
and γj = βαj . Consistently with the matrices listed in table 3.1, for D = 2k−1
and D = 2k the smallest matrix representation has dimension 2k. Therefore,
the matrices γµ for µ ≤ 2k can be chosen to be the same in the cases D =
2k − 1 and D = 2k. This implies the existence of one matrix, γ2k+1, which
commutes with all the γµ matrices needed to generate the Lorentz group in odd
spatial dimensions. The matrix Γ is proportional to γ2k+1 and commutes by
construction with all the αν . The proportionality constant is chosen to make Γ
Hermitian. Clearly, this construction is impossible for D even.

Let us consider a more general symmetry which protects the presence of an
even number of Dirac cones and applies also for D even. It is the time-reversal
symmetry, which is antiunitary:

Θ†T
[
Hd

DI(−pd)
]∗

ΘT = Hd
DI(pd). (3.6)

In this case, the Kramer’s degeneracy theorem forces the presence of Dirac cones
in all the highly-symmetric Kd points1. It follows that if we take as Fermi energy
the energy which makes the Dirac cone we want to study half filled, the low-
energy physics is affected by the presence of other gapless excitations at different
momenta.

These results show that the optical superlattice scheme can be used as a
quantum simulator of massless Dirac fermions in any spatial dimension. It is
possible to make these fermions massive, as in Hamiltonian (3.2). We propose
to control the on-site Raman transitions such that matrix Λ in (3.1) equals the
matrix β listed in table 3.1. In such case, the Rabi frequency plays the role of
the mass mc2 = 2Ω, and the effective Hamiltonian in equation (3.4) becomes

Hd
DI(pd) = cαd · pd +mc2β. (3.7)

Therefore, the quantum simulator can span models from the non-relativistic
regime (pc � mc2) to the ultra-relativistic limit (pc � mc2). Notice that the
presence of the mass already breaks the mentioned symmetries but does not
solve the doubling problem, since no massless Dirac fermion is left.

3.1.2 Wilson Fermions

From a lattice gauge theory perspective, the additional fermions around Kd 6=
0 are spurious doublers that modify the physics at low energy and prevent
the study of a single fermionic species. Among the solutions which have been
proposed, it was suggested to give the doublers a very large mass mKd

c2, so
that they effectively decouple from the low-energy physics of the Dirac fermion
at Kd = 0, namely mKd

� mK0 .
By combining the laser-assisted tunneling listed in table 3.1 with the addi-

tional terms U ′ν = ieiϕνβ , the Hamiltonian Ĥ in (3.3) becomes Ĥ + Ĥ ′, where

Ĥ ′ =
∑
k∈BZ

Ψ̂†k

(∑
ν

2t′ν cosϕν sin(kνa)I− 2t′ν sinϕν cos(kνa)β

)
Ψ̂k, (3.8)

1Strictly speaking more exotic situations can happen, as for example a quadratic band
touching around the highly symmetric points. They do not change the final result of the
reasoning.



3.1 Relativistic Lattice Fermions 35

where t′ν are the additional laser-assisted tunneling strengths. Once more, for
the π-flux phases ϕν = π/2, the effective Hamiltonian in equation (3.2) is mod-
ified into:

Hd
DI(pd) = cαd · pd +mKd

c2β, mKd
= m−

∑
ν

(−1)dνmν , (3.9)

where mνc
2 = 2t′ν .

The optical superlattice scheme provides the control over the different masses,
since m depends on the on-site Raman transition strengths, whereas mν depends
on the assisted-hopping strength, and thus on the laser power. In particular,
when these parameters fulfill

∑
νmν = m (i.e. mx = m for D = 1, mx+my = m

for D = 2, and mx +my +mz = m for D = 3), there is a single massless Dirac
fermion at Kd = 0, whereas the doublers are massive. This discussion shows
that the optical superlattice scheme can be used as a quantum simulator of the
so-called Wilson fermions in any spatial dimension [Wil77].

The introduced mass terms responsible for the decoupling explicitly break
the discussed symmetries, thus there is no violation of the Nielsen-Ninomiya
theorem. This is particularly important in odd dimensions, because the Wilson
fermion arising from this procedure has not a defined chirality, and thus prevents
the study on a lattice of particles, such as neutrinos, which are believed to be
chiral and massless.

3.1.3 Kaplan Fermions

In order to preserve the concept of chirality in a lattice with odd spatial dimen-
sions D = 2k − 1, Kaplan showed that an embedding in a higher-dimensional
system D = 2k can lead to the appearance of chiral massless Dirac fermions
bound to a (2k − 1)-dimensional wall [Kap92, Kap09].

Let us consider even dimensions, D = 2, and a mass term whose strength
depends on the y coordinate:

m(r) = |m| − 2|m| θ(y − y0) (3.10)

If the space is continuous, there are solutions of the Dirac equation ψ(x, y, t) =
ψ(x, t)ψ(y) such that ψ(y) ∝ e−|m||y−y0| and such that ψ(x, t) satisfies the
Dirac equation for a chiral one-dimensional fermion. The method works also if
the discontinuous m(r) in (3.10) is substituted by a smooth function m(r) =

f(y) such that f(y)
y→±∞−−−−−→ ∓m and f(y0) = 0. The wavefunction ψ(y) is

still localized around y0, even if localization properties benefit from the sharp
behavior of m(r).

The idea can be translated to a discrete space via the Wilson mechanism
explained above. In a lattice situation the idea is to engineer a Wilson mass
which is space dependent:

mν = |m| θ(y − y0);


mKd=(0,0) = |m| − 2|m| θ(y − y0);
mKd=(π,0) = |m|;
mKd=(0,π) = |m|;
mKd=(π,π) = |m|+ 2|m| θ(y − y0).

(3.11)

Only the fermion at Kd = (0, 0) gets a mass which has opposite sign for y → ±∞
and only this fermion behaves along the x direction as a fermion with well-
defined chirality.
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Kaplan fermions can be realized in a finite system with open boundary con-
ditions making the mass of one of the Wilson fermions negative. Let us provide
an intuitive argument for this. In the example of (3.11), the mass of the Wilson
fermion is negative in the region y ∈ [y0,+∞), and this was crucial to obtain the
localized fermion. Intuitively, we can compactify the y dimension with the point
at the infinite and then deform [0,+∞] into [0, Ly]. Let us think at the comple-
mentary region as a region with infinite positive mass. Two Kaplan fermions
are expected to appear localized at the boundaries y = 0, Ly. The fermion at
y = Ly corresponds to the solution which in the infinite-space case had to be
neglected because non-normalizable ψ(y) ∝ e+|m||y−y0| and which in this case
can be retained. We provide numerical evidence of the Kaplan mechanism via
mass inversion in section 3.2.3.

Kaplan fermions obtained via mass inversion bring our discussion to the next
topic, as it is always possible to find a Kaplan-fermion representative within each
class of topological insulators [QHZ08, RSFL10].

3.2 Topological Insulators

The study of topological insulators indirectly dates back to the discovery of
the IQHE in 1980 [vK86], but was established as a research field in itself only
in the last years [HK10, QZ11]. It is a relatively young research subject and
therefore we present here a short review of its most fundamental concept, namely
topological band theory.

Topological band theory generalizes the usual solid-state band theory, which
has successfully been used to classify insulators, semiconductors and metals
[AM76]. It has been introduced to characterize materials with an insulating
bulk and remarkably robust conducting edge modes, and that therefore elude
the standard classification. From the mathematical point of view, it focuses on
quadratic fermionic models and sorts them according to a non-trivial topological
integral of the bulk spectrum, which also carries information about the edge
modes. Let us stress that the framework of this analysis is that of single-
particle physics and that the presented topological considerations are different
from those discussed in [Wen04] to study topological order in strongly-correlated
systems.

3.2.1 A Model for the Integer Quantum Hall Effect

The toy model for a first understanding of topological band theory is the Harper
Hamiltonian [Har55, Hof76] describing free fermions in a two-dimensional square
lattice subject to an external magnetic field B = Bez, with A(r) = Bxey being
the corresponding vector potential:

ĤQH = −J
∑

<m,n>

â†n e
−i 2π

Φ0

∫ n
m

A(r)·dl âm = (3.12)

= −J
∑
m

â†mâm+aêx + â†m+aêx
âm +

−J
∑
m

e2πi Φ
Φ0
mx â†mâm+aêy + e−2πi Φ

Φ0
mx â†m+aêy

âm.
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Figure 3.1: The spectrum of Hamiltonian (3.13) studied with periodic boundary
conditions with Φ/Φ0 = p/q for q ≤ 20 and gcd(p, q) = 1. For a given value
p/q, the energy spectrum displays q separate bands. This plot is known as the
Hofstadter butterfly [Hof76].

where m = (mxa,mya) and a is the lattice spacing. The field operators â
(†)
m are

fermionic, Φ0 = hc/e is the quantum of flux and Φ is the flux per plaquette.
This model is a topological insulator and it has some relevance in the theory of
the IQHE.

Let us start considering periodic boundary conditions, i.e. the bulk proper-
ties of the model. We consider a lattice of Lx×Ly sites; the Hamiltonian can be
diagonalized working in momentum space. The reciprocal lattice is spanned by
the vectors g1 = 2π

a (1, 0) and g2 = 2π
a (0, 1). Let’s consider a rational magnetic

flux through one lattice plaquette Φ = p/qΦ0, with p, q ∈ N and gcd(p, q) = 1.
We introduce the Fourier transform of the operators:

âk =
1√
LxLy

∑
m

eim·k âm;

The Hamiltonian now reads:

ĤQH = −J
∑
k

2 cos (kxa) â†kâk + eikyaâ†k−wâk + e−ikyaâ†k+wâk; (3.13)

with w = p/q g1 and can be diagonalized. Figure 3.1 shows the spectrum
of the Hamiltonian for different values of p/q; we can recognize q energy bands
separated by clear energy gaps. We can therefore affirm that the system displays
an insulating bulk for rational filling factors.

Still, Hamiltonian (3.13) is different from that of an ordinary insulator. The
difference can be understood in terms of the Berry phase associated with the
adiabatic movement of the Bloch eigenstates of ĤQH, which we denote |m,k〉,
in the Brillouin zone. Let us consider a single band, m, and define the Berry
phase γm which the state |m,k〉 acquires moving around the whole Brillouin
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Figure 3.2: (Top, left) Spectrum of Hamiltonian (3.13) with periodic boundary
conditions for p/q = 1/5. Five bulk bands are clearly recognizable. (Top,
right) Spectrum of Hamiltonian (3.13) with cylindrical boundary conditions for
p/q = 1/5. In addition to the bulk states, mid-gap states appear. (Bottom)
The wavefunctions |Ψ(x)|2 of the two mid-gap states highlighted in the top-left
plot are clearly localized on the boundaries, motivating the name of edge-states.

zone:

Am(k) = i

(
〈m,k|∂kx |m,k〉
〈m,k|∂ky |m,k〉

)
; F(k) = ∂kxAm,2(k)− ∂kyAm,1(k); (3.14)

γm =

∮
dk ·Am(k) =

∫
BZ

dk Fm(k). (3.15)

It is possible to show2 that γm is an integer multiple of 2π. We define nm =
γm/2π ∈ Z and speak of a topologically non-trivial band whenever nm 6= 0.

When the energy bands are either completely filled or empty, the transverse
conductivity σxy is related to the values nm via the TKNN formula [TKNdN82],
which is obtained via the application of the Kubo formula for electric conduc-
tivity to this problem3:

σxy =
e2

h
N =

e2

h

∑
filled

bands m

nm. (3.16)

2The mathematical details can be found in chapter 10 and 11 of reference [Nak03a].
3The Kubo formula for AC electric conductivity can be find in [AM76], equation (13.37).

In order to obtain the formula used in [TKNdN82] one has to first take the static limit ω → 0
and then the zero-temperature limit.
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This relation shows the existence of an observable quantity, namely the trans-
verse conductivity, which is quantized, and robust against moderate disorder.
Indeed, the values nm are insensitive to continuous deformations of the band
structure which do not close any energy gap; such deformations may arise, as
mentioned, in presence of moderate disorder, or, more generally, of local per-
turbations of the Hamiltonian.

Let us now consider Hamiltonian (3.13) with cylindrical boundary condi-
tions. When we impose open edges only in one direction, the spectrum shows
the presence of mid-gap eigenvalues whose eigenfunctions are localized on the
open edge (see figure 3.2).

The quantized Hall conductivity can be characterized also using the edge
states, as shown in [RTJH83], via the relation:

σxy =
e2

h

∑
right
edge

sgn

(
∂Eedge(k)

dk

)
. (3.17)

The comparison of equation (3.16) with (3.17) highlights a link between the
topological invariant N , which is related to the bulk properties of the model, and
the edge excitations. We have therefore found a bulk-boundary correspondence;
the argument which was assuring the robust quantization of σxy now guarantees
the appearance of mid-gap edge states even in presence of local perturbations.

These states are chiral, i.e. they have a defined wavevector ky, and states
localized on the same edge share the same propagation direction. Since the back-
scattering of a conduction electron requires it to jump from one edge to the op-
posite one, which is macroscopically separated [Hal82], the transport properties
of this model are also expected to be robust against disorder.

The IQHE is only one instance of a large list of topological insulators. In gen-
eral, they are quadratic fermionic models which can be represented by matrices
H and then classified according to their fundamental symmetries: time-reversal
T , charge conjugation C, and the combination of both S = T C [AZ97]. We say
that a matrix has one such symmetry if there exists one matrix ΘT,C,S such
that:

T : ΘT HT Θ−1
T = +H; ΘTΘ†T = I; ΘT

T = ±ΘT; (3.18a)

C : ΘC HT Θ−1
C = −H; ΘCΘ†C = I; ΘT

C = ±ΘC; (3.18b)

S : ΘS HΘ−1
S = −H; ΘSΘ†S = I; ΘSΘS = +I. (3.18c)

The T and C symmetries are be labelled by two numbers, ±1, depending on
the value of ΘT

T,CΘ†T,C. The S symmetry has only one label S = 1.
Topological insulators have been classified according to this set of symme-

tries [SRFL08, Kit09], and a periodic table has been accordingly derived, par-
tially reported in table 3.2. The IQHE model we have studied belongs for
example to class A. The table is incomplete because four symmetry classes have
been excluded; they correspond to models which do not conserve the number of
particles, also named topological superconductors. Their quantum simulation
requires a pairing mechanism, which is not provided by Hamiltonian (3.1)4.

4A discussion of one topological superconducting model, the Kitaev chain, is presented in
chapter 7.
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Class Name T C S D = 1 QS D = 2 QS D = 3 QS

A Unitary 0 0 0 0 Z yes 0
AIII Chiral unitary 0 0 1 Z yes 0 Z yes
AI Orthogonal +1 0 0 0 0 0

BDI Chiral Orthogonal +1 +1 1 Z ? 0 0
AII Symplectic −1 0 0 0 Z2 yes Z2 yes
CII Chiral Symplectic −1 −1 1 2Z yes 0 Z2 yes

Table 3.2: Periodic table of topological insulators [SRFL08, Kit09]. There are
six possible symmetry classes for non-interacting fermionic Hamiltonians con-
serving the number of particles and another four for pairing Hamiltonians, not
shown here. The topological insulator is characterized by the integer Z or binary
Z2 nature of the topological invariant. Notice that in a given spatial dimension
D only some of the classes can appear. In the column QS, we list the particular
instances that can be simulated with the superlattice quantum simulator.

We now discuss how the optical superlattice of chapter 2 can reproduce the
properties of several classes of topological insulators; we follow two possible
strategies.

3.2.2 Bottom-Up Approach

In this case, we propose to identify a specific topological insulator model and to
tune the parameters of Hamiltonian (3.1) accordingly. In principle, a different
experiment would be required for each simulation.

Two simple one-dimensional examples are the Su-Schrieffer-Hegger model
of polyacetilene [SSH79], which is a D = 1 BDI topological insulator; and the
π−flux phase of the fermionic Creutz ladder [Cre99], which is a D = 1 AIII
topological insulator.

The former is rather simple and can be simulated without the optical super-
lattice. By using a one-component Fermi gas in a one-dimensional dimerized
optical superlattice, one directly obtains:

ĤBDI =
∑
n

(t− δ)â†2n−1â2n + (t+ δ)â†2nâ2n+1 +H.c. (3.19)

where δ quantifies the different tunneling strength between superlattice sites.
On the other hand, the Creutz ladder is described by

ĤAIII = −K
∑
n

e−iθâ†n+1ân + eiθ b̂†n+1b̂n + b̂†n+1ân + â†n+1b̂n +
M

K
â†nb̂n +H.c.

where K,M are tunneling strengths, and θ is a magnetic flux piercing the ladder.
This requires two hyperfine levels to be assigned to the fermion species an, bn,
and a one-dimensional laser-assisted tunneling Ua1 = diag{e−iθ, eiθ}, Ũa1 = iσx,
together with the Raman on-site operator of strength M [BPAMD09].

Following this approach, it is possible to proceed to higher dimensions and
to different topological classes.

The possibility of engineering topological insulators with cold atoms has al-
ready been discussed in the literature and this should not be considered the first
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attempt. One of the most relevant examples is the honeycomb time-reversal
breaking Haldane model [Hal88], a two-dimensional topological insulator of
class A, which has already attracted attention [SZS+08, SGDS10, LLWS10,
AFGMP+11]. Our approach is different because whereas usually a model is first
identified and then an ad hoc setup is proposed, here we provide the general
guidelines for a simulation scheme which can address many different models.

3.2.3 Symmetry-Based Approach

We propose a different approach, whose starting point is the quantum simu-
lator of D-dimensional Wilson fermions in (3.9). Depending on the particular
choice of Dirac matrices, the inverted-mass regime described in section 3.1.3
corresponds to a different class of topological insulators. Moreover, a dimen-
sional reduction, that experimentally amounts to the increase of the optical lat-
tice depth in one direction, brings the system to a different lower-dimensional
class [QHZ08, RSFL10].

Let us explain this in more details. We start from the Hamiltonian (3.9),
which we rewrite here for reading convenience:

Ĥeff =
∑
d,pd

Ψ̂†(pd)Hd
DIΨ̂(pd); Hd

DI(pd) = cαd · pd +mKd
c2β. (3.20)

The masses of the Wilson fermions are mKd
= m −

∑
ν(−1)dνmν , and the

Dirac matrices αd
ν , β are selected depending on the class to be simulated (see

table 3.3).
The symmetries T , C, S defined in (3.18) are expressed, in this translationally-

invariant case, via unitary matrices ΘT,ΘC such that:

T : Θ†T
[
Hd

DI(−pd)
]∗

ΘT = +Hd
DI(pd); (3.21a)

C : Θ†C
[
Hd

DI(−pd)
]∗

ΘC = −Hd
DI(pd); (3.21b)

S :
[
Θ†T

]∗
Θ†CH

d
DI(pd) ΘC Θ∗T = −Hd

DI(pd). (3.21c)

In table 3.3, we characterize the symmetry properties of several Hamiltonians
Ĥeff , for different choices of the Dirac matrices.

It is important to note that these symmetries might or might not correspond
to the exact symmetries of nature. For example, when considering the hyperfine
levels {|F,mF 〉, |F,−mF 〉}, the time-reversal symmetry given by ΘT = iσy is
exactly that of nature. Otherwise, these symmetries are related to the algebraic
properties of the effective Hamiltonian. Let us emphasize, however, that as far
as the disorder respects such symmetries, the robustness of the edge excitations
is guaranteed. It would be interesting to design disorder breaking or preserving
such symmetries, generalizing the studies on Anderson localization with cold
atoms [BJB+08, GDF+08].

In order to turn the system into a topological insulator, the mass of an
odd number of Wilson fermions must be inverted. The technique is analogous
to that explained in section 3.1.3. This mass-inversion occurs through a gap-
closing point, and thus a quantum phase transition between a normal band
insulator and a topological one occurs. This new phase is characterized by
an odd number of massless fermionic excitations (i.e. massless Dirac fermions)
bound to the boundaries of the system, and protected by a topological invariant.
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Class D αx αy αz β ΘT ΘC T C S

CII 3 σz ⊗ σx σz ⊗ σy σz ⊗ σz σz ⊗ I2 iI⊗ σy iσx ⊗ σy -1 -1 1

AIII 3 σz ⊗ σx σz ⊗ σy σz ⊗ σz σy ⊗ I2 iI⊗ σy iσx ⊗ σy 0 0 1

AII 3 σz ⊗ σx σz ⊗ σy σz ⊗ σz σx ⊗ I2 iI⊗ σy iσx ⊗ σy -1 0 0

↪→ AII 2 σz ⊗ σx σz ⊗ σy σx ⊗ I2 iI⊗ σy iσx ⊗ σy -1 0 0

A 2 σx σy σz iσy iσz 0 0 0

↪→ AIII 1 σx σz iσy iσz 0 0 1

CII 1 σz ⊗ σx σz ⊗ I2 iI⊗ σy iσx ⊗ σy -1 -1 1

Table 3.3: Quantum simulator of topological insulators. We list different real-
izations of Hamiltonian (3.20) that lead to the realization of several classes of
topological insulators. The table shows that each class has a Wilson fermion
representative via a different choice of the Clifford algebra αν , β. We also
highlight the topological insulators that can be obtained by dimensional re-
duction from a parent Hamiltonian, such as AII, D = 3 ↪→ AII, D = 2, or
A, D = 2 ↪→ AIII, D = 1. We list the unitary matrices ΘT,ΘC used to define
the symmetries (see equation (3.21)).

Let us consider for example the three-dimensional case of a topological in-
sulator of class AII (see table 3.3). Let us consider the Wilson fermions at
Kd = (0, 0, 0) and (0, 0, π/a). If we set my = m/2 and mz = m/4, for
1/4 < mx < 3/4 the mass of the Wilson fermion at Kd = (0, 0, 0) is negative,
whereas for mx > 3/4 both Wilson fermions at Kd = (0, 0, 0) and (0, 0, π/a)
have negative masses. Accordingly, if we now set open boundary conditions
along z and focus on the states at (kx, ky) = (0, 0), we expect zero-energy modes
to appear for 1/4 < mx < 3/4. The result of the numerical simulation, shown in
figure 3.3, confirm that the system displays two in-gap zero-energy modes local-
ized at the edges where open boundary conditions have been imposed. Table 3.3
contains all the relevant information to explore the exotic properties of different
topological insulators in a superlattice-based experiment with ultracold atoms.

3.3 Perspectives

In this chapter we have discussed some possible applications of the optical super-
lattice scheme presented in chapter 2 as a quantum simulator; we have focussed
on fermionic non-interacting theories, ranging from relativistic field theories to
topological insulators. The discussion has also tried to highlight some of the
connections between the two topics.

Because of their mathematical simplicity, these models have already been
theoretically understood with classical simulations, and a quantum simulation
would not add new information. An experimental realization of these models
is anyway mandatory in order to exploit from a more applied point of view
the unconventional transport properties of topological insulators. Even if the
ultimate goal, in this respect, would be a solid-state realization, contributions
from the cold-atoms community are not to be excluded.

Furthermore, the combination of this proposal with the control of atomic in-
teractions via Feshbach resonances might boost experiments into regimes where
classical numerical simulations fail. We mention for example the problem of
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Figure 3.3: Spectrum of a three-dimensional topological insulator of class AII
(see table 3.3) studied with open boundary conditions along z. We only plot the
modes for (kx, ky) = (0, 0). We consider a system of size 41× 41× 41. Tuning
the parameter mx it is possible to turn a trivial insulator into a topological one,
as it is clearly demonstrated by the presence of zero-energy modes, highlighted
in red, which are localized on the boundaries.

generalizing topological insulators to the interacting case, which is recently at-
tracting a lot of attention [WQZ10, RT10, FK11, TPB11, Gur11]. In this re-
spect, the highly-controllable cold gases might provide relevant experimental
insights.

From the point of view of the quantum simulation with cold atoms of in-
teracting relativistic field theories, the path has been opened in 2010, with a
proposal for interacting one-dimensional Dirac fermions [CMP10]. We envisage
the possibility of working in the same direction using the optical superlattice
scheme, where as discussed more fermionic models are available, and also in
higher dimensions.
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Chapter 4

Three-Body Interactions
with Spin-1 Atoms

In this chapter we discuss the possibility of using cold atoms in optical lattices
to study three-body contact interactions [MRLC10].

Interactions involving more than two particles can give rise to intriguing
many-body phenomena. We focus on a particular state of the fractional quan-
tum Hall effect, the so-called Pfaffian wavefunction [MR91, GWW92], which
arises in two-dimensional systems subject to a magnetic field in the presence of
three-body contact repulsion. Whereas such quantum state was initially pro-
posed for electrons, a bosonic version exists as well, which shares all the inter-
esting features of its fermionic counterpart. Let us mention, for example, that
its quasi-excitations are non-Abelian anyons [JSWW03]. Furthermore, states
similar to the Pfaffian wavefunction appear also in other models, such as in
p-wave superconductors, where the non-Abelian excitations correspond to zero-
energy Majorana fermions [RG00, NSS+08, Sch99]1, or even one-dimensional
systems [PKC07].

Since significant many-body interactions are rare in nature, in order to ob-
serve such phenomenology it is important to be able to externally engineer
three-body interactions. Let us briefly list the most relevant proposals which
exploit ultracold atomic and molecular gases to achieve this goal. To the best
of our knowledge, the earliest attempts exploited higher-order super-exchange
interactions on triangular and kagomé lattices [PR04]. Unfortunately, the tem-
peratures required are even lower than those necessary for the observation of
quantum magnetism in Mott phases. Super-exchange interactions of the sec-
ond order involving Raman transitions between atoms and molecules in square
lattices have been proposed to realize an effective ring-exchange Hamiltonian
for bosons [BHH+05]. A completely different approach has been proposed
in [BMZ07], where it was suggested to use polar molecules dressed by laser
fields inhibiting two-body interactions. Very recently it has been suggested to
use the dissipative dynamics of three-body losses in order to implement an effec-

1Systems with zero-energy Majorana modes are the focus of chapter 7. We do not deal
explicitly with a two-dimensional system displaying a ground state closely related to the Pfaf-
fian wavefunction [RG00], but rather with the one-dimensional version, the so-called Kitaev
chain [Kit01].

45
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tive three-body hardcore constraint [DTD+09, RRC10]. The idea is reminiscent
of an experiment where it is shown that dissipation induces strong correlations
in molecular gases [SBL+08]. The combination of this dissipative scheme with
the rotation of the atomic trap, which simulates an artificial magnetic field, can
lead to the formation of the Pfaffian wavefunction [RRC10]. Finally, it has been
theoretically shown via a perturbative treatment of higher lattice bands that
the dynamics of the optical lattice contains effective many-body interactions,
whose effects have also been experimentally observed in the time-evolution of
the system [JTPW09, WBS+10].

The aim of this chapter is twofold. On one side, we provide some numerical
evidence that in a discrete two-dimensional system, in the presence of a per-
pendicular magnetic field, the ground state of bosons interacting via three-body
contact repulsion corresponds to the lattice version of the bosonic Pfaffian wave-
function. In particular, we discuss the stability of the topological properties of
such wavefunction in a non-dilute limit with the magnetic length comparable to
the lattice spacing.

