
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik

Lehrstuhl für Angewandte Softwaretechnik

Script: A Framework for Scenario-Driven
Prototyping

Harald Florian Stangl

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Uwe Baumgarten
Prüfer der Dissertation: 1. Univ.-Prof. Bernd Brügge, Ph. D.

2. Univ.-Prof. Dr. Florian Matthes

Die Dissertation wurde am 31.05.2012 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 28.06.2012 angenommen.

Acknowledgements

I would like to thank my advisor Prof. Bernd Brügge, Ph. D. for giving me the op-
portunity to research at his chair and write this dissertation. The discussions with him
were always inspiring and brought new insights that I most probably would not have
had otherwise. His cordiality made working at the chair an enjoyable experience and his
affinity to industry provided me with real world project experience, for which I am very
grateful.

I also want to thank Albert Feller and Johannes Lechner for the passionate discussions
about the prototype model and for providing the tool support to deploy prototypes on
the iOS platform, which was used in the experiment. Regarding the experiment, my
thanks go to all the people who could take the time to participate.

I am grateful to all members of the chair for their support, especially Monika Markl,
Helma Schneider, Uta Weber and Ruth Demmel on the administrative side, as well as
all others who gave feedback on my research.

I want to thank my family, who continuously supported me from my early education
to my final studies, as well as regarding all other aspects of my life.

Last, but most importantly, I am indebted to Helmut Naughton, who supported me
from the very first moment that I started my research, always found time when I needed
to discuss aspects of my work, and encouraged me to move on when I suffered a setback.
Helmut, thank you very much.

iv

Abstract

The fields of human-computer interaction and software engineering have evolved next to
each other with different areas of concern. Software engineering focused on repeatable
processes and reuse techniques to successfully deliver complex systems within time and
budget in a changing environment. Human-computer interaction on the other hand
focused on improving the interactions between users and systems and to deliver usable
systems.

Some techniques have already found acceptance in both fields. Two of them are sce-
narios and prototypes. Scenarios describe concrete flows of interactions between a user
and the system. In software engineering, scenarios are mostly used for requirements elic-
itation and system demonstrations during acceptance. In human-computer interaction,
scenarios are used for usability tests and definition of the users’ context to improve user
acceptance of the delivered system. Prototypes are used by software engineers mainly
to build early system demonstrations for technology evaluation and system integration
tests. In human-computer interaction, prototypes are constructed to give users early
hands-on experience and to evaluate different usage contexts.

The disadvantage of scenarios is that they do not themselves provide any interactivity.
Although prototypes provide interactivity, their relation to the system requirements is
often not clear. Using both scenarios and prototypes for system development forms a
favorable combination, as each compensates for shortcomings of the other. But applying
them simultaneously often results in artifacts that are hard to keep synchronized and
consistent without a unified model.

This dissertation presents the Script framework for unified treatment of scenarios and
prototypes, providing interactivity as well as traceability of requirements. Additionally,
it allows to automatically generate videos that depict the interactions between user and
system for demonstration purposes. The framework not only ensures that scenarios and
prototypes are kept consistent, but also makes them accessible throughout development
for activities such as use case specification and identification of analysis model elements.
A controlled experiment was conducted, which shows that the Script framework ensures
significantly better consistency of scenarios and prototypes compared with the traditional
uncoupled usage.

v

vi

Kurzfassung

Die Forschungsrichtungen Human-Computer-Interaction und Software Engineering ha-
ben sich parallel, mit unterschiedlichen Zielsetzungen entwickelt. Software Engineering
hat sich auf wiederholbare Prozesse und Wiederverwendungstechniken fokussiert, die
es erlauben, komplexe Systeme unter Einhaltung von Zeit- und Budgetvorgaben und
unter sich ändernden Umständen zu entwickeln. Human-Computer Interaction dagegen
hat sich zum primären Ziel gesetzt, die Interaktion zwischen Mensch und Maschine zu
optimieren und benutzbare Systeme zu entwickeln.

