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Abstract

The aim of this dissertation is to provide foundations for the specification and
development of interactive systems in consideration of probabilistic effects. We
develop a theory of probabilistic and interactive systems based on probability the-
ory and the FocUs theory for interactive systems. The notions of composition,
specification and properties thereof like realizability are adapted to the probabilis-
tic case. We discuss the interaction of nondeterministic and probabilistic systems
as well as provide the framework for their integration. The thesis finishes with
the formalization of various description techniques and of activities during the
development of software systems using probabilistic models.
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Chapter 1

Introduction

The complexity of software and embedded systems is ever growing. Traditional
development approaches struggle to yield a working and failure-free end product.
Current methodologies address the complexity with model-based development and
component architectures. The formal and local specification of each component
prevents failures in the whole system. In order to allow for formal descriptions,
a formal theory has to provide the foundation of the methodology. It provides
the semantics of the components and their compositions. One advanced and well-
established theory of this kind is Focus [Brol0)].

Focus and many other established theories mainly deal with deterministic and
nondeterministic behavior, but especially embedded systems have several sources
of probabilistic behavior, like physical transmission media, the random behavior
of the user or randomized algorithms. Certain non-functional requirements like
availability are actually probabilistic properties. That these theories do not con-
sider probabilistic behavior is a shortcoming which we will address in this thesis.
Our aim is to provide a fundamental and formal theory for the development of
systems containing probabilistic elements. We follow the basic principles of Fo-
CUS: systems are structured as hierarchical networks of interacting components,
the component’s interface abstracts from the component’s internal state, et cetera.

1.1 Probabilistic Systems

A common understanding of probability is required for our later discussion. There-
fore we introduce the concept of an experiment and on top of that we give different
interpretations of probability.

To systematically observe a system, we bring the system into an initial state,
activate the system’s execution and finally observe some result (or outcome) of the
system. These steps form an experiment. We can repeat the same experiment
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several times and note down each result. It is important to establish the very same
environment, which may also provide some input for the system, and system state
for each experiment. An event is then a set of results and occurs if the system
produces one of these results.

Purely Probabilistic Systems At first, we assume that we were indeed able
to cleanly reset the whole system state and identically repeat all influence on
the system during each experiment. In the following discussion, we consider the
sequence of experiment outcomes at hand.

The only variation in the outcomes can be caused by some probabilistic/random
elements. That means, there is a degree of uncertainty as to which result will be
produced in an experiment. This degree of uncertainty is exactly what the notion
of probability tries to measure. Several definitions of probability exist, each trying
to capture a certain insight into probability [H&j10]. We will now describe two
informal definitions of probability that try to relate real world observations with
the logical idea of probability. Both definitions have in common that they try to
define a measure of the certainty or likelihood of results.

The classical interpretation, which was especially pushed by Laplace, requires
results for which we have equally balanced evidence of their occurrence. Such
evidence may be given by some symmetry of the results. We can then say, that
these results are equally possible. The probability of an arbitrary event is then
determined by the fraction of the number of results the event consists of. The
typical example for this interpretation is the fair coin (or die) tossing. In the
latter case, we can equally argue for each side of the die to occur and we obtain the
set Q = {1,2,3,4,5,6} of six equally possible outcomes. Each of these outcomes
has a probability of /6. The event “occurrence of an even number when the die
is rolled” consists of three elements and therefore has a probability of 3/6 = 1/2.
This definition is problematic to apply in the real world because of phrases like
“balanced evidence” and “equally possible”.

The frequency interpretation considers the relative frequency of an outcome,
i.e. the ratio of occurrences of this outcome to the total number of experiments.
We assume now, that this relative frequency converges against a fixed value. This
means, that for a very large number of experiments the relative frequency is nearly
constant. This value defines the probability of this outcome. In mathematics this
definition is easily realizable using the concept of “limit”. In practice, we can always
only observe a finite sequence and therefore can only guess against which value the

sequence converges. For instance, with a sequence of coin tosses beginning with
(H,T,T,H, T,H, T,T,H,...), we obtain the following relative frequencies of head

(1,Y/2,1/3,2/4,2/5 3/6,3/7,3/8,4/9, .. .)
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In contrast to these definitions, which are informal but related to practical
observations, mathematicians and statisticians use a formal aziomatic definition
of probability. These axioms describe in particular what constitutes a probability
space and therefor a (probabilistic) measure of events and they allow the rigorous
logical deduction of theorems. But, this axiomatic definition does not explain what
the logical notion of probability means in the real world. Hence, it cannot replace
more philosophical definitions like the ones mentioned above. In Chapter [3.2] we
will introduce such a formal and axiomatic definition that allows us to deduce
statements about probabilistic systems.

Based on the notion of probability, we can point out the special case of prob-
ability one. If one outcome has a probability of one, then for any rerun of the
experiment the system will produce this outcome. We call such systems deter-
ministic.

The problem remains, how to determine the probability distribution of the
system’s results or, if we a priori assume certain probabilities, how to verify
this hypothesis. Therefore statisticians provide a comprehensive set of statistical
tests [SSS08|. One kind of such tests is the statistical hypothesis testing. There
we usually assume a hypothesis (also called null-hypothesis), then we decide on
the test and an appropriate decision rule (usually based on a level of significance),
run the experiments and finally accept or reject the hypothesis according to the
decision rule. Now the four combinations of “the hypothesis is true” or “the hy-
pothesis is false” and “the hypothesis is accepted” or “the hypothesis is rejected”
can occur, two of which are erroneous. Usually the decision rule is chosen such
that the probability of the error “the hypothesis is true but rejected” is below some
threshold (e.g., 1%). This ensures that we can be rather confident when rejecting
the hypothesis.

Other statistical methods allow us to approximate some parameters of a proba-
bilistic system. Assume for example that the observed system produces numerical
results. Then the law of large numbers, a well-known theorem of statistics, states
that it is very likely that the average value of a large number of observed results is
near the expected valudl] For an increasing number of results the observed average
value tends towards the expected value with probability one. From this fact we
can derive that we can approximate the expected value with the observed average
value. Similarly it is possible to approximate the probability of each result by its
observed relative frequency.

!The expected value describes the “long-run average value” and for discrete results is given
by the weighted-sum of the possible results where the weight is given by each probability. E.g.,
when tossing a die we can interpret each side of the die numerically. So we have the possible
results {1,2,...,6} each of probability 1/6. Then the expected value is + + 2+ ...+ 2 =3.5.
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Not purely Prob. Systems Until now we assumed that we were able to bring
the system into an unbiased state before each experiment. We will now consider
the opposite case. This divergence may lead to various non-probabilistic behaviors.

Because we did not reset the systems state correctly, the system may carry over
some information from experiment to experiment. The system’s output depends
on the system’s state and can differ in each experiment. Or similarly, we may not
be able to provide the system with the same environment for each experiment.

In contrast to a purely probabilistic system, such systems can produce regu-
lar patterns. These patterns can be produced deterministically, i.e., each result
depends uniquely on the results of the previous experiments, or can additionally
depend on some probabilistic elements. If the system is very complex, then it may
be difficult to distinguish such a system from a purely probabilistic system, imagine
for example pseudo-random number generators imitating random behavior.

Another category of systems is known for its very unstable behavior. They
are called chaotic, because even the smallest influence on these systems has a
large effect on its output. A well-known example for such systems is the double
pendulum. In the short term these systems can behave very well-ordered and
predictable. However, it is physically impossible to repeatedly reset such systems
into the very same state and to seal them off completely from their environment.
Even the faintest influence increases to an immense change in the long term. As
we cannot observe or control the former, the latter seems arbitrary.

Criticism of Probability One may object, that given an arbitrary probabilistic
system one has just to look so closely at the system’s operation (or gather enough
knowledge about its operation, and use a better simulation of the system) such that
the operation is again understood and non-probabilistic and deterministic. The
throw of a six-sided die for instance seems to be a probabilistic system resulting in
six different results of equal probability 1/6 but if we look at the detailed physics of
a die then the random behavior vanishes and we could predict the results (with a
lot of computer power). Similarly, we could (theoretically) analyze the exact causes
for errors of a transmission medium or try to predict the exact way a ball will take
in the game roulette. We know that this may overwhelm current computers but
at least for dice throwing and roulette we know all of the relevant physics — and
also know that the smallest divergence in the initial conditions or computation
errors lead to widely diverging results, i.e., the systems yield deterministic but
chaotic behavior. In modern physics however, quantum mechanics and radioactive
decay are supposed to be truly probabilistic. To date, we have no deterministic
explanation of these events.
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Summary We can summarize, that probability is a mathematical concept to
describe unpredictable experiments which follow certain statistical patterns and
we use probabilistic models as a simplification of complex systems (abstraction of
a die, as described above).

According to the above classification of systems, we can also deduce criteria
for when a system is not probabilistic or, more correctly, a probabilistic modeling
is not appropriate.

In any case, if we model a system probabilistically, we have to argue about its
appropriateness. From the frequentism point of view, we gather statistical patterns
by running experiments and then derive predictions for a particular system. So we
have to justify that this particular system and its environment are similar to the
set-up of the experiment. Depending on how much information we have about the
system our prediction will vary significantly. If we follow the classical interpretation
according to Laplace, we have to argue about symmetries and independencies
which never occur in this idealized form in practice. Thinking of the die tossing,
we may assume a certain symmetry of the die, however, the starting position and
the direction and the velocity of the throw may break this symmetry.

1.2 Systems Engineering

Separation of Concerns A major effort during engineering is the understand-
ing of a system — no matter if the system is to be developed or parts of it exist
already. Therefore, different aspects are usually described separately using differ-
ent kinds of models. Both this separation of concerns as well as the specialization
of each model increase the understanding of the system. A model should also be
accompanied by rules or, more general, a theory such that meaningful properties
can be derived or transformations can be applied. According to this principle, a
probabilistic model enables us to comprehend statistical aspects of a system.

Stochastic Nature of Certain Requirements A key activity of engineering is
balancing opposing requirements [Wie03|. Instead of aiming for a fault-free system,
which would be too expensive and time-consuming to develop, we have to find
an economical compromise between development costs and dependability. Other
tradeoffs to be dealt with are usually between dependability and performance or
maintainability.

This explains the necessity to consider dependability during system develop-
ment. In turn, a common way to model availability and reliability as part of
dependability is stochastically. For details see, e.g., [Hos60], [Birl0] or [ALRLO4].
The latter argues:
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“The extent to which a system possesses the attributes of dependability
and security should be considered in a relative, probabilistic sense,
and not in an absolute, deterministic sense: Due to the unavoidable
presence or occurrence of faults, systems are never totally available,
reliable, safe, or secure.”

Although dependability is the most popular example for a requirement that can
be modeled stochastically, this is also the case for other kinds of requirements.
For example, performance metrics of queuing networks are traditionally described
stochastically [Hap0§].

Dealing with Existing Stochastic Systems Intensive interaction with its
environment is characteristic for embedded systems. We understand as part of the
environment both physical hardware but also other (software) systems that the
system under design interacts with. Requirements constrain the system under the
assumption of certain properties of its environment. This has two implications for
the system engineering: we have both to express properties of the environment,
i.e., of existing systems, but also have to respect these assumptions during the
development.

In particular for environments of embedded systems, properties are in many
cases only available as statistical information — maybe it is the only provided
information or other descriptions are just not practical.

Consider for example, the development of a car radio. In order to obtain a high
dependability, we can concentrate on the dependability of the frequently used and
critical functions. The “weighted sum” of the dependability of each function has
to be sufficient.

Example In the next simple example, we can address every concept mentioned
in the previous paragraphs. Consider the development of a transmission protocol
on top of an unreliable electrical transmission line. For simplicity assume that we
have to send one datum of a fixed size with a certain maximal duration. On the
one hand, a short transmission duration to send the whole datum is preferred. On
the other hand, this is counteracted by the errors during transmission. Thus, we
have both a constraint on the system (the successful transmission) but also an
assumption about the environment (the unreliability of the transmission line).

At this point, we have to make clear how to describe the unreliability of the
transmission line. Usually, but not necessarily required, we abstract from the
complex electromagnetic effects of the transmission line to a simple probabilistic
model. Say, this model explains bit-errors to occur independently and according
to a non-zero single-error probability. In that case, it is impossible to guarantee a
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successful transmission within a bounded duration because with a non-zero prob-
ability every attempt to send a bit will fail. This probability will be lower the
more often we attempt and the longer the transmission duration. Thus, we have
to trade-off the transmission duration against the transmission reliability.

Utilizing Randomness in the Implementation It is also common to delib-
erately utilize probabilistic elements in certain systems. Most common are ran-
domized algorithms, which integrate random number generators to improve the
overall (time or space) complexity or to be robust against bad inputs. In the case
of distributed systems, random generators are one way to break the symmetry in
distributed algorithms like wireless protocols [Lyn96].

For instance in cryptographic applications, we need to generate random keys.
Some cryptographic systems, like RSA, utilize prime numbers for the key gener-
ation. Therefore a randomly generated number is tested to be prime. Some very
efficient and common primality testing algorithms are randomized ones. These
algorithms’ result is not guaranteed to be correct but the error probability can be
reduced arbitrarily (but not completely eliminated). It is possible to reduce this
probability in n iterations to a value as low as 1/4™ [BIu0O1]. A larger class of such
algorithms is called Monte Carlo algorithms and in many cases these algorithms
are more efficient than their non-probabilistic counterparts.

That means that we construct probabilistic systems on purpose. Already, mod-
ern computer systems heavily depend on the existence of good random number
generators to run cryptographic applications or probabilistic algorithms which have
to be as unpredictable as possible. Pseudo random number generators are deter-
ministic algorithms which mimic (emulate) probabilistic behavior. Such generators
are widespread but hardware random number generators produce better (i.e., less
predictable and more uniformly distributed) results. Such hardware depends on
physical processes like thermal noise or quantum effects.

Implications for the System Development Large systems have to be de-
veloped in a structured way. Hierarchies of components are a typical structuring
concept. If we introduce probabilistic components into our system, then we have to
understand the effect of their composition, also with non-probabilistic components.
How can the random behavior propagate through the system? Can the combina-
tion of several probabilistic components in a system add up to some unforeseen
behavior?

Finally, a systems engineer will be interested in the placement of probabilis-
tic modeling within a development methodology. We have to know the phases
at which probabilistic elements can be incorporated. What are the differences
and consequences of probabilistic modeling compared to the deterministic and
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nondeterministic non-probabilistic variants?
We conclude this introduction with a short summary of points of interest:

e A system has to hide random sources of error and provide its functionality to
the user with a practically high likelihood. In many cases, it is impractical
or even theoretically impossible to completely eliminate the probability of
error. We need the means to check the remaining randomness exposed by
the system.

e Absolute specification conformance is not always required or possible, but
conformance with high probability. This can reduce costs and lead to more
efficient systems.

e Systems can incorporate random elements on purpose, again with the possi-
ble benefit of simplification and efficiency.

e To build large systems with probabilistic elements, we have to understand
the probabilistic behavior of a single component but also of a network of
components.

e We are interested in the effect of incorporating probabilistic models into the
development process.

1.3 Outline

The subsequent Chapter [2| gives an introduction to existing works dealing with
probabilistic systems that are relevant to the systems engineering. We take a
look at some existing modeling theories, logics and verification techniques. In
Chapter [3, we provide the basic definitions used throughout this thesis. This
includes a brief extract of probability theory.

The contribution of this thesis is presented starting with Chapter [d This
chapter presents probabilistic components as the counterpart of deterministic non-
probabilistic components of FOCUS. Chapter 5| provides different description tech-
niques, which are also used for the examples in this thesis. Chapter [0] extends
probabilistic components about nondeterminism. Based on this introduced sys-
tem model, we workout the concept of system refinement and explain the relation
to development steps in Chapter [7]

Finally, Chapter [§] summarizes the thesis and gives an outlook on future re-
search directions.



Chapter 2

Related Work

In this chapter, we will review different topics relevant for the development of
systems with probabilistic behavior: probabilistic models, logics and verification.
For the interested reader, this should serve as a starting point for further studies.

2.1 Probabilistic Models and Specifications

Several approaches to represent and specify probabilistic systems exist. However,
only a fraction focuses on compositionality. To our best knowledge, all of these
approaches assume statistical independence between components during composi-
tion which clearly differs from the proposed model theory presented in this thesis.
Furthermore opposed to these other works, we propose a framework not primary
for a particular analysis or specification technique but as a common foundation
for a catalog of different system engineering activities and nomenclature.

Besides the approaches presented in the following, extensions to the process
algebras CCS [HJ90, [GcJS90, YL92] and CSP [MMSS96] exist, of which [RS11]

considers refinement of probabilistic processes with testing semantics.

2.1.1 Interactive Markov Chains

In [Her02], H. Hermanns addresses the compositional specification and analysis of
Markov chains. He introduces interactive Markov chains (IMCs) as a combination
of interactive processes and continuous-time Markov chains. Interactive processes
are represented as transition systems labeled with ezternal and internal actions.
A continuous-time Markov chain is a Markov chain with discrete state space and
continuous time range. The only memory-less continuous distributions are the
class of exponential distributions. Therefore, continuous-time Markov chains are
represented as transition systems labeled with transition rates, where a rate de-
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termines a unique exponential distribution. IMCs allow transitions of both kinds,
each either labeled with an action or a transition rate.

Based on the definition of IMCs, H. Hermanns defines the hiding of actions,
also called abstraction, and the composition of IMCs. The composed IMCs are
synchronized according to their actions and the time delays determined by the
transition rates. Thereby, actions are executed instantaneously.

[Her02] covers also two notions of similarity between IMCs, namely strong
and weak bisimilarity. These are shown to be congruencies with respect to the
composition of IMCs. Algorithms to decide bisimilarity and to minimize IMCs
are provided. Due to interleaved minimization steps, the provided methodology
allows the analysis of systems with several million states, exemplarily performed
for a telephone system.

2.1.2 Compositional Methods for Probabilistic Systems

In [dAHJO01], a deterministic system’s behavior is represented as a probability dis-
tribution on finite traces, a so called bundle. The semantics of a nondeterministic
system is a set of bundles.

Given a description of a nondeterministic system, a scheduler resolves each
nondeterministic choice and produces a set of purely probabilistic bundles. A de-
terministic scheduler resolves every choice with a deterministic behavior, whereas
a randomized scheduler replaces the choice by a probabilistic distribution. Using
randomized schedulers, nondeterminism allows for unspecified probability.

A system’s state is purely variable-based. In each step, several variable as-
signments occur synchronously and may depend on the previous values. Similar
to reactive modules, the variables are partitioned into private, output and input
variables. Private variables are only visible and modifiable by the owning module.
Schedulers have to respect this partition, because the assignment to external vari-
ables, i.e., variables owned by other modules, must be statistically independent of
the assignment to private variables.

This required independence leads to the notion of atoms. An atom is a part
of a component’s syntactic description. Each atom consists of a set of controlled
variables and a set of read variables. A composite system obtains the union of the
subsystems’ sets of atoms. Thus in a composite system, several atoms describe a
partitioning of the variables into independent parts. For each atom a scheduler re-
solves the nondeterministic choice of its controlled variables depending only on the
read variables, and an additional scheduler resolves the choices of the environment,
i.e., the values of all remaining external variables.

The semantics of composition is given by the intersection of the operands’
bundle sets. Similarly, refinement corresponds to set inclusion. This choice of
composition and refinement allows for the assume-guarantee rule.
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2.1.3 Compositional Design Methodology with Constraint
Markov Chains

Compared to Markov Chains, Interval Markov Chains [CDL™09| allow constraining
transitions not only with a fixed probability but with intervals of probabilities.
Simple examples show that these are neither closed under logical conjunction nor
under parallel composition. Let x be the probability for a transition, then an
interval constraint = € [a, b] is equivalent to the inequalities a < = Az < b. The
paper |[CDLT09| shows that the generalization to linear constraints suffices for
closure under conjunction. Constraint Markov Chains (CMCs) allow polynomial
constraints which are required and sufficient for closure under parallel composition.

Besides composition, a refinement relation is introduced. For the subset of
deterministic CMCs, this refinement coincides with the implementation set inclu-
sion, i.e., a deterministic CMC A specificies a subset of the systems specified by
the deterministic CMC B, if and only if A is a refinement of B.

2.2 Probabilistic Logics

We distinguish qualitative and quantitative system properties [Kwi07]. The former
are properties that refer only to the extreme probabilities zero and one — does an
event occur almost surely or almost never? Quantitative properties are not bound
to this restriction and refer to arbitrary probabilities and occur in two variants:
as a query asking for a certain probability (or value) and as a predicate with a
fixed boundary. Verification of qualitative properties depends in certain cases only
on the topology of the underlying transition system [HSP83| whereas quantitative
properties depend on the concrete transition probabilities.

For example, we may ask for the probability to reach an error states or ask
if this probability is greater than 0.9. In both cases we speak of a qualitative
property. The property that an error state is reached with probability one, i.e.,
almost surely, is a qualitative one.

In a probabilistic system model, every set of execution paths has a certain prob-
ability. From a predicate ) over states, we can derive the set of paths reaching a
satisfying state and we can ask its probability, which is the reachability probability
of (). Every LTL formula defines also a set of paths; if this set is measurable we
can ask for its probability. Similarly, we obtain probabilistic properties from CTL
formulas.

In the literature, we find several definitions of probabilistic time logics [SL94,
BKO0§| like PCTL, PCTL*, WPCTL and PCRTL (PCTL with rewards), which
allow the compact definition of properties of dynamic systems.
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PCTL The logic PCTL, for example, is defined similar to CTL, but instead
of universal and existential path quantification, a probabilistic operator P ;(¢) is
defined where ¢ is a path formula and .J is an interval of [0,1]. The meaning of
the formula P ;(p) in a state s is: the probability of the set of paths starting in s
and satisfying ¢ lies within the interval J.

For instance in the context of a communication protocol, the formula [BKOS]|

P_, (< delivered) A P—y (O (tryToSend — Psq.99(<O = delivered)))

specifies that almost surely a message will be delivered and every attempt to send
a message succeeds within 3 steps with probability at least 0.99.

2.3 Verification of Probabilistic Systems

For the verification of software systems two approaches exist: we can apply a
programming logic and prove the correctness of the system by logical deduction.
Alternatively, we consider a computational model of the system and systemati-
cally verify the correctness by regarding every possible computation. The latter
approach usually incorporates engineering techniques to automate the verification
process. Such automated tools are called Model Checker.

Much effort was invested to adapt both approaches to probabilistic systems.
Today we have both probabilistic programming logics and probabilistic model
checker.

In this section, we will at first look into a probabilistic extension of Dijkstra’s
gquarded-command language and programming logic of weakest precondition. Af-
terwards we review the probabilistic model checker PRISM and give a rough idea of
the properties it is able to verify. A promising optimization technique for the model
checking of large systems is the counterexample-guided abstraction refinement, the
discussion of which will conclude this section.

2.3.1 A Programming Logic for pGCL

Dijkstra’s guarded command language (GCL) is a programming language for the
description of imperative sequential programs. A peculiarity is its containment
of “demonic” nondeterminism to express the abstraction from a decision between
alternative program branches. The nondeterministic choice is said to be demonic
because it may be resolved in a way that harms the program’s correctness.

The probabilistic extension pGCL of GCL introduces additionally a probabilis-
tic choice [MMO04]. This choice follows the laws of probability theory and could,
for example, be decided by a coin flip. With this extension randomized algorithms
can be developed.
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Based on this extension, it was possible also to adapt the programming logic
of weakest precondition. The programming logic for pGCL follows the principle of
the greatest pre-expectations. An expectation is a generalization of predicates:
instead of the two truth-values true and false it assigns each valuation a proba-
bility. A pre-expectation determines then, for each starting state, the probability
that a certain program execution yields a state that fulfills the post-expectation.
The greatest pre-expectation is the maximum over the probabilities of all possible
executions.

According to this principle, the predicate transformer wp is extended to an
expectation transformer. Just to give a concrete idea of such transformations,
we highlight its main difference, namely the definition for nondeterministic and
probabilistic choice (P and Q are program fragments, A is an expectation i.e., a
distribution over variable assignments):

wp(PMQ).A := min{wp.P.A, wp.Q.A}
wp(P,®Q).A:=p-wpP.A+(1—-p) wp.Q.A

The first definition shows that only the minimum of the greatest pre-expectations
of each branch is propagated through a nondeterministic choice. The second def-
inition shows that the probabilistic choice behaves like the p-weighted average of
its arguments.

With this foundation proofs of randomized algorithms can be developed by
annotating the program code with the probabilistic analogue of Hoare triples.

Similar to the logical implication an order between expectations can be de-
fined [MMO5] which induces a refinement relation between probabilistic pGCL
programs. Using refinement and the other way round abstraction, proofs can be
developed in a modular fashion. It is interesting to note that the theory presented
in [MMO5] states that deterministic choice is a refinement of probabilistic choice,
which in turn is a refinement of nondeterministic choice.

2.3.2 A Probabilistic Model Checker: PRISM

PrisMm [KNP09, KNP12] is a model checker for three types of probabilistic models:
discrete-time Markov chains, continuous-time Markov chains and Markov decision
processes (Markov chains with nondeterminism). Additionally, extensions of these
models with costs and rewards are also supported.

PRISM’s property specification language (supporting temporal logics like PCTL
and LTL) supports the following central operators:

e The P operator refers to the probability of an event occurring.

e With the S operator one can determine steady-state probabilities of a model.
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e The R operator calculates expected values of rewards.

These operators can be combined with the well-known LTL operators. Let opera-
tional and fail denote the sets of operational respectively failure states of a system.
The specification language then allows asking for quantitative properties like

o P_;[F*operational] — the probability that the system is operational at
least once within the first 10 time steps.

e S_;[operational] — the long-run availability of the system, i.e., the steady-
state probability that the system is operational.

® Ry yimery=2[Ffail] — the mean-time-to-failure of the system, i.e., the expected
time until the first failure occurs.

e What is the worst-case probability of the protocol terminating in error, over
all possible initial configurations?

e What is the expected size of the message queue after 30 minutes?
e What is the worst-case expected time taken for the algorithm to terminate?

The specification language is accompanied by a textual modeling language
based on the Reactive Modules formalism. Modules consist of local variables and
guarded commands which can be labeled with actions for synchronization.

PrisM analyzes large models efficiently by using optimization techniques like
symbolic calculation (based on Binary Decision Diagrams, BDDs).

2.3.3 Probabilistic CEGAR

Counterexample-guided abstraction refinement (CEGAR) is a technique for model
checking of large systems. [HWZ08| considers the application of predicate abstrac-
tion to probabilistic systems. Predicate abstraction partitions the possibly infinite
state space into a finite number of regions. As long as the property to check can
neither be proved nor refuted, the abstraction is refined with additional predi-
cates. These predicates are obtained from abstract counterexamples. So far, this
approach is restricted to probabilistic reachability (cf. and can determine if
the probability to reach a set of bad states exceeds a given threshold.