On the other one, we show that a spin-1 Mott insulator with one particle
per site offers the possibility of studying three-body interactions in an optical
lattice. The idea is to map the three internal states of real spin-1 bosons into
occupation numbers of some emerging bosons, similarly to the correspondence
between spin-1/2 particles and emerging hardcore bosons. An easy generaliza-
tion to higher-spin atoms can open the route to the simulation of four-, five-
and many-body contact infinite repulsions. The versatility of the experimental
system presented in chapter 2, which individually tailor the hopping rates of
the different spin species, can be used to tune several models characterized by
three-body interactions. Unfortunately, the discrete Pfaffian wavefunction is
outside the class of models accessible with our proposal.

In section 4.1 we describe how to realize three-body interacting bosons us-
ing atoms with three relevant internal states. In section 4.2 we consider the
explicit case of atoms with F = 1 hyperfine ground manifold trapped in a
two-dimensional optical lattice and derive the corresponding super-exchange
Hamiltonian. In section 4.3 we focus on the Pfaffian wavefunction, on its lattice
version and discuss the difficulties which are still to be overcome in order to
engineer it.

4.1 The Mapping

Let us start recalling that particles interacting via three-body infinite repulsion
effectively undergo a three-body hardcore constrain, that is, there cannot be
more than two particles cannot share the same position. Therefore, in the
presence of a spatially discrete setup, the local description of the wavefunction
is captured by a finite Hilbert space of dimension three:

Hloc
3hb = Span{|n = 0〉, |n = 1〉, |n = 2〉}. (4.1)

We therefore propose to simulate a system subject to three-body infinite in-
teractions using an experimental setup which is discrete and whose local Hilbert
space Hloc

real has dimension three. A unitary mapping between the local Hilbert
spaces:

Ŵ : Hloc
real −→ Hloc

3hb , (4.2)
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Figure 4.1: Sketch of the proposed mapping. A Mott insulator with one particle
per site and whose atoms have three relevant internal states can simulate a
system of bosons with an infinite three-body contact repulsion via the mapping
Ŵ. The three relevant states can be identified with a F = 1 hyperfine spin.
Reproduced from [MRLC10].

allows us to connect the real experimental dynamics to the dynamics of some
emerging particles characterized by an infinite three-body interaction living in
Hloc

3hb (see also figure 4.1). When the dynamics of the real system is described

by a Hamiltonian Ĥeff
real, the corresponding Hamiltonian for the system to be

simulated characterized by three-body interactions is:

Ĥ3hb = Ŵ⊗L
2

Ĥeff
real Ŵ†⊗L

2

. (4.3)

The tuning of the experimental parameters in Ĥeff
real permits in principle the

investigation of several “blackboard” models described by Ĥ3hb.

In the context of ultracold atoms in optical lattices, it is quite natural to
consider a Mott insulator with one particle per site and atoms with three inter-
nal degrees of freedom. In this chapter we focus our attention on the Zeeman
levels of a hyperfine spin F = 1, exhibited for instance by 87Rb or 23Na. Such
atoms have already been loaded into an optical lattice and cooled to a Mott
insulator without freezing the spins [WGF+06]. Because of super-exchange ef-
fects, the Mott insulator is characterized by a non-trivial spin dynamics, which,
unfortunately, has still to be observed (the spin degrees of freedom have in-
deed not yet been cooled). This spin physics is characterized by an effective
Hamiltonian Ĥeff

real obtained through a second-order perturbative expansion of
the kinetic term of the Bose-Hubbard Hamiltonian describing the real atoms on
the lattice. The next section is devoted to a derivation of such effective theory.

Let us conclude stressing that other internal degrees of freedom could have
been chosen; as proposed in [KS03] for a different purpose, these three local
degrees of freedom could even correspond to different spin-polarized atomic
species.
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4.2 Spin-1 Atoms

We derive the effective Hamiltonian for the spin degrees of freedom of a spin-1
Mott insulator with one particle per site and describe the class of Hamiltonians
Ĥ3hb which can be effectively mimicked via the proposed mapping (4.2). The
analysis we present is valid for systems in one, two and three dimensions.

In order to describe spin-1 atoms in a deep optical lattice, we use the Bose-
Hubbard Hamiltonian for spin systems [ILD03]:

Ĥreal =
∑
<i,j>

∑
α

[−tαb̂†i,αb̂j,α +H.c.] +
∑
i,α

∆αn̂i,α +

+
U0

2

∑
i

n̂i(n̂i − 1) +
U2

2

∑
i

(
~̂
S2
i − 2n̂i). (4.4)

The bosonic field operators b̂
(†)
i,α satisfy canonical commutation relations, α =

{−, ◦,+} runs over the three spin states {|mF = −1〉, |mF = 0〉, |mF = +1〉}
and:

n̂i,α = b̂†i,αb̂i,α; n̂i =
∑
α

n̂i,α;
(
~̂
Si

)
α,β

= b̂†i,α
~Fα,β b̂i,β .

The operator
~̂
Si is the spin-operator at the site i; the parameters ∆α represent

the energy offset of each of the three states (∆◦ = 0). The last two terms of (4.4)
describe the local two-body interaction, that due to the spin nature of atoms is
characterized by two s-wave scattering lengths, a0 for the Stot = 0 channel and
a2 for the Stot = 2 channel, with the ratio U2/U0 given by [ILD03]:

U2

U0
=

a2 − a0

a2 + 2a0
.

Hamiltonian (4.4) preserves the total magnetization M̂ ≡
∑
i Ŝ

z
i of the sam-

ple, allowing us to work in a convenient block-diagonal representation. More-
over, each energy offset ∆α plays the role of a chemical potential for the atomic
species α. As a consequence, in absence of spin-flipping interactions (nα con-
served), the ∆α play no role in the dynamics at fixed magnetization. In our
case the situation is complicated by the presence, in the atomic Hamiltonian, of
terms which flip the atomic spin:

|mF = 0〉|0〉 ←→ |+ 1〉| − 1〉. (4.5)

The ∆α would still not play any role in the dynamics if the following relation
holds: 2∆◦ = ∆+ + ∆−. In presence of an external magnetic field, only the
linear Zeeman shift satisfies this requirement, whereas the quadratic one does
not. In this case, the relevant dynamical quantity is δ = ∆+ + ∆− − 2∆◦,
which quantifies deviations from the linear splitting regime. It is experimen-
tally possible to control small values of δ dressing the system with microwave
fields [GWF+06].

When interaction energies are larger than the hopping rates (U0 + U2, U0 −
2U2 � |tα|), the system is in a Mott insulator phase and we compute the super-
exchange Hamiltonian Ĥeff

real with a second-order perturbative expansion of the
kinetic term. We provide the explicit expression of such Hamiltonian on one
link of the lattice. Let us consider the following basis for the link:

Basis : {|−〉|−〉, |−〉|◦〉, |−〉|+〉, |◦〉|−〉, |◦〉|◦〉, |◦〉|+〉, |+〉|−〉, |+〉|◦〉, |+〉|+〉};



4.2 Spin-1 Atoms 49

where the ket notation stand for |mF, site1〉|mF, site2〉. The zero-th order Hamil-
tonian in such a basis reads:

Ĥ
eff(0)
real = Diag (2∆−, ∆−, ∆+ + ∆−, ∆−, 0, ∆+, ∆+ + ∆−, ∆+, 2∆+) (4.6)

whereas the second order reads:

Ĥ
eff(2)
real = − 1

U0 + U2
· (4.7)

·



4|t−|2 0 0 0 0 0 0 0 0
0 |t−|2+|t◦|2 0 2t∗◦t− 0 0 0 0 0
0 0 (|t−|2+|t+|2)B 0 −(t∗◦t−+t∗+t◦)A 0 2t∗+t−B 0 0
0 2t∗−t◦ 0 |t−|2+|t◦|2 0 0 0 0 0
0 0 −(t∗◦t++t∗−t◦)A 0 |t◦|2C 0 −(t∗◦t−+t∗+t◦)A 0 0
0 0 0 0 0 |t◦|2+|t1|2 0 2t∗+t◦ 0
0 0 2t∗−t+B 0 −(t∗−t◦+t

∗
◦t+)A 0 (|t+|2+|t−|2)B 0 0

0 0 0 0 0 2t∗◦t+ 0 |t◦|2+|t+|2 0
0 0 0 0 0 0 0 0 4|t+|2


;

where

A =
U2(U0 + U2)

(U0 + U2)(U0 − 2U2) + δU0
+

U2(U0 + U2)

(U0 + U2)(U0 − 2U2) + δ(U2 − U0)
;

B =
(U0 − δ)(U0 + U2)

(U0 + U2)(U0 − 2U2) + δ(U2 − U0)
;

C =
4(U0 − U2 + δ)(U0 + U2)

(U0 + U2)(U0 − 2U2) + δU0
.

Let us now consider a simple class of mappings Ŵ{ϕ} which will be used in
the following, characterized only by a simple phase freedom:

Ŵ{ϕ}|mF = α〉real = eiϕα |n = α+ 1〉3hb (4.8)

These mappings are characterized by the property that the magnetization of
the spin insulator is directly mapped into the density of the three-hardcore
bosons. Therefore, since the Hamiltonian in equation (4.7) contains only off-
diagonal terms which preserve the total magnetization, we automatically gain
the possibility of studying hardcore bosons setups at fixed density.

As far as the interaction strengths are concerned, we report that the scat-
tering lengths a0 and a2 have very similar values both in 87Rb and 23Na. This
means that the spin-dependent part of the interaction is in natural setups almost
negligible, as it becomes clear once the ratio U2/U0 is calculated, respectively
−0.005 and 0.04 for the two atoms [vKKHV02, WGF+06, TWJ+96]. We do
not elaborate further on this issue as the scientific community is working on
methods to control independently the two scattering lengths.

The off-diagonal matrix elements in equation (4.7) correspond, via the map-

pings Ŵ{ϕ} (4.8), to terms describing the hopping of the emerging particles. In
particular, the matrix elements of the second sub-/superdiagonal correspond in
Ĥ3hb to one-particle hopping terms

|0〉|1〉 ↔ |1〉|0〉, |1〉|1〉 ↔ |2〉|0〉, |1〉|2〉 ↔ |2〉|1〉. (4.9)
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In order to map the spin model into a bosonic model with an effective three-body
repulsion, the one-particle hopping rates in (4.9) must be those of a system of
bosons. In other words, the rate of the |1〉|2〉 ↔ |2〉|1〉 process must be twice as
large as that of |0〉|1〉 ↔ |1〉|0〉 and a factor

√
2 larger than that of |1〉|1〉 ↔ |2〉|0〉.

The matrix elements of the fourth sub-/superdiagonal correspond to a two-
particle hopping:

|0〉|2〉 ↔ |2〉|0〉. (4.10)

The relative importance of one- and two-particle hopping rates can be modified
just by tuning |t◦|, a factor which multiplies the second sub-/superdiagonal and
is not present in the fourth one. In [MRLC10] we exploit this feature to propose
the experimental study a quasi-condensate of pairs of quantum particles.

Finally, let us stress that we have implicitly assumed to have the possibility of
tuning independently the three tα. Indeed, the superlattice scheme of chapter 2
can be used to do this2.

4.3 The Pfaffian Wavefunction

In this section we analyze the Pfaffian wavefunction [GWW92], an interesting
many-body state arising in the presence of three-body interactions. This state
has been proposed in the context of the quantum Hall effect (QHE) [Eza00] in
order to describe the many-body electron liquid at fractional magnetic filling
ν = 5/2. The interest in this wavefunction resides in the predicted property of
supporting non-Abelian quasi-excitations [MR91, RR96].

Here we deal with the bosonic version of the Pfaffian state and show that this
wavefunction can be studied also in a lattice. Combining exact-diagonalization
numerical approaches to some topological benchmark quantities, we show that
the ground state of the system features non-trivial topological hallmarks even in
the presence of significant magnetic fields. We then employ these tools to discuss
the possibility of using a spin-1 Mott insulator to realize such a wavefunction,
and underline some problems in this method.

4.3.1 Quantum Hall Effect on a Lattice

We consider a two-dimensional setup with N bosons with charge q interacting
via purely three-body repulsion (no two-body term) in presence of an external
uniform magnetic field with vector field A(r). The setup is pierced by a number
of magnetic fluxes NΦ equal to the number of particles N (filling factor ν = 1);
a typical length ` =

√
~c/qB is induced in the system by the magnetic field

itself. The system is ruled by the following many-body Hamiltonian, in which
we write the position of the particles with complex coordinates z = (x+ iy)/`:

ĤPf =
∑
i

[
pi − q

cA(zi)
]2

2m
+ c3

∑
i<j<k

δ(zi − zj)δ(zi − zk). (4.11)

c3, greater than zero, is the strength of the repulsion. The single particle levels
are arranged into a collection of degenerate manifolds, the Landau levels, sepa-
rated by a gap twice the cyclotron frequency 2~(qB/mc); as long as the chemical

2See reference [MRLC10] for some specific numerical simulations
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N NΦ Lx × Ly `/a degen. overlap CN dimH
4 4 4× 4 ∼ 0.8 3 78% 3 3620

Table 4.1: Exact diagonalization study of the many-body ground state of Hamil-
tonian (4.14) on a torus. The degeneracy and the Chern number of the ground
manifold in the continuum case are respectively 3 and 3. As discussed in Ap-
pendix A, the presence of magnetic fields strongly constraints the dimension of
the torus to be simulated; the next size would be 5 × 5, with an Hilbert space
of dimension 110000.

potential is smaller than this separation, the particles are confined to the low-
est Landau level and are characterized by wavefunctions which are analytical
in z (the exponent being the angular momentum). Within this framework,
the double-delta potential is properly regularized and the ground state of the
Hamiltonian is the Pfaffian wavefunction [GWW92]:

Ψ(z1, ...zN ) ∝ Pf

[
1

zi − zj

] ∏
i<j

(zi − zj) e−
∑
j |zj |

2/2. (4.12)

The Slater determinant
∏
i<j(zi − zj) prevents the coincidence of two or more

particles in the same spatial position; the prefactor Pf[1/(zi−zj)] is the Pfaffian
of the antisymmetric matrix with elements Aij = 1/(zi − zj):

Pf[A] =
1

2mm!

∑
π∈S2m

sgn(π)Aπ1,π2
Aπ3,π4

. . . Aπ2m−1,π2m
. (4.13)

It enables the superposition of two bosons but still forbids that of three. With
this construction, the wavefunction is forced to be the lowest angular momentum
state in the intersection between lowest Landau level and kernel of the three-
body interaction.

In order to discuss the possibility of simulating the Pfaffian state with spin-1
atoms, we have first to discretize the system. The discrete version of a single-
particle Hamiltonian with minimal coupling was shown in (3.13). We take into
account the presence of a three-body interaction with c3 → ∞ introducing the
three-hardcore bosons operators âj and â†j satisfying â3

j = 0 and â†3j = 0. The
Hamiltonian we are interested in is:

ĤPf−lat = −J
∑
<k,j>

eiφk,j â†kâj +H.c.; (â†j)
3 = 0. (4.14)

As in every discrete U(1) gauge theory, the magnetic field coupling to the po-
sitional degrees of freedom of the particles is represented by a phase φk,j =

2π/Φ0

∫ j
k
A · dl, where Φ0 = hc/q is the quantum of flux.

4.3.2 Topological Properties as a Benchmark

We now investigate to which extent transposing the system into a discrete lattice
modifies the nature of the many-body state. The problem arises from the com-
petition of two typical lengths, the magnetic length ` and the lattice constant
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Figure 4.2: (Top) Plot of the first 20 energy levels of the Hamiltonian (4.14)
studied on a 4 × 4 torus with the parameters listed in table 4.1. A threefold
quasi-degenerate ground state can be recognized. (Bottom) Cut of the first
twenty energy bands in the (θx, θy) space. The lowest red line, threefold degen-
erate, does not mix with the higher bands, i.e. the ground state multiplet is
always well-defined and separated from higher energy levels. This is a crucial re-
quirement in order to speak of a topological state. Reproduced from [MRLC10].

a. In the small magnetic field limit ` � a (or dilute limit, since the constraint
N = NΦ must hold), we expect the system to be insensitive to the discrete
nature of the space. On the other side, an analysis of what happens when the
magnetic field (and the particle density as well) increases is needed to test the
robustness of a fully discrete version of the Pfaffian wavefunction.

The characterization of QHE wavefunctions transposed from continuum sys-
tems, usually two-dimensional strongly interacting electrons, to discrete optical
lattices is a problem that has already been faced in the literature [HSDL07,
HSLD08, MC09]. Here we follow the standard approach. We perform an exact
diagonalization of the system with periodic boundary conditions (PBC). Three
marks are used to test the topological properties of the numerical ground state
and its resemblance with the Pfaffian wavefunction:

1. the agreement between the degeneracy of the discrete numerical and con-
tinuum analytical ground manifolds (the Pfaffian wavefunction has been
generalized on a torus first in [GWW92]);

2. a significant overlap of the discrete numerical wavefunctions with the con-
tinuum analytical ones;

3. the agreement between the Chern number [NTW85, Hat04, Hat05] of the
discrete numerical and continuum analytical ground manifolds.
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Figure 4.3: Plot of the auxiliary field Ω(θx, θy) for the system with Hamilto-
nian (4.14). The parameters of the system are those in table 4.1. The three
highlighted vortices mean that the Chern number of the system is equal to 3.
The definition of the field Ω(θx, θy) and the way it can be computed are dis-
cussed extensively in [Hat04, HSDL07, HSLD08], to which we refer the interested
reader. Reproduced from [MRLC10].

Results are reported in table 4.1. The three-fold degeneracy of the Pfaffian
ground state is strictly connected to the properties of the Jacobi theta functions,
which are often used to generalize several QHE states on the torus [GWW92].

Chern numbers have already been introduced in section 3.2.1 (see in par-
ticular equations (3.14) and (3.15)). Because the considered model was non-
interacting, the analysis exploited the properties of a well-defined Brillouin zone.
This approach can be generalized to a systems with disorder or with interactions
by testing its sensibility towards the twist of the boundary conditions, expressed
by two parameters (θx, θy) ∈ [0, 2π)× [0, 2π) [NTW85]. We give here the expres-
sion of the Chern number for the simple case of non-degenerate ground state,
whereas for more dimensions we refer to [Hat04, HSDL07]:

C =
1

2π

∫
dθxdθy

[
∂θxAy(θ1, θ2)− ∂θyAx(θ1, θ2)

]
(4.15)

where Ai = 〈Ψ(θx, θy)| ∂∂θi |Ψ(θx, θy)〉 and |Ψ(θx, θy)〉 is the ground state with
boundary conditions (θx, θy). As in equation (3.15), C is an integer number.
We compute the Chern number with the method provided in [Hat04] which
avoids any explicit numerical differentiation and connects the evaluation of C
to the number of vortices displayed by a proper auxiliary field Ω(θx, θy). The
fact that C ∈ Z motivates its extensive use, since it provides a reliable yes-no
benchmark of topological properties which works better than the wavefunction
overlap ranging in [0, 1].

In figure 4.2 we show the energy spectrum of the Hamiltonian (4.14) studied
on a torus with the parameters listed in table 4.1. The figure highlights also the
fact that moving in the (θx, θy) space the threefold degeneracy of the ground
state multiplet is preserved. Figure 4.3 shows the auxiliary field Ω(θx, θy) in
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U2 =
√

2/(2
√

2 + 3)U0 ∼ 0.24U0 δ = −2|t◦|2/(U0 + U2)
t◦ = 0.1U0 t− = 0.1t◦e

iϑ t+ = 2t∗−

|0〉|1〉 ↔ |1〉|0〉 −0.0016 U0 |1〉|1〉 ↔ |2〉|0〉 −0.0022 U0

|1〉|2〉 ↔ |2〉|1〉 −0.0032 U0 |0〉|2〉 ↔ |2〉|0〉 −0.0006 U0

Table 4.2: Set of parameters used together with the mapping ŴPF to recover
the model in equation (4.14). The last lines show the amplitudes of the matrix
elements representing the hopping of one and two emerging hardcore bosons.
The one-particle ones are in a ratio {1,

√
2, 2} whereas the two-particle one is

smaller.

this case and the three vortices, which correspond to a Chern number equal to
three.

Within the uncertainty given by working with small systems without ac-
cessing the thermodynamic limit, we can at least affirm that our results are
compatible with the presence of an incompressible liquid with a degenerate
ground state on the torus at ` ∼ 0.8 a. Moreover, they also present significant
signatures that the nature of the system should be strictly linked to that of the
Pfaffian state.

4.3.3 Tentatives Towards an Implementation with Spin-1
Atoms

The previous section shows that if we were able to implement Hamiltonian (4.14)
we would access the Pfaffian wavefunction with our quantum simulator. The
Hamiltonian for effective bosons obtained in equation (4.7) has to be then com-
pared with the link version of equation (4.14):

Ĥdisc = −J



0 0 0 0 0 0 0 0 0
0 0 0 eiφi,j 0 0 0 0 0

0 0 0 0
√

2eiφi,j 0 ♥ 0 0
0 e−iφi,j 0 0 0 0 0 0 0

0 0
√

2e−iφi,j 0 ♠ 0
√

2eiφi,j 0 0
0 0 0 0 0 0 0 2eiφi,j 0

0 0 ♥ 0
√

2e−iφi,j 0 0 0 0
0 0 0 0 0 2e−iφi,j 0 0 0
0 0 0 0 0 0 0 0 0


where the graphic symbols highlight some terms of equation (4.7) which are not
present in (4.14).

One of the problems is related to the presence in ♥ of the correlated hopping
term (4.10), which is not comprised by the the QHE model. Therefore, we tried
to study the model in the regime: |t◦| � |t+|, |t−|, which decreases the rele-

vance of correlated hopping. In this case we use a mapping ŴPF characterized
by the phases: {ϕ− = 0;ϕ◦ = 0;ϕ+ = π} and set the various parameters to
the values listed in table 4.2. This sets the second sub-/superdiagonal to be
approximately proportional to {1;

√
2;
√

2; 2}. Unfortunately, this tunes only
eight of the terms of the diagonal to an approximate same value: the central
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Figure 4.4: (Top) Plot of the first 20 energy levels of the spin-1 based model
with the parameters listed in table 4.2, studied on a 4 × 4 torus as before.
No threefold quasi-degenerate ground state can be recognized. Moreover, the
gap here is approximately one order of magnitude smaller than in the Pfaffian
case (here we take J = −0.0016 U0). (Bottom) Cut of the first twenty energy
bands in the (θx, θy) space. No definite three-fold ground state multiplet can be
recognized. This result strongly tells us that the system is far from featuring
a ground state sharing the topological properties of the Pfaffian wavefunction.
Reproduced from [MRLC10].

one ♠ is significantly different from the others, leading to a completely different
model with an effective nearest neighbours interaction. Moreover, this method
has the general disadvantage that the effective hopping rate J would be propor-
tional to |t◦t−|/(U0 + U2) and therefore require temperatures even lower than
the pure super-exchange effect |t◦|2/(U0 + U2). As displayed in figure 4.4, a
further numerical analysis shows that the energy spectrum does not exhibit any
degenerate ground state and that moving in the (θx, θy) space many energy
bands cross, making the calculation of C meaningless.

As an alternative, we abandon the attempt to exactly recover the model in
equation (4.14) and try instead to realize a similar system whose ground state
is characterized by the same benchmarks of the Pfaffian wavefunction, i.e. the
same degeneracy on the torus and the same Chern number. At low density,
the number of global Fock states with more than two particles on one link is
lower than that of the other states. Thus, we expect that matrix elements of
the link Hamiltonian connecting states with more than two particles per link
do not play a relevant role in the global dynamics; even sensible deviations of
such terms from the exact values should not change too much the properties of
the ground state. Hence, we investigated sets of parameters which could make
such matrix elements the only ones sensibly different from the ideal values. We
consider the same 4× 4 system as before at density ρ = 1/4 and magnetic field
NΦ = 4, which we can numerically analyze, but the next considerations could
also be generalized to systems with smaller magnetic fields (or more dilute).
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Unfortunately, even this turned out to be impossible. We tried to combine a
tomographic analysis of the Pfaffian wavefunction with the tuning of all the
matrix elements of the link Hamiltonian connecting states with less than three
particles. However the numerical simulation of these Hamiltonians gave always
as result non-degenerate ground states characterized by no topological proper-
ties, i.e. a Chern number equal to zero [Hat05].

Unfortunately we were then not able to find neither a way to get the Hamil-
tonian in equation (4.14) nor to realize a similar Hamiltonian whose ground
state was three-fold degenerate and characterized by a Chern Number equal to
three. We think that the Pfaffian wavefunction cannot be readily implemented
with the help of a quantum simulator based merely on the ingredients described
in this work. It might be nonetheless the case that, with the help of further
ideas such as additional ancillary system, it becomes feasible.

4.4 Conclusions and Perspectives

In this chapter we have examined the properties of a discrete bosonic Pfaffian
wavefunction, a many-body state arising in presence of contact three-body re-
pulsion, in the non-dilute limit. Our proposal to simulate such interaction relies
on a local mapping between the dynamics of a spin-1 Mott insulator and that
of emerging bosons characterized by such interaction. Numerical calculations
show that the setup is unable to realize the Pfaffian wavefunction, and that
additional external control is needed. This result leaves the open perspective
of actually solving the encountered problem. In this case, it would also be ex-
tremely interesting to develop experimental methods for the manipulation of
the non-Abelian excitations of the Pfaffian wavefunction.

Another interesting perspective is the search for systems characterized by
three-body interactions which could be simulated with a spin-1 Mott insulator.
In [MRLC10] we study a one-dimensional model characterized by a dominating
correlated hopping, which can drive a phase transition to a one-dimensional
quasi-condensate of pairs without any two-body attraction. Moreover, we show
that substituting the three-body interaction with a two-body one, the system
becomes unstable toward collapse: this strictly links the quasi-condensate of
pairs to the stabilizing effect of the three-body repulsion. We show that this
phase transition from a quasi-condensate of atoms to a quasi-condensate of pairs
can be studied with the setup explained in this chapter.

Recently, it has been proposed that the spin-1 Mott insulator could be used
to simulate compact Quantum Electrodynamics and the effect of confinement
between two external static charges [ZCR12].



Chapter 5

Particle-Hole Pairs and
String Order in One
Dimension

The development of the in-situ measurement technique reviewed in section 1.3
(see references [BGP+09, SWE+10]) has allowed the experimental investiga-
tion of several aspects of the Bose-Hubbard model in low dimensions [BPT+10,
WSF+11, WES+11, CBP+12, EFP+12]. In this chapter we focus on the ob-
servation of correlated particle-hole pairs and of a string order parameter in a
one-dimensional bosonic gas [ECF+11].

