Novel C-type lectin-mediated signalling mechanisms that activate the NLRP3 inflammasome and IL-1β production: consequences for $\text{T}_{\text{H}2}$ polarized immune responses

Manuel Ritter

Die Dissertation wurde am 06.06.2012 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 20.11.2012 angenommen.
Contents

1 Introduction .. 23
 1.1 Immunology .. 23
 1.2 Concepts of immune system .. 24
 1.2.1 Innate immunity ... 24
 1.2.2 The bridge between innate and adaptive immune responses 27
 1.2.3 Adaptive immunity .. 28
 1.3 Biology of Schistosomiasis ... 30
 1.3.1 Life cycle of Schistosoma species .. 31
 1.3.2 Pathology of Schistosomiasis ... 32
 1.3.3 Immune responses during Schistosomiasis ... 33
 1.3.4 Granuloma formation ... 36
 1.3.5 SEA-mediated immune responses .. 36
 1.4 IL-1β and the inflammasome ... 38
 1.4.1 Architecture of the inflammasome .. 39
 1.4.2 Mechanisms of inflammasome activation .. 40
 1.4.3 Biological effects of IL-1β ... 43
 1.4.4 IL-1β-mediated autoinflammatory diseases ... 44
 1.4.5 IL-1β influences allergic asthma development ... 44
 1.5 Aims of the study .. 46

2 Material and methods .. 47
 2.1 Materials .. 47
 2.1.1 Equipment ... 47
 2.1.2 Additional software .. 49
2.1.3 Consumables ... 49
2.1.4 Reagents .. 50
2.1.5 Medium supplements ... 52
2.1.6 Chemical inhibitors, blocking and uncoupling agents ... 53
2.1.7 Kit systems .. 53
2.1.8 Size standards .. 54
2.1.9 Antibodies .. 54
2.1.10 Buffers and solutions .. 55
 2.1.10.1 Buffers for genotyping PCR .. 55
 2.1.10.2 Buffers and solutions for SDS-polyacrylamide-gel-electrophoresis 56
 2.1.10.3 Buffers and solutions for Western blot .. 57
 2.1.10.4 Buffers and solutions for ELISA .. 57
 2.1.10.5 Buffers and solutions for FACS .. 58
 2.1.10.6 Buffers for cell lysis and bronchoalveolar lavage preparation 58
 2.1.10.7 Solutions used for worm perfusion ... 59
 2.1.10.8 Buffers and solutions for Egg preparation .. 59
2.1.11 Cell culture mediums and buffers .. 60
2.1.12 Primers for genotyping PCRs .. 60
2.1.13 Mice ... 61
2.2 Molecular biological methods ... 62
 2.2.1 Polymerase chain reaction (PCR) .. 62
 2.2.2 Separation of DNA-fragments using agarose-gel electrophoresis 65
2.3 Cell biological methods ... 66
 2.3.1 Preparation of immune cells ... 66
 2.3.1.1 Preparation of spleen, mesenteric and lung lymph node cells 66
 2.3.1.2 Preparation of dendritic cells from bone marrow 66
 2.3.2 Cell handling .. 67
 2.3.2.1 Cell counting ... 67
 2.3.2.2 Freezing of cells .. 67
 2.3.2.3 Thawing of cells .. 67
 2.3.3 Cultivation and stimulation of immune cells .. 68
 2.3.3.1 Cultivation of bone-marrow derived dendritic cells 68
 2.3.3.2 Stimulation of bone-marrow derived dendritic cells 68
 2.3.3.3 Stimulation of spleen, MLN and LLN derived lymphocytes 69
2.3.4 Protein precipitation and cell lysis

- Methanol/chloroform precipitation
- Trichloroacetic acid precipitation
- Cell lysis

2.3.5 Enzyme-Linked ImmunoSorbent Assay (ELISA)

- Ready-Set-Go ELISA kits (eBioscience)
- Duo Set® ELISA kits (R&D)
- OVA-specific immunoglobulin ELISA

2.3.6 Flow cytometry

- Cell surface staining
- Intracellular Foxp3 staining
- FACS acquisition and analysis

2.3.7 Cytotoxicity assay

2.3.8 ATP measurement

2.3.9 Statistics

2.4 Methods of protein purification and analysis

- SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)
- Western blot

2.5 Parasitological methods

- SEA preparation
 - Egg preparation from liver tissue
 - SEA preparation from liver-derived eggs
 - Measurement of protein concentration
 - Modulation of SEA
- Evaluation of *Schistosoma mansoni* infection
 - Worm burden analysis
 - General infection status
 - Egg count analysis
- Histological methods
 - Tissue preparation for histological staining
 - Staining techniques
 - Microscopical analysis of stained liver sections
- Immunological methods
- Evaluation methods for allergic airway inflammation
2.6.1 Induction of allergic airway inflammation .. 87
2.6.2 Analysis of immune parameters in the bronchoalveolar lavage (BAL) 88
 2.6.2.1 Preparation of the BAL .. 88
 2.6.2.2 Cytospin preparation ... 88
 2.6.2.3 Staining and analysis of BAL cells ... 89
2.6.3 Sample preparation for ELISA ... 89
2.6.4 Evaluation of lung inflammation ... 90

3 Results .. 93
3.1 Deciphering the mechanisms of SEA-mediated immunomodulation 93
 3.1.1 SEA suppresses TLR-triggered innate immune responses 93
 3.1.2 SEA induced IL-1β production .. 94
 3.1.3 SEA-mediated IL-1β induction depends on viable BMDCs 95
 3.1.4 SEA-mediated immunomodulatory effects depend on glycosylated proteins and lipids ... 97
3.2 Investigating SEA-mediated inflammasome activation 98
 3.2.1 SEA mediates the cleavage of IL-1β through caspase-1 activation 98
 3.2.2 SEA-mediated IL-1β induction depends on NLRP3 inflammasome activation ... 100
 3.2.3 SEA-mediated NLRP3 inflammasome activation depends on intracellular potassium efflux and mitochondrial reactive oxygen species 102
 3.2.4 NLRP3 inflammasome activation by SEA is independent of phagocytosis ... 105
 3.2.5 SEA triggers the Dectin-2 receptor to activate the NLRP3 inflammasome 106
 3.2.6 Dectin-2 couples to FcRγ chain to activate Syk signalling 109
 3.2.7 Card9 is a crucial molecule for SEA-mediated NLRP3 inflammasome activation ... 110
 3.2.8 Model of SEA-mediated NLRP3 inflammasome activation 111
3.3 Investigation of inflammasome activation during S. mansoni infection 112
 3.3.1 Parasitological parameters are not altered in the different knockout strains 112
 3.3.2 Impaired granuloma formation in infected ASC−/−, NLRP3−/−, IL-1R−/− and Dectin-2−/− mice ... 114
 3.3.3 S. mansoni infected NLRP3−/− and ASC−/− mice present decreased in situ IL-1β levels within infected organs .. 115
 3.3.4 ASC−/−, NLRP3−/−, IL-1R−/− and Dectin-2−/− S. mansoni infected mice present altered adaptive immune responses 116
3.4 Investigation of NLRP3 inflammasome activation during allergic airway inflammation ... 119
3.4.1 NLRP3 inflammasome activation influences eosinophil influx within the lung .. 120
3.4.2 NLRP3 inflammasome activation mediates inflammation within the lung 121
3.4.3 NLRP3 inflammasome activation alters cytokine responses 123
3.4.4 NLRP3 inflammasome-mediated IL-1β production contributes to the inflammation within the lung ... 125
3.4.5 Inhibition of IL-1 signalling leads to alteration of allergic airway inflammation .. 126

4 Discussion ... 129
4.1 Immunomodulation abilities of Schistosoma mansoni .. 129
4.1.1 SEA-mediated immunosuppression of innate activated cells is directed by (glyco-)lipids .. 129
4.1.2 Concurrent immunomodulation mechanism by schistosomal components: IL-1β induction ... 131
4.2 SEA-mediated inflammasome activation .. 132
4.2.1 Schistosoma mansoni: a new member of NLRP3 inflammasome activators 133
4.2.2 SEA-mediated NLRP3 inflammasome activity depends on several intracellular molecules .. 134
4.2.3 SEA triggers the Dectin-2/FcRγ/Syk receptor axis to induce NLRP3 inflammasome activation .. 137
4.2.4 The Card9 complex is important for NLRP3 inflammasome activation 139
4.2.5 SEA-mediated NLRP3 inflammasome activation: a novel signalling pathway ... 140
4.3 Lack of inflammasome components skews both parasitological and immunological responses during S. mansoni infection .. 141
4.3.1 NLRP3 inflammasome activation and IL-1β secretion influence schistosome-derived immunopathology ... 142
4.3.2 NLRP3 inflammasome activation skews adaptive immune responses 144
4.4 NLRP3 inflammasome activation drives allergic asthma development 145
4.4.1 NLRP3 inflammasome activation influences allergic airway inflammation ... 147
4.4.2 Blocking IL-1 signalling reduces allergic airway inflammation 149
4.5 NLRP3 inflammasome is a central signalling platform that drives Th2-polarized immune responses .. 151

References ... 153
Acknowledgments .. 175
List of Figures

Figure 1.1: TLR signalling pathways of recognized PAMPs .. 26
Figure 1.2: DCs induce T cell differentiation and initiate adaptive immunity 28
Figure 1.3: Geographic distribution of schistosomiasis ... 30
Figure 1.4: Life cycle of Schistosoma species ... 31
Figure 1.5: Aspects of pathology that arise during Schistosomiasis 33
Figure 1.6: Induction and development of T\textsubscript{H}1 and T\textsubscript{H}2 responses during S. mansoni infection ... 34
Figure 1.7: The inflammasome, a multiprotein complex .. 39
Figure 1.8: Inflammasome complexes are triggered by different stimuli 40
Figure 1.9: Mechanisms of inflammasome activation .. 41
Figure 2.1: Alum-free OVA-induced allergic airway inflammation model 87
Figure 3.1: SEA suppresses TLR-mediated TNF-\(\alpha\) and IL-6 responses in a dose dependent manner ... 94
Figure 3.2: SEA induces IL-1\(\beta\) production in a dose dependent manner 95
Figure 3.3: Cell viability is maintained after SEA stimulation 96
Figure 3.4: SEA-mediated IL-1\(\beta\) induction depends on a (glyco-)protein, whereas a (glyco-)lipid mediates the suppression of TNF-\(\alpha\) ... 97
Figure 3.5: SEA-mediated IL-1\(\beta\) induction depends on caspase-1 activation 99
Figure 3.6: SEA mediates IL-1\(\beta\) release in an ASC- and NLRP3-dependent manner ... 101
Figure 3.7: SEA-mediated NLRP3 inflammasome activation requires potassium efflux and reactive oxygen species (ROS) production 102
Figure 3.8: Mitochondrial ROS facilitates SEA-mediated NLRP3 inflammasome activation ... 104
Figure 3.9: SEA-mediated NLRP3 inflammasome activation is independent of phagocytosis ... 106
Figure 3.10: SEA-mediated NLRP3 inflammasome activation is independent of the P2X7 receptor .. 107
Figure 3.11: SEA triggers the Dectin-2 receptor to induce NLRP3 inflammasome activation .. 108
Figure 3.12: SEA triggering of Dectin-2 activates Fc receptor \(\gamma\) chain and spleen tyrosine kinase .. 109
Figure 3.13: SEA-mediated NLRP3 inflammasome activation depends on the Card9 molecule ... 111
List of Figures

Figure 3.14: *S. mansoni*-mediated Dectin-2 receptor/NLRP3 inflammasome activity and IL-1β signalling influence granuloma formation

Figure 3.15: ASC−/− and NLRP3−/− mice showed decreased *in situ* IL-1β levels within infected organs

Figure 3.16: *S. mansoni*-mediated Dectin-2 receptor/NLRP3 inflammasome activity and IL-1β signalling influence adaptive immune responses

Figure 3.17: FACS analysis of CD4+ T cell populations in the MLN of infected animals

Figure 3.18: NLRP3 inflammasome activation influences immune cell infiltration within the BAL

Figure 3.19: Lung inflammation depends on NLRP3 inflammasome activation

Figure 3.20: NLRP3 inflammasome activation alters cytokine responses during OVA-induced allergic airway inflammation development

Figure 3.21: NLRP3−/− and ASC−/− mice showed decreased *in situ* IL-1β levels within lungs immediately after contact with the OVA antigen

Figure 3.22: Anakinra treatment during the alum-free OVA-induced allergic airway inflammation model

Figure 3.23: Anakinra treatment altered OVA-induced allergic airway inflammation

Figure 4.1: Model of SEA-mediated IL-1β induction

Figure 4.2: NLRP3 inflammasome is a central signalling complex that drives Th2-polarized immune responses
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Antibodies used for ELISA, FACS, Western blot (WB) analysis and in vitro stimulation and blocking experiments</td>
<td>54</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Blocking antibodies, uncoupling agents, chemical inhibitors and reagents used for in vitro inhibition experiments</td>
<td>69</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Masson’s blue staining protocol</td>
<td>85</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Hematoxylin and eosin staining protocol</td>
<td>86</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Periodic acid-Schiff (PAS) staining protocol</td>
<td>90</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Parasitological parameters after 8 weeks of S. mansoni infection</td>
<td>113</td>
</tr>
</tbody>
</table>
Abbreviations

A

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>ammoniumchloride-tris</td>
</tr>
<tr>
<td>AHR</td>
<td>airway hyperresponsiveness</td>
</tr>
<tr>
<td>AIM2</td>
<td>absent in melanoma 2</td>
</tr>
<tr>
<td>Al(OH)_3</td>
<td>aluminium hydroxide (alu)</td>
</tr>
<tr>
<td>APC</td>
<td>antigen presenting cells</td>
</tr>
<tr>
<td>APC (FACS)</td>
<td>allophecoyacin</td>
</tr>
<tr>
<td>APDC</td>
<td>(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylic acid</td>
</tr>
<tr>
<td>APS</td>
<td>ammonium persulfate</td>
</tr>
<tr>
<td>ASC</td>
<td>apoptosis-associated speck-like protein containing a CARD</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine-5’-triphosphate</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAL</td>
<td>bronchoalveloar lavage</td>
</tr>
<tr>
<td>Bcl10</td>
<td>B cell lymphoma 10</td>
</tr>
<tr>
<td>BMDCs</td>
<td>bone-marrow derived dendritic cells</td>
</tr>
<tr>
<td>bp</td>
<td>base pair(s)</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARD</td>
<td>caspase recruitment domain</td>
</tr>
<tr>
<td>Casp</td>
<td>caspase</td>
</tr>
<tr>
<td>Ca^{2+}</td>
<td>calcium ion</td>
</tr>
<tr>
<td>CCL17</td>
<td>C-C motif ligand 17</td>
</tr>
<tr>
<td>CD</td>
<td>clusters of differentiation</td>
</tr>
<tr>
<td>CDC</td>
<td>Center for Disease Control and Prevention</td>
</tr>
<tr>
<td>CIITA</td>
<td>MHC class II transcription activator</td>
</tr>
<tr>
<td>CLRs</td>
<td>C-type lectin receptors</td>
</tr>
<tr>
<td>CpG</td>
<td>cytosine-phosphatidyl-guanine</td>
</tr>
<tr>
<td>CytD</td>
<td>cytochalasin D</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAMPs</td>
<td>damage associated molecular pattern molecules</td>
</tr>
<tr>
<td>DAP12</td>
<td>diaminopimelic acid receptor 12</td>
</tr>
<tr>
<td>DC</td>
<td>dendritic cell</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>DC-SIGN</td>
<td>DC-specific intercellular adhesion molecule-3-grabbing non-integrin</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified eagle medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNP</td>
<td>2,4-dinitrophenole</td>
</tr>
<tr>
<td>dNTPs</td>
<td>deoxynucleoside triphosphate</td>
</tr>
<tr>
<td>DOI</td>
<td>degree of infection</td>
</tr>
<tr>
<td>dsRNA</td>
<td>double-stranded RNA</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EAE</td>
<td>experimental autoimmune encephalomyelitis</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemiluminescence technique</td>
</tr>
<tr>
<td>ECP</td>
<td>eosinophil cationic protein</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol tetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>EPO</td>
<td>eosinophil peroxidase</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence-activated cell sorting</td>
</tr>
<tr>
<td>Fc</td>
<td>fragment crystallizable</td>
</tr>
<tr>
<td>FCCP</td>
<td>carbonyl cyanide p-(tri-fluromethoxy)phenyl-hydrazone</td>
</tr>
<tr>
<td>FeRγ</td>
<td>Fc receptor gamma chain</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>Foxp3</td>
<td>forkhead box P3</td>
</tr>
<tr>
<td>g</td>
<td>gravitational force</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrogen chloride</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HET-E</td>
<td>incompatibility locus protein from Podospora anserine</td>
</tr>
<tr>
<td>HIN-200</td>
<td>hemopoietic IFN-inducible nuclear protein 200</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>H₂O</td>
<td>water</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>sulfuric acid</td>
</tr>
<tr>
<td>ICE</td>
<td>IL-1β-converting enzyme (Casp1)</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IKKi</td>
<td>inhibitor of nuclear factor kappa-B kinase subunit epsilon isoform 1</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IL-1R</td>
<td>IL-1 receptor</td>
</tr>
<tr>
<td>IL-1Ra</td>
<td>IL-1R antagonist</td>
</tr>
<tr>
<td>IPAF</td>
<td>ICE-protease activating factor</td>
</tr>
<tr>
<td>IPSE/alpha1</td>
<td>interleukin 4 inducing principle from S. mansoni eggs/alpha-1</td>
</tr>
<tr>
<td>IRAK</td>
<td>IL-1 receptor-associated kinase</td>
</tr>
<tr>
<td>IRF</td>
<td>IFN-regulatory factor</td>
</tr>
<tr>
<td>ITAM</td>
<td>immunoreceptor tyrosine-based activation motif</td>
</tr>
<tr>
<td>JNK</td>
<td>Jun N-terminal kinase</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>KCl</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>KO</td>
<td>knockout</td>
</tr>
<tr>
<td>KOH</td>
<td>potassium hydroxide</td>
</tr>
<tr>
<td>LABAs</td>
<td>long-acting beta agonists</td>
</tr>
<tr>
<td>LDH</td>
<td>lactate dehydrogenase</td>
</tr>
<tr>
<td>LLN</td>
<td>lung lymph node</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>LRR</td>
<td>leucine rich repeat</td>
</tr>
<tr>
<td>mA</td>
<td>milliamper</td>
</tr>
<tr>
<td>Mal</td>
<td>MyD88 adapter-like</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Malt1</td>
<td>mucosa-associated lymphoid tissue lymphoma translocation protein 1</td>
</tr>
<tr>
<td>MAP</td>
<td>mitogen-activated protein</td>
</tr>
<tr>
<td>MAPK</td>
<td>MAP kinase</td>
</tr>
<tr>
<td>MDP</td>
<td>muramyl dipeptide</td>
</tr>
<tr>
<td>MGL</td>
<td>macrophage galactose lectin</td>
</tr>
<tr>
<td>Mg^{2+}</td>
<td>magnesium ion</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MIH</td>
<td>Institute of medical Microbiology, Immunology and Hygiene</td>
</tr>
<tr>
<td>Mincle</td>
<td>macrophage-inducible C-type lectin</td>
</tr>
<tr>
<td>MLN</td>
<td>mesenteric lymph node</td>
</tr>
<tr>
<td>MOI</td>
<td>multiplicity of infection</td>
</tr>
<tr>
<td>MPO</td>
<td>myeloperoxidase</td>
</tr>
<tr>
<td>MRI</td>
<td>Munich Rechts der Isar</td>
</tr>
<tr>
<td>MyD88</td>
<td>myeloid differentiation primary response gene 88</td>
</tr>
<tr>
<td>Nac</td>
<td>N-acetyl-L-cysteine</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>NAD</td>
<td>nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>nicotinamide adenine hydrogen dinucleotide</td>
</tr>
<tr>
<td>NADPH</td>
<td>nicotinamide adenine dinucleotide hydrogen phosphate</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>sodium hydrogen carbonate</td>
</tr>
<tr>
<td>NACHT</td>
<td>NAIP-CIITA-HET-E and TP1 containing protein</td>
</tr>
<tr>
<td>NAIP</td>
<td>neuronal apoptosis inhibitory protein</td>
</tr>
<tr>
<td>NALP</td>
<td>NACHT-LRR-PYD containing protein</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>di-sodium carbonate</td>
</tr>
<tr>
<td>Na₃VO₄</td>
<td>sodium orthovanadate</td>
</tr>
<tr>
<td>NBD</td>
<td>nucleotide binding domain</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor-κB</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>ammonium chloride</td>
</tr>
<tr>
<td>NLRC</td>
<td>NOD-like receptor family, CARD domain-containing protein</td>
</tr>
<tr>
<td>NLRP</td>
<td>NOD-like receptor family, pyrin domain</td>
</tr>
<tr>
<td>NOD</td>
<td>nucleotide oligomerization domain</td>
</tr>
<tr>
<td>NOD mice</td>
<td>non-obese diabetic mice</td>
</tr>
<tr>
<td>OVA</td>
<td>ovalbumin</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PAMPs</td>
<td>pathogen-associated molecular pattern molecules</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PE</td>
<td>phycoerythrin</td>
</tr>
<tr>
<td>PFA</td>
<td>paraformaldehyde</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenylmethanesulfonyl fluoride</td>
</tr>
<tr>
<td>poly I:C</td>
<td>polyinosinic:polycytidylic acid</td>
</tr>
<tr>
<td>PRR</td>
<td>pattern recognition receptors</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidene fluoride</td>
</tr>
<tr>
<td>PYD</td>
<td>pyrin domain</td>
</tr>
<tr>
<td>P2X7</td>
<td>purinergic receptor P2X, ligand-gated ion channel 7</td>
</tr>
<tr>
<td>P₃Cys</td>
<td>palmitoyl-cysteine ((RS)-2,3-di(palmitoyloxy)-propyl</td>
</tr>
<tr>
<td>RLU</td>
<td>relative light unit</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute medium</td>
</tr>
<tr>
<td>R406</td>
<td>Syk kinase inhibitor</td>
</tr>
<tr>
<td>SABAs</td>
<td>short acting beta agonists</td>
</tr>
<tr>
<td>SCID</td>
<td>severe combined immunodeficiency</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SEA</td>
<td>soluble egg antigen</td>
</tr>
<tr>
<td>SH2</td>
<td>sarcoma homology 2</td>
</tr>
<tr>
<td>SIGNR1</td>
<td>specific intercellular adhesion molecule-3-grabbing non-integrin homolog-related 1</td>
</tr>
<tr>
<td>SIP</td>
<td>SH2 domain-containing leukocyte protein</td>
</tr>
<tr>
<td>S. mansoni</td>
<td>Schistosoma mansoni</td>
</tr>
<tr>
<td>spf</td>
<td>specific pathogen-free</td>
</tr>
<tr>
<td>S. typh.</td>
<td>Salmonella typhimurium</td>
</tr>
<tr>
<td>Syk</td>
<td>spleen tyrosine kinase</td>
</tr>
</tbody>
</table>
Abbreviations

T
TAE tris acetat EDTA
TANK TRAF family member-associated NF-kappa-B activator
TBK TANK-binding kinase
TBST tris-buffered saline and Tween 20
TCA trichloroacetic acid
TCR T cell receptor
TEMED tetramethylethylenediamine
TGF transforming growth factor
T_{H} cells T helper cells
TIR Toll/IL-1 receptor
TIRAP TIR-containing adapters
TLC thin layer chromatography
TLR Toll-like receptor
TMB 3,3’,5,5’-tetramethylbenzidine
TM trademark
TNF tumor necrosis factor
TP1 telomerase-associated protein 1
TRAF tumour-necrosis factor-receptor-associated factor
TRAM TRIF-related adaptor molecule
T_{reg} cells regulatory T cells
TRIF TIR-domain containing adaptor protein inducing IFN-β
Tris tris(hydroxymethyl)aminomethane
TRX Thioredoxin
TXNIP TRX-interacting protein
T3/4SS type 3/4 secretion system

V
v/v volume per volume

W
WHO World Health Organization
wt wildtype
w/v weight per volume

Z
ZAP70 ζ-chain-associated protein kinase 70 kDa
Abstract

Schistosomiasis is a chronic infection caused by parasitic blood flukes (helminthes), such as *Schistosoma mansoni*. According to the World Health Organization it is the second most socioeconomically devastating parasitic disease with over 207 million infected people worldwide. The propensity of helminths to immunomodulate the host’s immune system is an essential aspect of their survival. Previous research has demonstrated how *S. mansoni*-derived soluble egg antigen (SEA), which is a complex mixture of highly glycosylated proteins and lipids, can dampen innate responses after triggering Toll-like receptor (TLR) stimuli. Expanding on those data, the results presented within this thesis demonstrate that a variety of TLRs are influenced by this dampening effect and moreover appears to be mediated by (glyco-)lipid components within the SEA. Whilst studying TLR-triggered events a further modulatory facet within SEA became apparent, namely the ability of (glyco-)protein-based components to activate the NLRP3 inflammasome and thus IL-1β production. Using an array of biochemical and immunological studies *in vitro* it was elucidated that SEA mediates NLRP3 inflammasome activation by triggering the Dectin-2/Fc receptor γ chain (FcRγ) complex. This elicits a cascade of intracellular events including the activation of spleen tyrosine kinase (Syk) to induce mitochondrial reactive oxygen species (ROS), potassium efflux and the Card9 complex. Furthermore, *in vivo* infections of *S. mansoni* in mice lacking the inflammasome adapters ASC and NLRP3 and the receptors Dectin-2 and IL-1 showed decreased immunopathology and altered antigen-specific adaptive responses (T H1, T H2 and T H17). Overall, these data substantiate the hypothesis that innate responses direct adaptive immunity and highlight the ability of this helminth to modulate various innate pathways. Further work described in this thesis display the critical role for NLRP3 inflammasome activation during a T H2 polarized model of allergic asthma. In brief, NLRP3−/− and ASC−/− mice showed less eosinophil infiltration and inflammation within the lung and reduced ovalbumin-specific T H2 responses (IL-5 and IL-13). Moreover, blocking IL-1 signalling with Anakinra, an IL-1 receptor antagonist (IL-1Ra), leads to impaired infiltration of eosinophils within the lung of asthmatic mice. In summary, this study implies a crucial role of the NLRP3 inflammasome signalling platform within T H2 polarized immune responses, such as Schistosomiasis or asthma. Understanding the NLRP3 inflammasome signalling mechanisms could contribute to the development of novel vaccination strategies against helminth infections and autoimmune diseases.
Zusammenfassung

Die in dieser Arbeit dargelegten Ergebnisse zeigen, dass neben der (Glyko-)Lipid-vermittelten Suppression von TLR Signalwegen auch das NLRP3 Inflammasom aktiviert und IL-1β ausgeschüttet wird. Im SEA enthaltende (Glyko-)Proteine aktivieren den Dectin-2/Fc Rezeptor γ Kette (FcRγ) Komplex und induzieren dadurch die Milz-Tyrosin-Kinase (Syk). Dies führt zur Ausschüttung von radikalen Sauerstoffspezies (ROS) aus den Mitochondrien, Kaliumsekretion und Aktivierung des Card9 Komplexes. Außerdem zeigten S. mansoni infizierte Mäuse, denen die zentralen Inflammasomkomponenten ASC und NLRP3, sowie die Rezeptoren Dectin-2 und IL-1 fehlten, reduzierte Immunpathologie und veränderte antigenspezifische Th1, Th2 und Th17 Immunantworten. Diese Daten zeigen, wie Helminthen das NLRP3 Inflammasom aktivieren und dadurch verschiedene Immunantworten modulieren.

1 Introduction

1.1 Immunology

Immunology is a branch of biomedical sciences that covers a wide range of aspects of the immune system in all organisms [1]. The term “immunology” is closely connected to Edward Jenner who is often referred to as the “Father of Immunology”. In the year 1796, he discovered that inoculating healthy individuals with cow pox leads to protection (immunity) against human smallpox [2]. Due to this success he coined the term vaccination, which refers to the practice of administrating antigenic material (a vaccine), such as attenuated viruses or virus proteins to stimulate the immune system of an individual so that immunity is developed towards the disease. However, he was not able to decipher the actual disease-causing agents, which are microbes or other pathogens. In the latter half of the 19th century, Robert Koch isolated \textit{Bacillus anthracis} (1877), \textit{Tuberculosis bacillus} (1882) and \textit{Vibrio cholerae} (1883) and postulated a causal relationship between a certain microbe and a disease (“germ theory of disease”) [3], which was also supported by Louis Pasteur. He created the first vaccines for rabies and anthrax and invented pasteurization, a method to stop milk and wine from causing sickness due to microbial growth [4]. Today, pathogens which elicit disease are divided into four groups: viruses, microbes (bacteria), pathogenic fungi, and the more complex eukaryotic organisms called parasites.

Another key discovery into the mechanisms of immune reactions was provided by Paul Ehrlich, who coined the term antibody. He described antibodies as “magic bullets” that were secreted into the extracellular fluid to neutralize antigens [5]. Following that conjecture, Emil von Behring and Kitasato Shibasaburō further described antibody activity against diphtheria and tetanus toxins and put forward the theory of humoral immunity, which proposed that a mediator within the serum could specifically bind to an antigen. Today, the antibody-mediated immune response is a critical part of the adaptive immune system. In addition to such adaptive immune responses, Ilya Ilyich Mechnikov (Élie Metchnikoff) discovered immune responses which were independent of antibody secretion. He showed that cells (phagocytes), originating from the host, induced an immune response by attacking and ingesting foreign antigens [6]. These findings lead to the theory of phagocytosis, an example of innate immune responses. Innate and adaptive immunity are the main components of the mammalian immune system and both are crucial for the protection against foreign pathogens.
The mammalian immune system is an example of evolutionary-evolved adaption against various antigens and pathogens and highlights the complexity of immunological mechanisms, which lead to specific immune responses and immunity. The following sections will mainly focus on the triggering and function of innate immune responses and its essential role for the initiation of adaptive immunity.

1.2 Concepts of the immune system

As mentioned above, the immune system protects against a wide variety of agents using a collection of cellular mechanisms to identify and kill pathogens and tumor cells. During infection, the immune system needs to be able to distinguish between its own healthy cells and tissues (self molecules) and foreign substances (non-self molecules). The detection of these foreign components is very complicated since pathogens consistently adapt and evolve new ways to successfully invade the host. To survive this challenge, many organisms have developed multiple mechanisms that recognize and neutralize pathogens. Basic mechanisms can be seen in uni-cellular organisms such as bacteria, which possess enzymatic systems (defensins, phagocytosis and the complement system) that protect against viral infections. More sophisticated mechanisms have only recently developed with the evolution of vertebrates [7]. These more complex immune systems, found in mammals for example, consist of many types of proteins, cells, organs and tissues, which interact in an elaborate and dynamic network. The latter adaptation process also creates so called “immunological memory”, which allows a rapid effective protection against future encounters with the same pathogens. These sophisticated immune responses are classified into the aforementioned innate and adaptive immune system [1].

1.2.1 Innate immunity

The evolutionary ancient innate immune system is an universal non-specific form of host defense and has been identified in all multi-cellular organisms. This form of immunity is a product of multiple and diverse defense mechanisms that incorporates a wide variety of proteins, different tissues and innate immune cells (leukocytes), such as natural killer cells, mast cells, eosinophils, basophils and phagocytic cells (macrophages, neutrophils and dendritic cells). Although this system does not confer long-lasting or protective immunity to the host, it is vital for the immediate recruitment of different immune cells to the sites of infection and inflammation, which is achieved through cytokine release and chemokine
gradients [8]. Moreover, it activates the complement cascade (biochemical cascade) which identifies bacteria, promotes clearance of dead cells or antibody complexes and initiates leukocytes to remove foreign substances in organs, tissues, blood and lymph. In addition, innate cells direct appropriate adaptive immune responses through antigen presentation and the release of distinctive cytokine patterns [1]. Furthermore, innate immune cells (such as dendritic cells and macrophages) express pattern recognition receptors (PRR), which recognize highly conserved products from the metabolic pathways of microorganisms (microbial products), termed pathogen-associated molecular pattern (PAMPs) [9]. Very important members of these PRR are the membrane-bound or intracellular Toll-like receptors (TLR) [10], which are crucial in recognizing pathogens and shaping the ensuing adaptive immune responses [11]. Currently, most mammalian species have between ten and fifteen different TLRs, and classical examples in the literature include the recognition of peptidoglycans and lipopeptides (P₃Cys) from gram-positive bacteria through TLR2 [12], lipopolysaccharide (LPS) from gram-negative bacteria through TLR4 [13] or bacterial DNA with a high frequency of unmethylated pairs of cytosine and guanosine dinucleotides (CpG) through TLR9 [14] (Figure 1.1).
Figure 1.1: TLR signalling pathways of recognized PAMPs
In brief, the central signalling adaptor protein MyD88 (myeloid differentiation primary response gene 88) is used by all TLRs (except TLR3). It interacts with the IRAK (interleukin-1 (IL-1) receptor-associated kinase) family, leading to interaction with TRAF6 (tumour-necrosis factor-receptor-associated factor 6), which ultimately leads to activation of nuclear factor-κB (NF-κB) and mitogen-activated protein (MAP) kinases. This leads to the production of cytokines (such as tumor necrosis factor (TNF)) and other pro-inflammatory proteins. The MyD88 independent pathway is characterized by triggering TLR3 and TLR4, which activate TRIF (Toll/IL-1 receptor-domain containing adaptor protein inducing IFN-β) and TRAM (TRIF-related adaptor molecule), leading to IRF3 (interferon-regulatory factor 3) activation and IFN-β (interferon β) production. Adapted from Harrison’s Practice (http://www.harrisonspractice.com).

As depicted in Figure 1.1, TLR signalling pathways are complex and include a wide range of different adaptor molecules that culminate in the induction of numerous genes that function to promote inflammatory immune responses. Important pro-inflammatory cytokines include tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), IL-6, IL-12, chemokines, antimicrobial effector molecules (inducible nitric oxide synthase and anti-microbial peptides) and co-stimulatory molecules [10, 11, 15, 16]. Upon activation, TLRs recruit adapter molecules within the cytoplasm of cells in order to propagate a signal, such as: TIRAP (Toll/interleukin-1 receptor (TIR)-containing adapters; also called Mal (MyD88 adapter-like)) [17, 18], which is required for TLR2 and TLR4 activation; TRIF (Toll/IL-1 receptor-domain containing...
adaptor protein inducing IFN-β), which is necessary for interferon β (IFN-β) induction and anti-viral immunity [19, 20]; TRAM (TRIF-related adaptor molecule) [21] and the most important of all, MyD88 (myeloid differentiation primary response gene 88) [22, 23]. With the exception of TLR3, all other TLRs signal through MyD88, leading to the recruitment of TRAF6 (tumour-necrosis factor-receptor-associated factor 6) and activation of certain protein kinases (IRAK 1, IRAK 4, TBK 1, IKKi). The activation of these different protein kinases leads to nuclear factor-κB (NF-κB) translocation to the nucleus, which mediates the induction or suppression of genes and pro-inflammatory responses [10, 11, 15, 23]. Moreover, there are also other pathways downstream of TRAF6 that contribute to TLR function, such as those involving Jun N-terminal kinase (JNK) and mitogen-activated protein kinases (MAPKs) [24, 25]. MyD88 independent signalling pathways have been described for TLR3 and TLR4, which signal through TRIF and TRAM to induce interferon-regulatory factor 3 (IRF3), leading to IFN-β production [10, 11, 15, 23]. All in all, these signalling pathways represent one of the most powerful and important gateways of gene modulation and regulation of different immune responses.

