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Abstract
We address the expected supremum of a linear combination of shifts of the sinc kernel

with random coefficients. When the coefficients are Gaussian, the expected supremum is
of order

√
log n, where n is the number of shifts. When the coefficients are uniformly

bounded, the expected supremum is of order log log n. This is a noteworthy difference
to orthonormal functions on the unit interval, where the expected supremum is of order√
n log n for all reasonable coefficient statistics.
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1 Introduction
Perhaps the most fundamental functions in signal processing are shifts of the sinc kernel
sinπt
πt

. This kernel decays slowly in time, and consequently it is generally not used in prac-
tice. Nonetheless, it is the starting point, certainly historically, for much of signal processing,
information theory and sampling theory. If each shifted kernel has a random coefficient, it
is natural to investigate the properties of the resulting signal. Here we address the expected
supremum of such a signal. We let {ak}∞k=1 be independent random variables and consider the
quantity

Sn = sup
t∈R

∣∣∣∣∣
n∑
k=1

ak
sin π(t− k)
π(t− k)

∣∣∣∣∣ . (1)
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We investigate the behavior of the peak when the {ak}∞k=1 are Gaussian and symmetric ±1
random variables, and show that in the Gaussian case ESn ∼

√
log n while in the ±1 case

ESn ∼ log log n. This result is fundamental enough to be relevant in numerous settings. One
example is when coefficients are quantized and the {ak}∞k=1 represent the difference between
an actual coefficient and its quantized value. Another is when the coefficients are viewed as
carrying information, and one is concerned with the peak value of the signal. We discuss this
briefly below.

2 Problem Formulation and Main Result
We compare a signal of the type given in (1) with linear combinations of orthonormal functions
on the unit interval. Here, the fundamental theorem, due to Kashin and Tzafriri [5], states that
if {φk}∞k=1 are uniformly bounded (i.e. in ‖ · ‖∞) orthonormal functions on [0, 1] and {ak}∞k=1

are independent symmetric random variables with a uniform bound on the third moment, then

E sup
t∈[0,1]

∣∣∣∣∣
n∑
k=1

akφk(t)

∣∣∣∣∣ ∼√n log n. (2)

Thus, for uniformly bounded functions on the unit interval, the necessary linear combinations
occur and result in Gauss-like behavior. Consequently, the statement is not sensitive to the dis-
tribution of the individual coefficients. Note, though, that the uniform bound on the functions
{φk}∞k=1 is essential to the result.

The theorem just stated applies to two systems of practical importance, namely the Fourier
and Walsh systems, which are known in electrical engineering as OFDM and CDMA sys-
tems. Here the motivation for understanding the behavior of a signal’s peak is that amplifiers
particularly distort or eliminate the peak. This has led to extensive research in communica-
tions engineering on what is called the peak-to-average power ratio. See the book [7] for an
overview of this area for OFDM (Fourier) and [2] for recent work on the CDMA (Walsh) case.

Here we address similar questions for the shifted sinc kernel on the real line. We make
several introductory observations about the equation (1) before formally stating the problem.
Note that when t = l, l an integer, the value of the function inside the absolute value bars
equals al, so that max1≤k≤n |ak| is an a priori lower bound on Sn. Thus, a first point of interest
is to compare the signal’s peak off the set of integers to that at the integers. A second point
is to compare the peak behavior when the random coefficients are ±1 random variables and
when they are Gaussian variables. For example, the simple lower bound max1≤k≤n |ak| does
not grow in n for±1 random variables. (Uniformly bounded, zero-mean random variables will
be shown to behave the same as random ±1, and so we discuss only the latter at this point.) In
such a linear combination one has sums of other independent random variables, yet it is unclear
a priori if they behave close to Gaussian random variables.

We clarify the dichotomy between orthonormal functions on the unit interval (multi-carrier
systems in communications) and shifted kernels on the real line (single-carrier systems). In the
former, the expected peak value behaves like

√
n log n as long as the individual distributions

satisfy a third moment condition. In the latter case, the behavior depends on the individual

2



distributions. The linear combination of ±1’s does not behave like Gaussian random variables
and, in particular, the expected value of the supremum is significantly smaller in the ±1 case.
The behavior in the Gaussian case follows from well-known theorems due to Slepian and Su-
dakov, and so the contribution here is the ±1 case.