The quantum phase transition from Mott insulator to superfluid in three-
dimensions is characterized by the spontaneous breaking of the U(1) symmetry
of the phase of the condensate wavefunction. Due to the Mermin-Wagner theo-
rem [Bog62, MW66], this cannot happen in a one-dimensional optical lattice and
no long-range order is expected to set in. Instead, the superfluid shows quasi-
long range order with algebraic decay of correlations. This phase is sometimes
called Luttinger liquid.

In this chapter we discuss how to detect this quantum phase transition by
probing local and non-local fluctuations of the atomic density. Moreover, we
summarize the results of an experiment aimed at the detection of these quan-
tities carried out in the group of Prof. I. Bloch at the Max-Planck-Institut
für Quantenoptik [ECF+11]. The author of this thesis participated at the ex-
periment as theoretical support providing the simulations of an infinite one-
dimensional system made with the density matrix renormalization group al-
gorithm (DMRG) [Sch11]. Numerical simulations with Matrix Product States
(MPS) have been done by Dr. M. C. Bañuls whereas quantum Monte Carlo
(QMC) results have been provided by Prof. L. Pollet.

In the sections 5.1, 5.2 and 5.3 we summarize the experiment and the main
results; we support the discussion with the necessary theoretical background.
In section 5.4 we focus on the methods used to analyze numerical data and
obtain information about the infinite system. Conclusions and perspectives are
presented in section 5.5.

57
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5.1 Correlated Particle-Hole Pairs

The physics of an ultracold bosonic gas trapped in a one-dimensional optical
lattice is described by the Bose-Hubbard model (see also section 1.2):

Ĥ = −J
∑
i

[
b̂†i b̂i+1 +H.c.

]
+
U

2

∑
j

n̂j(n̂j − 1) +
∑
j

(−µ+ V0 j
2)n̂j (5.1)

where b̂
(†)
i are bosonic field operators and V0 j

2 represents the parabolic confine-
ment.

The Mott insulator phase, which appears for J � U , is characterized by
the squeezing of the number of atoms per site. However, because the operator
n̂i commutes with the Hamiltonian only for J = 0, for J 6= 0 the eigenstates
of Ĥ do not have a defined number of atoms per site. Intuitively, the ground
state can be understood as a fixed-density background on top of which coherent
particle-hole pairs appear. These are usually referred to as doublon-holon pairs;
we will not use this convention. The first goal of the experiment is to reveal the
existence of such pairs.

A degenerate gas of 87Rb is prepared in a two-dimensional optical lattice. In
order to avoid Mott insulators with mean occupation numbers n̄ > 1, the typical
experimental realization has a relatively small number of atoms, comprised be-
tween 150 and 200. The setup can be used for studying either a two-dimensional
gas, or, by increasing the lattice depth along one dimension, an array of one-
dimensional systems. This latter case is considered in this section, in which we
primarily deal with one-dimensional physics.

The in-situ measurement technique introduced in section 1.3 enables the
measurement of the on-site parity, described by the operator ŝj = eiπ(n̂j−n̄),
whereas no direct information about n̂j is accessible. From now on, since the
experiments run in a regime where there is in average one atom per site, we set
n̄ = 1, and therefore the eigenstates of ŝj with eigenvalue +1 are those states
with an odd number of atoms at site j, whereas states with an even number of
atoms have eigenvalue −1.

Let us define the two-site parity correlation function:

Ck(d) = 〈ŝkŝk+d〉 − 〈ŝk〉〈ŝk+d〉 (5.2)

where d represents the distance between the two sites. The function Ck(d) is
expected to detect the presence of correlated particle-hole pairs via the enhance-
ment of 〈ŝkŝk+d〉, because uncoherent excitations (mainly thermal) contribute
only to 〈ŝk〉〈ŝk+d〉. Experimentally, the average over many realizations and over
many sites k yields the quantity C(d), which is used and plotted in the following.

Let us theoretically discuss C(d) for an ideal situation with no parabolic
confinement, V0 = 0, and without thermal excitations, T = 0. We apply per-
turbation theory to compute C(d = 1) in the limit of deep Mott insulator with
n̄ = 1, i.e. J � U and 0 < µ < U . Let us split Hamiltonian (5.1) into
an unperturbed term, Ĥ0 = U

2

∑
j n̂j(n̂j − 1) − µ

∑
j n̂j , and a perturbation,

Ĥ1 = −J
∑
i b̂
†
i b̂i+1 +H.c..

In case one is interested in intensive properties of the ground state for T =
0, such as the energy density, or C(d = 1), the cluster expansion for many-
body states developed in [GSH90] is the tool to be used1. The computation of

1This technique has been applied to the Bose-Hubbard model in [EM99].
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Figure 5.1: Nearest-neighbour correlations C(d = 1) for a one-dimensional sys-
tem as a function of J/U . Red dots: experimental data. Blue dots: mea-
surements of correlations between neighbouring sites belonging to different one-
dimensional arrays. They are consistent with zero and show the genuine one-
dimensional nature of the experiment. The curves represent theoretical calcula-
tions. Those computed via first-order perturbation theory (dashed-dotted line)
and via DMRG (dashed line) are for a homogeneous system at T = 0. Solid
line: finite-temperature MPS calculation including temperature T = 0.09U/kB
and the harmonic confinement. Reproduced from [ECF+11] with permission
from AAAS.

such intensive quantities is rewritten in terms of ground state properties of the
original Hamiltonian restricted to connected graphs of the lattice. Moreover,
low-order contributions require to take into account only small graphs.

In order to compute C(d = 1) at the lowest order, it suffices to consider the
smallest connected graphs, i.e. those composed of two neighboring sites. The
Hamiltonian restricted to two sites is:

Ĥ = −Jb̂†1b̂2 − Jb̂
†
2b̂1 +

U

2
n̂1(n̂1 − 1) +

U

2
n̂2(n̂2 − 1)− µ(n̂1 + n̂2). (5.3)

The ground state, computed via standard first-order perturbation theory, is:

|ΨJ/U∼0〉 =
1

N

(
|1, 1〉+

√
2
J

U
(|2, 0〉+ |0, 2〉)

)
; N +

√
1 + 4

(
J

U

)2

(5.4)

where |n,m〉 is the Fock state with n (m) particles in the first (second) site of
the link. Applying the definition of C(d = 1) to |ΨJ/U∼0〉 and retaining the
second order in J/U we obtain C(d = 1) = 16(J/U)2 + . . ..

In order to obtain the full dependence of C(d = 1) on J/U , we analyze a ho-
mogeneous system at T = 0 with an open-source DMRG algorithm2 which
implements the conservation of the number of particles and considers open
boundary conditions. The computation of C(d) can be done reliably even with
relatively small systems, as for example L = 48. Numerically, C(d) is computed
in the center of the system, so that finite-size effects can be neglected. This has
been tested by moving k slightly far off from the exact center.

2It can be downloaded from www.dmrg.it.
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Figure 5.2: Parity correlations for different distances d = 0, 1, 2 (respectively
in green, red and gray). Dots are experimental measures whereas lines are the-
oretical simulations via an MPS algorithm including harmonic confinement and
temperature T = 0.09U/kB . Right panel is a zoom of the left one. Reproduced
from the supplementary materials of [ECF+11] with permission from AAAS.

Figure 5.1 shows experimental data and different theoretical calculations.
The DMRG calculation, which can be considered exact for any practical pur-
pose, is the dashed red line. The quadratic behaviour predicted via perturbation
theory is valid only for an extremely small region J/U < 0.05. As expected, at
J = 0 we get C(d = 1) = 0; the signal increases for increasing J/U and reaches
a peak for 0.1 < J/U < 0.2. Moreover, C(d = 1) is not zero at the transition
to the superfluid phase, which is at J/U ∼ 0.3, and therefore it is not a good
order parameter for the insulating phase. The measured quantity is a genuine
quantum effect and is decreased by incoherent (thermal) fluctuations. This ex-
plains why the theoretical prediction at T = 0 obtained via DMRG reproduces
only qualitatively, but not quantitatively, the experimental data. Thermal ef-
fects in the experiment cannot be disregarded and temperature is estimated to
T = 0.09U/kB . Another source of noise is the fact that experimental realiza-
tions differ slightly from each other in the number of atoms. The statistical
average needed to compute C(d) includes an average over the chemical poten-
tial. The effect is especially severe close to the phase transition, where the Mott
lobe becomes narrower.

It is also possible to probe C(d) for d 6= 1. For d = 0, it is equivalent to
probing the on-site variance of the parity operator ŝk. Since the Mott insulator
is characterized by the squeezing of the on-site atomic number, we expect also
C(d = 0) to be very small for deep Mott insulators, and to reach larger values
at the phase transition.

For d > 1, the quantity C(d) does not only probe the presence of particle-
hole pairs of length d, but also shorter. Nevertheless, the values of C(d) decrease
while increasing d; for d = 2 the theory predicts a small maximum of 0.01 at
J/U ∼ 0.17 which is experimentally not distinguishable from statistical noise.
Experimental and theoretical C(d) for d = 0, 1, 2 are shown in figure 5.2.

Finally, the measurement of correlated particle-hole pairs is repeated also
for a two-dimensional optical lattice. Theoretical results via quantum Monte
Carlo (QMC) and experimental measures clearly highlight the important role
of dimensionality, as shown in figure 5.3. In particular, the prominent role of
quantum correlations in one dimension is underlined.
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Figure 5.3: Nearest-neighbour correlations C(d = 1) for a two-dimensional sys-
tem as a function of J/U . Dots: experimental correlations between neighboring
sites along the x direction (red) and y direction (blue). The agreement of the
data shows the genuine two-dimensionality of the system. The curves repre-
sent theoretical calculations for a homogeneous system: first-order perturbation
theory (dashed-dotted line) and QMC at T = 0.01U/kB (dashed line) and at
T = 0.1U/kB (solid line). Reproduced from [ECF+11] with permission from
AAAS.

Correlations are smaller than in the one-dimensional case: the peak values
are C(d = 1) = 0.1 in one dimension and C(d = 1) = 0.06 in two. The superfluid
phase sets in for a smaller value of J/U and numerical simulation obtained via
extremely different methods (perturbation theory at T = 0, exact QMC for
T = 0.01U/kB and for T = 0.1U/kB , all of them for a homogeneous system)
do not significantly disagree, as long as the insulating phase is considered. The
good theory-data agreement benefits from the thickness of the Mott lobe in two
dimensions, reducing therefore errors due to the average over different chemical
potentials.

5.2 A String Order Parameter

The second goal of the experiment is the measurement of the string correlation
function

O2
P,k(l) =

〈
k+l∏
j=k

ŝj

〉
(5.5)

for a bosonic gas trapped in a one-dimensional optical lattice. Note that once
the non-local operator

ÔP(k) =
∏
j<k

ŝk (5.6)

is defined, the expectation value (5.5) can be rewritten as:

O2
P,k(l) = 〈ÔP(k)ÔP(k + l)〉. (5.7)
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The interest of this quantity resides in the fact that:

O2
P + lim

l→∞
O2

P,k(l) (5.8)

is a good order parameter for the Mott-insulating phase of a homogeneous Bose-
Hubbard model (V0 = 0). For homogeneous systems there is no dependence on
the site k, thus it is dropped in the notation when not needed. Let us briefly
recall that researchers have already studied string operators as order param-
eters of one-dimensional quantum systems very similar to the one considered
here [dNR89, DTBA06, BDTGA08, PGWS+08].

We now elaborate on the relevance of O2
P. Up to now, the Mott-superfluid

phase transition has been observed via two methods (see also the discussion in
section 1.3). The first is the detection of the phase coherence of the superfluid,
which is related to the U(1) symmetry breaking appearing in three spatial di-
mensions, and which strictly speaking only identifies the superfluid phase. The
second is the measurement of the excitation spectrum. Since the Mott insulator
is gapped and the superfluid is gapless, a measurement of the excitation gap
detects the phase transition. The quantity O2

P is different from those listed
previously in that it is a good order parameter for the Mott insulator in one
dimension and it is a function of the ground state only, rather than of the
spectrum.

Let us better motivate that O2
P is a good order parameter, starting with an

intuitive argument. We first consider the global ground state for J = 0:

|ΨJ/U=0〉 =
∏
j

b̂†j |0〉. (5.9)

For this state, O2
P,k(l) = 1. Now, let us consider 0 < J/U � 1. The state is a

linear superposition of Fock states, some of which are characterized by the pres-
ence of particle-hole pairs. Notice that Fock states are eigenstates of the string
operator

∏
ŝk; therefore, the value O2

P,k(l) is the weighted average of the expec-
tation value of

∏
ŝk over the relevant Fock states. Let us consider a Fock state

which locally looks like a state with a single particle-hole pair: b̂†j b̂j+1|ΨJ/U=0〉.
The expectation value of ŝj and of ŝj+1 is equal to −1 because sites j and j+ 1
have even occupation number. Fock states with pairs which are entirely within
the string [k, k + l] contribute globally to O2

P,k with a plus one because for a
Fock state 〈

∏
ŝk〉 =

∏
〈ŝk〉. There are also Fock states whose pairs are cut, as

for example when j = k+ l: the particle is inside the string and the hole is out-
side. The expectation value of the string operator on such Fock state yields −1.
As a consequence, O2

P,k(l) < 1. In particular, it monotonically decreases with
increasing J/U because the probability to cut particle-hole pairs increases with
the length of the particle-hole. The length of the correlated pairs increases with
J/U , finally reaching the system size at the phase transition. Because in order
to probe correctly a particle-hole pair a string longer than the pair is needed,
the limit l → +∞ must be taken. At the phase transition, particles and holes
are not anymore nicely coupled, but rather randomly distributed, so that their
contributions average to O2

P = 0.
The properties of O2

P can also be numerically tested with a DMRG simula-
tion. Figure 5.4 shows a numerical calculation of O2

P(l) both for finite values of l
and for l→∞. The finite-size scaling procedure used to obtain O2

P is presented
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Figure 5.4: Numerical calculation of the string-order parameter O2
P(l) via

DMRG for a homogeneous system at T = 0. O2
P(l) is plotted as a function

of J/U for different string length l. Inset: the extrapolated value for l → ∞
is a good order parameter for the Mott insulator phase (see section 5.4 for the
scaling technique). Reproduced from [ECF+11] with permission from AAAS.

in section 5.4. The figure shows that also for the experimentally relevant case
of short strings l � ∞, O2

P(l) has features which make it reminiscent of the
insulator-superfluid transition.

Finally, we can also present an analytical analysis of O2
P(l). It requires the

technique of bosonization of a bosonic gas in a one-dimensional optical lattice3.
Reference [BBZ03] provides a derivation of the bosonization of a weak optical
lattice, which is described by the sine-Gordon Hamiltonian [Gia04, GNT98]:

Ĥ =
~vS
2π

∫ +∞

−∞
dx

[
K
(
∂xφ̂(x)

)2

+
1

K

(
∂xθ̂(x)

)2

+ g cos
(

2θ̂(x)
)]
, (5.10)

where the two field operators satisfy canonical commutation relations:[
∂xθ̂(x1), φ̂(x2)

]
= iπδ(x1 − x2). (5.11)

vS is the sound velocity of the excitations, K is the dimensionless Luttinger
parameter and g is related to the strength of the optical lattice. In particular,
for an optical lattice potential V (x) = V0/2 sin(2πx/a), where V0 is the strength
of the potential and a is the lattice spacing, we get g = πV0n̄/(~vSa). Even if
we are interested in studying a strong optical lattice, whose best description is
accounted by the Bose-Hubbard model, we can obtain qualitative information
about the quantum phases of a strong optical lattice also by studying Hamilto-
nian (5.10), since it describes its low-energy limit. In particular, the superfluid

3We do not review the technique of bosonization because it only plays a marginal role in this
dissertation and it is reviewed in good textbooks, as for example [Gia04]. Reference [Caz04]
studies it with a focus on cold gases.
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phase appears for K > 2 and the term proportional to g is not relevant. The
phase is gapless and displays the same qualitative features of a bosonic gas with-
out optical lattice. The Mott insulator phase appears for K < 2 and the term
proportional to g is relevant; the phase is gapped.

The bosonized version of the operator ÔP(k) (5.6) is [Nak03b, DTBA06,
BDTGA08]:

ÔP(k) =
∏
j<k

ŝk ∝ cos
(
θ̂(xk)

)
(5.12)

We can estimate the dependence on l of O2
P,k(l) = 〈ÔP(k)ÔP(k+ l)〉 in the two

phases. For K > 2, the computation can be done setting g = 0. We expand:

cos(θ̂(xk)) = 1
2

(
eiθ̂(xk) + e−iθ̂(xk)

)
. Since the Hamiltonian is quadratic, we

make use of the formula: 〈eiAθ̂(xk)eiBθ̂(xk+l)〉 = e−
1
2 〈(Aθ̂(xk)+Bθ̂(xk+l))

2〉. More-
over: 〈(

Aθ̂(xk) +Bθ̂(xk+l)
)2
〉
6= 0⇔ A+B = 0. (5.13)

Consequently:

〈ÔP(k)ÔP(k + l)〉 ∝ e−
1
2 〈(θ̂(xk)−θ̂(xk+l))

2〉 ∼
(
l2 + Λ2

Λ2

)−K4
l→+∞−−−−→ l−

K
2 (5.14)

The parameter Λ is a cutoff for large momenta which regularizes the expectation
value. The correlator decays algebraically to zero and the exponent is easily
related to the Luttinger parameter K. The formula used to demonstrate (5.14)
can be found in appendix C of reference [Gia04].

Let us consider the Mott insulator, i.e. K < 2. Here g 6= 0 and the cal-
culation is more complicated. An analytical analysis can be done for K ∼ 0.
Let us start with the canonical transformation: φ̂(x) 7→ φ̂(x)/

√
K and θ̂(x) 7→√

Kθ̂(x). The Hamiltonian turns into:

Ĥ =
~vS
2π

∫ +∞

−∞
dx

[(
∂xφ̂(x)

)2

+
(
∂xθ̂(x)

)2

+ g cos
(

2
√
Kθ̂(x)

)]
(5.15)

The term proportional to g can be expanded as:

cos
(

2
√
Kθ̂(x)

)
∼ 1− 2Kθ̂(x)2 + . . . (5.16)

The Hamiltonian is again quadratic in the field operators and correlations can
be computed [GNT98]:

〈ÔP(k)ÔP(k + l)〉 ∝
〈
eiθ̂(xk)e−iθ̂(xk+l)

〉
l→∞−−−→

∣∣∣〈eiθ̂(xk)
〉∣∣∣2 + Ω

√
le−
√

4πgKl

(5.17)
where Ω is a positive number which we do not better specify. It is also possible

to show that
〈
eiθ̂(xk)

〉
6= 0 and that, because of homogeneity, the quantity is

independent from xk [LZ97]. This calculation highlights a different decay of the
correlation function, which is now exponential. The correlation length depends
on the Luttinger parameter K.

Motivated by this analysis, the experimental measurement of O2
P(l) is per-

formed. Results are shown in figure 5.5, together with the comparison to MPS
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Figure 5.5: Experimental measures and theoretical predictions of string corre-
lators. Experimental values (A) and MPS calculation (B) of O2

P(l) for l ≤ 8.
Experimental values (C) and MPS calculation (D) of Õ2

P(l) defined in equa-
tion (5.18) for l ≤ 8. The numerics considers the parabolic confinement and
T = 0.09U/kB . Reproduced from [ECF+11] with permission from AAAS.

simulations taking into account the presence of the trap and of temperature
T = 0.09U/kB . There is a qualitative theory-data agreement. As in the homo-
geneous system, O2

P(l) decays with increasing J/U . The decay is significantly
enhanced, probably by temperature effects, as it can be observed comparing
data for l = 8 in figure 5.4 and 5.5 A. The effect of temperature is also revealed
by the fact that O2

P(l) is significantly smaller than one even at J/U ∼ 0. We
leave as an interesting open problem the theoretical development of quantities
which can be extracted from such measurements to be used for better charac-
terizing the quantum state of the system, as for example the determination of
the Luttinger parameters of the effective low-energy model, even in presence of
non-negligible thermal and finite-size effects.

5.3 Multi-Site Correlations

Finally, we investigate whether the observation of a non-zero string order corre-
lation function can be related to the presence of genuine multi-site correlations.

First, we rule out that the observed state is completely uncorrelated. We
define:

Õ2
P(l) = O2

P(l)−
k+l∏
j=k

〈ŝj〉. (5.18)

Notice that Õ2
P(l = 1) = C(d = 1). Moreover, since for J/U 6= 0 it holds that
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Figure 5.6: Three-site cumulant 〈ŝ1ŝ2ŝ3〉c for three neighbouring site. Dots:
experimental data. Dashed line: DMRG calculation for a homogeneous system
at T = 0. Solid line: MPS calculation including the confining potential and
T = 0.09U/kB . Reproduced from the supplementary materials of [ECF+11]
with permission from AAAS.

∏k+l
j=k〈ŝj〉

l→∞−−−→ 0, we have:

lim
l→∞

Õ2
P(l) = O2

P(l); J/U 6= 0 (5.19)

Figure 5.5 shows the experimental and theoretical results. As expected,
the uncorrelated state J/U = 0 is not detected by Õ2

P(l). We observe a rapid
increase for increasing J/U and then a sudden decrease which resembles the
behavior of O2

P(l). The experimental data clearly rule out the possibility of an
uncorrelated state.

Still, this does not rule out the possibility that the state is characterized
by only two-site correlations. Let us consider a string of length l = 3 and
define a correlator which can detect a genuine three-site correlation, or so-called
three-site cumulant:

〈ŝ1ŝ2ŝ3〉c = 〈ŝ1ŝ2ŝ3〉 − 〈ŝ1〉〈ŝ2〉〈ŝ3〉 − C1,2〈ŝ3〉 − C1,3〈ŝ2〉 − C2,3〈ŝ1〉 (5.20)

with Ci,j the two-site cumulant Ci,j = 〈ŝiŝj〉 − 〈ŝi〉〈ŝj〉. Figure 5.6 shows the
experimental measure of 〈ŝ1ŝ2ŝ3〉c. The experimental data show a clear peak for
0.1 < J/U < 0.2 which is not compatible with zero and therefore rules out the
possibility that the state can be described only in terms of two-site correlations
alone.

Finally, let us stress that three-site correlations can arise also from a state as
|ΨJ/U∼0〉, where only particle-hole pairs extended on nearest neighboring sites
are present.

5.4 Finite-Size Scaling of the String Order Pa-
rameter

We describe the DMRG simulations used to obtain the data plotted in figure 5.4.
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Figure 5.7: Numerical simulation of O2
P(l) for a system of length L = 192 with

N = 192 particles via DMRG (m = 235). J/U = 0.33. The l sites are always
taken in the center of the system. Lines connecting the dots are a guideline for
the eye. The fact that O2

P(l = 0) = 1 is a numerical artifact and is not relevant
for the future discussion. The fact that O2

P(l = 191) = 1 is a consequence of
the fixed number of particles and is to be considered a finite-size effect, together
with the growth which starts even before l = L/2.

The numerical simulations span system sizes between L = 120 and L = 256.
The number of states retained in the DMRG calculation, m, has been chosen
in order to have a truncation error smaller than 10−8. This results in a relative
error for the shown data which is smaller than 10−3, as estimated via comparison
of data for different m between 180 and 235.

In figure 5.7 we plotO2
P(l) for a system of length L = 192. The plot highlights

the importance of finite-size effects. Indeed, since the algorithm works with a
fixed number of particles, an unphysical growth of the signal sets in at l < L/2.
Practically speaking, from a system of length L = 192 we are able to extract only
30 ÷ 35 points which are physically relevant. This emphasizes the importance
of an accurate scaling procedure for l→∞.

We introduce the notation O2
P(J/U, l, L) to denote for the expectation value

of the string correlator of length l obtained from the numerical simulation of a
system of length L. The l sites are always taken in the center of the system in
order to minimize finite-size effects.

For the finite-size scaling in the inset of figure 5.4, we analyzed correlators
O2

P(J/U, αL,L) for a fixed fraction α of the total length L. We extrapolated:

O2
P = lim

L→∞
O2

P(J/U, αL,L) (5.21)

using a scaling of the formO2
P(J/U, αL,L) = a+bLη [KT92, UNK08, DDDBO11].

To determine the point of the phase transition, (J/U)c, we fit the extrapo-
lated values with:

O2
P ∝ e

−A
√

( JU )
c
− J
U (5.22)

The results for (J/U)c appear to be strongly dependent on the fitting interval
[(J/U)1 , (J/U)2] and α, and are shown in table 5.1. This large systematic error
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α = 1/4 α = 1/3 α = 1/2
[(J/U)1, (J/U)2] = [0.23, 0.37] 0.303 0.306 0.296
[(J/U)1, (J/U)2] = [0.24, 0.36] 0.310 0.311 0.299
[(J/U)1, (J/U)2] = [0.25, 0.35] 0.319 0.318 0.305
[(J/U)1, (J/U)2] = [0.26, 0.34] 0.321 0.319 0.311
[(J/U)1, (J/U)2] = [0.27, 0.33] 0.317 0.314 0.309

Table 5.1: Results for (J/U)c for different relative lengths α and fitting intervals
[(J/U)1, (J/U)2].

reflects the difficulty of doing reliable numerics in presence of a phase-transition
of BKT type.

5.5 Conclusions and Perspectives

In conclusion, we have presented a theoretical and experimental study of the
phase transition from Mott insulator to superfluid of the one-dimensional Bose-
Hubbard model via local and non-local parity measurements. We have shown
that parity-parity correlation functions can be used to probe the presence of
correlated particle-hole pairs in the Mott insulator. We have analyzed the prop-
erties of the string operator given by the product of parity operators in a string.
In particular, it is a non-local order parameter for the Mott-insulating phase.
These quantities can be measured experimentally for a bosonic gas trapped in
a one-dimensional optical lattice and are compared to finite-size MPS simula-
tions at finite temperature. Finally, the data have been proven to show genuine
multi-site correlations.

From the experimental point of view, these results open the way to the
experimental revelation of topological phases via probing the non-local order
parameter which characterizes them. In particular, the same technique could be
applied to one-dimensional spin-1 atoms with long-range interactions to detect
the Haldane phase [Hal83, dNR89].

Theoretically, this experiment underlines the interest in pursuing the study
of finite-size systems to develop quantities which are experimentally accessible
and theoretically relevant. Moreover, the generalization of the string order
parameter for higher-dimensional systems to a membrane order parameter could
also be interesting [PGWS+08].
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Chapter 6

Fermionic Gaussian States

In this chapter we present a self-consistent introduction to fermionic Gaussian
states. Gaussian states are many-body quantum states which are completely
characterized by their covariance matrix.

To the best of our knowledge, comprehensive studies of fermionic Gaus-
sian states have been first presented by Botero and Reznick [BR04] and by
Bravyi [Bra05], even if there are earlier studies on closely related problems [Kni01,
TD02]. We do not follow the construction of [Bra05], based on the functional
integral of Grassmann variables, but rather follow an approach which only relies
on matrix analysis, as in [BR04].