Einige Techniken haben in beiden Forschungsrichtungen Akzeptanz gefunden, darun-
ter auch Szenarien und Prototypen. Szenarien beschreiben konkrete Abläufe von Inter-
aktionen zwischen einem Benutzer und einem System. Im Software Engineering werden
Szenarien hauptsächlich zur Anforderungsermittlung und für Systemdemonstrationen
bei der Kundenabnahme eingesetzt. Human-Computer-Interaction verwendet Szenari-
en für Usability-Tests und zur Definition des Kontextes, in dem ein System verwen-
det wird, um die Akzeptanz des gelieferten Systems zu erhöhen. Prototypen hingegen
werden von Softwareentwicklern primär für Systemdemonstrationen zur Technologie-
evaluierung eingesetzt, sowie zur Durchführung von Systemintegrationstests. Human-
Computer-Interaction verwendet Prototypen, um Anwendern schon früh ein Gefühl für
das System zu vermitteln, und um unterschiedliche Anwendungsbedingungen zu evalu-
ieren.

Ein Nachteil von Szenarien ist ihre fehlende Interaktivität. Obwohl Prototypen diese
Interaktivität mit sich bringen, fehlt ihnen meist der explizite Bezug zu den Systeman-
forderungen. Daher stellt die Verwendung sowohl von Szenarien wie auch Prototypen in
der Systementwicklung durch ihre gegenseitige Ergänzung eine vorteilhafte Kombinati-
on dar. Allerdings führt die gleichzeitige Verwendung von Szenarien und Prototypen zu
Problemen bei der Synchronität und Konsistenz, wenn ihnen kein gemeinsames Modell
zu Grunde gelegt wird.

Diese Dissertation präsentiert das Script Framework, das eine gemeinsame Basis für
Szenarien und Prototypen bildet und sowohl Interaktivität wie auch eine Verknüpfung
mit Anforderungen ermöglicht. Es erlaubt ausserdem die automatische Erzeugung von
Videos, die die Interaktion zwischen einem Benutzer und dem System zeigen, und die
für Diskussionszwecke genutzt werden können. Das Framework stellt nicht nur sicher,
dass Szenarien und Prototypen konsistent gehalten werden, sondern erlaubt auch ihre
Verwendung für weitere Entwicklungsaktivitäten, wie die Spezifikation von Use Cases

vii

und die Identifizierung von Analysemodellelementen. Mit Hilfe eines kontrollierten Ex-
periments konnte gezeigt werden, dass das Script Framework eine signifikant bessere
Konsistenz zwischen Szenarien und Prototypen sicher stellt, als es mit der bisherigen,
unverknüpften Verwendung der Fall war.

viii

Contents

Acknowledgements iii

Abstract v

Kurzfassung vii

Conventions xiii

1 Introduction 1

1.1 The Problem . 3
1.2 Outline . 5

2 User-Centered Software Engineering 7

2.1 Human-Computer Interaction . 8
2.2 Object-Oriented Software Engineering 9
2.3 Mental Models and System Models . 11
2.4 Approaches for User-Centered Software Engineering 13

2.4.1 Approaches with Focus on Processes 14
2.4.2 Approaches with Focus on Artifacts 15

3 Requirements 19

3.1 Requirements Visualization and Simulation 20
3.2 Use Case Visualization . 21
3.3 Scenarios . 22

3.3.1 Scenario Formalization . 23
3.3.2 Scenario Visualization . 25

4 Prototyping 27

4.1 Prototyping vs. Design . 28
4.2 Prototypes as Artifacts . 30

4.2.1 Categories of prototypes . 31
4.2.2 Horizontal and Vertical Prototypes 32
4.2.3 Prototype Fidelity . 32
4.2.4 Focus of Prototypes . 34

4.3 Prototyping as Process . 35

ix

Contents

4.3.1 Revolutionary prototyping . 35
4.3.2 Experimental Prototyping . 36
4.3.3 Evolutionary Prototyping . 36

4.4 Techniques for Prototyping . 36
4.4.1 Wireframe Prototyping . 37
4.4.2 Storyboard Prototyping . 37
4.4.3 Paper Prototyping . 39
4.4.4 Digital Prototyping . 39
4.4.5 Video Prototyping . 40
4.4.6 Wizard-of-Oz Prototyping . 41