Recall the definition of Sn from equation (1). Our main theorem is the following.

Theorem 2.1 Assume the random variables {ak} are independent and distributed according
to N (0, σ2). Then there exists a constant c1 > 0 independent of σ such that

c1σ
√
log n ≤ E Sn ≤ c−11 σ

√
log n

for all large n. If {ak}∞k=1 have symmetric distribution and there exist constants M and m such
that P(|ak| > M) = 0 and E|ak| ≥ m > 0 for all k, then there exists a constant c2 > 0
independent of M and m such that

c2m log log n ≤ E Sn ≤ c−12 M log log n

for all large n.

Before turning to the proof, we briefly highlight how the result is tied to the non-integrability
of the sinc kernel. If a kernel is unbounded, then a linear combination of shifts of the kernel
will generally be unbounded, and so we may consider only bounded kernels. If the kernel s is
bounded and integrable, then one has

sup
t∈[0,1)

∑
k∈Z

|s(k + t)| < C.

Therefore,

sup
t∈R

∣∣∣ n∑
k=1

aks(t− k)
∣∣∣ ≤ max

1≤k≤n
|ak| sup

t∈[0,1)

∑
k∈Z

|s(t− k)|

≤ C max
1≤k≤n

|ak|.

Therefore, if the random variables {ak}∞k=1 are uniformly bounded, a linear combination of the
form

∑n
k=1 aks(t − k) is also uniformly bounded. Thus, the statement in Theorem 2.1 is a

consequence, as one expects, of the non-integrability of the sinc kernel.

3 Proof of Main Result
As commented earlier, the Gaussian case follows from theorems of Slepian and Sudakov. For
the ±1 case, we first reduce the problem to determining the expected maximum over a finite
set. Working with this finite set will be the majority of the paper. We first prove a proposition
that is unencumbered by several details that are necessary for the full proof. We do this to em-
phasize the aspect of the proof that is most important, namely the statement of the proposition.
Additionally, we think that the proposition could quite likely be useful elsewhere. The proof
of the main theorem then brings the original problem statement to the form addressed by the
proposition.
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Proposition 3.1 Assume {ak}∞k=1 are independent, symmetric and satisfy P(|ak| > M) = 0
for some M <∞ and E|ak| ≥ m > 0 for all k. For 1 ≤ k ≤ n let

Xk =
k∑
l=1

1

l
ak−l+1 +

n−k+1∑
l=2

1

l
al+k−1.

Then there exists a constant c > 0 independent of M and m such that for all large n

cm log log n ≤ E
(
max
1≤k≤n

|Xk|
)
≤ c−1M log log n.

Proof We assume that n is large enough for several simple inequalities to hold. For 1 ≤ k ≤ n
we set

Yk =
k∑
l=1

1

l
ak−l+1 (3)

and

Zk =
n−k+1∑
l=2

1

l
al+k−1. (4)

We have

E
(
max
1≤k≤n

|Xk|
)
≤ E

(
max
1≤k≤n

|Yk|
)
+ E

(
max
1≤k≤n

|Zk|
)
.

Since the {ak}∞k=1 are not required to be identically distributed, max1≤k≤n |Yk| and max1≤k≤n |Zk|
are not necessarily identically distributed. However, the same technique can be used to bound
the expectation of both terms, and so we give the argument for the Y term and then apply it to
both.

Now let L be a number 2 ≤ L ≤ n to be chosen later. If k ≤ L, then

|Yk| ≤M

k∑
l=1

1

l
≤M +M log(k) ≤M(1 + logL). (5)

If k > L define

Y
(L)
k =

k∑
l=L+1

1

l
ak−l+1. (6)

Therefore

E
(
max
1≤k≤n

|Yk|
)
≤ E

(
max
1≤k≤L

|Yk|+ max
L<k≤n

|Yk|
)