Gaussian states are the appropriate instrument for solving problems related
to quadratic Hamiltonians, which can be always mapped to non-interacting
models. For instance, they can be used to determine the ground state properties
and to compute the corresponding time evolution. Since the treatment of a
Gaussian state composed of N fermionic modes requires to work with matrices
whose size scales linearly in N , they can be efficiently simulated with a classical
computer [Kni01, TD02].

Starting from these early works, fermionic Gaussian states have been fur-
ther developed. We list here some of the most significant recent contributions.
In [Hor11] the authors compute the time evolution of a Gaussian state via a
master equation with jump operators which are linear and quadratic in the
fermionic fields. This method is used to characterize the interplay between dis-
sipation and quantum phase transitions in spin systems. A similar work has
been presented in [EP10]. In [KC10] the authors also include the mean-field
treatment of interactions within this formalism. The method is used to com-
pute the Gaussian state which optimally approximates the ground state of an
interacting model; the time evolution ruled by a quartic Hamiltonian is also
discussed. In [BK11a] the authors rigorously demonstrate that the time evo-
lution described by a master equation with jump operators which are linear in
the fermionic field maps Gaussian states into Gaussian states.

In this chapter we review some known results and derive some formulas which
we could not find in the scientific literature. These tools are used in chapter 7 to
answer a physically relevant problem related to fermionic topological quantum
memories. In section 6.1 we introduce the Majorana fermions. In section 6.2 we
discuss the canonical transformations for such fermions, and in section 6.3 we
analyse the properties of fermionic Gaussian states. In section 6.4 we focus on
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quadratic Hamiltonians. In section 6.5 we present some forms of time evolution
which map Gaussian states to Gaussian states; instead, in section 6.6, we discuss
forms of time evolution which do not fulfill such property.

Finally, we would like to thank Prof. Michael M. Wolf and Dr. Géza Giedke
for sharing with us some unpublished personal notes on this subject, which have
been used as a starting point for understanding fermionic Gaussian states.

6.1 Dirac and Majorana Fermions

Let us consider N fermionic modes, described by 2N Dirac fermionic operators

{â(†)
i }i=1...N satisfying the canonical anticommutation relations:

{âi, âj} = 0; {âi, â†j} = δi,j . (6.1)

We introduce the Majorana operators, i.e. fermionic operators which are
real, Hermitian and unitary:

ĉj,1 = âj + â†j ; ĉj,2 = −i(âj − â†j). (6.2)

They satisfy the following canonical anticommutation relations:

{ĉj,σ, ĉk,τ} = 2δj,kδσ,τ . (6.3)

Majorana operators are useful because they remove the asymmetry between âj
and â†j operators, which are substituted by a list of 2N operators to be treated
on an equal footing. This choice has been made because of convenience and in
principle the work presented in this chapter could have been derived also using
Dirac operators, at the price of more intricate calculations.

Majorana operators are labelled by two indices, j ∈ {1, . . . N} and σ ∈ {1, 2}.
When it is not necessary to distinguish between the two labels, we use one single
index k ∈ {(1, 1), . . . (N, 2)}.

We list some useful relations between Majorana and Dirac operators.

ĉj,1 = âj + â†j ; ĉj,2 = −i(âj − â†j);
âj = 1

2 (ĉj,1 + iĉj,2) ; â†j = 1
2 (ĉj,1 − iĉj,2) ;

â†j âj = 1
2 1̂ + i

4 [ĉj,1, ĉj,2] ; ĉj,1ĉj,2 = i
[
âj , â

†
j

]
;

â†j âj = 1
2 1̂ + i

2 ĉj,1ĉj,2; ĉj,1ĉj,2 = −i1̂ + 2iâj â
†
j ;

âj â
†
j = 1

2 1̂− i
2 ĉj,1ĉj,2; ĉj,1ĉj,2 = i1̂− 2iâ†j âj .

(6.4)

6.2 Canonical Transformations

Canonical transformations of the Majorana operators, i.e. linear transforma-
tions preserving the anticommutation relations (6.3), are represented by real
orthogonal matrices:

ĉk → ĉ′k =
∑
l

Oklĉl; (6.5)

{ĉ′j , ĉ′k} = 2δj,k ⇒ Okl ∈ R; OOT = OTO = I.
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All canonical transformations have a unitary representation Û :

ĉ′k =
∑
l

Oklĉl = Û ĉkÛ
†; Û Û† = Û†Û = 1̂. (6.6)

If detO = +1, the unitary Û is:

Û = exp

−1

4

∑
α,β

Aα,β ĉαĉβ

 , A s.t. O = eA, A = −AT (6.7)

This can be demonstrated rotating O into its canonical form, Õ, using an or-
thogonal transformation:

Õ =

#modes⊕
α=1

(
cos θα sin θα
− sin θα cos θα

)
(6.8)

The unitary representation is not unique: for instance, Û and −Û induce the
same canonical transformation O.

If detO = −1, the unitary Û is [BR04]:

Û =
∑
k

vk ĉk; vk s.t. vk ∈ R,
∑
k

v2
k = 1, Ok,l = 2vkvl − δk,l. (6.9)

From now on, we focus only on canonical transformation with detO = +1.

6.2.1 Single-Mode and Multi-Mode Cases

A canonical transformation for a single mode system depends on only one pa-
rameter θ ∈ R (see equation (6.8)). The real skew-symmetric matrix A, defined
as the logarithm of O, by definition in its canonical form, is:

A =

(
0 η
−η 0

)
=

(
0 θ
−θ 0

)
+ 2πK

(
0 1
−1 0

)
; (6.10)

with η ∈ [−π, π) and K ∈ Z. Accordingly, the unitary Û can be written in one
of the equivalent following forms:

Û = exp

[
−1

4
Aα,β ĉα, ĉβ

]
= e−( θ2 +Kπ)ĉ1ĉ2 =

= cos

(
θ

2
+Kπ

)[
1̂− tan

(
θ

2
+Kπ

)
ĉ1ĉ2

]
=

= (−1)K cos
θ

2

[
1̂− tan

θ

2
ĉ1ĉ2

]
= cos

η

2

[
1̂− tan

η

2
ĉ1ĉ2

]
=

= cos
η

2
1̂− sin

η

2
ĉ1ĉ2. (6.11)

The singularity at η = −π is fictitious since tan η/2 is always multiplied by
cos η/2. Moreover, it happens that Û , as written in (6.11), is a periodic function
of θ, with period 4π; on the other hand, the expression of O in equation (6.8)
has period 2π. This difference reflects the fact that Û and −Û induce the same
transformation O.
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We explicitly rewrite (6.11) as:

Û = e−iη/2eiηâ
†â = e−iη/2|0〉〈0|+ eiη/2|1〉〈1|;

which is the most general canonical transformation for a fermionic single-mode
system.

Let us consider the case of N modes. The unitary operator in (6.7) can be
easily computed considering the canonical form Õ in (6.8). In this case, the
matrix Ã reads:

Ã =

#modes⊕
α=1

(
0 ηα
−ηα 0

)
=

#modes⊕
α=1

(
0 θα
−θα 0

)
+2πKα

(
0 1
−1 0

)
(6.12)

with ηα ∈ [−π, π) and Kα ∈ Z. The operator Û gets a particularly simple
expression in this basis:

Û =

(∏
α

cos
ηα
2

)
·
∏
α

(
1̂− tan

ηα
2
ĉα,1ĉα,2

)
=

= (−1)
∑
αKα

(∏
α

cos
θα
2

)
·
∏
α

(
1̂− tan

θα
2
ĉα,1ĉα,2

)
(6.13)

The singularities at ηα = −π are fictitious and there is an intrinsic sign ambi-
guity, as discussed before.

Finally, Tr[Û ] =
∏
α 2 cos(ηα/2) or Tr[Û ] = (−1)

∑
αKα

∏
α 2 cos(θα/2). If

there is at least one ηα = −π, then Tr[Û ] = 0.

6.2.2 Covariance Matrix

Let us introduce the covariance matrix of a canonical transformation Û :

Υα,β = − i
2

Tr
[
Û(ĉαĉβ − ĉβ ĉα)

]
(6.14)

For the single mode case of equation (6.11) it looks like:

Υ = i 2 cos
η

2

(
0 − tan η

2
+ tan η

2 0

)
= Tr[Û ]

(
0 −i tan η

2
+i tan η

2 0

)
(6.15)

For the multi-mode case of equation (6.13), it is:

Υ = Tr[Û ] ·
⊕
α

(
0 −i tan ηα

2
+i tan ηα

2 0

)
(6.16)

The singularities at ηα = −π are fictitious; because in this case Tr[Û ] = 0,
the matrix Υ is almost completely covered with zeros, and loses its importance.
In order to deal with such operators, which are not singular, but have a bad-
defined matrix representation, we introduce another matrix:

Ω =
⊕
α

(
0 −i cot ηα2

i cot ηα2 0

)
(6.17)
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This matrix is singular whenever there exists one α such that ηα = 0. Let us
assume there is one such ηα. In this case, there are two Majorana modes ĉα,1
and ĉα,2 which define a two-dimensional Hilbert space: Hα = Span{|0α〉, |1α〉},
with |0α〉 defined by âα|0α〉 = 0 and |1α〉 = â†α|0α〉. We observe that the global

Hilbert space is partitioned in H = Hα ⊗Hᾱ, such that: Û = Î2 ⊗ Ûᾱ. In this
case, we define the matrix Ωᾱ of the operator Ûᾱ, which is still Gaussian1. This
easily generalizes to the presence of many such ηα.

6.3 Fermionic Gaussian States

We introduce the fermionic Gaussian states and discuss some of their most
relevant properties.

6.3.1 Single-Mode and Multi-Mode Cases

A single-mode Gaussian state is a one-fermion state which has a density operator
of the form:

ρ̂ =
e−βâ

†â

1 + e−β
=

1

2

(
1̂− i tanh

β

2
ĉ1ĉ2

)
. (6.18)

In the following, we use the notation:

ρ̂ =
1

2

(
1̂ + λ

[
â, â†

])
=

1

2

(
1̂− iλĉ1ĉ2

)
; λ = tanh

β

2
. (6.19)

The density operator can be equivalently rewritten as:

ρ̂ =
1

2
(1 + λ)1̂− λn̂; ρ̂ =

1

2
[(1 + λ)|0〉〈0|+ (1− λ)|1〉〈1|] .

One can easily verify that Trρ̂ = 1, whereas Trρ̂2 = (1 +λ2)/2, i.e. the state
is pure if and only if λ = ±1. Looking at the eigenvalues, we notice that ρ̂ is
positive, and thus a well-defined density operator, if and only if λ ∈ [−1, 1]. Pure
states which are linear superposition of |0〉 and |1〉 are not fermionic Gaussian
states.

We now take a pragmatic approach and generalize the previous discussion
to N modes. A N -modes fermionic Gaussian state is a N -fermions state which
has a density operator of the form:

ρ̂ =
∏
α

1

2

(
1̂ + λα

[
âα, â

†
α

])
=
∏
α

1

2

(
1̂− iλαĉα,1ĉα,2

)
; (6.20)

where {â(†)
α }α=1...N are Dirac operators and ĉα,σ are the corresponding Majo-

rana operators. The â
(†)
α and ĉα,σ are the eigenmodes of the density operator.

Finally, we introduce the number parity operator:

P̂ = (−1)
∑
j â
†
j âj = iN

∏
k

ĉk. (6.21)

1Notice that we could have also defined a matrix Υ̃ =
⊕
α

(
0 −i tan ηα

2
+i tan ηα

2
0

)
which would have not been more pathological than Ω. The singular case would have been
ηα = −π, corresponding to the decomposition Û = ĉα1ĉα2⊗ Ûᾱ. We think that the definition
presented in the text is more convenient.
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This expression is almost invariant under canonical transformations:

iN
∏
k

ĉ′k = detO iN
∏
k

ĉk.

Notice the presence of the detO pre-factor.
Density matrices of fermionic Gaussian states ρ̂ commute with the parity

operator because they are a linear combination of operators which have an even
number of fermionic fields. Therefore, they are the direct sum of an operator
living in the even fermionic sector and one living in the odd sector: ρ̂ = ρ̂e⊕ ρ̂o.
Fermionic Gaussian states automatically satisfy the superselection rule of the
parity of the number of fermions.

6.3.2 Covariance Matrix and Wick’s Theorem

Let us introduce the covariance matrix of a Gaussian state ρ̂:

Γα,β = − i
2

Tr [ρ̂ (ĉαĉβ − ĉβ ĉα)] . (6.22)

For the single mode case in (6.19) and for the multi-mode case in (6.20) it is:

Γ =

(
0 λ
−λ 0

)
; Γ =

⊕
α

(
0 λα
−λα 0

)
. (6.23)

Moreover, if we apply the canonical transformation (6.5) to the Majorana op-
erators, O, the covariance matrix in the new basis reads as follows:

Γ′ = OΓOT . (6.24)

Let us write, as an example, the covariance matrix of the following two-
modes Gaussian state:

|Ψ〉 = A|g〉+Ba†b†|g〉; ΓΨ =


0 γ iα β
−γ 0 β −iα
−iα −β 0 γ
−β iα −γ 0

 (6.25)

where α = A∗B − AB∗, β = A∗B + AB∗ and γ = |A|2 − |B|2. This explicit
expression will be useful in chapter 7 where we describe the encoding of a qubit
into two fermionic modes.

Fermionic Gaussian states are efficiently simulated with classical computers
because their covariance matrix completely characterizes their properties. This
is elegantly stated by the following relation:

(−i)p Tr[ρ̂ ĉα1 . . . ĉα2p ] = Pf
[

Γ|α1...α2p

]
; (6.26)

which is a consequence of the Wick’s theorem2. Γ|α1...α2p
is the restriction of Γ

to the modes {α1 . . . α2p}, which is a 2p× 2p matrix. We rewrite the definition
of Pfaffian of a 2m× 2m skew-symmetric matrix M :

Pf[M ] =
1

2mm!

∑
π∈S2m

sgn(π)Mπ1,π2Mπ3,π4 . . .Mπ2m−1,π2m . (6.27)

2A demonstration of the Wick’s theorem applied to Majorana fermions can be found
in [TD02]. Moreover, Wick’s theorem applies also to the canonical transformations discussed
in the previous section, and it can be found in equation (B.5).
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6.3.3 Overlap between Gaussian States

In this and in the next subsection we discuss two methods to compare fermionic
Gaussian states. We start considering the squared overlap between two N -mode
fermionic Gaussian states, ρ̂ and σ̂. It reads [Bra05]:

Tr [ρ̂ σ̂] = +

√
det

[
1− ΓρΓσ

2

]
(6.28)

The formula is symmetric with respect to exchange of σ̂ and ρ̂, as stated by
the Silvester determinant theorem. In appendix B we generalize this formula to
the expectation value of a canonical transformation: Tr[ρ̂ Û ]. Moreover, we also
show how to compute Tr[Û ′ Û ′′].

Proof of equation (6.28): Let us work in the diagonal basis for ρ̂, which
assumes the form of (6.20). Let’s expand the product:

ρ̂ =
1

2N
·
N∑
s=0

∑
ordered

strings of
length s
{α1...αs}

(−i)sλα1
. . . λαs ĉα1,1ĉα1,2 . . . ĉαs,1ĉαs,2 (6.29)

where the case s = 0 yields a 1̂. Using equation (6.26), after some algebraic
manipulation, assuming λα 6= 0 ∀α, we write:

Tr [ρ̂ σ̂] =

(∏
α

λα
2

)
N∑
s=0

∑
strings ...

1∏
α/∈string λα

Pf [Γσ|α∈string] (6.30)

We now notice that 1∏
α/∈string λα

= Pf
[
−Γ−1

ρ |α/∈string

]
and obtain:

Tr [ρ̂ σ̂] =

(∏
α

λα
2

)
N∑
s=0

∑
strings ...

Pf
[
−Γ−1

ρ |α/∈string

]
Pf [Γσ|α∈string] (6.31)

We now make use of the following result from [IW99]: Let A and B be m×m
skew-symmetric matrices. Put s = [m/2], the integer part of m/2. Then:

Pf(A+B) =

s∑
t=0

∑
i∈Im2t

(−1)|i|−t PfAi PfBic (6.32)

where we denote by ic the complementary set of i in [m] which is arranged in
increasing order, and |i| = i1 + . . .+ i2t for i = (i1, . . . , i2t).

We can apply equation (6.32) to equation (6.31). Notice that Γρ is in canon-
ical form (6.23) and for all the relevant i we have (−1)|i|−t = 1. We obtain:

Tr [ρ̂ σ̂] =

(∏
α

λα
2

)
· Pf

(
Γσ − Γ−1

ρ

)
= Pf

[
Γρ
2

]
· Pf

[
Γσ − Γ−1

ρ

]
(6.33)

Since we know that Tr [ρ̂ σ̂] > 0, exploiting that (PfA)2 = detA, we can rewrite
it as in (6.28). Moreover, formula (6.28) is true even if the covariance matrices
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have been computed for the eigenmodes which do not put ρ in form (6.20)
because it is invariant under orthogonal transformations.

Let’s discuss the case with one λα = 0. This means that the correspond-
ing eigenmodes ĉα,1 and ĉα,2 define a two-dimensional Hilbert space: Hα =
Span{|0α〉, |1α〉} with |0α〉 defined by âα|0α〉 = 0 and |1α〉 = â†α|0α〉 such that:
H = Hα ⊗Hᾱ and

ρ̂ =
1̂

2
⊗ ρ̂′′ (6.34)

The other density matrix is: σ̂ =
∑
β σ̂
′
β ⊗ σ̂′′β . The reduced density matrix σ̂ᾱ

is:
σ̂ᾱ = TrHα [σ̂] =

∑
β

TrHα [σ̂′β ] σ̂′′β (6.35)

We compute Tr [ρ̂ σ̂] and obtain:

Tr [ρ̂ σ̂] =
∑
β

TrHα

[
Î2
2
σ̂′β

]
· TrHᾱ

[
ρ̂′′ σ̂′′β

]
=

1

2
Tr [ρ̂′′σ̂ᾱ] (6.36)

The operators ρ̂′′ and σ̂ᾱ are still Gaussian and the corresponding covariance
matrix is known, i.e. the restriction of the original ones to the modes of Hᾱ.
In presence of M eigenvalues λα = 0, we define Γ̃ρ = Γρ|α s.t.λα 6=0 and Γ̃σ
correspondingly. Formula (6.33) must be generalized to:

Tr [ρ̂ σ̂] =
1

2M
Pf

[
Γ̃ρ
2

]
· Pf

(
Γ̃σ − Γ̃−1

ρ

)
(6.37)

Notice that formula (6.28) is still valid; indeed the only problem was that Γ−1
ρ

was not defined if some α are such that λα = 0. �

6.3.4 Uhlmann Fidelity

In this subsection we consider a second method to compare two Gaussian states
ρ̂ and σ̂, i.e. the Uhlmann fidelity:

F (ρ̂, σ̂) = Tr
√
ρ̂1/2σ̂ρ̂1/2 (6.38)

If at least one of the two states is pure, F (ρ̂, σ̂) = +
√

Tr [ρ̂ σ̂]. We therefore
assume that both states are mixed.

Let us make the stronger assumption that all the λα of the covariance ma-
trices of the two states are such that |λα| < 1. In this case, the state ρ̂ admits
the representation:

ρ̂ =
exp

[
− i

4

∑
j βj(ĉj,1ĉj,2 − ĉj,2ĉj,1)

]
∏
j 2 coshβj/2

; λ
(ρ)
j = tanh

βk
2

(6.39)

As a consequence, ρ̂1/2 has the form:

ρ̂1/2 =
exp

[
− i

4

∑
j
βj
2 (ĉj,1ĉj,2 − ĉj,2ĉj,1)

]
∏
j(2 coshβj/2)1/2

(6.40)
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Let us define the effective Hamiltonian:

Ĥρ =
i

4

∑
j

βj
2

(ĉj,1ĉj,2 − ĉj,2ĉj,1); (6.41)

and the corresponding imaginary-time evolution of the state σ̂ [KC10]:

σ̂I(τ) =
e−Ĥρτ σ̂e−Ĥρτ

Tr
[
e−2Ĥρτ σ̂

] (6.42)

which is a well-defined density matrix. It follows that:

ρ̂1/2 σ̂ ρ̂1/2 =
Tr
[
e−2Ĥρ σ̂

]
∏
j 2 coshβj/2

ˆ̃σ(τ = 1) (6.43)

Due to the properties of imaginary time evolution, σ̂I(τ) is still a Gaussian state
and its covariance matrix can be efficiently computed [KC10]. It is interesting
to observe that:

Tr
[
e−2Ĥρ σ̂

]
∏
k 2 coshβk/2

= Tr[ρ̂ σ̂]. (6.44)

The fidelity is therefore:

F (ρ̂, σ̂) =
√

Tr[ρ̂ σ̂] Tr
√
σ̂I(τ = 1). (6.45)

We define the parameters {ϕα}α via tanhϕα/2 = <(λσIα ), where λα are the
eigenvalues of the covariance matrix of σ̂I(τ = 1). We obtain:

√
σ̂I(τ = 1) =

∏
α

2 coshϕα/4√
2 coshϕα/2

·
exp

[
− i

4

∑
α
ϕα
2 (ĉ′α,1ĉ

′
α,2 − ĉ′α,2ĉ′α,1)

]∏
2 coshϕα/4

; (6.46)

from which follows that

Tr
√
σ̃(τ = 1) =

∏
α

√
2 coshϕα/4

(coshϕα/2)1/2
. (6.47)

Putting together formula (6.45) with (6.28) and (6.47) one finds a computable
expression for the Uhlmann fidelity F (ρ̂, σ̂).

6.4 Quadratic Hamiltonians

A general Hamiltonian operator quadratic in the fermionic fields can be written
as:

Ĥ =
i

4

∑
α,β

Tα,β ĉαĉβ (6.48)

The matrix Tα,β is real and skew-symmetric. There exists an orthogonal trans-
formation O which rotates T into the canonical form:

T = OT ·
⊕
α

(
0 εα
−εα 0

)
·O ; εα ≥ 0. (6.49)
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Therefore, there is a basis ĉ′i =
∑
j Oi,j ĉj such that:

Ĥ =
i

4

N∑
α=1

2εαĉ
′
α,1ĉ

′
α,2 = −

∑
α

εα
2

+
∑
α

εαâ
′†
α â
′
α (6.50)

where the Dirac modes are defined as: â′α = 1
2 (ĉα,1 + iĉα,2). We automatically

obtain the energy of the ground state: E0 = −
∑
α εα/2.

The ground state of Ĥ is defined by the property:

â′α|g〉 = 0; ∀α. (6.51)

Using this property, we can derive the covariance matrix of |g〉 in the basis ĉ′k:

Γ′g =
⊕
α

(
0 1
−1 0

)
. (6.52)

Using (6.24), we can obtain the covariance matrix of |g〉 in the initial basis
ĉk using the orthogonal transformation O of equation (6.49). It is easy to
generalized these results to compute the covariance matrix of any eigenstate of
Ĥ.

The ground state |g〉 is a well-defined Gaussian state by construction:

ρ̂g =
∏
α

âαâ
†
α =

∏
α

1

2

(
1̂− iĉα,1ĉα,2

)
(6.53)

The same holds for all the eigenstates of Ĥ.
Finally, the expectation value of the Hamiltonian Ĥ on any Gaussian state

ρ̂ is given by:

Tr
[
Ĥρ̂
]

= Tr [T Γ] . (6.54)

A similar relation can be worked out for every quadratic operator.

6.5 Gaussian Time Evolution

We now start focussing on the time evolution of Gaussian states. In this
section, we consider two particular cases which are important because they map
Gaussian states into Gaussian states.

6.5.1 Hamiltonian Evolution

The dynamics induced by an Hamiltonian Ĥ is described by the unitary oper-
ator:

Û(t) = exp

[
− i
~
Ĥt

]
= exp

 t

4~
∑
α,β

Tα,β ĉα ĉβ

 (6.55)

By comparison with (6.7) we find that the time evolution induced by a Hamil-
tonian is a canonical transformation of the Majorana modes.

All the results derived in section (6.2) for canonical transformations apply
therefore to Hamiltonian time evolutions. Clearly, the time evolution maps
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Gaussian states to Gaussian states. The covariance matrix of the time evolved
state can be obtained from that of the initial one via:

Γ(t) = O(t)T Γ(0)O(t); O(t) = exp

[
−T
~
t

]
(6.56)

The time-dependent covariance matrix satisfies the following differential equa-
tion:

∂tΓ(t) =
1

~
[T (t),Γ(t)] . (6.57)

6.5.2 Master Equation with Linear Jump Operators

The time evolution of a system coupled to an environment is usually described,
under the Markov and Born approximations, by the Lindblad master equation
reads:

∂tρ̂ = − i
~

[
Ĥ, ρ̂

]
+

nα∑
α

(
L̂αρ̂L̂†α −

1

2
{L̂†αL̂α, ρ̂}

)
(6.58)

where Ĥ is the Hamiltonian of the system and L̂α are the the jump operators
describing the decoherence process.

It has recently been proved that the time evolution governed by a master
equation with jump (Lindblad) operators which are linear in the fermionic fields,
maps Gaussian states into Gaussian states [BK11a].

We therefore restrict our study to quadratic fermionic Hamiltonians (6.48),
and to Lindblad operators linear in the fermionic fields:

L̂α =
∑
k

(Lk,α,R + iLk,α,I) ĉk = ~Lα,R · ~̂c+ i~Lα,I · ~̂c (6.59)

Let us write the time dependence of the covariance matrix Γ of a Gaussian
state obeying (6.58). The 2nα vectors ~Lα,σ ∈ R2N , (σ ∈ {R, I}) can be put

together to build the 2N × 2nα matrix L̃:

L̃ =
(
~L1,R; ~L1,I; ~L2,R; ~L2,I . . . ~Lnα,R; ~Lnα,I

)
(6.60)

The time evolution of the covariance matrix is given by [Hor11, EP10]:

∂tΓ =
1

~
[T,Γ]− {L1,Γ} − 2iL2 (6.61)

where L1 and L2 are defined as follows:

L1 = 2L̃L̃T ; L2 = 2iL̃ ·
nα⊕
k=1

(
0 1
−1 0

)
· L̃T (6.62)

6.6 Non-Gaussian Time Evolution

It is also interesting to study time evolutions which do not map Gaussian
states into Gaussian states. In some physically relevant cases, it is still possi-
ble to compute some properties of the time evolved state, as, for instance, its
covariance matrix.
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6.6.1 Master Equation with Quadratic Jump operators

Let us consider the Lindblad master equation in (6.58); we focus here to the
case of jump operators which are quadratic and Hermitian:

L̂α =
i

4

∑
k,l

Mα
kl ĉk ĉl. (6.63)

The time evolution does not map Gaussian states into Gaussian states because
the action of the jump operators (6.63) on ρ̂ in the master equation (6.58) is
quartic in the fermionic fields. Nevertheless, because of the specific properties
of the L̂α, it is possible to write the time evolution of the covariance matrix of
the initial Gaussian state. The time evolution of the covariance matrix is given
by [Hor11]:

∂tΓ =
1

~
[T,Γ] +

1

2

∑
α

[Mα, [Mα,Γ]] (6.64)

The case of Lindblad operators which are quadratic but not Hermitian does not
yield a closed differential equation as in (6.64).