4.5 Prototyping Tools . 41
4.6 Prototype Knowledge Management . 43

5 The Script Model 45

5.1 Scenario Meta Model and Interaction Meta Model 48
5.2 Scenario Prototype Structural Meta Model 51
5.3 Scenario Prototype Interaction Meta Model 55
5.4 Relationship between Scenario and Scenario Prototype 58
5.5 Criteria of Applicability . 59

5.5.1 Platforms . 59
5.5.2 Modes of Interaction . 60
5.5.3 Degree of User Interface Content Change 61
5.5.4 Amount of User–System Interaction 61

6 Application of Script 63

6.1 Activities in the Script Framework . 63
6.2 Script in Development Lifecycles . 65
6.3 Sequence of Model Traversal . 65
6.4 Graphical Input for Script . 66

6.4.1 Paper-Based Sketching . 67
6.4.2 Digital Sketching . 67
6.4.3 Building from Predefined Shapes 68

6.5 System Specification . 68
6.5.1 Deriving Use Cases . 69
6.5.2 Extracting User Interface Model 70
6.5.3 Identifying Analysis Model Elements 71

6.6 Document Export . 75
6.6.1 Static Documents . 75
6.6.2 Video Generation . 76

7 The Script Editor 79

7.1 User Interface . 79

x

Contents

7.1.1 Scenario Prototype Editor . 80
7.1.2 Scenario Editor . 84

7.2 Architecture . 85
7.3 Components of Evaluation Setup . 86

8 Evaluation 89

8.1 Experimental Design . 89
8.2 Tasks . 91
8.3 Experiment Results . 93

8.3.1 Number of Errors . 93
8.3.2 Working Time . 94
8.3.3 Exit Interview . 94
8.3.4 Threats to Validity . 95

9 Conclusion and Future Work 99

9.1 Contributions . 99
9.2 Future Work . 100

A Experiment Prototypes Description 103

A.1 Storyboard for Scenario 1: “Peter comes home” 104
A.2 Storyboard for Scenario 2: “Peter programs” 108

B Experiment Work Package Descriptions 113

List of Figures 129

Bibliography 131

xi

Contents

xii

Conventions

In this dissertation, the following conventions are used:

• Citations are given in alpha style, e.g. [ABCD12], where each letter stands for
the initial letter of the authors’ surnames (e.g. authors Alpha, Beta, Charlie and
Delta), followed by the last two digits of the year of publication. Whenever there
are more than four authors, the fourth and all additional authors are indicated by
a “+” character, e.g. [ABC+12]. For publications with only one author, the first
three letters of their surname is given, e.g. [Abc12].

• Definitions of terms that are used throughout this dissertation are printed in bold
face.

• Terms that have been coined by other authors are printed in italics.

• Terms relating to the realization of the Script framework are set in sans-serif font
whenever they are introduced first.

• All diagrams in this dissertation are based on the Unified Modeling Language
(UML), if not stated otherwise.

• In order to ensure gender neutrality, the “singular they” form is used whenever
appropriate.

Trademark notice: Product names or corporate names that appear in this dissertation
may be (potentially registered) trademarks, they are used for referencing purposes only
without intent to infringe.

xiii

xiv

Chapter 1

Introduction

Over the last years, the amount of mobile devices that are in everyday use, like smart-
phones and tablet computers, raised significantly. One of the reasons for their success
are the openly accessible development and distribution platforms that allow developers
from all over the world to develop and distribute software for these devices. With the
increasing computational power and the availability of sensors that are embedded, these
mobile devices can provide functionality that formerly required dedicated devices. Users
no longer need to carry one device per functionality, e.g. for making telephone calls,
listening to music, making photos, or navigating. Instead, they only need to have a
smartphone and one application per desired functionality. Additionally, new interaction
paradigms such as touchscreens for input and output at the same time and allowing users
to interact with their device using finger gestures helped to increase the acceptance—
and demand—of these devices. In the last quarter of 2011, Apple sold over 37 million
iPhones and 15 million iPads [App12a]. Apple’s competitors such as Samsung, HP and
Amazon are following this trend with their own tablet computers, mostly employing
Google’s Android operating system. In total, they sold more than 10 million devices in
the same time range. Compared to the last quarter of 2010, smartphone sales increased
by 58% [Gar12] and tablet sales increased by about 150% in the last quarter of 2011
[Ana12].