The abstract automaton is a quotient automaton which preserves a fragment of
PCTL. That means, if a property holds for the abstract automata, we can conclude
that the property holds also for the original automata. The converse, however, is
not true in general. We have to check if there exists a concretization of the abstract
counterexample. But an abstract counterexample can be spurious, i.e., there exists
no concrete counterpart. Then the abstract model has to be refined.
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In classical CEGAR with Boolean logic, an abstract counterexample is a single
finite path to some bad state. In the probabilistic setting, a set of abstract paths
reaching a bad state is searched and the probability of this set must exceed the
given threshold. This is the idea of the strongest evidence.

The input language is a guarded command language similar to the one of
PRrISM (cf. Section [2.3.2)) but supports infinite data domains.
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Chapter 3

Foundations

3.1 Basic Definitions

Numbers We use N = {1,2,...} to denote the natural numbers excluding zero.
A 0 in the index includes the zero, as does a oo mean to include the limit symbol
oo, which has the property:

Vn € Ng:n<ooAn+ oo =00

Functions Let f be a function of type X — Y. The domain X and range Y is
given by dom f and rng f, respectively.

To avoid clusters of parentheses, we occasionally write f.r instead of f(x)
for function application. We choose left associativity for this operator such that
faxy=(fz)uy.

For finite X = {z1,...,x,}, we may define f by

f=(x1—= foy,...,zp— fa,)
Note that the notation () for the unique function with empty domain X = () and

range Y coincides with the notation for the empty tuple.

Valuations Assume a set of variables (or variable identifiers) V' and a typing
function ¢: V' — P(U), where U is the universal set of values. A valuation of V/
is a mapping v: V' — U such that the values are in the range of each variable:

Yo e V:v(v) € t(v)

Given a typing function ¢, we refer to the set of all valuations of the variables
domt by t. If the typing is clear from the context, we may omit the typing function
and instead write V for the set of valuations. Usually, we will assume a global

17
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typing function called type. Note the notation () for the set of valuations over
the empty set of variables, which is the singleton containing only (), the unique
function of type 0 — U.
The restriction of a valuation ¥ € V to a subset V/ C V is the valuation
v|y, € V' defined by:
Vo e V' vlyi(v) = v(v)
Valuations v € V and p € W with not necessarily disjoint domains can be

combined to the union vwu € V U W if their values on common variables coincide,
that means v|ynw = p|yaw. This union is defined by

vae ifxeV
(hev)w = .
pr ifxreW
Sequences We call a function s: {0,...,n— 1} — A a sequence (or stream or

word) of length n over the alphabet A. A sequence s may be written as
(s.0,s.1,...,8.(n—1))

An infinite sequence over alphabet A is a function Ny — A. We write A", A*,
A> and A for the set of sequences of length n, finite sequences, infinite sequences
and sequences of arbitrary length, respectively. Note the notation ( ) of the unique
sequence of zero length. The length of a sequence s is obtained by [s|.

A finite sequence a can be concatenated with any other sequence b written
as a - b:

Vn € N(),m € NO,OO:
ac A"\Nbec B" =
(a-b) € A" AVi<n:(a-b)i=aiAVi<m: (a-b).(n+1i)=0bi

In the case a - b = ¢, we call a a prefix of ¢ and write a C c or ¢ O a. We
call b a postfix of c. Let s be a sequence over A of length greater or equal to
n € Ny then s|,, denotes the prefix of length n of s and st denotes the postfix
beginning at the (n + 1)-th element. Thus we have:

sl, € A" Nsd, -sT"=s

We apply the Cartesian product a € A,b € B+ (a,b) € A x B for arbitrary
sets A and B also to sequences by element-wise application. Given the sequences
¢ € A" and o € B" for some n € Ny, we denote with ¢ x o the sequence of
(A x B)" such that (¢ x 0).k = (¢.k,0.k) for all k& € [0,n]. This function is a
bijection from elements of A® x B> to (A x B)*.
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Similarly, the union and restriction of valuations can be generalized to se-
quences of valuations by element-wise application. That means, we define for two
sequences of valuations ¢ € V" and o € W™ with n € Ny «, and all subsets V' C V:

Vi<n:(pWo)t=ptdo.t
as well as
vt < (plv).t = pt]yv

Formulas and Predicates By formula we mean some evaluable term. The
type of the arguments (i.e., free variables) and the value resulting from evaluation
to be of some specified type. A special case are predicates which are Boolean val-
ued formulas. Usually we will express these in propositional or predicate calculus.
Other calculus may be used instead, too. We call non-Boolean valued formulas
also expressions.

Formulas may be syntactically combined or modified to obtain new formulas.

Applying the underlying semantic'| we can evaluate a formula by supplying
values to its free variables. In that case, we simply interpret the formula as a
function. Let f be a X-valued formula with free variables V', then we identify
with [f]: V — X the function which maps a valuation v € V to the evaluation of
the formula f given the values v, which is a value in X.

3.2 Extract of Probability Theory

This section presents the definitions of probability theory relevant for this work.
The definitions and statements are taken from [KSK76] and [GDG™01] while the
proofs are omitted.

3.2.1 Measure Theory

Let €2 be an arbitrary set and F a family of subsets of 2. We call F a field of sets
if

1. 0 eF,
2. if A is a set in F then its complement A is in F, and

3. if A and B are in F then their union AU B is also in F.

'We assume a given interpretation of the used predicates in the case of predicate logic.
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We say that F is a o-field or g-algebra, if it is additionally closed under
countable unions, that means for sets Aj, Ay,... € F it is |J;2; 4;. We usually
denote o-fields with the symbol B.

A function p from a field F of subsets of 2 to the real extended numbers
R U {—00,+00} is called a set function and it is called a measure if

1. u(A) >0 for all A € F (Non-negativity),

2. Uz, Ai) = D2, u(A;) for any pairwise disjoint sets Ay, As, ... € F, Le.,
A; N A; =0 whenever i # j (Countable Additivity).

The triple (€2, B, ) with a measure p over the o-field B is called a measure space.
If the measure is additionally normalized, i.e., u(2) = 1, we call it a probability
measure and the triple is called probability space.

Let p be a predicate over the sample space, i.e., a function {2 — B. Then the
probability of p is defined as the measure of its truth set, i.e., u(p) = p({w € Q |
p}). The probability is only defined if the truth set is measurable.

Given events F, G € B with u(F) > 0 of a probability space (2, B, 1), we define
the conditional probability of G given F' by

n(GNF)
u(F)

For a fixed F, the function G — p(G | F) is itself a probability measure on a
certain probability space over F'.

For any set G of subsets of ) there exists a smallest o-field containing G: There
exists a containing o-field, namely the power set P(£2), and the intersection of all
o-fields containing G is also a o-field containing G. This o-field is the smallest one
as it is contained in all others. We denote this o-field by o(G).

Let F be a field (not necessarily a o-field) over a space Q2 and p a probability
measure. The Carathéodory Extension Theorem states that there exists a unique
measure A on o(F) that agrees with p on F, that is A(F) = u(F) for all F' € F.
This measure A is given by:

WG| F) =

mf{ UF ‘UF > F AV Fef}

A field F has the countable extension property if it has a countable number
of elements and if every non-negative, normalized and finitely additive set function
(1 on F is also countably additive on F. Finite additivity of a set function p on a
field F means

if Ay, Ao, ..., A, € F are disjoint, then ,u(U A;) = Z,u(A

i=1
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An atom of a field F is an element F' € F such that no other member of F
except the empty set and the set itself are subsets of F.

A sequence of finite fields F,,,n € N, is said to be a basis for a field F, if the
following properties hold:

1. F, C Fuyi foralln e N
2. F=U"2, Fu

3. If G,, is a sequence of elements of F with G, being an atom of F,, and
Gni1 C G, for all n € N, then

()G #0

n=1

If such a basis exists, the field F is called standard. A o-field B or the measurable
space (€2, B) is called standard if it is generated by a standard field F, i.e.,
B =o(F).

One such standard measurable space is (£2, P(€2)), where € is countable and
P(2) is the power set of €, i.e., the set of all subsets of €. Furthermore the
product space of a countable family of standard spaces is again standard.

From [GDGT01|, we also cite the fundamental

Theorem 1 A field has the countable extension property if and only if it is stan-
dard. O

Sequence Spaces We wish to have a measure on subsets of ¥*°, where ¥ is
some countable alphabet. That means, we consider the uncountable sample space
Q = ¥>. In |[GDGT01], the product space (3X°°, o(P(X)>)) is defined, which is
exactly what we seek. We will briefly outline the construction of this product
space and show that rectangles can be replaced by cylinders.

The product X" of the sample space ¥ is the set of all sequences of length n,
n € NU{oo}. The product field F", for n € N U {co}, of some field F over
however is defined to be the field generated by all finite dimensional rectangles
R, which are the sets of the form:

R={weQ"|VjeJ: wjeF;} (3.1)

where J C [1,n] is a finite set of coordinates and F; € F for all j € J. Let
RECT(F,n) be the set of all such rectangles, then we have formally F" =
field(RECT(F,n)).

Instead of considering rectangles, we can also confine to the class of cylinders.
We say a rectangle is a k-th order cylinder if in its representation above, it
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is J ={1,2,...,k}. The set of all k-th order cylinders in RECT(F,n) is denoted
by CY L(F,k,n).
It follows that

Vn € N: RECT(F,n) =CYL(F,n,n)
ARECT(F,00) = | J CYL(F, k, )

keN

Since every cylinder is a rectangle, the one inclusion in both equations obvious. In
the case n € N, let R be some rectangle in RECT(F,n). There exist J C [1,n]
and F; € F fulfilling Equation (3.I). Then J' = [I,n] and Fj = Fj for j € J
and I} = Q € F for j € [1,n]\ J fulfill Equation (3.1)) as well and we see, that
R e CYL(F,n,n).

Let now be n = oo and R, J and Fj, j € J as in Equation (3.1). Then the
equation holds also for J' = {1,2,...,maxJ} 2 J, Fj = Fj for j € J and the
additional events I} = Q, for j € J'\ J. This shows R € CY L(F, max J,00).

From the Kolmogorov Extension Theorem we derive the following corollary. In
its formulation we use preimages of the projection II;_,;: X' — X% for k <[ < oo:

Vo € X I (2) = 2y

Corollary 1 Given a standard measurable space (2, B) and a family of probability
measures i, on the product spaces (2", 0(B")), n € N, that is consistent, i.e., for

all k < | and for all F € B,

pk(F) = (I35, (F))

then there exists a unique probability measure p on the product space (2°°,0(B>))
that agrees with the family of probability measures, i.e.,

pe(F) = p( L, (F)) for allk € N and F € B". 0

The probability measure p is the unique measure defined in the FExtension
Theorem of Carathéodory.

3.2.2 Random Variables

A random variable or measurable function is a mapping f: 2 — A from
a measurable space (€2, B) to another measurable space (A, B4) such that every
preimage is measurable:

VE € Ba: fYF)={w]| flw) e F}eB
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Given a probability measure p on (€2, B), the random variable f induces a proba-
bility measure piy on (A, Ba):

VF € Ba: py(F) = p(fH(F))

For example, we can choose for A any countable set and By = P(A), all subsets of
A. Usually, random variables are used with the real numbers and the Borel field
on the real numbers, a certain o-field which we will not introduce here.

It is handy to lift operators over €2 to random variables over 2. Thus, we may
write f + g instead of explicitly defining a random variable h(w) = f(w) + g(w).

As usual, we also shortcut the notation for measures of random variables. For
example, given the measure p and some a € A, we write u(f = a) instead of p({w |
f(w) = a}). This generalizes to arbitrary statements over several random variables.
One must however be careful that the resulting truth set is still measurable.

3.2.3 Stochastic Processes

Let (€2, B, 1) be a probability space. A stochastic process or random process
is a sequence of A-valued random variables (z1,x9,...). A is called the state
space.

Markov Chains

A stochastic process (x1, xs, . . .) is called a Markov process if it has the Markov
property (also called memoryless):

(i1 =Cpar |1 =1 N oo ATy =) = 1W(Tpy1 = Cug1 | T = ¢5)
for any n and for any cy,...c,.1 such that
plrxy =N ANz =c¢,) >0
It is called a Markov chain if it is additionally time-homogeneous:
(Tt = Cop1 | T = Cn) = W Tmi1 = Cop1 | T = Cp)

for any n,m € N such that u(z, = ¢,) > 0 and p(z, = ¢,) > 0.
Note that we can translate any stochastic process into a Markov chain by
encoding the history up to time n into the state of time n.
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Chapter 4

Probabilistic Components

This section introduces probabilistic components and composition of such. We
will consider the generalization of Moore automata to the probabilistic case by
annotating transitions with probabilities. Similar to the non-probabilistic case
in Focus, we can abstract from the state of probabilistic automata and obtain
a description for probabilistic behavior. This description captures fully specified
and probabilistic behavior. Adding the notion of channels yields probabilistic
components and allows the composition of components.

4.1 Probabilistic I/O Automata

Recall how non-probabilistic (strongly causal or Moore) I/O automata were de-
fined. Such an automaton N consists of a set of states S, a start state sg, a
transition function A: S x I — S and an output function w: .S — O. At some
time of N’s execution, say it is currently in state s € S, the current output is
given by w(s) and the environment provides the next input i« € I. Then N passes
over to state d(s,7). As N is discrete, we can safely assume that S, I and O are
countable.

Instead of passing from one state to the next in a deterministic way, we wish
to randomly or probabilistically choose the next state, say by throwing a dice.
Consider, a probabilistic I/O automaton M is currently in state s € S and the
input symbol ¢ € I is provided. Independent of the input but depending on the
current state, we randomly choose an output symbol.

This can be modeled with a function w: S — dist(O), where dist(X) is the set
of distributions over a countable set X and a distributionll] over X is a function
f: X —[0,1] from X to the real numbers between 0 and 1 (both inclusive) with

'From Section we know, that every distribution induces a probability measure p over

25
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the property that

d fl@) =1

zeX

The value w(s)(0) describes the probability that the automaton M outputs o given
that it is currently in state s. The next state may depend on the current state,
input and output, thus we obtain the probabilistic transition function A : S x
I x O — dist(S5), which says: if the automaton is in state s, has just output the
symbol o, and reads the input ¢, then it will switch to state s’ with probability
A(s,i,0)(s).

Note that we require the independence of the output from the input, as we
interpret both the n-th input as well as the n-th output symbol to occur at time
t. This means, this definition enforces the minimal delay of one time step between
the input and the automaton’s reaction and is analogous to the restriction of non-
probabilistic Moore automata.

Just as any joint distribution P(X,Y") over two random variables X and Y can
be decomposed into a marginal distribution P(X) and a conditional distribution
P(X |Y) and vice versa, we can translate the two functions A and w (w plays
the role of P(X) and A the role of P(X |Y)) into a single function A: S x [ —
dist(S x O) according to:

A(s,1)(s',0) = w(s)(0) - A(s,1,0)(s")
If this A fulfills

> Als,i)(s0) =Y Als,5)(s',0) (4.1)

for all 2,7 € I, s and o, i.e., the output is independent of the input, then we can
translate it back by

w(s)(0) =Y A(s,i)(s’,0) foranyiel

' d(s") if w(s,0) =0
A(s,i,0)(s") = {A(s,i)(s’,o)

o)) otherwise

the measurable space (X, P(X)) by

VEC X:p(F)=Y_ f().

zEF

and vice versa, by f(z) = u({z}). Thus, distributions in this form are just another handier
notation for probability measures of this particular space.
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where d € dist(S) is some arbitrary distribution. If we drop the independence
restriction (4.1)), we obtain probabilistic Mealy instead of Moore automata.

So far, we did not mention the probabilistic equivalent to the initial state sq.
We do not allow the first output to depend on the first input, but still we would like
to randomly produce output in the first time step. Therefore, we replace the initial
state so by an initial state distribution § € dist(S). Again, this § combined with
w is equivalent to an initial state and output distribution 0 € dist(S x O). Note
that time dependent output behavior can be obtained with any of the mentioned
variants by storing the time within the state. This holds, in particular, for the
first output.

We summarize, that a probabilistic I/O automaton consists of a state set
S, input and output alphabets I and O, an initial state distribution ¢ € dist(S),
a transition function A: S x I x O — dist(S) and an output function w: S —
dist(O). This preliminary definition will be refined further near the end of this
section.

Input Sequences Feeding a sequence ¢+ € I™ to the non-probabilistic automaton
N results in a sequence of states (Sg, S1,...,8,) € S™+land an output sequence
(09,01, ...,0,) € O™ This is easily generalized to the infinite case i € I°°.

When reading the input sequence ¢ € I™, the probabilistic automaton M how-
ever may go through various sequences of states and output various sequences each
with a different probability. These probabilities form a measure over (S x O)"*1,
which describes more generally the probability of any subset of (S x O)"*!. But
how can this be generalized to the infinite case? This is exactly where the concept
of a random process and the Kolmogorov Extension Theorem (cf. Section
come into play. This theorem states basically that given consistent probabilities
for finite sequences, there exists a unique probability measure over the infinite
sequences consistent to these probabilities. We will now formally establish the
theorem’s application.

For the next few paragraphs, assume a fixed infinite input sequence i € .
How are the probabilities of sequences ¢ = ((sg,00), (51,01), .-, (8n,0,)) € (S X
O)""'.n € Ny, determined? Denote such probabilities by p(¢). The initial
state/output distribution § determines the probability of sequences of length 1, i.e.,
for the case n = 0, it is clear that we have p(((so,00))) = 0(s0,00) = d(s0)-w(s0)(00).

Let n > 1, given the probability for the sequence ¢, _;, the probabilistic tran-
sition function defines the conditional probability that the next output is (s, 0,).
We obtain p(p) = p(ed,_1) * A(Sn-1,%n-1)(Sn,0,) and unfolding the recursion
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yields:
p(<<307 OU)? (517 01)7 SR (Sm 0n>>) = 5(‘907 OU) ' 1:[ A(Ska ik)(8k+17 0k+1)

Ad Infinitum An alternative point of view is to consider (S x O)-valued random
variables zy, k € Ng, where x = (s, 0x) if the automaton is in state s; at time
k and outputs the symbol og. Such an infinite sequence (xg,z1,...) of random
variables is a random process and we can apply the insights from Section
As the underlying measurable space for each variable xp, we choose the space
((S x 0),P(S x 0)) as both S and O are countable. For this random process to
be fully defined, we have to construct a measure p, for every n € Ny over subsets
of sequences of length n, i.e., for the product space ((S x O)"*,a(P(S x O)")).
These measures correspond directly to the probabilities p(¢) we have just defined!
We obtain u,({¢}) = p(p) for all ¢ € (S x O)",n > 0. This suffices for the
definition of pu, as the singleton sets generate all other sets by countable union.
In the extreme case n = 0, we have only the empty sequence ( ) and the trivial
measure uo({()}) = 1.

Now, we apply the Kolmogorov Extension Theorem (cf. Section . The
probability measures p, are consistent (for all n > 0):

ot (T ((91) = (- (5,0 | ' € S A € OF)
= Y tenl{e- (5,0)))

s'eS,0'e0

= 3 ) Alsa,ina)(s,0)

s'eS,0'€0

=p(e) = un({¢})

as in the case n = 0:

(I ({(0)})
= > m{{s N

s'eS,0'€O

= Y s = 1= m({())

s'e€S,0'€0

Then the theorem states, that a unique probability measure p on the measurable
space ((Sx 0)®,0(P(S x 0)>)) exists such that, for all ¢ € (SxO)" and n € Ny,

pn({#}) = n({p € (S x O)* [ ¢ E p})
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This probability measure p fully describes the behavior of the probabilistic
I/O automaton M for the given input i and we can ask for the probability of
subsets of (S x O)>, as long as they are measurable, i.e., they are elements of the
o-field o(P(S x O)%).

We call sets of the form {p € (S x O)* | ¢ C p} basic cylinders, denoted
by C(¢). The underlying o-field o(P(S x O)*) contains these basic cylinders
and is closed under countable unions, countable intersections and the complement
operation. In particular, it contains the singleton sets {p} for p € (S x O)>.

To make the dependence of the measure p on the input ¢ explicit, we write in
the following instead P; = p. The induced random process (xg, x1, .. .) is actually
a Markov process (see Section. The Markov property holds, i.e., the process
is memory-less, because we have

Pi(Tni1 = (Snt1,0n41) | Tn = (S, 0n))
_ Pi(Zni1 = (Sng1,0041) A Tp = (80, 00))
Pi(xy = (sn,0n))

Z@G(S,O)" Pi(xpi1 = (Snt1, 0nt1) A Ty = (Sny 00) Ao, ..o, Tp1) = @)
- Zgae(S,O)" Pi(xy = (Sn,00) ANTo, ..., Tpn_1) = @)

Z@E(S,O)" A(Sp, 1.0)(0n41, Snt1) * Pi(@n = (Sn,0n) AT, ..., Tp_1) = ©)
N Z@G(S,O)" Pi(xy, = (Sp,00) AZoy oo, Tpo1) = ©))
= A(8p,5.1)(Sp11, 0nt1)

= Pi(Tp41 = (Snt1,0n41) | Tn = (8n,00) A ... Ao = (50, 00))

This property means that the probability of the next state and output only depends
on the last state and not on how this state was reached. In general, the value
A(Sp,1.n)(Sp+1,0n+1) may depend on n because of the input i.n and the process
would not be time-homogeneous.

Output Behavior Like in the non-probabilistic case, we follow the idea that
only the output of an automaton is observable from the outside. The state is
internal and not visible. To obtain the probabilities of the output sequences, we
project the tuples (s, 0) to the output using the projection functionﬂ q: (Sx0)>® —
O> with g(s x 0) = o for any (s x 0) € (S x O)®. Since ¢ is a random variabld]
it induces a probability measure @); on the measurable space (O o(P(O)>)) by
Qi(X) = Pi(¢ (X)) for all X € o(P(O)>). This concludes the definition of the

25 x o0 denotes the sequence of (S x 0)* with (s x 0).n = (s.n,0.n) for all n € N. With this
function, we can translate between elements of (S x O)* and S x O.

3In order to see that ¢ is measurable function (i.e., it is a random variable) into the measurable
space (O, 0(P(0)°)) we have to prove that every preimage of a basic cylinder is measurable.
This is enough, because the basic cylinders generate the whole measurable space and the “good
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output behavior of a probabilistic I/O automaton as the family Q;,i € I*°, of
probability measures.

We call two automata behaviorally equivalent if they have the same out-
put behavior. Finding small behavioral equivalent automata corresponds to state
lumping of a Markov chain as described in [RS89).

Note that both the probabilities P;(C(y)) and Q;(C(p)) for sequences ¢ € (S x
O)"! and p € O™ depend only on the first n elements of the input sequence 1.
That means, for all input sequences ,i" € I we have

il = 4, = P(C() = PC(p) (4.2)

and accordingly for ); and Q.

Non-Probabilistic Output Functions Before advancing to other topics, we
simplify the previous definition of probabilistic I/O automata without reducing
their expressiveness.

Every prob. I/O automaton M can be translated into a behaviorally equivalent
I/O automaton K which has a non-probabilistic output function wg, i.e., for all
states s there exists an output o such that wg(s)(0) = 1, for all other outputs the
probability is zero.

The new 1/O automaton K consists of the state space Sk = Sy x O and the
following functions:

0 ((s,0)) = 0(s) - wn(s)(o)
1 ifo=0

wi((s,0),0) = { (4.3)

0 otherwise

AK((Sv 0)7 i, O)((Slv Ol)) = AM(S> i, 0) (8,) ) WM(S/>(O/)

For all s € S™,0 € O", we have Pk ;(C((s x 0) x 0')) = 0 for o' # o by induction
over n. The base case follows from

Pri(C({((50,00),00)))) = 0 ((50,00)) - wrc (50, 00))(0p)

sets” principle is applicable |[GDG™01]. Indeed we have for all o' € O™, n € Ny:

¢ '({o] o Eo}) ={p]3s" € 5": (s x ) C ¢}
= U {el (& x ) Ep}ea(P(Sx0)™)

s'esSn
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and Equation (4.3)). The inductive step is

0#0d = o,#0, V ol, #],
L 0k (50,00))(0)) =0 V Pri(C((s x 0) x 0'],)) =0
—> Pgi(C((s x 0) x o))
= Ap((Sp-1,0n-1), in-1, 0;—1)((5717 0n)) - Wi ((Sn, On))(oiz)
. PKJ(C((S X 0) X O/\Ln))
=0

Similarly, it is easy to show that Pk ;(C((s x 0) x 0)) = Py;(C(s x 0)) and since
for all o’ € O™, n € Ny,

QraC) =Pri( |J  Cllsx0)x0))

(sx0)e(SxO)™

= Pri( | Cl(s x o) x o))
sesn

= Pua( | Cls x o))

SES™

= QM,l(C(OI)) )

it follows that the output behaviors of M and K are identical.

Thus, I/O automata of the form as K are sufficient and they can be represented
with more specific functions. Namely, as the output function is non-probabilistic,
it can be replaced by a function wg: S — O. The values Ag((s,0),1,0) of the
transition function are irrelevant if o’ # o, thus it can be represented by a function
Ag: S x I — dist(S).

We conclude these considerations with the final definition of a probabilistic
I/O automaton as a tuple (S,1,0,0, A, w) where

e S is a countable set of states,

e [ and O are countable input and output alphabets, respectively,

d: dist(95) is the initial state distribution,
o A: S x I — dist(S) is the probabilistic transition function,
e w: S — O is the deterministic output function.

The probabilities occur only in the state transitions and are independent of the
output, thus it makes sense to consider the probability of state sequences. For all
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s =(80,81,.-.,8,) € S",n € N, we have
n—1
P,(C(s)) = (s0) - [ [ Alswyin)(sk41)
k=0

By element-wise application of the output function w mapping state sequences S
to output sequences O", n € Ny, we can characterize the output behavior by
(for all p € O™, n € Ny)

thus summing the probabilities of all state sequences producing p.

In [Buk95], the author considers several different types of stochastic automata,
equivalences of automata and translations between different types of automata.
Actually, the introduced probabilistic I/O automata are similar to Markovian
stochastic Moore-automata, however, with the difference that the output of a
Moore-automaton depends only on the successor state whereas we require that
the output depends only on the current state in order to obtain a strongly causal
behavior. Given two stochastic automata A and B and fixed initial state distri-
butions d4 and dp (in [Buk95|, called state vectors), the equivalence of A and B
with respect to §4 and dp, which compares the probability for every input/output
combination, is identical to our notion of behavioral equivalence. Therefore, we
refer the interested reader to [Buk95| to obtain further insights into probabilistic
automata.

Notation We finish this section by summarizing and unifying the notation in-
troduced so far.

Automata are usually named with the capital Latin letters A, B, K, M and N.
For the induced probability measure of an automaton M and input ¢, we write
Pyri. Thus, the probability for a set of state sequences X C S is given by
Pyr(X). The induced probability measure of output sequences is called Qs ;.