6.6.2 Convex-Combination of Hamiltonian Time Evolu-
tions

Let us consider another situation in which the time evolution is not mapping
a Gaussian state to a Gaussian state, and namely, the convex combination of
several different Hamiltonian time evolutions. As we discuss in chapter 7, such
a time evolution describes a form of Hamiltonian perturbation, in that there
is no environment but, for example, an experimental setup which is not fully
controlled and that yields for every realization a slightly different system, e.g.
with a different number of particles.

We consider a quadratic Hamiltonian Ĥ0 (6.48) and a set of quadratic Her-
mitian perturbations {V̂j}Ndj=1; we define a set of evolution operators Ûj(t) =

exp[− i
~ (Ĥ0 + V̂j)t]. Given an initial state ρ̂(0), the time evolved state is defined

by:

ρ̂(t) =
1

Nd

Nd∑
j=1

Ûj(t) ρ̂(0) Ûj(t)
† (6.65)

The final state is a well-defined density operator; this time evolution does not
preserve purity. Moreover, ρ̂(t) is not Gaussian because in general the con-
vex combination of Gaussian states is not a Gaussian state. Nevertheless, us-
ing (6.56) we can derive the covariance matrix of the state ρ̂(t):

Γ(t) =
1

Nd

Nd∑
j=1

Oj(t)
T Γ(0)Oj(t); Oj(t) = exp

[
−
T0 + T

(V )
j

~
t

]
(6.66)

where T0 is the skew-symmetric matrix associated to Ĥ0 and T
(V )
j that associ-

ated to V̂j .
We can access another important property of the time evolved states, that is,

the distance between two of them. To make this more quantitative, let us con-
sider two orthogonal initial states |Φ〉 and |Ψ〉 and let us introduce the notation
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|Φj(t)〉 = Ûj(t)|Φ〉 (the same for |Ψj(t)〉). If we define ρ̂Φ
j (t) = |Φj(t)〉〈Φj(t)|

(the same for ρ̂Ψ
j (t)), the following distance can be computed:

∥∥ρ̂Φ(t)− ρ̂Ψ(t)
∥∥

tr
=

∥∥∥∥∥∥ 1

Nd

Nd∑
j=1

ρ̂Φ
j (t)− 1

Nd

Nd∑
j=1

ρ̂Ψ
j (t)

∥∥∥∥∥∥
tr

(6.67)

The distance we consider here is induced by the trace norm, or Shatten 1-norm,
which is defined as the sum of the singular values of the operator representing
the difference of the two states. The explicit procedure to evaluate (6.67) is in
appendix B; we do not report it here because it is not a simple self-contained
formula.

6.6.3 Interactions

We now consider an interacting Hamiltonian:

Ĥ =
i

4

∑
α,β

Tα,β ĉαĉβ +
∑

α,β,γ,ε

Uα,β,γ,εĉαĉβ ĉγ ĉε (6.68)

In order to have an Hermitian Hamiltonian, the tensor Uα,β,γ,ε is real and skew-
symmetric with respect to the exchange of neighbouring indexes. The time
evolution ruled by Hamiltonian (6.68) does not map Gaussian states to Gaussian
states; moreover, it is not possible to explicitly derive a closed expression for
the time evolution of the covariance matrix of the initial state ρ̂(0).

However, it has been recently shown that one can study such time evolution
using the generalized Hartree-Fock theory [KC10]. The main idea is to project at
each time step the time evolved state onto the closest fermionic Gaussian state.
This approximation is equivalent, roughly speaking, to a mean field approach, as
high-order correlations of the approximate state are trivial. The explicit formula
for the time evolution of the covariance matrix are formally similar to (6.57),
although the matrix Tα,β is state-dependent:

∂tΓ(t) = [T̄ (Γ(t)),Γ(t)]; T̄ (Γ(t))α,β = Tα,β + 24
∑
γ,ε

Uα,β,γ,εΓε,γ . (6.69)

Let us consider the following nearest-neighbour interaction, which is going
to be relevant in the next chapter:

Û = U
∑
<i,j>

(
n̂i −

1

2

)(
n̂j −

1

2

)
(6.70)

This is the most simple interaction one can write for lattice spin-polarized
fermions. The Majorana representation is:

Û = U
∑
<i,j>

(
1

2
+
i

2
ĉi1ĉi2 −

1

2

)(
1

2
+
i

2
ĉj1ĉj2 −

1

2

)
= −U

4

∑
<i,j>

ĉi1ĉi2ĉj1ĉj2

(6.71)
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The 4-indexes tensor Uα,β,γ,ε defined in (6.68) is:

U
(4)
α,β,γ,ε = −U

4

1

24

∑
<i,j>

([δα,i1δβ,i2 − δα,i2δβ,i1] [δγ,j1δε,j2 − δγ,j2δε,j1] +

− [δα,i1δβ,j1 − δα,j1δβ,i1] [δγ,i2δε,j2 − δγ,j2δε,i2] +

+ [δα,i1δβ,j2 − δα,j2δβ,i1] [δγ,i2δε,j1 − δγ,j1δε,i2] +

− [δα,i2δβ,j2 − δα,j2δβ,i2] [δγ,i1δε,j1 − δγ,j1δε,i1] +

+ [δα,i2δβ,j1 − δα,j1δβ,i2] [δγ,i1δε,j2 − δγ,j2δε,i1] +

− [δα,j1δβ,j2 − δα,j2δβ,j1] [δγ,i2δε,i1 − δγ,i1δε,i2]) (6.72)

Notice that, due to the fermionic anticommutation relations, the tensor Uα,β,γ,ε
is completely skew-symmetric.

The quantity we are interested in is:∑
γ,ε

U
(4)
α,β,γ,εΓε,γ = −

∑
γ,ε

U
(4)
α,β,γ,εΓγ,ε; (6.73)

which reads:

−
∑
γ,ε

U
(4)
α,β,γ,εΓγ,ε =

U

4

1

24

∑
<i,j>

(2[δα,i1δβ,i2 − δα,i2δβ,i1]Γj1,j2+

−2[δα,i1δβ,j1 − δα,j1δβ,i1]Γi2,j2 +

+2[δα,i1δβ,j2 − δα,j2δβ,i1]Γi2,j1 +

+2[δα,j1δβ,j2 − δα,j2δβ,j1]Γi1,i2 +

−2[δα,i2δβ,j2 − δα,j2δβ,i2]Γi1,j1 +

+2[δα,i2δβ,j1 − δα,j1δβ,i2]Γi1,j2) (6.74)

* * *

This concludes the technical chapter on fermionic Gaussian states; we re-
viewed the instruments which we are going to use in chapter 7 to characterize
topological memories based on zero-energy Majorana modes.



Chapter 7

On a Quantum Memory
Encoded with Zero-Energy
Majorana Modes Subject to
External Perturbations

In this chapter we address the following question: How long can we reliably store
quantum information in a topological superconductor subject to perturbations?

Topological superconductors are quadratic fermionic models which do not
conserve the number of particles and which have a band structure, obtained via
the solution of the Bogoliubov-de Gennes equation, with non-trivial topological
properties (see section 3.2.1 and references [HK10, QZ11]). We consider the sub-
class of such models which exhibit a ground space that can be described in terms
of several spatially-localized zero-energy Majorana modes [Kit01, RG00]. This
property and therefore also the degeneracy of the ground space are unaffected
by local Hamiltonian perturbations, e.g. weak disorder.

Following the original idea by Kitaev, we encode one (or many, depending on
the degeneracy) qubit with such Majorana modes [Kit97, DKLP02]. Because
of the mentioned robustness, the dephasing time of the qubit, related to the
degeneracy of the ground space, benefits from the topological properties of the
model and is insensitive to local Hamiltonian perturbations. However, the afore-
mentioned constitute only a restricted subclass of the wider set of disturbances
which could appear in a realistic experiment. A complete characterization of
the stability properties of such qubit is still missing. Recent results, which we
are now going to briefly summarize, suggest that there are important cases, such
as thermal environments [AFH09], which could significantly reduce the storage
time of these systems.

To the best of our knowledge, the problem of the stability of a topological
memory encoded with Majorana modes has been first addressed in [GC11]1. The

1If we do not consider only topological superconductors, but also other kinds of topological
models, the scientific literature on the stability of the corresponding quantum memories is
larger. References [AFH09, Yos11, CLBT10] nicely review the problem of thermal instability,
the topic on which most of the researchers have focussed, although other perturbations have
also been considered, such as the depolarizing noise [PKSC10].

85
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authors develop a formalism which quantifies the decoherence of the qubit via
the two-time correlations of the Majorana fermions in which the information is
stored. Among the different forms of perturbations considered, time-dependent
perturbations are shown to be especially severe for the memory properties.

Similar conclusions, although obtained from a different point of view and
with a different approach, are presented in [BWT12]. Using two different toy
models which describe the interaction between the topological system and the
environment, the authors show that the Majorana qubit is susceptible to deco-
herence because of particle losses.

In a a more recent work [RL12], it is even argued that the proposals for a
solid state implementation of topological superconductors could lead to the fast
decoherence of any encoded qubit because of intrinsic instability. Indeed, the
mechanism used to turn a trivial semiconducting wire into a topological one is
expected to provide other non-negligible competing effects which destroy the
topological memory.

Among all these negative results, let us mention reference [CLDS12], where
the authors state that braiding operations, corresponding to the manipulation
of quantum information with a topological system, should not be significantly
sensitive to thermal environments.

Because these results are often strictly related to the physics of solid-state
systems, it is often difficult to understand which results have a more general
validity and which ones do not translate to other alternative implementations.
We therefore choose an alternative approach, mainly shaped by a quantum in-
formation background, which is more abstract and focuses only on size scalings.
We consider a topological superconductor consisting of N fermionic modes and
use two of them, that is the zero-energy modes, to store the qubit. All modes are
exposed to small perturbations and interactions with the external environment.
We are interested in determining the longest time at which it is still possible to
restore, at least approximately, the initial state of the qubit. Furthermore, we
investigate the extent to which this time may increase as a function of N , the
size of the system. Our method is different from the previous ones in that the
memory stability is defined by the scaling with the size N of the memory time.
When this is the case, the system as a whole is actively collaborating to the
protection of the qubit; otherwise, other memory schemes could be equivalent
or even better.

Moreover, we consider the possibility that after the time evolution a re-
covery operation is applied to the system. We do not restrict to a specific
error correcting code but rather identify the optimal recovery operation, and
its relative fidelity. This approach therefore quantifies how much of the infor-
mation initially put in the system has not been lost after the time evolution.
In [BK11b] the authors present a similar analysis, but discuss only one specific
correcting code. They consider a one-dimensional Kitaev chain, for which zero-
energy Majorana modes appear at the two edges. The possibility of writing the
Hamiltonian as a sum of commuting local operators allows for the application
of the correcting codes which have been developed in the context of stabilizer
theory [Got97, NC04]. The authors show that the presence of an additional ran-
dom potential can exponentially improve the memory properties of the Kitaev
chain in presence of external perturbations.

This chapter is organized as follows. In section 7.1 we overview all the
results, avoiding technical details and demonstrations. In section 7.2 we review
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the properties of the Kitaev chain, a specific example of a Hamiltonian with
zero-energy Majorana modes. The following three sections 7.3, 7.4 and 7.5 are
devoted to technical results related to the optimal recovery operation, to the
Gaussian optimal recovery operation and to the case of a Gaussian decoherence
channel, respectively. The reader not interested in mathematical details can skip
these chapters without prejudicing the understanding of the subsequent results.
In section 7.6 we discuss the action on the memory of a master equation with
linear Lindblad operators, whereas in section 7.7 we focus on quadratic and
Hermitian Lindblad operators. We devote section 7.8 to the discussion of the
presence of a small non-Markovian fermionic environment whereas in section 7.9
we consider Hamiltonian perturbations. Finally, our conclusions are presented
in section 7.10.

7.1 Summary of the Main Results

We consider a system consisting of N fermionic modes. We assume the presence
of a Hamiltonian Ĥ with several zero-energy localized Majorana modes and use
four of them, ĉ1, ĉ2, ĉ3 and ĉ4, to construct two Dirac modes, â(†) and b̂(†):

â =
1

2
(ĉ1 + iĉ2) ; â† =

1

2
(ĉ1 − iĉ2) ; (7.1a)

b̂ =
1

2
(ĉ3 + iĉ4) ; b̂† =

1

2
(ĉ3 − iĉ4) . (7.1b)

One such Hamiltonian is described in section 7.2. We callA0 andB0 these modes
and use them to construct a qubit; we define the corresponding representation
of the Pauli operators in the even parity sector of the two-modes Hilbert space:

σ̂′x = −(âb̂+ b̂†â†); σ̂′y = i(âb̂− b̂†â†); σ̂′z = 1̂− â†â− b̂†b̂. (7.2)

Even if the Pauli operators characterizing the qubit are defined in terms of
fermionic operators, they always appear in pairs, so that the fermionic character
(e.g. superselection rules) is not relevant.

We denote by ρ̂(t) the state of the system at time t, and by ρ̂q the initial
state of the qubit:

ρ̂q =
1̂

2
+

1

2

∑
α=x,y,z

σ̂′α tr [σ̂′αρ̂(0)] . (7.3)

We assume the qubit to be initially in a pure state, i.e. ρ̂q = |ϕ〉〈ϕ|. The map:

ρ̂q → ρ̂(t) + Dt(ρ̂q) (7.4)

describes the decoherence process of the qubit for a time t. It is a quantum
channel, i.e. a linear, trace-preserving, and completely-positive map; we thus
call Dt the decoherence channel. We stress that it also takes into account the
action of the Hamiltonian which is supposed to protect the state of the qubit.

The quantum information stored in the qubit can only be recovered if we
can find a physical procedure to undo the decoherence channel. If realized,
such a procedure is mathematically described by another quantum channel,
the recovery channel Rt, such that the composite channel Tt + Rt ◦ Dt is
approximately the identity channel for all ρ̂q. Note that Dt maps one qubit to
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N fermionic modes, whereas Rt does the opposite. In order to quantify this
statement, we define the usual channel fidelity [BOS+02]:

F (Rt) =

∫
dµϕ〈ϕ| Tt (|ϕ〉〈ϕ|) |ϕ〉; (7.5)

where the integral is over the Haar measure corresponding to the pure qubit
states2.

The optimal storage fidelity, F opt
t , is the maximum value of F (Rt) with

respect to all channels Rt. The evaluation of F opt
t can be simplified if one

assumes that the decoherence channel does not affect the fermionic mode A0.
In that case, the optimal fidelity can be determined without any maximization,
but just by computing the appropriate properties of the decoherence channel.
Specifically, in section 7.3 we show that:

F opt
t =

2

3
+

1

6
‖ρ̂x,+(t)− ρ̂x,−(t)‖tr; (7.6)

where ρ̂x,±(t) = Dt(Ψ̂x,±), Ψ̂x,± = (1̂±σ̂′x)/2, and ‖·‖tr denotes the trace norm.
Thus, in order to determine the fidelity, it suffices to study the evolution of two
specific states of the qubit, Ψ̂x,±. The quantity F opt

t can also be interpreted as
a measure of the amount of information put initially in the system (the state
of the qubit ρ̂q) which has not been destroyed by the action of the decoherence
for a time t.

If we drop the simplified assumption that the fermionic mode A0 is not
affected by the decoherence channel, an upper bound to the optimal fidelity
is provided by equation (7.21). Results obtained under the assumption of a
decoherence-free mode can only be better than those obtained in the more gen-
eral case. This, in particular, increases the importance of the negative results
we are deriving. Moreover, we expect the obtained results to qualitatively apply
also to the situation in which the mode A0 is substituted by a subsystem subject
to dissipation, which is not interacting with the subsystem of B0.

The quantity F opt
t does not provide any information regarding the optimal

recovery operation, which may be difficult to implement in practice. From the
experimental point of view, it is interesting to restrict the optimization of F (Rt)
to those physical actions that can be operatively realized. Those actions depend
on the specific experimental setup and thus should be independently considered
for each physical implementation.

In this work, we consider as experimentally relevant recovery operations
those which are a fermionic Gaussian channel, which map Gaussian states into
Gaussian states (see chapter 6 and [Bra05]). They comprise the linear optics

2In mathematical analysis, the Haar measure is introduced in order to assign an invariant
measure to compact groups and to subsequently define an integral for functions on those
groups. In quantum information theory it is often needed to integrate over all the pure states
of a system and the measure to be used must be uniformly distributed over the quantum
states. For example, let us consider a two-level system (qubit), for which the space of all the
pure states is isomorphic to the surface of a sphere (the Bloch sphere). Intuitively, the measure
we need must be invariant under all rotations of the Bloch sphere, and can be thought of as a
“constant density distribution” over the surface of the sphere. Mathematically, one requires
the measure to be invariant with respect to the group SU(2), which describes all the pure
state of the system, and then consider the Haar measure of SU(2). For all practical purposes,
we follow the intuitive approach. See also equation (7.20) and reference [BOS+02].
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operations applied to fermions, i.e. the evolution under a Hamiltonian or Liou-
villian which is quadratic in the fermionic modes, and the addition or the discard
of ancillary modes. In general these operations do not involve the simultaneous
manipulation of more than two fermionic modes. This choice arises naturally
as in this work we consider decoherence channels which are either fermionic
Gaussian channels or convex combinations thereof.

Thus, we define the optimal fidelity with respect to recovery operations which
are Gaussian channels, F opt

G,t . In section 7.4 we show that the optimal fidelity is
given by:

F opt
G,t =

2

3
+

1

6
‖Γx,+(t)− Γx,−(t)‖op. (7.7)

Here, Γx,±(t) are the covariance matrices of ρx,±(t). Note that in general F opt
G,t

provides a lower bound to the general optimal recovery strategy. Furthermore,
a recovery operation which is a convex combination of trace-preserving Gaus-
sian channels cannot overcome such optimal value. This is not the case of the
recovery operation considered in [BK11b], which is based on measurements, and
therefore is not described by a convex combination of trace-preserving Gaussian
channels.

In section 7.5 we show there are some decoherence channels, Dt, which are
Gaussian channels and for which the Gaussian recovery operation is optimal:
F opt

G,t = F opt
t . These channels are characterized by the fact that (ρ̂x,+(t) −

ρ̂x,−(t))/2 is a Gaussian operator. Unfortunately, this is in not what happens
in general.

We study some specific kinds of decoherence maps. For each one, once
the optimal fidelity is determined as a function of time and of the number of
fermions, F opt

t,N , we identify the minimal time, tN , at which it reaches a given
fidelity F0 < 1. Subsequently, the dependence of tN on N is computed. If it
is an increasing function, we conclude that the qubit is protected. Ideally, we
would like it to grow exponentially with N , as it happens in the case for the
noise models considered in fault-tolerant quantum computing.

We start considering decoherence maps which account for the interaction of
the topological system with an environment described by a master equation.
In section 7.6 we consider a master equation with jump operators which are
linear in the fermionic fields, whereas in section 7.7 the jump operators are
quadratic and Hermitian. We show that under the reasonable assumption that
the whole system is affected by dissipation, both master equations have one
unique steady state. We also show that for almost every master equation, the
topological Hamiltonian cannot slow down the decay process to the steady state,
and that in general the typical decay time does not depend on the size of the
system. A similar result is obtained in section 7.8 for the case of a small non-
Markovian environment, which we treat exactly. This is a negative result which
is qualitatively similar to those obtained in [AFH09, CLBT10, Yos11] for other
topological systems.

A different phenomenology is displayed by a decoherence map which de-
scribes the convex combination of several time evolutions ruled by slightly dif-
ferent topological Hamiltonians. In section 7.9, we show that there exists an
optimal recovery operation which significantly benefits from considering larger
systems. Interestingly, we show that the fidelity of the Gaussian recovery opera-
tion cannot overcome a critical value which is smaller than one even for N →∞.
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This result is partially positive and opens the road towards the development of
topologically protected memories in closed systems.

The results presented here extend naturally to the situation in which the
decoherence-free mode is substituted by an independent system hosting two
zero-energy Majorana modes. In this case we expect essentially the same results,
with the difference that the recovery operation has to act on both subsystems,
rather than on only one. This situation has practical relevance, since there
are proposals to realize topological qubits via two disconnected topological one-
dimensional systems.

7.2 The Kitaev Chain: a 1D Topological Super-
conductor

We start discussing a specific example of a one-dimensional topological super-
conductor, the Kitaev chain [Kit01]. This is the simplest model featuring all
the properties we are interested in, and it will be used in the following for some
specific numerical simulations. The Hamiltonian of the model, written for open
boundary conditions, reads as follows:

ĤKC = −µ
N∑
j=1

n̂j − J
N−1∑
j=1

[
â†j âj+1 +H.c.

]
+ ∆

N−1∑
j=1

[âj âj+1 +H.c.] (7.8)

where â
(†)
j are fermionic modes satisfying canonical anticommutation relations:

{âk, âl} = 0; {âk, â†l } = δk,l. (7.9)

The parameter ∆ can be chosen to be real by an appropriate redefinition of
the Dirac modes. Hamiltonian (7.8) does not conserve the number of fermions
but does conserve the parity of the number of fermions. Moreover, since it is
quadratic in the fermionic fields, it can be easily treated with the fermionic
Gaussian states presented in chapter 6 (see in particular section 6.4).

Let us begin the discussion considering a special point of the phase dia-
gram, µ = 0 and ∆ = J . We introduce the Majorana fermionic operators (see
section 6.1) and rewrite the Hamiltonian as:

ĤKC = −iJ
N−1∑
j=1

ĉj+1,1ĉj,2; with ĉj,1 = âj + â†j ; ĉj,2 = −i(âj − â†j). (7.10)

This writing highlights the fact that the Hamiltonian is the sum of commuting
operators which are local in space. This point of the phase diagram is there-
fore called frustration-free and commuting point. Let us introduce the Dirac
eigenmodes of the system:

d̂j =
1

2
(ĉj,2 + iĉj+1,1), j ∈ {1, 2, . . . N − 1}; (7.11)

which diagonalize the Hamiltonian:

ĤKC = −J(N − 1)1̂ + 2J

N−1∑
i=1

d̂†j d̂j . (7.12)
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The ground space is two-fold degenerate. Indeed, let us consider the addi-
tional operator d̂0 = 1

2 (ĉ1,1 + iĉN,2), which commutes with the Hamiltonian. We
define the ground state |g〉 via the property:

d̂α|g〉 = 0; ∀α ∈ {0, 1, . . . N − 1} (7.13)

Additionally, d̂†0|g〉 is also an eigenstate of the Hamiltonian with the same energy

of |g〉; the ground space is twofold degenerate and is spanned by {|g〉; d̂†0|g〉}.
The two states belong to different parity sectors of the theory. It is reasonable to
include in the discussion of this model the superselection rule on the parity of the
fermionic number typical of fermionic systems. Such rule forbids the existence
of linear superpositions of states with different parity and therefore {|g〉; d̂†0|g〉}
cannot be used to store a qubit. In order to construct a well-defined qubit, it is

customary to consider a separated fermionic auxiliary mode, â
(†)
a , with trivial

dynamics. If we denote |ga〉 the ground state of this ancilla, we can encode a

well-defined qubit into the subspace spanned by: {|g〉 ⊗ |ga〉, d̂†0|g〉 ⊗ â†a|ga〉}.
In reference [BK11b] the authors proof that even if a local Hermitian pertur-

bation is added to Hamiltonian (7.8), it is always possible to find an operator

d̂0 such that the energy difference between |g〉 and d̂†0|g〉 closes exponentially
with the system size. Moreover, an energy gap above these two states persists
in the thermodynamic limit. No local observable can distinguish between |g〉
and d̂†0|g〉. The two states can be identified by looking at the parity of the
global number of fermions iN

∏
k ĉk (6.21). Notice that this is a string operator,

formally similar to that considered in chapter 5.
A similar situation happens for a larger region of the phase diagram, char-

acterized by |µ/J | < 2 and ∆ 6= 0. A non-rigorous demonstration of this fact
relies on the interpretation of the model as a topological insulator (see section 3.2
and [HK10, QZ11]). Let us therefore consider periodic boundary conditions and
write the Hamiltonian in Fourier space:

ĤKC =
∑
k∈BZ

(
â†k; â−k

) ( ξk ∆k

∆∗k −ξk

) (
âk
â†−k

)
;
ξk = −J cos(ka)− µ/2;

∆k = −i∆ sin(ka).

(7.14)
where a is the lattice spacing. The spectrum is E(k) =

√
ξ2
k + ∆2

k. The fact
that the gap closes at µ = ±2J for k = {0, π} is an indicator that all the points
of the phase diagram such that |µ/J | < 2 share the same properties (notice
that the frustration-free point is one of them). This can be put on a more solid
ground by considering the topological invariant of this topological insulator.

Let us first discuss the symmetry class of the model. Hamiltonian (7.8)
is characterized by the particle-hole symmetry. Regarding the time-reversal
symmetry, from a purely mathematical point of view, ĤKC possesses such sym-
metry, although this is not true when ∆ is complex. In the former case, more
symmetric, the Kitaev chain is of class BDI; in the latter, of class D.

Let us consider the first case, which is characterized by a Z topological
invariant. The Hamiltonian ĤKC is represented a list of 2 × 2 matrices, which
we write as HKC(k) = ~h(k) · ~σ, with ~h(k)T = (0,∆ sin(ka), ξk). The topological

integral is defined in terms of ~nk = ~hk/|~hk|:

ν =
1

2π

∫ π

−π
êx · (~nk ∧ ∂k~nk) dk ∈ Z (7.15)
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The region |µ/J | ≤ 2, ∆ 6= 0 is characterized by ν = 1, which confirms that
we are in presence of a topologically non-trivial state. Zero-energy Majorana
modes appearing on the edges of the open chain are the gapless edge modes
which characterize every model which is a topological insulator (see section 3.2).

Let us mention that there exists a two-dimensional model with very sim-
ilar properties, the so-called px + ipy model. In this case, zero-energy Majo-
rana modes appear in the core of vortices of a space dependent pairing term
∆(r). The adiabatic interchange of these vortices realizes a representation of
the non-Abelian braid group, and therefore these defects behave effectively as
non-Abelian anyons [Iva01]3. It has recently been demonstrated that also the
edge modes of the Kitaev chain can display non-Abelian statistics [AOR+11].
The interchange, in this one-dimensional case, can be realized using a T-shaped
system.

Let us conclude this section with a connection to the first part of the thesis
by mentioning two recent proposals for the experimental realization of a Kitaev
chain with cold atoms. In [DRBZ11] the authors propose to realize the ground
state of a Kitaev chain in a one-dimensional fermionic gas with a technique based
on engineered dissipation. In [JKA+11] the authors propose to couple a one-
dimensional gas to a molecular Bose-Einstein condensate. Finally, in [GR07] the
authors discuss the possibility of observing a px + ipy superfluid in fermionic
gases in presence of a p-wave Feshbach resonance; other proposals have been
also developed using s-wave resonances [STF09, LCS11].