1.2.2 The bridge between innate and adaptive immune responses

As mentioned before, the innate immune system is the first line of defense and can induce and activate adaptive immune responses. A crucial connection between innate and adaptive immune responses is antigen presentation via MHC (major histocompatibility complex) molecules on dendritic cells (DCs), B cells or macrophages. DCs were first identified in the epidermal layers of skin in 1868 by Paul Langerhans, who termed them Langerhans cells and at that time considered them to be part of the nervous system [26]. Almost 100 years later, Steinman and Cohn showed that DCs are actually a class of white blood cells that are important for innate immune responses [27]. Immature DCs are located in peripheral tissues so that they are ready for encounters with invading pathogens [28]. Captured pathogens are recognized by TLRs on the surface of the DCs (section 1.2.1), which induces their maturation [10, 11]. TLR activation can lead to phagocytosis of the pathogen, presentation of the foreign material on MHC molecules [28], and consequential proliferation of specific T cells. Moreover, DCs express high levels of co-stimulatory molecules, such as cluster of differentiation 80 (CD80) and CD86 and secrete chemokines and cytokines, such as CCL17 (C-C motif ligand 17), IL-6 and IL-12, which are important for T cell differentiation [28-31] (Figure 1.2).
Figure 1.2: DCs induce T cell differentiation and initiate adaptive immunity

In brief, through TLRs DCs sense the presence of PAMPs and upregulates cell-surface expression of co-stimulatory (CD80 and CD86) and MHC class II (MHCII) molecules, loaded with pathogen-derived antigens. Induction of CD80/86 and MHCII on DCs are recognized by naïve T cells via CD28 and T cell receptor (TCR) leading to the activation and differentiation of T helper cells (Th1, Th2 and Th17). Moreover, DCs also secrete cytokines and chemokines that also can induce Th1 cell differentiation. Adapted from [10].

Besides induction of T cell differentiation, DCs are also able to directly stimulate B cell proliferation and antibody production [28, 32, 33]. Mature DCs can migrate to the draining lymph nodes and present the pathogen-derived antigens to the adaptive immune cells (naïve T and B cells), which initiate the adaptive immune response [10, 11, 28].

1.2.3 Adaptive immunity

As described in section 1.2.2, adaptive immunity is triggered when a pathogen evades destructive mechanisms of the innate immune system. These secondary defenses are initiated through the maturation and presentation of pathogen-derived antigens by antigen-presenting cells (APC) and the consequent release of specific cytokines/chemokines leading to clonal selection of specific T lymphocytes (Figure 1.2) and B lymphocytes. This clonal selection leads to a long-lasting protection against the specific pathogen because of the development of immunological memory (antigen-specific memory T and B cells) [34, 35]. One of the most critical aspects of adaptive immune responses is the ability of cells to distinguish between “self” and “non-self” antigens during the process of antigen presentation. After pathogen-triggering the adaptive immune system uses two different strategies for the clearance of
pathogens. The humoral immune response is based on the release of secreted antibodies (immunoglobulin (Ig)) produced by B lymphocytes (B cells), which are called plasma cells [36]. In mammals there are five known classes of antibodies (IgA, IgD, IgE, IgG and IgM), which differ in their biological properties and have evolved to handle different kinds of antigens within different tissues. Secreted antibodies bind to extracellular pathogens (such as virus or bacteria), leading to their neutralization and destruction by promoting cytotoxicity (natural killer cells) [37], degranulation of granulocytes (mast cells, basophils and eosinophils) [38] and phagocytosis (macrophages) [39].

The cell-mediated immune response involves antigen-specific T lymphocytes. T cells can be divided into two major groups: Cytotoxic T cells and T helper cells (T_H cells). Cytotoxic T cells are characterized by the expression of CD8 on their cell surface and are able to destroy bacterially and virally infected cells and also tumor cells. Infected host cells present foreign antigens on MHC class I (MHCI) molecules which results in the binding to a specific T cell receptor (TCR) and consequential release of cytotoxins to induce apoptosis (programmed cell death) of the target cells [40-42]. T_H cells are characterized by the expression of CD4 on their cell surface and when activated these cells release various cytokines against non-self antigens and attract other immune cells, which help to regulate ongoing immune responses. They are activated through the recognition of specific peptides expressed on MHC class II (MHCII) molecules (section 1.2.2) and based on their production of cytokines differentiate into functional subsets called T helper type 1 (T_H1) and T helper type 2 (T_H2) cells. T_H1 cells are essential for protection against a variety of intracellular infections and mediate those responses through the release of IFN-γ and TNF-β. T_H2 responses on the other hand are effective against certain extracellular infections due to the secretion of various interleukins (IL-4, IL-5, IL-6, IL-10 and IL-13) and by the initiation of humoral immune responses [43-47]. Another important subpopulation of T cells within the adaptive immune system are the regulatory T cells (T_reg). These cells express CD4, CD25 and Foxp3 (forkhead box P3) [48], which prevent excessive immune reactions by suppressing the responses of other immune cells. Different studies have shown that T_reg cells prevent autoimmunity, control immune homoeostasis and limit chronic inflammatory disorders mediated by the immunosuppressive cytokines transforming growth factor β (TGF-β) and IL-10 [49-51]. Recently, two additional T_H cell subpopulations (T_H17 and T_H9) with effector functions distinct from those of T_H1 and T_H2 have been identified. T_H17 cells, secrete high amounts of IL-17A, IL-17F and IL-22 and are known to mediate the clearance of extracellular pathogens, tissue inflammation and autoimmunity, such as experimental autoimmune encephalomyelitis (EAE), rheumatoid
arthritis, multiple sclerosis, inflammatory bowel disease and psoriasis [52, 53]. On the other hand, T_{H}9 cells secrete IL-9 and play a crucial role in allergic diseases, such as allergic asthma development [54, 55]. This finely balanced network of cells, tissues and organs has evolved to ensure the survival. Failures in this network can lead to immunodeficiencies, autoimmunity and hypersensitivities.

1.3 Biology of Schistosomiasis

Parasitology is the study of parasitic organisms and their relationship to hosts. Parasites are subdivided into protozoa, arthropods or helminths (worms). The eukaryotic helminths can be categorized into three major groups: Cestodes (tapeworms), Nematodes (roundworms) and Trematodes (flukes). Within the latter, the Schistosoma species can elicit a chronic disease in humans called Schistosomiasis. According to the World Health Organization (WHO), Schistosomiasis is the second most socioeconomically devastating parasitic disease (next only to malaria). There are two different clinical manifestations of Schistosomiasis caused by five main Schistosoma species. Intestinal diseases are caused by S. mansoni, S. japonica, S. mekongi, S. intercalatum and S. guineensis whereas the urogenital disease is elicited by S. haematobium. Currently, over 207 million people are infected worldwide with an estimated risk of 700 million people in over 74 endemic countries, especially in tropical and sub-tropical areas [56-58] (Figure 1.3).

![Figure 1.3: Geographic distribution of schistosomiasis](image)

Modified from Relief Central, CDC Yellow Books, 2010.
Through the close relationship of *Schistosoma* species to their hosts (human) and the coevolutionary development with the human immune system, these parasites have evolved mechanisms to modulate the host immune system and exploit/induce different immunoregulatory pathways. Since mice are susceptible to *S. mansoni* infection and develop pathology and immune responses in almost the same manner as humans, a murine infection model can be used to decipher different immune responses against *Schistosoma* infection. The studies described in the later chapters of this thesis were performed using a murine *Schistosoma mansoni* infectious cycle, established in the laboratory of Dr. Layland and Dr. Prazeres da Costa.

1.3.1 Life cycle of *Schistosoma* species

The life cycle of *Schistosoma* species is complex and includes six developmental stages with two hosts. Humans and other mammals function as definitive hosts whereas fresh water snails such as *Biomphalaria glabrata* serve as intermediate host (Figure 1.4).

![Life cycle of Schistosoma species](image)

Figure 1.4: Life cycle of Schistosoma species

In brief, within fresh water, *Schistosoma* eggs hatch and release miracidia which penetrate into the snail. Within the snail, miracidia metamorphose into sporocysts and produce thousands of cercariae, which are released back into fresh water. Cercariae actively penetrate human skin, lose their tails and become schistosomulæ. They then circulate and migrate through the portal venous system and mature into adult worms (female and male). Adult worms pair up and migrate to mesenteric venules of the bowel/rectum (*S. japonicum* and *S. mansoni*) or venous plexus of the bladder (*S. haematobium*). Thereby the female worm releases numerous of eggs per day which are excreted with feces or urine. Adapted from [59].
Figure 1.4 shows diagrammatic representation of the life cycle of Schistosoma species. Infections occur when free-swimming cercariae penetrate into the skin of the human host. Whilst penetrating the skin, cercariae lose their tails and develop into another larval form, the schistosomulae, which migrate via the blood stream into the lung. During a further migration through the portal and urogenital venous system, the larvae mature into adult female or male worms (also known as blood flukes). Adult worms reside and attach to the mesenteric venules in various locations, depending on the species. For example, *S. mansoni* is more likely found in the superior mesenteric veins draining the large intestine, whereas *S. japonicum* resides more frequently in the superior mesenteric veins draining the small intestine. In contrast, *S. haematobium* frequently occurs in the venous plexus of bladder, genital and rectal venules. The adult worms live as a couple, mate by pairing and survive within the human body for long periods of time by feeding on red blood cells. The female worms produce approximately 300-1000 eggs per day, which are deposited into bloodstream and progressively move towards the vein walls and into the lumen of the intestine (*S. mansoni* and *S. japonicum*) or bladder and ureters (*S. haematobium*). These eggs are then excreted with feces or urine, respectively. When eggs are released into fresh water, miracidia hatch from them and steadily swim until they find their intermediate snail host, which mostly belongs to three genera, *Biomphalaria glabrata*, *Bulinus glabrata* and *Oncomelania glabrata*. Within the snail the miracidia undergo complicated metamorphoses involving asexual reproduction (sporocysts stage) and the production of thousands of the cercariae, which are the infectious form to definite human host [56, 59-61]. However, up to half the eggs do not enter the intestinal lumen and become trapped in the intestinal tract, the liver [56, 62] and sometimes the lung [63]. The continuous deposition of eggs is the underlying instigator of chronic inflammatory host responses and is responsible for the pathology of the disease, called Schistosomiasis or bilharzia (named after Theodor Bilharz, who first identified the parasite in Egypt in 1851).

1.3.2 Pathology of Schistosomiasis

The different forms of pathology that arise during Schistosomiasis correspond to the developmental stages of the worm within the human (section 1.3.1). For example, during penetration and migration through the skin, cercariae secrete proteolytic enzymes that are capable of digesting epidermal keratin [64, 65]; this results in temporary mild itching and a papular dermatitis [66] (Figure 1.5 A). After exposure to heavy numbers of cercariae, patients may present symptoms of pulmonary eosinophilia, also called Loeffler’s syndrome due to the
migration of schistosomulae to the lung. Symptoms include a hypersensitive response associated with elevated IgG and IgE levels and mast cell degranulation, shortness of breath, wheezing and nonproductive cough [69, 70]. Furthermore, acute Schistosomiasis may occur at the beginning of egg laying from adult female worms. The clinical symptoms of this Katayama syndrome include fever, malaise, hepatosplenomegaly development (Figure 1.5 B), eosinophilia, diarrhea, and, in some cases, edema, urticarial, lymphadenopathy, and arthralgia [56, 67, 68].

Chronic Schistosomiasis is characterized by constant local inflammatory responses to trapped schistosome eggs in different host tissues (especially liver and intestine), which form granulomas due to release of soluble egg antigen (SEA) and immune cell infiltration (Figure 1.5 C). The constant inflammation leads to symptoms that include obstruction of the urinary system (S. haematobium) or intestinal disease manifested as hepatosplenic inflammation (Figure 1.5 B) and liver fibrosis (S. mansoni, S. intercalatum, S. japonicum and S. mekongi). Moreover, renal failure, portal hypertension, diarrhea, anemia, undernutrition and bladder cancer have also associated with the infection [56, 68, 71, 72].

Figure 1.5: Aspects of pathology that arise during Schistosomiasis

(A) Cercarial dermatitis. Adapted from [73]. (B) A woman with hepatosplenomegaly from the Phillipines. (C) An example of an acute liver granuloma developing around S. mansoni egg in mouse liver tissue. Infiltrating immune cells include eosinophils, lymphocytes, and some macrophages. Strong levels of fibrotic tissue can be observed through staining histology sections with Masson's blue since the aniline component within the staining procedure stains collagen fibers blue.

1.3.3 Immune responses during Schistosomiasis

The various stages of the parasite (penetrating cercaria, schistosomulae, adult worms and eggs) are all potential sources of antigenic material. Possible antigens include secretory products, especially the histolytic secretions of the penetrating cercariae; excretory products (such as glycosylated proteins and/or lipids), especially those from adult worms and eggs and breakdown products of all stages that may occur from dying or degraded lifestages within the host [60].
As mentioned above, the *Schistosoma* species employ a wide range of strategies to evade and exploit the host immune system in order to ensure their survival. Indeed, adult worms have been shown to live up to 37 years within the humans, fully exposed to the immune system [74]. Strategies employed by the worm to evade host reactions include the ability of worms to coat themselves with host proteins, to enzymatically cleave antibodies and to replace their surface structures with membrane vesicles from the host [61, 75-77]. Moreover, the parasite also uses molecular mimicry, using immunomodulating neuropeptides, such as Proopiomelanocortin-derived peptides, to evade the immune defenses in both hosts (snail and human) [61, 78]. Besides these immune evasion tactics, the parasite also exploits the host immune system to facilitate its own development and transmission. Different studies have shown that the translocation of eggs from the portal capillaries to the gut lumen depends on a competent immune response, as it is diminished in immunosuppressed (such as human immunodeficiency virus (HIV)-infected patients) [79] or *S. mansoni* egg-tolerized mice [80]. Furthermore, adult worms use host cytokine responses for their own growth and development. For example, TNF-α seems to be a necessary signal for female worms to begin egg production [81] and host TGF-β has been shown to regulate worm growth and development, especially during embryogenesis [82, 83]. Despite these intricate immunomodulatory mechanisms, some reactions do occur against the parasite and are summarised in Figure 1.6.

![Diagram](image1.png)

Figure 1.6: Induction and development of T\textsubscript{H}1 and T\textsubscript{H}2 responses during *S. mansoni* infection

In brief, following cercariae penetration, a T\textsubscript{H}1-cell response (such as IFN-γ production) develops (acute phase). As the worms mature and eggs are deposited, a stronger T\textsubscript{H}2-cell response (such as IL-4 and IL-10 production) develops (chronic phase).
Since it is problematic to pinpoint the actual timepoint of infection, individual immune responses of humans infected with *Schistosoma* species are difficult to define. Due to the fact that parasite development and pathological outcomes are similar in man and mouse, numerous murine studies have been performed with *S. mansoni* in order to decipher cellular interactions and mechanisms. As depicted in Figure 1.6, T\textsubscript{H}1 responses are initiated during the first 5-6 weeks of infection and are characterized by high levels of proinflammatory cytokines, such as IL-1, IL-6, TNF-\(\alpha\) and especially IFN-\(\gamma\) [61]. This early T\textsubscript{H}1 response is considered to be important for the parasite since it has been shown that during cercarial penetration there is a release of the specific mediator prostaglandin, which usually inhibits the migration of Langerhans cells (DC type) and thereby delays any immune responses [84]. Furthermore, mice which are deficient for this specific prostaglandin receptor (D prostanoid receptor 1) showed normal DC migration and less IFN-\(\gamma\) production, leading to a T\textsubscript{H}2-cytokine based response to the parasite [85]. This latter phenotype is usually associated with a reduced number of adult worms [61]. More pronounced T\textsubscript{H}2 immune responses are apparent when worms start to mate and produce eggs [86]. Classical T\textsubscript{H}2 cytokines include IL-5, one of the hallmarks of helminth infections, but also other circulating cytokines such as IL-4, IL-13 and IL-10 [87-90]. This switch is also accompanied by increased number of specific immune cells (eosinophils, neutrophils, basophils and mast cells) and heightened circulation of immunoglobulins, such as IgE [61]. The strong T\textsubscript{H}2 immune response is mostly driven by trapped schistosome eggs, which secrete soluble egg antigen (SEA) within the liver and intestine, leading to granuloma formation (Figure 1.5 C). Components within SEA are such powerful T\textsubscript{H}2-cell-response-promoting adjuvants that it encourages immune cell infiltration and supports other T\textsubscript{H}2 immune responses to unrelated antigens [86, 87, 91]. Besides the T\textsubscript{H}1 and T\textsubscript{H}2 immune responses, T\textsubscript{H}17 and T\textsubscript{H}9 immune responses also play a crucial role during Schistosomiasis. It is known that innate proinflammatory responses against *S. mansoni* induce T\textsubscript{H}17 cells which control immunopathology [92]. In addition, T\textsubscript{H}9 cells promote T\textsubscript{H}2 immune responses leading to pleiotropic effects during *S. mansoni* infection, such as enlargement of the ileum, muscular hypertrophy, mastocytosis, eosinophilia, goblet cell hyperplasia, and increased mucin expression [93].
1.3.4 Granuloma formation

Granulomas that develop around trapped schistosome eggs in the intestine and liver are mainly mediated by T helper cell populations [94-96]. Indeed in the absence of CD4\(^+\) T cells or without the possibility to present antigens on MHCII molecules granulomas are absent. Interestingly, the development of hepatic and intestinal granulomas differs. Whilst the granulomas in the liver shrink and become fibrinogenic in the chronic phase of infection, intestinal granulomas do not change in size and appearance [97]. Layland \textit{et al.} further described three developmental stages of granuloma development. They observed that as granulomas became progressively older the makeup of cellular infiltrate altered from high numbers of CD4\(^+\) T cells, macrophages and eosinophils to increased levels of Foxp3\(^+\) T\(_{\text{reg}}\) cells. Moreover, these latter cells accumulated in the circumference of older granulomas, in which the eggs had been destroyed and the mass of granuloma contained fibrotic tissue [98, 99]. It was suggested that the migration of these cells into the granulomas controlled the infiltration of other immune cells and their responses, especially eosinophils. As mentioned above, older granulomas contain many collagen fibres indicating high levels of fibrotic tissue. IL-13 is the main T\(_{\text{H2}}\) cytokine driving fibrosis development and different studies have shown that \textit{Schistosoma} infected mice, in which IL-13 is absent [100] by either neutralization with anti-IL-13 antibody treatment [101] or impairment of the IL-13 pathway using IL-4 and IL-13 receptor deficient mice [102, 103], fail to develop fibrosis and thus, prolong host survival [100, 103]. In contrast, further studies have also shown that granuloma formation and fibrosis development are reduced in infected mice if the egg-specific response is converted from a T\(_{\text{H2}}\)-dominant to a T\(_{\text{H1}}\)-dominant reaction [104-107]. The fine balance of T\(_{\text{H1}}\) versus T\(_{\text{H2}}\) immune responses and the arising immunopathology within the host during Schistosomiasis highlights the complexity and necessity of regulatory mechanisms and represents an example of evolutionary evolved host-parasite interaction.

1.3.5 SEA-mediated immune responses

SEA contains a multitude of various highly glycosylated proteins and lipids [108, 109] and the release of SEA within granulomas propagates strong T\(_{\text{H2}}\) immune responses [86, 87, 91]. Further in-depth research has also been able to identify components within SEA, such as lysophosphatidylserine [110], N-glycans [111] and glycans containing the trisaccharide Lewis X [112-114] that interact with different TLRs and promote T cell polarization. For example, T2 ribonuclease (omega-1), the glycoprotein IPSE/alpha-1 (interleukin 4 inducing principle
from *Schistosoma mansoni* eggs/alpha-1) and the antioxidant peroxiredoxin all drive T\(_H2\) responses by conditioning DCs [115, 116], triggering IL-4-producing basophils [117, 118] or inducing the development of alternatively activated macrophages [119], respectively. In addition, lysophosphatidylserine, derived from *S. mansoni* egg lipid fractions, activates DCs in a TLR2-dependent manner to induce T\(_H2\) and T\(_{reg}\) development [110]. Also in vivo studies with NOD (non-obese diabetic) mice, which develop spontaneous autoimmune insulin dependent diabetes mellitus, showed that SEA induces TGF-\(\beta\) expression on CD4\(^+\) T cells and Foxp3\(^+\) T\(_{reg}\) cells [120]. Moreover, LNFPIII (lacto-N-fucopentaose III), a Lewis X containing glycan within SEA triggers TLR4 [114], whereas schistosome dsRNA activates TLR3 signalling [121] to induce polarization of DCs towards T\(_H2\) immune responses. As mentioned earlier (section 1.2.1 and 1.2.2), DCs pulsed with various TLR stimuli, such as poly-I:C or P3Cys (TLR2), LPS (TLR4) or CpG (TLR9) secrete high levels of TNF-\(\alpha\), IL-6 and IL-12 and up-regulate surface molecules associated with DC maturation and activation, such as CD80, CD86 and MHCII. Interestingly, SEA inhibits such TLR-mediated immune responses of DCs [122-127] and augments production of IL-10 [125], which is a regulator of various cytokines [128, 129]. Interestingly, stimulation of DCs with SEA alone did not lead to alteration of co-stimulatory molecule expression and cytokines responses [123, 125]. In addition to triggering TLR, recent studies have also identified components which are recognized and internalized by different C-type lectin receptors (CLR) [122, 123], such as DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) [130], MGL (macrophage galactose lectin) [131] and SIGNR1 (specific intercellular adhesion molecule-3-grabbing non-integrin homolog-related 1) [132]. The exact role of C-type lectin receptors in connection with SEA-mediated immunomodulation is still unclear. However, recently C-type lectin receptors were shown to play a crucial role in the activation of inflammasome complexes [133], such as Dectin-1 recognizes the fungus *Candida albicans* to induce NLRP3 inflammasome activation and IL-1\(\beta\) production [134, 135]. Over the last years much research has focused on the activation of the inflammasome and consequently release of IL-1\(\beta\). This exciting field of immunology and its connection to parasitic infections is described in detail in the following sections.
1.4 IL-1β and the inflammasome

The history of IL-1β and the discoveries of its immunological properties are closely associated with leukocytes, which elicit fever through the production of endogenous proteins [136]. In 1948, Beeson presented pioneering studies which demonstrated that an endotoxin-free protein from rabbit leukocytes caused fever after bolus injection into rabbits [136, 137]. Almost 30 years later, Dinarello et al. purified the human leukocytic pyrogen (LP) and showed that it could induce fever [138]. With advances in technology, the IL-1 gene was also fully cloned and it became apparent that it consists of two distinct proteins, which were termed IL-1α (also called IL-1F1) and IL-1β (also called IL-1F2) [139-141]. Research then elucidated that recombinant IL-1β, in contrast to IL-1α, could induce fever in humans [142, 143] and it was realized that this molecule was actually the endogenous pyrogen published by Beeson [137] and the LP published by Dinarello [138]. Furthermore, in 1984 after molecular cloning a third member of the IL-1 family was described and called the IL-1-inhibitor although later renamed as the IL-1 receptor antagonist (IL-1Ra or IL-1F3) [144-146]. IL-1Ra is a naturally occurring antagonist that blocks IL-1 signals by binding to the IL-1 receptor with almost the same affinity as IL-1α and IL-1β. Since the discovery of these players, IL-1 biology has rapidly developed and further IL-1 family members (IL-1F1-F11) have been discovered [147], such as IL-18 (IL-1F4) [148] and IL-33 (IL-1F11) [149]. However, IL-1β, as well as IL-18, secretion depends on a complex pathway which utilizes a cytoplasmic multiprotein complex called the inflammasome, which cleaves the inactive cytokine precursors (pro-IL-1β or pro-IL-18) into their bioactive forms [150, 151]. The discovery of the inflammasome pathway has provided the basis for deeper understanding of various autoimmune and inflammatory diseases associated with IL-1β activity. Among others, research fields include neonatal-onset multiinflammatory disease (NOMID), Muckle-Wells syndrome, familial cold autoinflammatory syndrome (FCAS), hyper IgD syndrome, familial Mediterranean fever, urate crystal arthritis (gout) [152], diabetes [153], rheumatoid arthritis [154] and bronchial asthma development [155-157] (section 1.4.4).
1.4.1 Architecture of the inflammasome

The association of IL-1β with inflammation and pathogenesis has been known for almost 50 years (section 1.4). Nevertheless, the intracellular mechanisms, which are responsible for IL-1β activation and production, have only recently been deciphered by the purification of the multiprotein complex termed the inflammasome [150]. As depicted in Figure 1.7, the inflammasome consists of different proteins: NALP, pyrin domain (PYD), caspase activation and recruitment domain (CARD), central oligomerization domain (NACHT), leucine rich repeat (LRR) domain and caspase-1 (Casp1); occasionally there is also the involvement of caspase-5 (Casp5) [150, 151, 158].

![Diagram of the inflammasome](image)

Figure 1.7: The inflammasome, a multiprotein complex

An example of an inflammasome complex is NALP1 (also called NLRP1) which consists of a central oligomerization domain (NACHT), a leucine rich repeat (LRR) domain and a caspase binding region. The latter can be called CARD (caspase recruitment domain), which is further associated with a pyrin domain (PYD). The PYCARD is more commonly referred to as ASC (apoptosis-associated speck-like protein containing a CARD) and forms the basis for the final recruitment of caspase-1 (Casp1) or sometimes caspase-5 (Casp5). Adapted from [158].

The NALPs [NACHT (NAIP (neuronal apoptosis inhibitory protein); CIITA (MHC class II transcription activators); HET-E (incompatibility locus protein from *Podospora anserina*); Tp1 (telomerase-associated protein)), LRR (domain-leucine-rich repeat) and PYD (pyrin domains)-containing protein] belong to the nucleotide oligomerization domain (NOD)-like receptor (NLR) family of PRR (section 1.2.1) and are involved in aspects of inflammation [158]. Most NLR family members consist of three functional domains: NACHT, which serves as the central oligomerization domain, a C-terminal ligand sensing leucine rich repeats (LRRs) domain and an N-terminal caspase binding region, also called CARD (caspase recruitment domain), which is further associated with a pyrin domain (PYD) [158-161]. This PYCARD, often referred to as ASC (apoptosis-associated speck-like protein containing a CARD), works as an adaptor recruiting Casp1 through PYD-PYD (with NALPs) and CARD-CARD (with Casp1) interaction [162]. Currently, five inflammasome complexes, NALP1 (also called NLRP1) [163], AIM2 [164-167], NALP3 (also called NLRP3) [168], NLRC4
Introduction

(also called IPAF) [169] and NALP6 (also called NLRP6) [170, 171] have been described. They have been identified through their constellation of inflammasome components and the response to PAMPs and DAMPs (damage associated molecular pattern molecules). An overview of five structures (NLRP3, AIM2, NLRP1/NLRP1b, NLRC4 and NLRP6) and their triggers are depicted in Figure 1.8.

![Inflammasome complexes are triggered by different stimuli](image)

Figure 1.8: Inflammasome complexes are triggered by different stimuli

The NALP3 (also called NLRP3) inflammasome is activated through various stimuli, such as crystals, adenosine triphosphate (ATP) or Nigericin. The activation depends on reactive oxygen species (ROS) production, potassium release (K⁺), lysosomal rupture and the release of Cathepsins. The AIM2 inflammasome responds to cytosolic DNA produced from viruses or cytosolic bacterial pathogens, such as *Francisella tularensis* or *Listeria monocytogenes*. The human NLRP1 inflammasome senses muramyl dipeptide (MDP) and the murine Nlrp1b inflammasome has been shown to respond to anthrax lethal toxin. The NLRC4 inflammasome detects flagellin or the type 3/4 secretion systems (T3SS/T4SS) from different bacteria, such as *Shigella flexneri*, *Yersinia pseudotuberculosis*, *Legionella pneumophila*, *Salmonella typhimurium*, *Pseudomonas aeruginosa*, *Aeromonas veronii* and *Listeria monocytogenes*. The NLRP6 inflammasome recognize microbes within the colon. Adapted from [170-172].

Besides the various stimuli and the different activation pathways of the five inflammasome complexes, they all contain the central effector molecule cysteine protease caspase-1 that, upon activation cleaves immature pro-IL-1β and pro-IL-18 into their biological active forms IL-1β and IL-18 respectively [150-152, 158-161, 172].

1.4.2 Mechanisms of inflammasome activation

The majority of studies that have been performed, in order to elucidate the different activation mechanisms of inflammasome complexes, have used NLRP3 since this inflammasome responds to a wide range of structurally unrelated stimuli. Figure 1.9 depicts mainly the different activation mechanisms of the NLRP3 inflammasome.
Figure 1.9: Mechanisms of inflammasome activation

To activate the inflammasome two signals are required. The first signal is a TLR-mediated response triggered by PAMPs, leading to activation of NF-κB and accumulation of intracellular inactive pro-IL-1β and pro-IL-18. The second signal leads to the formation of the inflammasome complex (such as NALP3). This is induced by various stimuli such as pore forming toxins like nigericin and ATP, of which the latter is recognized by the P2X7/pannexin receptor. Alternatively, stimuli are not receptor mediated but promote phagocytosis, such as amyloid-β (Ab), asbestos, alum salt, cholesterol, silica and uric acid crystals. The receptor triggered mediated activation leads to downstream activation of different molecules and signalling pathways, such as potassium efflux and reactive oxygen species (ROS) production, whereas the promotion of phagocytosis leads to lysosomal rupture and the release of cathepsin B into the cytosol. Both mechanisms activate the NALP3 inflammasome leading to the cleavage of pro-caspase-1 into bioactive caspase-1 (Casp1), which then cleaves the accumulated pro-IL-1β and pro-IL-18 into their bioactive forms (IL-1β and IL-18). These cytokines are then secreted and aid inflammatory responses. In addition, AIM2 inflammasome activation is triggered by cytoplasmic double-stranded DNA (dsDNA), leading also to Casp1-mediated cleavage of IL-1β and IL-18. Modified from InvivoGen (http://www.invivogen.com/review-inflammasome).

In general, the activation of the inflammasome can be divided into two signals. The first signal are PAMPs, which activate TLRs, leading to downstream activation of the nuclear factor-κB (NF-κB) and transcription and accumulation of precursor cytokines, such as pro-IL-1β (31 kDa) and pro-IL-18 (22 kDa). Interestingly, pro-IL-1β can also be induced by IL-1β itself [173] via triggering the IL-1 receptor complex, which leads to MyD88 recruitment and downstream NF-κB activation (see section 1.2.1 for details). The second signal recruits the inflammasome components and is mediated through a specific activator. Each of the five inflammasomes is activated through specific danger signals or pathogens, such as the bacterial cell wall component muramyl dipeptide (MDP), which activates the human NLRP1 [174] and anthrax lethal toxin that triggers murine NLRP1b inflammasome [163]. Other well-
described inflammasome triggers include gram-negative bacteria, consisting of type III or type IV secretion systems (Salmonella, Shigella, Legionella and Pseudomonas species) that activate the NLRC4 inflammasome [175-178] and cytosolic DNA from viruses or bacteria (Francisella tularensis or Listeria monocytogenes) which mobilize the AIM2 inflammasome [164-167]. Numerous pathogens, such as viruses (Sendai, influenza and adenoviral strains) [179, 180], fungi (Candida albicans and Saccharomyces cerevisiae) [134, 135] and bacteria (Staphylococcus aureus, Neisseria gonorrhoeae, Listeria monocytogenes and Salmonella typhimurium) [181-184] or danger signals, such as elevated ATP [181], ultraviolet B irradiation [185], crystalline forms of monosodium urate (MSU) [186], asbestos, silica [187-189] and amyloid-β aggregates [190] have been shown to activate the NLRP3 inflammasome. To date, there are two main processes that are known to be important for the assembling of the NLRP3 complex. Phagocytosis for example is mainly triggered by crystals and their uptake leads to lysosomal rupture and the release of cathepsin B into the cytosol resulting in NLRP3 inflammasome activation [188]. As an alternative to cathepsin production, the NLRP3 inflammasome can also be activated in a receptor mediated manner and results in the production of reactive oxygen species (ROS) and release of potassium (potassium efflux). For instance, the triggering of the P2X7 receptor through ATP leads to potassium efflux [191-193] and pannexin-1 mediated pore formation [193], which allows the entry of extracellular PAMPs (such as nigericin) leading to NLRP3 inflammasome activation [160]. Another example for receptor mediated NLRP3 inflammasome activation is the fungus Candida albicans, which was shown to trigger the Dectin-1 receptor (another CLR; section 1.3.5) [194] and induce downstream signalling by activating the spleen tyrosine kinase Syk via potassium efflux and production of ROS [135]. In addition, it was shown that the source of ROS during NLRP3 inflammasome activation is probably the mitochondria [195], suggesting a close relationship between inflammasome activation and metabolism. Recently, another inflammasome complex termed NLRP6 was discovered. The NLRP6 inflammasome seems to be a crucial regulator for inflammatory responses in the colon and allows recovery from intestinal epithelial damage, but the specific signal that triggers the activation is currently unclear [170, 171].

A result of inflammasome assembling is the activation of the cysteine protease caspase-1 (Casp1) that autocatalytically processes its precursor form (45 kDa) into the active form, which is a heterodimer consisting of 20 kDa and 10 kDa subunits [196]. Active Casp1 then cleaves the precursors of IL-1β (31 kDa) and IL-18 (22 kDa) into bioactive IL-1β (17.5 kDa) and IL-18 (17 kDa) [152, 160]. The mature cytokines are then secreted out of the cell by
different mechanisms, such as exocytosis of secretory lysosomes [197, 198], shedding of plasma membrane microvesicles and/or release via transporters or multivesicular bodies containing exosomes [199].

1.4.3 Biological effects of IL-1β

IL-1β can be secreted by a multitude of immune cells, such as DCs, monocytes, macrophages, mast cells, neutrophils, B and T cells, endothelial cells, epithelial cells, and even dying cells. It has been described as an important cytokine for the initiation of inflammation and TH1/TH2 immune responses and represents a crucial link in translating innate immune responses into the appropriate adaptive immune response [200]. In addition, it is also known that IL-1β can induce gene expression and synthesis of different enzymes, which are essential for metabolism pathways. These encompass cyclooxygenase type 2, a key enzyme in arachidonic acid metabolism; type 2 phospholipase A, an enzyme responsible for fatty acid metabolism; inducible nitric oxide synthase, an enzyme which is necessary for prostaglandin-E2 platelet activating factor and nitric oxide production. The activation and synthesis of different genes and enzymes can lead to the induction of fever, lowered pain threshold, vasodilation, and hypotension [142, 143, 152]. The ability of IL-1β to increase the expression of adhesion molecules on endothelial cells and to induce different chemokines promotes the infiltration of immune cells into tissues and directs the developing inflammation [152]. Interestingly, it was also shown that IL-1β is an important angiogenesis factor and therefore plays an important role in tumor metastasis and blood vessel formation [201].

Besides its proinflammatory effects, IL-1β can also induce adaptive immune cells and initiate their responses. In correlation, it has been shown that IL-1β contributes to the TH2 polarized immune responses during murine asthma development by promoting the infiltration of eosinophils and inflammation within the lung [202, 203]. Finally, the role of IL-1β in B cell initiation and antibody production has also been reported [204]. Moreover, different studies observed that IL-1β itself can induce IL-17A production and TH17 cell differentiation [205-207], a distinct T helper cell type, which induces high amounts of IL-17 and plays a crucial role in different autoimmune diseases, such as multiple sclerosis, juvenile diabetes, rheumatoid arthritis, and Crohn's disease [52, 53] (section 1.2.3).
1.4.4 IL-1β-mediated autoinflammatory diseases

Almost all autoimmune diseases are caused by overreaction or impaired regulation of the immune system. During an infection or tissue injury controlled inflammatory responses are crucial for protection and maintenance of cell and tissue functionality but become destructive if they persist. The critical role of IL-1β during inflammatory responses was highlighted by the importance of the inflammasome during the development of autoinflammatory immune diseases. In general, autoinflammatory diseases are usually induced by dysfunctional activation of Casp1 which corresponds with increased secretion of IL-1β [152]. Elevated levels of IL-1β and autoinflammatory diseases have also been associated with NLRP3 mutations [208, 209], or impaired signalling of the inflammasome [192, 198]. Indeed, investigations into the understanding of inflammasome activation pathways provided the basis for the treatment of several autoinflammatory diseases. Anakinra (Kineret®), an IL-1 receptor antagonist (IL-1Ra), is now the standard therapy for patients with systemic-onset juvenile idiopathic arthritis [210] and refractory adult Still’s disease [211], as well as a reagent for the treatment of gout [212], type 2 diabetes [213], rheumatoid arthritis [152] and diverse fever syndromes [200]. Recently, two new reagents called rilonacept (IL-1 trap) and canakinumab (specific anti-IL-1β monoclonal antibody) have been developed and approved for the treatment of diverse autoinflammatory diseases, such as rheumatoid arthritis, gout and type 2 diabetes [200].