Alternatively, we reuse the automaton name, say M, to denote the family of
S°°-valued random variables corresponding to the measure P;;. Thus, we have
for example P[M (i) = s] = Pyi({s}) for s € S* and P[M (i) 3 s] = Py i(C(s))
for s € S*. Recall that formally a X-valued random variable is a function from a
probability space to X. In this case, the random variable M (i) is defined over the
probability space (S, o(P(S)>), Pai), namely as the identity function over S.
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The useful consequence of the notation with random variables is that we can
easily apply operations to random variables and obtain new variables. In the
case of M(i), we can apply some function h: S — X and obtain the variable
h(M(7)): S — X with

P[h(M(i)) = x] = Pai({w € 5% [ h(p) = 2})

Because of the strong causality stated in Equation , the probability of
a finite output sequence depends only on a finite part of the input sequence.
Therefore, it is legal to write P[M (i) = s] for all n € Ng,i € I" and s € S™™! i.e.,
in this case we understand M (i) as a S"'-valued random variable.

As we consider usually several probabilistic automata, where each automaton
brings its own probability space, we have to be careful not to mix random vari-
ables without common probability space. Only random variables with a common
underlying probability space may be used within a single expression inside P[-]. In
particular, we are not allowed to use several random variables for different inputs
or of different automata within the same expression because there is no common
probability space. However according to Equation (4.2)), it is legal to refer to
random variables M (iy),i, € I*, when the i) are prefixes of a common infinite
sequence i (i.e., for all k, i;, C 7).

4.2 Probabilistic Behavior

From strongly causal FOCUS components, we already know that we can describe
an interactive non-probabilistic behavior as a function /*° — O* mapping infinite
input sequences to infinite output sequences (or sets of output streams in case
of nondeterministic components). We saw in the previous section, that, in the
case of probabilistic components, we do not obtain a single output sequence but
a probability measure describing the output behavior. This measure assigns prob-
abilities to sets of infinite output sequences. It is important that the probability
is assigned to sets and is not restricted to probabilities of single sequences. As
an example, imagine the tossing of a coin. Each side occurs with probability 1/2
and every infinite sequence of heads and tails occurs with probability zero. All
cylinders C(p), ¢ € O™ however have non-zero probability (1/2)".

We want to formally define what a probabilistic behavior with input I and
output O is. Independent of the concrete behavior, we define which output events
are assigned probabilities; events are measurable sets, i.e., we define the set of the
measurable sets of infinite output sequences. In Section [3.2] we defined for this
purpose the o-field o(P(O)>), that is the smallest o-field containing all cylinders
C(p), € O*. As this o-field depends only on the alphabet O, we denote it by Bp.
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Upon this o-field, a specific behavior provides for each input a probability
measure, which is a function Bp — [0, 1] fulfilling the properties of a probability
measure (see again Section. We give to the set of all these probability measures
the name OF, to reflect the similarity to the notation O.

Finally, a (deterministic) probabilistic behavior is a function f: I — OF
that maps any infinite input sequence ¢ to a measure over infinite output sequences.
As in the non-probabilistic case, this fully captures the observable output behavior
of a probabilistic component, thereby abstracting from its inner state. We call it
deterministic, as it allows only one possible output distribution. In Chapter [6]
we will also consider nondeterministic probabilistic behavior functions, where the
system can “choose” from a set of possible output distributions.

As with probabilistic automata, we can reuse the identifier f(7) to denote the
corresponding random variable. For example we have, for all ¢ € O*,

P[f(i) 2 ¢] = f()(C(p))

We apply operations h: O — X to the variable f(i) creating new variables
h(f(i)) with an induced distribution.

Behavior Abstraction In the previous section, we presented already the prob-
abilistic behavior of a probabilistic I/O automaton M. It is given by the prob-
ability measures Qyr;. We call the probabilistic behavior fy: I — OF with
fum (i) = Qur; the behavior abstraction of the I/O automaton M.

The central property of the output behavior of I/O automata was stated in
Equation (4.2)), which we repeat here (for all n € Ny, 4,7 € I" and ¢ € O"*):

il = 'y = Pliui) = ¢] = Plfur(i) = ¢]

It states, that the output of an automaton only depends on past inputs and not
on the present or future inputs. This property is called the strong causality
property. Accordingly, we call every probabilistic behavior which fulfills the
causality property strongly causal. Obviously, not every behavior is strongly
causal, however the probabilistic abstraction of every 1/O automaton is strongly
causal.

Example 4.1 The two automata A and B shown in Figure have the same
behavior, that means f4 = fg. The nodes in the graph correspond to the automa-
ton’s states. Each node’s label defines its output. In this example, the states are
not given any names. The transitions define the transition relation, where each
transition’s label defines its probability but probabilities equal to one are omitted.
The initial distribution is given by source-less arrows. o
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(/2)

(a) Automaton A (b) Automaton B

Figure 4.1: Two behaviorally equivalent prob. I/O automata.

We will now show an important theorem which shows that probabilistic I/O au-
tomata have the same expressiveness as strongly causal prob. behaviors. An anal-
ogous theorem exists for non-probabilistic behavior functions [Bro07]:

Every deterministic and strongly causal (non-probabilistic) behavior
function is the (interface) abstraction of some total and deterministic
Moore automaton.

Theorem 2 Fvery strongly causal probabilistic behavior is the abstraction of some
probabilistic 1/0 automaton. O

PROOF Let f be some strongly causal, probabilistic behavior with input and out-
put alphabets I and O. We will construct an I/O automaton M = (S, 1,0, 9, A, w)
with behavior abstraction fy; = f. We choose the state space S = (I x O)* x O,
such that each state encodes the input and output history as well as the current
output symbol. However, only states (7 x p,0) € S with P[f(7) = p- (0)] > 0 are
reachable.

The output function w simply returns the current output symbol of each state:

w((0,0)) = o
The initial state distribution is given by the distribution f(()):

0(((),0)) = Pf(()) = (9)]

The transition function is determined by the conditional probabilities of f produc-
ing an output symbol given a certain output history (note that we consider only
reachable states (7 X p,0)):

A((T X P, O)vi)((T Xp- <(i70)>70,))
=P[f(r- (@) =p{0,0) | f(r) =p-(0)]
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Do O en %
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Figure 4.2: A prob. I/O automaton with infinite state reconstruction.

Given these defintions, we can characterize the induced probability space. For
every state sequence s € S™*! that is consistent, i.e., it exists some input sequence
i € I* and output sequence p € O such that s.k = (il, xply, p.k) for all
k € {0,...,n}, it holds:

n—1

P[M(i) 3 s] =6(s.0)- | | A(s.k,i.k)(sk+1)

n—1

P[f(ily(i-k) = ply -(p-k, pk + 1
—P[f(<>)—<p~0>]-£[0 A P[<f(z'>¢)k) :piﬁp.k[;] =

=P[f({)) = (p.0)] PIEJ[C}Z'(ﬁZ)I):piﬁ]?]

=P[f(il,) = P%H]

Finally, as there is only a single state sequence producing a certain output
sequence p € O™ we obtain:

Pfu(i) 3 p] = Plw(M (i) 3 p]
P[M(i) 3 (i x pl,, pn)]
= P[f(i\l/n) = P] . (]

The theorem shows that the definition of probabilistic I/O automata exhausts
the possibilities of strongly causal probabilistic behaviors.

In the proof, we constructed a probabilistic automaton for a given behavior.
In the proof for non-probabilistic behavior, the constructed automaton is also
minimal. Here however, the resulting I/O automaton reaches an infinite part of
the state space even if a finite automaton exists. This problem persists even if
we construct the automaton analogously to the minimal construction in the non-
probabilistic case. We show this in the following example.

Example 4.2 We inspect the probabilistic behavior abstraction f of the I/O au-
tomaton shown in Figure The automaton has only one possible (or constant)
inputf’] so in the following we can omit the input argument to f. Analogously to

4This corresponds to the idea of no input.
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the construction of a minimal automaton in the non-probabilistic case, we consider
the remaining behavior in a certain state. We want to show that although there
exists a finite automaton for the behavior f, there exist infinitely many remaining
behaviors.

At first, we give a closed representation of the behavior f for output sequences
<a> k+1 :

VE>0: f((a)*-(a) =47"+k-4"F. Z = (1+3k)47"

To prove our claim, it suffices to consider the conditional probability that f pro-
duces another output a given it has already produced (a)**+*:

(1+3(k+1)4 !
(14 3k)4-*

1 4+3k 1 3 1

4 143k 4 \1+3k
These probabilities are all different. Thus, we reach infinitely many different states,
in the sense that the states have different output distributions. That means, the

reachable state space would be infinite if we followed the same construction as in
the non-probabilistic case. o

P[f 3 (@) ] f 3 {a)] =

4.3 Composition

In order to compose several behavior functions or automata, we introduce the
notion of channels. An output channel may be connected to an input channel
such that the owning components communicate over this shared channel. This
communication is unidirectional with exactly one sender and one or more receivers.
For bidirectional communication, a second channel has to be used.

In the same way the syntactic interface of non-probabilistic components is
defined [Bro00], we say that a strongly causal prob. behavior with input and output
channels I and O has the syntactic interface />0. We represent channels using
variables, thus the input and output alphabets are the valuations of the variable
sets I and O. Such behaviors, which can be defined as the behavior abstraction of
an I/O automaton, are called probabilistic deterministic components and we
introduce the modified notation I > O to refer to probabilistic components only.
Note, that we always require components to be strongly causal.

Recall that the type of variables and accordingly of channels is determined
by the function type (see Section . We will assume the existence of a global
function type, such that a variable never occurs with two different types during
composition.
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In this section, we define the operators needed to construct composite compo-
nents. Components can be connected and can communicate over shared channels.
For locality reasons, we may hide communication channels and remove them from
the composition’s interface.

We will introduce two special cases of composition, namely parallel composi-
tion and feedback, which suffice to define the general composition. The former is
essential to allow parallel independent execution of several components, the latter
provides the essence of communication: The dependence of input on previous out-
put. In any case, we forbid several components to write to the same channel. We
will consider two systems with the syntactic interfaces I; & Oy and I > O, such
that every channel has at most one source:

01002:@

After introducing composition, we explain how to realize channel hiding.

All of these operators will be defined in terms of probabilistic I/O automata.
This allows us to easily comprehend the definitions as they immediately describe
their operationalization. From each definition we derive the behavior abstraction
of the resulting automaton, which leads us to the operators’ semantics in terms of
probabilistic behavior functions.

By defining the operators for probabilistic behaviors in this way, we guarantee
the operators to fulfill the congruence property. This means, for each operator
and any I/O automaton, we can either at first abstract and apply the operator
to the resulting behaviors or we apply the operator to the automata and abstract
the composite automaton afterwards. In both cases the resulting behavior will be
identical. Or put in another way, behavior abstraction forms an homomorphism
from prob. I/O automata to prob. behavior with respect to the composition and
hiding operators.

4.3.1 Parallel Composition

We consider two components executed in parallel without communication. They
may share some input channels but cannot feed their output to the other compo-
nent:

OlﬂIQIOgﬂllzq)

Independent of the underlying components’ semantics, we can declare the syntactic
interface I 5 O of the composition with O = O; UOy and I = I; U I,.

We write M; @ M, to denote the parallel composition of two automata or
behavior functions.
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Operational Semantics We begin with the composition of two automata M; =
(S1,11,01,61, A1, w) and My = (Sy, I3, 03, 02, Ay, wy). They are executed in par-
allel and cannot communicate in any way. In stochastics, this is called statistical
independence and means that the probability of the conjunct of two events equals
the product of the probabilities of each event. This is reflected in the following
definition. The composite automaton is given by the tuple (S, 1,0, 4, A,w) with

S =5; xSy
0(s1,82) = 01(s1) - 92(s2)
A((s1,52),1)(81, 85) = Ai(s1,8]1,)(s7) - Da(s2,1[1,)(s3)
w(s1,82) = wi(s1) Wwa(ss)

Recall that the binary operator & merges two valuations.

Behavior Abstraction Next, we consider how the parallel composition is re-
flected in its behavior.

Let i € I be some input sequence and s = {(s},s2), (s},5%),...) € S" =
(51 x S3)™ some finite state sequence. Using the superscript index [, we denote the
[-th component of a tuple or the sequence of all [-th components of a sequence of
tuples. It follows

P(M(5) 3 5] = a(so) - [ Alswie) (s1)

n—

= T a6 - TTAiskoiuln)(shin)

1€{1,2} k=0
= [ PiMiil,) 25
le{1,2}

This equation incorporates three different probability spaces. But at least in this
case, we can retrieve the random variables M, (i|r,) and Ms(i|y,) from the variable

Vn € Ng,s' € S7: P[3s* € Sy M(i) O s x s*] = P[M,(i|;,) 3 s']

and analogously for the variable Mj(i|z,). Thus, we can interpret the variables
M, () and Ms(-) also within the probability space of the composition and there
they are indeed statistically independent.

Instead of first defining M (i) and afterwards deriving M;(-) and Ms(-), we
could alternatively define the variables M;(-) and Ms(-) as independent variables
and derive M (i) as their conjunction:

M(i) = s' x s <= M(i|,) = s' A My(i|,) = s*
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which again reflects the similarity to the non-probabilistic case.

Finally, we can characterize the behavior abstraction f of the composition. Let
f1 and f5 be the behavior abstractions of M; and M, respectively. Then for all
output sequences p € O* = O; U O,*, holds

P[f(i) 3 p|] = Plw(M(i)) 3 p]
=P[ A\ w(M(il1)) 2 plo]

le{1,2}

= [[ Plw((ilL)) 2 plo]

le{1,2}

= [I PlAGLL) 2 slol

le{1,2}

This equation provides the definition of the parallel composition of prob-
abilistic behaviors and we reuse the operator @ with behavior functions.
From the above equations the following important property follows.

Theorem 3 (Associative and commutative) Parallel composition is both as-
sociative and commutative. o

This means that the parallel composition of several probabilistic behaviors F =
{f1,..., fn} can be performed in arbitrary order. The notation OF is therefore a
reasonable abbreviation for fi ® fo O ... D f,.

4.3.2 Feedback

We consider now a component M with the syntactic interface I > O. We feedback
the output channels which also occur syntactically as input channels, thus creating
a loop. This poses no problems as components are strongly causal and delay the
output by at least one time step. We feedback all channels C' that occur both
as input and output of the component, i.e., C' = I N O. The resulting syntactic
interface is (I'\ O) % O (it is I\ C = I\ O). The resulting component is denoted
by M°.

Operational Semantics Let M be a probabilistic I/O automaton given as
the usual tuple. The feedback of M is the automaton M © defined by the tuple
(S,1\0,0,6,A° w) with

A®: S x T\ O — dist(9)

A°(s,i") = A(s, i Ww(s)|;)

This exactly reflects the informal description that the output of the current state
(i.e., w(s)) determines (part of) the input for the next transition.
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Behavior Abstraction Before we derive the behavior abstraction of the feed-
back automaton, we review its induced probability space. Let M(i) € O"!
and M©(j) € O™ be the respective random variables for finite input sequences
il je I\—O”, n € Ny. Then we have for all state sequences s € S

PIMO() = 5] = 8(s0) - [ A%(s6.30) 511
k=0
= 5(s0) - [T Alssc W)l 1) 511
k=0
— PV Wu(s)ly ) = o

Thereby, the union W of two sequences of valuations is meant to be applied element-
wise. Again, we have to realize that this equation incorporates two different prob-
ability spaces and this time there is no reasonable way to embed both random
variables (M (i) and M“(j)) within a common space.

Now, we are ready to characterize the behavior abstraction f© of E with
regard to the behavior abstraction f of M. For all input sequences j € I \ O™ and
output sequences p € O™, it is

P[f°(j) = p] = Plw(M"(j)) = p]
=Plw(M(jWpl, 1) = p]
=P[fHWpl,|r) = 7]

This equation defines the feedback operation on a probabilistic behavior f.

Example 4.3 We consider the simplest example, a strongly causal identity func-
tion over the Booleans B, as it already provides an interesting insight into the effect
of the feedback operation. In order to obtain a strongly causal function, we have
to provide an initial state distribution which in turn determines the initial output
distribution. For this example, it is not important which concrete distribution we
choose, as long as it is non-trivial.

We decided on the uniform distribution which leads us to the following defini-
tion of the probabilistic I/O automaton Mg, = (B, {z},{y},d, Az, w,) with the
syntactic interface {z} 5 {y} and type(r) = type(y) = B. The initial distribu-
tion and transition function are given by (for all s,b € B):

o(s) =1/2 wy(s) = (y = s)
Ay(s, (x> b)) = (b 1)

The left transition diagram of Figure visualizes Mg, ,). Thereby, a node label
cla describes the sending of a message a and a transition label c?a describes the
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Figure 4.3: Visualization of automaton My, ,, a probabilistic identity function
with initial uniform distribution, and its feedback Mlg[r .- Annotations (1) for
probabilities of value one are omitted.

receiving of a message a, both on channel c¢. Probabilities are given in parentheses
beneath each transition. As before, probabilities 1 are not annotated. The initial
state distribution is annotated on arrows without source node.

The application of the feedback operator to Mqj ) results in M, Ig[m,w] qHS {z}

as visualized on the right of Figure [£.3] Thereby, nothing changes except the
transition function which is now characterized by (for all s € B)

AL (s, () = Aa(s,wals)) = Au(s, (x> 5) = (s = 1)

The behavior abstraction resulting from this automaton is a simple uniform
distribution over two sequences (omitting the channel identifier z):

Id[z, 2]°(()®) = (0% > /2, 1% s 1/2)

However, if we provide any of these sequences to the original behavior function
we obtain some additional outputs, e.g.,

Id[x, 2] (0°°) = (0°° +— 1/2,10% > 1/2)

This difference emphasizes, that the feedback operation indeed operates on a
single instance of an automaton: the output of this instance is provided as input to
the very same instance. Thereby, the automaton is not restarted for the feedback
of each message but continues at its current state. We would obtain another
behavior than determined by the feedback operator, if we would iteratively run the
automaton for n transitions producing n+1 outputs and provide these n+1 outputs
in the next iteration in which the automaton runs for n + 1 transitions producing
n + 2 outputs and so on. In Example [4.6] we elaborate on this observation and
compare it to unfold rules that are valid in the non-probabilistic case. O
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Figure 4.4: General composition of two systems without self-feedback, that means
IlﬂOl =®=]2002.

4.3.3 General Composition

In general, two arbitrary components with disjoint output channels (O; N Oy = ()
may be composed. Figure illustrates the case where additionally I; N O; = ()
as well as I, N Oy = () holds. The depicted components share some input channels
I, N Iy and use the channels C; = I, N Oy and Cy = I; N O, for communication.

The general composition M; ® M, of two probabilistic I/O automata, and
analogously for two probabilistic behaviors, is the combination of parallel compo-
sition and the feedback operation:

M, ® My = (M; © Mz)o

with the syntactic interface I 5 O where O = O; UOy and I = (I, U I5) \ O.

The parallel composition enables parallel operation of both automata whereas
the feedback operation allows the components to exchange messages over shared
channels.

Operational Semantics This composition defines an automaton M; ® M, =
(S,1,0,6,A,w) with

O =0,UO0,
S =51 x5

5(81, 82) = (51(81) . 52(32)
w(s1, 52) = w1(s1) W wa(s2)
A((s1,52),) (1, 55) = Als1,7 8 w(s1,59)[1,)(51) - Alsz, i W w(s1, 52)[1)(55)

Example 4.4 We illustrate the definition of composition with a small example.
We define two components Producer and Medium by the means of automata — they
are shown in separate frames labeled accordingly.
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Figure 4.5: Component network of the composition.

Producer

x: {0,1}

The Producer has no input and outputs a message 0 or 1 with equal probability
on channel = after the first time step. The Producer’s output is connected to
the Medium, which forwards all received messages with a delay of 1 to its output
channel y. Formally, we have Producer = (Sp,Ip,Op,dp, Ap,wp) and Medium =
(SM, jM, OM, 5M, AM, wM) with

Sp={A, A} Sy = {B1, B2}
Sp(A) =1 Sn(By) = 1
type(z) = type(y) = {0,1} On = {y}
IPI(Z) OPIIM:{.%}

and for every i € {1,2} it is

wp(A;) = (z—0) wy(B1) = (y — 0)

wp(Ag) = (z— 1) wy(B2) = (y— 1)
Ap(Ar, ())(4;) =12 Ap(Bi, (z+ 0))(B1) =1
Ay (Bi, (= 1))(By) =1

Figure illustrates the composition with syntactic interface () & {x, y}, which
means that the composition has no input channels and the shared channel x is not
hidden from but forwarded to the outside. The behavior of the composition is
given explicitly in the specification frame below.
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—— Producer ® Medium det. prob ——
out z,y € {0,1}

A/Br | (Y2) | Ai/B,
x!10; y!0 210y

(v2) C

(/2) (/2)
(/2)
AQ/Bl (1/2) AQ/BQ

O

x!1;y!0 !yl

For example, the probability that the composite automaton transits from (A, By)
to (Ag, By) can be calculated by:

A((A1, Br), ())(Az, B1)
= Ap(Ar, ())(A2) - Ap(By, (x +— 0))(B1)

Behavior Abstraction We denote with f; and f, the behavior abstraction of
M; and Ms, respectively. By combining our previous results, we obtain

P[(f1® f2)(i) = p] = P[(fr © f2)(i W pl, |1) = p]
= H P[fl(zwpin |Iz) = p|Oz]

1e{1,2}

As expected, the right side of the equation depends only on the behavior abstrac-
tion of the two I/O automata and the equation provides the characterization of
general composition in terms of probabilistic behaviors.

4.3.4 Projection

In order to restrict the behavior of a component on a selection of output channels,
we introduce the projection operator {. This operator is also essential to real-
ize information hiding regarding channels: communication channels can be made
internal by projection on the public channels. Then, other components cannot
access the internal channels from the outside anymore.
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Operational Semantics Let M be an automaton as before and O’ C O a subset
of channels we want to project onto. The resulting syntactic interface is I & O’.
In order to hide some channels H, we have to select O’ = O\ H. Projecting
the automaton M onto the channels O’ yields the automaton M 1 O" = (S, I, 0,
9, A, w') with

w'(s) = w(s)lor

Behavior Abstraction The probability space over the state space S is not
changed by this operation, that means the underlying sequence space and the
probability measures induced by M and M { O" are the same. We only have to
review the behavior abstraction f f O" of the new automaton and compare it to
the behavior abstraction f of M. We have

(f1O)0) =

= w(M(7))|or
= f(

(M 10"(i))

As before, the output functions w and w’ are applied element-wise to state se-
quences. This equation (of random variables) is legal as M t O" is embedded
within the probability space of the original automaton and so these are dependent
variables.

Note that since we talk about random variables over sequences of valuations, we
mean the projection in f(i)|or to be applied element-wise to the output sequence
yielded by f(i). We could alternatively characterize the projection operation f 10O’
directly in terms of f, but that is less readable:

(Fron@ee) =1 U c)

elor=p

Example 4.5 We illustrate the idea of this new operator by hiding the channel
x from the composition (Producer ® Medium), say because x was meant for internal
communication only. Hiding can be easily applied to I/O automata by removing
the output of the hidden channels. The resulting automaton is the same as shown
in Example [4.1] There, we saw already the minimal equivalent automaton with
three states. For convenience, we repeat this automaton (see frame (Producer ®
Medium) T {y}) and annotate which states were merged.
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0,0 0,0
0 x!O:D x!O:D
x!O:> 10
,' 0,1
9170 z!1
01 1,0
: o1 z!0
Pl 1.1 1.1
U L (LI
!l z!l

Figure 4.6: Automaton Mlg[x P the left and its two unfoldings: Eq. (4.4)) in the
middle and (4.5)) on the right. Comparison shows that unfolding does not preserve
probabilistic behavior. Probabilities of value one are not annotated.

—— (Producer ® Medium) 1 {y} det. prob ——
out ye {0,1}

(/2) (/2)

. 0 0

A1/B1| (V2) | A1/B2

Al/Bl Ag/Bl > AQ/BQ
yl0 0 | 072) [y

Example 4.6 Let us contrast the observations of Example [4.3] to the non-
probabilistic feedback operation of Focus. In [Bro97|, M. Broy elaborates on
different unfolding rules of feedback operations. Applying these rules to our ex-
ample analogously, we would expect the two unfoldings

ld[z, z]° = (ld[z, y] ® ld[y, 2]) T {z} )
ld[z, 2] = (Id[y,y]” @ ld[y, 2]) t {z} . (4.5)

However, both unfoldings are not valid in the probabilistic case. By evaluating the
right-hand sides of the equations, we obtain the behaviors shown in the middle and
right of Figure . Obviously, these are not behaviorally equivalent to Id[z, z]°
which is shown on the left in Figure [4.6] O
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4.4 Special Case: Non-Probabilistic Behavior

Every non-probabilistic automaton and behavior has a counterpart in the proba-
bilistic formalism. To proof this, we will, at first, explain the translation of the
Focus components (deterministic automaton and behavior) into their probabilis-
tic counterpart. Then, we show that this translation is a homomorphism with
respect to composition.

4.4.1 Automata
For the following definition, we use the indicator function
[]: B —[0,1]

1 if g is true

0 otherwise

QGBH[Q]Z{

The probabilistic translation of the deterministic non-probabilistic I/O au-
tomaton M = (S, 1,0, 00, A,w) is given by M¥ = (S, 1,0,4, A w), where

d(s) = [s = a9
AP (s,4)(0) = [A(s,i) = o]

4.4.2 Behavior

Analogously to the probabilistic behavior abstraction, we have the non-probabilis-
tic abstraction fy;: I — O of some non-probabilistic, deterministic automaton
M. This function is defined as the output produced from the unique state sequence
that M traverses for a given input sequence i. If rumy (i) denotes this state
sequence and w: S — O denotes the output function, then we have fy(i) =
w(runys(i)). The probabilistic behavior of M? is very simple. For all finite state

sequences s = (S, ..., S,) and infinite input sequences 1, it follows that
n—1
P[M"(i) 3's] = 6(so) - [ [ A (skr k) (s11)
k=0

equals either zero or one because the product of only zeros and ones is again either
zero or one. For the latter case, we have the equivalences:
PM"(i) Js] =1
<~ s9g=09 N Vk € {O,...,TL— 1} A(Sk7ik) = Sk+1
<> runpy (i) = s i.e., s is the run of M on i.
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Applying these facts to the definition of the behavior abstraction fy;r of M ¥ yields:

P(fur (i) 2 p] = Plw(M"(i)) 2 p]
= [wlruny (i) = p]
which equals one if, and only if, p = w(runy(i)) = fu(i) and otherwise equals
zero. We can now characterize the probabilistic behavior f;;» compactly:
VielI* peO™: Plfyr(i) I pl = [fuli) 3 p]

We reuse this characterization as a definition and obtain the probabilistic
translation f% of a deterministic behavior function f:

P[f7(i) 3 p] = [f(i) 2 p]

This immediately leads to the commutability of behavior abstraction and proba-
bilistic translation:

Theorem 4 fyr = fa’. O

The probabilistic translation allows us to reuse descriptions of non-probabilistic
components from FOCcus. To make this usage explicit, we introduce a special speci-
fication frame nonprob (cf. Section. The specification Medium of Example
can be understood as such a translation. In the subsequent section, we will see
further applications of this translation.