≤ E
(

max
1≤k≤L

|Yk|+ max
L<k≤n

∣∣∣ L∑
l=1

1

l
ak−l+1 + Y

(L)
k

∣∣∣)
≤ 2M(1 + logL) + E

(
max
L<k≤n

|Y (L)
k |
)
.
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Using
∑∞

l=L+1
1
l2
≤ 1

L
, Hoeffding’s inequality, Theorem 2 in [4], gives

P
(∣∣∣ k∑

l=L+1

1

l
ak−l+1

∣∣∣ > t
)
≤ 2e−Lt

2/2M2

for every t > 0 and for every k = L+ 1, . . . , n. Then, for any δ > 0

E
(

max
L<k≤n

∣∣∣Y (L)
k

∣∣∣) =

∫ ∞
0

P
(

max
L<k≤n

|Y (L)
k | > t

)
dt

≤ δ +

∫ ∞
δ

P
(

max
L<k≤n

|Y (L)
k | > t

)
dt (7)

≤ δ + 2n

∫ ∞
δ

e−Lt
2/2M2

dt (8)

= δ +
n
√
2πM√
L

e−δ
2L/2M2

. (9)

Setting δ =M
√
2 logn√
L

, we have

(9) ≤ M

√
2 log n√
L

+M

√
2π√
L
.

Therefore

E
(
max
1≤k≤n

|Yk|
)
≤ 2M(1 + logL) +M

√
2 log n√
L

+M

√
2π√
L
.

Setting L = log n, we have

E
(
max
1≤k≤n

|Yk|
)
≤ 2M(2 + log log n) +M

√
2π√
log n

,

and for n large enough, applying the same argument to Zk,

E
(
max
1≤k≤n

|Xk|
)
≤ 4M log log n.

Now we prove the lower bound. Let {εk}∞k=1 be independent symmetric ±1 random vari-
ables, so that {εk|ak|}∞k=1 has the same distribution as {ak}∞k=1. Let [·] denote the integer part
of a positive real number. For a constant c1 > 0, consider the subintervals {j[c1 log2 n] +
1, . . . , (j + 1)[c1 log2 n]} for j = 0, . . . , [n/[c1 log2 n]] − 1. Let J denote the number of such
intervals, i.e. J = [n/[c1 log2 n]]. In [3] it is shown in equation (2.14) that there exist constants
0 < c1, c2, c3 such that with probability at least 1−e−nc3 , the sum of the r.v. {εi} corresponding
to at least one of the subintervals just described of length [c1 log2 n] is at least c2 log2 n.
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For completeness we sketch the argument given in [3]. Setting γ = 1+c2
2

andK = c1 log2 n,

P(number of +1’s in each interval is less than γc1 log2 n)
≤ (P(number of +1’s in one interval is less than γc1 log2 n))

n
K
−1

= (1− P(number of +1’s in one interval is greater than γc1 log2 n))
n
K
−1

=

(
1− 2−K

∑
γK≤l≤K

(
K

l

)) n
K
−1

≤ (1− A1K
−1/22K(h(

1+c2
2

)−1))
n
K
−1, (10)

where in (10) we have used Stirling’s formula for 1
2
< γ < 1, where for 0 < x < 1, h is the

entropy h(x) = x log2(
1
x
) + (1 − x) log2( 1

1−x). By choosing c2 small enough, h(1+c2
2

) − 1 =
−1
c1

+ 2δ2
c1
< 0 for some 0 < δ2 <

1
2
. Then

(1− A1(c1 log2 n)
−1/22c1 log2 n(h(

1+c2
2

)−1))
n

c1 log2 n
−1

= (1− A1(c1 log2 n)
−1/22−(1−2δ2) log2 n)

n
c1 log2 n

−1

= (1− A1(c1 log2 n)
−1/2n−(1−2δ2))

n
c1 log2 n

−1

≤ (1− (c1 log2 n)n
−(1−δ2))

n
c1 log2 n

−1

≤ Ce−n
δ2 (1− (c1 log2 n)n

−(1−δ2))−1

≤ e−
1
2
nδ2

for n large enough. This proves the claim made above.
We now consider the random variables Xkj for kj = [[c1 log2 n]/2] + j[c1 log2 n], j =

0, . . . , [n/[c1 log2 n]] − 1 and bound the size of each weighted sum of the {ak} outside the
interval containing kj . That is, using Hoeffding’s inequality again, for a given kj ,

P

∣∣∣∣∣∣
kj∑

l=[c1 log2 n/2]+1

1

l
akj−l+1 +

n−kj∑
l=[c1 log2 n/2]+1

1

l
al+kj−1

∣∣∣∣∣∣ > t

 (11)

≤ 2 exp(−[c1 log2 n] t2/2M2).