1.4.5 IL-1β influences allergic asthma development

Besides the autoinflammatory diseases mentioned in section 1.4.4., several studies have demonstrated the pivotal role of IL-1β during bronchial asthma development since it promotes the infiltration of eosinophils and inflammation within the lung [155-157, 202, 203]. In addition, a recent study also implied that NLRP3 inflammasome activation influences allergic airway inflammation [214]. According to the WHO, over 235 million people currently suffer from allergic asthma disease [215]. Asthmatic development is characterized by TH2 polarized immune responses, such as IL-4, IL-5 and IL-13, allergen-specific immunoglobulin production and eosinophilic inflammation, as well as goblet cell infiltration and increased mucus production within the lung leading to airway hyperresponsiveness (AHR) [216, 217]. The long-term unresolved airway inflammation leads to structural changes, called airway remodelling that is characterized by constant epithelial alterations, goblet cell and submucosal gland hyperplasia, smooth muscle cell hyperplasia and hypertrophy,
subepithelial fibrosis, microvascular proliferation, cartilage changes, airway wall edema, and inflammatory cell infiltration [218, 219]. However, the mechanisms of asthma development and especially the role of the NLRP3 inflammasome and IL-1β remain unclear and required further investigation. Therefore, to characterize asthma development, murine allergic airway inflammation models are widely used to characterize allergic asthma development. For example, ovalbumin (OVA) is used as a common allergen since it elicits allergic airway inflammation with features similar to those found in asthmatic humans [220].
1.5 Aims of the study

The helminth *S. mansoni* is one of the major pathogens of the disease Schistosomiasis, which, next to malaria, is the second most socioeconomically devastating parasitic disease. As mentioned above a main characteristic of Schistosomiasis is the change in adaptive immune responses since the initial T_H1 polarised response is replaced by T_H2 reactions once fecund females begin to lay eggs. Some trapped schistosoma eggs, within the liver and intestine tissues, induce the development of granulomas, the major cause of morbidity. Viable or degrading eggs release SEA and components thereof promote antigen-specific T_H2 cells. In contrast, the presence of SEA in co-culture with DCs elicits little cellular activity. Indeed, SEA actually suppresses innate responses of TLR-triggered cells although the responsible mechanisms behind this immunomodulating capacity remain unclear. In order to obtain a better understanding into the complex mechanisms of *S. mansoni* infection and SEA-mediated responses, a murine infection model of *S. mansoni* was used to analyse parasitological and immunopathological parameters. Furthermore, an *in vitro* assay was established with DCs to decipher whether SEA could mediate or induce inflammasome activation and the mechanisms thereof. The aims of the present study are as followed:

1. Investigating the innate immunomodulatory mechanisms of SEA *in vitro*.
 a. Does SEA suppress immune responses from TLR-primed DCs?
 b. What components are required for SEA-mediated responses on DCs?
 c. Is the inflammasome complex involved in SEA-mediated immune responses?

2. Investigation of SEA-mediated inflammasome complex activation.
 a. Which inflammasome complex is activated after SEA stimulation?
 b. What are the signalling mechanisms of SEA-mediated inflammasome activation?

3. Deciphering inflammasome activation mechanisms during the T_H2 phase of an ongoing *S. mansoni* infection.
 a. What is the role of the inflammasome during *S. mansoni* infection?
 b. Are immune responses influenced by inflammasome activation during *S. mansoni* infection?

4. Investigating the role of inflammasome activation during a T_H2 polarized murine allergic airway inflammation model.
 a. Is there a role for inflammasome activation during allergic airway inflammation?
 b. Is it possible to treat allergic airway inflammation with anti-autoinflammatory reagents, such as Anakinra?
2 Material and methods

2.1 Materials

2.1.1 Equipment

Agarose gel documentation system
Agarose gel electrophoresis system (Sub-Cell® GT)
Automatic ice machine (Scotsman MF36)
Automatic pipettes (2-1000µl)
ÄKTAprime™ plus
Balance (440-33N)
Balance (XB120A)
BD FACSCalibur™ flow cytometer
Biological safety cabinet (Hera safe)
Centrifuge (Biofuge fresco)
Centrifuge (Eppendorf 5424)
Centrifuge (Megafuge 3.0R)
Centrifuge (Shandon Cytospin 3)
Cooling plate (COP 30)
CyAn ADP Lx P6
CyAn ADP Lx P8
Disperser (T10 basic Ultra-Turrax®)
ELISA microplate reader (Sunrise™)
EZ Cytofunnels®
Freezer (-20°C)
Freezer (-80°C)
Freezing container (Nalgene® Mr. Frosty)
Fridge
Glassware’s
Homogeniser (5ml)
Incubator (BBD 6220)
LumiNunc™ 96-well plates (white)
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microplate luminometer (Orion II)</td>
<td>Berthold Technologies</td>
</tr>
<tr>
<td>Microscope (Axioscop)</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Microscope (Axiovert)</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Microwave (1100W)</td>
<td>Panasonic</td>
</tr>
<tr>
<td>Milli-Q Integral System</td>
<td>Millipore™</td>
</tr>
<tr>
<td>Mini-PROTEAN electrophoresis system</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Mini-Pump variable flow</td>
<td>Neolab®</td>
</tr>
<tr>
<td>MoFlo™ XDP</td>
<td>Beckman Coulter</td>
</tr>
<tr>
<td>Multichannel pipettes (Acura® 855; 5-350µl)</td>
<td>Socorex</td>
</tr>
<tr>
<td>Multipette® plus</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Orbital shaker (3005)</td>
<td>GFL</td>
</tr>
<tr>
<td>OVA-challenge chamber</td>
<td>MRI</td>
</tr>
<tr>
<td>Paraffin embedding system (TB 588)</td>
<td>Medite</td>
</tr>
<tr>
<td>Paraffin oven</td>
<td>Memmert</td>
</tr>
<tr>
<td>Pari Boy® SX nebulizer</td>
<td>Pari</td>
</tr>
<tr>
<td>pH-meter (MultiCal®)</td>
<td>WTW</td>
</tr>
<tr>
<td>Pipetboy (acu)</td>
<td>IBS</td>
</tr>
<tr>
<td>Power supply (Power Pac 3000)</td>
<td>BioRad</td>
</tr>
<tr>
<td>Power supply (EV231)</td>
<td>Peqlab</td>
</tr>
<tr>
<td>Radiographic cassettes</td>
<td>Goos-Suprema</td>
</tr>
<tr>
<td>Rotary microtome automatic (RM 2245)</td>
<td>Leica</td>
</tr>
<tr>
<td>Rotating mixer (RM 5)</td>
<td>Assistant</td>
</tr>
<tr>
<td>Semi-dry electroblot system</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Shandon cytoclips</td>
<td>Thermo Scientific®</td>
</tr>
<tr>
<td>Shandon Excelsior ES tissue processor</td>
<td>Thermo Scientific®</td>
</tr>
<tr>
<td>Stericup® filter units (500ml)</td>
<td>Millipore™</td>
</tr>
<tr>
<td>Superdex™ 75 column</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Thermocycler (T3000)</td>
<td>Biometra</td>
</tr>
<tr>
<td>Thermomagnetic stirrer (IKAMAG® REO)</td>
<td>IKA</td>
</tr>
<tr>
<td>Thermomixer (compact)</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Tissue cool plate (COP 20)</td>
<td>Medite</td>
</tr>
<tr>
<td>Tissue flotation bath (TFB 35)</td>
<td>Medite</td>
</tr>
<tr>
<td>Ultracentrifuge (Optima™ L-100 XP)</td>
<td>Beckman Coulter</td>
</tr>
<tr>
<td>Vertical dual gel electrophoresis (Perfect Blue; Twin M)</td>
<td>Peqlab</td>
</tr>
</tbody>
</table>
Material and methods

Vortex mixer (Reax top) Heidolph
Water bath Memmert
Western blot processor (Curix 60) AGFA
Wet electroblotter system (PerfectBlue) Peqlab

2.1.2 Additional software

FlowJo (Flow cytometry analysis software) TreeStar
GraphPad Prism 5 (Biostatistics, curve fitting and scientific graphing programme) GraphPad Software
Magellan™ (Data analysis software for microplate reader) Tecan
Simplicity 2.1 (Data analysis software for microplate luminometer) Berthold Technologies

2.1.3 Consumables

Blood agar plates BD
Cell scraper TPP®
Cell strainer (40-100µm) BD
Centripreps® Amicon
Combitips plus® (0.2-2.5ml) Eppendorf
Cover slips Roth®
Cryo vials Alpha Laboratories
Culture plates (6-, 12-, 24-, 96-well) BD
Disposable bags Roth®
ELISA plates (96 well) Nunc
Eppendorf tubes (0.5-2ml) Eppendorf
FACS tubes (Microtubes, 1.2ml) Alpha Laboratories
Fast-Read 102® Biosigma
Glass slide Langenbrinck
Gloves Meditrade®
Hypodermic needles (Sterican®) B Braun
MacConkey agar plates BD
Medical x-ray films (100NIF, 18x24) FUJI
Parafilm M® Pechiney
Petri dishes Greiner
Material and methods

Pipet tips (10-1000µl)
Protran® nitrocellulose transfer membrane (pore size 0.45µm)
Reaction tubes
Scalpels
Shandon filter cards
Sterile filters (0.22µm, 0.4µm)
Serological pipettes (5-50ml)
Sub-Q syringes (1ml)
Syringes (1-25ml)
Syringe filter (0.2µm, 0.45µm)
Tissue culture flask (50-500ml)
Tubes (15ml, 50ml)
Whatman™ papers

2.1.4 Reagents

Acetic acid
Acetone
Acid fuchsin
Acrylic/Bis-Acrylic-solution 30% (v/v) 29:1
Adenosine-5’-triphosphate (ATP) disodium salt
Agarose
Aluminium hydroxide (Al(OH)₃)
Ammonium chloride (NH₄Cl)
Ammonium persulphate (APS)
Anakinra (Kineret®)
Aniline blue
Bovine serum albumin (BSA)
Bromophenol blue
Chloroform
Collagenase (from Clostridium histolyticum)
CpG1668 (Cytosine phosphate guanine)
Deoxynucleoside triphosphate (dNTPs)
Deoxyribonuclease I from bovine pancreas (DNAse)
Material and methods

- Di-sodium carbonate (Na$_2$CO$_3$) - Sigma®
- DirectPCR-tail lysis reagent - Peqlab
- Dithiothreitol (DTT) - Roth®
- Entellan® - Merck
- Eosin 1% (v/v) - Morphisto
- Ethanol 70%-99.8% (v/v) - MRI Pharmacy
- Ethidium bromide - Roth®
- Ethylenediaminetetraacetic acid (EDTA) - Roth®
- Ethylene glycol tetraacetic acid (EGTA) - Sigma®
- Forene® - Abbott
- Formaldehyde solution 37% (v/v) - Sigma®, Merck
- Gentamicin (10mg/ml) - PAA
- Glycerine - Roth®, Sigma®
- β-Glycerophosphate - Sigma®
- Glycine - Sigma®
- Hydrogen chloride (HCl) - Roth®
- 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) - Sigma®
- IGEPAL (Nonionic detergent) - Sigma®
- Isopropanol - MRI Pharmacy
- LPS 0127:B8 (Lipopolysaccharide) - Sigma®
- Mayer’s haematoxylin - Morphisto
- Methanol - Roth®
- β-Mercaptoethanol - Roth®, Sigma®
- Narcoren® - Merial
- OVA (Albumin, from chicken egg white) grade V and VI - Sigma®
- Paraformaldehyde (PFA) - Sigma®
- Percoll™ - GE Healthcare
- Periodic acid - Morphisto
- Phenol - Roth®
- Phenylmethanesulfonyl fluoride (PMSF) - Sigma®
- Phosphate buffered saline (PBS) - MRI
- Phosphomolybdic acid - Morphisto
- Potassium hydroxide (KOH) - Merck
- Powdered PBS (Phosphate buffered saline) - Biochrom
Material and methods

Powdered milk Roth®
Protease inhibitor cocktail tablets (complete) Roche
Proteinase K (20mg/ml) Peqlab
P₃Cys (Palmitoyl-cysteine ((RS)-2,3-di(palmitoyloxy)-propyl) Sigma®
RNAlater® Ambion®
Roti®-Histofix 4% (v/v) Roth®
Roti®-Safe GelStain Roth®
Schiff reagent Morphisto
Sodium chloride (NaCl) Roth®, Merck
Sodium dodecyl sulfate (SDS) Roth®
Sodium hydrogen carbonate (NaHCO₃) Merck
Sodium orthovanadate (Na₃VO₄) Sigma®
Sucrose Roth®
Sulphuric acid (H₂SO₄) Merck
3,3',5,5'-Tetramethylbenzidine (TMB) substrate BD
Tetramethylethylenediamine (TEMED) Bio-Rad, Sigma®
Trichloroacetic acid (TCA) Sigma®
Tris(hydroxymethyl)aminomethane (Tris) Merck, Roth®
Trisodium citrate dihydrate Roth®
Triton® X-100 Bio-Rad
Trypan blue solution 0.4% (v/v) Sigma®
Tween® 20 Sigma®
Vancomycin hydrochloride (VANCO-cell® 500mg) Cellpharm
Weigert’s haematoxylin Morphisto
Western blot developer reagent (GV60) Adefo
Western blot fixer reagent (GV60) Adefo
Xylene Engelbrecht

2.1.5 Medium supplements

DMEM High Glucose (4.5g/l; with L-Glutamine) PAA
Dimethyl sulfoxide (DMSO) Sigma®
Dulbecco’s PBS (Endotoxin-free) PAA
Fetal calf serum (FCS) PAA
GM-CSF (Granulocyte-macrophage colony-stimulating factor) PeproTech
HEPES (cell culture) PAA
β-Mercaptoethanol for cell culture Gibco®
Non-essential amino acids (100x) PAA
OPTI-Mem® Gibco®
Penicillin/Streptomycin (100x) PAA
RPMI 1640 (with L-Glutamine) PAA
Sodium pyruvate solution (100mM) PAA

2.1.6 Chemical inhibitors, blocking and uncoupling agents

(2R,4R)-4-Aminopyrrolidine-2,4-dicarboxylic acid (APDC) Alexis®
Carbonyl cyanide p-(tri-fluromethoxy)phenyl-hydrazone (FCCP) Sigma®
Cytochalasin D (CytD) Sigma®
2,4-Dinitrophenole (DNP) Sigma®
Glibenclamide Alexis®
N-Acetyl-L-cysteine (Nac) Sigma®
Potassium chloride (KCl) Roth®
R406 (Syk kinase inhibitor) Rigel

2.1.7 Kit systems

BD OptEIA™ (TMB substrate) BD
CellTiter-Glo® (Luminescent cell viability assay) Promega
CytoTox 96® (Non-radioactive cytotoxicity assay) Promega
DC protein assay Bio-Rad
Diff-Quik staining set Medion Diagnostics
EZ-Run™ protein gel solution (10-15%) Fisher BioReagents®
Foxp3 staining buffer set eBioscience
Glyko® (Enzymatic deglycosylation kit) ProZyme®
GoTaq® DNA polymerase Promega
(including 5x Green GoTaq® reaction buffer)
Mouse ELISA Kits (Duo Set®, IL-5, IL-10) R&D
Mouse ELISA Kits (Ready-Set-Go)
(TNF-α, IFN-γ, IL-1β, IL-5, IL-6, IL-10, IL-13, IL-17A) eBioscience
Western Lightning®-ECL (Chemoluminescence substrate) Perkin Elmer
2.1.8 Size standards

Gene Ruler™ 1kb DNA ladder Fermentas
Protein marker V (peqGold) Peqlab

2.1.9 Antibodies

Table 2.1 depicts all antibodies which were used for the data presented in this study. ELISA antibodies from the eBioscience and R&D ELISA-Kits are not included (section 2.1.7).

<table>
<thead>
<tr>
<th>Name</th>
<th>Antigen</th>
<th>Conjugate</th>
<th>Species</th>
<th>Dilution</th>
<th>Producer</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-mouse CD3e (Clone 17A2)</td>
<td>CD3</td>
<td>-</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>in vitro stimuli</td>
</tr>
<tr>
<td>α-mouse CD4-APC (Clone GK1.5)</td>
<td>CD4</td>
<td>APC</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse CD4-FITC (Clone GK1.5)</td>
<td>CD4</td>
<td>FITC</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse CD4-PE (Clone GK1.5)</td>
<td>CD4</td>
<td>FITC</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse CD11b-PE (Clone M1/70)</td>
<td>CD11b</td>
<td>PE</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse CD11c-FITC (Clone N418)</td>
<td>CD11c</td>
<td>FITC</td>
<td>Armenian Hamster</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse CD11c-PE (Clone N418)</td>
<td>CD11c</td>
<td>PE</td>
<td>Armenian Hamster</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse CD25-APC (Clone PC61.5)</td>
<td>CD25</td>
<td>APC</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse CD25-PE (Clone PC61.5)</td>
<td>CD25</td>
<td>PE</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse CD16/32 Fc receptor block (Clone 93)</td>
<td>CD16/32</td>
<td>-</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse CD28 (Clone 37.51)</td>
<td>CD28</td>
<td>-</td>
<td>Golden Syrian Hamster</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>in vitro stimuli</td>
</tr>
<tr>
<td>α-mouse CD83-FITC (Clone Michel-17)</td>
<td>CD83</td>
<td>FITC</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse CD86-APC (Clone GL1)</td>
<td>CD86</td>
<td>APC</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse F4/80-APC (Clone BM8)</td>
<td>F4/80</td>
<td>APC</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse F4/80-FITC (Clone PC61.5)</td>
<td>F4/80</td>
<td>FITC</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse/rat Foxp3-FITC (Clone FJK-16s)</td>
<td>Foxp3</td>
<td>FITC</td>
<td>Rat</td>
<td>1:1000</td>
<td>eBioscience</td>
<td>FACS</td>
</tr>
<tr>
<td>α-mouse IgE-Biotin (Clone RME-1)</td>
<td>IgE</td>
<td>Biotin</td>
<td>Rat</td>
<td>1:400</td>
<td>Biozol</td>
<td>ELISA</td>
</tr>
</tbody>
</table>
Material and methods

<table>
<thead>
<tr>
<th>Antibody/mAb Name</th>
<th>Formal Description</th>
<th>Source/Manufacturer</th>
<th>Dilution</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-mouse IgG1-Biotin (Clone RMG1-1)</td>
<td>IgG1 Biotin Rat</td>
<td>1:400</td>
<td>Biozol</td>
<td>ELISA</td>
</tr>
<tr>
<td>Mouse α-ovalbumin IgE (Clone 3G2E1D9)</td>
<td>OVA - Mouse</td>
<td>1:1000</td>
<td>Biozol</td>
<td>ELISA</td>
</tr>
<tr>
<td>Mouse α-ovalbumin IgG1 (Clone 2C6)</td>
<td>OVA - Mouse</td>
<td>1:1000</td>
<td>Biozol</td>
<td>ELISA</td>
</tr>
<tr>
<td>Goat-α-rabbit-HRP (#7074)</td>
<td>Rabbit IgG HRP Goat</td>
<td>1:1000</td>
<td>Cell signaling</td>
<td>WB</td>
</tr>
<tr>
<td>Poly-rabbit-αCasp1 p10 (sc-514)</td>
<td>Casp1 (p10) - Rabbit</td>
<td>1:200</td>
<td>Santa Cruz®</td>
<td>WB</td>
</tr>
<tr>
<td>Poly-rabbit-αCasp1 p20</td>
<td>Casp1 (p20) - Rabbit</td>
<td>1:200</td>
<td>Gift from O. Groß</td>
<td>WB</td>
</tr>
<tr>
<td>Poly-rabbit-αIL-1β (sc-7884)</td>
<td>IL-1β - Rabbit</td>
<td>1:200</td>
<td>Santa Cruz®</td>
<td>WB</td>
</tr>
<tr>
<td>Poly-rabbit-α-β-Actin (#4970)</td>
<td>β-Actin - Rabbit</td>
<td>1:1000</td>
<td>Cell signaling</td>
<td>WB</td>
</tr>
<tr>
<td>Rat-α-mouse Dectin-2 (Clone D2.11E4)</td>
<td>Dectin-2 - Rat</td>
<td>-</td>
<td>AbD Serotec</td>
<td>in vitro blocking</td>
</tr>
<tr>
<td>Rat IgG2a (Isotype control)</td>
<td>Negative control - Rat</td>
<td>-</td>
<td>AbD Serotec</td>
<td>in vitro blocking</td>
</tr>
</tbody>
</table>

Table 2.1: Antibodies used for ELISA, FACS, Western blot (WB) analysis and in vitro stimulation and blocking experiments

2.1.10 Buffers and solutions

All buffers and solutions were prepared with Millipore Q distilled water.

2.1.10.1 Buffers for genotyping PCR

Polymerase buffer

- 400µl 5x Green GoTaq® reaction buffer (including loading buffer)
- 40µl 10mM dNTPs
- 40µl 1% BSA (w/v)
- 1260µl H2O

TAE buffer

- 40mM Tris-Acetic acid (pH8.3)
- 1mM EDTA

Tail-digestion solution

- 250µl DirectPCR-tail lysis reagent
- 3µl Proteinase K (20mg/ml)
Material and methods

2.1.10.2 Buffers and solutions for SDS-polyacrylamide-gel electrophoresis

5x Sample buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>250mM Tris-HCl</td>
<td>Tris-HCl (pH 6.8)</td>
<td></td>
</tr>
<tr>
<td>10% (w/v) SDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% (v/v) Glycerine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500mM DTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1% (w/v) Bromophenol blue</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laemmli buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9g/l Tris-HCl</td>
<td>Tris-HCl (pH 8.3)</td>
<td></td>
</tr>
<tr>
<td>14.4g/l Glycine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1g/l SDS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SDS-separating gel 10%

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3ml Acrylic/Bis-Acrylic-solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5ml 1.5M Tris-HCl (pH 8.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100µl 10% SDS (w/v)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4ml H₂O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50µl 10% APS (w/v)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5µl TEMED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SDS-separating gel 15%

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ml Acrylic/Bis-Acrylic-solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5ml 1.5M Tris-HCl (pH 8.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100µl 10% SDS (w/v)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3ml H₂O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50µl 10% APS (w/v)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5µl TEMED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SDS-stacking gel

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.66ml Acrylic/Bis-Acrylic-solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3ml 2M Tris-HCl (pH 6.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200µl 10% SDS (w/v)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9ml H₂O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25µl 10% APS (w/v)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5µl TEMED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Material and methods

SDS-ready to use gel (10-15%)
- 10ml EZ-Run™ protein gel solution
- 60µl 10% APS (w/v)
- 6µl TEMED

2.1.10.3 Buffers and solutions for Western blot

10xTrisGlycine buffer
- 0.25M Tris
- 1.92M Glycine

TBST
- 20ml 1M Tris
- 30ml 5M NaCl
- 1ml Tween® 20
- 949ml H₂O

Transfer buffer
- 200ml Methanol
- 100ml 10xTrisGlycine buffer
- 700ml H₂O

Blocking buffer
- 25g Powdered milk
- 25ml 1M Tris (pH 7.5)
- 15ml 5M NaCl
- 5ml 10% Triton® X-100 (v/v)
- 455ml H₂O

Stripping buffer
- 100mM Glycin
- 10mM β-Mercaptoethanol
- pH 2.75

2.1.10.4 Buffers and solutions for ELISA

Reagent buffer
- 1x PBS (pH 7.2-7.4)
- 1% (w/v) BSA

Washing buffer
- 1x PBS (pH 7.2-7.4)
- 0.05% (v/v) Tween® 20
Material and methods

<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopping solution</td>
<td>2M H₂SO₄</td>
<td></td>
</tr>
<tr>
<td>OVA-coating buffer</td>
<td>8.4g/l NaHCO₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.56g/l Na₂CO₃</td>
<td></td>
</tr>
<tr>
<td>OVA-washing buffer</td>
<td>50mM Tris</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5% (v/v) Tween® 20</td>
<td>pH 7.4</td>
</tr>
<tr>
<td>OVA-blocking buffer</td>
<td>50mM Tris</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3% (w/v) BSA</td>
<td></td>
</tr>
</tbody>
</table>

2.1.10.5 Buffers and solutions for FACS

<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACS buffer</td>
<td>1x PBS (pH 7.2-7.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2% (v/v) FCS</td>
<td></td>
</tr>
<tr>
<td>Fc block solution</td>
<td>1x FACS buffer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1% (v/v) α-mouse CD16/32</td>
<td>(Fc receptor block)</td>
</tr>
</tbody>
</table>

2.1.10.6 Buffers for cell lysis and bronchoalveolar lavage preparation

<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysis buffer</td>
<td>50mM HEPES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150mM NaCl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1mM DTT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1mM EDTA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1% (v/v) IGEPAL (Nonionic detergent)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10% (v/v) Glycerine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20mM β-Glycerophosphate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1mM Na₃VO₄</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4mM PMSF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 tablet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protease inhibitor cocktail tablets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1mM EGTA</td>
<td></td>
</tr>
</tbody>
</table>
Material and methods

BAL (Bronchoalveloar lavage) buffer
- 50ml Dulbecco’s PBS (1x)
- 1 tablet Protease inhibitor cocktail tablets

2.1.10.7 Solutions used for worm perfusion

<table>
<thead>
<tr>
<th>Solution</th>
<th>Concentration</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worm rinsing solution</td>
<td>7.5g/l</td>
<td>Trisodium citrate dehydrate</td>
</tr>
<tr>
<td></td>
<td>85g/l</td>
<td>NaCl</td>
</tr>
<tr>
<td>Worm perfusion solution</td>
<td>1x</td>
<td>DMEM High Glucose</td>
</tr>
<tr>
<td></td>
<td>5% (v/v)</td>
<td>FCS</td>
</tr>
<tr>
<td></td>
<td>2% (v/v)</td>
<td>HEPES (cell culture)</td>
</tr>
</tbody>
</table>

2.1.10.8 Buffers and solutions for Egg preparation

<table>
<thead>
<tr>
<th>Solution</th>
<th>Concentration</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin solution</td>
<td>500mg</td>
<td>Vancomycin hydrochloride</td>
</tr>
<tr>
<td></td>
<td>10ml</td>
<td>0.9% NaCl (w/v)</td>
</tr>
<tr>
<td>Collagenase solution</td>
<td>500mg</td>
<td>Collagenase</td>
</tr>
<tr>
<td></td>
<td>5ml</td>
<td>Dulbecco’s PBS (1x)</td>
</tr>
<tr>
<td>DNase solution</td>
<td>1g</td>
<td>DNase I</td>
</tr>
<tr>
<td></td>
<td>146ml</td>
<td>Dulbecco’s PBS (1x)</td>
</tr>
<tr>
<td>Egg-PBS solution</td>
<td>1x</td>
<td>Dulbecco’s PBS (1x)</td>
</tr>
<tr>
<td></td>
<td>0.1% (v/v)</td>
<td>Vancomycin solution</td>
</tr>
<tr>
<td></td>
<td>0.5% (v/v)</td>
<td>Gentamicin</td>
</tr>
<tr>
<td>Liver digestion solution</td>
<td>25ml</td>
<td>Egg-PBS solution</td>
</tr>
<tr>
<td></td>
<td>1ml</td>
<td>Collagenase solution</td>
</tr>
<tr>
<td></td>
<td>3ml</td>
<td>DNase solution</td>
</tr>
<tr>
<td></td>
<td>500µl</td>
<td>Penicillin/Streptomycin</td>
</tr>
<tr>
<td>Percoll solution</td>
<td>8ml</td>
<td>Percoll™</td>
</tr>
<tr>
<td></td>
<td>32ml</td>
<td>0.25M Sucrose</td>
</tr>
</tbody>
</table>
2.1.11 Cell culture mediums and buffers

Complete medium

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPMI 1640</td>
<td>1x</td>
</tr>
<tr>
<td>FCS</td>
<td>10% (v/v)</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>1% (v/v)</td>
</tr>
<tr>
<td>Non-essential amino acids</td>
<td>1% (v/v)</td>
</tr>
<tr>
<td>Sodium pyruvate solution</td>
<td>1% (v/v)</td>
</tr>
<tr>
<td>β-Mercaptoethanol for cell culture</td>
<td>0.1% (v/v)</td>
</tr>
</tbody>
</table>

BMDC medium

<table>
<thead>
<tr>
<th>Composition</th>
<th>Volume</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete medium</td>
<td>50ml</td>
<td>RPMI 1640</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>10µg</td>
<td></td>
</tr>
</tbody>
</table>

Freezing medium

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPMI 1640</td>
<td>1x</td>
</tr>
<tr>
<td>FCS</td>
<td>40% (v/v)</td>
</tr>
<tr>
<td>DMSO</td>
<td>10% (v/v)</td>
</tr>
</tbody>
</table>

ACT buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>17mM</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>160mM</td>
</tr>
<tr>
<td>pH</td>
<td>7.2</td>
</tr>
</tbody>
</table>

2.1.12 Primers for genotyping PCRs

All genotyping primers were solved with Millipore Q distilled water to a concentration of 100pmol/µl.

ASC genotyping primers (Metabion)

- JT 4295: 5'-CTAGTTTGCTGGGAAAGAAC-3' (mutant)
- JT 4296: 5'-CTAAGCACAGTCATTGTGAGCTCC-3' (wt common)
- JT 4297: 5'-AAGACAATAGCAGGCATGG-3' (wt)

NLRP3 genotyping primers (Metabion)

- JT 6030 Ay: 5'-AAGTCGTGCTGCTTCATGT-3' (mutant)
- JT 6031 Ay: 5'-TCAAGCTAAGAGAACTTTCTG-3' (wt common)
- JT 6032 Ay: 5'-ACACTCGTCATCTTCAGCA-3' (wt)
Material and methods

Dectin-2 genotyping primers (Metabion)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2A</td>
<td>5’-CATTATACGAAGTTATCTCGAGTCGC-3’</td>
<td>mutant</td>
</tr>
<tr>
<td>D2B</td>
<td>5’-AGGACAAGCAGCTAACCATTACGC-3’</td>
<td>wt common</td>
</tr>
<tr>
<td>D2C</td>
<td>5’-AGATCCTCATCACAGTGATTTCC-3’</td>
<td>wt</td>
</tr>
</tbody>
</table>

IL-1R genotyping primers (Sigma®)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT 7088 Ay</td>
<td>5’-ATTCTCCATCATCTCTGCTGGTA-3’</td>
<td>wt forward</td>
</tr>
<tr>
<td>JT 7089 Ay</td>
<td>5’-ATCTCAGTTGCAAGTGTGTTCC-3’</td>
<td>wt reverse</td>
</tr>
<tr>
<td>JT 7090 Ay</td>
<td>5’-TGAATGAAACTGCAGAGCAGGCA-3’</td>
<td>mutant forward</td>
</tr>
<tr>
<td>JT 7091 Ay</td>
<td>5’-TCAGCCATTGGCGCCAGAAGCTC-3’</td>
<td>mutant reverse</td>
</tr>
</tbody>
</table>

2.1.13 Mice

C57BL/6 and BALB/c wildtype mice were obtained from Harlan®. NLRP3-, IL-1R-deficient mice on C57BL/6 and BALB/c background, as well as the ASC-deficient mice on BALB/c background were obtained from Prof. Juerg Tschopp (University of Lausanne) and bred under specific pathogen-free (spf) conditions in the animal house of the Institute of Medical Microbiology, Immunology and Hygiene (MIH), TU Munich. Murine Casp1- and P2X7-deficient bone-marrow cells (C57BL/6) were a further kind gift from Prof. Juerg Tschopp. ASC-, CD36- and DAP12-deficient mice on C57BL/6 background were obtained from and bred in the MIH under spf conditions. Dectin-1- and Dectin-2-deficient mice on C57BL/6 were obtained from Prof. Gordon Brown (University of Aberdeen) and Prof. Yoichiro Iwakura (University of Tokyo) respectively and bred in the MIH under spf conditions. FcRγ-, CD206- and Card9-deficient mice on C57BL/6 background were a kind gift from Prof. Falk Nimmerjahn (University of Erlangen-Nuernberg), Sigrid E. M. Heinsbroek (University of Oxford) and Prof. Jürgen Ruland (University Munich), respectively. All mouse strains were backcrossed at least nine generations onto either the C57BL/6 or BALB/c strain. Experimental mice were sex- and age-matched and the experiments were performed in accordance with local government regulations (license number for animal testing 2112531 147/08). Finally, NMRI mice were also obtained from Harlan® as mammalian host for *Schistosoma mansoni* cycle and to obtain infected livers for the preparation of eggs or SEA.
2.2 Molecular biological methods

2.2.1 Polymerase chain reaction (PCR)

The polymerase chain reaction (PCR) was developed in 1983 by Kary Mullis and is a technique that amplifies a few specific DNA sequences into thousands of copies. A basic PCR reaction consists of a DNA template, primers that are complementary to the 3` ends of the desired DNA template strand, DNA-polymerase, deoxynucleoside triphosphates (dNTPs) and a buffer solution supplying optimal conditions for DNA-polymerase activity. The essential function of the PCR reaction is the ability of the DNA-polymerase to duplicate DNA sequences. The amplifying reaction is classified into 5 specific steps (initiation, denaturation, annealing, elongation and final elongation) and each step requires discrete temperature changes. The first step is the initialization or activation of the DNA-polymerase, such as Taq polymerases, at 94-98°C. Taq polymerases are frequently used in PCR reactions because of their thermostability and optimal amplification rates at high temperatures. In addition to the initiation of the Taq polymerase, the hydrogen bonds between the complementary bases of the DNA template are also disrupted at temperatures between 94°C and 98°C, leading to single-stranded DNA (denaturation step). After lowering the temperatures to 48-65°C primers anneal specifically to the closely matched single-stranded DNA template sequence (annealing step). After primer annealing, the Taq polymerase can bind to the primer-template hybrid and synthesizes a new DNA strand, complementary to the DNA template strand, using dNTPs (elongation step). The elongation temperature depends on the optimum activity of the Taq polymerase, which ranges between 70°C and 80°C. However, the commonly used temperature for elongation is 72°C. The denaturation, annealing and elongation steps are repeated up to 40 times (cycles) to reach sufficient amounts of amplified DNA. A final elongation step at 72°C is performed to ensure that all single stranded DNA templates are extended. The new synthesized DNA sequences are then stored at 4°C until further use.

For the present study PCR reactions were performed to verify the genotype of specific knockout-strain of mice namely, NLRP3-, ASC-, IL-1R- and Dectin-2-deficient mice. Therefore, approximately 0.5cm of a mouse’s tail was digested with 250µl tail-digestion solution (section 2.1.11.1) overnight using a thermomixer (55°C, 450rpm). The crude lysate was then heat inactivated at 85°C for 45min, centrifuged (10s, 16000g) and the resulting supernatant stored at -20°C or directly used for genotyping PCR reactions.
The following recipes denote the PCR reaction mixes used to verify the genotype on C57BL/6 and BALB/c background of:

NLRP3^{−/−}, ASC^{−/−} and Dectin-2^{−/−}

- 1µl Crude lysate (including mouse DNA)
- 1µl Primer (mutant)
- 1µl Primer (wt common)
- 1µl Primer (wt)
- 21µl Polymerase buffer (section 2.1.10.1)
- 0.1µl GoTaq® DNA polymerase

IL-1R^{−/−}

- 1µl Crude lysate (including mouse DNA)
- 1µl Primer (wt forward)
- 1µl Primer (wt reverse)
- 1µl Primer (mutant forward)
- 1µl Primer (mutant reverse)
- 20µl Polymerase buffer
- 0.1µl GoTaq® DNA polymerase

The corresponding primers for the several PCR reactions are depicted in section 2.1.12. The PCR reactions were performed using the Thermocycler T3000 (Biometra) as follows:

NLRP3 genotyping PCR programme

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation</td>
<td>95°C</td>
<td>5min</td>
</tr>
<tr>
<td>Denaturation</td>
<td>95°C</td>
<td>45s</td>
</tr>
<tr>
<td>Annealing</td>
<td>55°C</td>
<td>30s</td>
</tr>
<tr>
<td>Elongation</td>
<td>72°C</td>
<td>40s</td>
</tr>
<tr>
<td>Final elongation</td>
<td>72°C</td>
<td>5min</td>
</tr>
<tr>
<td>Storage</td>
<td>4°C</td>
<td>∞</td>
</tr>
</tbody>
</table>

- 39 cycles

Amplification products: 500bp mutant allele 250bp wildtype allele
Material and methods

ASC genotyping PCR programme

Initiation 94°C 5min
Denaturation 94°C 15s
Annealing 60°C 40s 3 cycles
Elongation 72°C 30s
Denaturation 94°C 15s
Annealing 57°C 25s 36 cycles
Elongation 72°C 30s
Final elongation 72°C 5min
Storage 4°C ∞

Amplification products: 260bp mutant allele 450bp wildtype allele

Dectin-2 genotyping PCR programme

Initiation 94°C 5min
Denaturation 94°C 15s
Annealing 64°C 30s 40 cycles
Elongation 72°C 30s
Final elongation 72°C 5min
Storage 4°C ∞

Amplification products: 440bp mutant allele 550bp wildtype allele

IL-1R genotyping PCR programme

Initiation 95°C 5min
Denaturation 95°C 45s
Annealing 65°C 20s 40 cycles
Elongation 72°C 40s
Final elongation 72°C 5min
Storage 4°C ∞

Amplification products: 543bp mutant allele 300bp wildtype allele
2.2.2 Separation of DNA-fragments using agarose-gel electrophoresis

Agarose-gel electrophoresis is the standard technique used to determine the specific size (length) of DNA fragments. Nucleic acid molecules are negatively charged and can be separated by applying an electric field to move the molecules through an agarose matrix. Agarose is a polysaccharide-derived matrix with a relatively large pore size and neutral charging. Thus, short DNA fragments move faster and migrate further through the agarose gel than longer molecules. The migration behavior indicates the size of the new synthesized DNA fragment and can be evaluated by using size standards with defined DNA fragment lengths. The detection of separated DNA is performed using a DNA intercalating agent, which fluoresces after exposure to ultraviolet (UV) light.