Theorem 5 Given some deterministic and non-probabilistic behaviors f and g,
we have

(ffog")=(fog)"
(f7)° = ()"
(ffeg")=(feg)”
This shows, that the probabilistic translation -* is a homomorphism from determin-
istic FOCUS behavior functions to (deterministic) probabilistic behavior functions
with respect to the three operators parallel composition O, feedback -© and general
composition . o

PROOF The proofs are straightforward. We have, for all 1 € I* and o € O* with
I = If U]g, O = Of UOg and if = i|]f, Of = 0|Of etc.,
Plo C (/" ®©¢")(0)] = Plos T f"(is)] - Plog T g" (iy)]
= [oy E f(iy) N o4 E g(ig)]
=[0E(f D g)(@)]
=Pl C (fDg)" ()]
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This proves the first equation. The second equation follows similarly. We have
with [}, = Iy \ Oy and i, € I}

Plos C (f7)°(¢))] = Ploy E f7(i} Wos1,)]
= [oy C f(i} Woylr,)]
= [oy E fO(i})]
= Plo; C (/)" (i})]

By definition of the general composition it follows as well

(fFog")="od") ' =((fo") ' =((fo)'=F29" . =

4.5 Example: Alternating Bit Protocol

In this section, we discuss a probabilistic derivative of the Alternating Bit Proto-
col (ABP).

The Sender and Receiver are connected by two instances of LossyMedium, all of
which are specified in the following frames. All but the LossyMedium component
are non-probabilistic, they are specified using FOCUS and translated into their
probabilistic correspondent as indicated by the nonprob frame annotation. In
contrast to previously specified media, the LossyMedium forwards the current mes-
sage only with probability p and drops it otherwise. All channels in this example
allow the communication of a stub message (usually called nothing, null or nil)
indicating that there is nothing interesting to be sent. We will use the symbol O
to identify this kind of message and introduce the abbreviation 7~ = T'U {O} for
any type 7.

Additionally to the Sender, Medium and Receiver components, we introduce a
Producer component which provides our communication system with input. In
reaction to each ok message received on channel y, this Producer has to output
the next message to transmit. For this study, we choose the simple Producer
that outputs a constant stream of ’a’ messages. Thus, we can instantiate all
components with type parameter T" set to the singleton set {a}.

Figure 4.7 shows how the components are integrated to form the overall com-
munication system. The specification of LossyMedium refers to the channels x and
y, which we have to rename to fit the channels of the Sender and Receiver. We use
the notation C[#/y] to denote the component that we obtain by renaming channel
x as channel y in the specification of component C'. The probability p that a
medium forwards a message successfully is set to 3/4 for this example.

From the composition we hide all output channels but channel z. This allows
us to easily verify the correct transmission of messages output by Producer at x by
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—— LossyMedium [type T,p €0, 1]] det. prob ——
in zel~
out yel~
local te T~
{t=D0}(1-p)
{t =0} Send | 27m
ylt
{t :=m}(p)
_ Sender[type T] nonprob. ——
in xeTl ,¢qeB™
out y € {ok} ,¢q € (T xB)~
local bseB,de T~
univ -meT
state s € {Wait, Send, Ok}
wait resend
Send
ack
init bs.0 = false A d.0 =0
T | ey d | bs'
S H Y ‘ c1 wait O | — O | bs
Send || O | (d, bs) next |m | — m | bs
Ok ok | O resend | — | OV —bs || d | bs
Wait || O | O ack — | bs a | bs
switch | — | — O | —bs

51
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—_ Receiver[type T} nonprob. ——
in co € B™
out zeT ,c3e€ B~

local br € B
univ mecT

init br.0 = false

Co H br’ ‘ 2z

(m, br) —br
(—,=br)Vv O | br

C3

O

Producer

x: T y: {ok}~

Sender[T]

cl;(TxlB/ \4:18_

LossyMedium LossyMedium
[T, 3/4)[2/ex, Y/es] T, 3/4][2/es, Y/ed]

TXIB\ A(IB_

Receiver|T|

z: T~

Figure 4.7: Component network of the ABP system.
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S Wait S Ok
— R br =bs R br#bs
z!O z!0
S Send S Send
M, t=0O R br#bs
1
(/4)CR br = bs My t=bs
z!O z!0
3/4 ’
() </ ()
S Send S Send
S Send 1
M; t=(bs,a) (Y1) R br #bs 1
R br=bs R br#bs My, t=0O D(/‘*)
z!O zla z!O

Figure 4.8: Reduced automaton of the composed ABP system.

analyzing the output behavior at z. Figure illustrates the automaton of the
composition of the five components.

Without optimization, the resulting automaton would have 36 reachable states.
Therefore, we show a reduced but behaviorally equivalent automaton which com-
bines several states of equivalent behavior into a single state. The diagram reflects
this reduction as the label of each node indicates the original components’ states.
We use the abbreviations S, My, R and M, respectively for Sender, Medium from
Sender, Receiver, and Medium from Receiver. The reduced automaton has only 7
instead of 36 states. For example, the left node in the second row combines all
states where the Sender is in state Send, the first Medium stores ¢t = O (i.e., it does
not forward the previously received message) and the parity bits of Sender and
Receiver are equal. This indicates that the output behavior of the composition is
independent of the current value of the parity bit as long as the local bits of the
Sender and Receiver are consistent.

We will now discuss some properties of the composition’s automaton. The
automaton consists of a single class, meaning that from every state any other
state can be reached. This class is finite and regular (or aperiodic) as it contains
a self-loop (a state with a transition to itself). Thus, the automaton (or the
underlying Markov chain) is ergodicﬂ

A set of states in a Markov Chain is ergodic if all its states are ergodic. A state is ergodic if
it is aperiodic and positive recurrent. A state has period k if starting in the state a return occurs
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From this categorization, we can derive several other properties:

e Every state is visited infinitely often almost surely. This is an important
observation as one of the states (middle column with output “z!a”) constitutes
the forwarding of the original message >a’ on channel z. Thus, every time
this state is reached the protocol successfully transmits a message. As this
state is reached infinitely often with probability one, this system fulfills the
property of a correct transmission protocol with probability one. Formally,
this property can be described by:

P[count({a},z) = 00| =1

where z refers to the random variable for channel z and count(X, ) is the
number of times an element of X occurs in the sequence ¢ (cf. specification
of lossy medium in [BS01]).

e After sufficient time has elapsed the process can be in any state at any time,
i.e., there is no periodic behavior.

e The probability to find the process in a specific state converges, i.e., for every
state s the limit

7(s) = lim P[M.n = ]
n—oo
exists, where M denotes the random variable describing the composite au-
tomaton’s state sequence. This limit distribution is independent of the initial
distribution.

We can calculate the actual distribution either by solving a linear equation
system or by relying on the probabilistic model checker PRISM. In the con-
text of the latter, this distribution is called steady-state probabilities. By
enumerating the states as shown in Figure in counterclockwise order be-
ginning with the initial state, we obtain the following values for :

s 0 1 2 3 4 ) 6
m(s) { 0.15 0.2 0.15 0.15 0.05 0.15 0.15

The state distribution for the first 100 time steps is shown in Figure [1.9] At
first, the distribution seems periodic but it converges clearly to the limits

7(s).

only in multiples of k steps. It is aperiodic if its period is 1, thus returns can occur at irregular
times. A state is positive recurrent if the expected return time is finite. [KSKT76]
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1
State 0 0.5 /\ 1
1
State1 0.5 |

O/\[\/\Ww__

1

Statez 05 ¢ /\ 4
O me

1
State3 05 \ .

0
1

State 4 05 | 4

Olf\u.-’"“x_
1

State5 05 .

A N e, , ,

1
State 6 05
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Figure 4.9: State distribution for the first 100 steps.

Next, we determine the expected number of steps between two consecutive
message outputs on channel z. Again, PRISM provides the required facility to
calculate this value. State 3 is the only state where the automaton outputs a
symbol on z. So we have to measure the expected time needed from State 3 to
State 3, i.e., one round trip. This way, we would get the result zero steps from
PrisM. Instead, we have to measure the steps from State 3 to State 2 and add
one to the result. In PRISM, we introduce a “time” reward and set State 3 as the
initial state. Then, the property specification

R{”time”}:?[F(S = 2)] +1

describes the expected round trip time and resolves to 6% and corresponds to the
reciprocal of the steady-state probability 0.15 of State 3.
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Chapter 5

Description Techniques for
Probabilistic Specifications

In this chapter, we present description techniques for probabilistic specifications.
Such techniques are needed to actually write down specifications. The most basic
description technique is the mathematical notation based on predicate logic, which
is used throughout this thesis to define the foundations of our modeling theory.
Although, by using higher-order logic we are in principle able to specify anything,
this general form can be rather cumbersome for the specification of certain systems.
According to the principle “the right tool for the right job”, we present additional
notations and thereby increase the class of specifications that we can write down
in a comprehensive and compact form.

The Focus theory, on which this work is based, already encompasses several
description techniques for non-probabilistic specifications. The contribution of this
chapter is to extend some of these notations for the probabilistic case. We remain
compatible to FOCUS in the way that we allow reusing FOCUS specifications and
that the extended notations are kept as similar as possible to the original ones.

The description techniques that we are going to introduce form a syntactic
framework with sound semantics which can be used for unambiguous specification
documents.

5.1 Introduction

This section provides an overview and the common principles of the description
techniques to be introduced in the remaining chapter. The different techniques
are listed in Table where we distinguish elementary and composite specifica-
tions. The latter describe components by means of decomposition, whereas the
former describe the components directly. That means, in an architecture of com-

57
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Tabular Graphical Logical
Elementary Logical Tables  Transition Diagrams Predicate and
Temporal Logics
Composite n/a Component and Textual Composition

Dependency Diagrams

Table 5.1: Classification of the presented description techniques. We distinguish
between composed and elementary specifications and different visual styles.

ponents the inner components are described by composite specifications and the
leaves of the hierarchy are described by elementary specifications. In particular, a
composite specification allows the usage of different description techniques for the
specification of its sub-components.

Description techniques can also be classified according to their visual style.
According to the Focus theory, we distinguish the graphical, tabular and logical
style. We will provide a probabilistic extension to at least one description technique
of each style.

Graphical Style A graph is a set of vertices connected by edges.

For an elementary specification, we will visualize I/O automata graphically.
Then vertices represent states and edges represent transitions between states.
Such graphs are called transition diagrams.

For composite specifications, we connect components with channels. Such
graphs are called component networks.

Tabular Style Tables are useful to layout relations. For elementary component
specifications, each column can be associated to a certain channel and every
row defines one entry or rule of the input /output-relation of the component’s
behavior. Such tables are known as logical tables from the Focus theory.
We will extend this kind of tables to incorporate probabilities.

Logical Style We can textually specify components using formulas written in a
certain logic. Using predicate logic and the definitions given throughout this
thesis, we can also specify concrete components.

For elementary specifications, we have to refer to the component’s behavior
function. Several examples for such specifications were given in the preced-
ing chapters. For composite specifications, we can rely on the composition
operators introduced in Sections [4.3] [6.3] and [6.4]
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name [parameters} annotation ——
syntactic interface

local declarations

content body

Figure 5.1: The general structure of a specification frame. Frames visually distin-
guish the scope of a specification.

We will not provide any further description techniques of the logical style.
However, several probabilistic temporal logics exist, which could be combined
with our modeling theory.

In the Focus theory, specification frames are used to visualize the scope of
a specification. Each frame is dedicated to one description technique and the
specification of a single component. The general pattern of a frame is given in
Figure 5.1l We distinguish the following parts of a frame:

e name provides the identifier of the specified component. If the specification
is parametric, name is followed by the formal parameters in square brackets.

e The definition of the syntactic interface is an integral part of elementary
specifications but may be omitted for composite specifications if it is clear
from the composition itself.

The declarations of input and output channels are introduced with the key-
words in and out, respectively. Each channel is declared by its name and
the type of messages communicated over this channel. For example, the
declaration

inilefl,...,ikEIk

out o, 601,...,0n €0,
denotes the syntactic interface {iy, ..., it} > {o01,...0,} with the types:

type(i) = I, ..., type(iy) = I
and type(ol) = Ola s 7type(0n> - On

e The next part of the frame, local declarations, is optional and used to declare
variables which are not part of the component’s interface.

The syntax is the same as for the declaration of the syntactic interface.
However, we use other keywords depending on the description technique.
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For example, local is used for local state variables and univ for universally
qualified variables in tabular specifications.

e The content body defines the behavior using one of the available description
techniques.

e We use the annotation field for two purposes.

An annotation may be given to point out a property of the component that
is specified. For example, we will highlight that a specified component is
deterministic and probabilistic using the annotation det. prob or that it is
nondeterministic and probabilistic using nondet. prob.

An annotation can further constraint or influence the specification. For ex-
ample, we may mark a component network with the independent annotation
to require statistically independent sub-components’ (cf. Section Com-
posite Specifications).

In order to reuse any description technique for non-probabilistic components
from the Focus theory, we introduce two particular annotations that determine
the interpretation of such non-probabilistic descriptions within our probabilistic
theory:

(a.s.) With this annotation, a nondeterministic non-probabilistic specification is
interpreted as a nondeterministic probabilistic one according to the proba-
bilistic translation introduced in Chapter [6] (there denoted as F*).

The meaning of this translation is: the non-probabilistic specification has to
be fulfilled almost surely (a.s.), i.e., with probability one.

(nonprob) With this annotation, a deterministic non-probabilistic specification
is interpreted as a deterministic probabilistic one. The resulting behavior
contains only trivial output distributions with the probabilities one and zero.
This is a special case of the previous translation and the simpler definition
of the probabilistic translation from Section [£.4]is applicable.

5.2 Tabular Specifications

A tabular probabilistic specification follows the pattern shown in Figure 5.2 We
distinguish init tables and logical tables. The latter are an extension of the
logical tables of the Focus theory to additionally capture probabilities. These
tables determine values of variables depending on the values of other observable
variables, usually of the previous time step. In order to obtain a strongly causal
behavior, the initial output distribution has to be defined independent of the input
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name [parameters} det. prob ——
in ’il S Il, R
out o0,€0,...

local [, € Ly,...
univ u; € Uy, ...

Outputs Probability

Sl ‘ c. ‘ Sl Prob
init : ... further init tables . ..
Stk |-+ | ULk | Pk
Precondition Inputs Outputs Probability
Cond (Vi | [Va |[Wi |...| Wa |Prob
Ck; Vik |- | Unk || Wik |-+ | Wk | Pk

... further logical tables . ..

Figure 5.2: The general pattern of tabular probabilistic specifications with wnit
tables and logical tables.
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values. Therefore if necessary, we use init tables to specify the initial distribution
of output channels and local variables.

For any given point in time, the k-th row in a logical table as shown in Fig-
ure means: If the current input values match the input pattern (given by the
values vy i ... v, and the precondition ¢ ) on the left hand side of the double line,
then this row matches and the values (wyy ...wy,,) on the right hand side are
assigned to the outputs with the specified probability (py). Thereby, the columns
Vi to V,, are a subset of the input channels and local variables. The columns W;
to W,, on the right hand side are a subset of the output channels and local vari-
ables. Additionally, we may refer to variables of the subsequent time step by using
primed variable identifiers (e.g., W’ instead of W). At any time, the sum over the
probabilities of all matching rows of a table has to be equal to one and at least
one row of each table must be matching. Otherwise, the specification is incorrect.

In general, a specification contains several tables. Given a selection of match-
ing rows, one for each table, the overall probability that the behavior proceeds
according to this selection is given by the product of the row probabilities. That
means the rows are selected statistically independent.

Additionally to input, output and local variables, universal variables can be
declared. If we refer to such a variable within a row, this variable will be universally
quantified over this row. Using universal variables, we can formulate equalities of
different variables and reference variables from within the precondition.

5.2.1 Syntax

In the following, we will define the syntax of a tabular probabilistic specification.
The syntax is based on the frame template as explained in the introduction of this
chapter and extended as shown in Figure 5.2

Variables The syntactic interface is declared as stated in the introduction, Sec-
tion [5.1} The local declaration part, however, is extended by the keywords local
and univ. These introduce local state variables and universally quantified
variables, respectively:

local Iy € Ly,... I € Ly,

univ u; € Uq,...,u, € U,

The declared typing has to be respected within the whole specification.
We define the set of all local variables L = {ly, ..., [} and the set of all universal
variables U = {uy,...,u,}. Given the syntactic interface and local declaration,
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S1 ‘...‘Sl ‘Prob
Stg |- | Sk | Pk < k-th row
Figure 5.3: The general form of an init table. The column headers 51, ..., S| refer

to controlled variables.

we define also the sets of readable (R) and controlled (C') variables:

R=1IU0OUL
C=0UL

where I and O contain all identifiers of the input and output channels, respectively.

In Chapter [ we characterized a probabilistic behavior as a mapping from
infinite input sequences to a distribution of output sequences. For a specific infinite
run of a system, we can assign to each input, local and output variable an infinite
sequence of values — ignoring probabilities for a moment.

The rows of a table represent rules that define this temporal behavior of a
component. The rules are meant to be applied for each time step. Therefore, each
variable referenced by a table represents not a sequence of values but the value of
the variable at the current point in time.

In order to allow rules to determine values of the next time step, we introduce
primed variables. A primed variable v’ denotes the value of the variable v at the
next time step. Formally, v’ is a new variable identifier. For example, given the
output channel speed, within a table we refer to the current value of this output
channel by speed and to the value at the next time step by speed’. We use the
same notation to obtain sets and valuations of primed variables:

Vi={v|veV}

/. ! /
Y -
(v1 = @1, o o ag) = (V) = @, U o )

Init Tables These tables determine the initial distribution of the controlled
variables, i.e., both local and output variables. The general form is shown in
Figure 5.3] Thereby, the column headers Si, ..., S refer to controlled variables.
Each variable may occur at most once in a table:

V]nlt:{Sh,Sl}gC
/\VZ,jE{l,,l}Sz%S]
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Cond [Vi |...|Vu |[W1 |...| W, |Prob

Cr. Vig | oo | Ung || Wik |-+ | Wik | Dk < k-th row

Figure 5.4: The general form of a logical table. The column headers Vi,...,V,
refer to readable (input and local) variables, the headers Wy,... W, refer to
controllable (output and local) variables.

The entries s; ;, are expressions that evaluate to values according to the type of \S;
and are not allowed to have any free variables. The values p, denote probabilities
and have to be real numbers from the interval [0, 1].

Let Z be the set of all init tables. We require their column headers to be
disjoint:

V7, A€ Z: VInit, N Vinity, =

Logical Tables Figure [5.4] shows the general form of a logical table. Each
row consists of a condition ¢, the input patterns vy, ..., v,x, the output values
W1, - - -, Wk and a probability p,. The entries on the left hand side of the vertical
double line form the precondition. Accordingly we call the set of identifiers in
the header VPre = {Vi,...,V,}. Respectively, the right hand side of the vertical
double line forms the postcondition and we call the set of identifiers VPost =
{W1,...,W,}. Note that each variable may occur at most once in each condition:

Vi,je{l,....n}: Vi #V;
AYije{l,... m}: W, £ W,

We require that the precondition variables are readable whereas postcondition
variables are controlled and can be primed or unprimed. In particular, they have
to be disjoined. Thus, we have

VPre C R
A VPost CCUC'
A VPre N VPost = ()

The cells v;, and w;;, have to be expressions whose result type corresponds to
the variables specified in their column header. Note that priming yields a variable
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0@Q0 o0Q@Q1 0@2

Figure 5.5: An example to illustrate the meaning of column headers. The column
headers of the logical table on the left induce the dependencies between time-
indexed variables as shown on the right.

of the same type as the original variable. The condition ¢ is a predicate and thus
must evaluate to a Boolean value.

The free variables of all expressions are restricted to the set VPre U U, where
U was defined as the set of declared universal variables.

The probability py must be a real number in the unit interval [0, 1] C R.

Let 7 be the set of all logical tables. We require their output variables to be
disjoint:

V7, A € T: VPost, N VPosty =

5.2.2 Semantics

Our tabular notation is similar to Bayesian networks [KEF09]. These use tables for
the definition of conditional probabilities over random variables. There are a few
modifications, however: we allow universal variables, a logical precondition and
constraining several output variables within a single table.

We start with studying the dependencies between variables declared by the
headers of the tables. Then, we derive from initial tables the initial distributions
and from logical tables the conditional probability distributions. Combining these
results, we obtain the probabilistic behavior. Finally, we give a few syntactic
extensions and important properties.

Variable Dependencies FEach logical table introduces dependencies between
variables according to its header and these dependencies are repeated at each time
step. For example, a table with the input variable ¢ and the output variables ¢
and o' introduces the dependencies shown in Figure For example, the value
of variable o at time step 1 depends on the value of ¢ at time step 0. These
dependencies between the time-indexed variables correspond to the structure of a
dynamic Bayesian network.

For convenience, we introduce auxiliary variables: for each point in time ¢ € N,
we map the variable v € R to the variable v@Qt with type(v@t) = type(v). In the
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case of a primed variable, the result is shifted about one time step, i.e., v'Qt =
vQ(t +1).

Next, we map these auxiliary variables onto the original sequences. Let V' be a
set of unprimed variables, v € V a variable and € V™ a sequence of valuations
(see Section [3.1). The notation z(v@t) or z.v@t refers to the ¢-th value of the
variable v in the sequence z, i.e., z(vQt) = xz(t)(v). In particular, for primed
variables, we have xz(v'Qt) = z(vQ(t + 1)) = z(t + 1)(v).

We extend this notation also to sets of variables and valuations: given a val-
uation r € V for a set V of primed and unprimed variables, we apply the time-
indexing element-wise, i.e., VQt = {v@t | v € V}, r@Qt € V@t and rQt(vQt) =
r(v) for every v € V. In particular, for primed variables, we have r@Qt(v@Q(t + 1)) =
r(v').

We can now capture the dependencies induced by a table as the smallest rela-
tion Deps C CQN x P(CQN) such that the following property holds:

For every point in time ¢t € N, every logical table 7 € T and every con-
trolled variable in the precondition x € VPre, NC, the set of variables
VPost,@Qt depends on z@t, i.e., (xQt, VPost,Qt) € Deps.

In the sense of dynamic Bayesian networks, the variables v@Qt correspond to
the nodes of the network. However, compared to the relation between variables
used in Bayesian networks, we relate variables to sets of variables in order to
realize the simultaneous assignment to variables. However, one can easily translate
this representation into an equivalent but larger Bayesian network by introducing
auxiliary variables for tuples of variables. Figure [5.6|illustrates a possible part of
the relation Deps and its translation to a Bayesian network.

The specification is only well-formed, if the dependency relation is acyclic and
if every controlled variable occurs as the output of a table. We will discuss these
properties in detail after giving the specification’s semantics.

Initial Distribution FEach init table determines the initial distribution (i.e., at
time step zero) of some controlled variables VInit. We can denote this distribu-
tion schematically by P[VInit@0]. The probability that the values are assigned
according to the k-th row equals py (see the schema in Figure . Formally, we
call this distribution Prlnit and define it as a distribution over valuations of the
variables VInit:

Prinit € dist(Vinit)

Prinit(x) pr if for row k it holds Vi € [1,1]: ©.5; = s;
rinit(z) =
0 otherwise.
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Figure 5.6: For example, assume the excerpt of the relation Deps shown on the left.
It relates variables (at a certain point in time) with sets of variables. In Bayesian
networks, however, variables are related to variables. In order to translate the
Deps relation into a Bayesian network, we have to introduce an auxiliary variable
(W1, Wa, W3)@Qt with type((Wy, Wa, W3)) = type(W;) x type(Ws) x type(Ws)
and obtain the result on the right.
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Note that for this definition to be sound, we require that the rows have disjoint
value combinations, i.e., at most one row is matching a given valuation x, and that
the sum of the probabilities equals one, i.e., Y, p = 1 where k ranges over all row
indices.

Matching Rows Given the k-th row of a table, we interpret it as a set of
constraints: we have the condition ¢; and each cell in a variable column results in
one equation V; = v;;, or W; = w; ;. Each expression (v; , and w; ;) can refer to the
variables VPre and U and, overall, the equations range over the variables VPre,
U and VPost. We refer to the conjunction of these constraints as the predicate
matchy,: VPre UU x VPost — B where

matchg(z,y) <= [a](x) A Vie[l,n]: 2.V; = [vi](x)
A Yie[l,m]: yW; = [w; ] (x)

Note that for some formula e (here e equals ¢y, v; ; or w; ), we denote with [e](x)
the evaluation of the expression e according to the valuation = (cf. Section .

Given valuations pre and post of the variables VPre and VPost, respectively.
The conditional probability of post given pre is determined by all matching rows
k, i.e., all rows for which a valuation u of the universal variables exists such that
matchy(pre W u, post) becomes true.

The question arises what it means if more than one row matches pre and post.
We could either forbid the usage of more than one matching row or aggregate the
probabilities p; of all matching rows. The latter is the more general interpreta-
tion, which we will stick to in the following. Only a practical evaluation of this
description technique can demonstrate the implications of this expressivity, which,
however, is not part of this thesis.

Furthermore, we have to decide how to handle the matching of a row according
to more than one valuation of the universal variables. Either these are counted
separately, as one matching or as an error. We decide for the first variant as it
fits the idea that universal variables can be used as a kind of macro-expansion. A
row containing universal variables can syntactically be replaced by a set of rows
where the universal variables are replaced by all possible value combinations. For
example, a row containing the universal variable u € {0, 1,2} is then interpreted
three times, once for each possible value of u (see also Example . The semantics
could be easily adapted to the other variants (count several matchings only once
or as an error) if practical studies indicate any complications.

In summary, we determine the cumulated probability cPr assigned by the ta-
ble to a particular input/output combination pre and post as the sum over the
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probabilities of all matching rows (let Rows be the set of the table’s row indices):
cPr: VPre x VPost — R
cPr(pre, post) = Z Dk

(k,u)ematches

where matches = {(k,u) € Rows x U | matchy,(pre W u, post)}

Conditional Probabilities We discussed already that each table induces de-
pendencies between variables over time according to the table’s header. Further-
more, we have determined the conditional probability that a table assigns to a
particular input/output valuation. Next, we make clear how to combine these two
insights.

Given a sequence of input valuations ¢ € I® and a point in time ¢t € N,
each logical table T provides a conditional probability distribution P[VPostQt |
(C' N VPre)@t] (for conditional probability see Section for time step ¢. This
distribution determines the conditional probability that certain values are assigned
to the output variables VPost given the values of the controlled variables in the
precondition VPre (note that VPre C I UC and C N VPre = VPre \ I). Let
f: I3 C be a probabilistic behavior function. The conditional distribution is
defined over the C*®-valued random variable f(i):

Vpre € C'N VPre, post € VPost:
P[f(i) VYPestat o st@t | fG).t Onipre pre] = cPr(pre Wi.t, post)

The equality v X w for valuations v and w and the set of variables X holds if, and
only if,
Vee X:vr=wx

Furthermore, as f(i) is a sequence of valuations, we apply our previous definition

that f(i).(xQt) = f(i).t.x.