The probability that t is exceeded for some kj is bounded by

2n exp(−[c1 log2 n] t2/2M2).

By just setting t = 4M/
√
c1 we have that each sum of the form inside (11) is bounded by

4M/
√
c1 with probability at least 1− 1

n
.

Let E0 denote the event that both at least one subinterval of length [c1 log2 n] satisfying the
property discussed from [3] exists and that each sum outside this interval of the form inside (11)
is bounded by 4M/

√
c1. This event occurs with probability at least 1 − 2

n
for large n. That

is, when E0 occurs, there exists an interval where the number of +1’s is at least 1+c2
2

[c1 log2 n]
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and the number of −1’s is at most 1−c2
2

[c1 log2 n]. Denote by k∗ the kj corresponding to the
interval with sufficiently many +1’s. Then,

E
(
max
1≤k≤n

|Xk|
)

≥ E
(

max
0≤j<J−1

|Xkj |
)

≥ E
(

max
0≤j<J−1

|Xkj |
∣∣∣E0

)
P(E0)

≥
(
1− 2

n

)
E
(

max
0≤j<J−1

|Xkj |
∣∣∣E0

)
≥

(
1− 2

n

)
E

[c1 log2 n/2]∑
l=1

1

l
εk∗+l−1|ak∗+l−1|+

[c1 log2 n/2]∑
l=1

1

l
εk∗−l|ak∗−l|

∣∣∣∣∣E0

− 2M
√
c1
.

(12)

We look at the expectation term in (12) and apply Lemma 3.2, which is given below. For each
r ≥ 1+c2

2
[c1 log2 n], all the subsets of a given interval of length [c1 log2 n] with the number of

+1’s equalling r are equally probable. If we condition on a realization of the {|ak|}, then the
|ak| with the appropriate 1

l
factors before them correspond to the b’s in the lemma. Since each

r ≥ 1+c2
2

[c1 log2 n] a lower bound on the k from Lemma 3.2 is k = 1+c2
2

[c1 log2 n] and

21+c2
2

[c1 log2 n]− [c1 log2 n]

[c1 log2 n]
= c2.

This holds for any realization of the coefficients {ak}∞k=1. Therefore,

(12) ≥
(
1− 2

n

)
c2E

[c1 log2 n/2]∑
l=1

1

l
|ak∗+l−a|+

[c1 log2 n/2]∑
l=1

1

l
|ak∗−l|

− 2M
√
c1

≥
(
1− 2

n

)
c2

[c1 log2 n/2]∑
l=1

m

l
+

[c1 log2 n/2]∑
l=1

m

l

− 2M
√
c1

≥ 2
(
1− 2

n

)
c2m log2

(
[c1 log2 n]

2

)
− 2M
√
c1

≥ c4m log log n

for a constant c4 for all large n.

Lemma 3.2 Let ε ∈ {±1}p be uniformly distributed on

{x ∈ {±1}p : |{i : xi = 1}| = k}
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for some 1 ≤ k ≤ p and let b1, . . . , bp be real numbers. Then

Eε
p∑
i=1

εibi =
2k − p
p

p∑
i=1

bi.

Proof Let I denote the set of subsets of {1, . . . , p} of cardinality k. The number of subsets
I ∈ I such that i ∈ I is equal to the number of subsets of {1, . . . , p}\{i} of cardinality k − 1.
The cardinality of this set is

(
p−1
k−1

)
= k

p

(
p
k

)
. Therefore,

Eε
( p∑
i=1

εibi

)
=

(
p

k

)−1∑
I∈I

(
∑
i∈I

bi −
∑
i/∈I

bi)

=

(
p

k

)−1
(
∑
I∈I

∑
i∈I

bi −
∑
I∈I

∑
i/∈I

bi)

=

(
p

k

)−1
(

p∑
i=1

bi|I ∈ I : i ∈ I| −
p∑
i=1

bi|I ∈ I : i /∈ I|)

=

(
p

k

)−1(
k

p

(
p

k

) p∑
i=1

bi −
p− k
p

(
p

k

) p∑
i=1

bi

)

=
2k − p
p

p∑
i=1

bi.