For the present study, agarose gels (1%) were produced by boiling up agarose in TAE buffer (section 2.1.10.1). After cooling to approximately 50°C, an intercalating agent, such as ethidium bromide (300µg/l) or Roti®-Safe GelStain (5µl/100ml), was added to the agarose gel solution. The final polymerization was then performed in a horizontal gel chamber at room temperature, in which a comb was placed to form pockets for sample application. Afterwards 15µl of PCR product (including the synthesized DNA fragments) and 5µl of Gene Ruler™ 1kb DNA ladder were loaded into the gel pockets. The addition of loading buffer to the PCR reaction was not necessary due to the 5x Green GoTaq® reaction buffer (section 2.1.10.1). The DNA fragments were separated by applying 130mA for 40-60min within an electrophoresis system filled with TAE buffer. Separated DNA fragments were detected by exciting the intercalating agents with UV light at 254nm. The emission of the DNA fragments were measured and photographed using the agarose gel documentation system. Analysis of DNA sizes was performed by comparing them to the applied standard (Gene Ruler™ 1kb DNA ladder) and results in the correct identification of the mouse.
2.3 Cell biological methods

2.3.1 Preparation of immune cells

2.3.1.1 Preparation of spleen, mesenteric and lung lymph node cells

Mice were sacrificed after inhaling Forene® and spleen, mesenteric lymph node (MLN) and lung lymph node (LLN) were removed using scissors and tweezers under sterile conditions. Thereafter, spleen, MLNs and LLNs were placed in separate petri dishes filled with Dulbecco’s PBS (endotoxin-free) and crushed with a plunger. The resulting cell suspension was transferred to a 50ml tube and centrifuged at 230g for 10min (4°C). The pellet was then resuspended in 5 ml ACT buffer (section 2.1.11) and incubated for approximately 5min at room temperature to lyse erythrocytes. Immediately after 5min incubation, the cell suspensions were filtered through a 100µm cell strainer into a new 50ml tube and washed with Dulbecco’s PBS. After centrifugation at 230g for 10min (4°C), the supernatant was discarded and the cell pellet dissolved in the appropriate buffer or culture medium. Finally, the cells were counted (section 2.3.2.1) and used for cell stimulation assays (section 2.3.3.3) and flow cytometry (section 2.3.6).

2.3.1.2 Preparation of dendritic cells from bone marrow

To obtain bone marrow cells, mice were sacrificed by inhaling Forene® and pinned onto a dissection board. Using sterile scissors and tweezers the pre-ethanol sprayed fur around the hind limbs was opened and the muscles were separated from the bones. The bones were cut at hip joint and ankle and divided into lower and upper leg bones by removing the knee. Bone marrow was then flushed out of the bone into a 50ml tube using Dulbecco’s PBS and Sterican® hypodermic needles connected to 1ml syringe. The resulting bone marrow was briefly disrupted by gently pipetting with a glass pipette and then centrifuged at 230g for 10min (4°C). After centrifugation, the pellet was solved in 5ml of ACT buffer for approximately 3min at room temperature. Immediately after erythrocytes lysis, the bone marrow suspension was filtered through a 100µm cell strainer into a new 50ml tube and washed with Dulbecco’s PBS, before a further centrifugation at 230g for 10min (4°C). Afterwards, the supernatant was discarded and the cell pellet was resuspended, counted and cultured in BMDC medium (section 2.1.11 and 2.3.3.1).
2.3.2 Cell handling

2.3.2.1 Cell counting

For counting cells, Fast-Read 102® counting chambers, which are based on the principle of a Neubauer hemocytometer, were used. To distinguish between dead and viable cells, the cells were coloured with Trypan blue solution, which is a diazo dye that cannot pass through the intact membrane of viable cells. The result is that only dead cells are stained blue. Thus, total living cells were counted in 16 quadrants of the grid. The cell titer (cell/ml) of the original suspension was then calculated using the following formula:

\[
\text{cell/ml} = \text{counted cells} \times \text{dilution factor (Trypan blue dilution)} \times 10^4 \times \text{ml}^{-1}
\]

2.3.2.2 Freezing of cells

To freeze cells, it is necessary to use a special medium consisting of dimethyl sulfoxide (DMSO) and fetal calf serum (FCS), called freezing medium (section 2.1.11). FCS prevents starvation of the cells, whereas DMSO prevents crystallization of water within the cells that will cause cell lysis during the freezing process. To preserve different cell types, especially progenitor DCs (section 2.3.1.2), 1x10^7 cells were resuspended after prior centrifugation in 1ml freezing medium and transferred to a cryotube. Immediately, the cell suspension was frozen at -1°C/min to -80°C by using a freezing container.

2.3.2.3 Thawing of cells

The freezing medium contains DMSO, which is toxic for cells after extended amounts of exposure at warm temperatures. Therefore, frozen cells were rapidly thawed by warming the cryotube between the hands and immediately after thawing added to 50ml of warmed complete medium (section 2.1.11). After centrifugation at 230g for 10min (4°C), the supernatant was discarded, the pellet resuspended in 20ml complete medium and centrifuged once again. After centrifugation the pellet was resuspended in the appropriate buffer or culture medium and counted (section 2.3.2.1). Cells were then used for cell stimulation assays (section 2.3.3) and/or flow cytometry (section 2.3.6).
2.3.3 Cultivation and stimulation of immune cells

2.3.3.1 Cultivation of bone-marrow derived dendritic cells

To cultivate bone-marrow derived dendritic cells (BMDCs), 5x10^6 progenitor DCs (section 2.3.1.2) were seeded in 10ml BMDC medium (section 2.1.11) on a petri dish. A pivotal component within the DC medium is the granulocyte-macrophage colony-stimulating factor (GM-CSF), which induces precursor bone-marrow cells to mature into BMDCs. After 3 days of cultivation within an incubator at 37°C, another 10ml of DC medium were added to the BMDC culture. On cultivation day 6, 10ml of BMDC culture supernatant was removed, centrifuged at 230g for 10min (4°C) and the supernatant consisting of old DC medium was discarded. The BMDC pellet was resuspended in 10ml fresh DC medium and added again to the culture plates. On cultivation day 7, the BMDCs were dislodged from the petri dish with a cell scraper and pipetted into a 50ml tube. Thereafter, each petri dish was rinsed with 10ml Dulbecco’s PBS, which was also added to the 50ml tube. The cells were centrifuged as above described, the supernatant discarded and the pellet resuspended in the appropriate medium for cell stimulation assays (section 2.3.3.2) and/or flow cytometry (section 2.3.6).

2.3.3.2 Stimulation of bone-marrow derived dendritic cells

After cultivation (section 2.3.3.1), 1x10^6 BMDCs/ml were seeded onto flat-bottom 6-well or flat bottom 96-well plates. For suppression studies, BMDCs were preincubated with 50µg/ml SEA, SEA_h.i. or SEA_PK (section 2.5.1) for 30min and then further stimulated with TLR stimuli, such as 25ng/ml P3Cys and CpG or 5ng/ml LPS for 24h or as indicated.

For inflammasome induction studies, BMDCs were preincubated with TLR stimuli, such as 25ng/ml P3Cys and CpG or 5ng/ml LPS for 4-6h. After TLR-priming, BMDCs were stimulated with 5mM ATP for 1h and with 50µg/ml SEA, SEA_h.i. or SEA_PK for 24h or as indicated. Control stimulations of TLR-primed BMDCs were performed with Salmonella typhimurium (multiplicity of infection (MOI) of 10) and 500µg/ml Al(OH)₃ for 6h. Chemical inhibitors, reagents and blocking antibodies (Table 2.2) were added 30min before BMDCs stimulation with SEA, ATP, S. typhimurium and Al(OH)₃.
Table 2.2: Blocking antibodies, uncoupling agents, chemical inhibitors and reagents used for in vitro inhibition experiments

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Concentration</th>
<th>Producer</th>
</tr>
</thead>
<tbody>
<tr>
<td>APDC ((2R,4R)-4-Aminopyrrolidine-2,4-dicarboxylic acid)</td>
<td>Inhibits the NADPH-oxidase dependent reactive oxygen species (ROS) system</td>
<td>50-250µM</td>
<td>Alexis®</td>
</tr>
<tr>
<td>CytD (Cytochalasin D)</td>
<td>Inhibits actin polymerization and particle internalization and the binding stage of phagocytosis</td>
<td>0.5-1.5µM</td>
<td>Sigma®</td>
</tr>
<tr>
<td>Dectin-2 Ab (Rat-a-mouse-Dectin-2 antibody)</td>
<td>Blocks mouse DC-associated C-type lectin-2 (Dectin-2)</td>
<td>5-25µg/ml</td>
<td>AbD Serotec</td>
</tr>
<tr>
<td>DNP (2,4-Dinitrophenole)</td>
<td>Uncouples the mitochondrial electron transport chain leading to impaired ROS production</td>
<td>100nM-1mM</td>
<td>Sigma®</td>
</tr>
<tr>
<td>FCCP (Carbonyl cyanide p-(tri-fluoromethoxy)phenyl-hydrazone)</td>
<td>Uncouples the mitochondrial electron transport chain leading to impaired ROS production</td>
<td>10nM-100µM</td>
<td>Sigma®</td>
</tr>
<tr>
<td>Glibenclamide</td>
<td>Inhibits ATP-sensitive potassium channels</td>
<td>25-200µM</td>
<td>Alexis®</td>
</tr>
<tr>
<td>KCl (Potassium chloride)</td>
<td>Blocks potassium channels</td>
<td>25-150mM</td>
<td>Roth®</td>
</tr>
<tr>
<td>Nac (N-acetyl-L-cysteine)</td>
<td>Antioxidant and free radical scavenger</td>
<td>25-150mM</td>
<td>Sigma®</td>
</tr>
<tr>
<td>R406 (Syk inhibitor)</td>
<td>Inhibits the spleen tyrosine kinase (Syk)</td>
<td>0.2-1.5µM</td>
<td>Rigel</td>
</tr>
</tbody>
</table>

To measure cytokine responses, BMDCs were stimulated in 96-well plates with a total volume of 200µl/well complete medium (section 2.1.11). After stimulation, up to 150µl supernatant was removed and frozen at -20°C for ELISA (section 2.3.5).

For Western blot (section 2.4), BMDCs were stimulated in 6-well plates with a total volume of 1ml/well OPTI-Mem®, a medium with a minimum of 50% reduction of FCS. FCS is the main source of background labelling during Western blot technique. Thus, OPTI-Mem® was always used for Western blot stimulations. After stimulation, 1ml supernatant was removed and frozen at -20°C or directly used for protein precipitation (section 2.3.4).

2.3.3.3 Stimulation of spleen, MLN and LLN derived lymphocytes

Isolated and counted spleen, MLN and LLN cells (section 2.3.1.1 and 2.3.2.1) were solved in complete medium and plated onto round-bottom 96-well plates (total volume 200µl) at the concentration of 1x10^6 cells/ml. Thereafter, different stimuli, such as 20µg/ml SEA or 20µg/ml ovalbumin (OVA) or α-mouse CD3e and CD28 antibodies (Table 2.1) as polyclonal T-cell activator (positive control) were added to the cultures for 72h at 37°C. After this period
of time culture supernatant (100-150µl) was removed and frozen at -20°C until the T_H levels were determined by ELISA.

2.3.4 Protein precipitation and cell lysis

2.3.4.1 Methanol/chloroform precipitation

The methanol/chloroform precipitation method precipitates proteins from diluted solutions. Whilst, at the same time removing salts and detergents. For the present study, supernatants of stimulated BMDCs (section 2.3.3.2) were transferred into 2ml tubes and centrifuged at 230g for 10min (4°C). Afterward, 500µl of the resulting supernatant was transferred into another 2ml tube and mixed with 500µl methanol and 200µl chloroform. After centrifugation at 16,000g for 10min (4°C), three different phases can be observed (methanol/H_2O phase), the interphase (protein phase) and the lower phase (chloroform phase). Without touching the interphase, the upper phase was discarded and 800µl of methanol was added and thoroughly mixed. After another centrifugation (as above), the supernatant was removed, the protein dried at room temperature and then resuspended in 35µl Laemmli buffer and 15µl 5x sample buffer (section 2.1.11.2). Finally, the protein suspension was frozen at -20°C or directly used for SDS-PAGE (section 2.4.1).

2.3.4.2 Trichloroacetic acid precipitation

Here, supernatant of stimulated BMDCs (section 2.3.3.2) were transferred in 2ml tubes and centrifuged at 230g for 10min (4°C). Afterwards, 1 volume of supernatant was mixed with 1 volume 20% (v/v) trichloroacetic acid (TCA) and incubated at 4°C overnight. After protein precipitation, the suspension was centrifuged at 16,000g for 10min (4°C), the supernatant removed and the protein pellet solved in 500µl of acetone. After another centrifugation (as above), the supernatant was removed, the protein pellet dried at room temperature and resuspended in 35µl Laemmli buffer and 15µl 5x sample buffer (section 2.1.10.2). Finally, the protein suspension was frozen at -20°C or directly used for SDS-PAGE (section 2.4.1). This method is fast but changes the pH, whereas the methanol/chloroform method takes longer, but is more efficient compared to the TCA method.
2.3.4.3 Cell lysis

Cell pellets that resulted from BMDC stimulations (section 2.3.3.2), were resuspended in 50µl lysis buffer (section 2.1.10.6) for 20min on ice. The lysis buffer consists of various detergents and lyses cells under non-denaturing conditions. After the incubation time, the lysis suspension was centrifuged at 16,000g for 20min (4°C) and the supernatant was frozen at -20°C to be later assessed by ELISA (section 2.3.5). For Western blot analysis, the supernatant was mixed with 15µl 5x sample buffer and frozen at -20°C or directly used for SDS-PAGE (section 2.4.1).

2.3.5 Enzyme-Linked ImmunoSorbent Assay (ELISA)

For the measurement of cytokine or immunoglobulin’s an Enzyme-Linked ImmunoSorbent Assay (ELISA) was performed. ELISA is a biochemical technique that detects and quantifies the presence of an antibody or antigen, such as a cytokine. For the present study, a “Sandwich ELISA” was used, which is based on the binding and recognition of two independent specific antibodies towards an antigen (cytokine). The principle of the “Sandwich ELISA” is based on an immobilised antibody (coating antibody), which provides the platform for the binding of specific cytokines. The bounded target molecule is then recognized by a detection antibody which is coupled to a horse radish peroxidase (HRP). The enzyme HRP reacts with its substrate TMB (3,3’,5,5’-Tetramethylbenzidine) which leads to a colour change (blue colouring). The reaction can be stopped by the addition of sulphuric acid leading to a colour change from blue to yellow, which can be detected by using a spectrophotometer.

For the detection of the cytokines IL-1β, TNF-α, IL-5, IL-10, IL-13, IL-17A and IFN-γ, from stimulated immune cells (section 2.3.3.2 and 2.3.3.3), cell lysates (section 2.3.4.3), within homogenised liver, intestine and lung tissues (section 2.5.5 and 2.6.3) and bronchoalveolar lavage (BAL) fluids (section 2.6.2), mouse Ready-Set-Go ELISA kits from eBioscience (section 2.1.7 and 2.3.5.1) and Duo Set® ELISA kits from R&D (section 2.1.7 and 2.3.5.2) were used. For the detection of OVA-specific IgE and IgG1 levels within mouse sera (section 2.6.3), ELISAs with antibodies from Biozol (Table 2.1) were performed (section 2.3.5.3).
Material and methods

2.3.5.1 Ready-Set-Go ELISA kits (eBioscience)

The Ready-Set-Go ELISA kits consist of all necessary reagents and antibodies, except washing buffer and stopping solution. The ELISAs were performed according to the manufacturer’s instructions. In brief, 96-well ELISA plates were coated with 50µl/well capture antibody, which was diluted for optimal concentration in coating buffer and incubated overnight at 4°C. Plates were then washed thrice with washing buffer (section 2.1.10.4) and unspecific bindings were blocked with 100µl/well blocking buffer for at least 1h at room temperature. The plates were washed again 3 times with washing buffer and samples containing cytokines were diluted in blocking buffer (1:2 to 1:5 dilutions) and 50µl/well were added to the antibody-coated plates. In addition, the specific standard was also applied in a two-fold serial dilution in blocking buffer with the highest concentration of 2000pg/ml. The plates were then incubated for at least 2h at room temperature. During this time cytokines bind to the specific capture antibody coated on the plate. After three additional washing steps with washing buffer, 50µl/well of biotinylated detection antibody was applied and incubated for a further 1h at room temperature. The detection antibody binds specifically to the target cytokine, which is linked to the capture antibody on the plate bottom. Surplus detection antibodies were then washed away (3 times with washing buffer), before adding 50µl/well of streptavidin-horseradish peroxidase (HRP) conjugate. Afterwards, the plates were again incubated for approximately 45min at room temperature in the dark. Following this incubation, plates were washed thrice with washing buffer before adding 50µl/well of substrate solution (TMB substrate). The enzymatic reaction causes the wells to turn blue since the HRP, which is linked to the biotinylated Fc part of the detection antibody, converts the chromogenic substrate (TMB) into the oxidized TMB. Therefore, this last step should be carried out in the absence of light sources. After the first five standard dilutions became visibly blue, the reaction was stopped with 50µl/well of stopping solution (section 2.1.10.4), since the low pH denatures the enzyme. Immediately after stopping the reaction, the plates were measured at 450nm using the Sunrise™ ELISA microplate reader. The resulting optical densities (ODs) of the samples were compared with the prepared standard dilution series (standard curve) to calculate concentrations within each sample.
2.3.5.2 **Duo Set® ELISA kits (R&D)**

The Duo Set® ELISA kits consist only contain the necessary standards and antibodies. The ELISAs were performed according to the manufacturer’s instructions. In brief, 96-well ELISA plates were coated with 50µl/well of capture antibody, which was diluted for optimal concentration in PBS and incubated overnight at room temperature. Plates were then washed 3 times with washing buffer and unspecific bindings were blocked with 100µl/well of reagent buffer (section 2.1.10.4) for at least 1h at room temperature. The plates were washed again 3 times with washing buffer and samples containing cytokines were diluted in reagent buffer (1:2 to 1:5 dilutions) and 50µl/well added to the antibody-coated plates. In addition, the specific standard was also applied in a two-fold serial dilution in reagent buffer with the highest concentration of 2000pg/ml. The plates were then incubated for at least 2h at room temperature. After three additional washing steps with washing buffer, 50µl/well of biotinylated detection antibody was applied and incubated for a further 1h at room temperature. Surplus detection antibodies were then washed away (3 times with washing buffer), before 50µl/well of streptavidin-horseradish peroxidase (HRP) conjugate was applied. Plates were then incubated for approximately 45min at room temperature in the dark. Thereafter, plates were washed thrice with washing buffer and 50µl/well of BD OptEIA™ TMB substrate was added, before further incubating the plates in the dark. After the first five standard dilutions became visibly blue, the reaction was stopped with 50µl/well of stopping solution (section 2.1.10.4). Immediately after stopping the reaction, the plate was measured at 450nm using the Sunrise™ ELISA microplate reader. The concentration of the samples was calculated according to the standard curve as described in the previous section 2.3.5.1.

2.3.5.3 **OVA-specific immunoglobulin ELISA**

To measure OVA-specific IgE and IgG1 levels, 96-well ELISA plates were coated with 1µg (IgE measurement) or 0.1µg (IgG1 measurement) OVA grade V in 100µl OVA-coating buffer (section 2.1.10.4) per well and incubated at 4°C overnight, respectively. Plates were then washed 5 times with OVA-washing buffer (section 2.1.10.4) and unspecific bindings were blocked with 200µl/well of OVA-blocking buffer (section 2.1.10.4) for at least 2h at room temperature. The plates were again washed 5 times with OVA-washing buffer. Blood serum samples (section 2.6.3) containing immunoglobulins were diluted with OVA-blocking buffer (1:200 to 1:100,000 dilutions) and 50µl/well were added to the OVA-coated plates. In addition, a specific standard with mouse α-OVA IgE or IgG1 antibody (Table 2.1) was
applied in a two-fold serial dilution in OVA-blocking buffer with the highest concentration of 1000ng/ml or 250ng/ml, respectively. The plates were then incubated at 4°C overnight, allowing OVA-specific immunoglobulins to bind to coated OVA. After 5 additional washing steps with OVA-washing buffer, 50µl/well of biotinylated detection antibody, α-mouse IgE-Biotin or α-mouse IgG1-Biotin (Table 2.1), was applied and incubated for at least 2h at room temperature. The detection antibody binds specifically to the target immunoglobulins, which are bound to the OVA molecules on the plate bottom. Surplus detection antibodies were then washed away (5 times with OVA-washing buffer), before 50µl/well streptavidin-horseradish peroxidase (HRP) conjugate from the Duo Set® ELISA kits was applied. Afterwards, the plates were again incubated for approximately 30min at room temperature in the dark. Following the incubation, the plates were washed 5 times with OVA-washing buffer and 50µl/well of BD OptEIA™ TMB substrate was added, before further incubating the plates in the dark. After the first five standard dilutions became visibly blue, the reaction was stopped with 50µl/well of stopping solution. Immediately after stopping the reaction, the plates were measured at 450nm using the Sunrise™ ELISA microplate reader. The Ig concentration within the sample was then calculated according to the standard curve.

2.3.6 Flow cytometry

Flow cytometry is a widely used technique for the counting and characterization of microscopic particles suspended in a stream of fluid. It allows simultaneous multi-parametric analysis of the physical and/or chemical characteristics of single cells flowing through an optical and/or electronic detection apparatus. Basically, all physical and biochemical characteristics of a particle can be described using light reflection, light scatter and the emission of wavelength, which can be detected with a flow cytometric system, so called Fluorescence-activated cell sorting (FACS). There are two types of FACS, the FACS scan and the FACS sorter. The FACS scan reveals characteristics of the particles whereas the FACS sorter can sort desired particles according to specific parameters. The target particles are suspended in a hydro-dynamically focused stream of fluid. A beam of light of a single wavelength is directed into this stream of fluid. Each suspended particle passing through the beam scatters the light in varying direction and the machine employs two primary parameters to indicate granularity or inner complexity of particles (side scatter (SSC)) and the size/volume of the particles (forward scatter (FSC)). Fluorescent chemicals attached to the particles may be excited into emitting light at a lower frequency than the light source. This
Material and methods

Combination of scattered and fluorescent light is picked up by the detectors. Thus, by analysing the fluctuations in brightness with each detector, it is possible to derive various types of information about the physical and chemical structure of each individual particle. Various fluorophores conjugated to antibodies specific against cell surface molecules, such as CD molecules expressed on immune cells, are used for immunophenotyping. Thus, activation, differentiation and composition of immune cells within different tissues and in vitro cultures can be analysed using the fluorophore-conjugated antibodies.

For the present study, 3 types of fluorophores were used, APC (Allophycocyanin) with an excitation/emission spectrum of 633/660nm, FITC (Fluorescein isothiocyanate) with an excitation/emission spectrum of 488/518nm and PE (Phycoerythrin) with an excitation/emission spectrum of 488/575nm. Thus, combinations of APC, FITC and PE conjugated antibodies (Table 2.1) were used to scan or sort immune cells using the BD FACSCalibur™ flow cytometer, CyAn ADP Lx P6 and CyAn ADP Lx P8.

2.3.6.1 Cell surface staining

To analyse the activation, differentiation and composition of cultivated and stimulated BMDCs (section 2.3.3.1 and 2.3.3.2) or LLN, MLN and spleen cells (section 2.3.1.1), FACS analysis with different fluorophore-conjugated FACS antibodies were performed (Table 2.1). Thus, 2x10^5 target cells were suspended in 100µl FACS buffer (section 2.1.10.5) in a 96-well plate and centrifuged at 230g for 5min (4°C). The supernatant was discarded, the pellet resuspended in 50µl Fc block solution (section 2.1.10.5) and incubated for 15-20min at 4°C. The Fc block solution contains a rat IgG2b α-mouse CD16/CD32 monoclonal antibody and blocks the Fc-mediated adherence of antibodies to mouse as well as unspecific bindings of the derived antibody to cells. After incubation, 100µl FACS buffer was applied and the cells were centrifuged as before. Immediately afterwards, the cells were incubated in the dark for 20min on ice with 50µl FACS buffer containing fluorophore-conjugated α-mouse monoclonal antibodies specific for different cell surface marker combinations of CD4, CD11b, CD11c, CD25, CD83, CD86 and F4/80 (Table 2.1). When the antibodies bind to the different cell types, the cells are marked and can be scanned or sorted according the different fluorophores, which emit different wavelengths. Additionally, unstained samples and compensation samples, which were stained with only one of the fluorophore-conjugated antibody, were prepared. These controls were used to compensate cell background and overlapping emission signals during FACS scan or sort acquisition (section 2.3.6.3). After incubation, 100µl FACS
buffer was added to the stained cells, which were then centrifuged as before and resuspended in 100µl FACS buffer. In some cases, surface stained cells were then used for intracellular Foxp3 staining (section 2.3.6.2) or acquired directly with the previously described FACS scan or FACS sorter devices (section 2.3.6). Finally, stained cells were sometimes further incubated in the dark with 1% paraformaldehyde (PFA) for 20min at 4°C. Afterwards, the cells were centrifuged as before and then resuspended in 100µl FACS buffer. The PFA treatment fixes the cells and allows the storage for a few days at 4°C.

2.3.6.2 *Intracellular Foxp3 staining*

To stain Foxp3 (Forkhead box P3), which is the transcription factor and master control gene for the development and function of natural Tregs (section 1.2.3), α-mouse/rat Foxp3-FITC or Foxp3-PE antibodies (Table 2.1) were used. For fixation and permeabilization of immune cells the Foxp3 staining buffer set from eBioscience (section 2.1.7) was used. Therefore, CD4 stained cells (section 2.3.6.1) were centrifuged at 230g for 5min (4°C) and resuspended in 50µl fixation/permeabilization working solution. Cells were then incubated at 4°C overnight in the dark and then washed twice with permeabilization buffer. Afterwards, either FITC or PE conjugated Foxp3 antibodies, diluted in permeabilization buffer, were applied and cells were incubated for 30min at 4°C in the dark. After incubation, cells were washed twice with permeabilization buffer and resuspended in 100µl FACS buffer and acquired with the previously described FACS scan.

2.3.6.3 *FACS acquisition and analysis*

A quantitative and qualitative analysis of flow cytometer data was performed using the FlowJo software from TreeStar. Before measurement, the autofluorescence of unstained cells and compensation between fluorophore colours was tuned using unstained cells and cells stained only with single fluorophore-conjugated antibodies. Furthermore, the voltage of the laser was tuned so that the target cells were visible in the FSC-SSC dot blot diagram.
2.3.7 Cytotoxicity assay

To confirm that stimulated BMDCs were still viable, a non-radioactive cytotoxicity assay from Promega (section 2.1.7) was performed. This assay is based on the activity of lactate dehydrogenase (LDH), a cytosolic enzyme, which is released upon cell lysis. LDH occurrence within the supernatant of stimulated BMDCs can be measured in a coupled enzymatic assay, using tetrazolium salts in conjunction with diaphorase, a flavin-bound enzyme that catalyze the reduction of various hydrogen acceptors, such as NAD⁺ (nicotinamide-adenine-dinucleotide). The chemical reactions are as follows:

\[
\text{LDH} \\
\text{NAD}^+ + \text{lactate} \rightarrow \text{pyruvate} + \text{NADH}
\]

\[
\text{Diaphorase} \\
\text{NADH} + \text{tetrazolium salts} \rightarrow \text{NAD}^+ + \text{formazan (red)}
\]

The conversion of tetrazolium salts into a red formazan product is proportional to the number of lysed cells and can be used to measure cell viability via a spectrophotometer. The cytotoxicity assay was performed according to the manufacturer’s instructions. In brief, 50µl supernatant from stimulated BMDCs, a LDH positive and a LDH negative control (included within the assay) were mixed with 50µl reconstituted substrate mix and incubated for 30min at room temperature in the dark. After incubation, the chemical reaction was stopped with 50µl stop solution and the absorbance was acquired at 490nm using the Sunrise™ ELISA microplate reader.

2.3.8 ATP measurement

To decipher ATP levels within the supernatants of stimulated BMDCs, a luminescent cell viability assay from Promega (section 2.1.7) was performed. This assay is based on the activity of luciferase, a thermostable oxidative enzyme, which generates a stable luminescent signal mediated by ATP. The Ultra-Glo™ recombinant luciferase within this assay catalyses the following reaction:

(Adapted from the Promega CellTiter-Glo® luminescent cell viability assay protocol)
The luminescent cell viability assay was performed according to the manufacturer’s instructions. In brief, 100µl of stimulated BMDCs suspension was transferred to white/non-transparent LumiNunc™ 96-well plates, before 100µl of the CellTiter-Glo® reagent. The solution was mixed for 2min on an orbital shaker to induce cell lysis and generation of a luminescent signal proportional to the amount of ATP present, which signals the presence of metabolically active cells. In addition, an ATP standard was also applied in a two-fold serial dilution in complete medium (section 2.1.11) with the highest concentration of 1µM. The plate was then incubated for 10min at room temperature to stabilize the luminescent signal, which was recorded with an integration time of 1s/well using the Orion II microplate luminometer. In order to calculate the amount of ATP within the samples, the recorded luminescent was compared to the ATP standard dilution series (standard curve).

2.3.9 Statistics

Resulting data from ELISA (section 2.3.5), FACS (section 2.3.6), cytotoxicity assay (section 2.3.7) and ATP measurements (section 2.3.8) were analyzed using the GraphPad Prism 5 software. Parametrically distributed data was analyzed with unpaired T test (2 groups) or one-way ANOVA (more than 2 groups). Parametric data were represented as mean ± standard deviation (SD).

2.4 Methods of protein purification and analysis

2.4.1 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a technique to separate proteins according to size under denaturizing conditions. The anionic detergent SDS binds to the polypeptide chain in proportion to its relative molecular mass (one SDS molecule binds to two amino acid residues). This results in disruption of non-covalent bonds and destruction of complex protein structures leading to impaired native protein conformation. Moreover, since proteins are surrounded with negatively charged SDS molecules they are all attracted to the positive electrode once an electric field is applied. Thus, smaller proteins migrate faster through the gel, while larger ones are held back by the polyacrylamide net.

For the present study, the Laemmli based discontinuous polyacrylamide gel was used, which consists of two different polyacrylamide gels: a SDS-separating gel and a SDS-stacking gel (section 2.1.10.2). The SDS-stacking gel has a lower acrylamide content and pH compared to
the SDS-separating gel, which is actually responsible separating the protein by size. These conditions lead to a stacking of proteins at the interphase between the two gels, which allows a more accurate separation. Thus, a 15% polyacrylamide gel, for the small bioactive molecules, IL-1β (17kDa) and Casp1 (10 and 20kDa), and a 10% polyacrylamide gel, for the larger precursor molecules, pro-IL-1β (31 kDa) and pro-Casp1 (45kDa), were prepared as described in section 2.1.10.2. The components ammoniumpersulphate (APS) and tetramethylethlenediamine (TEMED) act as catalysts in the polymerisation reaction of acrylamide and were therefore added last to the SDS-separating gel mixture. Immediately after APS and TEMED addition, the SDS-separating gel solution was poured between two plates which were held in place by the vertical dual gel electrophoresis system. To ensure an even interface, a layer of isopropanol was added to the top of the setting. After polymerisation, the isopropanol was discarded and the SDS-stacking gel solution was added and a comb inserted to form pockets for sample application. SDS-ready to use gels from Fisher BioReagents® (section 2.1.7 and 2.1.10.2) were also used. These gels also required the addition of APS and TEMED but provided an optimal resolution without the need of a stacking gel. After polymerisation the vertical dual gel electrophoresis system were filled with Laemmli buffer or running buffer, which is included in the EZ-Run™ protein gel solution kit (section 2.1.7), to connect the cathode with the anode. Samples were prepared as previously described in section 2.3.4 and denaturized at 95°C for 5min. After centrifugation at 16,000g for 20s, 15µl sample and 3µl protein marker V were loaded onto the gel. SDS-PAGE was performed at 80V while the samples were in the SDS-stacking gel and increased to 120V for approximately 2h once they reached the SDS-separating gel. The SDS-ready to use gels were run at 120V from the beginning for approximately 2h.

2.4.2 Western blot

Western blot is a technique to transfer SDS-PAGE-separated proteins (section 2.4.1) onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane so that a specific target protein can be detected via antibodies. Following a successful SDS-PAGE run, the SDS-stacking gel and the sample pockets were removed and one Protran® nitrocellulose transfer membrane and 6 Whatman filter papers were cut to the size of the SDS-separation gel. Two different methods were used for the transfer of proteins to the nitrocellulose membrane: the wet blot and the semi-dry blot. In short, 6 Whatman filter papers were pre-soaked in transfer buffer (section 2.1.10.3) and 3 of them were stacked onto either a wet electroblotter system or to a
semi-dry electroblotter system, followed by the membrane and the gel. Another 3 Whatman filter papers completed the gel sandwich. The wet electroblotter system was filled with transfer buffer and blotting was performed at 100mA. For the semi-dry blot, air bubbles were removed, the chamber was closed and blotting was performed at amperage of 1.2mA/cm² gel area (approximately 64mA/gel). The blotting time varied between 50min and 2h depending on the size of the target protein. After transfer, the membrane was washed with PBS, on an orbital shaker. All washing and blocking steps were performed at 4°C for 5min. To block unspecific bindings, the membrane was incubated with blocking buffer (section 2.1.10.3) at 4°C for at least 1h. After 2 washing steps with PBS, the membrane was transferred to a 50ml tube containing the primary antibody, such as poly-rabbit-αCasp1 (p10), poly-rabbit-αIL-1β or poly-rabbit-αβ-Actin (Table 2.1), which were diluted in 2ml TBST (section 2.1.10.3). The membrane was then incubated overnight at 4°C using a rotating mixer. The next day, the membrane was washed three times with blocking buffer before adding the secondary antibody goat-α-rabbit-HRP (Table 2.1), which was diluted in 5ml TBST and specific against the primary antibody. The membrane was incubated with the secondary antibody at 4°C for at least 2h and afterwards washed at least 5 times with blocking buffer and 2 times with PBS to ensure a clean blot. Finally, the membrane was placed in a radiographic cassette, covered with 1ml Western Lightning®-ECL chemoluminescence substrate and incubated in daylight for 1min. After incubation, the membrane was kept dark and exposed to medical x-ray films for different periods of time (depending on the signal intensity) for the chemoluminescent reaction of the HRP. The principle of the ECL-method is based on the binding of the secondary antibody, which is coupled with a HRP. HRP catalyses the oxidation of luminal (5-amino-2,3-dihydro-1,4-phthalazinedione) to 3-aminophthalate via H₂O₂. The redundant energy is released in the form of light leading to local exposure of the medical x-ray films, which were developed in the Curix 60 Western blot processor. The size of the detected protein was confirmed by using the loaded protein marker V. To detect another specific protein on the same blot, the membrane was washed 5 times with blocking buffer and 3 times with PBS and then incubated with stripping buffer (section 2.1.10.3) in a water bath at 50°C for 1h. The stripping buffer has a low pH of 2.75 and includes β-mercaptoethanol which destroys antibodies and leads therefore to the total removal of membrane-bound primary and secondary antibodies. After stripping, the membrane was extensively washed with PBS and blocking buffer and then incubated again with a primary antibody and treated as described above.
2.5 Parasitological methods

Murine infection of *S. mansoni* reflects both the immunological and parasitological consequences that arise in man. Indeed, it is one of only a few helminthes that infect both mouse and man. To maintain the *S. mansoni* cycle at the MIH, NMRI mice are regularly (every 3 weeks) infected with 140-200 cercariae intraperitoneal (i.p.) from a Brazilian strain of *S. mansoni* from *Biomphalaria glabrata* snails (also of Brazilian origin). After 8 weeks of infection, mice are sacrificed, miracidia isolated from the intestine and exposed to snails to continue the infectious cycle (section 1.3.1). In addition, the livers are used for the preparation of eggs and SEA (section 2.5.1). All other strains were infected i.p. with a lower dose of 100-120 cercariae from the Brazilian strain. After at least 8 weeks of infection, mice were sacrificed and used for the evaluation of *S. mansoni* infection (section 2.5.2).