Semantics of the Specification The semantics of the overall tabular specifi-
cation is then obtained, similar to the joint distribution determined by a Bayesian
network, from the product of the initial distribution and the conditional prob-
ability distributions. We will not explain how a Bayesian network induces the
factorization of a joint distribution but refer to [KF09]. The product is of the form

P[C>] = [[P[Vit.@0]- ] P[VPost,@t|(CN VPre,)at]
TEL teN,7eT

However, as we talk about infinites sequences and have an infinite number of
factors this product does not define much: for all cases but a few exceptions, this
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product equals zero. So, adapted to finite sequences, the correct product is, for all
ke Noi

P(C*] = [[P[VInit.a0 - [T P[VPostat | (CN VPre,)at]

TEL t€l0,k—1],7€T
- [] PI(C N VPost,)@k | (C' N VPre.)ak] . (5.1)
TET

The modified last factor in this product is necessary, in order to exclude variables
of time k + 1, which could occur by priming: C'Qk = CQk + 1.

Finally, we obtain a probabilistic behavior function f: I°° — C? defined, for
all i € I*® and ¢ € C**! k € Ny, by:

P(f(i) 3 ¢ = | | Prinit.(¢.0| vina, )

TeT

[T cPreetWitlvpe. ot Wo(t+1) vpos.)
tel0,k—1],7eT

1D ePre(ok Giklvpre,, 0.k & d | vpos,)
Tereé’

The specification of the component with syntactic interface I > O is derived
from f by projection, dropping the local variables L.

Example 5.1 The first example is the trivial specification of the producer from
the ABP example:

—— Producer’ det. prob ——
out z € {a,b}

The semantic is given as a behavior function f: 0 — {z}* with type(z) =
{a, b} and the property

PIF(()%) = ] = /2

for all p € {7}’“ ,k € N. As we see, in this definition there is no need for an init
table as we did not use any primed variables. o
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Example 5.2 The following specification Medium1 shows the usage of a universal
variable m in the logical table to propagate the input value of channel x to the
output (first row) and to match an arbitrary input (both rows). Note that, for a
set T', we defined the set T~ = T'U{O} containing additionally the empty symbol.

—— Mediuml[type T',q €]0,1[ | det. prob ——
in xeTl™
out yel™

univ me& 1~

.y | Prob v || &/ | Prob
1n1t?‘17 mim|q
m || O

1—g¢

Medium1 specifies unambiguously a behavior function f: {z}>* — {y}* with
type(z) = type(y) =T

The headers of both tables (y and x — y') determine that the probabilities of
the behavior are given as the following product. For all input sequences 7 € {x_}oo
and output sequences ¢ € @k“, k € Ng, we have

P[f(i) 2¢] = P[f(1).0 = .0 - ][] PIf(0).(t+1) = p.(t +1)]

te(0,k]

The factors of this product are dictated by the entries of the tables. The init table
determines the initial distribution

P[f(i).0.y=0]=1
and the logical table translates to, for all t € Ny,

ite=0= Plf(i)t+1ly=0=q¢+(1—¢q) =1
Nitx#O0O=(P[fi)t+1ly=0=1—¢q
ANP[fli)t+1y=itj=q) . 0

Syntactic Extensions Often, we want to refer to a readable variable in the
postcondition without constraining it in the precondition. In other cases, we may
have several rows that may not all depend on the same readable variables. To
make such specifications more concise, the wildcard entry “—” can be used. Every
occurrence of the wildcard is translated to a new universal variable.

An input column containing only wildcards may be omitted. Note that this
column still exists implicitly and is relevant for the definition of the table’s seman-
tics.
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Example 5.3 In the second row of the tabular specification of Medium1, the
universal variable m occurs only within a single entry. Hence, we can replace it by
the wildcard as shown in the specification of Medium2. We can even completely
drop the universal variable m by directly naming the input variable x in the 3/
column. Then the z column contains only wildcards and can be omitted, as shown
in Medium3. The semantics of all three specifications Medium1-3 are identical. o

—— Medium?2 [ ) ] det. prob ——
in xeTl™ —_— Medium3[. . ] det. prob ——
out yeTl~ in rel™

univ mé&e T~

Prob init yD fmb
init %7
Ol1

y' | Prob
x Hy"PrOb T |q
milml|q Ol1—g¢q
—(0]|1—¢q

5.2.3 Properties

Theorem 6 (Soundness, Completeness)
A tabular specification defines a probabilistic behavior (soundness) and this behav-
ior is fully specified (completeness) if the following requirements hold:

R1) Each controlled variable ¢ € C' either occurs once primed on the right hand
side of exactly one logical table and in exactly one init table or it occurs once
unprimed on the right hand side of exactly one logical table and nowhere

elsdl:

(3:17 e T:c € VPost, N—3r € T: c € VPost,
ANFlreT: ce V[m'tT)

vV (3:17 €T:c€ VPost, N\—3IT € T: € VPost,
AN-drel:.ce V[m'tf)

R2) The dependency relation Deps is acyclic. Note that cycles can only occur
because of mutually dependent logical tables with regard to unprimed variables

"'We use the notation 3= for “exists exactly one”.
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(e.g., tables with headers x — y, y — z and z — x):

—Jvg, ..., 541 € Ci10, ..., T €T :
Vo = Vg1 N
VI € [0,k]: vy € VPre,; Auy € VPost,,

R3) For every logical table T € T and every valuation of pre € VPre,, the func-
tion post € VPost, — cPr,(pre,post) must define a probability distribution:

Z cPr,(pre,post) =1

poste VPost,

R4) The same must hold for each init table T € Z:

Z Prinit,(v) = ZPT’k =1 . O
Vi k

ve Vinit,

PROOF We have to show that the relation Deps indeed induces a Bayesian network
that determines a probabilistic measure over sequences of the controlled variables,
ie., C*.

Requirements (R3, R/) ensure that the tables indeed define well-formed dis-
tributions.

Requirement (R1) ensures that every controlled variable ¢ € C' occurs in the
Bayesian network for every time ¢ > 0:

In case of usage of the primed variable ¢/, the according logical table impli-
cates the conditional probability distribution P[VPost@t | (C'N VPre)@Qt] with
cQ(t 4 1) € VPost@t for every t > 0 (note that C'N VPre may be empty) and the
init table determines the initial distribution P[VInit@0] with cQ0 € VInit@0.

In case of usage of the unprimed variable ¢ in a logical table, this table alone
determines conditional distributions P[VPost@t | (C' N VPre)@Qt] with cQt €
VPost@t for every t > 0.

Both cases together show that every variable is determined for every time step
by a probability distribution. Because of Requirement (R2) and the fact that only
unprimed variables occur on the left hand side of logical tables, the conditional
distributions are not mutual dependent and we know from Bayesian networks that
the product of these distributions up to time %k indeed defines a joint distribution
over C*. This in turn determines a probability measure over C™. n
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Theorem 7 (Strong Causality) If, additionally, none of the output channels
o € O instantaneously depends on any input i € I, i.e.,

—Jvg, ..., V1 € Ry 70,..., Tk €T :
UOG[Avk+1EOA
VI € [0,k]: vy € VPre,, AN v € VPost,,

then the specified behavior is strongly causal. o

PROOF The probability distribution for the outputs O up to some time step k
cannot depend on any input of time step k because of this restriction. During the
projection of the distribution P[C*] onto the output channels any dependency on
inputs of time step k is removed. More concretely, at most the last factor in the
defining Equation refers to the input at time k (it may be iQk € VPre,Qk
for some i € I). Because of the above restriction, this factor does not influence the
probability of any output up to time k. Thus, summing over the local variables
L, as it is done during the projection on the outputs, removes this factor and the
resulting behavior function has to be strongly causal. n

5.3 Transition Diagrams

In this section, we present a graphical notation for the definition of probabilistic
behavior. We saw already many examples of deterministic transition diagrams
throughout the preceding chapters. We will formalize this notation and addition-
ally show how to graphically specify probabilistic behavior also in the nondeter-
ministic case. We adapt the state transition diagrams for non-probabilistic systems
from the FOCUS theory to incorporate probability annotations. In these extended
diagrams, transitions are labeled with pre- and post-conditions, input and output
messages as well as ranges of probabilities.

In Chapter [4], we saw already that a variety of representations of probabilistic
I/O automata exists, which are all of equal expressiveness. Accordingly, we could
introduce a variety of graphical notations each of which is particularly suited for
certain applications. In the following, we will focus on one variant that allows
nondeterminism at three places:

e Instead of dictating exact probabilities, inequalities can be used.
e We allow for several different probability distributions over successor states.

e We allow for several initial transitions to determine a set of initial distribu-
tions.
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In the next section, we provide the syntax of transition diagrams. With such
diagrams we want to define nondeterministic probabilistic behavior as defined in
Chapter [0 So far however, we did not introduce any notion of nondeterministic
automata. Thus, as a necessary step towards the semantics of transition diagrams,
we will define nondeterministic probabilistic I/O automata. Finally, we interpret
transition diagrams using this notion of I/O automata and illustrate the given
definitions with an example.

5.3.1 Syntax

In the following, we will define the syntax of a transition diagram specification.
The syntax is based on the frame template as explained in the introduction of this
chapter.

Besides the syntactic interface, which is declared as stated in the introduction
(Section , local state variables can be declared using the keyword local:

local lleLl,...,lkELk

The declared typing has to be respected within the whole specification. We define
the set of all local variables L = {l;,...,[;} which we will later extend about a
state variable that is assigned the current control state.

The content body contains a transition diagram which consists of control
states and transitions between these states, and one or more initial transitions.
For an example, see Figure [5.8] In our notation, the control states are visualized
as rectangular nodes and the transitions between states, as usual, as lines with
arrow-heads connecting the nodes.

A control state in turn consists of a unique name and an output statement as
visualized on the left in Figure The statement is a list of assignments: to each
output channel o; € O the value v; € type(o;) is assigned.

In Focus transition diagrams, a transition label has the form {P}in/out{Q}
where P is the pre-condition, () is the post-condition and in and out are
variable bindings to input and output channels, respectively. In our case, the
output assignment out is annotated at each control state and not at the transitions
to ensure strong causality as is typical for Moore automata. The input binding
in has the form

in = (i1 7wy, ..., ik wg)
where the 7; € I are input channels and each wj is either a variable or an expression

that evaluates to a value. Such an expression may not refer to any other variables.
If w; is a variable, it can be constrained in the pre-condition P and be referenced in
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the post-condition. The post-condition has to be an assignment to local variables
of the form

Q:(ll ::el7°"alk‘ ::ek‘)

where [y,...,lp € L are local variables. The expressions ey, ..., e; may refer to
the local variables as well as the variables w; declared in the input binding in. A
reference to a local variable within an expression e; is interpreted as a reference to
this variable’s value in the source state. In contrast, the resulting value assigned
to [; determines the value of /; in the destination state.

The pre-condition P may leave the inputs completely unconstrained (if P =
true), and the post-condition may change none of the local variables (if ) equals
the empty assignment ()). We will usually leave out such trivial conditions from
a transition diagram.

Instead of annotating a single postcondition, however, we have to extend the
notation to capture a distribution over post-conditions. As shown in the middle
of Figure 5.7 a transition consists of a precondition P, an input pattern in and
a set of quadruples (Qr, pi, ¢, ¢}),1 € [1,n] for some n > 1. The Q; are assignments
to local variables as in the non-probabilistic case. Each of the pairs (p;, ¢) with
p,q € [0,1] € R and p; < ¢ defines a closed interval [p;, ¢] for the probability
that the according successor state is chosen. All these intervals together constraint
the probability distribution over the successor states. If only a single probability
i is given, we assume the singleton interval [p;, p;]. If additionally p; equals one,
ie., (p,q) = (1,1), we usually drop the probability annotation. In this case, the
transition has only a single branch and we draw a single arrow from a state ¢ to
state ¢ with a label of the form {P}in{Q@}.

Compared to the just defined transitions, each initial transition, as shown
in the right of Figure [5.7] also declares a set of quadruples (Qi, pi, i, ¢}),! € [1,n].
However, it omits the precondition P and the input binding in.

5.3.2 Nondeterministic Probabilistic I/O Automata

Similar to the deterministic probabilistic I/O automaton (cf. Chapter [4)), a non-
deterministic probabilistic I/O automaton is a tuple M = (S,1,0,4, A, w)
where S is the state space, I the input alphabet, O the output alphabet, § a set
of initial distributions, A a nondeterministic transition function and w an output
function:

§ € P(dist(S3))

A: S x I — P(dist(S))
w:S—0
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name {Qi}(pr.q1) {Qi} (1 01)
01!'U1 {P}Zn
: Output c
oxlvg {Qn}(pm Qn) 0;1 {Q"}(pn’ Qn) c;L

Figure 5.7: The elements of a state transition diagram: a control state with output
assignments (left), a transition (middle) and an initial transition (right). P is a
precondition, n is an input pattern, the @); are postconditions, the (p;,q;) are
intervals of probabilities. The many branches of a transition together specify a set
of distributions over the successor states.

As we can see, the difference to the deterministic variant is that instead of
providing particular distributions initially and at each transition, we specify a set
of possible distributions.

The selection of a particular distribution and thereby resolving the nondeter-
minism is the task of the adversary. An adversary A (also called scheduler and
policy, cf. [dAHJOIl, [SL94]) of the nondeterministic probabilistic I/O automaton
M is a function

A: (S xI)" — dist(5)
where, for all p € (S x I)T,

A(()) €0
A A(p) € A(last(p))

Each of the (possibly infinitely many) adversaries for M induces a deterministic
and probabilistic I/O automaton M4 = (S4,1,0,04,A4,ws) where each state
additionally encodes the sequence of past inputs and states, i.e., Sy = (Sx )" x S.
The functions of M4 are defined by (for all (p, s), (p/,s") € Sa,i € I):

A(e)(s) ifp= ()

0 otherwise

A)(s) i p =p-((s,1))
0 otherwise

5a((p,s)) = {

Axl(p, 5),0) (P, ) = {

wa((p, s)) = wl(s)

The deterministic probabilistic 1/O automaton M, in turn defines a strongly
causal, deterministic and probabilistic behavior function fy;,: I — OF, which
abstracts from the states of the automaton (see Section [4.2)).
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The semantics of the nondeterministic probabilistic I/O automaton M is given
as a nondeterministic behavior function Fy;: I — P(OF). For each input, we
allow any behavior according to one of the induced deterministic automata as well
as any countable linear combination of these behaviors (cf. Convex Closure I'(+)

defined in Section [6.2):
Fr(i) =T({fam, (@) | Ais an adversary of M})

Instead of instantiating the nondeterministic [/O automaton with arbitrary
adversaries, we could also restrict the abilities of the adversaries and obtain other
varieties of semantics. We can restrict, for example, the temporal extent of the
adversary’s memory. In this case, given a limit £ € Ng, we require that the
adversary’s decision depends only on the input and the states of the last £ time
steps, i.e.,

Vn € No,p1,p2 € (Sx )", g € (S x I)*: A(py - q) = A(p2 - q)

We call such an adversary memory-k-bounded. For k£ = 0, we call it memory-
less. Additionally, we can require time-independence which means: the adver-
sary’s decision may depend on the k-bounded history but does not know how long
the system (as an absolute measure) is running. Formally, this property requires
(this time, p; and ps may have different lengths):

Vp1,p2 € (S x I)*,q € (S x I)k: A(pr-q) = A(ps - q)

Independent of these temporal restrictions, we can limit the variables or chan-
nels that the adversary can depend on. For example, we can restrict the access to
the state (i.e., the adversary’s result is independent of the input):

Vn € N, iy, 129 G[n,SESnZ A(Zl XS) :A(ZQ XS)

5.3.3 Semantics

A transition diagram as part of a specification with input and output alphabets I
and O defines a nondeterministic, probabilistic automaton M = (S, 1,0, 6, A, w)
which in turn defines the nondeterministic behavior function Fy;: It>0O. The
control states together with the explicitly declared local variables L form the state
space of this I/O automaton. We introduce an additional local variable state typed
with the set of names of all control states and define the state space S to be the
set of all possible valuations of the local variables L' = L U {state}, i.e., S = L.
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Output Function The output statement out = (01lv1, ..., 0xlvy) (cf. Figure[5.7)
of a control state of name ¢ determines the output function w for all states s € .S
with s.state = c:

Vs € S: s.state = ¢ = w(s) = (01 — v1,...,0k — V)

Transition Function The postcondition () of a transition modifies the values
of the local variables if this transition is traversed. Given a state s € S and a
postcondition @ = (1 :=ey,...,l; := e;), we denote with s/Q € S the valuation
that results from s if the assignments of ) are applied. Formally,

if © = [; for some j € [1, k]

€j

(s/Q)w = {s.x otherwise

Assume s € S to be the current state. Let be i € I some input and 7 some
transition consisting of a source control state ¢, a precondition P, an input pattern
in and a set of branches (Qi,pi, @i, ¢}),1 € [1,n] (cf. middle of Figure [5.7)). Every
such 7 determines a set of distributions over the possible successor states D, (s, i) C
dist(S). If the transition 7 starts in the current control state, i.e., ¢ = s.state,
and if the values of the local variables as described by s and the input ¢ match
the input pattern in as well as the precondition P, then the set D, (s,i) contains
exactly the distributions that fulfill the assignments of the postconditions ); with
probabilities that match the intervals [p;, ¢]. Otherwise, the set D, (s, 1) is empty.
Formally, we have d € D, (s, %) if and only if

s.state = ¢ N\ in(i) N P A
Vs'€ S: (Al e [l,n]: s =s/Qif(state := ) A d(s) € [pi,q])
V (VI € [1,n]: s #s/Qi/(state :==¢}) A d(s)=0) . (5.2)

Given the above definitions, the transition function A maps each state s and
input i to the union of all D, (s,1), i.e.,

A(s,i) = | D+(s.1)

where 7 ranges over all transitions. Note that we did not explicitly declare and exis-
tentially quantify over the variables bound by the precondition in in Formula (5.2)).
The assignments ; may refer to variables bound by the input pattern in.

Initial Distribution The initial distribution ¢ is obtained similarly to the tran-
sition function A C dist(.S). We define the set of distributions D, for each initial
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—— DamageableMedium [type T'] nondet. prob ——
in xel™
out yel™
local teT~
{t :==m}(0.9,1) {t :==m}(0,0.2)

22m\ {t :== 0}(0,0.1)

{t = D} Intact Damam

It It
Y x?m {t :==m} Y

{t :==0}(0.8,1)

Figure 5.8: Specification of a transmission medium that can be intact or damaged.
Depending on this state it forwards messages with a high and low probability,
respectively.

transition (cf. right of Figure similar to the Formula (5.2)). We have d € D, if
and only if

Jds € 5, Vs' e S: (Al el,n]: ' =s/Qf(state :=¢)) A d(s') € [p,qi])
vV (VI € [1,n]: & # s/Qi/(state :=c|) A d(s") =0)

and 0 is defined as the union of all D,, where 7 ranges over all initial transitions.

Example 5.4 We model a transmission medium that can be either intact or
damaged (see Figure . As long as it stays in the intact state, it correctly
propagates messages. However, it may be damaged with a low probability (at most
0.1) and from then on the medium corrupts the messages with a high probability
(at least 0.8). At any time the damaged medium might be repaired. As we do not
know when the medium will be repaired, we employ a nondeterministic model.
This model integrates two degrees of nondeterminism. Firstly, we specify ranges
of probabilities. This is useful if we do not have exact probabilities available
and have to rely on lower and upper bounds. For example, in this specification
we require that the intact medium forwards a message and stays intact with a
probability of at least 0.9. Accordingly it gets damaged and drops a message
with a probability of at most 0.1. The two alternative transitions leaving the state
Damaged constitute the second kind of nondeterminism in this specification. These
transitions lead to different combinations of successor states and post-conditions:
either the medium is repaired and, accordingly, it forwards the incoming message or
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the medium stays damaged and drops the incoming message with a high probability
(at least 0.8). A realization of this medium could be repaired arbitrarily. For
example, it could be repaired according to a certain probability or always after a
certain time-span, i.e., non-probabilistically and deterministically. o

5.4 Composite Specifications

As in Focus the composition of probabilistic components can be visualized graph-
ically as component networks. We extend this notation, which emphasizes the flow
of data between components over channels, with the notion of unspecified depen-
dencies. This extension takes account for the probabilistic dependencies between
components as discussed in Chapter [6]

The composition operators we have introduced are parallel composition O,
feedback ©, output projection f and renaming of channels [/] (see Table [A.3).
Using these operators, we can combine existing components to create new compo-
nents. This can be done textually using equations. For a more visual and intuitive
representation, however, the FOCUS theory relies on component networks. These,
in turn, are similar to data flow diagrams described in [DK82| [LM8T].

If we assume statistically independent components (cf. Section, the prob-
abilistic counterparts of the non-probabilistic operators have the same properties
(in particular, associativity and commutativity) and we can reuse the visualiza-
tions of FOCUs without modification.

In the presence of statistical dependencies between components, we need an
additional means to describe these dependencies. To describe component depen-
dencies visually, we introduce dependency diagrams in Section [5.4.2]

5.4.1 Component Networks

Components are visualized as rectangles tagged with the component’s names.
Typed channels connect these rectangles and are annotated with the channel’s
name and type in the form Name: Type. An arrow connects a pair of components
if and only if the source and sink components have respectively an output and
input channel of the same name. In that case, the types have to be identical. This
means that connections visualize exactly the common channels of the composed
components. This channel type restriction refers only to the syntactic interface of
the sub-components. There is no other restriction for the composition. In particu-
lar, both elementary and composite specifications can be composed in a component
network.
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m:Tl lC4Z]B lcl:(TxIB) ng:lB lczz(Tx]B)
Sender Medium1 Medium?2 Receiver
lcl:(TxIB) lCQ:(TXIB) lC4:1B c;»,:IBl lz:T

Figure 5.9: Visualization of the syntactic interfaces of some example components.

Given the components shown in Figure their composition

L
Net = ® {Sender, Receiver, Medium1, Medium?2}
— Sender @™ Receiver ®* Medium1 ®* Medium?2

can be visualized as shown in the following specification frame:

Net independent ——
€T: Tl
cy: (T X ]B) Cy: B
Sender
Medium1 Medium?2
Receiver
Co. (T X ]B) C3: B
z: Tl

Additionally to interconnecting components, we have to decide which channels
of the composition are internal and which are exposed to the environment as part
of the syntactic interface. Formally, we project the composition to a subset of
its output channels using the projection operator . Note that this operator only
projects output channels and leaves the input channels untouched. In the case of
our example, we would like to hide the channels ¢; to ¢4 and define the component

Net’ = Net 1 {z}
which has the syntactic interface Net’: {x} > {z}. In the component network, we

visualize the projection by forwarding only the projected channels to the compo-
sition border:
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Net' independent ——
xT: Tl
Ccl: (T X IB) C4: B
Sender
Medium1 Medium?2
Receiver
co: (T x B) c3: B
Z: Tl

In both specifications (Net and Net'), we added the annotation independent
to the frame. This means, that we assume the sub-components to behave statisti-
cally independent and messages can only be exchanged over the explicitly modeled
channels. This annotation is reflected in the application of the ®* operator.

In the following section, we will see how to model component dependencies.

5.4.2 Dependency Diagrams

As described in Section[6.3.2] probabilistic components can depend on each other in
a way like random variables can be statistically dependent. A typical description
technique for dependencies between random variables is the Bayesian network.
We adopt this technique and introduce dependency diagrams as a means to model
potential dependencies and at the same time to prohibit all other dependencies.
The idea is that a potential dependency of component B on component A can be
understood as a directed and untyped channel that allows the flow of arbitrary
information from A to B without delay. Note that in Bayesian networks a random
variable only depends on the values of its parent random variables according to the
variables’ type [KF09]. Dependency diagrams, however, do not restrict the kind
of information that may be exchanged by dependent components, i.e., arbitrary
information can flow from A to B and it immediately follows that this kind of
component dependency is transitive.

It is important to realize that we are not modeling required dependencies but
we are modeling potential dependencies. That means, we allow a dependency,
which will later, during the following developing, either be resolved by an explicit
dependency (e.g., using a typed channel) or be prohibited. Every dependency that
is not allowed is prohibited.

A dependency diagram consists, like a FOCUS component network, of rect-
angles representing components and arrows representing dependencies (or un-
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C

A — B — F
D

G

Figure 5.10: The graphical elements of a dependency diagram. Arrows indicate
the allowed flow of information. The frame marked by = and surrounding the
components B, C' and D is a shortcut to declare their mutual dependency. In this
example, we have: F' may depend on FE, every component except H can depend
on A and so on.

typed channels). Mutual dependencies form equivalence classes, where every com-
ponent depends on every other component of this class. An explicit notation of
such mutual dependencies using arrows is cumbersome. Therefore, we declare
equivalence classes by a surrounding rounded and dashed rectangle annotated
with the symbol =. In the following, we assume that every equivalence class is
declared explicitly so that the arrows form an acyclic graph over components and
equivalence classes.

Figure illustrates these graphical elements. The components B, C' and D
form an equivalence class. The two arrows connecting single components declare
that F' depends on F and G depends on F'. The arrow leaving the equivalence class
denotes that F' depends on B, C and D. The arrow entering the class denotes that
B,C and D depend on A. Any dependency between H and the other components
is prohibited.

A dependency diagram defines an acyclic relation R on the equivalence classes
of the components. Thereby, every component is at least member of the singleton
class containing only itself. Given the set of all components C, we have R C
P(C) x P(C). As explained before, we understand the modeled dependencies to
work transitively. Thus, we are in fact interested in the transitive closure R* of
R.