7.3 Optimal Recovery Operation

Let us start the presentation of the original results of this chapter with the
derivation of the fidelity of the optimal recovery operation acting after a given
decoherence map. Its value is reported in equation (7.6), which we rewrite here
for reading convenience:

F opt
t =

2

3
+

1

6
‖ρ̂x,+(t)− ρ̂x,−(t)‖tr;

where ρ̂x,±(t) = Dt(Ψ̂x,±), Ψ̂x,± = (1̂± σ̂′x)/2.
We first show that the fidelity of any recovery operation is upper bounded:

F (Rt) ≤
2

3
+

1

6
‖ρ̂x,+(t)− ρ̂x,−(t)‖tr, ∀Rt. (7.16)

In order to simplify the notation, we drop the dependence of F on Rt. We then
construct an explicit recovery operation, Ropt

t , which achieves the upper bound
and is of the following form:

Ropt
t (ρ̂(t)) =

1̂

2
tr [ρ̂(t)] +

1

2

∑
α={x,y,z}

σ̂′α tr
[
Ĥα ρ̂(t)

]
; (7.17)

with the Ĥα to be specified.

3The ground state of the px + ipy model shares a number of properties with the Pfaffian
wavefunction discussed in chapter 4. The explicit discussion of this similarity goes beyond the
purpose of this chapter and it is nicely reviewed in [GR07].
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7.3.1 Properties of the Trace Norm

Let us recall some simple properties of the trace norm. For a bounded Hermitian
operator X̂, one defines

‖X̂‖tr = max
Ĥ

tr(ĤX̂); (7.18)

The maximization is restricted to operators fulfilling

Ĥ = Ĥ†, ‖Ĥ‖op ≤ 1, (7.19)

where the operator norm is the maximum absolute value of the eigenvalues.
This last condition can be replaced by Ĥ2 ≤ 1̂. It is called trace norm because
it is equal to the sum of singular values of X̂. This norm is contractive under
the action of any quantum channel E , i.e. ‖E(X̂)‖tr ≤ ‖X̂‖tr; it is unitarily
invariant, i.e, ‖ÛX̂V̂ ‖tr = ‖X̂‖tr for any Û , V̂ unitary; and subadditive, i.e.
‖X̂ + Ŷ ‖tr ≤ ‖X̂‖tr + ‖Ŷ ‖tr.

7.3.2 Derivation of the Upper Bound

The fidelity defined in equation (7.5) can be rewritten as [BOS+02]:

F =
1

2
+

1

12

∑
α=x,y,z

tr[σ̂′αTt(σ̂′α)]. (7.20)

This follows by writing |ϕ〉〈ϕ| =
(

1̂ + ~nϕ · ~̂σ
)
/2 in (7.5), where ~nϕ is a unit

vector, and performing the integration over ~nϕ on the unit sphere.
We derive the upper bound. Because

tr [σ̂′αTt(σ̂′α)] ≤ ‖σ̂′α‖op‖Tt(σ̂′α)‖tr = ‖Tt(σ̂′α)‖tr ≤ ‖Dt(σ̂′α)‖tr

we obtain

F ≤ 1

2
+

1

12

∑
α=x,y,z

‖ρ̂α,+(t)− ρ̂α,−(t)‖tr. (7.21)

Here, ρ̂α,±(t) = Dt(Ψ̂α,±), where Ψ̂α,± = (1̂ ± σ̂′α)/2 are projectors onto pure
states of the qubit pointing in different directions in the Bloch sphere. Moreover,
we have used the linearity of Dt and that Dt(σ̂′α) = ρ̂α,+(t)− ρ̂α,−(t).

Let us now specify (7.21) to the case of Dt not acting on the fermionic mode
A0. The operator Ĥz + ââ† − â†â fulfills the requirements (7.19), and

tr[Ĥz ρ̂z,+(t)] = −tr[Ĥz ρ̂z,−(t)] = 1. (7.22)

Thus we have:

2 = tr[Ĥz(ρ̂z,+(t)− ρ̂z,−(t))] ≤ ‖ρ̂z,+(t)− ρ̂z,−(t)‖tr ≤ ||Ψ̂z,+ − Ψ̂z,+||tr = 2

so that ‖ρ̂z,+(t) − ρ̂z,−(t)‖tr = 2. Furthermore, since Dt does not act on the

ancilla, we can write ρ̂y,τ (t) = V̂ ρ̂x,τ (t)V̂ †, where V̂ = e−iπâ
†â/2 is a unitary

operator. Therefore:

1

2
‖ρ̂x,+(t)− ρ̂x,−(t)‖tr =

1

2
‖ρ̂y,+(t)− ρ̂y,−(t)‖tr (7.23)

The bound in (7.16) follows from the combination of (7.21) with these consid-
erations.



94 Quantum Memories with Majorana Modes under Perturbation

7.3.3 Explicit Construction of a Recovery Map

We now explicitly construct a recovery map which achieves the upper bound
in (7.16). To do that, we need to introduce three operators Ĥx, Ĥy, Ĥz; the

operator Ĥz has already been defined: Ĥz = ââ† − â†â.
Let us rewrite

ρ̂x,+(t)− ρ̂x,−(t) = âR̂+ R̂†â†; R̂ = Dt(−b̂)

We compute ‖âR̂ + R̂†â†‖tr using the definition in (7.18) and name Ĥx the
operator that achieves the maximum. We write the most general Hermitian
operator:

Ĥx = âŜ1 + Ŝ†1â
† + â†âŜ2 + ââ†Ŝ3

which must satisfy Ĥ†xĤx ≤ I. We get

tr
[
Ĥx

(
âR̂+ R̂†â†

)]
= tr

[(
Ŝ1R̂

† + R̂Ŝ†1

)
â†â
]

Using the left polar decomposition R̂ = P̂ Û , where P̂ =
√
R̂R̂† is positive semi-

definite and Û is unitary, we have that the maximum is attained when Ŝ1 = Û ,
and Ŝ2 = Ŝ3 = 0. Therefore, combining these results with (7.23), we obtain:

‖ρ̂α,+(T )− ρ̂α,−(T )‖tr = 2tr[P̂ ]; α = x, y; (7.24)

where the trace is taken on the N − 1 modes subjected to decoherence. The
operators achieving the maximum, according to the definition of the trace norm
in (7.18), are:

Ĥx = âÛ + Û†â†; Ĥy = −iâÛ + iÛ†â†.

Furthermore, since both â and R̂ change the fermionic parity, Ĥx,y do not. They
also fulfill:

tr
[
Ĥαρ̂α,+(t)

]
= −tr

[
Ĥαρ̂α,−(t)

]
=

1

2
‖ρ̂x,+(t)− ρ̂x,−(t)‖tr (7.25)

for α = x, y.
Now that we have defined Ĥx,y,z, we construct the optimal recovery map:

Ropt
t (ρ̂(t)) =

1

2
1̂ tr [ρ̂(t)] +

1

2

∑
α

σ̂′α tr
[
Ĥαρ̂(t)

]
. (7.26)

It is linear, trace preserving, and it also preserves the fermionic parity, since Ĥα

do. For it to be a valid quantum channel we have to show that it is completely
positive. We construct a unitary operator acting on all the fermionic modes,

Ŵ , such that Ropt
t (ρ̂) = tr

[
Ŵ ρ̂Ŵ †

]
, where the trace is taken over the fermionic

degrees of freedom which are not part of the qubit. The operator is:

Ŵ =
1

8

[
1̂ +

∑
α=x,y,z

σ̂′αĤα

]
. (7.27)

Using that Ĥ2
α = 1̂ and ĤαĤβ = iεα,β,γĤγ , where εα,β,γ is the Levi-Civita

tensor, one can show that Ŵ is unitary and that it defines the recovery map
(7.26). Furthermore, using (7.22) and (7.25) it follows that F (Ropt

t ) saturates
the bound in (7.16).
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7.4 Optimal Gaussian Recovery Operation

Let us now study the case of a Gaussian recovery operation. In this section we
derive the optimal fidelity achievable with such an operation, as it is expressed
in equation (7.7), which we rewrite here for reading convenience:

F opt
G,t =

2

3
+

1

6
‖Γx,+(t)− Γx,−(t)‖op.

We also show that a recovery operation which is a convex combination of Gaus-
sian recovery operation cannot overcome the bound F opt

G,t .
The proof is similar to that in section 7.3, although here we restrict the

study to Gaussian recovery operations, i.e. channels that map Gaussian states
into Gaussian states. They include, for instance, operations which involve the
addition of ancillas to the Gaussian state, the evolution under a Hamiltonian or
a Liouvillian that is quadratic in the creation and annihilation operators, and
the discard of the ancillas.

7.4.1 Definition of “New” Pauli Operators

In this case, we need to explicitly consider the fact that the qubit is composed
of fermions. In particular, we have to consider what happens if the decoherence
channel changes the parity of the state. This occurs, for instance, when deco-
herence is caused by the interchange of particles with a reservoir, as described
by Dt(ρ̂) = (b̂+ b̂†)ρ̂(b̂+ b̂†). The final state contains all the information about
the initial state of the qubit, even if now it has odd parity. The problem, that
could be overlooked in section 7.3, arises in this section because the Gaussian
recovery operation cannot act independently on the different parity sectors of
the state, whereas a general recovery operation can.

Consider a fermionic system composed of N modes, and the respective 2N
Majorana modes ĉn fulfilling anticommutation relations {ĉn, ĉm} = 2δn,m. We
denote ĉ1, ĉ2, ĉ3 and ĉ4 the zero-energy modes of the Hamiltonian (see sec-
tion 7.1). We define the covariance matrix of an operator X̂ the 2N × 2N
matrix ΓX , with element:

(ΓX)n,m = − i
2

tr
[
X̂(ĉnĉm − ĉmĉn)

]
. (7.28)

We express the Pauli operators of the qubit as:

σ̂′′x = (â† − â)(b̂† + b̂) = iĉ3ĉ2; (7.29)

σ̂′′y = −i(â† + â)(b̂† + b̂) = iĉ3ĉ1; (7.30)

σ̂′′z = â†â− ââ† = iĉ1ĉ2. (7.31)

where the modes â(†) and b̂(†) have been defined in equations (7.1a) and (7.1b).
Note the difference with the σ̂′α in equations (7.2). Since the σ̂′′α act on both the
parity sectors of the qubit, they allow the recovery operation independently of
whether the parity has been changed or not.

7.4.2 Generalities of Gaussian Channels and Notation

The action of a general Gaussian channel transforms a Gaussian M -modes state
with covariance matrix Γ into a N -modes state with covariance matrix Γ′. In
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particular, Γ′ = BΓBT + A where B (A) is a 2N × 2M (2N × 2N) matrix. A
is skew-symmetric and the 2(M +N)× 2(M +N) matrix

Q =

(
A B
−BT 0

)
(7.32)

satisfies QTQ ≤ I [Bra05].

We denote RG,t the Gaussian recovery operation, whereas TG,t = RG,t ◦Dt.
Moreover, we define:

∆α = ΓDt(Ψ̂α,+) − ΓDt(Ψ̂α,−), (7.33)

∆out
α = ΓTG,t(Ψ̂α,+) − ΓTG,t(Ψ̂α,−), (7.34)

the difference of covariance matrices corresponding to the states after the de-
coherence channel and after the recovery operation, respectively. Note that the
matrices ∆α are 2N × 2N matrices, whereas the matrices ∆out

α are 4 × 4 ma-
trices. The assumption that the decoherence channel does not act on the first
two Majorana modes ĉ1,2 is reflected by some properties of ∆α even if Dt is not

a Gaussian channel and Dt(Ψ̂α) is not a Gaussian state. Let us consider the
block structure of ∆α:

∆α =

(
K ′α −LTα
Lα K ′′α

)
, (7.35)

where K ′, L and K ′′ are 2× 2, 2(N − 1)× 2, and 2(N − 1)× 2(N − 1) matrices,
respectively. We obtain:

K ′z =

(
0 2
−2 0

)
; Lx =

(
~l1, ~l2

)
;

Ly =
(
~l2, −~l1

)
= LxJ ; J =

(
0 −1
1 0

)
; (7.36)

where~l1,2 are column vectors. Additionally, Lz, K
′
x,y andK ′′x,y are zero matrices.

Thus:

‖∆x‖op = ‖∆y‖op = ‖Lx‖op ≤ 2 (7.37)

where ‖X‖op is the maximum singular vaulue of the matrix X.

7.4.3 Derivation of the Upper Bound

We can now show that for any Gaussiann recovery operation, RG,t, the fidelity
is upper bounded as follows,

FG,t(RG,t) ≤
2

3
+

1

6
‖∆x‖op (7.38)

As before, we will drop the dependence of FG,t on RG,t. Our starting point is
equation (7.20), modified as follows:

FG,t =
1

2
+

1

12

∑
α=x,y,z

tr[σ̂′′αTG,t(σ̂
′
α)]. (7.39)
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Noting that the σ̂′′α are quadratic in the Majorana operators and recalling the
definition of covariance matrix (7.28), we obtain:

tr [σ̂′′αTG,t(σ̂
′
α)] =

(
∆out
α

)
β1,β2

≤ ‖∆out
α ‖op, (7.40)

where (β1, β2) = (1, 2), (3, 2), and (3, 1) for α = x, y, z, respectively. The most
general Gaussian recovery operator RG,t yields:

‖∆out
α ‖op = ‖BR∆αB

T
R‖op ≤ ‖∆α‖op

given that QTQ ≤ I. Since 2 ≥ ‖∆z‖op ≥ (∆z)1,2 = (Kz)1,2 = 2, we get that
‖∆z‖op = 2. Using (7.37) we obtain the result (7.38). If we do not assume any
property of the decoherence channel, a similar reasoning brings us to the bound:

FG ≤
1

2
+

(
1

12

) ∑
α=x,y,z

‖∆α‖op (7.41)

7.4.4 Explicit Construction of a Recovery Map

We now provide an explicit Gaussian recovery operation which attains the
bound. The recovery operation consists of the application of a Gaussian uni-
tary operation ŴG to the the system and in subsequently tracing out N − 2
modes of the system. To define ŴG, consider the singular value decomposition
of Lx = UΣV T , where U (V ) is a unitary 2(N − 1) × 2(N − 1) (2 × 2) matrix
and Σ is a 2(N − 1)× 2 matrix. Clearly, it is also possible to construct U ′ and
V ′ such that Lx = U ′Σ′V ′ and Σ′ has at most two elements different from zero,
Σ1,2 ≥ Σ2,1 ≥ 0, named the singular values of Lx. We define ŴG to be the
unitary transformation which is represented by an orthogonal transformation
V ′ ⊕ U ′:

ŴG
~̂c Ŵ †G = (V ′ ⊕ U ′) ~̂c (7.42)

Physically, ŴG rotates all the information between ancilla and system into the
first two modes of the system. The other modes can be now traced out. Sum-
marizing:

Ropt
G,t(ρ̂) = tr

[
ŴG ρ̂ Ŵ

†
G

]
(7.43)

The covariance matrix of Ropt
G,t(ρ̂) is:

ΓRopt
G,t(ρ̂)

=
[
(V ′ ⊕ U ′) Γ (V ′T ⊕ U ′T )

]∣∣
(1−4),(1−4)

(7.44)

where Γ is the covariance matrix of ρ̂.
Finally, let us prove that F (Ropt

G,t) saturates the bound (7.38). Denote T opt
G,t =

Ropt
G,t ◦ Dt. Clearly,∑

α=x,y,z

tr
[
σ̂′′αT

opt
G,t (σ̂′α)

]
=
(
∆out
x

)
3,2

+
(
∆out
y

)
3,1

+
(
∆out
z

)
1,2
.

By construction of ŴG, (∆out
x )3,2 = ‖∆x‖op. Since J commutes with every

2 × 2 orthogonal matrix,
(
∆out
y

)
3,1

= ‖∆y‖op = ‖∆x‖op. Finally, (∆out
z )1,2 =

(∆z)1,2 = 2 because the orthogonal transformation V ′ leaves the covariance
matrix of the fermionic mode A0 unchanged. Together with equation (7.39),
this shows that the recovery operation Ropt

G,T saturates the bound in (7.38).
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7.4.5 Convex-Combination of Trace-Preserving Gaussian
Recovery Operations

Let us consider a convex combination of trace preserving Gaussian recovery
operations:

Rcc,t(ρ̂) =
∑
j

pj RG,j,t(ρ̂),
∑
j

pj = 1, pj ≥ 0. (7.45)

We now claim that a recovery operation of this form cannot overcome the
bound (7.38). Indeed, because of linearity:

F (Rcc,t) =
∑
j

pjF (RG,j,t) ≤ F opt
G,t (7.46)

This is not true when the coefficients pj depend on the state:

Rcc,T (ρ̂) =
∑
j

pj(ρ̂) RG,j,t(ρ̂).

This is the case, for example, of a measurement-based recovery operation, as the
standard quentum error correction algorithms based on syndrome measurement.
These algorithms can beat the bound F opt

G,t but not the most tight F opt
t .

7.5 Gaussian Decoherence Channel

Let us consider a decoherence channel Dt(·) which is a Gaussian channel. We
now prove that in some specific cases a Gaussian recovery operation achieves
the bound in (7.6), i.e. F opt

G,t = F opt
t . Notice that F opt

G,t and F opt
t have been

derived under the assumption of a decoherence-free mode, which we therefore
assume also in this chapter. Comparing equation (7.6) with (7.7), we obtain
that we have only to show that:

‖ρ̂x,+(t)− ρ̂x,−(t)‖tr = ‖Γx,+(t)− Γx,−(t)‖op (7.47)

Let us consider the parametrization of a fermionic Gaussian channel in equa-
tion (7.32) for Dt which maps M = 2 Dirac modes into N modes. We start
considering a unital map, i.e. AD = 0, BD 6= 0. Moreover, since the fermionic
mode A is decoherence-free, BD = I⊕B̃D. In order to study the action of DT on
operators we need another parameter, CD, which is not relevant for covariance
matrices. For a trace-preserving quantum operation CD = 2M−N .

Let us recall that:

ρ̂x,+(t)− ρ̂x,−(t) = âDt(−b̂) + â†Dt(−b̂†) (7.48)

We name Dt(−b̂) = R̂; from equation (7.24) we know that ‖ρ̂x,+(t)−ρ̂x,−(t)‖tr =

2tr
[
P̂
]
, where tr

[
P̂
]

is the sum of the singular values sk of R̂. Let us compute

sk for this specific case. We observe that:

Dt(ĉj) = CD
∑
k

Bj,k ĉ
′
k (7.49)
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Therefore, since −b = − 1
2 (c3 + ic4):

R̂ = −CD
2

∑
j

(B3,j + iB4,j) ĉ
′
j = −CD

2

(
~l1 · ~̂c′ + i~l2 · ~̂c′

)
.

Define

ĉ′′j =
∑
k

Bj+2,k ĉ
′
k/Λj , Λj = +

√
(B̃B̃T )j,j ≤ 1 (7.50)

so that c′′j c
′′
j = I. Since the two vectors ~l′1 = ~l1/Λ1 and ~l′2 = ~l2/Λ2 can be non-

orthogonal, we write ~l′2 = Ω ~l′1 +
√

1− Ω2 ~l′⊥, with ~l′⊥ such that ~l′1 ·~l′⊥ = 0. This
defines the following expansion c′′2 = Ωc′′1 +

√
1− Ω2c′′⊥. With this notation, we

rewrite R as:

R̂ = −CD
2

(
(Λ1 + iΛ2Ω)ĉ′′1 + iΛ2

√
1− Ω2ĉ′′⊥

)
(7.51)

The two degenerate singular values of this operator are:

s1,2 =
CD
2

√
Λ2

1 + Λ2
2 ± 2Λ1Λ2

√
1− Ω2 (7.52)

and the trace (over N − 1 fermions!) can be computed via the nested radical
formula:

2tr[P ] =
√

2

√
Λ2

1 + Λ2
2 +

√
(Λ2

1 − Λ2
2)2 + 4Λ2

1Λ2
2Ω2 (7.53)

Let us now discuss the Gaussian formalism. The action of DT on the initial
covariance matrix:

Γx,+(t)− Γx,−(t) = BD

(
0 −CT
C 0

)
BTD (7.54)

where the only matrix elements of C different from zero are C1,1 = C2,2 = 2.

Since the mode A is decoherence free, BD = I2 ⊕ B̃D, and thus:

‖Γx,+(t)− Γx,−(t)‖op = ‖B̃DC‖op (7.55)

Using the previous notation, we get that:

B̃DC = 2
(

Λ3
~l1 ; Λ4

(
Ω~l1 +

√
1− Ω2~l⊥

) )
(7.56)

Consider an orthogonal transformation O which maps O~l1 = e1 and O~l⊥ = e2.
Since ‖ · ‖op is a unitarily invariant norm, we have to study the operator norm
of the matrix:

OB̃C
∣∣∣
1−2,1−2

= 2

(
Λ1 Λ2Ω

0 Λ2

√
1− Ω2

)
(7.57)

The singular values of this matrix are:

s̃± =
√

2

√
Λ2

1 + Λ2
2 ±

√
(Λ2

1 − Λ2
2)2 + 4Λ2

1Λ2
2Ω2 (7.58)

and s̃+ is the sought norm. Moreover, s̃+ = 2tr[P ]. This demonstrates equa-
tion (7.47).
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Let us work out two easy examples, i.e. Ω = {0, 1}. For the best case
situation Ω = 0 the optimal fidelity of the channel is given by F opt

t = 2/3 +
max(Λ1,Λ2)/3. For Ω = 1, the fidelity is lower: F opt

t = 2/3+
√

Λ2
1 + Λ2

2/3. This
section shows us that in presence of a Gaussian decoherence channel a relatively
small number of parameters can characterize the fidelity of the system.

Let us now relax the assumption of D being a unital map, i.e. AD 6= 0.
Recalling that the action on a covariance matrix is Γ′ = BDΓBTD + AD, equa-
tion (7.54) is not changed and we expect therefore the result to be independent
of AD. Since the first mode is decoherence free, the matrix A must have the
following form: A = 02 ⊗ Ã, where 02 represents a 2 × 2 zero matrix. For a
general matrix A of this form, equation (7.47) is not true. A sufficient condi-
tion for equation (7.47) to be true is that OÃOT = A′ ⊕ A′′, where the action
of O is defined in equation 7.57 and in the text before. A′ (A′′) is a 2 × 2
(N − 4 × N − 4) skew-symmetric matrix. Physically, this means that A does
not have correlations between the modes {ĉ′′1 , ĉ′′⊥} and all the other modes of
the system.

In this case, the operator R̂ in equation (7.51) takes the form:

R̂ = −1

2

(
(Λ1 + iΛ2Ω)ĉ′′1 + iΛ2

√
1− Ω2ĉ′′⊥

)
ρ̂A′′ (7.59)

where ρ̂A′′ is a well-defined density operator written in terms of Majorana modes
represented by vectors ~l′′j orthogonal to {~l′1,~l′⊥}. Exploiting the fact that ρ̂A′′ is
a positive operator with tr[ρ̂A′′ ] = 1 one can demonstrate equation (7.47).

Let us finally notice that in the two cases for which we have found equa-
tion (7.47) true, the operator ρ̂x,+(t)− ρ̂x,−(t) is a Gaussian operator. We leave
as conjecture that (7.47) is true if and only if ρ̂x,+(t)− ρ̂x,−(t) is Gaussian.

7.6 Master Equation with Linear Jump Opera-
tors

In the three previous sections we have focussed on the development of theoretical
tools for the quantification of the memory properties of a Kitaev chain. We now
switch our focus to the use of these tools. We discuss several kinds of decoherence
maps Dt(·) and characterize their effect on a fermionic topological memory.

The most natural way to construct a decoherence map Dt is to consider a
time evolution governed by a Lindblad master equation, which can be derived
under the assumptions: i) system and environment are initially uncorrelated,
ii) the coupling between system and environment is weak (Born approximation)
and iii) the environment equilibrates fast (Markov approximation). One obtains:

∂tρ̂ = − i
~

[
Ĥ, ρ̂

]
+

nα∑
α

(
L̂αρ̂L̂†α −

1

2
{L̂†αL̂α, ρ̂}

)
(7.60)

where Ĥ is the Hamiltonian of the system and L̂α are the the jump operators
describing the decoherence process.

The differential equation can be formally integrated introducing the super-
operator St such that ρ̂(T ) = St(ρ̂0). This defines our decoherence channel:

Dt(ρ̂q) = St(ρ̂q ⊗ ρ̂′); (7.61)



7.6 Master Equation with Linear Jump Operators 101

where ρ̂′ is the density operator of the N − 2 fermion modes which are not used
to define the qubit. Different ρ̂′ define different decoherence channels, as well as
different ways of encoding the qubit define different channels. In the following,
we encode ρ̂q into the zero-energy modes of the Hamiltonian Ĥ, and ρ̂′ is, for

example, the ground state with respect to Ĥ.
We can restrict our study to quadratic fermionic Hamiltonians,

Ĥ =
i

4

∑
α,β

Tα,β ĉαĉβ ,

because they entail the class of topological models hosting localized Majorana
zero-energy modes we are interested in. The evolution is a Gaussian channel and
therefore we can work with covariance matrices rather than with density opera-
tors. The time evolution of the covariance matrix is given by (see section 6.5.2
and [Hor11, BK11a]):

∂tΓ =
1

~
[T,Γ]− {L1,Γ} − 2iL2 (7.62)

where L1 and L2 are defined in section 6.5.2.
In this section we concentrate only on the Gaussian recovery operation.

We cannot analytically quantify the value of F opt
t in (7.6). We know that

F opt
G,t < F opt

t . Moreover, the value ‖ρ̂x,+(t) − ρ̂x,−(t)‖tr/2 is upper bounded

by
√

1− F (ρ̂x,+(t), ρ̂x,−(t))2, where F (ρ̂, σ̂) is the Uhlmann fidelity (see sec-
tion 6.3.4) [NC04]. Even if we can make precise statements only about the
lower bound F opt

G,t , the upper bound is also a function of the covariance matri-
ces Γx,±(t) and we do not expect a significantly different qualitative behaviour
between the upper and the lower bound.

7.6.1 Uniqueness of the Steady State

We study the time evolution of the difference of two given covariance matrices
Γ1(t)− Γ2(t) using (7.62):

∂t(Γ1 − Γ2) = (T − L1) (Γ1 − Γ2) + (Γ1 − Γ2) (−T − L1)

Let us consider for simplicity the case of T and L1 not depending on time.
We obtain:

Γ1(t)− Γ2(t) = e(T−L1)t(Γ1(0)− Γ2(0))e(−T−L1)t (7.63)

According to the results in appendix C, under the assumption that ~w†L1 ~w > 0
for all the ~w eigenvectors of T , the two matrices ±T −L1 have eigenvalues with
strictly negative real part. Consequently, the operator norm of exp((±T −L1)t)
decays exponentially in time. Therefore, defined Λ = ‖Γ1(0)− Γ2(0)‖op > 0:

‖Γ1(t)− Γ2(t)‖op ≤ Λ‖e(T−L1)t‖op‖e(−T−L1)t‖op ≤

≤ ΛΩ poly(t)e<(λ+)te<(λ−)t t→∞−−−→ 0

where λ± are the largest negative real parts of the eigenvalues of ±T − L1.
Because ~w†L1 ~w = ‖

√
2L̃T ~w‖2, with L̃ defined in (6.60), the assumption done
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is equivalent to asking for a non-trivial action of the Lindblad operators on all
the eigenstates of the Hamiltonian.