2.5.1 SEA preparation

2.5.1.1 Egg preparation from liver tissue

To prepare fresh eggs from liver tissue, NMRI mice were sacrificed after 8 weeks and infected livers were isolated using sterile scissors and tweezers. Livers were then washed in pre-cooled 1.2% (v/v) NaCl solution and bile ducts and gallbladders were removed. 4 livers were then minced using a scalpel and transferred into a 50ml tube containing 25ml liver digestion solution (section 2.1.10.8). The tube was then filled up with Dulbecco’s PBS to 50ml and incubated under continuous agitation at 37°C overnight using an orbital shaker. Thereafter, digested livers were centrifuged at 400g for 5min (4°C), the supernatant removed and the remains resuspended in 50 ml Dulbecco’s PBS. Livers were washed twice in this manner, before the pellet was resuspended in 25ml Dulbecco’s PBS and filtered twice through a 250μm sieve. The filtrate solution was then layered on a Percoll solution (section 2.1.10.8) and centrifuged at 800g for 10min (4°C). Due to the density gradient of the Percoll solution, eggs were separated from liver tissue and formed a pellet at the bottom of the tube. Eggs were then washed three times with 15ml and 30ml of 1mM EDTA solution, respectively and finally with 30ml Dulbecco’s PBS as previously described. After the washing steps, the egg pellet was resuspended in 700μl Dulbecco’s PBS and 5μl were microscopically analysed (x10 magnification) to confirm the purity and to calculate the total egg count using the following formula:

\[\text{total egg count} = \frac{(\text{counted eggs} \times 700\mu l)}{5\mu l} \]
Finally, isolated eggs were either frozen at -80°C or directly used for SEA preparation (section 2.5.1.2). To confirm the sterility, 1-2µl of the egg suspension was plated out on a blood agar and a MacConkey agar plate and incubated at 37°C for 48h. Possible contaminations were analysed by standard microbiological assessments.

2.5.1.2 SEA preparation from liver-derived eggs

The egg suspension (section 2.5.1.1) was transferred to a glass homogenizer and pestled for at least 20min on ice. During this procedure the eggs release soluble egg antigens (SEA), which are a mixture of different (glyco-)proteins and (glyco-)lipids. To confirm that most of the eggs were disrupted, 2-3µl of the SEA solution was microscopically investigated, before an ultracentrifugation step at 100,000g for 1h (4°C) using the Optima™ L-100 XP ultracentrifuge was performed. Afterwards, the supernatant that contains the derived SEA was transferred to a cryotube, whereas the remaining egg shell pellet was resuspended in 200µl Dulbecco’s PBS. To confirm the sterility, 1-2µl of both suspensions were plated out on a blood agar and MacConkey agar plate and incubated at 37°C for 48h. The protein concentration within the SEA solution and egg shell pellet solution was measured using the DC protein assay kit from Bio-Rad (section 2.5.1.3). Finally, both suspensions were frozen at -80°C until required for further assays or analysis (section 2.3.3.2 and 2.3.3.3).

2.5.1.3 Measurement of protein concentration

To measure the protein concentration of freshly prepared SEA, egg shell pellet suspension (section 2.5.1.2), a DC protein assay kit from Bio-Rad (section 2.1.7) was performed, which included all the necessary solutions and reagents. This assay is based on the Lowry assay, which relies on the reaction of proteins with alkaline copper tartrate solution and Folin reagent. The method combines the reaction between proteins (especially aromatic protein residues) and copper ions under alkaline conditions, which results in the subsequent reduction of Folin reagent by the copper-treated protein. The reduced Folin species have a characteristic blue colour, which is usually measured with an absorbance at 750nm. For the present study, the DC protein assay kit was performed according to the manufacturer’s instructions. In brief, to prepare working solution A, 20µl of reagent S was added to 1ml reagent A. In addition, a specific BSA standard was prepared in serial dilutions in PBS with the highest concentration of 1.5mg/ml. Afterwards, 5µl of the samples, for example SEA preparation (diluted 1:2), egg shell pellet suspension (dilution 1:2 to 1:10) or BSA standard were mixed with 25µl working
solution A and transferred into a 96-well plate, 200µl of reagent B was then added. The solution were gently mixed for 5s and incubated for 15min at room temperature in the dark. The absorbance was measured at 650nm using the Sunrise™ ELISA microplate reader. The resulting optical densities (ODs) of the samples were compared to the BSA standard dilution series (standard curve) to calculate the protein concentrations within the samples.

2.5.1.4 Modulation of SEA

To decipher the role of protein components within the SEA, preparations were either heat-inactivated (SEA_{h,i.}) or digested with proteinase K (SEA_{PK}). Heat-inactivation was performed at 95°C for 5min, whereas digestion of SEA was carried out with 200µg/ml proteinase K at 56°C for 1h. Both SEA preparations were then used for BMDC stimulation assays (section 2.3.3.2).

2.5.2 Evaluation of Schistosoma mansoni infection

Different knockout and wildtype mice were infected with \textit{S. mansoni} cercariae as described in the previous section 2.5 and after at least 8 weeks of infection the mice were sacrificed and investigated with parasitological (section 2.5.2), histological (section 2.5.3) and immunological methods (section 2.5.4).

2.5.2.1 Worm burden analysis

For worm burden analysis, mice were euthanized with an i.p. injection of Narcoren (50µl). This chemical is a muscle-relaxant which affects both worms and mice and causes the schistosomes to detach from the vein wall and shift to the liver. To obtain the worms, pre-ethanol sprayed mice were opened using sterile scissors and tweezers. Exposed organs were then rinsed with worm rinsing solution (section 2.1.10.7) before the portal vein was slightly cut and worm perfusion solution (section 2.1.10.7) was pumped into the left heart ventricle and through the cardiovascular system using the Mini-Pump variable flow. After worm perfusion, the organs were rinsed again with worm rinsing solution and flushed worms from the portal vein and mesenteric veins were collected on a filter and kept in RPMI 1640 at 37°C. In addition, livers and intestines were intensively examined microscopically for additional worms. For counting, the worms were separated into females and males.
2.5.2.2 General infection status

The general infection status was judged by the degree of visual infection and organ damage. Specifically, the liver was examined for signs of fibrosis, changes in colour and visible granulomas. The infection status was graded on a scale from 0 to 3 DOI (degree of infection) with 3 denoting the highest level of infection. In addition, total body weight of each individual mouse and organ weight (liver, intestine and spleen) were obtained and compared with uninfected mice.

2.5.2.3 Egg count analysis

Weighed liver and intestine samples from individual mice were digested in 5ml of 5% (w/v) KOH solution under continuous agitation at 37°C for at least 2h. After incubation, the released eggs were centrifuged at 400g for 10min and 4.5ml of the supernatant was immediately removed. The remaining eggs (within 500µl) were then resuspended and counted with the microscope (x10 magnification) in three samples of 10µl. The number of eggs in the liver was then calculated as follows:

\[
\text{eggs/mg tissue} = \frac{\text{average of counted eggs} \times 50}{\text{weight of tissue sample (mg)}}
\]

2.5.3 Histological methods

Infection of S. mansoni, especially chronic infection, is characterized by chronic local inflammatory responses to trapped schistosome eggs in liver and intestinal tissues. Around the trapped eggs granuloma formation is induced, leading to a unique form of liver and intestine fibrosis, which is the main elicitor of morbidity and mortality (section 1.3.2). For the present study, liver granuloma formation and infiltration of immune cells within granulomas formed in the various knockout mice were analysed and compared to wildtype controls.

2.5.3.1 Tissue preparation for histological staining

Left liver lobe or lung samples (section 2.6.4) from each individual mouse were fixed in Roti®-Histofix (4%), dehydrated using the Shandon Excelsior ES tissue processor and embedded in paraffin using the TB 588 paraffin embedding system. 3µm sections were cut using the RM 2245 automatic rotary microtome and fixed on glass slides for staining techniques (section 2.5.3.2 and 2.6.4).
2.5.3.2 Staining techniques

For analysis of granuloma formation and immune cell infiltration two different staining methods were performed. The trichrome Masson’s blue stain was used to differentiate between collagen and smooth muscle in liver and to visualize the increase of collagen in granuloma formation, since the aniline component in the staining buffer turns collagen fibres blue. Liver sections stained with Masson’s blue stain were also used for size analysis of the granuloma. The Masson’s blue staining procedure is depicted in Table 2.3.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Producer</th>
<th>Incubation time</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylene</td>
<td>Engelbrecht</td>
<td>10min</td>
<td>Dissolving of paraffin</td>
</tr>
<tr>
<td>Ethanol (96%)</td>
<td>MRI</td>
<td>1min</td>
<td>Rinsing with mounting water content (watering)</td>
</tr>
<tr>
<td>Ethanol (96%)</td>
<td>MRI</td>
<td>1min</td>
<td></td>
</tr>
<tr>
<td>Ethanol (80%)</td>
<td>MRI</td>
<td>1min</td>
<td></td>
</tr>
<tr>
<td>Ethanol (70%)</td>
<td>MRI</td>
<td>1min</td>
<td></td>
</tr>
<tr>
<td>Aqua bidest.</td>
<td>MRI</td>
<td>1min</td>
<td></td>
</tr>
<tr>
<td>Weigert’s haematoxylin</td>
<td>Morphisto</td>
<td>2min</td>
<td>Complexation of positive hematoxylin to the negative nucleic acids phosphate groups (nuclear staining)</td>
</tr>
<tr>
<td>Tap water</td>
<td>-</td>
<td>Constant rinsing for 5min</td>
<td>Achievement of deep blue staining by alteration of the pH</td>
</tr>
<tr>
<td>Acid fuchsin</td>
<td>Morphisto</td>
<td>2min</td>
<td>Staining of the smooth muscle tissue</td>
</tr>
<tr>
<td>Phosphomolybdic acid</td>
<td>Morphisto</td>
<td>5min</td>
<td>Differentiation and increasing of contrast between collagen and smooth muscle tissue</td>
</tr>
<tr>
<td>Aniline blue</td>
<td>Morphisto</td>
<td>4min</td>
<td>Staining of collagen</td>
</tr>
<tr>
<td>Tap water</td>
<td>-</td>
<td>Rinsing until water is clear</td>
<td>Dissolving of aniline blue</td>
</tr>
<tr>
<td>Ethanol (96%)</td>
<td>MRI</td>
<td>1min</td>
<td>Rinsing with mounting alcohol content (dehydration)</td>
</tr>
<tr>
<td>Ethanol (96%)</td>
<td>MRI</td>
<td>1min</td>
<td></td>
</tr>
<tr>
<td>Isopropanol</td>
<td>MRI</td>
<td>1min</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>Engelbrecht</td>
<td>10min</td>
<td>Fixation</td>
</tr>
<tr>
<td>Entellan*</td>
<td>Merck</td>
<td>-</td>
<td>Fixation and covering with coverslip</td>
</tr>
</tbody>
</table>

Table 2.3: Masson’s blue staining protocol

Alternatively, the standard hematoxylin and eosin stain (HE staining) is a combined staining method and was used to analyse immune cell infiltration within the granuloma. Hemalum, a complex formed from aluminium ions and oxidized haematoxylin, colours the nuclear of cells blue and the eosin solution stains eosinophilic structures in various shades of red. The HE staining procedure is depicted in Table 2.4.

Table 2.4: Hematoxylin and eosin staining protocol

2.5.3.3 Microscopical analysis of stained liver sections

Stained liver sections were analysed microscopically for granuloma formation and size evaluation using the Masson’s blue stained sections (Table 2.3) and for immune cell infiltration using HE stained sections (Table 2.4). The size of the granuloma was determined by measuring the diameters with the help of an ocular micrometer along the longitudinal axis of the eggs at x10 magnification using the Axioscop microscope. Up to 40 granulomas of each individual liver section were evaluated and the average size of the granulomas from each liver section was calculated.

2.5.4 Immunological methods

To analyse cytokine responses or composition of immune cells during *S. mansoni* infection, ELISA analysis (section 2.3.5) and FACS techniques (section 2.3.6) were performed, respectively. To decipher *in situ* cytokine levels, weighed liver or intestinal samples were transferred into 2ml tubes containing 500µl of RPMI 1640 and homogenized using the T10 basic Ultra-Turrax® disperser. The homogenised samples were then centrifuged at 16,000g for
10min (4°C) and the resulting supernatant was frozen at -20°C until analysed by ELISA (section 2.3.5.1 and 2.3.5.2). This method was also employed to measure the cytokine levels from cultured supernatants of restimulated MLN and spleen cells. In brief, freshly prepared MLN and spleen cells (2x10^5) were restimulated according to the previously described protocol in sections 2.3.1.1 and 2.3.3.3. To investigate the composition of immune cells, MLN and spleen cells were prepared and stained for certain cell populations and analysed by FACS according to the previously described method in sections 2.3.1.1 and 2.3.6, respectively.

2.6 Evaluation methods for allergic airway inflammation

To investigate aspects of allergic asthma in a murine model, mice have to be sensitized to an typical allergens in the air such as pollen, mold and dust mites. To achieve a controlled experimental response, ovalbumin (OVA) is often used as a standard allergen and is commonly combined with an adjuvant such as H_2O_2 or alum. Once sensitized and challenged such allergens leads to airway destruction, elevated levels of IgE causing mast cell activation, chronic airway inflammation and airway hyperresponsiveness (AHR). To decipher the role of inflammasome activity in another Th2 polarized in vivo model besides the *S. mansoni* infection, an alum-free OVA-induced allergic airway inflammation model was developed and the protocol and assessment parameters are described in the following sections.

2.6.1 Induction of allergic airway inflammation

To investigate the role of inflammasome activity during an in vivo Th2 allergic airway inflammation model, ASC-, NLRP3-deficient and wildtype control mice (BALB/c background) were sensitized and challenged with OVA as depicted in Figure 2.1.

![Figure 2.1: Alum-free OVA-induced allergic airway inflammation model](image)

In brief, wildtype, ASC- and NLRP3-deficient mice were thrice sensitized with 10μg OVA s.c. on day 0, 7 and 14. On days 26-28, OVA challenge was performed with 10μg OVA aerosol. Finally on day 31, the mice were sacrificed and immunological parameters were investigated.
The activity of the inflammasome during allergic asthma development was determined using the alum-free OVA-induced allergic airway inflammation model. This was a necessary adjustment to the normal protocol with i.p. injection of alum, since alum is a strong activator of the inflammasome (section 1.4.2). As depicted in Figure 2.1, BALB/c mice were sensitized subcutaneously (s.c.) with 10µg OVA grade VI or PBS (control mice) on 3 days (day 0, 7 and 14). On days 26-28, mice were placed into the OVA-challenge chamber and challenged with 10µg OVA grade V by intranasal route using a Pari Boy® SX nebulizer. The OVA-challenge provokes within the OVA-sensitized mice allergic airway inflammation and leads to airway destruction, elevated levels of IgE causing mast cell activation, chronic airway inflammation, airway hyperresponsiveness (AHR) and airway remodeling. Finally, on day 31 (3 days after the last OVA challenge), mice were sacrificed and bronchoalveolar lavage (BAL) analysis (section 2.6.2), TH profiling via cytokine analysis (section 2.6.3) and lung inflammation scoring (section 2.6.4) were evaluated.

2.6.2 Analysis of immune parameters in the bronchoalveolar lavage (BAL)

2.6.2.1 Preparation of the BAL

To analyse the composition of the infiltrated immune cells and cytokine responses within the bronchoalveolar lavage (BAL), mice were first euthanized with an i.p. injection of 50µl Narcoren. Afterwards, the mouse body was opened using sterile scissors and tweezers. The exposed trachea was disconnected below the larynges using a haemostatic forcep, before the lung was flushed twice with 1ml BAL buffer (section 2.1.10.6) using Sterican® hypodermic needles connected to 1ml syringes. The obtained material, called BAL, was then transferred to two 1ml tubes, which were weighed and centrifuged at 230g for 5min (4°C). Thereafter, the supernatant from the first BAL (BAL I) was frozen at -20°C and used for ELISA analysis (section 2.3.5.1 and 2.3.5.2), whereas the supernatant from the second BAL (BAL II) was discarded. The cell pellets from BAL I and BAL II were then pooled together in 200µl FACS buffer, counted and used for cytospin preparation (section 2.6.2.2).

2.6.2.2 Cytospin preparation

To microscopically analyse the composition of immune cells within the BAL, a cytospin was performed. In short, glass slides were covered with Shandon filter cards and EZ Cytofunnels® and placed into Shandon cytoclips. Before adding 150µl BAL cell suspension (section
2.6.2.1) the Shandon cytoclips were mounted into the slots of the Shandon Cytospin 3 centrifuge. Centrifugation was then performed at 400rpm for 5min. During the centrifugation the fluid forms a circle of cells which is guided by the filter. Finally, cytopsins were dried overnight at room temperature and stained with Diff-Quik staining set (section 2.6.2.3).

2.6.2.3 Staining and analysis of BAL cells

The cytopsins (section 2.6.2.2) were stained with the Diff-Quik staining set according to the manufacturer’s instructions. The Diff-Quik staining is based on the Romanowski stain and includes aqueous solutions of methylene blue and eosin, dissolved in methanol. This kit allows selective staining of macrophages, eosinophils, neutrophils and lymphocytes. Thus, glass slides were placed consecutively for 10s into Diff-Quik Fix (cell fixation), Diff-Quik I (staining of eosinophils) and Diff-Quik II (staining of basophils) solutions. Afterwards, the glass slides were washed in aqua bidest. and dried for 2h at room temperature. To differentiate the immune cell populations within the BAL, the Diff-Quik stained sections were microscopically analysed. At least 100 cells were differentiated into macrophages, eosinophils, neutrophils and lymphocytes using the Axiovert microscope (x40 magnification) to determine the frequency and percentage of each cell type.

2.6.3 Sample preparation for ELISA

To decipher in situ cytokine levels, weighed lung samples were placed in 500µl of RPMI 1640 and homogenized using the T10 basic Ultra-Turrax® disperser. The homogenised samples were then centrifuged at 16,000g for 10min (4°C). After centrifugation, the resulting supernatant was frozen at -20°C and used for ELISA analysis (sections 2.3.5.1 and 2.3.5.2). Cytokine levels from antigen-specifically restimulated lung lymph node (LLN) cells were also analysed. This was done in accordance with the previously described methods (sections 2.3.1.1 and 2.3.3.3). For the measurement of OVA-specific IgE and IgG1 levels, blood samples were taken from each individual mouse and centrifuged at 16,000g for 20min (4°C). Resulting sera was frozen at -20°C and used for OVA-specific immunoglobulin ELISA analysis (section 2.3.5.3).
2.6.4 Evaluation of lung inflammation

To evaluate lung inflammation, sections were prepared as described in the previous section 2.5.3.1 and stained using the Periodic acid-Schiff (PAS) method. This stain helps to detect glycogen and other polysaccharides in tissues, especially in the basilar membranes. PAS staining is based on the reaction of periodic acid which can oxidize the diol groups of sugars, especially glucose. This produces aldehyde groups, which react with the Schiff reagent leading to bright red colouring. The PAS staining is an excellent method to stain goblet cells, which are glandular epithelial cells, filled with mucin (a glycoprotein). These cells are responsible for mucus (mucin dissolved in water) production, which is a characteristic of lung inflammation. Thus, to evaluate inflammation and goblet cell infiltration within the lung, the PAS staining was performed as depicted in Table 2.5.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Producer</th>
<th>Incubation time</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylene</td>
<td>Engelbrecht</td>
<td>10min</td>
<td>Dissolving of paraffin</td>
</tr>
<tr>
<td>Ethanol (96%)</td>
<td>MRI</td>
<td>2min</td>
<td>Rinsing with mounting water content (watering)</td>
</tr>
<tr>
<td>Ethanol (80%)</td>
<td>MRI</td>
<td>2min</td>
<td></td>
</tr>
<tr>
<td>Ethanol (70%)</td>
<td>MRI</td>
<td>2min</td>
<td></td>
</tr>
<tr>
<td>Ethanol (60%)</td>
<td>MRI</td>
<td>2min</td>
<td></td>
</tr>
<tr>
<td>Aqua bidest.</td>
<td>MRI</td>
<td>2min</td>
<td></td>
</tr>
<tr>
<td>Periodic acid (1%)</td>
<td>Morphisto</td>
<td>15min</td>
<td>Oxidation of diol sugar groups leading to aldehyde group formation</td>
</tr>
<tr>
<td>Tap water</td>
<td>-</td>
<td>Constant rinsing for 10min</td>
<td>Dissolving of periodic acid</td>
</tr>
<tr>
<td>Aqua bidest.</td>
<td>MRI</td>
<td>2min</td>
<td>Watering</td>
</tr>
<tr>
<td>Schiff reagent</td>
<td>Morphisto</td>
<td>20min</td>
<td>Staining due to the reaction of aldehyde groups with Schiff reagent</td>
</tr>
<tr>
<td>Tap water</td>
<td>-</td>
<td>Constant floating for 5min</td>
<td>Dissolving of Schiff reagent</td>
</tr>
<tr>
<td>Aqua bidest.</td>
<td>MRI</td>
<td>10s</td>
<td>Rinsing</td>
</tr>
<tr>
<td>Mayer’s haematoxylin</td>
<td>Morphisto</td>
<td>6min</td>
<td>Complexation of positive hematoxylin to the negative nucleic acids phosphate groups (nuclear staining)</td>
</tr>
<tr>
<td>Tap water</td>
<td>-</td>
<td>Constant floating for 10min</td>
<td>Achievement of deep blue staining by alteration of the pH</td>
</tr>
<tr>
<td>Ethanol (96%)</td>
<td>MRI</td>
<td>3min</td>
<td>Rinsing with mounting alcohol content (dehydration)</td>
</tr>
<tr>
<td>Ethanol (96%)</td>
<td>MRI</td>
<td>3min</td>
<td></td>
</tr>
<tr>
<td>Isopropanol</td>
<td>MRI</td>
<td>5min</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>Engelbrecht</td>
<td>10min</td>
<td>Fixation</td>
</tr>
<tr>
<td>Entellan®</td>
<td>Merck</td>
<td>-</td>
<td>Fixation and covering with coverslip</td>
</tr>
</tbody>
</table>

Table 2.5: Periodic acid-Schiff (PAS) staining protocol
Stained lung sections were analysed microscopically for tissue inflammation and goblet cell infiltration. Lung tissue inflammation was determined by the degree of visual thickness of the basal membrane, which was graded on a scale from 0 to 3 (inflammation score) according to previous described standard method [221, 222]. In brief, a value of 0 was assigned when no inflammation was detectable, a value of 1 was assigned for occasional cuffing with inflammatory cells, a value of 2 was assigned for most bronchi or vessels surrounded by a thin layer (one to five cells thick) of inflammatory cells, and a value of 3 was given when most bronchi or vessels were surrounded by more than five inflammatory cells thick.
3 Results

3.1 Deciphering the mechanisms of SEA-mediated immunomodulation

A main characteristic of Schistosomiasis is the polarized Th2 immune response which is promoted by SEA released from schistosome eggs (section 1.3.3). In addition, several studies have deciphered that TLR-mediated immune responses from DCs and macrophages can be suppressed by SEA (section 1.3.5). The first sections of this chapter highlight research aspects which have strived to investigate SEA-mediated immunomodulating mechanisms leading to either Th2 polarization, inflammasome activation or the suppression of innate immune responses. Whereas the former was mainly deciphered through in vivo infection studies the latter used various in vitro experiments with BMDCs. The second half of this chapter revolved around inflammasome studies in another Th2 model namely allergic airway inflammation. These in vivo studies also addressed the outcome of allergy upon blocking IL-1 signalling using already registered drugs.

3.1.1 SEA suppresses TLR-triggered innate immune responses

As mentioned above, previous studies have shown that SEA inhibits TLR-mediated immune responses [122-127]. To confirm and expand upon those data BMDCs were prepared and cultured as described in section 2.3.1.2 and 2.3.3.1, respectively. Before enacting the described suppression assays (section 2.3.3.2), a portion of the generated BMDCs were stained with CD11c, CD11b, F4/80, CD80, CD83 and CD86 FACS antibodies (section 2.3.6.1) to examine them for maturation and activation status. BMDC populations, which consisted of at least 85% CD11c+ cells and showed low expression of the maturation markers CD80, CD83 and CD86, were used for the assays. In short, BMDCs were pre-treated with SEA for 30min and then activated with various TLR stimuli for 24h. The resulting cytokine responses (IL-6 and TNF-α) were then measured using ELISA (section 2.3.5) and the results are depicted in Figure 3.1.
Results

Figure 3.1: SEA suppresses TLR-mediated TNF-α and IL-6 responses in a dose dependent manner
BMDCs (1x10⁹/ml) were primed with 1µg/ml, 10µg/ml and 100µg/ml SEA or medium (white bars) for 30min and then stimulated with 25ng/ml P₃Cys, LPS and CpG or medium (control) for an additional 24h. Culture supernatants were evaluated for TNF-α and IL-6 release by ELISA. Bars represent an example of the mean ± standard deviation (SD) of three independent experiments. Asterisks show significant differences between brackets * p<0.05

BMDCs stimulated with TLR stimuli alone (white bars) released high amounts of TNF-α and IL-6. However, addition of SEA significantly inhibited these TLR-mediated TNF-α and IL-6 responses. The suppressive effect of SEA was dose dependent as stimulation with low dose SEA concentration of 1µg/ml (light grey bars) showed almost no suppressive ability. In addition, cell cultures with SEA without TLR stimuli (control bars) did not elicit TNF-α or IL-6 nor did it up-regulate co-stimulatory markers CD80 and CD86 expression (data not shown). These data confirm results described from previous studies but in addition show that SEA can also suppress TLR2 and TLR9 triggering responses [123, 125].

3.1.2 SEA induces IL-1β production
As shown above and in accordance to current literature, no stimulatory effects of SEA on innate immune cells, such as DCs or macrophages, have been reported. However, other parasites, such as the Plasmodium species, which causes malaria infection due to the release of hemozoin, can activate the NLRP3 inflammasome which facilitates the release of high amounts of the proinflammatory cytokine IL-1β [223-225]. Moreover, recent studies identified components within SEA which are recognized by different C-type lectin receptors (CLRs) [122, 123]. In addition, some CLRs have also been shown to initiate inflammasome activation and IL-1β production upon triggering with fungal products [134, 135]. To examine whether schistosome-derived antigens could induce the release of IL-1β, BMDCs were co-
cultured in the manner described in section 2.3.3.2. In brief, BMDCs were pulsed with TLR stimuli for 4-6h to accumulate pro-IL-1β within the cells. Thereafter, SEA was added to the cultures for 24h to activate the inflammasome complex leading to the cleavage of IL-1β which was then determined within the supernatant by ELISA. The results are illustrated in Figure 3.2.

Figure 3.2: SEA induces IL-1β production in a dose dependent manner
BMDCs (1x10⁶/ml) were primed with 25ng/ml P₃Cys, LPS and CpG or medium (control) for 4-6h and then stimulated with 1µg/ml, 10µg/ml and 100µg/ml SEA or medium (white bars) for an additional 24h. The supernatants were evaluated using a specific IL-1β ELISA. Bars represent an example of the mean ± SD of three independent experiments. Asterisks show significant differences between brackets ** p<0.01 and * p<0.05.

As shown in Figure 3.2, BMDCs primed with TLR stimuli alone (white bars) released low amounts of IL-1β, whereas additional stimulation with SEA significantly increased the production of this cytokine. This SEA-mediated IL-1β induction was also dose dependent as stimulation with increasing amounts of SEA lead to increased IL-1β release. In addition, SEA alone (control bars) did not elicit IL-1β release, which was also observed for TNF-α and IL-6 responses in the previous section 3.1.1. Moreover, IL-1β production was also not observed within stimulation experiments using worm antigen, frozen whole eggs or egg shells (data not shown), implying that viable eggs secrete SEA component(s) that specifically trigger inflammasome activation. The following induction or suppression stimulation assays were always performed with a concentration of 50µg/ml SEA.

3.1.3 SEA-mediated IL-1β induction depends on viable BMDCs

IL-1β is a strong proinflammatory cytokine, which is secreted from various cell types upon triggering with DAMPs or PAMPs (section 1.4.2). However, dying or necrotic cells are also a source of IL-1β [200, 226]. Dying or lysed cells secrete lactate dehydrogenase (LDH) which
can be measured in a coupled enzymatic assay. Therefore, to exclude that the observed IL-1β production in these SEA co-cultures was not due to cell death or lysis, the viability of stimulated BMDCs were analysed using a LDH cytotoxicity assay according to the description in the section 2.3.7. The results of the LDH cytotoxicity assay are shown in Figure 3.3.

Figure 3.3: Cell viability is maintained after SEA stimulation
BMDCs (1x10⁶/ml) were primed with 25ng/ml P₃Cys, LPS and CpG or medium (control) for 4-6h and then stimulated with or without SEA (50µg/ml) for an additional 24h. The amounts of the released lactate dehydrogenase (LDH) within the supernatants were then measured at 490nm and compared to a LDH positive control (black bar). Bars represent an example of the mean ± SD of three independent experiments. Asterisks show significant differences between brackets *** p<0.001.

As depicted in Figure 3.3, BMDCs stimulated with TLR and/or SEA did not release increased amounts of LDH compared to unstimulated (white bar) BMDCs. Moreover, stimulated BMDCs supernatants contained significantly less LDH compared to the LDH positive control (black bar). These data confirm that the presence of SEA within the cell cultures does not lead to cell death, suggesting that SEA specifically triggers TLR-primed BMDCs to induce IL-1β secretion. Interestingly, regardless of the employed TLR stimuli (P₃Cys, LPS and CpG), SEA was able to elicit the same result. Moreover, BMDCs showed almost the same LDH release and this was also independent of the TLR stimuli. Therefore, the results shown in the following sections are depicted only for those conducted with the TLR2 stimulus P₃Cys. However, all experiments were performed with CpG and some were also confirmed with LPS.
3.1.4 SEA-mediated immunomodulatory effects depend on glycosylated proteins and lipids

SEA is a complex mixture consisting of highly glycosylated proteins and lipids [108, 109]. To narrow down which type of component was responsible for the observed in vitro effects (section 3.1.1 and 3.1.2) or moreover, whether the IL-1β induction and suppression of TLR-mediated immune responses was due to the same component, the following assays were performed. In short, both experimental cultures were repeated using SEA in which the protein components were degraded either by heat inactivation (SEAh.i) or digestion with proteinase K (SEAPK) as described in section 2.5.1.4. The results demonstrated in Figure 3.4 show the levels of IL-1β and TNF-α responses.

![Figure 3.4: SEA-mediated IL-1β induction depends on a (glyco-)protein, whereas a (glyco-)lipid mediates the suppression of TNF-α](image)

(A) BMDCs (1x10^6/ml) were primed with 25ng/ml P3Cys or medium (control) for 4-6h and then stimulated with 50µg/ml SEA, SEAh.i (heat inactivated) and SEAPK (proteinase K digested) or medium (white bars) for an additional 24h. (B) BMDCs (1x10^6) were primed with 50µg/ml SEA, SEAh.i and SEAPK or medium (white bars) for 30min and then stimulated with 25ng/ml P3Cys or medium (control) for a further 24h. The supernatants were evaluated using (A) IL-1β and (B) TNF-α ELISAs. Bars represent the mean ± SD of three independent experiments. Asterisks show significant differences between brackets *** p<0.001 and ** p<0.01.

Indeed, protein-inactivated SEA could no longer induce IL-1β production (Figure 3.4 A) but could still suppress TNF-α responses (Figure 3.4 B), suggesting that the IL-1β-inducing component was a (glyco-)protein. Interestingly, the opposite was observed for the suppression of TLR-triggered responses indicating that this component was a non-protein ((glyco-)lipid).
3.2 Investigating SEA-mediated inflammasome activation

As described in the previous section 3.1, SEA-mediated IL-1β induction depends on a (glyco-)protein (Figure 3.4 A) and was not mediated by induction of cell death (Figure 3.3). However, the secretion of the proinflammatory cytokine IL-1β highly depends upon the activation of the multiprotein complex called the inflammasome [150, 151]. To date, five inflammasome complexes have been reported which sense PAMPs and DAMPs and lead to the cleavage of pro-IL-1β into its bioactive form (section 1.4.1). Therefore, to investigate the inflammasome complex and the upstream activation mechanisms that are responsible for the SEA-mediated IL-1β induction, immune responses from stimulated BMDCs of wildtype and several knockout mice (C57BL/6 background) were analysed and evaluated.

3.2.1 SEA mediates the cleavage of IL-1β through caspase-1 activation

The main regulatory component of the inflammasome is caspase-1 (Casp1), which cleaves pro-IL-1β into its functional bioactive form [150-152, 158-161, 172]. To confirm the necessity of Casp1 in the observed release of IL-1β by SEA stimulation, the appearance of cleaved IL-1β (p17) and Casp1 (p20) products (section 1.4.2) were detected using the Western blot technique (section 2.4). Furthermore, BMDCs from Casp1^{-/-} and wildtype mice were stimulated as described in section 2.3.3.2 and supernatants were analysed using ELISA. Results are depicted in Figure 3.5.
In addition to the previous ELISA measurements (section 3.1), Western blot analysis (Figure 3.5 A) confirmed that TLR-stimulated BMDCs which were additionally cocultured with SEA (lane 6-8) induced cleavage of pro-IL-1β (p31) into the bioactive IL-1β (p17) form. Moreover, pro-IL-1β was also cleaved when TLR-primed BMDCs were stimulated with ATP (lane 5) which is a potent inflammasome activator leading to enhanced IL-1β production within a short time (1h) [181, 191-193]. As shown in Figure 3.5 B, the cleavage of pro-Casp1 (p45) into the functional Casp1 (p20) could also be detected with ATP (lane 5) and SEA (lane 6-8) in the same extent as the IL-1β cleavage, suggesting that SEA mediates IL-1β cleavage through a Casp1-dependent inflammasome pathway. Nevertheless, slight cleavage of IL-1β and Casp1 was also seen when using ATP alone, an extremely strong inflammasome activator (sections 1.4.2 and 4.2.1). However, stimulation with SEA alone (lane 3 in Figure 3.5 A and B) did not lead to inflammasome activation and cleavage of the precursor forms. To substantiate the Western blot results, TLR-primed Casp1-deficient BMDCs were also

Figure 3.5: SEA-mediated IL-1β induction depends on caspase-1 activation
Wildtype and Caspase-1^{−/−} (Casp1^{−/−}) BMDCs (1x10⁶/ml) were primed with 25ng/ml P₃Cys or medium for 4-6h and then stimulated with 5mM ATP for 1h or 50μg/ml SEA and medium for (A-B) 1h, 3h and 6h or (C-E) 24h. The supernatants were evaluated by Western blot technique using antibodies against (A) IL-1β p17 and (B) Casp1 p20 cleavage products or by (C) IL-1β and (E) TNF-α ELISA. (D) BMDCs were lysed and intracellular pro-IL-1β was measured by IL-1β ELISA. (A, B) Examples of Western blot membranes from four independent experiments. (C-E) Bars represent the mean ± SD of three independent experiments. Asterisks show significant differences between brackets *** p<0.001.
stimulated with SEA or ATP. As shown in Figure 3.5 C, Casp1-deficient BMDCs showed impaired IL-1β production but normal intracellular pro-IL-1β accumulation (Figure 3.5 D). Interestingly, BMDC cultures maintained normal TNF-α secretion (Figure 3.5 E), confirming the two independent immunmodulating mechanisms of SEA described in section 3.1.4.