Using Proposition 3.1, we can now prove the main theorem.
Proof of Theorem 2.1 We start with the upper bounds for both the Gaussian and compact
support cases. If t < −n, then

∣∣∣ n∑
k=1

ak
sin π(t− k)
π(t− k)

∣∣∣ ≤ max
1≤k≤n

|ak|
2n∑

k=n+1

1

πk

≤ max
1≤k≤n

|ak|,

and the same argument holds for t > 2n. Therefore we bound the expectation of the supremum
over t ∈ [−n, 2n], which will always be at least the order of max1≤k≤n |ak|. Throughout we
use | sinx| ≤ |x|. We have

sup
t∈[−n,2n]

∣∣∣ n∑
k=1

ak
sin π(t− k)
π(t− k)

∣∣∣ ≤ max
−n≤l≤2n−1

sup
t∈[0,1]

∣∣∣ n∑
k=1

ak
sin π(l + t− k)
π(l + t− k)

∣∣∣
= max

−n≤l≤2n−1
sup
t∈[0,1]

∣∣∣ n∑
k=1

ak
(−1)l−k sin πt
π(l + t− k)

∣∣∣.
8



We use

sup
t∈[0,1]

max
−n≤l≤2n−1

∣∣∣ n∑
k=1

ak
(−1)l−k sinπt
π(l + t− k)

∣∣∣
≤ sup

|t|≤ 1
n

max
−n≤l≤2n

∣∣∣ n∑
k=1

ak
(−1)l−k sin πt
π(l + t− k)

∣∣∣ (13)

+ sup
1
n
≤|t|≤ 1

2

max
−n≤l≤2n

∣∣∣ n∑
k=1

ak
(−1)l−k sin πt
π(l + t− k)

∣∣∣. (14)

For the term (13), we choose an arbitrary −n ≤ l0 ≤ 2n and obtain

sup
|t|≤ 1

n

∣∣∣ n∑
k=1

ak
(−1)l0−k sinπt
π(l0 + t− k)

∣∣∣ ≤ max
1≤k≤n

|ak| sup
|t|≤ 1

n

n∑
k=1

| sin πt|
π|l0 + t− k|

≤ max
1≤k≤n

|ak| sup
|t|≤ 1

n

(
| sinπt|
π|t|

+
n∑

k=1,k 6=l0

| sinπt|
π|l0 + t− k|

)

≤ max
1≤k≤n

|ak| sup
|t|≤ 1

n

(
1 +

1

n

n∑
k=1,k 6=l0

1

|l0 + t− k|

)

≤ max
1≤k≤n

|ak|

(
1 +

2

n

n∑
k=1

1

k − 1
n

)

≤ max
1≤k≤n

|ak|
(
1 +

2

n

(
n

n− 1
+ 1 + log n

))
≤ 2 max

1≤k≤n
|ak|. (15)

Since this holds for each l we have bounded (13) by (15). Now we look at (14), and use that if
f is differentiable on the interval [a, b], then

sup
t∈[a,b]

|f(t)| ≤ max{|f(a)|, |f(b)|}+ |b− a| · sup
t∈[a,b]

∣∣∣( d
dt
f
)
(t)
∣∣∣.