We can interpret the relation R* like we do in the case of Bayesian networks.
We define the parent, ancestor and descendant sets for each class in the obvious
way and derive a set of conditional independencies L. A conditional indepen-
dency, say (A L B | C), means A is independent of B given C. According to
Bayesian networks, a class X C C behaves independent of all its non-descendants
given the behavior of X’s parents. Formally, L is the smallest set of conditional
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independencies such that for every class X that occurs in R*:
(X L non-descendants (X) | parents(X)) € L

where the non-descendant and parent sets refer to R*. Instead of defining the set
L by means of the transitive closure R*, we can also characterize it directly using
R and incorporating the transitivity. We obtain

(X L non-descendants (X) | ancestor(X)) € L

where the non-descendant and ancestor sets refer to R.
For the example in Figure [5.10] we obtain:

L={(H LA B,CD,E,F,G),
(AL H),

(B,C,D L A H | A),

(E L A, B,C,D,H),

(F LA B,C,D,E,H| A B,C,D,E),

(GLAB,C,DE,FH|AB,C,D,E, F)}

which can be simplified to the equivalemﬂ set

L'={(H L A B,C,D,E,F,G),
(E L A, B,C,D)}

5.4.3 Combining both Diagrams

In general, a composite specification consists of both a component network and
a dependency diagram. The former determines the sub-components C and the
channels O visible to the outside. The latter defines a set of dependencies L
between the declared components. The semantics of this specification is then
given as the nondeterministic behavior function

F=Q"cto

2Two sets of independencies K and L over a set of variables (or components) V are equivalent
if and only if:

For any distribution P over V, it holds that P fulfills K if, and only if, P fulfills L.
See Section for details.
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Example 5.5 Consider the composite specification Net' from our previous ex-
ample. There, we enforced the independence of all sub-components. In contrast,
the following frame Net" specifies that the communication media Mediuml and
Medium2 may depend on each other in a not further specified way. For example,
think of unreliable media that may drop messages and we do not want to dictate
a concrete realization like the usage of a single bidirectional physical medium or
of two separate ones. However, depending on the realization, errors may occur
statistically dependent in both directions. The media may also be realized in a
way that errors occur statistically independent. Therefore, we model a potential
dependency between Medium1 and Medium?2, which can be refined in later develop-
ment steps. At the same time, Net" requires that Sender and Receiver behave not
only mutually independent but also independent of the Medium1l and Medium?2.
The first specification includes both diagrams separately. However, we can
also integrate both diagrams into one, as shown in the second, equivalent specifi-

cation. 5
Net”
xT: Tl
c1: (T x B) cy: B
Sender Sender
Medium1 Medium?2 Medium1 Medium?2
Receiver Receiver
Co: (T X IB) C3: B
z: Tl

Net”
T Tl
cl: (T X ]B) cy: B
Sender
Mediuml Medium?2
Receiver
co: (T x B) c3: B

o)




Chapter 6

Nondeterminism

In Chapter [ we introduced the framework to model deterministic probabilistic
components. Thereby, as every theory, it realizes a certain abstraction of real
systems. In this case, we abstract from implementation details, the hardware, the
electronic circuits and so forth of real systems. Instead, we characterize systems
with respect to the logical entities communicated over communication channels.
If we fixate this level of abstraction, we understand these deterministic probabilis-
tic components as fully specified. Each such component represents exactly one
observable behavior, we cannot add further restrictions. Thus, there is no remain-
ing degree of freedom. Nonetheless, a deterministic component can be realized by
many real-world systems, in the same way, it can be realized by many probabilistic
automata.

If we have agreed on the description for deterministic components, a specifi-
cation is characterized by the set of deterministic components that fulfill it. The
other way round, every set of deterministic components makes up a specification.
Thus, a specification can comprise arbitrary properties about components. As a
special case, we can say that specifying a deterministic probabilistic component
means to describe a set containing only a single component.

Nondeterminism is another special kind of specification. Where a deterministic
specification fixes every aspect such that there is only a single component left, a
nondeterministic specification leaves certain degrees of freedom: For each input,
it describes a set of possible output distributions. From these possibilities, a
component may choose arbitrarily.

We will now sketch the idea of nondeterminism defined later in this chapter.

87



88 CHAPTER 6. NONDETERMINISM

6.1 Introduction

Like in the deterministic case, a nondeterministic specification includes a syntactic
interface, i.e., it declares a set of typed input and output channels. Using these
channels, the output-behavior of the component is constrained for each input. For
example, we could prohibit certain output-input combinations or require certain
output probabilities. In general, these constraints are fulfilled by several behaviors.
A realization of this nondeterministic specification has to fulfill these constraints
but apart from these it may behave arbitrarily.

The Focus theory abstracts from probabilities and models systems either as
deterministic or nondeterministic systems. There, a nondeterministic component
specifies which outputs are allowed to occur for each input. Thereby, every com-
ponent has to be input-enabled, i.e., it has to react to every input. It does not
matter how this output is calculated but we ensure that no other output than the
ones specified can be observed. In particular, in FOCUS we subsume probabilistic
behavior: A certain output occurs if, and only if, the probability that this output
occurs is greater than zero. We see this informal description directly reflected in
the signature of a nondeterministic behavior function F':

I — P(O%)

For every input 7, the set F'(i) describes the possible outputs.

A real system that implements or realizes a nondeterministic specification can
choose or decide between alternative behaviors. This process may be arbitrarily
complex. Most important, it may depend on further, not even modeled, informa-
tion. We have to expect that the system has additionally access to any of the
following sources of information:

e The system may incorporate internal memory of any size.

e The system may depend on any other component. Thereby, it is not re-
stricted to the channels that are modeled explicitly if the nondeterministic
specification defines only a lower bound of channels. As long as it is not
explicitly prohibited in the specification, its realizations may incorporate
many additional channels to any other component, usually called hidden
channels.

e We have to assume that the system is integrated in an unknown environment
and it may interact with this environment in ways that are not explicitly
modeled.

e The initial state of a system may not be unique, e.g., it may carry over
information from a previous execution.
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A B A B
130 =0% y € {0, 1} /30 =0% y € {0%,1°}
2/3:x =1 /3:x=1-0%
U3z =1%
r: B y: B z: B y: B
C C
z=0-xor(z,y) z=0-xor(z,y)

E E

Figure 6.1: Composition of a probabilistic and a nondeterministic component.

e Finally, the computation itself may be probabilistic or appear randomly be-
cause of a large available memory.

In this chapter, we consider a more detailed kind of specification than the non-
probabilistic and nondeterministic specification of FOCUS, namely specifications
that constrain not only the allowed outputs but also the allowed probabilistic
distribution of outputs. The need for such a kind of specification can be motivated
with the question: What happens when a nondeterministic component is connected
to a deterministic probabilistic one? Or in more detail: Given a realization a of a
nondeterministic specification A and a realization b of a probabilistic specification
B. What properties hold for the composition of a and b7 Can we model the
composition of A and B in a meaningful way, such that it describes at least some
of these properties? To be more concrete, consider the following example.

Example 6.1 We consider three components A, B and C' and their composition,
as sketched in the left part of Figure [6.1l The component A probabilistically
produces either of two values: with probability 1/3 repeatedly the value 0 otherwise
repeatedly value 1. This value is forwarded by C to channel z but is changed
depending on the output of B on channel y. In case of y = 0°°, the output of
A is left untouched and, in case of y = 1*°, the output is flipped. We see, that
component A is fully specified with a single valid output distribution, whereas
component B is nondeterministic and restricted to the output of these two output
sequences. The merging component C' is nonprobabilistic and deterministic. After
hiding the channels x and y, the composition has no remaining input channels and
only the output channel z.

How can a single run of this system look like? With respect to the proba-
bilistic elements in this system, we also want to ask for the behavior over several
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executions. Consider the first step of an execution: A will probabilistically choose
between 0 and 1, but B can rely on any source of information, maybe on other
components or on the environment using hidden channels. So, we arbitrarily say
that B chooses 0. The choices in the first step determine the behavior for the re-
maining steps of the execution. Every time we restart the system, A chooses again
probabilistically but B may produce again 0 or arbitrarily switch to the output 1.
Thus, as B randomly flips the result of A, we cannot make any statement about
the probability of a certain output on channel z. For example, every 1*° could be
changed to 0% and z would always take on the value 0°°. Accordingly, we could
achieve the opposite, that z always outputs 1°°.

We conclude, that the channel z can obtain the following sequences, but we
cannot fixate any bounds on the probability of occurrence:

(A® B® (C).z ={0-xo0r(0>,0°),0 - xor(0>, 1),
0 - xor(1%°,0°),0 - xor(1°°,1%°)}
—{0-0%,0- 1%}

In contrast, if we extend the example as shown in the right part of Figure
such that B cannot erase the output of A completely, we can indeed state some-
thing about the possible distribution of output values. Again, component B can
swap the outputs 0 and 1°° of A arbitrarily. But, no matter what B produces,
the output 1-0° or 0- 1% has to occur with probability 1/3. We can state, that in
every run of the composition of any realizations of A, B and C' the property

Pz=0-1°V 2=1-07]=13 A Plz=0% V 2=1%]=2/3 . (6.1)

holds.

This property is tight, that means for every distribution fulfilling this equation,
we can construct a realization of B such that we observe this distribution. In this
construction B has to statistically depend on the distribution of A.

In this chapter, we will propose a formalism to capture such a composition. In
this formalism, a nondeterministic specification is represented by a function from
the input sequences 1™ to a set of distributions over output sequences. Then the
composition of the specifications A, B and C will look like (note that I = () and

O={z}):

(A® B 0): §= — P(O")
(A B C)(()*®) ={u | pis a measure over O
and fulfills equation (6.1)} . O
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det. Focus
nondet. Focus det. prob. Focus

N S

nondet. prob. Focus

Figure 6.2: Homomorphisms between flavors of FOCus.

Conservative Extension

We want to extend both the FOCus theory about probabilistic behavior and the
deterministic probabilistic theory introduced in Chapter 4| about nondeterministic
behavior. The latter was our motivating goal and the former ensures a meaningful
notion of probabilistic components backed by probabilistic automata. Thus, we
have to fulfill the diagram of Figure [6.2] where an arrow means that a homomor-
phism from one system notion to the other with respect to the general composition
(®) exists.

We will take over the concept of describing the behavior of a component per
input history. This is reflected in the signatures for the different kinds of behavior
functions, summarized in the following table:

Kind of behavior Signature of the Set Notation
behavior functions

deterministic non-probabilistic I® — O I1>0

nondeterministic non-probabilistic 1> — P(0>) I>0

deterministic probabilistic I* — OF I5S

nondeterministic probabilistic I~ — P(OF) 50

Thereby, OF designates the set of all probabilistic measures over infinite output
sequences.
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Testing Semantics

The meaning of a probabilistic and nondeterministic behavior function F': [* —
P(OF) can be explained by providing a decision method for the conformance of a
real system. Assume that we review some real system for which we want to test
or verify that it fulfills the specification F'.

Superficially, we expect that a realization of F' reacts to an input ¢ according
to one of the distributions in F(i). “To react according to some distribution”
would intuitively mean, that the system has to incorporate some kind of random
generator and derive from this a behavior according to this distribution. Beyond
that, we allow the system to behave according to a different distribution in each
execution. This captures, more or less our intuition about the interpretation of F,
but if we go into details of this concept, we meet a problem. On the one hand,
probabilities and distributions can only be observed by repetition. Therefore, we
have to consider several executions. On the other hand, we allow the system to
behave according to several distributions. This makes it difficult, to verify or test
a system for conformance or even indicate some conflict. We will propose now an
approach to tackle with this problem.

Since the output behavior is specified per input, we will, for a start, test the
system per input i. As we did in the previous example, we consider properties
of the form (P[a]relp) for some event a C O, a relation rel € {=,<,>} and
a probability p € [0,1]. Let Q(i) be the set of all such properties that hold for
every distribution in F'(7). Note that this is just one possible choice of a category
of properties. Others might be useful, as well. Our condition is then, that a
real system passes the test for input ¢ if, and only if, it fulfills all properties in
Q(7). Instead of testing all properties, it is sufficient to test any set of properties
Q' C Qi) such that the system fulfills " iff it fulfills Q(i). A realization of F
would have to pass the test for each possible input. In the previous example, we
would test for the properties

, [ Plz=0-1°V 2=1-0%] =13,
@ = Plz=0® VvV z=1%]=2/3

In order to verify conditions over distributions for a real system, we have to exe-
cute the system repeatedly. Thus, we abort the execution at some time but ensure
that we test the system “long enough”. For example, we could test the system at
the n-th execution for n steps. Each time we provide the input 7. Here, we assume
it possible to abort the execution or restart the system. During all executions, we
maintain a histogram of how often each output sequence occurred. Using this his-
togram, we can apply several statistical tests known from statistics [SSS08]. The
standard test is to approximate probabilities of events by the relative frequencies.
In this way, we could check every property (Pla] rel p) using the relative frequency
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of the event a tolerating a small deviation about e. Other tests incorporate also
the order of the observed outputs.

In this form, the test is rather tolerant. For example, consider a system which
remembers the first input symbol of the previous execution and behaves as specified
if the first input of this execution is the same as remembered and behaves against
the specification otherwise. Against our intuition, the system would pass our test.

A more rigorous test would consider various successions of different input se-
quences. It could also test the behavior for randomness and not only for the
convergence of relative frequencies by applying stricter statistical tests. We leave
this as an open challenge.

6.2 Behavior

For the definition of nondeterministic and probabilistic behaviors with input type
I and output type O, we consider functions F' with the signature

F:1*° = P(O")

This reflects the possibility that a nondeterministic system can decide on different
outputs for each run. Still it has to follow certain probabilistic constraints. For
such a function F' to be a behavior, we require a few properties.

Causality Let ul,, denote the X™-valued random variable obtained by applying
the prefix operator to the random variable ;1 € X*. Furthermore, we lift this
operation for application to sets of random variables. The function F' is strongly
causal if (for all 4,j € I*°,n € Ny):

where the conclusion is equivalent to {pd, ., | 1 € F(i)} = {pdnr | 1 € F(5)}

Convex closure The linear combination d of countably many distributions dj, €
dist(X), k € N is commonly defined by

d(x) = Zwk - dy(x)

for some weights wy, € [0,1] C R with ), w; = 1.

We extend this notion of combination to probability measures over infinite se-
quences. Thereby, we have to consider that the probabilities for all single infinite
sequences can be zero and thus have to fallback to basic cylinders of sequences. A
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probability measure y is a countable linear combination over a set of proba-
bility measures Y C X7 if, for each n € N, countably many measures u; € Y and
weights wy, € [0,1] C R, k € N, exist such that (for all p € X™)

pC(@) =D wi - m(Clp) A Y wp =1

We call the set of all countable linear combinations of Y the convex closure
of Y and write I'(Y). We call the set Y to be convex if Y = I'(Y) and a

nondeterministic behavior F' to be convex if F (i) is convex for all i € I.

Realizations Not every implementation of a nondeterministic behavior can be
modeled within our theory. The main reason for this is the missing notion of a sys-
tem restart in our theory. An implementation of a nondeterministic behavior may
behave differently after each system restart. This variation may be probabilistic
but could also be deterministic. For example, consider a system that alternately
shows two different behaviors.

Being aware of this shortcoming, we want at least to consider all possible
implementations or realizations of a nondeterministic behavior within our theory.
The set of realizations [F] of a nondeterministic behavior function F' is defined
by

[F] € (I* — OF)
f € [F] < f is strongly causal (6.2)
A YielI®: f(i) e T(F(i))

As described in the introduction of this chapter, the idea of nondeterministic
descriptions is to provide alternative outputs and allow arbitrary selection from
these alternatives. In the probabilistic context, we also want to allow this selection
procedure itself to be probabilistic. This explains why we incorporated the convex
closure in the definition of realizations. By selecting the behaviors f(i) from the
convex closure of F'(i), we effectively allow a realization to probabilistically choose
between alternative behaviors.

Realizability We call a nondeterministic behavior F' realizable if there is some
realization of F, i.e., [F] # 0, and fully realizable if additionally

Vie I F(i) C{f(i) | f € [F]}

That means, every output behavior in F'(i) occurs as the output of some realization
of F' given the input i.
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Behavior The function F is a nondeterministic (and probabilistic) behav-
ior function if it is strongly causal and convex.

Note that a behavior function F' is characterized by its realizations and that
these realizations depend only on the convex closure of F', see Equation .
Thus, the required convexity does not restrict the possible behaviors but makes
this representation canonical in the case that F'is fully realizable. We have, for all
nondeterministic, probabilistic and fully realizable behavior functions F, F': [ —

P(OF),
[F]=[F] < F=F'
However, not every behavior function is fully realizable or even realizable:

Theorem 8 There are nondeterministic behavior functions which are not realiz-
able. o

PROOF Consider the behavior F': X — P(XT) with X = {0, 1} defined by
Vie X*:peF(i) <= IneN:u(il,) =0

Assume we are given a realization f € [F]. We construct an input j that leads
to a contradiction. To start with, we choose ;.0 such that f(())(jJ,;) > 0. Then,
given j|, for some n € N, we define j.n such that f(ji,)(jl,11) > 0.

This input sequence j has the property that, for all n € Ny,

FG)Gngr) = FL) Unga) >0

This contradicts our assumption that f € [F] and concludes this proof. n

Translation of Deterministic, Probabilistic Behavior The natural trans-
lation of a strongly causal behavior f: I — OF to a nondeterministic behavior
is given by the function fV: I*® — P(OF) with

Vi f(i) = {f(0)}
Translation of Nondeterministic, Non-Probabilistic Behavior We de-
scribed the translation of deterministic behavior functions from FOCUS into the
probabilistic context in Section [£.4] Similarly, we define the probabilistic trans-

lation 7 of a nondeterministic and non-probabilistic behavior function F': 1% —

P(O>) by
VieI®: pe FP(i) < wF@) =1

This is furthermore equivalent to P[u € F'(i)] = 1. If we understand F' as a system
property depending on the provided input ¢, this definition reads as

p € FP(i) <= almost surely u fulfills the property F(i)
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Translation of Deterministic and Non-Probabilistic Behavior In Focus,
a deterministic behavior f: I* — O is translated to a nondeterministic behavior
as fV: I° — P(O®) with fN(i) = {f(i)}. With this definition we obtain two
alternative but equivalent translations (i.e., the translations commute), namely
(fM)T and (fF)N. We have, for all i € I,

pe(fN)) = u{f@}) =1
= n=f)
= pe ()
Therefore, we write for this translation just fV7.
Note that we do not require channels for these definitions, instead I and O are
arbitrary countable alphabets.
In the subsequent sections, we provide the definitions for the composition and
the feedback operators and show the relation to both their deterministic and their
non-probabilistic counterparts.

6.3 Parallel Composition

Nondeterministic, probabilistic behavior functions with channel valuations as in-
put and output sets are called nondeterministic, probabilistic components. Their
syntactic interface is given by the channel sets. The syntactic interface of a be-

havior function F': I — P(OF) with channel sets I and O is denoted by I > O.
In this section, we consider the parallel composition of such components.

6.3.1 Dependent Composition

The parallel composition of nondeterministic behaviors is based on the concept of
a joint distribution. Given two random variables x and y over values x1,zo, ...
and Y1, Yo, . .. and distributions P[z] and Py], a joint distribution is a distribu-
tion Pz, y] over both variables. We call each distribution over a single variable
marginal distribution. The notion of joint distribution is easily extended to
more than two random variables. For non-trivial distributions, i.e., which do not
assign the probabilities zero and one, there exist many joint distributions.

For example, consider two random variables x and y, both {a, b}-valued, then
we can visualize a joint distribution d over the marginal distributions of z and y
in a table of the form:

| Plz = a] Plz = b
Ply=a] |Plx=aAy=a] Plz=bAy=d
Ply=5b] |Plr=aAy=0b Pla=bAy=1]
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The random variables are statistically independent if we have
Plo=z, N y=y]=Plz=x] Ply=y]

for all k£ and [. In general, this does not hold and the variables are statisti-
cally dependent. We will see several examples in the context of probabilistic
components in this chapter.

We define now the parallel composition of m behaviors A, (k € [1,m]) of
syntactic interfaces I 5> O, with disjoint output channels, i.e., Ny Or = 0. As in
the deterministic case, the composition has the syntactic interface I > O where
I and O are the unions of the input and output channels, ie., I = |J, I and
O =, Ok. We denote the composition by [[, Ax and define it by:

VieI®: pe (Hk Ak)(z') = Vk: plo, € Ai(ily,)

Analogously to joint distributions as describe before, we think of u as a joint
distribution of the projections u|o,. While each projection p|p, conforms to the
behavior A (the set of possible marginal distributions), there can be arbitrary
dependencies in their combination, as is the case with joint distributions. Thus in
general, u is not uniquely defined, even if the Ag(i|;, ) are singletons. In the case
m = 2, we reuse the notation A; O A,.

Example 6.2 Consider the unreliable transportation medium Mediuml from
Example [5.2] whose specification we repeat here.

—— Mediuml[type T\, q €]0,1[ | det. prob ——
in ieT”
out oeT~

univ me& 1~

.o |Prob i |lo'|Prob
1n1tﬁ‘17 m\q
O

1—g¢q

3 3

Let ¢ be some common single-failure probability and T some data type. In
order to apply the just defined parallel composition, we rename the channels of
Medium1 such that we have to components with disjoint channels:

M; = Medium1|[T’, q|[i/i1, °/o1]
M, = Medium1[T’, q|[i/iz, °/os]
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We will compare the composition of M; and M, with the composition of their
nondeterministic translations N; = M;" and N, = M,".

The parallel composition M; @O Ms of the deterministic and probabilistic com-
ponents was introduced in Section 4| and is behaviorally equivalent to IndMedia
(see the specification below), formally:

M; © M, = IndMedia[T’, ¢]

IndMedia[type T, ¢ €]0,1[ | det. prob ——
in e T
out o07,00 €T~

o} | oy | Prob
i iz | (1—q)?
1 | O Q(l—Q)
O | iz | (1 —q)
OO0 |q¢?

01‘02‘Pr0b
O|of1

1nit

We see, that the probability that both media drop messages at the same point in
time, lets call it 7, is equal to ¢

It is interesting to compare this with the composition Ny © N,, which allows ar-
bitrary dependencies between the components. Therefore, we consider two extreme
realizations of this parallel composition, namely DepMedial, DepMedia2 € [N;®N,]
as defined in the following specification frames. In DepMedial the two media al-
ways drop and transport messages synchronously, i.e., r = ¢, whereas the second
system DepMedia2 minimizes the probability r. For a single-failure probability of
q < 1/2, DepMedia2 reduces the probability r to zero and to 2¢ — 1 otherwise.

We conclude that in realizations of the nondeterministic system N; @ N, the
probability r ranges from max{0,2¢ — 1} up to q. As expected, this interval also
contains the probability r = ¢? of the independent case:

20—1<¢ <= 0<¢—-2¢+1=(qg—1)?

—— DepMedial [type T, q €]0,1] | det. prob ——
in 11,00 € T~
out 07,00 €T~

| of | o4 | Prob
l—gq
q

01‘02‘Pr0b .
ool ZS

i
O

init
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—— DepMedia2[type T, q €]0,1] ] det. prob ——
in 11,19 € T~
out 0,00 €T~

let » = max{0,2q — 1}
o] | oy | Prob

il ig 1—2q—|—7“

01 ‘ 09 ‘ Prob

init 11 |0 (qg—r
ool .
0] Ol g—r
o|olr

In order to determine the possible outputs of the dependent composition ig-
noring the concrete probabilities, we can consider a non-probabilistic abstraction
of Medium1 and apply the composition of FOCUS. Note that ¢ was chosen from
the open interval |0,1[. Thus abstracting from probabilities, we have to expect
that a medium drops or forwards the incoming message at any time. We are only
interested in the behavior at some specific point in time, such that we can ignore
any liveness properties and can consider the following specification for a single
medium:

—— NDMedium[type T (a.8.) ——
in 1€T"
out oeTl™

0.0=0 A Vt:o.(t+1) e {0O,it}

The composition of two instances of NDMedium is essentially the conjunction of
the specifications. Thus, the media may arbitrarily drop or forward messages. In
other words, using this abstraction, we have to assume the probability r to range
between 0 and 1 (both inclusive).

This example shows, how the degree of abstraction influences the accuracy of
the analysis. We summarize the results in the following table:

Abstraction Level Range of probability r
prob., determ. composition {¢*}

with independencies
nondeterm., prob. composition [max{0,2q — 1}, ¢|

nondeterm., non-prob. composition [0, 1]

It is important to realize, that in both cases (N; © N, and the composition
of NDMedium) the probability r is not fixed over time. By nondeterminism, a
different probability may be chosen at each time step and system-run.
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6.3.2 Adding Independence

Independence of Outputs Given a measure p: OF and three sets of output
variables XY, Z C O, we say that X and Y are independent given Z in u, written
pE (X LY |2),if:

VneNze X" yeY" zeZm:
PzC ulz] >0 =
PlaWyCplxuy | 2Cplz] =Pz Culx | 2 S plz] - PlyCopuly | 2 C plz)

The expression X L Y | Z is a conditional independency. For a set L of such
independencies, we say pu fulfills L and write p = L if:

VieL:pkl

Instead of X L Y | ) we may also write X L Y.

Restricted Composition with Independence We can now introduce the
composition of nondeterministic components Ay, k € {1,...,n}, restricted by a
set of independencies L, denoted by Hi Ag. We define:

vie I pe ([ A0)
= ne ([ A AuEL

Instead of explicitly referring to the components’ output channels, we some-
times express independencies in terms of components and implicitly mean their
outputs. For example, in the context of Hf A with Ay I 05 O, we write
L= {Al 1 A2 | Ag} instead of L = {01 1 02 | 03}

For the restricted composition of two components we write instead A; D* A, and
further abbreviate the independent composition of two components A; {41142} A,
with A; O+ As.

6.3.3 Properties of Parallel Composition

Relation between Deterministic and Nondeterministic Components
It follows immediately that the independent composition of two components sub-
sumes the composition of each pair of deterministic realizations:

Corollary 2 For all composable nondeterministic, probabilistic components A and

B it holds
[Ao*B] 2 {a®b|ac[A]Abe[B]} . 5
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In general, the equality does not hold. Given a realization of A ® B, its output
O4 can depend on the input Ip and respectively output Op can depend on the
input /4. This cannot be prevented given the definition of nondeterministic behav-
ior functions and their realizations. The presented parallel composition is already
the most specific one that is possible (i.e., the sets (A @ B)(i) are the smallest
possible). For the independent case, this is shown with the following theorem:

Theorem 9 Given fully realizable components A and B. Then, for all inputs
1€ l,4U [BOO, it holds:

(AT B)@)={(a®b)(i) |a € [A]AD € [B]} . :

PROOF Given p € (A Ot B)(i), we have by definition of parallel composition

ILL|OA € A(i’IA) A M'OB € B(i’[B)
AYo € O4UO0p": Plu 3J o] =Plulo, 2 olo,] - Plulos 2 olog]

Because of the full realizability of A and B there exist behavior functions a € [A]
and b € [B] such that

plos = alilr,) N plos = b(il1y)

It follows p = (a @ b)(i) and the set inclusion (A Ot B)(i) C {(a ® b)(i) | a €
[A] Ab € [B]} is proven.

To prove the other direction, let be given some realizations a € [A] and b € [B].
For the measure p = (a @ b)(¢) it holds (for all o € O4 U Op*) :

pu(o) = a(il1,)(0lo,) - blil1z)(0los)

It follows
M|OA = a(i|IA) < A(i|IA)
A IU/’OB = b(ﬂhg) € B(i‘IB>
A EA{Oa L Op}
Thus, it is 4 € (A ©* B)(i) and the proof is complete. -

Theorem 10 For composable and strongly causal deterministic, probabilistic be-
havior functions a and b it holds:

aV otV = (a0 b)Y . 0
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PROOF For all input sequences i € (I, U I)*> it holds:

pe (a™ o bY)(5)
< pilo, = alilr,) N plo, = b(ilr,)
AYo € O4UOp": Pl o] = Plulo, 2 olo,] - Plulo, 2 0lo,]
= p=(a0b)() . -

Non-Probabilistic Abstraction The next theorem shows that the parallel
composition provided by FOCUS is indeed a non-probabilistic abstraction of the
just defined parallel composition. The probabilistic translation of FOCUS behavior
functions is a homomorphism with respect to the parallel composition ©.