3.2.2 SEA-mediated IL-1β induction depends on NLRP3 inflammasome activation

The finding that Casp1 activation is responsible for the SEA-mediated IL-1β cleavage (section 3.2.1) further suggested that the inflammasome was also involved in this IL-1β release. In addition to Casp1, the inflammasome consists of ASC and a protein of the NLR family, such as NLRP1, NLRP3, NLRP6, NLRC4 and AIM2 (section 1.4.1). However, the majority of tested PAMPs and DAMPs, including the plasmodium studies [223-225] have been shown to trigger the NLRP3 inflammasome (section 1.4.2). Thus, the NLRP3 inflammasome seem to be a prime candidate driving SEA-mediated IL-1β production. To confirm this hypothesis, NLRP3- and ASC-deficient BMDCs were stimulated as previously described and supernatants were analysed using Western blot and ELISA techniques. The results are summarized in Figure 3.6.
Results

![Graphs showing IL-1β and pro-IL-1β levels](image)

Figure 3.6: SEA mediates IL-1β release in an ASC- and NLRP3-dependent manner

Wildtype, NLRP3\(^{-/-}\) and ASC\(^{-/-}\) BMDCs (1x10\(^6\)/ml) were primed with 25ng/ml P\(_3\)Cys or medium for 4-6h and then stimulated with either 5mM ATP for 1h or 50\(\mu\)g/ml SEA and medium for (B) 6h or (A, C) 24h. (D) Wildtype, NLRP3\(^{-/-}\) and ASC\(^{-/-}\) BMDCs were primed with 50\(\mu\)g/ml SEA or medium for 30min and then stimulated with 25ng/ml P\(_3\)Cys or medium for an additional 24h. The supernatants were evaluated in (B) by Western blot technique using antibodies against IL-1β p17 or Casp1 p10 cleavage products or in (A) IL-1β and (D) TNF-α by ELISA. (C) BMDCs were lysed and intracellular pro-IL-1β was measured by IL-1β ELISA. (A, C-D) Bars represent the mean ± SD of three independent experiments. Asterisks show significant differences between brackets *** p<0.001 and ** p<0.01. (B) Example of Western blot membrane from five independent experiments.

As shown in Figure 3.6 A, SEA-mediated IL-1β secretion was impaired in the absence of ASC or NLRP3 and furthermore, these NLRP3 inflammasome-deficient BMDCs failed to process the cleaved products of Casp1 and IL-1β (Figure 3.6 B). Interestingly, pro-IL-1β accumulation was not altered in the absence of ASC and NLRP3 (Figure 3.6 C), confirming that the accumulation of the precursor is independent of inflammasome assembling and based on the NF-κB pathway activation. These findings were also confirmed with ATP (Figure 3.6 A-C). However, SEA-mediated suppression of TNF-α was unaffected by the absence of ASC and NLRP3, confirming the above described results with Casp1-deficient BMDCs (section 3.2.1 and Figure 3.5 E).
3.2.3 SEA-mediated NLRP3 inflammasome activation depends on intracellular potassium efflux and mitochondrial reactive oxygen species

Several studies have indicated that NLRP3 inflammasome activation is triggered by different upstream events such as potassium efflux and reactive oxygen species (ROS) production [135, 187-193]. To decipher the role of these intermediary signals, BMDCs were treated with potassium chloride or glibenclamide to block potassium channels and ROS inhibitors to block the accumulation of ROS (see section 2.3.3.2 for details).

![Figure 3.7](image)

Figure 3.7: SEA-mediated NLRP3 inflammasome activation requires potassium efflux and reactive oxygen species (ROS) production

BMDCs were primed with 25ng/ml P3Cys or medium for 4-6h and then stimulated with either 5mM ATP for 1h, *Salmonella typhimurium* (S.typh.) with a multiplicity of infection (MOI) of 10 for 6h, 50µg/ml SEA or medium for 24h. In some cultures, BMDCs were pretreated for 30min with (A, C) 60mM KCl, (A) 60mM NaCl, (B, C) 150µM glibenclamide to block potassium channels, (D, F) 50mM Nac or (E, F) 200µM APDC to inhibit ROS production. The resulting supernatants were evaluated by ELISA for (A-B, D-E) IL-1β and (C, F) TNF-α production. Bars represent the mean ± SD of three independent experiments. Asterisks show significant differences between brackets *** p<0.001 and ** p<0.01.
Potassium efflux can be blocked by either increasing the extracellular potassium concentration through additional KCl or by inhibiting the ATP-sensitive potassium channels through glibenclamide. Both of these pretreatment methods lead to impaired IL-1β production in TLR-triggered SEA or ATP stimulated BMDC cultures (Figure 3.7 A and B). However, the SEA- and ATP-mediated IL-1β secretion was not impaired with NaCl (Figure 3.7 A), confirming that activation of potassium channels followed by potassium efflux specifically mediates NLRP3 inflammasome assembling. In addition, treatment with the ROS inhibitors N-acetyl-L-cysteine (Nac), which is an antioxidant and free radical scavenger, or (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylic acid (APDC), which inhibits the NADPH-oxidase dependent ROS system, also inhibited the SEA- and ATP-mediated IL-1β production (Figure 3.7 D and E). As a control, Salmonella typhimurium (S.typh.) was used as a secondary stimulus since this bacterium has been shown to specifically activate the NLRC4 inflammasome [175]. In the experiment depicted in Figure 3.7, IL-1β production continues to be induced during inhibition of potassium efflux and ROS production, demonstrating that these two intermediary signals are specific for NLRP3 inflammasome activation. Interestingly, blocking potassium efflux and ROS production did not influence the SEA-mediated secretion profile of TNF-α (Figure 3.7 C and F).

Recently, Zhou et al. have been shown that Candida albicans mediated NLRP3 inflammasome activation depends on mitochondrial ROS production [195]. Therefore, to investigate the role of mitochondrial ROS production during SEA-mediated NLRP3 inflammasome activation, BMDCs were inhibited with 2,4-dinitrophenole (DNP) or carbonyl cyanide p-(tri-fluoromethoxy)phenyl-hydrazone (FCCP). These substances uncouple oxidative phosphorylation within the mitochondrial electron transport chain by carrying protons across the mitochondrial membrane. This leads to impaired ROS production and ATP generation. Since, ATP is a molecule used for energy transfer and is therefore crucial for maintaining cell viability it was essential to control in these experiments that the BMDCs were still viable and could produce efficient amounts of ATP upon DNP and FCCP treatment. This analysis was performed using an ATP-mediated luminescent cell viability assay as described in section 2.3.8. Additionally, IL-1β and TNF-α secretions were evaluated using ELISA and the results of these mitochondrial based assays are illustrated in Figure 3.8.
Results

Figure 3.8: Mitochondrial ROS facilitates SEA-mediated NLRP3 inflammasome activation
BMDCs (1x10⁶/ml) were primed with 25ng/ml P₃Cys or medium for 4-6h and then stimulated with or without SEA (50µg/ml) for a further 24h. To inhibit mitochondrial ROS production, BMDCs were pretreated with 100nM-1mM DNP (2,4-dinitrophenole) or 10nM-100µM FCCP (carbonyl cyanide p-(tri-fluromethoxy)phenyl-hydrazone)) for 30min before the addition of SEA. (A) ATP levels within the supernatants were evaluated using a luminescent cell viability assay and (B) IL-1β and (C) TNF-α amounts were measured by ELISA. Bars represent the mean ± SD of two independent experiments. Asterisks show significant differences between brackets *** p<0.001, ** p<0.01 and * p<0.05.
The ATP-derived luminescent signals were detected in relative light units (RLU) and as shown in Figure 3.8 A, ATP levels were significantly decreased when BMDCs were additionally treated with high concentrations of DNP and FCCP. Thus, these high concentrations of DNP and FCCP had to be excluded in the experiments evaluating the effects of mitochondrial ROS during SEA-mediated IL-1β and TNF-α secretion. Indeed, SEA-mediated IL-1β production was significantly impaired when BMDCs were treated with the concentrations of DNP (100nM-10µM) and FCCP (10nM-10µM) (Figure 3.8 B), suggesting that mitochondrial ROS production is crucial for SEA-mediated NLRP3 inflammasome activation. Interestingly, IL-1β levels increased when BMDCs were treated with the high concentrations of DNP (100µM-1mM) and FCCP (100µM), confirming that the ATP production was abolished in these BMDCs (Figure 3.7 A) and leading to cell death, which is a source of IL-1β [200, 226]. TNF-α secretion was not affected by blocking mitochondrial ROS (Figure 3.8 C) clearly showing that this SEA-mediated effect is not dependent on the inflammasome.

3.2.4 NLRP3 inflammasome activation by SEA is independent of phagocytosis

To activate the NLRP3 inflammasome two mechanisms are known to be important, phagocytosis and receptor triggering. Several studies have shown that triggering phagocytosis leads to lysosomal rupture and the release of cathepsin B which in turn results in NLRP3 inflammasome activation [186-190]. To investigate whether the SEA-mediated assembly of the NLRP3 inflammasome was via phagocytosis mechanisms, BMDCs culture assays were performed using cytochalasin D (CytD), which blocks actin polymerization, particle internalization and the binding stage of phagocytosis (Figure 3.9).
Results

Figure 3.9: SEA-mediated NLRP3 inflammasome activation is independent of phagocytosis

(A) BMDCs (1x10⁶/ml) were primed with 25ng/ml P₃Cys or medium (control) for 4-6h and then stimulated in the presence or absence of SEA (50µg/ml) for an additional 24h. (B) BMDCs (1x10⁶/ml) were primed with 50µg/ml SEA or left alone (white bars) for 30min and then stimulated with 25ng/ml P₃Cys or medium (control) for an additional 24h. For the inhibition of phagocytosis, BMDCs were pretreated with 1µM cytochalasin D (CytD) for 30min before the addition of SEA. The supernatants were evaluated using (A) IL-1β and (B) TNF-α ELISAs. Bars represent an example of the mean ± SD of three independent experiments. Asterisks show significant differences between brackets *** p<0.001 and ** p<0.01.

As shown in Figure 3.9 A, SEA-mediated IL-1β production was maintained after treatment with CytD, whereas BMDCs treated with aluminium hydroxide (Al(OH)₃), which activate the NLRP3 inflammasome via phagocytosis [188], could no longer induce IL-1β. In addition, SEA-mediated TNF-α suppression was not impaired by CytD (Figure 3.9 B).

3.2.5 SEA triggers the Dectin-2 receptor to activate the NLRP3 inflammasome

In the previous section 3.2.4, it was demonstrated that SEA-mediated NLRP3 inflammasome activation and IL-1β induction is independent of phagocytosis indicating that the responsible mechanism is elicited through specific triggering of a receptor. Several studies have provided evidence that ATP activates the NLRP3 inflammasome by triggering the P2X7 receptor [191-193]. Thus, to elucidate whether SEA-mediated NLRP3 inflammasome activation also involved this receptor, P2X7-deficient BMDCs were stimulated in the above described manner (section 2.3.3.2) and culture supernatants were evaluated for levels of IL-1β and TNF-α (Figure 3.10).
Results

Figure 3.10: SEA-mediated NLRP3 inflammasome activation is independent of the P2X7 receptor

P2X7-/- and wildtype BMDCs (1x106/ml) were primed with 25ng/ml P\textsubscript{3}Cys or medium for 4-6h and then stimulated with either 5mM ATP for 1h or 50µg/ml SEA for an additional 24h. The resulting supernatants were evaluated for (A) IL-1\textbeta and (B) TNF-\alpha release using ELISA. Bars represent the mean \pm SD of three independent experiments. Asterisks show significant differences between brackets *** p<0.001.

In contrast to ATP, SEA-mediated IL-1\textbeta production was still detectable in P2X7 receptor-deficient BMDCs (Figure 3.10 A), excluding the requirement for intracellular ATP in the SEA-mediated NLRP3 inflammasome activation. In addition, no ATP could be detected within SEA preparations (data not shown) and again, TNF-\alpha secretion remained intact (Figure 3.10 B). These data demonstrate that SEA-mediated NLRP3 inflammasome activation is independent of the P2X7 receptor which additionally implied that this process was conducted through a different type of receptor. Since components within the SEA are highly glycosylated [108, 109], C-type lectin receptors obviously play a role in its recognition. Indeed, several studies have shown that different C-type lectin receptors (CLRs) are triggered by SEA [122, 123, 130-132]. Interestingly, studies with the fungus \textit{C.albicans} revealed a critical role of the CLR Dectin-1 for NLRP3 inflammasome activation [134, 135] (see section 1.3.5 for details). Thus, CLRs seem to be critical candidates for SEA-mediated NLRP3 inflammasome activation. To identify the specific receptor that is responsible for SEA-triggering, BMDCs, deficient of different receptors (especially C-type lectin receptors), were stimulated in the above described manner with TLR stimuli and SEA. The resulting levels of IL-1\textbeta and TNF-\alpha secretions are depicted in Figure 3.11.
Figure 3.11: SEA triggers the Dectin-2 receptor to induce NLRP3 inflammasome activation

(A-F) Wildtype, (A) CD36 −/−, (B) DAP12 −/−, (C) CD206 −/−, (D) Dectin-1 −/− and (E) Dectin-2 −/− BMDCs (1x10⁶/ml) were primed with or without 25ng/ml P3Cys for 4-6h and then stimulated with either 5mM ATP for 1h or 50µg/ml SEA for an additional 24h. Alternatively, (G-H) Wildtype and (G) Dectin-2 −/− BMDCs (1x10⁶/ml) were primed with 50µg/ml SEA for 30min and then stimulated with 25ng/ml P3Cys for a further 24h. (F, H) For Dectin-2 blocking experiments, BMDCs (1x10⁶/ml) were pretreated with 5-15µg/ml Dectin-2 antibody or IgG2a isotype control for 2h before the addition of SEA. Culture supernatants were evaluated for (A-F) IL-1β and (G-H) TNF-α by ELISA. Bars represent the mean ± SD of three independent experiments. Asterisks show significant differences between brackets *** p<0.001, ** p<0.01 and * p<0.05.

As shown in Figures 3.11 A and C, BMDCs lacking the scavenger coreceptor CD36, which senses lipids, especially diacylglycerides [227], or the mannose receptor CD206, which recognizes mannose structures to initiate phagocytosis [228], showed no alteration in IL-1β production. These data confirm that SEA-mediated IL-1β induction is probably due to the triggering of a (glyco-)protein (section 3.1.4 and Figure 3.4 A) and independent of phagocytosis processes (section 3.2.4 and Figure 3.9 A), respectively. Moreover, no impaired SEA-mediated IL-1β secretion was observed using BMDCs lacking the adapter protein DAP12 (Figure 3.11 B). This molecule transmits signals from different receptors into the cytosol via the immunoreceptor tyrosine-based activation motif (ITAM) [229]. IL-1β
production was still present from cells deficient for the Dectin-1 receptor (Figure 3.11 D). The receptor has already been shown to facilitate NLRP3 inflammasome activation and IL-1β production by the fungus *Candida albicans* [134, 135]. However, SEA-mediated IL-1β production was significantly inhibited in Dectin-2-deficient BMDCs, whereas the ATP-mediated IL-1β production remained unaltered (Figure 3.11 E). This finding could be confirmed by the treatment of BMDCs with Dectin-2 blocking antibodies (Figure 3.11 F). Nevertheless, SEA-mediated TNF-α suppression was not affected (Figure 3.11 G and H), emphasizing that different components within the SEA mediate different immune reactions.

3.2.6 Dectin-2 couples to FcRγ chain to activate Syk signalling

The C-type lectin receptor Dectin-2 binds high mannose structures [230, 231]. Moreover, it has been further shown to couple with the Fc receptor γ (FcRγ) chain that contains ITAM signalling molecules which are phosphorylated through spleen tyrosine kinase (Syk), a precursor step to the induction of innate immune responses [135, 232-237]. The coupling and signalling mechanisms of these three molecules have been studied in experiments using the fungus *Candida albicans*. To analyse the role of FcRγ and Syk during SEA-mediated triggering of Dectin-2, BMDCs simulation assays using FcRγ⁻/⁻ BMDCs and Syk inhibitor (R406) were performed and the results are depicted in Figure 3.12.

![Figure 3.12: SEA triggering of Dectin-2 activates Fc receptor γ chain and spleen tyrosine kinase](image)

(A-B) Wildtype and (A) FcRγ⁻/⁻ BMDCs (1x10⁶/ml) were primed with 25ng/ml P₃Cys for 4-6h and then stimulated with either 5mM ATP for 1h, *Salmonella typhimurium* (*S.typh.*) with a multiplicity of infection (MOI) of 10 for 6h or 50µg/ml SEA for a further 24h. (C-D) Wildtype and (C) FcRγ⁻/⁻ BMDCs (1x10⁶/ml) were primed with or without 50µg/ml SEA for 30min and then stimulated with 25ng/ml P₃Cys for an additional 24h. (B, D) For inhibition of the spleen tyrosine kinase (Syk), BMDCs were pretreated with 1µM R406 for 30min before the addition of SEA. The supernatants were evaluated for (A-B) IL-1β or (C-D) TNF-α by ELISAs. Bars represent the mean ± SD of three independent experiments. Asterisks show significant differences between brackets *** p<0.001.
Interestingly, FcRγ-deficient mice showed impaired IL-1β production after stimulation with SEA, whereas ATP-mediated IL-1β induction was not altered (Figure 3.12 A). Moreover, inhibition of Syk signalling with the inhibitor R406, which is already used in clinical trials for the treatment of inflammatory diseases [238], completely blocked SEA-mediated IL-1β production. In contrast, no effect could be observed when BMDCs were stimulated with *Salmonella typhimurium* (*S.typh.*) (Figure 3.12 B), confirming that NLRC4 inflammasome activation is independent of Syk signalling [135]. Contrary, the ability of SEA to suppress TNF-α production upon TLR-triggering was not altered in FcRγ−/− BMDCs (Figure 3.12 C) or after inhibition of Syk signalling (Figure 3.12 D). These results confirm that SEA triggers the Dectin-2 receptor that couples to the FcRγ chain to induce Syk activation.

3.2.7 Card9 is a crucial molecule for SEA-mediated NLRP3 inflammasome activation

Several intermediate molecules are relevant for the transmission of signals downstream from Syk. These molecules can indirectly trigger downstream processes, such as ROS production and potassium efflux which, as shown in previous section 3.2.3, are critical for SEA-mediated inflammasome activation. However, to date, no direct associations have been observed. Nevertheless, several studies have suggested that the Syk-ITAM-based signalling leads to aggregation of caspase recruitment domain 9 (Card9) which links to the adapter protein B cell lymphoma 10 (Bcl10) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) to induce nuclear factor-κB (NF-κB) pathway and proinflammatory cytokine release [233, 234, 239, 240]. These findings are again mainly based on the *C.albicans*-mediated triggering of the Dectin-1 receptor but this fungus is further associated with Dectin-2 triggering and the induction of Card9 signalling aswell [236, 237]. To investigate the role of Card9 during SEA-mediated NLRP3 inflammasome activation, Card9-deficient BMDCs were stimulated with TLR in the presence of SEA and the resulting quantities of IL-1β and pro-IL-1β were evaluated by ELISA (Figure 3.13).
Results

Figure 3.13: SEA-mediated NLRP3 inflammasome activation depends on the Card9 molecule
Wildtype and Card9-/- BMDCs (1x10⁶/ml) were primed with 25ng/ml P₃Cys for 4-6h and then stimulated with or without 50µg/ml SEA for an additional 24h. (A) The supernatants were evaluated by IL-1β ELISA. (B) BMDCs were lysed and intracellular pro-IL-1β was measured by IL-1β ELISA. Bars represent the mean ± SD of three independent experiments. Asterisks show significant differences between brackets *** p<0.001 and ** p< 0.01.

As clearly shown in Figure 3.13, TLR-primed Card9-deficient BMDCs showed impaired IL-1β secretion upon co-culture with SEA (Figure 3.13 A). It is known that Card9 can mediate signals via the induction of the NF-κB lead to the transcription and accumulation of inflammatory and precursor cytokines, such as pro-IL-1β (see section 1.4.2). Therefore the observed reduction in IL-1β secretion of Card9-/- BMDCs seen in Figure 3.13A could have been due to the impaired accumulation of pro-IL-1β. Interestingly, pro-IL-1β was even accelerated in Card9-deficient BMDCs (Figure 3.13 B), suggesting that the Card9 molecule plays a crucial role for the NLRP3 inflammasome activation independent of NF-κB pathway signalling.

3.2.8 Model of SEA-mediated NLRP3 inflammasome activation
The findings of these above described in vitro BMDCs stimulation assays (sections 3.2.1-3.2.6), were fused into the manuscript entitled “Schistosoma mansoni triggers Dectin-2, which activates the NLRP3 inflammasome and alters adaptive immune responses” by Ritter et al. 2010 [241]. With the additional experiments using mitochondrial blocking agents (section 3.2.3 and Figure 3.8) and Card9-deficient cells (section 3.2.7 and Figure 3.13), a model for SEA-mediated NLRP3 inflammasome activation mechanisms begins to emerge (Figure 4.1). In essence, a (glyco-)protein within the SEA triggers the Dectin-2 receptor that is coupled with the FeRγ chain, which contains the ITAM signalling molecule. The repeated tyrosine
sequence of the ITAM motif becomes phosphorylated by Syk leading to signal transmission via indirect and direct processes. Indirect processes are characterized by the activation of the intermediary molecules ROS that are produced by the mitochondria and potassium that is transported out of the cell via potassium channels. Direct processes on the other hand appear to be facilitated by the Syk-mediated association and activation of the Card9-Bcl10-Malt1 complex. Finally, these intermediary molecules activate the NLRP3 inflammasome containing NLRP3, ASC and pro-Casp1 leading to cleavage of the precursor pro-Casp1 into Casp1, which then cleaves the pro-IL1β into the functional bioactive IL-1β that is finally secreted out of the BMDCs (see section 4.2.5 for details).

3.3 Investigation of inflammasome activation during *S. mansoni* infection

As shown in the previous sections, 3.1 and 3.2, SEA induces NLRP3 inflammasome activation of TLR-primed BMDCs *in vitro*. To decipher the role of the NLRP3 inflammasome during an ongoing *S. mansoni* infection, NLRP3⁻/⁻, ASC⁻/⁻, Dectin-2⁻/⁻, IL-1R⁻/⁻ and Dectin-1⁻/⁻ mice on C57BL/6 background were infected with *S. mansoni* cercariae as described in section 2.5. After 8 weeks of infection, parasitological, histological and immunological parameters of the infected knockout mice were evaluated and compared with infected wildtype mice.

3.3.1 Parasitological parameters are not altered in the different knockout strains

S. mansoni-infected mice were sacrificed after 8 weeks of infection and the parasitological parameters degree of infection (DOI), organ weight (spleen, liver and intestine), worm count and egg count within the intestine and liver were evaluated as described in section 2.5.3. Data accumulated from these parasitological parameters are summarized in Table 3.1.
Table 3.1: Parasitological parameters after 8 weeks of *S. mansoni* infection

<table>
<thead>
<tr>
<th>Parasitological parameters</th>
<th>Wildtype</th>
<th>ASC−/−</th>
<th>NLRP3−/−</th>
<th>IL-1R−/−</th>
<th>Dectin-2−/−</th>
<th>Dectin-1−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse weight (g)</td>
<td>22.85 (± 0.53)</td>
<td>22.65 (± 0.50)</td>
<td>24.80 (± 0.96)</td>
<td>23.74 (± 0.55)</td>
<td>25.43 (± 0.73)</td>
<td>25.01 (± 0.72)</td>
</tr>
<tr>
<td>DOI (degree of infection)</td>
<td>2.45 (± 0.08)</td>
<td>2.25 (± 0.16)</td>
<td>2.16 (± 0.19)</td>
<td>2.21 (± 0.25)</td>
<td>2.45 (± 0.12)</td>
<td>2.50 (± 0.31)</td>
</tr>
<tr>
<td>Worms/mouse</td>
<td>12.30 (± 1.26)</td>
<td>15.50 (± 2.77)</td>
<td>9.09 (± 1.68)</td>
<td>9.08 (± 2.26)</td>
<td>9.60 (± 1.58)</td>
<td>12.63 (± 2.83)</td>
</tr>
<tr>
<td>Eggs/liver (x10^3)</td>
<td>14.88 (± 2.78)</td>
<td>11.75 (± 3.83)</td>
<td>9.671 (± 2.52)</td>
<td>7.74 (± 2.10)</td>
<td>16.25 (± 3.43)</td>
<td>11.19 (± 2.60)</td>
</tr>
<tr>
<td>Eggs/intestine (x10^3)</td>
<td>23.92 (± 3.58)</td>
<td>31.89 (± 8.57)</td>
<td>23.18 (± 4.74)</td>
<td>22.57 (± 6.88)</td>
<td>32.37 (± 6.11)</td>
<td>23.70 (± 9.39)</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>1.76 (± 0.04)</td>
<td>1.80 (± 0.05)</td>
<td>1.83 (± 0.13)</td>
<td>1.74 (± 0.10)</td>
<td>1.88 (± 0.05)</td>
<td>1.87 (± 0.12)</td>
</tr>
<tr>
<td>Intestine weight (g)</td>
<td>3.44 (± 0.07)</td>
<td>3.65 (± 0.07)</td>
<td>3.72 (± 0.22)</td>
<td>3.40 (± 0.16)</td>
<td>3.64 (± 0.10)</td>
<td>3.75 (± 0.15)</td>
</tr>
<tr>
<td>Spleen weight (g)</td>
<td>0.24 (± 0.01)</td>
<td>0.24 (± 0.02)</td>
<td>0.20 (± 0.02)</td>
<td>0.21 (± 0.02)</td>
<td>0.26 (± 0.02)</td>
<td>0.27 (± 0.04)</td>
</tr>
</tbody>
</table>

As displayed in Table 3.1, the different knockout mice showed no significant alterations in mouse weight, DOI, worm and egg count or organ weight when compared to the wildtype mice. Parasitologically, no significant differences could be observed either although there were slight changes in some parameters, such as DOI, worm and egg burden. These slight differences occur due to the natural variability of the complex infection within the host. Moreover, the individual comparison of mice from the same strain also showed deviations, especially in DOI and parasite burden (see standard deviations in brackets within Table 3.1), confirming the complexity of the *S. mansoni* infection. In summary, these data suggest that the lack of NLRP3 inflammasome components or CLRs did not influence the development and maturation of the parasite as well as the egg production.
3.3.2 Impaired granuloma formation in infected ASC\(^{-/-}\), NLRP3\(^{-/-}\), IL-1R\(^{-/-}\) and Dectin-2\(^{-/-}\) mice

As shown in section 3.3.1, no alterations could be observed in the measured parasitological parameters of infected mice deficient in either NLRP3 inflammasome components, functional IL-1R or the C-type lectin receptors Dectin-1 and Dectin-2. Besides parasite burden, another important parameter of Schistosomiasis is the formation of CD4\(^+\) T cell-mediated granulomas, which stem from inflammatory responses around schistosome eggs trapped in the liver or intestine (section 1.3.4). To analyse changes in granuloma formation, left liver lobes from infected wildtype, ASC\(^{-/-}\), NLRP3\(^{-/-}\), IL-1R\(^{-/-}\), Dectin-2\(^{-/-}\) and Dectin-1\(^{-/-}\) mice were cut (3µm), fixed on glass slides and stained with Masson's blue as described in section 2.5.3. Granuloma formation and size was then evaluated microscopically. The results are shown in Figure 3.14.

Figure 3.14: \textit{S. mansoni}-mediated Dectin-2 receptor/NLRP3 inflammasome activity and IL-1\(\beta\) signalling influence granuloma formation

Wildtype (n=35), ASC\(^{-/-}\) (n=16), NLRP3\(^{-/-}\) (n=15), IL-1R\(^{-/-}\) (n=16), Dectin-2\(^{-/-}\) (n=22) and Dectin-1\(^{-/-}\) (n=5) mice were infected with 100-120 \textit{S. mansoni} cercariae. After 8 weeks of infection, mice were sacrificed. Thereafter, left liver lobes from individually infected mice were fixed and embedded in paraffin. 3µm sections were then fixed on glass slides for Masson's blue staining. Finally, liver sections were microscopically assessed (x10 magnification) to calculate the average granuloma size per mouse. 30-40 granulomas per section from each infected mouse were analysed. Results show the combined data accumulated from three independent \textit{S. mansoni} infections per mouse strain. Symbols show mean ± SD and asterisks show significant differences between brackets *** p<0.001.

The assessment of liver immunopathology showed that ASC\(^{-/-}\), NLRP3\(^{-/-}\), IL-1R\(^{-/-}\) and Dectin-2\(^{-/-}\) mice developed significantly smaller granulomas compared to wildtype and Dectin-1-deficient mice (Figure 3.14). These data reveal a crucial role for the Dectin-2/NLRP3 inflammasome activity and functional IL-1 signalling during an ongoing \textit{S. mansoni} infection and the development of immunopathology: the main cause of morbidity in Schistosomiasis.
3.3.3 *S. mansoni* infected NLRP3\(^{-/-}\) and ASC\(^{-/-}\) mice present decreased *in situ* IL-1\(\beta\) levels within infected organs

Previous studies have shown that the IL-1 receptor antagonist (IL-1Ra), which blocks IL-1 signals by binding to the IL-1 receptor (IL-1R; section 1.4), is up-regulated during *S. mansoni* infection and moreover, treatment with an anti-IL-1Ra protein leads to increased granuloma size [242, 243]. In addition, granuloma formation is induced by trapped *S. mansoni* eggs which secrete SEA (section 1.3.4), suggesting that the granuloma formation could depend on IL-1 signalling. Indeed, previous research from this group identified that mice lacking MyD88, which is a central downstream adaptor molecule of IL-1R, also developed smaller granulomas upon *S. mansoni* infection [96]. Based on the above described model of SEA-mediated NLRP3 inflammasome activation and IL-1\(\beta\) induction (Figure 4.1), it was hypothesized that IL-1\(\beta\) should be detectable within infected organs during *S. mansoni* infection. Therefore, to investigate IL-1\(\beta\) induction *in vivo*, liver and intestine pieces from infected wildtype, NLRP3\(^{-/-}\), ASC\(^{-/-}\), IL-1R\(^{-/-}\), Dectin-2\(^{-/-}\) or Dectin-1\(^{-/-}\) mice were homogenized in RPMI 1640 (section 2.5.4) and *in situ* IL-1\(\beta\) levels were evaluated by ELISA. Results are shown in Figure 3.15.

![Figure 3.15: ASC\(^{-/-}\) and NLRP3\(^{-/-}\) mice showed decreased *in situ* IL-1\(\beta\) levels within infected organs](image)

Wildtype (n=35), ASC\(^{-/-}\) (n=16), NLRP3\(^{-/-}\) (n=15), IL-1R\(^{-/-}\) (n=16), Dectin-2\(^{-/-}\) (n=22) and Dectin-1\(^{-/-}\) (n=5) mice were infected with 100-120 *S. mansoni* cercariae. After 8 weeks of infection, mice were sacrificed and *in situ* IL-1\(\beta\) levels were analysed within infected organs. In short, weighed pieces of liver and intestine from individually infected mice were homogenized, centrifuged and the resulting supernatants evaluated by IL-1\(\beta\) ELISA. Results show the combined data accumulated from three independent *S. mansoni* infections per mouse strain. Symbols show mean \(\pm\) SD and asterisks show significant differences between brackets *** p<0.001, ** p<0.01 and * p<0.05.
Interestingly, IL-1β levels within infected organs were significantly increased compared to organs from naïve control mice strains (data not shown). As depicted in Figure 3.15, only NLRP3- and ASC-deficient mice showed significantly decreased in situ IL-1β levels within the liver and intestine, whereas IL-1R-, Dectin-2- and Dectin-1-deficient mice revealed comparable values to wildtype mice. Again, the results from NLRP3- and ASC-deficient infected mice confirm that SEA-mediated IL-1β induction depends on NLRP3 inflammasome activation, which also seems to be crucial for granuloma formation. Analysis of individually infected IL-1R-deficient mice showed several increased IL-1β values (green symbols), which indicated that there is perhaps impairment of IL-1 recognition and signalling within these mice. In addition, the unaltered in situ IL-1β levels in mice lacking the Dectin-2 receptor suggest that an additional receptor could aid SEA-mediated IL-1β induction within infected organs.

3.3.4 ASC−/−, NLRP3−/−, IL-1R−/− and Dectin-2−/− S. mansoni infected mice present altered adaptive immune responses

One of the most interesting aspects of Schistosomiasis is the change from a T_{H}1 to a dominant T_{H}2 immune response during the course of infection (Figure 1.6). Previous studies have identified that strong T_{H}2 immune responses are initiated by trapped schistosome eggs that secrete SEA [86, 87, 91], which was now also shown to induce IL-1β in vitro (sections 3.2) and in vivo (section 3.3.3). In addition, IL-1β represents a pivotal link in translating innate immune responses into appropriate adaptive pathways [200]. Indeed, both the promotion of T_{H}2 immune responses [202, 203] and the initiation of distinct T_{H} cell types, such as T_{H}17 cells [205-207] have been shown to require IL-1β. Since, granuloma formation also depends on adaptive immune responses mediated by T_{H} cells, the following experiments were performed in order to decipher the requirement of IL-1β or NLRP3 inflammasome components in directing T_{H} immune responses. Thus, lymphocyte preparations from the draining mesenteric lymph nodes (MLN) and spleen cells from infected wildtype, NLRP3−/−, ASC−/−, IL-1R−/− or Dectin-2−/− mice were prepared and stimulated with SEA as described in the section 2.3.1.1 and 2.3.3.3, respectively. Culture supernatants from these stimulated cells were then assessed for their cytokine content using ELISA and the data are demonstrated in Figure 3.16.
Figure 3.16: *S. mansoni*-mediated Dectin-2 receptor/NLRP3 inflammasome activity and IL-1β signalling influence adaptive immune responses

(A-D) Wildtype (n=35), (A, B) ASC−/− (n=16), NLRP3−/− (n=15), (C, D) IL-1R−/− (n=16) and Dectin-2−/− (n=22) mice were infected with 100-120 *S. mansoni* cercariae. After 8 weeks of infection, mice were sacrificed and lymphocytes were prepared from MLN and spleen. (A, C) 2x10^5 MLN and (B, D) spleen cells were stimulated with or without 20µg/ml SEA for 72h. Culture supernatants were then evaluated for IL-10, IL-13, IL-5, IL-17A and IFN-γ by ELISA. Results show the combined data accumulated from three independent *S. mansoni* infections per mouse strain. Bars show mean ± SD and asterisks show significant differences between brackets *** p<0.001, ** p<0.01 and * p<0.05.
As illustrated in Figure 3.16 A and B, SEA-stimulated MLN and spleen cells from infected ASC- and NLRP3-deficient mice showed significantly suppressed IL-10, IL-5, IL-17A and IFN-γ responses, whereas the IL-13 responses was significantly increased compared to responses from infected wildtype mice. SEA-stimulation of MLN (Figure 3.16 C) and spleen (Figure 3.16 D) cells from infected IL-1R- and Dectin-2-deficient mice also revealed significantly suppressed IL-10, IL-5, IL-17A (not significantly suppressed in IL-1R+/− mice) and IFN-γ responses. However, IL-13 responses were only slightly elevated in MLN and spleen cells from infected Dectin-2+/− mice. In addition, SEA stimulation of MLN and spleen cells from infected Dectin-1+/− mice showed no alterations in T H immune responses (data not shown), suggesting that the model of the SEA-mediated NLRP3 inflammasome activation, which was analysed in vitro (sections 3.2), could also influence antigen specific immune responses during infection since both T H responses and granuloma formation (section 3.3.2) are skewed. Interestingly, MLN and spleen cells of naive mice did not induce significant amounts of T H cytokines upon SEA restimulation, confirming that immune responses are specifically primed to SEA in vivo. Additionally, FACS analysis of MLN (Figure 3.17) or spleen cells (data not shown) from infected ASC-, NLRP3-, IL-1R-, Dectin-2- and Dectin-1-deficient mice showed no alterations in CD4+ T H cells and CD4+ CD25+ (Figure 3.17 A) or CD4+ Foxp3+ Treg cell population (Figure 3.17 B) compared to infected wildtype mice.
Results

3.4 Investigation of NLRP3 inflammasome activation during allergic airway inflammation

As shown in the previous sections (3.2 and 3.3), the NLRP3 inflammasome activation and IL-1β production are important for the induction of immune responses against the egg-derived antigens SEA and also play a crucial role during *S. mansoni* infection. In addition, several autoimmune diseases, such as urate crystal arthritis (gout) [152], diabetes [153], rheumatoid arthritis [154] and bronchial asthma development [155-157] have been associated with inflammasome activation and IL-1β production. In fact, the recent understanding of inflammasome activation mechanisms has provided the basis for the treatment of some of these autoinflammatory diseases, such as arthritis [152, 210], gout [212] and diabetes [213]. With regards to allergic asthma development it has been recently suggested that inflammasome activation and IL-1β production play an important role in the development of
this illness aswell [155-157, 214]. Therefore, to investigate the role of the NLRP3 inflammasome in another T_h2 polarized in vivo model besides the $S. mansoni$ infection, allergic airway inflammation was induced within wildtype, NLRP3$^{-/-}$ and ASC$^{-/-}$ mice on BALB/c background using an alum-free ovalbumin (OVA)-induced allergic airway inflammation model according to the description provided in section 2.6.1.