Under this condition, this demonstrates the uniqueness of the steady state,
which is approached exponentially in time. We leave for the next sections the
study of the dependence of the typical decay time on the system size N , which
can be easily adapted to this case via a similar reasoning.

We can estimate the upper bound on the fidelity using equation (7.41), and
considering that ‖Γα,+(0)− Γα,−(0)‖op = 2, with α = {x, y, z}:

F opt
G,t ≤

1

2
+

Ω

2
poly(t)e<(λ+)te<(λ−)t (7.64)

This rules out the possibility of any recovery operation for t→∞.

7.6.2 One Decoherence-Free Fermionic Mode

We make use of the assumption introduced in section 7.1 of a qubit composed of
two modes A0 and B0, with A0 decoherence-free. We parametrize the covariance
matrices as follows:

Γ =

(
ΓA −CT
C Γs

)
(7.65)

where ΓA is a 2 × 2 matrix representing the decoherence-free mode A0, Γs is
the 2(N − 1) × 2(N − 1) covariance matrix of both the B0 and the remaining
modes, and C is 2(N − 1)× 2 representing correlations.

With similar notation, the matrices T , L1 and L2 read:

T =

(
0 0
0 Ts

)
, L1 =

(
0 0
0 L1s

)
, L2 =

(
0 0
0 L2s

)
.

Note that this this choice does not satisfy ~w†βL1 ~wβ > 0 ∀β and there can be
multiple steady states.

We want to study F opt
G,T using equation (7.7) and observe that:

Γx,+(0)− Γx,−(0) =

(
0 −C̄T
C̄ 0

)
; (7.66)

Moreover, using equation (7.62), one obtains: ∂tC(t) = (Ts − L1s)C(t). which
implies:

C(t) = e(Ts−L1s)tC(0) (7.67)

One can also show that Γs,x,+(t)− Γs,x,−(t) = 0 and that ΓA,x,±(t) = ΓA(0).
Combining the results of appendix C to a reasoning similar to that used in

the previous section, one gets:

‖Γx,+(t)− Γx,−(t)‖op = ‖C(t)‖op ≤ ‖C̄‖op Ω poly(t)e<(λ1)t t→∞−−−→ 0

where λ1 is the eigenvalue with largest (negative) real part of Ts−L1s. If <(λ1) <
0, Γx,± evolve towards the same covariance matrix, which does not have any
correlation between modes A and B. Furthermore, F opt

G,T → 2/3 exponentially
in time.

The non-trivial action of L1s on all the eigenstates of Ts is necessary (and
sufficient) condition in order to have <(λ1) < 0. We accept this assumption,
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because otherwise there would be a decoherence free mode, which is the best
candidate for a protected qubit, which would however not be the consequence
of the topological properties of Ts. Notice that such a decoherence-free mode is
not related to the mode auxiliary mode A which we use to define the qubit.

7.6.3 Dependence on the System Size

Let us study the scaling with the number of modes N of the bound on ‖C(t)‖op.
We will assume L1s to be positive definite. In this case, as explained in ap-
pendix C, the bound can be improved to:

‖Γx,+(t)− Γx,−(t)‖op ≤ ‖C̄‖ope
−λ1t (7.68)

where λ1 is the eigenvalue of D with smallest (positive) real part. Since ‖C̄‖op =
2 does not depend on N , only the size-scaling of the eigenvalues of L1s must be
studied. This depends on the model. Notice that at this stage the Hamiltonian
has completely disappeared from our discussion. Even if we find an exponential
scaling of F opt

T with the size of the system, it is not an effect of Hamiltonian
protection.

We start with a general consideration. We know that the best fidelity of a
recovery operation F opt

G,T with N fermionic modes can be bounded as follows:

F opt
G,T ≤

2

3
+

1

3
e−λ1,NT (7.69)

We define T0,N as the minimum time for which a fidelity F0 is reached (from
above) in a system of size N . It follows:

T0,N ≤
1

λ1,N
log

(
1

3F0 − 2

)
(7.70)

For an exponential scaling of T0,N ∼ ecN , c ∈ R+, the following must hold:

λ1,N ≤ −A log (3F0 − 2) e−cN , A, c ∈ R+ (7.71)

Therefore, if λ1,N decays with N slower than exponentially the qubit is not
protected.

7.6.4 Translationally-Invariant Lindblad Operators

Let us now consider some explicit models for L̂α. We start with Lindblad
operators L̂j localized on only one lattice site, j. The corresponding vectors
~Lj,R and ~Lj,I have at most only two elements different from zero and L̃ assumes
the form:

L̃ =


B1 0
0 B2 0

. . .
. . .

. . .

0 BN−1 0
0 BN

 (7.72)

where Bj are 2× 2 matrices. In this case, the matrix L1s is positive definite if

and only if L̃ has no singular value equal to zero. L̃ in (7.72) has a zero singular
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value if and only if there are two columns which are linearly dependent, i.e. if
and only if there is a site, j, such that L̂j is as follows:

L̂j = ν1ξĉj,1 + ν2ξĉj,2 = ξ(ν1 − iν2)âj + ξ(ν1 + iν2)â†j (7.73)

with ξ ∈ C, νi ∈ R. Let us assume that this is not the case and that the
system is translationally invariant. If all the Lindblad operators are identical,
L1 is positive and the spectrum of L1 is highly degenerate and composed of
at most two fixed values λ1 and λ2, larger than zero. Considering a larger
system only increases the degeneracy of the spectrum, ruling out the scaling of
equation (7.71).

We can generalize the previous discussion to Lindblad operators which are
local and localized on l neighboring sites. We assume translational invariance
and a one-dimensional system. For a general l, L̃ is a 2(N − 1)× 2(N + l − 2)
real matrix and takes the following form:

L̃ =



Bl Bl−1 . . . B1 0 . . . 0

0 Bl Bl−1 . . . B1 0
...

...
. . .

. . .
. . .

. . .
. . .

...
0 Bl Bl−1 . . . B1 0

0 Bl Bl−1 . . . B1

 (7.74)

where each Bj is a 2× 2 matrix.
Consequently, L1 is a real symmetric positive semi-definite banded block-

Toeplitz matrix:

L1 = 2L̃L̃T =



A0 . . . Al−1 0 0
...

. . .
. . .

. . . 0

A−l+1
. . .

. . .
. . . Al−1

0
. . .

. . .
. . .

...
0 0 A−l+1 . . . A0


(7.75)

The relation between the Aj and Bk matrices is the following:

j ≥ 0 Aj = 2

l−j∑
k=1

BkB
T
k+j (7.76)

j < 0 Aj = AT−j (7.77)

We exploit now one property of Toeplitz matrices in [Ser98]. Consider the
matrix-valued generating function f(x) with x ∈ [−π, π]:

f(x) =

l−1∑
j=−l+1

eijxAj (7.78)

The theorem states that the eigenvalues of L1 are in the range [σmin(f), σmax(f)],
where the notation σ(f) refers to the singular values of f and the min (max)
is taken over x ∈ [−π, π]. Therefore we can simply study a 2 × 2 matrix to
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get eigenvalues of the 2(N − 1) × 2(N − 1) matrix. Moreover, the eigenvalues
are bound from below ∀N . The only way to get a zero eigenvalue is that
σmin(f) = 0; in that case the exponential scaling with N is not ruled out by the
theorem. It would be interesting to understand what are the conditions on Bk
in order to have σmin(f) = 0, and we leave it for future work. Notice that this
formalism allows also the study of the case l = 1 which we discussed at the end
of the previous subsection.

7.6.5 Impossibility of Protection via Engineered Dissipa-
tion

Assume to have a matrix L1 whose eigenvalues are not scaling exponentially with
N to zero. Adding an engineered dissipation in the form of a list of new operators
Ĵα on top of the system cannot improve the memory properties. Indeed, one can
write the global Ltot

1 matrix as L1 +J1 where J1 accounts for the contribution of
the engineered dissipation. Since L1 is positive and J1 is positive semidefinite,
the spectrum of Ltot

1 is bounded from below by minλ∈SpL1
λ.

7.7 Master Equation with Quadratic Lindblad
Operators

We consider now the action of a generic master equation with Hermitian jump
operators which are quadratic in the fermionic fields:

L̂α =
i

4

∑
k,l

Mα
kl ĉk ĉl. (7.79)

The time evolution of the covariance matrix is given by (see section 6.6.1):

∂tΓ =
1

~
[T,Γ] +

1

2

∑
α

[Mα, [Mα,Γ]] (7.80)

7.7.1 Uniqueness of the Steady Covariance Matrix

We now proof that under some reasonable assumptions the master equation (7.80)
has a unique steady state. We exploit the canonical isomorphism between
2n × 2n covariance matrices and vectors of length 4n2 and between the su-
peroperators and 4n2 × 4n2 matrices. Equation (7.80) can be rewritten as:

T = T ⊗ I− I⊗ T
M =

∑
α

(Mα)2 ⊗ I + I⊗ (Mα)2 − 2Mα ⊗Mα

∂t~Γ = (T +M) ~Γ (7.81)

We apply, as above, the theorem in appendix C. T is a 4n2 × 4n2 skew-
symmetric matrix; M is a negative semidefinite matrix. This last fact can be
proven by working in the basis diagonalizing

∑
αM

α; in particular one can show
that given the 2n eigenvalues of

∑
αM

α, {±iλβ}nβ=1, λβ ∈ R+, the eigenvalues

ofM are {−(λβ±λδ)2}nβ,δ=1, each one being twofold degenerate. The condition
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Coupling

Auxiliary Qubit

N-1

Kitaev chain

ℓ
Environment

Figure 7.1: Sketch of the system considered: one Kitaev chain of length N
coupled to a fermionic reservoir; the initial state of the Kitaev chain is entangled
with the auxiliary qubit.

~w†(−M)~w > 0 implies that the action of the dissipation
∑
αM

α is not trivial
on every eigenstate of the T matrix. Under this assumption there is only one
steady covariance matrix, which is equal to zero:

‖Γ(t)‖op
t→∞−−−→ 0, ∀ Γ(0). (7.82)

Note that the asymptotic state is not Gaussian, but a linear combination thereof.
Using equation (7.41) one can put an upper bound to the fidelity of a Gaus-

sian recovery operation, which decays exponentially in time. On the other hand,
there is no way of using the covariance matrices to extract information about
the general recovery operation because the states are not Gaussian. Finally,
all the results derived in the previous section for linear jump operators can be
extend also to this case via a suitable adaptation of the reasoning.

7.8 Kitaev Chain Coupled to a Small Fermionic
Environment

According to the previous sections, it is problematic to use a fermionic sys-
tem coupled to an environment described by a master equation as a quantum
memory. In this section we explicitly consider a small fermionic environment;
we exactly compute the correlations which arise between the system and the
environment and study whether they improve the memory properties of the
topological system. With the help of a numerical simulation we show that even
in this case the information stored in the system is not protected.

We consider a Kitaev chain of N sites as in (7.8) and an auxiliary fermionic
ancilla with trivial dynamics. Additionally, we consider a two-dimensional
fermionic environment of size N × ` ruled by a simple hopping dynamics:

Ĥenv = −K
∑
<k,l>

f̂†k f̂l; (7.83)

where f̂k are fermionic operators. The coupling between the chain and the edge
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Figure 7.2: Plot of 1
2‖Γx,+(t) − Γx,−(t)‖op for ` = 1 for different chain lengths

N . The shared initial decay implies that the qubit is not protected by the chain
length.

of the environment is modelled by the Hamiltonian (see figure 7.1 for a sketch):

ĤK−e = −Jenv

∑
j

ĉ†j f̂j +H.c. (7.84)

We define the time-evolution operator for the global system:

Û(t) = e−
i
~ (ĤKC+Ĥa+Ĥenv+ĤK−e)t. (7.85)

The decoherence map we consider is:

Dt(ρ̂q) = trenv

[
Û(t) (ρ̂q ⊗ ρ̂GS) Û(t)†

]
; (7.86)

where ρ̂q is the (pure) state of the qubit, built with âa and d̂0. ρ̂GS represents

the ground state (vacuum) of the theory described by ĤKC + Ĥenv. Notice that
ρ̂q ⊗ ρ̂GS is not an eigenstate of Û(t) and thus the action of the map is not
trivial. Moreover, Dt in (7.86) is a Gaussian channel and we study the optimal
recovery fidelity via equation (7.7).

We first consider the case ` = 1, which is the case with the smallest envi-
ronment. We set µ = J , ∆ = J , K = J and Jenv = 0.05J . The behaviour
of 1/2‖Γx,+(t) − Γx,−(t)‖op for different N is shown in figure 7.2. We observe
fluctuations due to fermions which are coherently entering and leaving the sys-
tem. Remarkably, the initial decay behaviour is shared by systems with different
sizes. We conclude that the size of the chain is not protecting the qubit.

It is interesting to observe that one would obtain the same plot substituting
ρ̂GS with any other ρ̂′, e.g. a thermal state. Consider the general Gaussian
channel:

D′t(ρ̂q) = trenv

[
Û(t) (ρ̂q ⊗ ρ̂′) Û(t)†

]
.

The covariance matrix of D′t(ρ̂q) is:

Γ(t) = O(t)(Γq ⊕ Γ′)O(t)T
∣∣
chain+ancilla

(7.87)



108 Quantum Memories with Majorana Modes under Perturbation

0 50 100 150 200
0.75

0.8

0.85

0.9

0.95

1

time (J
−1

 )

1
/2

 |
| 

Γ
x
,+

(T
) 

−
 Γ

x
,−

 (
T

) 
||

o
p

 

 

N
dis

 = 22

N
dis

 = 42

N
dis

 = 102

N = 33
µ

in
 = 0.0

µ
−
 = J

µ
+
 = 1.5 J

0 0.02 0.04 0.06 0.08
0.8

0.85

0.9

0.95

1

1 / N
dis

1
/2

 |
| 

Γ
x
,+

(T
) 

−
 Γ

x
,−

(T
) 

||
o

p

 

 

Figure 7.3: Study of the discretization of the interval [µ−, µ+]. We consider a
Kitaev chain with 32 sites and a decoherence-free auxiliary mode; initially, the
chain is at the frustration-free point (µ = 0, J = ∆). Left: we plot the quantity
1/2‖Γx,+−Γx,−‖op for different values of Ndis, the number of discretizations of
the interval. Plots display extremely similar behaviours. Right: we show that
the the data scale linearly in 1/Ndis. We consider Ndis = {14, 22, 32, 42, 102}.
For the sake of clarity, we show the scaling only for five different times; from
top to bottom: 2J−1, 18J−1, 34J−1, 50J−1 and 66J−1. Red lines are linear
fits. Similar results are obtained for 1/2‖ρ̂x,+ − ρ̂x,−‖tr (not shown).

where Γ′ is the covariance matrix of ρ̂′ and O(t) is the orthogonal transformation
which represents the unitary time evolution Û(t). The action of tracing out
the environment is performed by restricting the covariance matrix only to the
physical modes of the Kitaev chain and of the ancilla. Clearly, the quantity:

Γx,+(t)− Γx,−(t) = O(t) (Γx,+ ⊕ Γ′ − Γx,− ⊕ Γ′)O(t)T (7.88)

does not depend on Γ′. Therefore, the fidelity of the recovery operation does
not depend on ρ̂′.

Finally, we obtain a similar behaviour for ` > 1 (not shown).

7.9 Convex-Combination of Hamiltonian Time
Evolutions

Until now we have assumed to be able to precisely encode the qubit ρ̂q in the
zero-energy Majorana modes {ĉ1 . . . ĉ4} of the system; in other words, we have
assumed to be able to exactly address the ground space of the system. In real-
ity, more complicated situations can appear, because it is often experimentally
challenging to be able to control all the parameters of the quantum system. In
cold atoms experiments, for example, the number of atoms varies for every dif-
ferent realization. Therefore, every measurement is the expectation value of the
corresponding observable over a mixed state which is the convex combination
of the different experimental realizations.

This kind of problems motivates the study of decoherence maps which are
convex-combinations of Hamiltonian time evolutions. Specifically, let us imagine
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Figure 7.4: Dependence on the length of the Kitaev chain N of 1
2‖ρx,+−ρx,−‖tr

under the action of the map in equation (7.90) for the parameters described
in section 7.9.1. The curves are obtained by the extrapolation procedure to
Ndis →∞ described in the text and in figure 7.3.

to be able to initialize the global system composed of the Kitaev chain and of
the ancilla in a given state ρ̂q ⊗ ρ̂′, which is not necessarily the ground state
of the experimental realization. The assumption of a tensor form for ρ̂(0) is
justified by the fact that in order to store information in the system one has to
develop an experimental protocol which can freely access the zero-energy modes
A0 and B0 and whose action is independent from the state of the other modes.

The time evolution is described by the following decoherence map:

Ûµ(t) = e−i(ĤKC(µ)+Ĥa)t (7.89)

DT (ρ̂q) =
1

µ+ − µ−

∫ µ+

µ−

dµ Ûµ(t) (ρ̂q ⊗ ρ̂′(µ)) Ûµ(t)† (7.90)

We write explicitly the dependence of Hamiltonian ĤKC on the chemical poten-
tial µ, even if every other quadratic perturbation could have been considered.
The map accounts for several time evolutions ruled by Hamiltonians character-
ized by different µ, and then considers the convex combination of the outcomes.
The initial state may or may not depend on the specific chemical potential µ
of the time-evolution. Even if each time-evolved state is Gaussian, their convex
combination is not and the map in (7.90) is not a Gaussian channel. We exploit
equations (7.6) and (7.7) to characterize the fidelity of the optimal recovery
operation and of the optimal Gaussian one; in general, they do not coincide.
This comparison is possible because, as explained in section 6.6.2 and in ap-
pendix B.3, we have access not only to Γx,±(t), but also to ρ̂x,±(t) (this last
only in a specific basis), so that both F opt

t and F opt
G,t can be computed.

7.9.1 The Case of ρ̂′ Independent from µ

Let us consider the frustration-free point of the Kitaev chain, µ = 0 and J = ∆;

we use the corresponding zero-energy mode d̂
(†)
0 and the decoherence-free ancilla
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Figure 7.5: Dependence on the length of the Kitaev chain N of the time TN (F0)
at which a prescribed fidelity F0 is reached. The semi-logarithmic scale high-
lights a superlinear scaling. The procedure relies on a parabolic fit of the data
shown in figure 7.3, whose oscillating behaviour makes otherwise this analysis
impossible.

â
(†)
a to encode the qubit state ρ̂q. The other modes are in the ground state with

respect to the frustration-free ĤKC: ρ̂′ ≡ ρ̂GS. Regarding the strength of the
perturbation, we take µ− = J and µ+ = 1.5J . According to the characterization
given in [BK11b], this is a strong perturbation, because the strength parameter
N‖V ‖2op is much larger than one (1 < ‖V ‖op < 1.5 and 8 < N < 48).

Because in the numerical simulations we cannot study a continuum of time
evolutions as in equation (7.90), we discretize the integral with a sum over
Ndis perturbation realizations which are equispaced in the interval [µ−, µ+].
Figure 7.3 shows that the procedure is sound, and that the data show a linear
scaling in 1/Ndis, so that an extrapolation for Ndis → +∞ is possible.

Let us now study the scaling with N → +∞ of 1
2‖ρx,+(t) − ρx,−(t)‖tr,

the quantity which characterizes the fidelity of the optimal recovery operation.
Figure 7.4 shows that the fidelity of the optimal recovery operation increases
as the size N of the system increases. In order to better quantify this form of
protection, we fix a value F0 < 1. We define TN (F0) as the first time at which
1
2‖ρx,+(t) − ρx,−(t)‖tr, computed with a system of size N , reaches such value.
The scaling of TN (F0) with N is shown in figure 7.5 for several values of F0.
The scaling is superlinear and can be identified with a form of protection by the
Hamiltonian.

The result is related to the Hamiltonian protection of the zero-energy space.
Indeed, it is possible to observe a completely different behaviour both in case in
which the perturbation happens in the gapless region at ∆ = 0 or outside the
topological region, |µ/J | > 2 (not shown).

Let us now concentrate on the optimal Gaussian recovery operation. Our
numerics, shown in figure 7.6, shows that 1

2‖Γx,+(t)− Γx,−(t)‖op saturates to a
finite value FG(T ) < 1 in the limit N → ∞. Therefore, whereas the previous
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Figure 7.6: Dependence on the length of the Kitaev chain N of 1
2‖Γx,+(T ) −

Γx,−(T )‖op under the action of the map in equation (7.90) for the parameters
described in section 7.9.1. The curves are obtained by the extrapolation proce-
dure to Ndis →∞ described in the text and in figure 7.3.

analysis shows that the information is not lost and is protected by the topological
nature of the Hamiltonian, it cannot be recovered with the simplest class of
quantum operations, namely the Gaussian ones. This is a direct consequence of
the fact that the final state DT (ρ̂q) is not Gaussian.

Let us provide an intuitive argument for this. Consider a situation with four
Dirac modes, and let us consider the following Gaussian states:

|Ψ1〉 = |0000〉; |Ψ2〉 = |1111〉; |Ψ3〉 = |0011〉; |Ψ4〉 = |1100〉. (7.91)

We define the following non-Gaussian mixed states:

ρ̂a =
1

2
(|Ψ1〉〈Ψ1|+ |Ψ2〉〈Ψ2|) ; ρ̂b =

1

2
(|Ψ3〉〈Ψ3|+ |Ψ4〉〈Ψ4|) . (7.92)

The two states are orthogonal: tr[ρ̂aρ̂b] = 0; still, an easy computation shows
that they have the same covariance matrix, the zero-matrix. Even if it is pos-
sible to distinguish the two states, this cannot be done just by looking at their
covariance matrices.

We now analyze the relation of these results to those presented in [BK11b].
It is shown that in presence of a homogeneous perturbation the memory prop-
erties of the Kitaev chain scale only logarithmically with the system size. The
discussion is strongly connected to the use of the standard quantum error cor-
rection code for frustration-free models. Here we show that such algorithm is
not the most efficient. Indeed, our results show that the information is not lost
and that it can benefit from increasing the length of the system.

7.9.2 The Case of ρ̂′ Dependent on µ

We now study the case of a state ρ̂q⊗ ρ̂′(µ) depending on the chemical potential
of the Hamiltonian ruling the time evolution. Let us consider in particular the
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Figure 7.7: Study of the decoherence map (7.90) in the case of a state depending
on µ (see section 7.9.2). The definition of the two bounds is in the text.

situation in which the qubit ρ̂q is encoded with the zero-energy mode d̂
(†)
0 (µ) of

the Hamiltonian ĤKC(µ). Moreover, we also consider the other modes to be in
the ground state with respect to ĤKC(µ), i.e. ρ̂′ ≡ ρ̂GS(µ).

Clearly, the action of each time evolution Ûµ(t) (ρ̂q ⊗ ρ̂′(µ)) Ûµ(t)† is trivial

because the state is an eigenstate of the operator Ûµ(t). This statement hides
the assumption of perfect degeneracy of the ground state, i.e. that the energy

ε0 of the modes d̂
(†)
0 (µ) is zero. This is in general not true. Still, in [BK11b] it is

demonstrated that ε0
N→∞−−−−→ 0 exponentially in the system size, and thus that

it is possible to control the dephasing arising from this issue, which we therefore
neglect.

The decoherence map (7.90) reduces to the computation of the overlap be-
tween the ground spaces of the difference points of the phase diagram of the
Kitaev chain. In figure 7.7 we provide an upper bound and a lower bound to
‖ρ̂x,+ − ρ̂x,−‖tr, which clearly does not depend on time. The upper bound is
computed as follows:

‖ρ̂x,+ − ρ̂x,−‖tr =

∥∥∥∥∥ 1

Ndis

Ndis∑
α

ρ̂
(α)
x,+ −

1

Ndis

Ndis∑
α

ρ̂
(α)
x,−

∥∥∥∥∥
tr

≤

≤ minπ∈S(α)
1

Ndis

∑
α

∥∥∥ρ̂(α)
x,+ − ρ̂

(π(α))
x,−

∥∥∥
tr

≤ minπ∈S(α)
1

Ndis

∑
α

2

√
1− F

(
ρ̂

(α)
x,+, ρ̂

(π(α))
x,−

)
where F (ρ̂, σ̂) is the Uhlmann fidelity between the two states (see section 6.3.4).
The minimization can be easily computed with an optimization algorithm known
as the Munkres-Hungarian method.

The lower bound is computed via the covariance matrices. Let us consider
equation (7.6) and (7.7). Because F opt

t ≤ F opt
G,t , we obtain:

‖Γx,+(t)− Γx,−(t)‖op ≤ ‖ρ̂x,+(t)− ρ̂x,−(t)‖tr (7.93)
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The high values of the upper and lower bounds presented in figure 7.7 are
compatible with the intuitive idea that the memory should effectively protect
the information in this case. We leave for future work the exact quantification
of ‖ρ̂x,+ − ρ̂x,−‖tr.

7.10 Conclusions and Perspectives

In this chapter we study the stability against perturbations of a quantum mem-
ory encoded with zero-energy Majorana modes. We discuss the possibility of
applying a recovery operation after a noisy or perturbed time evolution; in par-
ticular, we identify the recovery operation which yields the maximum recovery
fidelity, which is therefore a measure of the information which is still present in
the system. We also focus on the class of recovery operations which are most
easily implemented, i.e. the Gaussian ones.

We concentrate on several types of perturbed time evolutions. When the
system is interacting with an environment whose action can be described with a
master equation, we show that the topological Hamiltonian is not able to protect
the system. The key assumption to derive this result is that the dissipation is
acting on every eigenstate of the protecting Hamiltonian. We find this assump-
tion reasonable, as in the presence of decoherence-free modes, the encoding of
the information in such modes would be the best protecting method.

The case of a time evolution which is a convex combination of several Hamil-
tonian time evolutions is more interesting. Since the final state is not Gaussian,
we find that a Gaussian recovery operation cannot achieve a fidelity larger than
a critical value, which is stable in the thermodynamic limit. On the other side,
a more general recovery operation could obtain fidelity 1 in the thermodynamic
limit, as the topological Hamiltonian protects the system against this form of
perturbation.

This work can be considered as the initial work of a more general program
aimed at probing the feasibility of topological fermionic systems for quantum
information applications. The natural next step is, in this respect, to probe the
stability against perturbations of the braiding operations in a two-dimensional
setup, which will be the target of future work.
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Appendix A

Magnetic Flux Quantization
Condition

In section 4.3 we deal with a discretely translational invariant two dimensional
lattice pierced by an external homogeneous magnetic field. In this appendix
we provide more details on the study of such a system via a finite lattice with
periodic boundary conditions (PBC). In particular, we show that because the
Hamiltonian and the discrete translation operators must commute, one obtains
non-trivial conditions on the dimension of the sample.