Theorem 11 For nondeterministic, non-probabilistic behavior functions Fy and
Fg, it 18

FPoF = (o R . o

PROOF Using

(Fl ) FQ)(Z) = {01 W 09 | 01 € Fl(i|[1) N oy € F2(2|]2)}
= Fl(i’h) W FQ(”&)

we have the equivalences

pe (R oR) () <= p((FhoFR)>@) =1
= p(F(iln) W F (i) =1
> plo, (F1(i[n,)) = 1A plo, (Fo(i]r)) = 1
> plo, € F{'(il,) A plo, € F3 (il1,)
= pe(FroF)E) . n

6.4 Feedback

Now, we want to define the feedback of nondeterministic components, i.e., for
a nondeterministic behavior A the feedback A®. Connecting output channels to
identical input channels leads to the syntactic interface A”: (I'\ O) > O for some
A: 15 0.

We have already defined the feedback operation for the deterministic case. As
nondeterministic components are an abstraction of deterministic ones, we expect
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also that this holds for the feedback operation. That means, given a realization
f € [A] of a nondeterministic component A, we obtain the component f© by
application of the deterministic feedback operation. If we translate the operation
to the nondeterministic theory, we expect that

foelA]
or equivalently
Vi: fO>i) € A°(q)

holds. This leads to the following lower-bound on the definition of the feedback
operator in the nondeterministic case:

AC@) 2{f76) | f e [ALY (6.3)

The question is, if we should define the operator to equal this lower-bound or if
we should include some additional behavior.

Thinking of an operationalization of the feedback operation, the idea is, that
a system implementing the nondeterministic component produces some output
distribution. Then, we would feedback each of these possible outputs in order to
obtain the behavior of the implementation for the next time step. The important
point here is, that whatever state the system had at this point of time, it has to
continue from there. A system cannot undo the past during a feedback operation
and furthermore it has to behave strongly causal. These are exactly the constraints
we captured in the definition of realizations. Thus, by looking at the feedback
of nondeterministic components in a step-wise manner and in order to obtain the
most concrete abstraction as possible, we claim that the feedback operation should
indeed equal the lower-bound ((6.3)).

We define the feedback of a probabilistic and nondeterministic behav-
ior A to be the minimal nondeterministic behavior containing the deterministic
feedback of each of A’s realizations:

AZ(@) ={f°() | f € [Al}

Obviously we have the relation

[AT 2 {f° | f € [AI}

But we can show, that the realizations on the left contain more components than
the set one the right. This means, that the representation of feedback systems
as behavior functions is not complete and indeed an abstraction. In other words,
feedback systems have certain constraints about their behavior on different inputs
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and these constraints not captured by the representation as behavior functions.
Because of these lost constraints, realizations are allowed that correspond to no
feedback system. To understand the background of this explanation, consider the
following theorem and its proof:

Theorem 12 [t exists a fully realizable, nondeterministic and probabilistic behav-
ior function A such that

[A°T#{f7 [ f € [A]} - 0

PROOF In this proof, we consider a certain system A and a suitable realization f
of A°.

The component A has two alternative behaviors. Furthermore, it has two input
channels and one output channel that will be fed back to one of its inputs. The
alternatives diverge at the second time step in a way that will not be visible after
applying the feedback operator. Beginning with the third time step, the difference
is also visible after the feedback.

Figure depicts, from top to bottom, the nondeterministic probabilistic be-
havior A and the feedback A®. There, we see that the two alternatives are not
distinguishable before time step three, therefore the third graph shows a simpli-
fication of A°. The simplification also relies on the fact, that a nondeterministic
behavior is defined per input and cannot restrict the possible combinations of be-
havior regarding several inputs. The fourth graph shows a realization g of A°. For
this realization g, there is no realization f of A such that g is the feedback of f,
i.e., g = f°. The full-realizability of A is obvious.

Formally, we define the behavior A: {z,y} > {2} with type(z) = {0,1} and

type(y) = {a, b} by

Af) = ['({dy,dy}) ifi0=(z— 0,y — a)
i) = {d:} otherwise

where (dropping the channel annotation)

_ (O (o ) ((0,0,1) - (0)% e o
Q_Q”@WHVJad@_Qmﬂ%@WH%>

Next, we consider the realizations of A. For every realization f € [A] and
every i, there exists some ¢(i) € [0, 1] such that

ﬂ0:¥my¢+a—m»@m@iﬁﬁ:@HayH@

di(0) otherwise.
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Component Network y: {0,1}

Behavior of A

Behavior of A©

Simplified

representation of A°

Behavior of
realization g € [A”]

(/2)

Figure 6.3: Component A, the feedback A® and the realization g of A®.
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The distribution in the first case can be written more concisely as (with an appro-
priate choice of p € [0, 1])

(0

(0
dp=| (1.

(1

Thereby, the probabilities ¢(i) cannot be chosen arbitrarily but must respect the
causality constraint. Consider any input ¢ with .0 = (z — 0,y — a), then the
causality requires that all initial behaviors f(7)], must be identical. With

(0,0)—1/2

Flily = dagids = | (1,0)—=10)/2
(1, 1) (a2

we conclude, that all ¢(7) are identical and can be identified with a single ¢ € [0, 1].
Then we obtain for the feedback of f:

dsq(0) if00x=0ANj0y=a

di(0)  otherwise

FoG) (o) = f(7¥o)(0) = {

which can be simplified to

fo(j) _ {d4,q if jJ.0y=a (6.4)

dy  otherwise

where (again dropping the channel annotation)

(0)-(0)>®  =pf2
d4,p = <0, 0, 1) . <O>OO!—>(1—’P)/2
1 -O> =i

This result corresponds to the second transition diagram in Figure which em-
phasizes that the nondeterministic decision is independent of the input.

Now we can express each A”(j) as the convex closure of finitely many distri-
butions:

ACG) ={f"G) 1 f e [AI}

_ F({d470, d471}) lf ]Oy =a
{d:} otherwise
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which agrees with the third transition diagram.
Finally, we choose the following realization g € [A“], which is also shown at
the bottom of Figure[6.3] Let, for all j,

9({a,a) - j) = day = dy 9({a,b) - j) = dag
g((b) - j) = du

If we compare this to the characterization of the feedbacks f© in Equation (6.4,
we find that f©(j) # g(j) for j = {(a,a,...) or j = (a,b,...). This shows that
g# f© for all f € [A] and [A”] # {f° | f € [A]} as claimed. -

The Dummy Component D; We introduce the dummy component D; with
the syntactic interface J 5 @). The set (§°° contains only the infinite sequence of
empty valuations () = ((),(),...). Accordingly, there is only a single distribu-
tion in 0F = {(()>® ~ 1)}. We define D; to be non-empty for all inputs, i.e.,
Dj(p) = 0F for all o € J™. By composition, this component can be used for
extending the set of input channels of an other component.

We show the following important property, which we will use in the subsequent
examples.

Theorem 13 Let A: 1130 and JNO C INO then

(ADD;)°=A"0D; . o

PROOF We have for all 7/ € I\ O and j' € J \ O with 7'|;nn0 = j'inn0:

pne(AD D)) W)

— 3f: TUJEO: p=fL'wj) A fe[ADD/]

<= 3f: TUJE0:Vo: ulo) = fi' Wi Wo)(o) A Vi,j: f(iWj) € A(i)
<= 3f: 15 0:Vo: ulo) = f('Wo)(o) A Vi: f(i) € A4)

< 3f:I50:u=f04") N fe[A]

€ A°@) A ulp € Dy(5)

= puec (Ao D), ) . »

Example 6.3 In the previous Theorem [I2] the constructed component A had
two input channels. We will give now a second example system, which highlights
that this second channel is only needed to allow the combination of behaviors
during the composition.
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Component Network
(A D D{y})o €T {0, 1}

Behavior of A and A ® Dy
with p € [0, 1]

Behavior of A° and
A®® Dyyy = (AD Dyyy)°

A realization g of A° © Dy,

Figure 6.4: Component A, the feedback A” and the realization g of A° © Dyyy.
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The system is illustrated in Figure[6.4] The central component A has the single
channel x both as input and output. The behavior is shown in the first transition
diagram, where p can assume any value in the range [0,1] C R.

As the second component, we use the dummy component Dy, with the syn-
tactic interface {y} > (). For the sake of completeness, let type(y) = {0,1}. This
component is used to extend the set of input channels such that, after applying
the feedback operation, there are input channels that allow the combination of
various distributions. The composition A® Dy, of both components will play the
role of the component A in the previous example.

The behavior of the composition is also visualized by the first transition dia-
gram. As we can see, for every input sequence x gy, we obtain a range of possible
output distributions (A ® Dy,y)(z W y), one for each value of p € [0, 1]. The distri-
butions are constructed in such a way that the probability in the lower branch at
depth 2 is linked to the probability of the upper branch at depth 3. This linkage
ensures that a realization of A ® Dy,, which shows some output distribution up to
time step 2 has to repeat this probability on the other branch at time step 3, no
matter what is the input at time 2. Thus, this linkage prevents arbitrary mixing
of the two possible behaviors.

The second transition diagram shows the behavior after applying the feedback
operation. Note the equality (A @ Dy,y)° = A° @ Dyyy shown in the preceding
theorem. The linkage disappears or becomes irrelevant, as the lower branch is
not observable anymore. This allows combinations of the distributions that were
not possible previously. Consider, for example, the realization g of A” @ Dy
visualized by the last transition diagram. If the second input on channel y equals
0, the component g chooses p =1 and p = 0 otherwise. Formally, we have

(0,0, 0)—1/4 (0,0, 1)1/
g({y:0,0)) = [ (0,1,0)—1/s and ¢g({(y:0,1)) = (0,1,1)—1/4
(1,1, 1)1z (1,1, 1)1/2

We want to show, that there exists no f € [A® Dy, such that f© = g. For this
equality to hold, it is necessary that

(000 ) 000 =gl 00p(00.0) =11 (63)

)

and

F((0Y)) @00 st o00) =0 . (66)
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Thus, let any realization f € [A® Dy,] be given. By the definition of realization,
we have

(0,0,0) > 2/4

v € TyF: f((2:0,0) W) € A((w:0,0) = { (pe[o,u}.

(1,0,0) — »/2
(1,0,1) —» 0
By strong causality, it follows
Vo e{y}?3Ip € [0,1]:
f(z:0)wely)((1,0) = f({z: 0,0) We)((1,0,0)) = #/2
A f({z:0,0) W )((0,0,0)) =#/a

By instantiating these relations once with ¢ = (y: 0,0) and once with ¢ =
(y:0,1), we finally have

Vo e {y}2,pel0,1]:

x: 0
f(<y:0
x: 0
(:)f(<y¢0
0

x:
<:)f(< y: 0,

This proves our claim that the Equations (6.5]) and cannot hold simultane-
ously. Thus there is no such realization f that f© = g. o

Nondeterministic Abstraction Let f: I > O be some deterministic and prob-
abilistic component. We apply the feedback operation to the nondeterministic
translation fV and obtain the following simplifications:

g € Y] = Vizg(i) € fY() = {f(i)}
= g=f
and it follows
()@ ={9"() 1 g € [f" I} ={f°@)} = (f9)" ()
This proves the equality (fV)° = (f©)" and we obtain the following theorem.

Theorem 14 Given a strongly causal, nondeterministic, probabilistic behavior
function f . 11> 0, it holds

(SN =" =
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Non-Probabilistic Abstraction The next theorem shows that the feedback
operation in FOCUS is a non-probabilistic abstraction of the just defined feedback
operation on probabilistic behavior.

Theorem 15 Given a non-probabilistic and nondeterministic behavior function
F 10, it holds
(FP)O — (FO)P

PROOF Let J = I\ O and j € J* be some fixed input. We first prove that the
left hand side is included in the right hand side.

“Cm Letn € Ng and 0o € O™ With u € (FP)°(4), we have u(o) =
f(7Wol,)(o) for some f € [FF] and we derive the following implications:

pu(o) = f(jWol,)(0) >0
— o€ F(jWol,)
—> 0 € F(jl)

Since this holds for all 0 € O™ and n € Ny, it follows that u(F“(j)) = 1 or
equivalently p € (F)F(j).

“2”  For the proof of the other inclusion, we need the length of the longest
common prefix s = gcl(a,b) of two sequences a,b € X* defined by

al, =bl, A (a(s +1)#b(s+1) V s =max{|al, |b|})

The valid continuation of some output » € F(i)
x, 1+ ve(x, i) € O with the properties

., 1s defined by some function

ve(z, 1) € F(i)
A x C ve(z, i)

Nidy, =Y, = ve(@, i)l = ve(@, )

Such a function can be constructed inductively because of the strong causality of F.
Choose some arbitrary (o;) € F({ )) and set ve(x, () = (01). Then for any k& € Ny,
i € I* and iy, € I, we assume ve(z,i) € F(i) which implies that some oy exists
such that ve(x, ) - (ogy2) € F(i- (igs1)). We set ve(z,i - (igr1)) = ve(z, i) - (0g42).

Given some u € (F©)F(5), we construct a behavior function f € [F¥] such
that = f(j). We define, for all n € Ny, ¢ € O™ and 0 € O™+,

M(O\l/s—&-l) if s = gCl(Q7 O) A :u’(ois—l—l) >0
f(j o Ql/n)(O) = No= VC(Ois-i—l?j S~ q)\Ln-‘rl
0 otherwise
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Note, since 1 € (F©)P(j), we have the implication
(o) >0 = o€ F(jWo)

and in this case the valid continuation is defined. The equation defines indeed a
function since the term vec(ol,,,7 ¥ q)),, depends only on the first n elements
of jWq.

We show now that f is a well-defined behavior function. Therefore, we have
to prove that

> (e =1 (6.7)

acO

as well as

Y Fi a0 (@) = FGWal)(0) (6.8)

acO

The first Equation (6.7 follows directly from the definition. With

n=s=gcl((),{(a) =0

it follows

FUD (@) = pl(a))

For the second equation we consider three cases:

1. If s = gcl(q,0) = n + 1, we have ¢ = o and:

p(o-(a)) if p(o-{a)) >0
fGWoln)(o-(a)) = No-({a)=vc(o-(a), ] Wo)l, s
0 otherwise

= plo- (@)

as the valid continuation of length n + 2 is o - (a) itself. With the same
argument, we further obtain:

f(G¥ol,)(0) = plo)

and the equality follows. In particular, this case also proves pu = f°(j).
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2. If s = gcl(q, 0) < n the terms simplify to:

p(oder) if plodgyr) >0
fjw Q\l/n—i-l)(O. (a)) = No-(a) = VC(0¢5+17j S C])in+2
0 otherwise

and

M(O\l/s—&—l) if /’L(Ois—l—l) >0
fG8al,)(0) = Ao =vc(ols 1, ] W),
0 otherwise

In the case that o # ve(ol, 1, 7Wq) L, it is also 0-(a) # ve(odyi1, THE) o
and both sides of equate to zero. Otherwise, both f(j W ¢ql,)(0) and

the summand for a = vc(ol,,;,7 W q).n + 1 equal (o), ;) and all other
summands are zero. In both cases the proposition follows.

Thus, f is a well-defined behavior function.

Next we show f € [F]. This is the case if f(i)(F(i)) = 1 for all inputs i € I,
Let i = j W g € I*® be some fixed input. Then we characterize f by the equation
(for all 0 € O™):

p(qhy (@) ifa#qk A o=ve(gly,(a),j¥q)
for some k € Ny,a € O
p(q) ifo=gq

0 otherwise.

We know that ve(-,jWq) € F(jWq) and ¢ € F(j W q) if u(g) > 0. Furthermore,
{gd, (@) - O>® | k € Ng Aa # q.k} U{{q}} is a partition of O>®. We can then
calculate:

FUEQFGW) > fiwa)@+ D FIWa(velgly,-(a),iwq)

keNg,a#q.k

—ulg)+ D plaly () =1

keNo,a#q.k

This shows p € (F)°(j). -

6.5 General Composition

As in the deterministic case, we define the general composition of nondetermin-

istic behaviors by A® B = (A ® B)“.
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Theorem 16 Given some nondeterministic, non-probabilistic behaviors A and B,
we have

(A" © B") = (A0 B)"
(AP)O — (AO>P
(A" ® BY) = (A® B)"
This shows, that the probabilistic translation -* is a homomorphism from nonde-
terministic FOCUS behavior functions to nondeterministic probabilistic behavior
functions with respect to the three operators parallel composition @, feedback -©
and general composition &. o

PROOF The first two equalities were proven in the previous sections. By definition
of the general composition it follows immediately that

(4" ® B") = (A" 0 B")" = (AD B)")° = (ADB))’ = (4 B)” . u

Theorem 17 The nondeterministic translation f — f is a homomorphism from
deterministic, probabilistic components (I pS O) to nondeterministic, probabilistic
components (I > O) with respect to the pairs of operators (-©,-°), (D, d*) and
(®,®%1). In other words, given some deterministic, probabilistic behaviors f and
g, we have the equations:

frotg =(fogh
(N2 = (f)Y
(Yot g™) = (feq”

This shows, that the deterministic operators coincide with the nondeterministic
operators assuming statistical independence between the components. o

Example 6.4 Using the same system A from Example [6.3], we can show that
the general composition is not associative. From Theorem [[3] about dummy com-
ponents and the obvious equalities A © D,y = A and D,y O Dyyy = Dyyy, we
obtain the implications:

(AO D D{x})o 7& A©
= ((A® D))" © Diay)” # (AD (Diay © Diay)”)”
= ((A® Dyyy) @ Digy) # (A® (Dyay ® Dyay))

Therefore, it is sufficient to prove the first inequality.
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Component Network

(A7 © Day)” n z: {0, 1}

Behavior of A with p € [0, 1]

Behavior of A©

A realization g of A° ® Dy

Behavior of ¢¢

Figure 6.5: Illustrations for the example proving the general composition to be
not associative.
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In Figure [6.5] we show a realization g € [A” @ Dyy], such that g°(()>) &
A°(()®) although ¢g“(()*°) € (A° ® D;3)(()>). Note that the infinite sequence
of empty valuations ()* is the only input value for components without any input
channels like A°. If we compare the visualizations of both ¢° and A®, we easily
see that there is no value for p, such that the two behaviors match. o

We conclude this result with the following theorem.

Theorem 18 The general composition @ of nondeterministic, probabilistic behav-
ior functions is not associative. 0

Using the same example and argumentation, we can analogously conclude

Theorem 19 The general independent composition @+ of nondeterministic, prob-
abilistic behavior functions is not associative. o

Example 6.5 Assume two persons Bob and Lisa. Bob has a coin he tosses. Bob
announces the result if Lisa asks for it and is silent otherwise. We will model this
interaction once assuming the actions of Bob and Lisa to be independent. That
means that any other flow of information and dependence than the one explained
is prohibited. For comparison, we will also model this interaction a second time,
this time allowing any arbitrary dependence, for example that Lisa knows the
result of the coin tossing before deciding to ask for it. In both cases, we ask for
the probability that Bob announces “head” when Lisa asked for the result.

We model Lisa as a nondeterministic behavior and Bob as a deterministic and
probabilistic behavior. Note that we are only interested in the interaction within
the first two time steps. Therefore, we will not analyze the behavior for later time
steps. We use as channel types the sets YN = {y,n} (“yes”, “no”) and HT = {h, t, O}
(“head”, “tail”, “nothing”).

Bob det. prob ——
in ceYN
out o€ {h,t, 0} Lics (a5)
| o | Prob lout c € YN ‘

c
. ., o |Prob y
init ?‘17 y

The parallel composition with dependencies Lisa @ Bob yields the set of all joint
distributions over the random variables ¢ € YN> and o(u) € HT*, for all u € YN*°,

with the following restrictions (only for the first two time steps and omitting the
angle brackets () of sequences):

Plo(()).0=0] =1 Plo(n).1 = O]
Plo(y).1 =h] =1/ Plo(y).1 = t]

1 (6.9)
s . (6.10)
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Applying the feedback operation means to introduce random variables ¢ € YN*°
and 6 € HT*™ such that (for all u € YN*° v € HT*)

Plc=uno=v] =Plc=uNo(u) =]

and to project each joint distribution of the parallel composition onto these new
variables.

The probability we asked for corresponds to P[6.1 = h|¢.0 = y] and can take
on any value between 0 and 1 (both inclusive). The following two distributions P
(Lisa says “yes” if Bob throws “Head” and “no” otherwise) and P (Lisa says “yes”
if Bob throws “Tail” and “no” otherwise) explain these extreme probabilities. All
other cases can be explained by their combination:

Pi[c.O0=yAo(y).l =h] =12 Pylc.0=yAo(y).l1=h=0
PilcO=yAo(y)l=1t]=0 Pylc.0 =y Ao(y).l =t] =1/
Pi[cO=nAo(y).l=10]=0 Py[c.O0=nAo(y).l =h]=1/2
Pi[cO=nAo(y).l=1t] =12 Pylc.0=nAo(y)l=1t]=0

For the independent composition Lisa O+ Bob, we have to add to the equations

1) the additional independence restriction

Plc.0 =uAo(y).1 =]
Plc.0 =u A o(n).1 =]

!
e
|
g
T
<

(y).1 = ] (6.11)
(6.12)

Il
bﬁ
)
|
'-U
S
2
—_
=

of which the second ((6.12)) follows already from . Again, we introduce variables
¢ and o0 to handle the feedback. It follows that

P[6.1 =h|c.0 =y] =P[e0 =y A6.1 =h]/P[c0 = y]
=Plc.0=yAo(y).l =h]/Pc.0 =7y]
Plo(y).1=n] =1/ . 0
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Chapter 7

Refinement

So far we have considered the description of systems, in particular probabilistic
ones, in a formal way. This description captures both the syntactic interface of
systems (i.e., which data can the system send to and receive from its environment)
and the interface behavior of systems (i.e., which interactions of the system with
its environment are allowed).

The next step is to relate this system description to the process of system de-
velopment. Instead of describing one particular system, we have to consider tran-
sitions between systems as they appear during the development. Typical activities
in the development process are the requirements engineering and the design phase.
The former iteratively extends the system specification until a satisfactory specifi-
cation of the intended system is reached. The latter works towards an operational
implementation of the system specification and therefore applies hierarchical de-
composition and implementation of sub-components using a behavior description
like transition diagrams.

One idea of formal methods is to formally grasp such development steps [BS01,
Bro09]. By proving properties about development steps — which is only possible
if we have formalized them in the first place — we can justify the usage of these
steps and rules about their usage during the development.

The Focus theory formalizes the development process of non-probabilistic
systems [Brol(, Bro97|. The foundation of this formalization is the notion of
refinement, which explains when one specification complies with another specifi-
cation. Upon this notion of refinement different development steps are explained
like enhancing requirements, decomposition, implementation or change of level of
abstraction, just to mention a few examples.

In this chapter, we will extend the notion of refinement to probabilistic systems
and elaborate important refinement rules. Based on the results of the Focus
theory, we will present the formalization of a selection of activities during the
development of probabilistic systems.

119
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7.1 Probabilistic Refinement Relations

In Focus, a nondeterministic behavior func’Eion F': It> O is a refinement of
the function F': > O if it holds (for all i € 1)

F'(i) € F(i)

In that case, we notate F'~» F’. Every behavior allowed by F’ complies also with
the function F. This is also emphasized by the fact that every realization of the
refinement F’ is also a realization of F', i.e.,

(F~ F') = [F'] C[F]

This definition can analogously be applied to the probabilistic case. We say, a
probabilistic behavior function H: I3 O is refined by the function H': It O
if it holds (for all i € 1)

H'(i) C H(i)
In this case, we notate also H ~ H'.

Based on this notion of refinement, which is also called property refinement,
the Focus theory defines more concrete kinds of refinement. As a special case of
the property refinement, we talk about glass box refinement if a function is
refined either by a composition or a function that is defined using an operational
description technique. The third kind is the interaction refinement which allows
changes to the representation of the communication and thereby changes the level
of abstraction.

The glass box refinement is a property refinement with an additional syntactic
requirement about the refining function F’. This syntactic requirement directly
carries over to the probabilistic case. We call a refinement F' ~» F’ a glass box
refinement if either

e [ is defined by composition, i.e., I’ = F; ol F;, for o € {®, ®} and some
independence constraints L,

e or I is defined by an executable description, i.e., F/ = F4 for some nonde-
terministic probabilistic automaton A.

Similar to how the interaction refinement allows changes of the level of abstrac-
tion, we introduce an additional kind of refinement that allows the transition from
non-probabilistic models to probabilistic ones. Given a non-probabilistic behavior
function F': I > O and a probabilistic behavior function H, we say that H: 15> O
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is an almost surely refinement of F' if it fulfills the specification of F' almost
surely. Formally, we define

FH — FP~ H

In that case, we also say F' is refined by H almost surely. This definition is based
on the translation of non-probabilistic to probabilistic systems as it was introduced
in Chapter [6] By substituting its definition we obtain:

FXH < (Vi:pe€ H(G) = p(F@i)=1)

7.2 Properties

In this section, we present several important properties of the refinement relation of
nondeterministic, probabilistic behavior functions. We start with basic properties
like transitivity and monotony with respect to our composition operators. After-
wards, we prove useful refinement relations like merging dependent components
into a single component.

Theorem 20 (Transitivity of refinement) Given nondeterministic probabilis-
tic behavior functions Hy, Hy and Hs, from

Hy ~ Hy N Hy ~ Hj
follows
H; ~ Hj
PROOF The definition of refinement implies
Vi: Hy(i1) € Hq(i) A Hs(i) C Ha(17)
From the transitivity of the subset relation, we have
Vi: Hs(i) C Hi(i)
By definition this means, that Hj refines H; and completes the proof. =
Theorem 21 (Monotony of Feedback with respect to refinement)

H~ H = H°~ H©
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PROOF From the definition of refinement, we have

Vi: H'(i) C H(i) . (7.1)
Let h € [H'] be a realization of H', i.e.,

Vi: h(i) € H'(i)

With ([7.1)) it follows
Vi: h(i) € H(i)

and h is also a realization of H. As this holds for every realization h of H’, we
have [H] C [H'].
The feedback of a nondeterministic behavior function F' is defined as (for all
inputs 1)
Fo@) ={f°@) | fe[F]} |
which is monotonic in the set of realizations [F]. Applied to H and H’ this proves
the claim of the theorem. -

Theorem 22 (Monotony of Parallel Composition wrt. refinement)
A~AANB~ B = (A" B)~ (A0 B) . i

PROOF Let i be an arbitrary input sequence. Given a measure u € (A’ ©F B)(i),
it follows

Hlon € AGli) A ploy € B(iliy) A= L
Because of the refinement relation to A respectively B, we obtain
o € Alilr,) A plo, € Blili) Ap =L
which is exactly the definition of u € (A ©F B)(i) and completes the proof. -
Theorem 23 (Monotony of General Composition wrt. refinement)
A~ ANB~ B = (AR"B)~ (A "B . g
PROOF This theorem follows immediately by applying the transitivity of the re-

finement relation and the two previous theorems to the definition of general com-
position. -
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These theorems can easily be generalized to the composition of more than two
components. However, we will omit the proof here.