3.4.1 NLRP3 inflammasome activation influences eosinophil influx within the lung

To decipher the role of the NLRP3 inflammasome during allergic asthma development, wildtype, NLRP3- and ASC-deficient mice were either treated with PBS (control mice) or OVA (asthmatic mice) according to the alum-free OVA-induced allergic airway inflammation model (Figure 2.1). Thereafter, bronchoalveolar lavage (BAL) analysis was performed as described in section 2.6.2. The evaluation of the cell infiltration within the BAL is depicted in Figure 3.18.

![Figure 3.18: NLRP3 inflammasome activation influences immune cell infiltration within the BAL](image)

Wildtype (PBS: n=11; OVA: n=29), ASC$^{-/-}$ (PBS: n=9; OVA: n=15) and NLRP3$^{-/-}$ (PBS: n=6; OVA: n=20) mice were treated with PBS (control group) or OVA to induce allergic airway inflammation according to the alum-free OVA-inducing allergic airway inflammation model (Figure 2.1). After 31 days, mice were sacrificed and isolated BAL cells were used for cytopsin preparations. Cytospins were then stained with Diff-Quik to allow differentiation of (A) total leucocytes and percentage of (B) macrophages and (C) eosinophils within the BAL. Results show the combined data accumulated from three independent experimental allergic airway inflammation experiments per mouse strain. Symbols show mean \pm SD of individual mice and asterisks show significant differences between brackets $***$ $p<0.001$.

Allergic airway inflammation induced the promotion of leucocyte infiltration within the lungs (Figure 3.18 A). Analysis of BAL infiltrating cells revealed that in wildtype mice OVA is a potent allergen even in the absence of an adjuvant substance like Alum: most previous studies
have required the use of Alum. The subcutaneous injection in the neck however, facilitates strong sensitization responses, which, as expected, is not the case when using PBS. Upon analysis of mice lacking NLRP3 inflammasome components the total leucocyte infiltration was not impaired (Figure 3.18 A). However, when differentiating the infiltrating cell populations within the BAL it could be shown that OVA-sensitized wildtype mice had significantly more eosinophils when compared to control mice but also OVA-sensitized NLRP3- and ASC-deficient mice (Figure 3.18 C). Since eosinophils are associated with allergic asthma development [216-219], these data suggest a reduced allergic airway inflammation phenotype of mice lacking NLRP3 inflammasome components. In addition, NLRP3- and ASC-deficient mice showed significantly increased infiltration of macrophages (Figure 3.18 B). Macrophages are not associated with asthma development and, in correlation PBS-sensitized mice showed almost 100% of macrophage infiltration within the lungs (Figure 3.18 B), whereas eosinophils were hardly detectable (Figure 3.18 C). These data show that the NLRP3 inflammasome influences the recruitment of immune cells, especially eosinophils, within the lung during allergic airway inflammation development.

3.4.2 NLRP3 inflammasome activation mediates inflammation within the lung

Another feature of asthma development is the inflammatory responses including the infiltration of eosinophils within the lung and goblet cell-mediated mucus production and destruction of lung tissue [216-219]. To evaluate lung inflammation, lung samples from PBS and OVA-sensitized wildtype, ASC- and NLRP3-deficient mice were prepared as described in section 2.5.3.1 and stained with Periodic acid-Schiff (PAS) as described in section 2.6.4. Images of the PAS stained lung sections and the evaluation of tissue thickness (inflammation score) and goblet cell infiltration are presented in Figure 3.19.
Results

Figure 3.19: Lung inflammation depends on NLRP3 inflammasome activation

Wildtype (PBS: n=11; OVA: n=29), ASC−/− (PBS: n=9; OVA: n=15) and NLRP3−/− (PBS: n=6; OVA: n=20) mice were treated with PBS (control group) or OVA to induce allergic airway inflammation according to the alum-free OVA-inducing allergic airway inflammation model (Figure 2.1). After 31 days, mice were sacrificed and pieces of lungs from individual mice were fixed and embedded in paraffin. 3µm lung sections were fixed on glass slides for goblet cell staining with PAS (bright red colouring). (A) PAS stained lung sections were microscopically assessed (x20 magnification) to calculate (B) the inflammation score in a scale from 0 to 3 and (C) goblet cell count per basal membrane length. (A) PAS stained lung sections are representative samples of PBS and OVA-sensitized wildtype, ASC- and NLRP3-deficient mice. (B, C) Results show combined data accumulated from three independent experimental allergic airway inflammation experiments per mouse strain. Bars show mean ± SD and asterisks show significant differences between brackets *** p<0.001 and * p<0.05.
As depicted in Figure 3.19 A, PAS stained lung sections of PBS-sensitized wildtype, ASC- and NLRP3-deficient mice showed almost no visual thickness of the basal membrane and goblet cell infiltration (bright red colouring). This impression was then confirmed by the microscopic analysis of the inflammation score (Figure 3.19 B) and percentage of goblet cells per basal membrane length (Figure 3.19 C) according to the description in section 2.6.4. In the allergic airway inflammation groups, the basal membrane thickness of OVA-sensitized ASC- and NLRP3-deficient mice were less thick when compared to wildtype mice which was also reflected in the significantly decreased inflammation score (Figure 3.19 A and B). Goblet cell infiltration however was only significantly decreased in ASC−/− mice, since levels in NLRP3−/− mice were comparable to wildtype mice (Figure 3.19 A and C). These data convey that activating the NLRP3 inflammasome promotes inflammation within the lung during OVA-induced allergic airway inflammation, but several other molecules and mechanisms seem to be also essential for inflammatory responses, such as goblet cell infiltration.

3.4.3 NLRP3 inflammasome activation alters cytokine responses

Besides eosinophil infiltration and inflammation within the lung, cytokine production is another characteristic of OVA-induced allergic airway inflammation [220]. To analyse cytokine responses, BAL and lung lymph node (LLN) cells from OVA-sensitized wildtype, ASC- and NLRP3-deficient mice were prepared as described in section 2.6.2 and 2.3.1.1, respectively. LLN cells were then stimulated with OVA as described in section 2.3.3.3 and cytokines within culture supernatants were measured after 72h by ELISA. This technique was also used to assess the level of T\textsubscript{H} cytokines in the BAL. Results are summarized in Figure 3.20.
Results

Figure 3.20: NLRP3 inflammasome activation alters cytokine responses during OVA-induced allergic airway inflammation development

Wildtype (OVA: n=29), ASC−/− (OVA: n=15) and NLRP3−/− (OVA: n=20) mice were sensitized with OVA to induce allergic airway inflammation according to the alum-free OVA-inducing allergic airway inflammation model (Figure 2.1). After 31 days, mice were sacrificed and BAL and LLN cells were prepared. LLN cells (2x10⁵) were then stimulated with or without 20µg/ml OVA for 72h. (A) IL-5, IL-13 and IFN-γ responses within the BAL or (B) IFN-γ, IL-5 and IL-10 responses within the supernatants from stimulated LLN cells were measured by ELISA technique. Results show the combined data accumulated from three independent experimental allergic airway inflammation experiments per mouse strain (A) Symbols and (B) bars show mean ± SD and asterisks show significant differences between brackets *** p<0.001, ** p<0.01 and * p<0.05.

As shown in Figure 3.20 A, OVA-sensitized ASC- and NLRP3-deficient mice showed significantly less IL-5 and IL-13 within the BAL compared to wildtype mice. Moreover, BAL IFN-γ levels were also slightly reduced in mice lacking NLRP3 inflammasome components (Figure 3.20). In addition, OVA stimulation of LLN cells from OVA-induced ASC- and NLRP3-deficient mice revealed significantly reduced proinflammatory IFN-γ and slightly decreased IL-5 responses (Figure 3.20 B), confirming the above mentioned observations in reduced inflammatory responses within the lungs of mice lacking the NLRP3 inflammasome (Figure 3.19). In contrast, IL-10 responses were slightly increased, suggesting an immunomodulating mechanism in ASC−/− and NLRP3−/− mice. Additionally, measurements of OVA-specific immunoglobulins IgE and IgG1 within sera showed no differences.
3.4.4 NLRP3 inflammasome-mediated IL-1β production contributes to the inflammation within the lung

Since NLRP3 inflammasome activation is crucial for inflammatory processes during OVA-induced allergic airway inflammation, it was suggested that IL-1β is the mediator for such inflammation within the lung. To analyse IL-1β levels, weighed lung pieces from OVA-sensitized wildtype, ASC- and NLRP3-deficient mice were homogenized as described in section 2.6.3 and IL-1β levels were evaluated using ELISA technique. Results are shown in Figure 3.21.

Figure 3.21: NLRP3−/− and ASC−/− mice showed decreased in situ IL-1β levels within lungs immediately after contact with the OVA antigen

Wildtype, ASC−/− and NLRP3−/− mice were sensitized with OVA to induce allergic airway inflammation according to the alum-free OVA-inducing allergic airway inflammation model (Figure 2.1). After (A) 31 days or (B) 28 days (directly after OVA-challenge), mice were sacrificed and weighed pieces of lungs from individual mice were homogenized and centrifuged. The resulting supernatant was then assessed for its in situ IL-1β content by ELISA. (A) Results show the combined data accumulated from three independent experimental allergic airway inflammation experiments per mouse strain (Wildtype n=29; ASC−/− n=15; NLRP3−/− n=20). (B) Results show the combined data from two experimental allergic airway inflammation experiments per mouse strain (Wildtype n=3, ASC−/− n=3; NLRP3−/− n=3). Symbols show mean ± SD and asterisks show significant differences between brackets *** p<0.001 and * p<0.05.

Surprisingly, no differences in IL-1β levels were detectable within lungs of asthmatic wildtype, ASC- and NLRP3-deficient mice on day 31 (Figure 3.21 A). In a further experiment, IL-1β levels were evaluated directly after the last OVA-challenge on day 28. Here significantly decreased IL-1β levels within the lungs of ASC- and NLRP3-deficient could be detected (Figure 3.21 B). These data suggest that both NLRP3 inflammasome activation and IL-1β induction are responsible for the first inflammatory response against the
OVA antigen, whereas secondary inflammatory immune responses are probably mediated by additional immune mechanisms.

3.4.5 Inhibition of IL-1 signalling leads to alteration of allergic airway inflammation

Anakinra (Kineret®) is an IL-1Ra, which binds to the IL-1 receptor with almost the same affinity as IL-1β and therefore blocks IL-1 signalling. Anakinra is now used to cure IL-1β mediated diseases, such as rheumatoid arthritis, Still’s disease, gout, type 2 diabetes and diverse fever syndromes (section 1.4.4). Since previous results (sections 3.4.1-3.4.4) highlighted the role of NLRP3 inflammasome mediated IL-1β production during the development of OVA-induced allergic airway inflammation, it was hypothesized that blocking IL-1β could lead to a decreased airway inflammation. Therefore, to investigate the ability of Anakinra to inhibit airway inflammation, wildtype BALB/c mice were treated with 100µg Anakinra per day either during OVA sensitization or challenge in the following procedure depicted in Figure 3.22.

A

![Diagram A](image)

B

![Diagram B](image)

Figure 3.22: Anakinra treatment during the alum-free OVA-induced allergic airway inflammation model

Wildtype mice were treated with PBS (control groups) or OVA to induce allergic airway inflammation according to the alum-free OVA-inducing allergic airway inflammation model (Figure 2.1). Additionally, (A) wildtype mice were treated i.p. with 100µg Anakinra (Kineret®) per day during OVA sensitization (days -1-1; 6-8; 13-15). Alternatively, (B) wildtype mice were treated i.p. with 100µg Anakinra (Kineret®) per day during OVA challenge and continuing until the analysis day (days 25-31). Finally on day 31, mice were sacrificed and immunological parameters were investigated.
After treatment with Anakinra according to the description in Figure 3.22, wildtype mice were sacrificed and infiltration of eosinophils, lung inflammation and cytokine responses were evaluated. Results are summarized in Figure 3.23.

Figure 3.23: Anakinra treatment altered OVA-induced allergic airway inflammation

Wildtype mice were sensitized with PBS (control groups) or OVA to induce airway inflammation according to the alum-free OVA-inducing allergic airway inflammation model (Figure 2.1). Moreover, wildtype mice were treated with Anakinra (Kineret®) either during OVA sensitization (+ AnakinraSens) or OVA challenge (+ AnakinraChall) according to the model depicted in Figure 3.22. After 31 days, wildtype mice were sacrificed and assessed for (A) eosinophil infiltration, (B) inflammation within the lungs (inflammation score), (C) goblet cell infiltration within the lungs, (D) cytokine responses within the BAL and (E) in situ IL-1β levels within the lungs. Results show the combined data accumulated from two independent anakinra experiment with PBS control groups of n=4 (- Anakinra), n=2 (+ AnakinraSens) and n=8 (+ AnakinraChall) and OVA groups of n=7 (- Anakinra), n=8 (+ AnakinraSens) and n=8 (+ AnakinraChall). (A, D-E) Symbols and (B-C) bars show mean ± SD and asterisks show significant differences between brackets ** p<0.01 and * p<0.05.

As illustrated in Figure 3.23 A, eosinophil infiltration was only significantly decreased when mice were treated with Anakinra during OVA challenge, confirming recent results (Figure 3.21 B), which showed that IL-1β is crucial for the first immune response against the OVA antigen.Interestingly, inflammation (Figure 3.23 B) and goblet cell infiltration (Figure 3.23 C) within the lungs were not altered by either Anakinra treatment. However, IFN-γ responses within the BAL were decreased by Anakinra treatment during OVA sensitization and
challenge (Figure 3.23 D), confirming that IL-1β is crucial for the initiation of proinflammatory immune responses. Surprisingly, \textit{in situ} IL-1β levels within lung homogenates were only slightly decreased in all Anakinra treated mice (Figure 3.23 E), suggesting that the IL-1β production was not completely blocked by Anakinra. In addition, cytokine responses, such as IL-5, IL-10 and IFN-γ of OVA restimulated LLN cells from Anakinra treated mice showed no alterations compared to untreated BALB/c mice (data not shown). Summarizing, these results revealed a pivotal role of IL-1β during the first proinflammatory responses against the OVA antigen, showing that OVA-induced allergic airway inflammation depends on NLRP3 inflammasome mediated IL-1β induction.
4 Discussion

4.1 Immunomodulating abilities of *Schistosoma mansoni*

The helminth *Schistosoma mansoni* (*S. mansoni*) can cause a chronic disease in humans called Schistosomiasis which, next to malaria, is the second most socioeconomically devastating parasitic disease. According to the World Health Organization, over 207 million people are infected worldwide with an estimated risk of 700 million people [56-58]. The coevolutionary development of schistosomes and humans has driven the helminth to create evasion tactics by manipulating and modulating immune mechanisms and responses. *S. mansoni*-mediated immunopathology and immune responses are only marginally different between mice and humans [244, 245], therefore murine infection models provide an excellent experimental platform. In addition, several studies have revealed that C57BL/6 mice are more resistant to *S. mansoni* infection compared to BALB/c or C3H/HeN mice [246, 247], but nevertheless develop the *Schistosoma*-specific Th2 based immune responses and granulomas [87, 90, 248, 249]. For the experiments performed in this thesis C57BL/6 mice were employed, since at that time there was a border range of available inflammasome deficient mice.

4.1.1 SEA-mediated immunosuppression of innate activated cells is directed by (glyco-)lipids

The ability of *S. mansoni* to evade and exploit the host’s immune system is an essential strategy by the helminth to ensure survival. An indispensable part of *schistosome*-mediated immunomodulation is the development of a dominant Th2 immune response which is purported to be initiated through egg production and the consequent release of soluble egg antigen (SEA) [87-91]. SEA is a complex mixture consisting of highly glycosylated proteins and lipids [108, 109] and has been demonstrated to promote both Treg generation and Th2 polarization [110-120]. Over the last decade, much research has focused on the protective effects of helminth infections on Western illnesses, such as diabetes [120, 250] and asthma [251]. These effects have been attributed to the instigation of such T cell populations [252]. Indeed several studies have observed a protective effect against allergic airway inflammation and asthma development within *S. mansoni* infected mice [252, 253] and humans [254], respectively. These data confirm that a murine infection model is sufficient to explain phenomena observed in humans and can be used to decipher the responsible immune
mechanisms or helminth-mediating components that may contribute to the development of new strategies to prevent allergic diseases.

Despite these intriguing findings in allergy, the majority of research has focused on the ability of SEA to specifically inhibit TLR-mediated immune responses of DCs. Interestingly, this augments IL-10 production [122-127], which is in turn important for the above mentioned Th2 immune responses, mentioned above [61, 87, 129]. In confirmation with such studies, the results presented within this thesis demonstrated that SEA can indeed suppress TNF-α and IL-6 secretion from TLR2 (P2Cys) and TLR4 (LPS) triggered BMDCs. In addition, TLR9 (CpG) initiated TNF-α and IL-6 responses were also inhibited (section 3.1.1), demonstrating the capacity of SEA to down-regulate TLR-initiated responses in the extra- and intracellular compartments. In addition, even though SEA strongly manipulates TLR-triggered responses, DCs remain silent when cultured with SEA alone since there was neither secretion of pro-inflammatory cytokines nor up-regulation of co-stimulatory surface molecules such as CD80 and CD86. Although these data confirm findings from other studies [123, 125] they do not exclude the possibility of yet undetected TLR ligands within the SEA, but rather suggest that their concentrations are too low to induce expression and maturation signals. Indeed, highly purified and concentrated components within SEA, such as lysophosphatidylserine [110] and Lewis X [114], have been shown to trigger TLR2 and TLR4 respectively and in vivo studies highlighted that TLR3 is triggered by egg-derived dsRNA [121].

Further experiments within this thesis demonstrated that the inhibition of phagocytic processes with cytochalasin D (CytD), which blocks actin polymerization, particle internalization and the binding stage of phagocytosis, did not alter the ability of SEA to mediate TNF-α suppression (section 3.2.4), suggesting that the responsible component within SEA triggers a specific receptor. To ascertain the biochemical compound within SEA that facilitates TNF-α and IL-6 suppression, SEA was either heat inactivated or digested with proteinase K. Interestingly, inactivated SEA could still suppress TNF-α responses (section 3.1.4), revealing that it is likely a non-protein component within SEA, such as a (glyco-)lipid, that is responsible for the observed suppressive effects. To date, the suppressive lipid component(s) have not been identified or isolated. Nevertheless, some phospholipids from different SEA preparations, such as L-α-phosphatidylethanolamine, L-α-phosphatidylinositol, L-α-phosphatidyl-L-serine and L-α-phosphatidylcholine-β-linoleyle-γ-palmitoyl, could be identified via thin layer chromatography (TLC) within this thesis (data not shown). However, the functionality of those phospholipids remains unclear and therefore further investigations
are required to clarify the potential immunomodulating role of lipids within SEA. Moreover, investigations into the receptors that recognize glycosylated lipids could lead to a better understanding of SEA-mediated immunomodulating mechanisms. Indeed, as described in section 1.3.5, different C-type lectin receptors (CLRs), which are triggered by glycosylated molecules, are known to recognize components within SEA and lead to the suppression of TLR-mediated immune responses [122, 123, 130-132]. Furthermore, some studies already demonstrated that (glyco-)lipids within SEA induce signalling via TLR2 [110] and the CLR L-SIGN [255].

4.1.2 Concurrent immunomodulation mechanism by schistosomal components: IL-1β induction

Currently, no direct stimulatory effects of SEA have been observed on innate responses, especially those that induce strong pro-inflammatory or TH1 immune responses. Unexpectedly, this study deciphered that co-culturing SEA with TLR-primed BMDCs lead to the production of IL-1β (section 3.1.2), which is a potent proinflammatory cytokine for the initiation of inflammation and TH1 as well as TH2 immune responses [152, 200]. IL-1β has been shown to induce fever [142, 143] and IL-1β signalling mechanisms in vivo are considered to play a crucial role during various autoinflammatory diseases, such as gout [152], diabetes [153], rheumatoid arthritis [154] and bronchial asthma [155-157]. In addition, SEA-mediated IL-1β production was dose dependent and independent of the employed TLR stimuli, since all three tested stimuli (P3Cys, LPS or CpG) elicited the same response (Figure 3.2). Moreover, stimulation of TLR-pulsed BMDCs with worm antigen, frozen whole eggs or egg shells was not sufficient to induce IL-1β production, confirming that only SEA preparations from viable eggs release the specific SEA component(s) that induce IL-1β production. In contrast to the observed suppressive effects of SEA, inactivation of helminth-derived antigen lead to impaired IL-1β production (section 3.1.4), revealing that a different component was responsible and that the component might be a (glyco-)protein. These findings highlight the complexity of the immunomodulating mechanisms that occur during S. mansoni infection and show that different components within SEA can act in tandem to balance ongoing immune responses. In general, IL-1β is secreted when DAMPs or PAMPs trigger various cell types, such as DCs or macrophages. Interestingly, products of dying or necrotic cells that might act as danger signals also initiate IL-1β secretion [200, 226], confirming the important role of IL-1β secretion during the response against danger signals.
In this study it was demonstrated that SEA did not induce cell death (section 3.1.3) which in turn confirmed that it is an active component within SEA that specifically induces IL-1β production from TLR-primed BMDCs. In addition, the TLR stimuli P3Cys, LPS and CpG did not enhance secretion of lactate dehydrogenase (LDH) that is released from dying and necrotic cells, proving that the BMDCs stimulation conditions did not disrupt cell viability. In addition, to decipher the IL-1β inducing component, SEA was fractionated using liquid size exclusion chromatography which allows high-resolution separation of proteins, peptides and other molecules. The SEA fractions were then tested for their ability to induce IL-1β but unfortunately, none of the tested fractions induced the cytokine. Reasons surrounding this lack of induction could be the fractionation procedure itself since such techniques cause disruption of protein structures and lead to the loss of glycosylated residues that may have been important for recognition and initiation of immune responses [115-119, 122, 123].

4.2 SEA-mediated inflammasome activation

In general, secretion of IL-1β depends on the activation of intricate pathways which are mediated by a cytoplasmic multiprotein complex called the inflammasome. This consists of a protein from the NALP family, ASC and caspase-1 [150-152, 158-161, 172]. Casp1 cleaves the precursor cytokine pro-IL-1β into the bioactive IL-1β form and is therefore a pivotal member of the inflammasome complex [150, 151]. Currently, five different inflammasome complexes, NLRP1 [163], AIM2 [164-167], NLRP3 [168], NRLC4 [169] and NLRP6 [170, 171] have been described which are functionally active towards certain PAMPs and DAMPs. The discovery of the inflammasome and its activation mechanisms has provided the basis for a deeper understanding into various inflammatory diseases associated with IL-1β activity and has lead to the development of several successful therapies including arthritic diseases [152, 210], refractory adult Still’s disease [211], gout [212], type 2 diabetes [213] and diverse fever syndromes [200]. Since SEA-mediated cell death was excluded, it was predicted that a (glyco-)protein within the SEA promotes inflammasome activity leading to IL-1β secretion. To test this hypothesis, several in vitro stimulation assays with different inflammasome-deficient BMDCs were performed.
4.2.1 *Schistosoma mansoni*: a new member of NLRP3 inflammasome activators

Over the last few years the activation mechanisms of the various inflammasome complexes have been intensively investigated and have revealed that the NLRP3 inflammasome is the most widely employed family member since it responds to an array of pathogens, such as viruses [179, 180], fungi [134, 135] and bacteria [181-184], and a wide range of structurally unrelated stimuli including elevated levels of ATP [181], ultraviolet B irradiation [185], crystalline forms of monosodium urate (MSU) [186], asbestos and silica [187-189] and amyloid-β aggregates [190]. In addition, NLRP3 inflammasome-mediated responses towards hemozoin crystals, which are generated by Plasmodium parasites during malaria disease have also been observed [223-225]. In contrast to the NLRP3 inflammasome, which serves as a platform for responses against various antigens, the other four inflammasome complexes are more specific and directed against exclusive pathogenic molecules. Examples include the cell wall component MDP (NLRP1) [174], anthrax lethal toxin (murine NLRP1) [163], type III or type IV secretion systems of *Salmonella, Shigella, Legionella* and *Pseudomonas* species (NLRC4) [175-178], cytosolic DNA (AIM2) [164-167] and bacterial components within the colon (NLRP6) [170, 171]. However, until the findings reported in this thesis, the importance of the inflammasome and a direct recognition of helminth antigens by inflammasome complexes had not been deciphered.

This study demonstrated for the first time that schistosome-derived products directly trigger inflammasome activation and moreover influence the immunopathological outcome during infection. In essence, SEA stimulation of TLR-primed BMDCs lacking Casp1, NLRP3 and ASC molecules did not produce the normally observed secretion of IL-1β (sections 3.2.1 and 3.2.2). The essentialness of the inflammasome in SEA-mediated IL-1β production was further confirmed via Western blot detection of cysteine protease Casp1, since in the absence of either NLRP3 and ASC, pro-Casp1 was not cleaved into Casp1. Collectively, these findings demonstrated that SEA triggers the NLRP3 inflammasome to activate the central regulatory component Casp1, which cleaves pro-IL-1β into functional IL-1β. Interestingly, the accumulation of pro-IL-1β was independent of the assembling of NLRP3 inflammasome components NLRP3, ASC and Casp1, confirming that precursor accumulation of pro-IL-1β is based on the activation of the NF-κB pathway activation. However, stimulation with SEA alone did not lead to cleavage of Casp1 and IL-1β, underlining the necessity of cell priming (signal 1), which is achieved *in vitro* via stimulation of TLR which elicits the synthesis and accumulation of pro-IL-1β [186-190]. Unexpectedly, slight cleavage of IL-1β and Casp1 was
observed without TLR-priming in the Western blot studies using the strong NLRP3 inflammasome stimulus ATP (Figure 3.5). This was probably a result of the long stimulation period of 1h and the high ATP concentration of 5mM used in the experimental setup. Indeed, stimulations with ATP alone for 30min produced only minimal cleavage of IL-1β and Casp1. Moreover, it was also shown that ATP activates reactive oxygen species (ROS) and oxidative stress responses leading to Casp1 activation and IL-1β cleavage [256]. However, ATP-mediated IL-1β and Casp1 secretion of TLR-primed BMDCs was accelerated compared to unprimed BMDCs. In general, these findings implied the helminth *S. mansoni* as a novel pathogen that induces NLRP3 inflammasome activation, confirming that the NLRP3 inflammasome complex is a central sensor of numerous pathogens and danger signals. However, further experiments have to be performed to decipher the specific SEA component(s) that triggers NLRP3 inflammasome assembling. Currently, it is known that NLRP3 inflammasome activation can be initiated by phagocytosis of crystalline structures, such as monosodium urate, asbestos, silica and amyloid-β aggregates [186-190], and via specific receptors, such as P2X7 that is triggered by ATP [191-193] or the CLR Dectin-1 that is triggered by *C. albicans* [134, 135]. Since, both SEA and the cell wall of *C. albicans* consist of highly glycosylated proteins, we suggested that SEA is probably also recognized by a CLR (see section 4.2.3). Interestingly, SEA-mediated TNF-α suppression was independent of Casp1, NLRP3 and ASC, confirming that different components within the SEA modulate immune responses through different signalling mechanism and pathways.

4.2.2 SEA-mediated NLRP3 inflammasome activity depends on several intracellular molecules

Several studies have demonstrated that NLRP3 inflammasome-mediated IL-1β production depends on the induction of intracellular molecules, such as potassium efflux and reactive oxygen species (ROS) production [135, 187-193, 257]. The activation of such molecules leads to the assembly and activation of the NLRP3 inflammasome complex and is initiated by all known NLRP3 stimulating antigens and pathogens. Nevertheless, the specific mechanisms and signalling processes of potassium efflux and ROS production are poorly understood and need further investigation. Indeed, increasing extracellular potassium to cytoplasmic levels or blocking potassium channels reduced SEA-mediated reduced IL-1β production (section 3.2.3). This is in contrast to the bacterial toxin nigericin, which creates potassium efflux by forming pores in the cell membrane [193, 258]. Thus, at the moment it remains less obvious
what mechanisms SEA employs to increase potassium efflux. Several studies have demonstrated that ATP triggers the P2X7 receptor leading to pannexin-1 mediated pore formation, potassium efflux and IL-1β production [191-193]. To exclude the possibility that SEA contained ATP or indirectly triggers the NLRP3 inflammasome by inducing the release of ATP, BMDCs lacking the ATP-receptor P2X7 were tested. Indeed, ATP stimulated P2X7−/− BMDCs could not produce sufficient amounts of IL-1β, whereas SEA-mediated IL-1β induction was not altered (section 3.2.5). Furthermore, no ATP could be detected within SEA preparations, confirming that intracellular ATP, and moreover, no presence of ATP within SEA is required for IL-1β production.

As mentioned above, ROS production is another crucial intracellular signal leading to NLRP3 inflammasome activation. ROS are chemically reactive molecules that are released from the metabolism of oxygen. These highly reactive molecules are important for cell signalling and homeostasis and are tightly regulated by a variety of proteins involved in reduction and oxidation mechanism [259]. For example, enzymes like superoxide dismutase or peroxidases and antioxidants, such as ascorbic acid (vitamin C) or uric acid are able to neutralize ROS and thus defend the cell from damage [260]. However, to decipher the role of ROS during SEA-mediated NLRP3 inflammasome activation, TLR-primed BMDCs were treated with the antioxidant and free radical scavenger N-acetyl-L-cysteine (Nac) or the NADPH-oxidase inhibitor (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylic acid (APDC) to neutralize ROS within the cells (section 3.2.3). Interestingly, neutralization of ROS leads to impaired IL-1β production of TLR-primed BMDCs upon SEA or ATP stimulation. Recently, Bauernfeind et al. claimed that ROS production is important for the priming process to induce NLRP3 [261], implying that ROS is upstream of NLRP3 inflammasome assembly and not necessary for the activation. These findings are in contrast to the data obtained in the present study, as well as several other studies that have deciphered and confirmed the crucial role of ROS during NLRP3 inflammasome activation and not for priming processes, such as NLRP3 and pro-IL-1β accumulation [135, 187, 189, 241, 257]. Nevertheless, these controversial data illustrate the complexity of the different signalling processes and moreover how different molecules employ various mechanisms to instigate NLRP3 inflammasome activation. Additional, studies have shown how the phagocytosis of crystalline structures elicits lysosomal acidification, lysosomal damage and the release of cathepsin B into the cytosol resulting in NLRP3 inflammasome activation [187, 188]. Such phagocytosis processes have been further shown to induce ROS generated by NADPH oxidase [187, 188] which leads to oxidization of
thioredoxin (TRX) and the release of the TRX-interacting protein (TXNIP) that binds and activates the NLRP3 inflammasome [262, 263]. Therefore, to test whether SEA induces ROS via phagocytosis mechanisms, BMDCs were treated with cytochalasin D (CytD), which blocks actin polymerization, particle internalization and the binding stage of phagocytosis (section 3.2.4). Interestingly, blocking phagocytosis did not alter IL-1β release, suggesting that SEA-mediated IL-1β secretion is independent of phagocytosis processes and therefore induces NLRP3 inflammasome activation via triggering of a receptor. Recently, using the fungus Candida albicans another ROS-inducing mechanism was suggested since NLRP3 inflammasome activation could be initiated by ROS derived from mitochondria [195]. Thus, to investigate the role of mitochondrial ROS production, BMDCs were treated with 2,4-dinitrophenole (DNP) and carbonyl cyanide p-(tri-fluromethoxy)phenyl-hydrazone) (FCCP). These reagents uncouple the oxidative phosphorylation within the mitochondrial electron transport chain by carrying protons across the mitochondrial membrane, leading to impaired ROS production and ATP generation. Surprisingly, SEA-mediated IL-1β secretion was impaired when mitochondrial ROS production was blocked by the addition of the two uncouplers (section 3.2.3), suggesting that SEA-initiated ROS production depends on mitochondrial activation. Interestingly, high concentrations of DNP (100µM-1mM) and FCCP (100µM) lead to enhanced IL-1β production. With these high concentrations, the mitochondrial electron transport chain is uncoupled leading to the loss of ATP and consequently to dying or necrotic cells that act as danger signal to induce IL-1β [200, 226]. Thus, the presented in vitro findings establish that a (glyco-)protein within SEA triggers a receptor to activate the NLRP3 inflammasome via potassium efflux and mitochondrial ROS production. The observed effects by SEA were verified using the specific NLRC4 inflammasome activator Salmonella typhimurium (S.typh.), since IL-1β production here was not abolished by the inhibition of potassium efflux or ROS (Figure 3.7), demonstrating again that these intracellular signals are specific for NLRP3 inflammasome [135, 187, 189, 257], but not for NLRC4 inflammasome activation [135, 172]. Nevertheless, the specific SEA-mediated mechanisms leading to potassium efflux and ROS production remain unclear and need further investigation. Interestingly, SEA-mediated TNF-α suppression was not altered by blocking potassium efflux or ROS (Figure 3.7), confirming that several components within SEA mediate different immunomodulating processes and perhaps act in tandem during S. mansoni infection to balance the immune responses.
4.2.3 SEA triggers the Dectin-2/FcRγ/Syk receptor axis to induce NLRP3 inflammasome activation

As mentioned above, SEA is a mixture of highly glycosylated proteins and lipids. Since the work described within this thesis demonstrated that a (glyco-)protein within the SEA mediates IL-1β secretion, the next logical step was to investigate whether CLR were involved in the induction of the NLRP3 inflammasome. This important receptor family sense glycosylated molecules and indeed, several studies have shown that CLRs are triggered by SEA [122, 123, 130-132]. In addition, CLRs have been demonstrated to partially mediate the internalization of glycosylated SEA components leading to the modulation of TLR-mediated immune responses [115-119, 122, 123] (section 1.3.5). This study illustrated that SEA-mediated IL-1β production was specifically achieved through the signalling of the CLR Dectin-2 (section 3.2.5). This receptor is mainly expressed on antigen presenting cells, such as macrophages and DCs [264, 265] and is triggered by highly mannosed structures [230, 231].