We then have

max
−n≤l≤2n−1

sup
1
n
≤|t|≤ 1

2

∣∣∣ n∑
k=1

ak
(−1)l−k sin πt
π(l + t− k)

∣∣∣
≤ max

l=−n,...,2n, r=1,...,n−1

∣∣∣ n∑
k=1

ak
(−1)l−k sin π r

n

π(l + r
n
− k)

∣∣∣
+ max
−n≤l≤2n

sup
1
n
≤|t|≤ 1

2

1

n

∣∣∣ d
dt

n∑
k=1

ak
(−1)l−k sin πt
π(l + t− k)

∣∣∣.
9



For the second term we have the bound Then

max
−n≤l≤2n−1

sup
1
n
≤|t|≤ 1

2

1

n

∣∣∣ d
dt

n∑
k=1

ak
(−1)l−k sin πt
π(l + t− k)

∣∣∣
= max

−n≤l≤2n−1
sup

1
n
≤|t|≤ 1

2

1

n

∣∣∣ n∑
k=1

ak(−1)l−k
π2(l + t− k) cosπt− π sin πt

π2(l + t− k)2
∣∣∣

≤ 1

n
max
1≤k≤n

|ak| max
−n≤l≤2n−1

sup
1
n
≤|t|≤ 1

2

(
n∑
k=1

1

|l + t− k|
+

n∑
k=1

| sin πt|
π(l + t− k)2

)

≤ 1

n
max
1≤k≤n

|ak| max
−n≤l≤2n−1

sup
1
n
≤|t|≤ 1

2

(
1

t
+

n∑
k=1,k 6=l

1

|l + t− k|
+
| sinπt|
πt2

+
n∑

k=1,k 6=l

1

π(l + t− k)2

)

≤ 1

n
max
1≤k≤n

|ak| (2n+ 2 log n+ 2)

≤ 4 max
1≤k≤n

|ak| (16)

for sufficiently large n. Thus, in both the Gaussian and compact support cases we have to find
a bound on

max
l=−n,...,2n; r=1,...,n−1

∣∣∣ n∑
k=1

ak
(−1)l−k sin π r

n

π(l + r
n
− k)

∣∣∣. (17)

We start with the Gaussian case. For l = −n, . . . , 2n, and r = 1, . . . , n− 1 set

ξl,r =
n∑
k=1

ak
sin π r

n

π(l + r
n
− k)

.

The {ξl,r} are Gaussian random variables, so that using inequality (3.13) in [6],

E
(

max
−n≤l≤2n,1≤r≤n−1

|ξl,r|
)
≤ 3σ

√
log 3n2 + max

−n≤l≤2n,1≤r≤n−1
(E|ξl,r|2)1/2

≤ C1σ
√

log n. (18)

We return to (13), and collecting the terms in (15), (16) and (18) we have

E
(

max
t∈[−n,2n]

|
n∑
k=1

ak
(−1)l−k sin π(t− k)

π(t− k)
|
)
≤ 6E

(
max
1≤k≤n

|ak|
)
+ C1σ

√
log 3n2

≤ Cσ
√
log n,

where we have applied inequality (3.13) in [6] to E
(
max1≤k≤n |ak|

)
as well.

Now we address the case when the {ak}∞k=1 are symmetrically distributed and satisfy P(|ak| >
M) = 0 for all k. First we replace (17) for an expression with the same distribtuion:

(17) dist
= max

l=−n,...,2n; r=1,...,n−1

∣∣∣ n∑
k=1

ak
sin π r

n

π|l + r
n
− k|

∣∣∣.
10



For r satisfying r
n
≤ 1

2
, we have

max
l=−n,...,2n

∣∣∣∣∣
n∑
k=1

ak
sin π r

n

π|l + r
n
− k|

∣∣∣∣∣ ≤M + max
l=−n,...,2n

∣∣∣∣∣
n∑

k=1,k 6=l

ak
|l + r

n
− k|

∣∣∣∣∣ ,
and if 1

2
< r

n
we remove the term indexed by k = l+ 1 to obtain a similar expression. We then

have ∣∣∣∣∣
n∑

k=1,k 6=l

ak
l + r

n
− k

∣∣∣∣∣ =
∣∣∣∣∣

l∑
j=2

al−j+1

j − 1 + r
n

+
n−l+1∑
j=2

al+j−1
1 + r

n
− j

∣∣∣∣∣
when r

n
≤ 1

2
and an anologous term when r

n
> 1

2
. Now we need to slightly adjust the argument

given in the proof of Proposition 3.1. Similar to equations (3) and (4), for −n ≤ l ≤ 2n and
1 ≤ r ≤ n− 1 we define

Yl,r =
l∑

j=2

al−j+1

j − 1 + r
n

and

Zl,r =
n−l+1∑
j=2

al+j−1
1 + r

n
− j

for r
n
≤ 1

2
and the anologous terms when r

n
> 1

2
. We can now pursue bounds for the Y and the

Z terms individually, as we did earlier. Just as in (5), for any L, if l ≤ L and r
n
≤ 1

2
we have

|Yl,r| ≤M
(
1 +

l∑
j=1

1

j − r
n

)
≤M +M log(l) ≤M(1 + logL).