Thanks to the monotony property of refinement, a composite component can be
refined by refining its subcomponents. Thus, we have a formal means of evolving
architectures. In the following, we present a collection of useful refinement relations
which are usually applied during a system development. At the end of this section,
you will find a summary of these relations.

Theorem 24 (Refinement by adding independence constraints)

LCL = HLC«»HLIC

PROOF Let be i an arbitrary input sequence. Given a measure p € ([T C)(), it
follows

MEHCAM):L’

Because of L C L/, the measure p fulfills also = L. This explains p € ([]*C) ()
and completes the proof. -

The following refinement relations allow replacing two components by a single
component. Therefore, we introduce a substitution operation on sets of indepen-
dencies. Namely, for variable sets S,7 C V', we denote with (X LY | Z)[9/1] the
constraint obtained by replacing all occurrences of U by V, i.e.,

(X LY [ Z)[5/r] = (X" LY"| Z)
with
v {X\SUT if SC X
X otherwise.
and analogous definitions of Y’ and Z’.

Theorem 25 (Refinement by merging independent components)

Let C = {C1,Cy, ...} be a finite set of at least two components and C' = CU{C12}\
{C1, Co} with Cyo = C O+ Cy. Furthermore, let L be a set of independencies over
C and L' a set of independencies over C' such that it holds

L — (Cl J_C2>
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as well as (for all independency constraints x)

(xeLhx#C LCy) = x=z[{0}{c 0.} = x[{C2}/(c1,C0}]
ANxeLAx#C L0y < z[{CCl/iciny] e L' . (7.2)

Then merging the two components C7 and Cy into the single component C1g is
a refinement step, i.e.,

HLC«»HL/C/ . .

PROOF Let an arbitrary input ¢ and measure p € (HL, C')(i) be fixed. The
definition of the restricted parallel composition says

Vk > 3: plo, € Cr(ilz,)
A\ M‘Om S 012(7;‘112)

Together with the fact that Chy = C; © Oy, this implies:

M|O12|01 = :u|01 € Cl(i|ll)
A M|012|02 = :u|02 S 02(”12)

Thus, it is also g € (J]C) (¢). What remains to be shown, is that the constraints
L are fulfilled by p. Therefore, we expand the independence constraints over
components to constraints over the components’ outputs. Because of O, = O7 U

Os, the equivalence ([7.2)) implies:
(xe€LANx#0,1L0s) <— zel . (7.3)

Given some arbitrary = € L, we consider two cases. The first case is x = (O L
O,). Because of p|o,, € (C1 O C9)(i|1,), we have ulo,, F (O1 L O;) = z and
accordingly p = x.

In the other case, i.e., x # (O; L Oy), it is x € L' and from the equivalence

(7.3)) and from p € (HL/ C') (i) we know that y |= .
Thus, it holds = L and finally z € [T" C(i). -

Example 7.1 This example is based on the communication example introduced
in Section [5.4] This time, we require that the communication media are inde-
pendent and we allow only dependencies between the Sender and the Receiver.
This allows refining the composed system by merging the media components into
a single composite media component. Note that we have to apply an indepen-
dent composition when merging the two media. The transition is visualized in

Figure [7.]]
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T: Tl T: Tl
- - (TxB)
c1: (T'xB): ©oceq: B a: { )
Sender Sender
cy: B
. ) Mediuml @+
Mediuml Medium?2 ~S Medium?
c3: B
> Receiver .| Receiver
CQ:(TX]B)'-,_ c3: B co: (TxB) = '
z: Tl Z: Tl

Figure 7.1: Merging the two independent media (left) into a single composite
component (right).

Formally, we can justify this refinement according to the previous theorem and
the independencies modeled by the diagrams in Figure (L for the left and L’
for the right diagram):

L = {(Sender, Receiver L Medium1, Medium2), (Mediuml L Medium?2)}
L' = {(Sender, Receiver 1. Medium12)}
where Medium12 = Medium1 ©* Medium2 . .

Theorem 26 (Refinement by merging dependent components)

Let C = {C1,Cy, ...} be a finite set of at least two components and C' = CU{C12}\
{C1, Cy} with Ci9 = Cy © Cy. Furthermore, let L be a set of independencies over
C and L' a set of independencies over C' such that it holds

r el = x=z[{0/{c1,0)] = z[{C}/(c1,c0)]
AN €L < z[iC10}/ic}] € L' . (7.4)

Then merging the two components Cy and Cy into the single component C1g is
a refinement step with regard to the general composition of C, i.e.,

[Me~1T ¢ ;

PROOF Let an arbitrary input ¢ and measure p € (HLI C') (i) be fixed. As in the
previous proof, it follows that u € ([]C) (¢). What remains to be shown, is that
the constraints L are fulfilled by pu.
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7| n|

ai: (I'x B) ca: B Sender
Sender
cy: B
ﬁ e Cl: (T X IB)
: . . Mediuml @
: Mediuml Medium2 N> Medium?2
‘ C3: B
co: (T x B)
Receiver )
ca: (T x B) c3: B Receiver

Zle z:Tl

Figure 7.2: Merging the two dependent media (left) into a single composite com-
ponent (right).

This becomes obvious, when we expand the independence constraints over com-

ponents to constraints over the components’ outputs. Because of 015 = O1 U O,
the equivalence (7.4) does then mean L = L’. Thus, it holds x4 = L and finally

z e ([T"C)(0). n

Example 7.2 In this example, we consider dependent communication media.
We can merge these two components, according to the previous theorem, into a
single composite component. The refinement is visualized in Figure [7.2]

We can justify this refinement relation by looking at the independence con-
straints of both models (L for the left and L’ for the right diagram):

L = {(Sender, Receiver 1. Medium1, Medium2), (Sender L Receiver)}
L' = {(Sender, Receiver 1. Medium12), (Sender L Receiver)}
where Medium12 = Medium1 © Medium2

Replacing Dependencies by Typed Channels Given two dependent com-
ponents, we saw already that these can be merged into a single component. Alter-
natively, we can make the dependency explicit by introducing a new typed channel
and restricting the dependency to this channel, i.e., enforcing independency be-
yond this channel communication.

Let ¢y and C5 be nondeterministic, probabilistic behavior functions. Consider
the refinement relation shown in Figure . We will decide on components C] and
(Y, with an additional interconnecting channel d such that the refinement relation



7.2. PROPERTIES 127

T CI A1 19
= ! -----1----------==-"=--"=-"-"F---- |
[ [ | )
! ! w d: X !
! C C ‘ ! ! . C! !

1 2 |

1 ‘ ~> ! ! 2 !
| | R I D

01 02 01 02

Figure 7.3: Replacing dependency (left) by an explicit channel (right).

holds, i.e.,
(CL D Cy) ~ (O] @ C)) 1 (01U 0y)

The following theorem states a possible definition of (| and C} under which this
refinement relation is guaranteed.

Theorem 27 Let Cy: I, > O; and Cy: I 15 Oy be nondeterministic, probabilistic
behavior functions such that (I; UO1) N (I UO3) =0 and LN Oy =0 = I,N Os.
Furthermore, let d be some unused channel identifier of arbitrary type and let
D equal {d}. We define C}: I,t> (O, U D) and Cfy: (I U D)3 O to be the

components such that

JINS Ci(ll) <~ Vn € NQ,U € D" 3v S Cl(’ll) Yo, € O_lni
Pl 3 01 0] = Plulp 3 o] - Plvlo, J ol

and
Co(ia W o) = Cy(is)
holds. Given these definitions, the refinement relation
(CL D Cy) ~ (C] @ Cy) t (01U Oy)
holds, which is visualized in Figure[7.3 O
PROOF Let i; € I, iy € [,>° and a measure u € (C} @+ Ch) (i1 Wiy) be given.
The definition of the feedback operation states (with f: [;Ul,UD 5 0,U0,U D):
p € (O] 0 Cy) iy Wiy)
= 3f: FE[CLON G A = fOi i)
Given such a function f it follows:
Vi, iy, d: f(iyisd)o,up € C1(i1) A f(i1isd)]o, € Co(ird)
AN fEOLUD L O,
A Yo1,09,d: p(0109d) = f(iriad)(0102d)
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Using the definition of C, C} and of independence, we obtain:
Vi, iy, d, d : v e C1(i}) Yor: f(i}isd)(ord) = f(iyigd)(d) - v(01)
A f(iyigd)|o, € Colis)
N \V/Ol, 09, d: u(ologd) = f(’tllzd)(Old) . f(@lZQd)(02>

The measures v may depend on d and d’. Applying the first conjunct to iy, i, and
d = d', we obtain measures v, € C(iy) such that it holds:

Vo1, 09,d: p1(0109d) = f(i1iad)(d) - va(01) - f(iriad)(02)

Then for the projection p|p, it follows:

o) =Y p(0100d) = > f(iniad)(d) - valor) - Y f(iniad)(02)

02,d

The last summation in this product equals one. The factors f(i1i2d)(d) sum up to

one. Thus, p(01) is a linear combination of the measures 14 € Cy(i1). That means

tlo, € C1(i1), which is convex by the definition of nondeterministic behavior.
Similarly, we obtain for p|o,:

plo2) =Y ploroad) =Y fliviad)(d) - > va(or) - f(iriad)(02)

o1,d o1

This time, the second factor ) v4(01) equals one and with f(i1iad)|o, € Ca(ia),
we have pu|p, € Cs(iz).
It follows p|o,u0, € (C1 © Cy) (i1 Wiy), which completes the proof. -

Example 7.3 In this example, we will apply the results of the previous theo-
rems. We continue with the lossy communication media example and show how
to introduce an interconnecting channel within a refinement steps. As a starting
point, consider the nondeterministic lossy medium in the following specification:

—— LossyMedium [channel x, channel y}= nondet. prob ——
in xel™
out yel™
local teT~
{t :==m}(0.5,1)
{t =0} Send | 27m
ylt
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1 Y2 T Y2
= 1 mew channel "~ 7T T i
: My M, | Th. 21 : M mode M, :
ony x wy 0 T

monotony of
composition
Th. 23]
I Y2
3 i ModeGen i |
: 3 M | M |
Lo ! mode | 2 |
oy Ty

Figure 7.4: Replacing dependency (top left) by an explicit channel (right) and
then decomposing the component M{ (bottom).

It does not enforce a concrete distribution to drop or forward a message but speci-
fies a range of possible distributions. We compose two such media allowing unspec-
ified dependencies between both instances. The composition is visualized on the
left of Figure with M; = LossyMedium[z1,y;] and My = LossyMedium|[zs, o).
Our goal is, to make a specific coupling of the two media explicit using a typed
channel and more concrete specifications of both. Say, we pick three distributions
out of the allowed range and call these according to their forwarding probability:

Mode Forwarding Dropping
Probability Probability

hi 1 0
med 0.9 0.1
lo 0.5 0.5

We would like to have both media to behave according to these three distributions.
Thus, we can imagine these to be modes of behavior. In order to synchronize the
media, we introduce the channel mode of type Mode = {hi,med,1lo}. We can do
so by applying Theorem [27] and obtain the refinement shown in the upper part of
Figure [7.4 The theorem states that we obtain two derived components M and
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M. These can be visualized as shown in the specification frames shown at the end

of this example.

From these two components, we can continue with an additional refinement
step, as shown with the arrow directed downward in Figure [7.4 This step makes
use of the monotony with respect to the general composition and refines both M}
by M”[x1,71] ®*+ ModeGen and M, by M”[zy,ys]. Thereby, we specify the mode
transitions using the dedicated component ModeGen. Both media behave then
according to this communicated mode. The specifications of the components M”

and ModeGen are given in the following.

m]
M’ nondet. prob —— M, nondet. prob —
in xel™ in x € T, mode € Mode
out y &€ 7T~ ,mode € Mode out yeTl~
local teT~ local teT~
{t :=m}(0.5,1) {t :=m}(0.5,1)
Send
{t:=0} 1 7m {t:=0}

Yt
mode!{hi, med, lo}

y2|t

Senm

{t :=0}(0,0.5) {t :==0}(0,0.5)
— ModeGen det. prob —— == M [channel x, y}: det. prob ——
out mode € Mode in x € T, mode € Mode
out yel™
‘nit mode ‘ Prob local teT-
med ‘ 1
mode || mode’ | Prob init L Prob
i hi /2 o1
med /2 mode || v/ | Prob
hi /3 hi x| 1
med med 1/3 . = 109
1o 1/3 me olo1
med 1/2 z | 1
Lo lo /2 1o O | 12

Summary of Proven Refinement Relations

We conclude this section, by

summarizing all of the proven refinement relations in Table [7.1]
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7.3 Development of Probabilistic Systems

The refinement of probabilistic behavior functions has similar properties as the
non-probabilistic refinement in FOCUs. But how does this relate to the activities
in the development of a probabilistic system? To see this, we will at first recall
the different development activities explained in the FOCUS theory. Afterwards,
we highlight the additions in the probabilistic case.

Development of Non-Probabilistic Systems The development process can
be roughly divided into the requirements engineering and the design phase accom-
panied by quality ensuring activities. In a strict top-down development these two
phases would be performed sequentially in this order. The FOcus theory formal-
izes the steps we may apply repeatedly to come from an initial requirement to the
final system-model [Brol0].

During the requirements engineering the main activity is to successively add
properties to the specification. That means starting with an empty specification Sy
which allows just any behavior, we obtain for each added property a refinement of
the previous specification S; ~ S;1. At some point, we assume the specification,
say Sk, to be complete and go over to designing the implementation.

During the design phase, we have to implement one of the many system be-
haviors that conform to the final specification Si. To accomplish this, we apply
glass box refinements which follow the “divide and conquer” principle: Either di-
vide the system into subsystems and implement each of these or directly provide
an implementation of the system, say in the form of an automaton. If we do this
repeatedly for each subsystem, we obtain a hierarchy of components, the so called
logical architecture. This hierarchy is a tree of behavior functions where the com-
position of sibling functions is a refinement of the parent function. The functions
towards the root of the hierarchy will be nondeterministic.

Instead of extending the logical architecture, we may also intersperse design
decisions which restrict the set of allowed behaviors. That means, we refine one
of the nondeterministic functions in the logical architecture F' by a more restrictive
function F’. Such a step does not correspond to a glass-box refinement but is, like
a requirements enhancement, solely a property refinement. It excludes behaviors
that fulfill the requirements for the sake of reaching a final implementation.

Extensions in the Probabilistic Case The development steps in the proba-
bilistic case can be explained analogously. However, we have now the additional
notion of probability which leads to additional choices during the development.
During the requirements engineering, we have exactly the same notion of prop-
erty refinement which allows the step-wise enhancement of the specification about
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properties. Additionally, the presented translation of non-probabilistic specifica-
tions into a probabilistic ones allows us to combine both worlds and separate
concerns. We can, for example, start by developing a non-probabilistic specifi-
cation, say Sy, translate this into a probabilistic one, i.e., Py = (S;)*, and then
continue to add probabilistic requirements using the probabilistic analog of refine-
ment, i.e., P, ~ P;.;. Finally, we obtain a probabilistic specification P, which is
used as a starting point for the design phase. This method allows separating the
non-probabilistic properties from probabilistic properties as long as possible.

During the design phase, we can again apply glass-box and property refine-
ments. As the probabilistic composition operators are parameterized with inde-
pendency-constraints, in a decomposition step, we have additionally to decide on
the allowed dependencies between the components. The dependencies can then be
further restricted during a property refinement. This restriction can be performed
without changing the structure of the hierarchy. One application of this refinement
step was shown in Example [7.3], where we replaced an implicit dependency by an
explicit communication channel.

Summary of Development Steps In the following table, we summarize the
steps during the development of a non-probabilistic system and annotate the ex-
tensions for the probabilistic case at the corresponding places:



CHAPTER 7. REFINEMENT

134

Activity

Formal Representation

Probabilistic Extension

Enhance Requirements
Decomposition
Implementation

Clarify Dependencies

Property Refinement

S~ 5

Glass-box Refinement

C ~ AQH & va

Glass-box Refinement

C' ~» Fy for some automaton A
Property Refinement

(C1® Cy) ~ (O] ® C3)

with adapted channels

Transition from nonprob. to prob. spec.:
S =8F

Decide on implicit dependencies:

C; ®% C, for some set of independencies L
Apply prob. description techniques

e.g., prob. I/O automata

Enhance set of independencies, e.g.,

(CL @ Cy) ~ (C] @ C3)




Chapter 8

Conclusion

Inspired by the modeling theory FOCUS for non-probabilistic interactive systems,
this thesis establishes the basis of a modeling theory for probabilistic interactive
systems. Together with other ongoing research about continuous systems, we hope
to create a comprehensive modeling theory for interactive systems. This would be
very beneficial for the model-based development of embedded systems.

In order to obtain a clear understanding of probabilistic systems, this thesis
started with the mathematical foundation known from probability theory. Using
this knowledge, we developed the basic notion of deterministic probabilistic sys-
tems. These systems have shown to be rather intuitive to understand and it makes
sense to compare every further aspect of the modeling theory against this basic
notion.

We continued to examine nondeterministic probabilistic systems in very detail.
Borrowing from FOCUS, we represented such systems using set-valued behavior
functions, i.e., each input is mapped to a set of alternative output distributions.
Compared to other approaches [GcJS90, Her02l, (CDLT09|, we considered also the
composition of systems without assuming statistical independence of the subsys-
tems. Dropping this assumption has wide implications.

We have shown that in the presence of nondeterminism the resulting composi-
tion does not have all properties we would intuitively expect. The representation
as behavior functions is an abstraction and leads to a non-associative composition
operator.

Our notion of nondeterminism induces a refinement relation between probabilis-
tic systems which allows the step-wise development of such systems. Thereby, ev-
ery development step can be verified so that the resulting implementation conforms
to the overall specification. As far as possible, we maintained the compatibility to
the Focus theory. One effect of this effort is that non-probabilistic systems can
be refined by probabilistic systems, preserving properties almost surely, i.e., with
probability one. This justifies the specification of systems using non-probabilistic
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properties during the early development and enhancing the probabilistic details
later on. Other refinement steps allow decomposing systems or restricting depen-
dencies between components.

Every modeling approach also needs appropriate representations of these mod-
els that support the specification and implementation. Therefore, we presented a
variety of description techniques for probabilistic systems. Again, we were able
to extend existing notions of the non-probabilistic case, e.g., logical tables from
Focus can be extended with an additional column to assign probabilities.

8.1 Evaluation

In retrospect, we want to review the applicability and scalability of the presented
modeling theory for the development of interactive systems.

Component Hierarchies The FOCUS theory emphasizes the usage of compo-
nent hierarchies for structuring systems. We leverage this concept in our modeling
theory also for probabilistic systems. In the following, we consider a few common
principles of component-based development that continue to be true, even in the
presence of probabilistic behavior.

The interplay of several comprehensible components can realize complex behav-
ior. This principle is well-known as separation of concerns or divide-and-conquer.
Depending on the actual functionality to be realized, components can be operated
in sequence, parallel or with mutual communication. The explicit decomposition of
computations into parallel components is also an important step towards efficient
parallel computing.

Components can be connected to several other components to reuse the results
of their computation. In this way, we can reduce redundancy of computation at
runtime. This can lead to a cheaper and more energy-efficient end product.

In the sense of a component library, we can instantiate common, maybe param-
eterized, component templates repeatedly in a system. Thus, we tackle reuseability
and the efficiency of the system development.

Notion of Interface In Chapters [4 and [6] we extended the notion of a com-
ponent interface to capture probabilistic behavior. The specification of interfaces
is central to the development of large systems. Interfaces with a definite seman-
tic support the communication between development teams similarly to contracts.
Misunderstandings are avoided and not only a textual but an unambiguous docu-
mentation exists on which both teams can rely.

In the case of probabilistic systems, the presented notion of probabilistic behav-
ior captures both the allowed logical behavior of a component, but also enables the
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exact definition of the probability of such behavior. Both fully determined proba-
bility distributions (i.e., every realization has to show this particular distribution)
and ranges of distributions can be specified in an interface.

Today in the automotive domain, embedded systems are typically developed
by suppliers and integrated by the carmaker. In this scenario, the carmaker could
develop a probabilistic interface capturing both the logical functionality of the con-
troller to be developed as well as the required degree of availability. This interface
description is then handed over to the supplier to develop an implementation of
this interface. In [JN12|, we elaborate on this approach and develop a formalization
of availability based on the thesis in hand.

Separation of Probabilistic Subsystems The presented component-based
development approach supports the composition of non-probabilistic with proba-
bilistic subsystems. Thus, non-probabilistic components described with methods
of the FOcus theory can be integrated and the scalability of the FOCUS theory is
inherited by our probabilistic extension. As an example, consider the alternating
bit protocol from Section [4.5] There, we reused description techniques of Focus
to model the non-probabilistic compononents Sender and Receiver and combined
them with the probabilistic LossyMedium.

This compositionality allows us also to separate a complex probabilistic be-
havior into a smaller probabilistic kernel and a non-probabilistic part. In certain
cases, the non-probabilistic part will more compactly represent the functionality of
the system. Some mathematical results in this direction are presented in [Buk95].

In [JN12|, we apply this concept in the context of availability modeling: The
non-probabilistic part represents the functionality of the system ignoring its avail-
ability. The probabilistic part is added by using generic templates for different
kinds of availablity. In this way, we obtain a very modular system description. For
example, we can derive from a specification M of a reliable medium the specifica-
tion M’ of a faulty medium by augmenting the availability details:

M' = M A (FEs, SAv(err) > 0.9)

This expression declares that messages may be dropped as long as the steady-state
probability of successfully forwarding a message is greater than 0.9.

Explicit Modeling of Dependencies That subsystems behave statistically
independent is a very strong assumption and changes the analysis results tremen-
dously. If a modeling theory only supports composition of systems under this
assumption, it is tempting to apply this composition even if the assumption is
unreasonable.

The presented modeling theory allows explicit modeling of statistical depen-
dencies according to the principle:
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As long as systems are not explicitly declared to be independent, we
assume that the systems possibly depend on each other.

Thus an engineer can post-pone such a declaration if he is uncertain or ignorant
of its correctness until he can give good reasons for it.

Instead of accepting wrong assumptions during modeling, we want to maintain
a correct system model during development. Therefore, we accept partial models
with nondeterministic behavior. This reduces misunderstandings and increases the
confidence in the model and derived analysis results.

In Example[6.2] we get a glimpse of the resulting system development where we
incrementally restrict a nondeterministic design towards a deterministic and prob-
abilistic implementation. This transition is accompanied by increasingly accurate
analysis results.

8.2 Achievements

Based on the FOCUS modeling theory, we developed a notion of a probabilistic
system and carried over and analyzed concepts from the non-probabilistic case,
namely: strong causality, realizability, full realizability, nondeterminism, composi-
tion and refinement.

To the best of our knowledge, previous works about the modeling of probabilis-
tic systems assumed statistical independence of subsystems. In contrast to these
approaches, we also integrated the modeling of statistical dependencies between
components. This allows us to get a more distinguished understanding of nonde-
terminism and opens new possibilities for the step-wise development of systems.
As we have shown both concepts, nondeterminism and statistical dependency, are
highly interrelated.

We provided translations and refinement relations of non-probabilistic to prob-
abilistic systems. Thus, within the development of a large system, subsystems
of both kinds can be integrated. We have rigorously proven derived refinement
relations which justify certain development steps, e.g., merging dependent or in-
dependent components or replacing a dependency by a typed channel.

Existing description techniques of non-probabilistic systems can not only be
reused but we also provided extensions to directly define probabilistic behavior.
In particular, we introduced a new tabular notation as an alternative to transition
diagrams and probabilistic command languages.
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8.3 Outlook

The presented modeling theory opens a wide field of interesting topics. Extensions
are imaginable in many directions: description techniques, system notion, analysis
techniques and formalization of requirements. We will give directions of future
research, which we think are most valuable.

System Notion In this thesis, we limited ourselves to strongly-causal behavior
functions. In certain cases however, weakly-causal behavior functions are more
appropriate as they have no input-output delay. Weakly-causal systems are prob-
lematic if they are composed in a cycle. Therefore, their composition could be
restricted to non-cyclic topologies.

Having the notion of weakly-causal systems, we could consider interaction
refinements of probabilistic systems. This kind of refinement defined in FOCuUs
considers changes of the representation of messages, i.e., changes of the type of
channels. The translation of messages should however introduce no additional
delay and requires weakly-causal systems.

For specifications, an alternative representation using sets of behavior functions
may be more appropriate. It would be interesting to research how such specifi-
cations relate to nondeterministic behavior functions. Is it maybe necessary to
model specifications as sets of nondeterministic functions?

Assumption/guarantee specifications can be realized by the combination
of two probabilistic nondeterministic behavior functions. One function describes
the expected environment, the other specifies the guaranteed behavior of the sys-
tems. Which rules to composition and decomposition apply here?

Analysis Current methods to efficiently analyze hierarchical systems are based
on the independence assumption, e.g., the model checker PRISM is based on this
assumption. It is unclear if nondeterministic systems as presented in this thesis
can be analyzed efficiently as well if arbitrary dependencies of subcomponents are
allowed.

Requirements Probabilistic modeling theories allow the formalization of relia-
bility requirements such that reliability should be considered rather a functional
than a non-functional requirement. How does this integration of reliability influ-
ence the development process?
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Appendix A

Notation

Identifiers Type

Description

U
1,0

1,0

A B, K,M,N

F.G H I*° — OF
p,0,p X

jIN7% X

universal set of all values of channels

input and output alphabet in the context of
I/O automaton and behaviors

input and output channels (i.e., sets of identi-
fiers) in the context of components
probabilistic I/O automaton

probabilistic behavior

sequences

probability measures

Table A.1: Summary of common identifiers.
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Identifier /

Application Superset Description

P(X) ={Y |Y C X} power set (i.e., set of subsets) of a set X

C cC—-Uu set of valuations for a channel set C

X" =[0,n—1] = X set of sequences over X of length n

X =, X" set of finite sequences over X

X =Ny — X set of infinite sequences over X

X = X*UX* set of all sequences over X

C(p) C X set of all infinite words with prefix ¢, called cylinder set

dist(X) C X —[0,1] set of distributions over at most countable X

xXr Cc B—[0,1] set of probability measures over infinite X-sequences; B C P(X ) the set of
measurable sets

I>0 CI® — O set of strongly causal, deterministic, non-probabilistic behavior functions with
input channels I and output channels O

It>0 C I® — P(0O®) set of strongly causal, nondeterministic, non-probabilistic behavior functions
with input channels I and output channels O

150 CI®—=0F set of strongly causal probabilistic behavior functions with input channels [/
and output channels O

Its0 C I® — P(OF)  set of strongly causal, nondeterministic, probabilistic behavior functions with

input channels I and output channels O

Table A.2: Frequently used sets.
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