Interestingly, experiments with C. albicans revealed that the CLR Dectin-1 plays a critical role in the activation of NLRP3 inflammasome [133-135]. Furthermore, it was shown that triggering the Dectin-2 receptor by C. albicans lead to coupling of the Fc receptor γ (FcRγ) chain. This contains the ITAM signalling molecule which is phosphorylated through the spleen tyrosine kinase (Syk) to transduce the signal into the cytosol [232, 236, 237]. These data can be now expanded to the schistosomal component within SEA. Here it was found that SEA triggers the Dectin-2 receptor but additionally required a functional FcRγ chain aswell to transduce Syk activation and consequently the induction of IL-1β secretion (sections 3.2.5 and 3.2.6). With regards to the effects on adaptive immunity, studies with C. albicans also revealed that the Dectin-2/FcRγ/Syk axis preferentially elicits IL-23 mediated T\textsubscript{H}17 cell differentiation and IL-17 cytokine secretion [231, 233, 237, 266] but also initiates IL-2, IL-10, TNF and IL-6 responses [232, 266]. Interestingly, IL-1β has also been shown to induce IL-17A production and T\textsubscript{H}17 cell differentiation [205-207] and moreover, these T\textsubscript{H}17 immune responses influence immunopathology during S. mansoni infection [92, 267, 268].

Collectively, this study reveals a novel signalling mechanism that modulates immune responses during Schistosomiasis through a previously unidentified pathway. Moreover, the data strongly imply that SEA-mediated activation of Dectin-2/FcRγ/Syk axis could induce adaptive immune responses in vivo (see section 4.3 for details). Finally, analysis of SEA has revealed that different components within SEA, such as lipids [110] or glycans [111-114] are responsible for immunomodulating mechanisms (section 1.3.5). Thus, the elucidation of the
specific (glyco-)protein within the SEA that triggers the Dectin-2 receptor could benefit our understanding of *S. mansoni*-derived immunomodulation. Interestingly, molecules, especially *C. albicans* glycans that bind specifically to Dectin-1 and Dectin-2 could be detected and characterized using soluble Dectin-1 [269] and Dectin-2 receptors [230], respectively. For further investigations, this method could be used to detect and characterize the specific (glyco-)protein within the SEA that triggers the Dectin-2 receptor and initiate IL-1β secretion.

In contrast to the IL-1β induction, SEA-mediated TNF-α suppression was independent of Dectin-2, FcRγ chain and Syk activation (sections 3.2.5 and 3.2.6), showing again that SEA-mediated suppression and IL-1β induction mechanisms are distinct. However, IL-1β secretion was only reduced and not totally abolished in BMDCs lacking Dectin-2 or treated with Dectin-2 antibody. This suggested that either another component within SEA induced a partial signal via another receptor or two molecules of the Dectin-2 stimulating component simultaneously bound and activated two receptors. Since identifying the responsible components was not feasible at this time the research primarily focused on elucidating other possible receptors. Several different receptors, such as CD36, CD206, Dectin-1 and the adaptor molecule DAP12 were tested using the *in vitro* assay and none were responsible for SEA triggering and initiation of IL-1β secretion (section 3.2.5). However, these findings did confirm that SEA-mediated IL-1β production is due to an (glyco-)protein and independent of phagocytosis mechanisms, since the coreceptor CD36 senses lipid structures [227] and the mannose receptor CD206 initiates phagocytosis [228]. Moreover, CD206 was shown to specifically detect antigens that are released during transformation of cercariae into schistosomulae leading to the modulation of IFN-γ production [270]. In addition, the specificity of the Dectin-2/FcRγ/Syk axis for SEA triggering is also highlighted by the fact that the ITAM containing transducer molecule DAP12 [229] and the Dectin-1 receptor, seem to be dispensable for SEA-mediated IL-1β production. Surprisingly, preliminary experiments with BMDCs lacking the macrophage-inducible C-type lectin (Mincle) receptor revealed a reduced IL-1β secretion upon SEA stimulation. Mincle is closely related to Dectin-2 [271] and has been shown to play a significant role in the immune response against the fungus *C. albicans* [272, 273]. Similar to the Dectin-2 receptor, the Mincle receptor binds glycosylated compounds, especially trehalose containing molecules [274, 275] and selectively couples to the FcRγ chain to induce Syk signalling leading to the production of inflammatory cytokines and chemokines [276]. To date however, no association with inflammasome activity has been observed. Nevertheless, these experiments do imply that the Mincle receptor could be
important for SEA triggering and NLRP3 inflammasome activity. The association of Mincle could explain why the lack of Dectin-2 within BMDCs did not lead to a completely abolished IL-1β responses. However, further experiments have to be performed to clarify the role of the Mincle receptor within SEA-mediated NLRP3 inflammasome activation mechanisms.

4.2.4 The Card9 complex is important for NLRP3 inflammasome activation

Syk is crucial for downstream signalling in CLR family members, such as Dectin-1, Dectin-2 and Mincle [234]. Moreover, Syk together with the related protein ζ-chain-associated protein kinase 70kDa (ZAP70) promote early T and B cell development [133, 277]. In addition, several intermediary molecules that are directly associated with Syk and/or ZAP70 also become activated. These include phospholipase Cγ isoforms, regulatory subunits of the phosphoinositide 3-kinase and the SH2 (sarcoma homology 2) domain-containing leukocyte protein (SIP) family members SIP76 and SIP65 [133]. These activated molecules trigger further downstream processes, such as Ca²⁺ and protein kinase C signalling, cytoskeletal rearrangement, ROS production, phagocytosis and transcriptional regulation [133]. Interestingly, hemozoin-induced IL-1β production depends on Syk association with the inflammasome component ASC and modulation of cathepsin B [224]. Since, hemozoin-mediated NLRP3 inflammasome activation depends on phagocytosis [223-225], we assumed that another mechanism was employed for SEA-mediated IL-1β production. Several studies have demonstrated that Syk activation leads to aggregation of the Card9 complex which consists of the caspase recruitment domain 9 (Card9), the adapter protein B cell lymphoma 10 (Bcl10) and the mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) [233, 234, 239, 240]. Further research with C. albicans has also deciphered that Syk/Card9 signalling induces the nuclear factor-κB (NF-κB) leading to the production of cytokines, such as TNF-α, IL-2 and IL-10 [239, 240, 278]. Card9 has been shown to be important for effective anti-fungal responses, since Card9⁻/⁻ mice are more susceptible to C. albicans infection [239, 240] and humans carrying Card9 mutations have increased susceptibility to the fungus [279]. In addition, Card9 signalling was shown to be essential for pro-IL-1β accumulation but not inflammasome activation directly [133, 135]. Nevertheless, these discoveries are mainly based on experiments with the fungus C. albicans and whether Card9 plays a role in SEA-mediated NLRP3 inflammasome activation remained unknown. Therefore, Card9-deficient BMDCs were stimulated with SEA to decipher the role of the Card9/Bcl10/Malt1 complex during SEA-mediated NLRP3 inflammasome activation. Indeed,
BMDCs lacking Card9 showed reduced IL-1β secretion upon SEA stimulation (section 3.2.7) but this could have been due to impaired pro-IL-1β accumulation. Surprisingly, pro-IL-1β levels of stimulated Card9+/− BMDCs were even augmented, suggesting that the Card9 molecule is important for SEA-mediated NLRP3 inflammasome activation, but not for accumulation of the precursor pro-IL-1β. These findings implied a necessary role of Card9 signalling for the initiation of IL-1β production during *S. mansoni* infection and revealed an unknown signalling mechanism within NLRP3 inflammasome activation processes. Indeed, *in vivo* *S. mansoni* infection studies have revealed reduced immunopathology and deviated immune responses (unpublished data). However, to confirm these preliminary data experiments with BMDCs lacking Bcl10 and Malt1 have to be performed. Furthermore, the possibility that Syk associates with ASC to induce NLRP3 inflammasome activation could be also a possibility that has to be investigated.

4.2.5 SEA-mediated NLRP3 inflammasome activation: a novel signalling pathway

In summary, this study revealed for the first time that alongside the well described immune suppressive effects, components within SEA can also induce a strong proinflammatory IL-1β response via NLRP3 inflammasome activation. Figure 4.1 depicts the specific NLRP3 inflammasome activation mechanism involving the Dectin-2/FcRγ/Syk axis, Card9 signalling, potassium efflux, as well as mitochondrial ROS production. The SEA-mediated signalling platform highlights the complexity of *S. mansoni*-mediated immunomodulation and represents an evolutionary evolved example of host-parasite interaction. The ability of SEA to induce the NLRP3 inflammasome activation could be a crucial immunomodulating mechanism during Schistosomiasis. Different studies have substantiated this hypothesis, for example, IL-1β is known to induce T_H17 immune responses [205-207] and deviations into this direction elicit severe *S. mansoni*-derived immunopathology [92, 267, 268]. Further investigations into these helminth-mediated immunomodulation mechanisms could lead to new therapeutic strategies against helminth infections.
In brief, SEA triggers the Dectin-2 receptor that couples with the FcRγ chain to activate Syk. This leads to mitochondrial ROS production and potassium efflux. In addition, Syk also appears to activate Card9 that is associated with Bcl10 and Malt1 pathway. Afterwards, ROS production, potassium efflux and probably Card9 activate the NLRP3 inflammasome containing NLRP3, ASC and pro-Casp1, which cleaves that latter into active Casp1. Finally, the activated Casp1 cleaves pro-IL-1β into the bioactive IL-1β, which is secreted out of the cell.

4.3 Lack of inflammasome components skews both parasitological and immunological responses during S. mansoni infection

The *in vitro* BMDC stimulation assays demonstrate that SEA triggers the Dectin-2/FcRγ/Syk axis to initiate NLRP3 inflammasome activation and IL-1β induction. Hence, we proceeded to investigate functional aspects of this signalling pathway during an ongoing *S. mansoni* infection. Interestingly, earlier studies showed that the IL-1 receptor antagonist (IL-1Ra), which binds to the IL-1 receptor (IL-1R) with almost the same affinity as IL-1β and therefore blocks IL-1 signalling, was upregulated during *S. mansoni* infection [243]. In addition, treatment with an anti-IL-1Ra antibody enlarged granuloma development and enhanced T\(^\text{H}1\) immune responses, such as IL-10 and IFN-γ [242]. Although these studies demonstrated a role for IL-1β *in vivo*, they did not address the mechanisms behind the cytokine's induction. The model described for SEA-mediated IL-1β induction in Figure 4.1 demonstrates the
signalling mechanism in vitro and potentially addressed IL-1β induction mechanisms during S. mansoni infection. To observe immunopathology, parasitology and pathological changes in the absence of inflammasome components, wildtype, NLRP3-, ASC-, Dectin-2-, IL-1R- and Dectin-1-deficient mice were infected with S. mansoni and analyzed after 8 weeks of infection. The analysis of parasitological and immunological parameters was performed after 8 weeks, since at this time point both T_{H1} and T_{H2} S. mansoni-specific immune responses are present within the host [61] (Figure 1.6).

4.3.1 NLRP3 inflammasome activation and IL-1β secretion influence schistosome-derived immunopathology

In general, the different knockout mice showed no significant differences to infected wildtype mice in terms of parasitology, such as the degree of infection (DOI) or worm and egg burden (section 3.3.1). This outcome did not even alter when mice were analysed during the chronic phase (12 weeks) of S. mansoni infection (data not shown). As with any infectious system, slight differences in DOI and parasite burden do occur between the mice but this is due to the complexity of schistosome biology within the host which includes several life stages (Figure 1.4). Thus, these data implied that NLRP3 inflammasome activation and IL-1β secretion did not influence worm development and maturation, as well as egg production. Indeed, this was not surprising, since S. mansoni infection of various knockout mice (IL-4^{−/−}, IL-5^{−/−}, IL-6^{−/−}, IL-10^{−/−}, IL-13^{−/−} or IFN-γ^{−/−}) did not alter worm development and fecundity [280]. Even in severe combined immunodeficiency (SCID) mice, which lack functional B and T cells, egg laying was delayed but worm fecundity was equivalent to that in wildtype mice [281]. As mentioned above, the main feature of S. mansoni infection is the development of granuloma formation within the liver and intestine. Granulomas are initiated when schistosome eggs are trapped within the liver and intestinal tissue and secrete SEA, which is a powerful promoter of T_{H2} responses [86-91]. For example, IL-13 is the main T_{H2} cytokine promoting fibrosis development [100-103]. The essential role of T_{H2} immune responses is highlighted by the fact that the conversion from a T_{H2}-dominant to a T_{H1}-dominant reaction leads to a reduced granuloma formation and fibrosis development within infected mice [104-107]. Interestingly, granuloma formation is further characterized by the alteration of infiltrating T_H and T_{reg} cell populations. As granulomas become older the makeup of immune cell composition alters from high numbers of CD4⁺ T cells, macrophages and eosinophils to enhanced levels of Foxp3⁺ T_{reg} cells that accumulated in the circumference of granulomas to control the
infiltration of immune cells and their responses [98, 99]. Moreover, depletion of T\textsubscript{reg} cells leads to enhanced granuloma formation and skewed T\textsubscript{H}1/T\textsubscript{H}2 responses [98], underlining the essential role of this population. Interestingly, Layland et al. further observed that the IL-1R gene is upregulated within T\textsubscript{reg} cells from infected S. mansonii mice but not in T\textsubscript{regs} from naive mice [99]. As mentioned in the previous section, IL-1Ra was shown to be upregulated within infected mice [243] and blocking IL-1Ra lead to increased granuloma formation and enhanced T\textsubscript{H} immune responses [242]. In summary, these data suggest that IL-1 signalling is important for granuloma formation and immune responses during Schistosomiasis. Indeed, infected MyD88 deficient mice, which have no functional IL-1R [10], developed smaller granulomas and reduced antigen-specific T\textsubscript{H}1 responses [96]. Within the studies presented here, infected NLRP3-, ASC-, Dectin-2- and IL-1R-deficient mice had significantly smaller granulomas compared to wildtype mice (section 3.3.2). Furthermore, Dectin-1-/- mice developed normal sized granulomas, confirming the specificity of SEA-mediated Dectin-2 receptor triggering for the initiation of NLRP3 inflammasome activation. Additionally, infected Card9-deficient mice revealed also smaller granulomas (Layland et al. unpublished data). This finding confirms the in vitro Card9 experiments (section 3.2.7) and implicates a critical role of Card9 for NLRP3 inflammasome activation in vivo. Nevertheless, IL-1\textbeta in situ levels within liver and intestine tissue were only reduced in NLRP3- and ASC-deficient mice (section 3.3.3), showing that the specific NLRP3 inflammasome components are central for the initiation of IL-1\textbeta. Interestingly, in situ IL-1\textbeta levels were not impaired in Dectin-2-/- mice, indicating that probably another receptor could be also important for NLRP3 inflammasome activation in vivo. Indeed, preliminary in vitro experiments demonstrated that Mincle-deficient BMDCs showed reduced IL-1\textbeta production upon SEA stimulation (see section 4.2.3 for details). Thus, Mincle could be an additional receptor for SEA-mediated NLRP3 inflammasome activation in vivo and in vitro. Furthermore, mice lacking the IL-1R showed an enhanced IL-1\textbeta production, demonstrating that impaired IL-1 signalling can lead to unregulated IL-1\textbeta secretion within the tissue. However, granuloma formation was impaired in the Dectin-2- as well as in the IL-1R-deficient mice, suggesting that the granuloma formation does not strictly depend on IL-1\textbeta levels within infected organs.
4.3.2 NLRP3 inflammasome activation skews adaptive immune responses

Since granuloma formation depends on TH [94-96], T reg [98, 99] and TH17 cell populations [92, 267, 268] and IL-1β can initiate such TH cells and immune responses [200, 202-207] (see sections 1.4.3, 4.2.4 and 4.3.1 for details), we hypothesized that SEA-mediated NLRP3 inflammasome activation influences adaptive immune responses. Indeed, antigen-specific TH1 (IFN-γ), TH2 (IL-5, IL-10) and TH17 (IL-17A) responses of restimulated spleen and mesenteric lymph node (MLN) cells were strongly suppressed within infected NLRP3-, ASC-, IL-1R- and Dectin-2-deficient mice compared to wildtype mice (section 3.3.4). With regards to *S. mansoni*-derived immunopathology, elevated IFN-γ and IL-17 responses have been associated with enlarged granuloma development [282, 283]. Moreover, *S. mansoni* infected IL-5-deficient mice showed reduced liver granuloma size with decreased numbers of eosinophils [284], which are a prominent cell type in granulomas provoking inflammatory responses [72, 245]. Also, IL-10 has been shown to regulate and control the polarized egg-specific TH cell responses [129, 285]. Interestingly, several studies from Fallon *et al.* demonstrated that diminished TH2 immune responses, especially in the absence of IL-4 and CD4+ T cells, lead to enhanced TH1 immune responses, hepatocyte damage and intestinal pathology, which are detrimental to the host [80, 100, 286]. Furthermore, in the absence of T cells egg excretion within the host is impaired [286-289]. These data highlight the importance of CD4+ T cells and TH2 immune responses during Schistosomiasis for the survival of host and helminth. Alongside the reduced TH immune responses, IL-13 levels of restimulated spleen and MLN cells of infected NLRP3−/− and ASC−/− mice were significantly enhanced, indicating that not all schistosome-specific immune responses were suppressed. Moreover, Dectin-2−/− mice also revealed increased IL-13 responses. As mentioned in section 4.3.1, the functional role of IL-13 is distinct compared to the other TH2 cytokines. IL-13 is the key mediator of fibrosis and granuloma formation and in the absence of IL-13 signalling infected mice fail to develop fibrotic granuloma, which is beneficial for host survival [100-103]. In contrast, increased hepatocyte damage, intestinal pathology and mortality could be observed in IL-4 deficient mice [100]. In addition, besides T cell populations, IL-4/IL-13 signalling in alternative-activated macrophages was also shown to be critical for host survival during Schistosomiasis [290]. Since, granuloma formation was reduced in infected NLRP3 inflammasome−, Dectin-2- and IL-1R-deficient mice, the enhanced IL-13 could be due to the reduced TH2 responses. For further investigations, IL-4 levels and hepatocyte damage have to be quantified. In general, these findings demonstrate that the NLRP3 inflammasome-mediated
Discussion

IL-1β signalling balances T_H1 (IFN-γ), T_H2 (IL-5, IL-10, IL-13) and T_H17 (IL-17A) immune responses to drive T_H2-polarized pathogenesis and parasite survival. Again, the specificity of the Dectin-2/NLRP3 inflammasome signalling was confirmed, since SEA-specific responses of MLN and spleen cells from infected Dectin-1^−/− mice were not altered upon restimulation with SEA.

Collectively, the in vivo infection experiments using various knockout mice demonstrated that components released during S. mansoni infection trigger the Dectin-2 receptor to initiate NLRP3 inflammasome activation leading to IL-1β secretion. Interestingly, in the absence of these signalling components both granuloma formation and T_H immune responses were deviated. Besides IL-1β induction, NLRP3 inflammasome activation also leads to IL-18 production [150-152]. Interestingly, IL-18 mRNA is strongly produced upon percutaneous infection of S. mansoni [291], indicating that IL-18 plays a role during the penetration of cercariae into the host. Again, these data highlight the important role of NLRP3 inflammasome activation during Schistosomiasis. However, further studies have to decipher the role of IL-18 in comparison with IL-1β to elucidate the connection of NLRP3 inflammasome and T_H2 immune responses. Summarizing, the discovery of this SEA-mediated NLRP3 inflammasome signalling platform contributes towards a better understanding of S. mansoni modulation mechanisms and may unravel further information that can be used for new vaccination strategies against autoimmune diseases or allergy (section 4.4).

4.4 NLRP3 inflammasome activation drives allergic asthma development

Throughout this thesis, components within SEA were shown to trigger the NLRP3 inflammasome signalling platform which in turns initiated inflammatory immune responses to modulate and balance T_H immune responses and granuloma formation during the T_H2-polarized S.mansoni infection. Interestingly, several autoimmune diseases have been associated with inflammasome activation and IL-1β secretion (section 1.4), such as chronic allergic asthma [202, 203, 214]. According to the WHO, over 235 million people currently suffer from allergic asthma disease, a potentially life-threatening illness that causes breathing difficulties, dyspnea, tight chest, cough or bronchospasm [215]. Interestingly, asthma disease is characterized by dominant T_H2 immune responses including enhanced IL-4, IL-5 and IL-13 responses, allergen-specific immunoglobulin production, eosinophilic inflammation, goblet cell infiltration and increased mucus production within the lung leading to airway
Discussion

Typically, the long-term unresolved airway inflammation leads to airway remodeling and to continuous inflammed and swollen respiratory airways [218, 219] (see section 1.4.5 for details). To date, general causes of the disease are unknown. However, it is known that risk factors are the combination of genetic predisposition with environmental substances, such as indoor allergens (house dust mites or pet dander); outdoor allergens (pollens or moulds); tobacco smoke and air pollution; certain medications (aspirin or other non-steroid anti-inflammatory drugs) [215]. Treatment of asthma is divided into two classes: 1. Treatment of acute symptoms with quick-relief medications, such as anticholinergics, SABAs (short acting beta agonists) or systemic corticosteroids; 2. Prevention of further exacerbation with long-term control medications, such as corticosteroids, cromolyn sodium and nedocromil, immunomodulators, leukotriene modifiers, methylxanthines or LABAs (long acting beta agonists) [292, 293]. Although, asthma symptoms can be controlled in a large proportion of patients with these therapeutic agents, a small percentage of individuals with severe asthma remain symptomatic and inadequately controlled leading to a high risk of serious morbidity and mortality [294, 295]. Interestingly, several studies have demonstrated that ongoing parasitic helminth infection in humans lower the prevalence of allergic disorders [253, 254, 296, 297]. The relationship between helminth-derived modulating mechanisms and allergy are not well understood. For example, infection studies using the murine S. mansoni model have shown that infections modulate Th and Treg cell differentiation to promote Th2 immune responses and immunoglobulins, especially IgE production, that leads to the protective effect against allergic diseases, such as asthma [251, 252, 298-300]. This modulatory effect also seems to be dependent on the intensity and chronicity of infection [301].

In this study, we hypothesized that NLRP3 inflammasome activation lead to IL-1β production and consequently Th2 polarization during an ongoing S. mansoni infection. Several studies have demonstrated that IL-1β is an important cytokine for bronchial asthma development by promoting the infiltration of eosinophils and inflammation within the lung [155-157, 202, 203] (section 1.4.5). Thus, we studied allergic airway inflammation in female BALB/c inflammasome-deficient mice that were sensitized with albumin from chicken egg white (OVA) in an alum-free manner (see section 2.6.1 for details). Interestingly, male mice did not develop allergic airway inflammation, indicating an essential role for gender within asthma development. The murine OVA-inducing allergic airway inflammation model is widely used and well characterized and displays features similar to those seen in human allergic asthma, including dominant OVA-specific Th2-type immune responses (IL-4 or IL-5), eosinophilia,
increased mucus production within the lung, airway hyperresponsiveness (AHR) and allergen-specific IgE production [220]. Additionally, aluminium hydroxide (alum) is frequently administered with OVA during the sensitization phase as an adjuvant. However, within this study an alum-free OVA-inducing allergic airway inflammation model was performed because, as mentioned and shown previously, alum is a strong inducer of the NLRP3 inflammasome and IL-1β secretion (section 3.2.4) [188, 302-304]. In contrast to the BMDC or S. mansoni infection experiments, BALB/c mice were used for the allergic airway inflammation experiments. BALB/c mice induce strong Th2 immune responses, elevated OVA-specific IgE levels and pulmonary eosinophilia, as well as an elevated response to metacholine that is a marker for AHR sensitivity compared to mice on C57BL/6 background [220, 305-307]. Therefore, wildtype, NLRP3- and ASC-deficient mice on BALB/c background were sensitized with OVA to analyse allergic airway inflammation.

4.4.1 NLRP3 inflammasome activation influences allergic airway inflammation

To evaluate the degree of allergic airway inflammation, several parameters have to be analysed, such as infiltration of immune cells and cytokine levels within the bronchoalveolar lavage (BAL), lung inflammation and specific immunoglobulin production. As expected, the OVA exposed wildtype mice presented an enhanced infiltration of eosinophils within the BAL compared to PBS treated control mice (section 3.4.1). Eosinophils are known to be one of the key effector cells driving lung pathogenesis, since they release proinflammatory cytokines and cytotoxic proteins from their granules to induce lung epithelial damage, edema and AHR [308-310]. Therefore, eosinophil infiltration within the BAL is a marker for asthma development. Interestingly, in NLRP3- and ASC-deficient mice significantly less eosinophil infiltration could be observed, suggesting that the NLRP3 inflammasome plays a crucial role in the recruitment process of eosinophils within the lung. Furthermore, evaluation of OVA-sensitized wildtype mice revealed thick basal membranes and enhanced mucus-secreting goblet cell infiltration within the lungs (section 3.4.2), confirming on a pathology level that wildtype mice developed chronic allergic airway inflammation. In contrast, pathological aspects were significantly reduced in ASC−/− mice, whereas NLRP3−/− showed significantly less inflammation but goblet cell infiltration was comparable to wildtype controls. These data illustrate that NLRP3 inflammasome activation is important for the initiation of inflammation within the lung but other factors and perhaps signalling mechanisms induce immune cells, such as goblet cells, to drive secondary inflammatory responses. In addition, these findings
implicated that probably another inflammasome complex consisting of ASC could be involved. Another important feature of allergic asthma is the initiation Th2 immune cells that secrete cytokines, such as IL-5 and IL-13 to augment inflammatory responses and airway remodeling [311, 312] (section 1.4.5). Indeed, OVA-sensitized wildtype mice secreted significantly higher amounts of IL-5 and IL-13 within the BAL compared to NLRP3−/− and ASC−/− mice (section 3.4.3). Interestingly, the ability of lung lymph node (LLN) cells to respond to OVA antigen upon in vitro restimulation was only impaired in IFN-γ secretion, suggesting that NLRP3 inflammasome activation and IL-1β secretion initiate proinflammatory cytokines to modulate Th2 immune responses. In addition, IL-10 levels were slightly increased in the culture supernatants of OVA-restimulated LLN cells from NLRP3- and ASC-deficient mice, confirming that the NLRP3 inflammasome signalling pathway balances Th1 immune responses and that in the absence of NLRP3 inflammasome components a more regulatory phenotype is induced. However, OVA-specific IgE and IgG1 levels within sera showed no alterations within NLRP3 inflammasome-deficient mice.

In general, these data demonstrate that NLRP3 inflammasome activation is essential for the initiation of inflammatory responses within the lung (eosinophil and partially goblet cell infiltration) and modulation of Th2 immune responses (BAL IL-5 and IL-13 levels), but is dispensable for secondary mechanisms, such as OVA-specific immunoglobulin production. In contrast to the findings observed within this study, Besnard et al. demonstrated that goblet cell infiltration and OVA-specific IgE as well as eosinophil infiltration within the lung, BAL cytokine responses and lung inflammation were abolished in mice lacking the NLRP3 inflammasome [214]. These data claimed that allergic airway inflammation depends strictly on NLRP3 inflammasome activation including secondary mechanisms, such as OVA-specific immunoglobulin production and goblet cell infiltration. However, this study was performed with C57BL/6 mice, which were shown to develop reduced allergic airway inflammation and dominant Th1 based immune responses [220, 305-307]. Indeed, Allen et al. claimed that allergic airway inflammation within NLRP3−/− mice on C57BL/6 background is similar to wildtype control mice [313], indicating that C57BL/6 mice are not the optimal model to investigate allergic airway inflammation. These contrary findings demonstrate the complexity of allergic asthma development and highlight the necessity of using a BALB/c mouse model within this study. In addition, an alternative explanation for the diverse phenotypic outcome could be the composition of the host microbiome that depends on the individual mouse facility. Indeed, studies have demonstrated that oral treatment of Bifidobacterium and Lactobacillus lead to reduced allergic airway inflammation [314, 315]. However, this study
implied an essential role of the NLRP3 inflammasome signalling platform for the induction and modulation of Th2-polarized immune responses. The understanding of complex Th2-polarized immune responses which arise during S. mansoni infection or allergic asthma could contribute to the development of novel vaccination strategies against autoimmune diseases.

4.4.2 Blocking IL-1 signalling reduces allergic airway inflammation

Since NLRP3 inflammasome activation appeared to play a role in allergic asthma development, it was conjectured that IL-1β could initiate and drive lung inflammation. Interestingly, in situ IL-1β levels within the lungs were not altered in OVA-sensitized NLRP3- and ASC-deficient mice when compared to wildtype mice (section 3.4.4). These evaluations were performed on day 31, three days after the OVA-challenge (see section 2.6.1 for details), because this time point shows strong lung inflammation and Th2 immune responses. Such results suggested that NLRP3 inflammasome activation and IL-1β production is important for the initiation of inflammation and Th2 polarization, whereas the other immune responses are driven by different mechanisms (section 4.4.1). To confirm this hypothesis, IL-1β levels were measured immediately after the last sensitization to OVA (day 28). Indeed, NLRP3−/− and ASC−/− mice had significantly less IL-1β within the lung compared to wildtype mice, demonstrating that NLRP3 inflammasome activation is initiated immediately after antigen contact and could therefore actively participate in the events leading to proinflammatory responses and recruitment of immune cells (eosinophils).

Over the last few years, the understanding of inflammasome activation pathways has provided the basis for the treatment of several autoinflammatory diseases, such as juvenile idiopathic arthritis [210], refractory adult Still’s disease [211], gout [212], type 2 diabetes [213], rheumatoid arthritis [152] and diverse fever syndromes [200]. A standard therapeutic agent for such autoinflammatory diseases is Anakinra (Kineret®), an IL-1 receptor antagonist (IL-1Ra) that blocks IL-1 signalling and thus prevents continuous IL-1β-mediated inflammation. The initial allergic airway experiments described here demonstrated an association of IL-1β-mediated inflammation and allergic asthma disease. Therefore, it was considered that Anakinra treatment could probably reduce inflammatory responses within the lung and thus dampen asthma development. To verify this hypothesis, mice were treated with Anakinra during OVA sensitization or challenge (section 3.4.5). Interestingly, eosinophil infiltration was only significantly reduced in mice treated with Anakinra during the challenge phase. However, inflammation and goblet cell infiltration within the lung were not abolished.
Additionally, IFN-γ responses within the BAL were decreased when mice were treated with Anakinra during OVA challenge or sensitization, but IL-5 and IL-13 responses remained unchanged, as well as OVA-specific IgE and IgG1 levels. The Anakinra data imply that functional IL-1β is critical for eosinophil infiltration, but not for secondary effects, such as OVA-specific immunoglobulins, confirming previous results in ASC and NLRP3-deficient mice (section 4.4.1). In contrast, data obtained from NLRP3 inflammasome-deficient mice demonstrated that infiltration of eosinophils as well as inflammation and cytokine responses within lungs depends on NLRP3 inflammasome activation. Eosinophil infiltration is an essential process within asthma development. To evaluate the role of eosinophil activation, measurements of eosinophil activation marker, such as peroxidase (EPO), eosinophil cationic protein (ECP) and myeloperoxidase (MPO) have to be performed. However, this study demonstrated that Anakinra treatment reduces eosinophil infiltration within the lungs. Thus, Anakinra could be included into the long-term control medications and moreover may contribute to a novel therapy for patients with severe uncontrolled asthma disease.

Interestingly, IL-1β levels within the lungs were not altered when mice were treated with Anakinra (section 3.4.5), suggesting that Anakinra treatment was not sufficient to significantly reduce IL-1β production. This effect could be explained by the short half-life of 4-6h. Therefore, for further investigations a higher dose of Anakinra should be applied. Moreover, alternative reagents, such as rilonacept (IL-1 trap) and canakinumab (specific anti-IL-1β antibody) should be employed since they have a longer half-life of approximately 7 and 26 days, respectively. These drugs have also been developed and approved for treatment against diverse autoinflammatory diseases [200]. In addition, IL-1R−/− mice should be evaluated, since preliminary data demonstrate that these mice also show reduced allergic airway inflammation (unpublished data). Similar results have been obtained in IL-18−/− mice [316], confirming that IL-1 family members influencing asthma development. However, the specific IL-1 signalling mechanisms that contribute to this disease remain unclear. Interestingly, a novel research avenue includes the Th17 cell population, since several studies have shown that IL-1β can induce IL-17A and Th17 cell differentiation [205-207]. Furthermore, Th17 immune responses have been shown to influence allergic asthma development [317, 318]. Thus, Th17 immune responses could be the link between NLRP3 inflammasome-mediated IL-1β and allergic asthma development. Collectively, these data reveal that impaired IL-1 signalling lead to reduced inflammatory responses against OVA, implicating new treatment strategies against allergic asthma.
4.5 NLRP3 inflammasome is a central signalling platform that drives TH2-polarized immune responses

Within this study, NLRP3 inflammasome activation mechanisms were investigated during TH2-dominated immune responses of *S. mansoni* infection and allergic airway inflammation. This research concludes that the outcome of pathology and deviation in immune responses during Schistosomiasis and allergic airway inflammation is dependent on NLRP3 inflammasome activation.

Figure 4.2: NLRP3 inflammasome is a central signalling complex that drives TH2-polarized immune responses

In brief, the NLRP3 inflammasome is triggered through different antigens, such as SEA/*S. mansoni* in a Dectin-2/FcγR7/Syk/ROS/potassium efflux-dependent manner or OVA through an unknown mechanism. Thus, NLRP3 inflammasome activation leads to IL-1β production that influences granuloma formation and TH immune responses during Schistosomiasis or eosinophil infiltration, lung pathology and cytokine responses during allergic airway inflammation. In addition, IL-1β can also induce TH17 immune responses that have been shown to drive TH2 polarized immune responses.

As depicted in Figure 4.1, the NLRP3 inflammasome is a central signalling complex driving TH2-polarized immune responses during Schistosomiasis and allergic airway inflammation. The understanding of NLRP3 inflammasome signalling mechanisms could lead to novel treatment strategies against TH2-dominated diseases, such as helminth infections (section 4.3) or asthma disease (section 4.4). Nevertheless, further investigations have to be performed to elucidate the antigen-specific NLRP3 inflammasome signalling mechanisms and the potential role of IL-1β-mediated TH17 immune responses that both could influence TH2 immune responses.
References

References

References

References

References

[281] Cheever, A.W., Poindexter, R.W. and Wynn, T.A. (1999). Egg laying is delayed but worm fecundity is normal in SCID mice infected with *Schistosoma japonicum* and *S. mansoni* with or without recombinant tumor necrosis factor alpha treatment. *Infect Immun* 67:2201-2208

Acknowledgements

First and foremost I would like to state my appreciation to Prof. Dr. Dirk Busch for giving me the opportunity to work in the institute and for their helpful guidance and suggestions. Special thanks also to Prof Dr. Martin Klingenspor for his supervision and for offering me the opportunity to present and discuss my data in his institute. Additionally, I want to thank Prof. Dr. Hermann Wagner for is support especially during the very first part of my thesis.

I would also like to express my thanks to Dr. Clarissa Prazeres da Costa and Dr. Laura Layland for the opportunity to carry out this work in their lab, for their mentoring during my laboratory time and for guidance and critically reading this thesis.

A special thank you also to Stephanie Schmidt, Sabine Paul, Kathrin Straubinger, Stephanie Fetzer and Ulla Henn for the help during the laboratory work and for the nice working atmosphere.

Many other people have offered me invaluable help during my experiments particularly aspects of laboratory procedures. First I must mention Dr. Olaf Groß, who introduced me into the research field of inflammasomes and gave me valuable advice on Western blotting. I also have to thank Dr. Fromme for the help with the mitochondrial reactive oxygen species blocking experiments. They, together with many other colleagues in the institute (Dr. Stefan Dreher and Dr. Stefan Paschen) have made a nice working atmosphere for me, and I am grateful for that. In addition, I have to thank many other people (Prof. Dr. Jürgen Ruland, Prof. Dr. Falk Nimmerjahn, Prof. Dr. Gordon Brown, Dr. Philip Taylor, Prof. Dr. Yoichiro Iwakura, Dr. Shinobu Saijo and Dr. Laura Helming) and especially in memorial Prof. Dr. Juerg Tschopp for the support of this thesis.

Time spent outside the lab is also an essential part of life and in this regard I must thank all my friends with whom I have shared so many unforgettable moments: Trietsch, Friedl, Bummi and Emilio. And regarding important things in life I am in debt to Steffi, who has been there to share good and bad moments besides the lab work. Special thanks go to Juergen, Helmut, Klaus, Doris, Isarspringer and Hannes for the refreshing time we spent together. Finally I want to thank my family, especially my parents, for their unconditional support and encouragement in any of the objectives and projects I have undertaken, no matter how difficult or unattainable they may have appeared. My success will always be yours.