We define Y (L)
l,r analogously to (6) and note that its variance is bounded by M2/(L+1), so that

the same type of exponential bound applies as in Proposition 3.1. Where we had a maximum
over n−L random variables in (7) and used the union bound, we now have 3n2−L and again
use a union bound, resulting in a factor 3n2 where we had n in (8). To take care of the n2, we
set δ = M 2

√
logn√
L

, rather than δ = M
√
2 logn√
L

as it was earlier. Then the same argument as was
made in the proof of Proposition 3.1 applies here, thus giving the upper bound of C2 log log n.

We now prove the lower bounds and start with the Gaussian case. Let ak ∼ N (0, σ2) for a
fixed σ2 for all k. Then, considering t at the integers,

E

(
sup
t∈R

∣∣∣∣∣
n∑
k=1

ak
sinπ(t− k)
π(t− k)

∣∣∣∣∣
)
≥ E

(
max

t∈{1,2,...,n}

∣∣∣∣∣
n∑
k=1

ak
sin π(t− k)
π(t− k)

∣∣∣∣∣
)

= E
(
max
1≤k≤n

|ak|
)
.

The lower bound follows from the standard fact that the expected maximum of n independent
Gaussian random variables with variance σ2 is of order σ

√
log n.

11



Lastly, we show the lower bound for the random variables with bounded support. We
consider t ∈ {1

2
, 2 + 1

2
, 4 + 1

2
, . . . , 2[n−1

2
] + 1

2
}. Then

sup
t∈R

∣∣∣ n∑
k=1

ak
sin π(t− k)
π(t− k)

∣∣∣ ≥ max
0≤l≤[n−1

2
]

∣∣∣ n∑
k=1

ak
sin π(2l + 1

2
− k)

π(2l + 1
2
− k)

∣∣∣
= max

0≤l≤[n−1
2

]

∣∣∣ n∑
k=1

ak
(−1)2l−k

π(2l + 1
2
− k)

∣∣∣
= max

0≤l≤[n−1
2

]

∣∣∣ n∑
k=1

(−1)kak
1

π(2l + 1
2
− k)

∣∣∣
dist
= max

0≤l≤[n−1
2

]

∣∣∣ n∑
k=1

ak
1

π(2l + 1
2
− k)

∣∣∣, (19)

where equality (19) is in distribution and holds due to the assumption that the {ak}∞k=1 are
symmetrically distributed. The lower bound on the expectation of (19) is proved analogously
to the lower bound in Proposition 3.1.

We close with a question. In the communications setting discussed in the Introduction, one
is interested in methods to reduce the peak value of a signal. While the results presented here
show that peak value grows more mildly for shifted sinc kernels than for orthonormal functions
on the unit interval, how the peak can be reduced and the limits to certain methods for doing so
are still of interest. One such method is to allow a subset of the coefficients to be random, and
choose the remaining coefficients to reduce the peak of the signal resulting from the random
coefficients. Limiting behavior for this scheme in the Fourier setting on the unit interval was
addressed in [1]. However, it is not readily apparent what the analogous behavior for shifted
sinc kernels is.
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[3] P. Erdős and A. Rényi. On a new law of large numbers. J. Analyse Math., 23:103–111,
1970.

[4] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc., 58:13–30, 1963.

12



[5] B. Kashin and L. Tzafriri. Lower estimates for the supremum of some random processes.
East J. Approx., 1(1):125–139, 1995.

[6] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer-Verlag, Berlin,
1991.

[7] S. Litsyn. Peak Power Control in Multicarrier Communications. Cambridge Univ. Press,
New York, 2007.

13