A.1 Infinite System

We start discussing the Hamiltonian and the discrete translation operator in the
bulk. We consider the Landau gauge: A = B(0, x) and introduce the number
of fluxes crossing each plaquette α = Ba2/Φ0 where Φ0 is the flux quantum
and a is the dimensional lattice constants. From now on x and y will just be
adimensional integer numbers labelling the sites of the lattice.

The standard generalization of the Bose-Hubbard Hamiltonian in presence
of an external magnetic field is the Harper Hamiltonian (see [Har55] and sec-
tion 3.2.1):

Ĥ = −J
∑
x,y

[
e−2πiαxâ†x,y+1âx,y + â†x+1,yâx,y

]
+H.c. (A.1)

where âx,y and â†x,y are boson annihilation and creation operators satisfying

[âx,y, â
†
x′,y′ ] = δxx′δyy′ .

The action of the standard discrete translation operator T̂m,n = T̂ (max +
nay) (m,n ∈ N) on the field operators is the following:

T̂1,0 â
(†)
x,y T̂

†
1,0 = â

(†)
x+1,y

T̂0,1 â
(†)
x,y T̂

†
0,1 = â

(†)
x,y+1

T̂m,n = T̂m1,0 T̂
n
0,1 = T̂n0,1 T̂

m
1,0

Because these T̂m,n operators do not commute with the Hamiltonian in equa-

tion (A.1), we need a “magnetic” translation operator M̂m,n commuting with
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the Hamiltonian, which are the discrete version of the continuum case discussed
in [Zak64]:

M̂1,0 â
(†)
x,y M̂

†
1,0 = e+(−)2πiαy â

(†)
x+1,y

M̂0,1 â
(†)
x,y M̂

†
0,1 = â

(†)
x,y+1

M̂m,nâ
(†)
x,yM̂

†
m,n = e−(+)iπαmn M̂m

1,0 M̂
n
0,1â

(†)
x,yM̂

†n
0,1 M̂

†m
1,0

= e+(−)iπαmn M̂n
0,1 M̂

m
1,0â

(†)
x,yM̂

†m
1,0 M̂†n0,1

Last equation indicates clearly the peculiarity of the magnetic translations which
leads to the Aharonov-Bohm effect: the result of a translation from one point to
another one strongly depends on the followed path and eventually, moving along
a closed loop, gives to the state a phase proportional to the encircled magnetic
flux.

We can verify the commutativity of the magnetic translation operator with
the Hamiltonian just by checking M̂1,0 because translations along other direc-
tions commute straightforwardly:

M̂1,0 e
−2πiαxâ†x,y+1âx,y M̂

†
1,0 = e−2πiαxe−2πiα(y+1)e+2πiαyâ†x+1,y+1âx+1,y =

= e−2πiα(x+1)â†x+1,y+1âx+1,y (A.2)

M̂1,0 â
†
x+1,yâx,y M̂

†
1,0 = â†x+1,yâx,y (A.3)

Therefore:
M̂1,0 Ĥ M̂†1,0 = Ĥ

where we exploit the sum over x in H and change variables to x′ = x+1, always
possible in the bulk.

A.2 Finite System with Periodic Boundary Con-
ditions

We now discuss the possibility of studying the previous infinite system with
a finite system of dimension Lx × Ly with PBC. Lx,y are here adimensional
numbers which can be used to define the total number of fluxes crossing the
finite system: NΦ = LxLyα. In order to be able to identify the bosonic operators
residing on sites whose distance is mLxa+nLya, with m,n ∈ N, we must require
the total number of fluxes NΦ to be an integer number. This can be proven
simply translating the field operator around one plaquette Lx × Ly. As before,
we also require the Hamiltonian and the “magnetic” translation operators to
commute; in particular, we discuss in detail the interesting case of translation
along x̂: M1,0 H M†1,0 = H.

We separately analyze this equation on each link of the finite lattice. In
particular, when considering the links oriented along the ŷ direction, it reduces
to the following equality:

e−2πiα x e−2πiα [y+1−y] · â†
x+1,y+1

âx+1,y = e−2πiα x+1 â†
x+1,y+1

âx+1,y (A.4)

where x+ 1 denotes the modulus count (same for y):

x+ 1 = (x+ 1) modLx.
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We distinguish four cases:

1. x ∈ [0, Lx − 2] ∧ y ∈ [0, Ly − 2]: Eq. A.4 is automatically satisfied, as it
happens in the bulk;

2. x = Lx−1 ∧ y ∈ [0, Ly−2]: Eq. A.4 is fulfilled only if e−2πiα(Lx−1)e−2πiα =
1, which implies αLx ∈ N;

3. x ∈ [0, Lx − 2] ∧ y = Ly − 1: Eq. A.4 is fulfilled only if e+2πiα(Ly−1) =
e−2πiα, which implies αLy ∈ N;

4. x = Lx−1 ∧ y = Ly−1: Eq. A.4 is fulfilled only if e−2πiα(Lx−1)e+2πiα(Ly−1) =
1, which implies α(Ly − Lx) ∈ N.

The double constraint NΦ/Lx, NΦ/Ly ∈ N and the desired magnetic filling
one NΦ = N strongly reduces the number of finite size systems numerically
treatable with moderate effort. The Hilbert space for the examined 4×4 lattice
with 4 particles consists of 3.620 states, but already 5 three-hardcore bosons
on a 5 × 5 grid need 110.630 to be described. Such strict constraints could
be circumvented if one introduces proper singularities of the magnetic field to
fulfill the correct translational and periodic conditions; however, any spurious
correction introduced by hand would strongly affect the numerics on the small
scales treatable. Therefore we decided to stay stuck to the strictest version
given above. An extensive numerical study of this problem is left for future
investigations.
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Appendix B

Some Additional Results on
Fermionic Gaussian States

In this appendix we discuss some technical results about fermionic Gaussian
states which have been mentioned in chapter 6. In section B.1 and B.2 we
present two results which generalize equation (6.28): the computation of Tr[ρ̂ Û ]
and of Tr[Û V̂ ] for ρ̂ Gaussian state and Û , V̂ canonical transformations. The
aim of section B.3 is to present an explicit procedure to evaluate the quan-
tity in equation (6.67), i.e. the distance between two mixed states which are
convex combinations of pure Gaussian states. The reading of section 6.6.2 is
preliminary, as we use the notation introduced there.

B.1 Expectation Value of a Canonical Transfor-
mation

We are interested in Tr
[
Û ρ̂
]
. This is completely related to the covariance

matrices of the two operators, Υ (here we rather use Ω) and Γ. In the simplest
case with ηα 6= 0, it reads:

Tr
[
Û ρ̂
]

=

(∏
α

i sin
ηα
2

)
Pf [Ω− Γ] (B.1)

The derivation of this formula goes as the one for Tr [ρ̂ σ̂]. We take Û in its
standard form (6.13) and expand the product:

Û =

(∏
α

cos
η

2

)
·
N∑
s=0

∑
ordered

strings of
length s
{α1...αs}

[(−1)s·

· tan
ηα1

2
. . . tan

ηαs
2

ĉα1,1ĉα1,2 . . . ĉαs,1ĉαs,2

]
where the case for s = 0 yelds a 1̂. Using equation (6.26), after some algebraic
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manipulation, assuming ηα 6= 0 ∀α, we write:

Tr
[
ρ̂ Û
]

=

(∏
α

sin
η

2

)
N∑
s=0

∑
strings

 ∏
α/∈string

(−i) cot
ηα
2

 Pf [Γ|α∈string]

i2s−N

We observe that  ∏
α/∈string

(−i) cot
ηα
2

 = Pf
[

Ω|α/∈string

]
and obtain:

Tr
[
ρ̂ Û
]

=

(∏
α

i sin
ηα
2

)
N∑
s=0

∑
strings...

Pf
[

Ω|α/∈string

]
Pf
[
−Γ|α∈string

]
We can now apply the theorem in equation (6.32) and obtain the formula (B.1).

Unlike formula (6.33), the result can have a non-zero imaginary part because
Υ is an imaginary matrix. Furthermore, one cannot reduce this calculation to
the computation of a determinant as in (6.28), whose square root returns the
absolute value of the pfaffian, because we do not have any a priori knowledge

of the sign of Tr
[
Û ρ̂
]
.

Let us now consider the case of one ηα = 0. Comparing with the original
definition, this means that the Hilbert space can be splitted into a tensor product
H = Hα⊗Hᾱ (see the corresponding discussion in section ???) and that in this
representation:

Û = Î2 ⊗ Û ′′ (B.2)

The density matrix can be written as ρ̂ =
∑
β ρ
′
β⊗ρ′′β . Defining ρ̂ᾱ =

∑
β Tr[ρ̂′β ] ρ̂′′β ,

we obtain:
Tr[Û ρ̂] =

∑
β

Tr[̂I2 ρ̂′β ] · Tr[Û ′′ ρ̂′′β ] = Tr
[
Û ′′ρ̂ᾱ

]
(B.3)

Equation (B.1) is not invariant with respect to orthogonal transformations.
We know that after a canonical transformation ĉi → ĉ′i =

∑
j Oi,j ĉj covariance

matrices in the ĉ′i basis are Γ′ = OΓOT (the same holds for Υ). The evaluation

of Tr[Û ρ̂] in a basis different from that diagonalizing Û requires the knowledge
of the transformation O:

Tr
[
Û ρ̂
]

= det[O]

(∏
α

i sin
ηα
2

)
Pf
[
OΩOT − Γ′

]
B.2 Trace of the Product of Two Unitary Oper-

ators

We now compute the trace of a product of two Gaussian N -modes unitary

operators, which in the case η
(U)
α 6= 0 ∧ η(V )

α 6= π reads:

Tr[Û V̂ ] = Tr[V̂ ]

(∏
α

i sin
η

(U)
α

2

)
Pf

[
ΩU −

ΥV

Tr[V̂ ]

]
(B.4)
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The derivation of the formula goes as before for formulas (6.28) and (B.1).
We take Û in its standard form and expand the product:

Û =

(∏
α

cos
η

(U)
α

2

)
·
N∑
s=0

∑
ordered

strings of
length s
{α1...αs}

[(−1)s·

· tan
ηα1

2
. . . tan

ηαs
2

ĉα1,1ĉα1,2 . . . ĉαs,1ĉαs,2

]
We use a slight modification of (6.26) for unitary operators such that ∀α ηα 6=
−π:

(−i)p Tr[V̂ ĉα1
. . . ĉα2p

] = Tr[V̂ ] · Pf

 ΥV

Tr[V̂ ]

∣∣∣∣∣
α1...α2p

 (B.5)

We obtain:

Tr[Û V̂ ] = Tr[V̂ ]

(
N∏
α=1

i sin
η

(U)
α

2

)
·

·
N∑
s=0

∑
strings...

 ∏
α/∈string

(−i) cot
η

(U)
α

2

− ΥV

Tr[V̂ ]

∣∣∣∣∣
α∈string


We can sum this expression and obtain equation (B.4). The presence of eigen-

value η
(U)
α = 0 is not a problem: being the action of the unitary trivial on one

subspace, formula (B.4) must be applied only to the unitary Û reduced to the
subspace where its action is not trivial. We still have to find a formula for the

case η
(V )
α = −π, i.e. at the moment we would not be able to compute Tr[Û V̂ ]

of two operators both containing eigenvalues η = −π. This does not seem to be
a big drawback, since the case looks rather unlikely.

For the evaluation of Tr[Û V̂ ] in a basis different from that diagonalizing Û ,
the determinant of the transformation mapping the basis to the diagonal one is
required, as in the case of Tr[Û ρ̂].

Formula (B.4) is not clearly symmetric under exchange of Û and V̂ , as it
should be. We show this in the single mode case. In this case:

Tr[Û V̂ ] = 2i cos
η(V )

2
sin

η(U)

2

(
1

i tan η(U)

2

+ i tan
η(V )

2

)
=

= 2 cos

(
η(U) + η(V )

2

)
(B.6)

B.3 Distance between Convex-Combinations of
Gaussian States

Let us consider the subspace of the global Hilbert space defined as

H = Span {|Φj(t)〉, |Ψj(t)〉}Ndj=1 .



122 Some Additional Results on Fermionic Gaussian States

The operators ρ̂Φ(t) and ρ̂Ψ(t) act non-trivially only in H. Once an orthonormal
basis of H is identified, the computation of

∥∥ρ̂Φ(t)− ρ̂Ψ(t)
∥∥

1
can be carried out.

We define the Hermitian matrix (the time dependence is not explicitely writ-
ten):

M =

(
〈Φj |Φk〉 〈Φj |Ψk〉
〈Ψj |Φk〉 〈Ψj |Ψk〉

)
(B.7)

A matrix Y such that Y ∗Y T = M represents the desired basis change:

|Φk〉 = Yk,j |xj〉; |Ψk〉 = YNd+k,j |xj〉.

The matrix Y can be constructed via the unitary W which diagonalizes M :
WDW † = M ; we define Y ∗ = W

√
D. The representation of ρ̂Φ(t) − ρ̂Ψ(t) in

the |xj〉 basis is given by:

Y T
(

I 0
0 −I

)
Y ∗ (B.8)

and
∥∥ρ̂Φ(t)− ρ̂Ψ(t)

∥∥
1

is the trace-norm of matrix (B.8).

The result is invariant under phase multiplication eiφ|Ψk〉 because these
state are represented by the same density operator ρ̂Ψ

k . We can neglect additive

constant terms of each Hamiltonian Ĥ0 + V̂j which would just introduce a phase
in the time evolution.

The computation of M is involved. For simplicity, let us consider only
two disorder realizations j = 1, 2: we have Ĥ1 = Ĥ0 + V̂1 and Ĥ2 = Ĥ0 +
V̂2, the corresponding time evolution operators Û1(t) and Û2(t), and the skew-
symmetric matrices T (1) and T (2). We are interested in the operator Û1,2(t) =

Û†2 (t)Û1(t), or more precisely in its matrix elements 〈Φ2|Φ1〉 = 〈Φ|Û1,2(t)|Φ〉
and 〈Ψ2|Φ1〉 = 〈Ψ|Û1,2(t)|Φ〉.

For diagonal matrix elements:

〈Φ|Û1,2(t)|Φ〉 = Tr
[
ρ̂ΦÛ1,2(t)

]
(B.9)

This can be evaluated using formula (B.1), which gives the result in terms of
the covariance matrices of the state ρ̂Φ and of the unitary Û1,2. Unfortunately,

this formula cannot be used because the covariance matrices of Û1,2(t), ΥU and
ΩU , are not known. The problem arises because it is impossible to compute
directly the matrix A such that

Û1,2 = exp

[
−1

4

∑
Aα,β ĉαĉβ

]
from T (1) and T (2). Indeed, the Baker-Campbell-Hausdorff formula requires in
general the summation of an infinite series.

We therefore compute B = log
[
e−T

(2)teT
(1)t
]
. The principal-part logarithm

is not a continuous function; accordingly we only know that Û1,2 = τŴ1,2, with

Ŵ1,2 = exp[− 1
4

∑
Bα,β ĉαĉβ ] and τ = ±1 to be determined. As discussed in

equation (6.7), the principal-part logarithm ensures that Tr[Ŵ1,2] > 0. There-
fore:

τ = sgn
(

Tr[ Û†2 (t) Û1(t) ]
)

(B.10)
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This can be evaluated using equation (B.4), which expresses it as a function of
the covariance matrices of the two unitary operators. Contrary to the previous
case, the computation of ΥU1 from T (1) and of ΥU†2

from T (2) is possible. Finally:

〈Φ|Û1,2(t)|Φ〉 = sgn
(

Tr[Û†2 (t)Û1(t)]
)
· Tr

[
ρ̂ΦŴ1,2(t)

]
(B.11)

The second factor Tr
[
ρ̂ΨŴ1,2(t)

]
can be computed with ΓΨ and ΥW and (B.1).

For the non-diagonal case we introduce one Gaussian unitary operator Ẑ
satisfying the only property: |Ψ〉 = Ẑ|Φ〉. We obtain:

〈Ψ|Û1,2(t)|Φ〉 = τ〈Φ|Ẑ†Ŵ1,2(t)|Φ〉 = τTr
[
ρ̂ΦẐ

†Ŵ1,2(t)
]

We do not know Ẑ, but we can compute the transformation OZ such that
OZΓΦO

T
Z = ΓΨ. We computeD = logOZ and build up X̂ = exp[− 1

4

∑
Dα,β ĉαĉβ ];

as before X̂ and Ẑ differ for an unknown ±1 sign. We do not know how to over-
come this ignorance. Anyway, it is not a problem because the final result does
not depend on whether we consider as initial state |Ψ〉 or −|Ψ〉.

The computation of τTr
[
ρ̂ΦX̂

†Ŵ1,2(t)
]

can be done as before:

〈Ψ|Û1,2(t)|Φ〉 = sgn
(

Tr[Û†2 (t)Û1(t)]
)
· sgn

(
Tr[X̂†Ŵ1,2(t)]

)
· Tr

[
ρ̂ΦŶ1,2(t)

]
(B.12)

where Ŷ1,2 = exp
[
−1/4

∑
α,β log(eDeB)ĉαĉβ

]
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Appendix C

An Eigenvalue Result

We discuss the properties of the exponential of the sum of a skew-symmetric
matrix and a negative semidefinite symmetric matrix.

We start with a useful result.

Proposition 1 Assume J is a real, square, skew-symmetric 2n×2n matrix and
D is a real, square, symmetric, positive semidefinite 2n× 2n matrix. Consider
A = J − D. Suppose that ~v†D~v > 0 ∀ eigenvectors ~v of J . Then all the
eigenvalues λ of A have strictly negative real part, <(λ) < 0.

Let us note that in general A is not a normal matrix, i.e. it is not related
via an orthogonally transformation to a diagonal matrix; there exist a basis
transformation which puts it in a Jordan normal form.

Proof Consider λ and ~w that satisfy the eigenvalue problem:

(J −D)~w = λ~w (C.1)

We claim that there is no imaginary eigenvalue. Indeed:

~w†J ~w − ~w†D~w = λ (C.2)

Since ~w†J ~w is purely imaginary, and since ~w†D~w is real and larger or equal
than zero, we obtain:

<(λ) = −~w†D~w ≤ 0 (C.3)

We can rule out the case <(λ) = 0 because this implies that ~w†D~w = 0 and
since D is positive semidefinite that D~w = 0. Therefore, eigenvalues of A which
are purely imaginary are at the same time eigenvalues of J on which the action
of D is trivial. This is in contradiction with the hypothesis. �

We can now study the operator norm of eAt. Let us start with the following
property:

‖eAt‖op ≤ ‖e(A+AT )t/2‖op ≤ 1 (C.4)

where the first inequality comes from [Bha96] and the second from the negative
semidefiniteness of A+AT = −2D.

In general, the logarithmic norm µop(A) of a matrix A is the smallest element
of M = {ξ | ‖eAt‖op ≤ eξt, t ≥ 0} [Str75]. Notice that the logarithmic norm is
not a norm. For a finite dimensional space it holds:

µop(A) = max{λ | det(A+A† − 2λI) = 0} (C.5)
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We use (C.5) in our case and obtain that µop(A) = maxλ∈Spectrum(−D) λ.
Therefore, only in the case of D positive definite we can have an exponential
bound on ‖eAt‖op ∀t ≥ 0.

In case D is positive semidefinite we can rely on the following bound. We
write A in its Jordan canonical form:

A = P
⊕
k

(λkIdk +Ndk) P−1 (C.6)

where Idk is the dk-dimensional identity and Ndk is the dk-dimensional nilpotent
operator with only the first off-diagonal equal to 1. This form is convenient for
taking the matrix exponential:

eAt = P
⊕
k

eλkteNdk t P−1 = P
⊕
k

eλkt

(
dk−1∑
p=0

Np
dk
tp

p!

)
P−1 (C.7)

Take λ1, the eigenvalue with largest (negative) real part and d̄k the largest
dimension of a Jordan block. It is true that:

‖eAt‖op ≤ ‖P‖op‖P−1‖ope
<(λ1)t

dk−1∑
p=0

tp

p!

t→∞−−−→ 0 (C.8)

where the sum is used to majorize via the triangular inequality ‖eNdk t‖op.
Finally, a comment on the possible dimensions of the Jordan blocks. Con-

sider the family of matrices:

A(τ) = (1− τ)A− τD; τ ∈ [0, 1] (C.9)

We know that the number of different eigenvalues is constant apart from a finite
number of τ . Therefore, if we assume that J is non degenerate, the dimension of
the eigenvalues is equal to 2n for almost all the τ . In these cases the dimension
of the Jordan blocks is dk = 1 ∀k.



Conclusions and
Perspectives

This thesis focuses on topological phases of matter, which, broadly speaking,
are quantum states characterized by a non-local order parameter. The unusual
features which result from this property make these states interesting both per
se and because of some intriguing possible applications, such as fault-tolerant
quantum computation schemes. The research community is currently devoting
a significant effort in trying to completely characterize the properties of these
states, and despite the many relevant achievements, such as the periodic table
of topological insulators, there are still important open problems, such as the
exhaustive classification of the effects of interactions.

We approach the subject from the point of view of quantum simulators,
i.e. we propose to address the mentioned problems using highly controlled
experiments. Because there are still many issues to be solved before reaching
such an ambitious goal, we have identified three important research directions
to pursue. The first one concerns the engineering of Hamiltonians of topological
models. The second one is related to the measurement of non-local observables
which can unravel the presence of topological order. The third one is related to
the possibility of using topological phases of matter for quantum information
schemes, in particular for the problem of its storing.

The discussion of the first two aspects is grounded on the perspective that
cold atoms trapped in optical lattices are an excellent candidate for an analog
quantum simulator. The precise control on a quantum many-body system fea-
tured in these setups is foreseen to be the key for successfully using experiments
to answer unsolved theoretical questions. The third problem is considered from
a more abstract point of view and our discussion can be applied to implemen-
tations based both on solid-state systems and on cold atoms.

Regarding the first investigation direction, we develop a proposal for a new
technique to create a spin-independent, and thus potentially long-lived, optical
lattice, in which an atom hopping to a neighbouring site can change its internal
hyperfine state. The method exploits an unconventional use of bi-chromatic
optical superlattices. We provide the discussion with numerical simulations
which show the high fidelity of the coherent population transfer between two
neighbouring sites of the optical lattice, both for the case in which the spin is
unchanged and for the case in which it is flipped.

We elaborate on the idea and discuss some systems which could be simulated
with this superlattice-based scheme. We start with non-interacting relativistic
theories and give a list of the hopping matrices to be implemented in order
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to study several kinds of massive and massless fermions. We next move to
topological insulators; we discuss their relation to Kaplan fermions and provide
explicit recipes for the realization of several classes of their periodic table. It
would be interesting to quantify issues which could hinder the effectiveness of the
superlattice scheme, such as the collisional stability of the atomic cloud. Such
study is preliminary to a discussion of additional ingredients, such as atomic
interactions or three-body losses, which could introduce non-linear effects in the
model.

Finally, we consider the Pfaffian wavefunction of the fractional quantum
Hall effect, which is known to host non-Abelian anyons as quasi-excitations. It
is the ground state of a many-body bosonic system characterized by a three-
body contact repulsion. We propose an effective realization of the three-body
infinite repulsion using spin-1 atoms and discuss the properties of the Pfaffian
wavefunction on a lattice structure. Unfortunately, the extreme sensibility of
such state to even small changes of the Hamiltonian prevents its simulation
with the developed technique, even if we cannot exclude that more sophisticated
simulation schemes could accomplish the task.

Regarding the second investigation direction, we report on an experiment,
to which we contributed some theoretical support, in which the measurement
of a string operator for an ultracold bosonic gas trapped in an optical lattice
is demonstrated. The developed experimental protocol is expected to be rele-
vant for future investigations of topological phase transitions, such as that from
the Mott insulator to the Haldane phase in spin-1 systems. The measurement
of a string operator for a one-dimensional Mott insulator raises the problem
of its theoretical generalization to higher dimensions, which has not yet been
discussed. Moreover, the comparison between data and theory shows the im-
portance of the development of a theoretical toolbox for the analysis of such
quantity in finite and small systems.

The third line of investigation is motivated by the need for a better under-
standing of the properties of quantum memories encoded in topological states.
Despite great expectations related to the robustness of topologically protected
ground spaces with respect to local noise or disturbances, we show that there
are many physically relevant cases in which a topological Hamiltonian does not
protect the system from the action of an environment.

We study the stability of a quantum memory encoded with zero-energy Ma-
jorana fermions, which appear as quasi-excitation of the ground state of some
topological superconductors. We develop several theoretical quantities which
characterize the loss of the initially encoded information and use them to quan-
tify the effect of various specific examples of perturbations. We show that the
topological Hamiltonian does not protect the system in presence of an environ-
ment whose action can be described by a master equation. We obtain similar
results also for a small non-Markovian environment, whose time-evolution is
treated exactly. We consider another class of perturbations, i.e. the convex
combination of several Hamiltonian time evolutions. In this case, the phe-
nomenology is more interesting. Whereas we show that the Hamiltonian is
indeed protecting the information stored in the system from this kind of deco-
herence, we also show that the class of the most simple quantum operations, the
so-called Gaussian channels, cannot retrieve such information with the maximal
precision.

The work will be further expanded into a more general analysis of the suit-
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ability of topological fermionic systems for quantum information applications.
For instance, many of the developed theoretical tools could be used for the
characterization of the stability of braiding operations of Majorana fermions in
perturbed systems.

As this summary clearly shows, this thesis ranges over a large variety of
topological models. However, notwithstanding this large phenomenology, we
have tried to rather highlight the numerous properties which are shared by the
different models. The topological superconductors considered for the quantum
memory problem are just one more example of the topological insulators intro-
duced for the superlattice-scheme. We have also shown that researchers have
developed some generalized Chern numbers to be used in the presence of in-
teractions, which extend the topological invariants introduced for topological
insulators. Moreover, when dealing with the parity of the fermionic number for
the one-dimensional topological superconductor, we have found one example of
the string order which was discussed in the experiment with the Mott insulator.

Concluding, we have addressed three relevant aspects of the problem of re-
alizing and using a quantum simulator of topological phases of matter.
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[BMZ07] H.-P. Büchler, A. Micheli, and P. Zoller, Nature Phys. 3 (2007),
726.

[BN09] I. Buluta and F. Nori, Science 326 (2009), 5949.

[Bog62] N. N. Bogoliubov, Phys, Abh. SU 6 (1962), 1.

[BOS+02] M. D. Bowdrey, D. K. L. Oi, A. J. Short, K. Banaszek, and J. A.
Jones, Phys. Lett. A 294 (2002), 258.

[BPAMD09] A. Bermudez, D. Patane, L. Amico, and M. A. Martin-Delgado,
Phys. Rev. Lett. 102 (2009), 135702.

[BPT+10] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen,
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