Mobile computing devices pose challenges for the software developer, especially re-
garding the design of the user interface. Established user interface paradigms such as
window–icon–menu–pointer (WIMP) are only partially applicable [SY06, Li09], mostly
due to reduced screen sizes and novel input modalities. Several additional aspects need
to be taken into account when designing user interfaces for the mobile user. Whenever
users sit in front of their “desktop” computer, no matter if it is a stationary computer
or a laptop, their primary focus is on the interaction with the computer. In contrast,
interactions with a mobile device often take place in situations where the primary focus
of a user is not on the interaction with the device, but on a different task and in a
changing context. For example, doctors making their rounds in a hospital might use a
tablet computer to retrieve information about the patient they currently examine. The
task of the doctors that receives the primary focus is to see after their patients, while the
use of the tablet computer only serves to support this task. In order to build software

1

Chapter 1 Introduction

that effectively fulfills its supporting role, the context of the user such as the environ-
ment, e.g. ambient noise and lighting conditions, current social setting of the user, e.g.
being alone or in a group of people, and technical details such as network availability
needs to be taken into account [GM03, JL08]. The context is subject to change while
the software is in use, for example, when a doctor changes the room on their round, the
lights in the room they enter might be turned off so that the screen is no longer readable,
the wireless network connection might break down, or voice input might no longer be
possible because the television is running.

Usability describes how usable a system is for the user. This dissertation follows the
definition of usability by Nielsen [Nie93], who defines five aspects of usability: Learnabil-
ity describes how easy it is for a user to learn how to use a system; Efficiency describes
how fast users can operate a system once they learned how to use it; Memorability
describes how much effort is needed for users to re-learn how a system is used when
they did not use it for a longer period of time; Errors describes how many errors users
make, how severe the errors are and how easy users can recover from errors they made;
Satisfaction describes how pleased users are with using a system.

Providing good usability on mobile devices is not only a noble aim to strive for, but
has significant financial consequences, as a study of the mobile phone market in the UK
shows [Ove06]. The study reports that one out of seven mobile phones that were sold
has been returned in the first year after purchase. From the returned phones, about
63% had no hardware or software fault, but instead users complained about usability
problems, configuration problems or mismatched expectations. For the manufacturers,
the returns summed up to costs of 54 million British Pounds and, if extrapolated to
worldwide mobile phone sells, to as much as nearly 4.5 billion U.S. Dollars.

In contrast, the amount of available applications for users of mobile devices to choose
from is growing rapidly. Apple’s AppStore currently offers more than 550.000 apps and
more than 25 billion downloads have been recorded since the opening of the AppStore
in July 2008 [App12b]. Google Play, which recently replaced the Android Market, offers
over 450.000 apps and more than 13 billion downloads have been counted since October
2008 [Lie12]. More often than not, multiple alternative applications exist that can be
used to solve a task at hand. When given the choice, most users can be expected to
decide for the application that not only provides the required functionality, but which
also provides the best usability.

For developers, the rapidly increasing amount of mobile devices and their special needs
regarding usability, as well as the keen competition on the software market and the
financial effects of bad usability make a strong orientation towards the users of a system
necessary. The problem of developing user interfaces that provide the best possible
usability—no matter if for mobile devices or any other system—is one of the main focuses
of the field of human-computer interaction (HCI). The increasing computational power of
mobile devices, however, allows to run sophisticated software that requires development
efforts similar to traditional desktop applications. When it comes to develop complex
and large-scale systems, the field of software engineering (SE) takes an important role

2

1.1 The Problem

with its repeatable processes and reuse techniques that help to deliver high quality
systems within time and budget in a changing environment.

Unfortunately, the two disciplines evolved next to each other without major cross-
pollination, as has been discussed in multiple conference workshops [KBB03, HVF03,
JBKC04]. Given the increasing attention mobile devices receive both for personal and
professional use, it is more important than ever that HCI and SE come together in order
to develop approaches that excel in solving technical challenges and providing the best
possible usability.

1.1 The Problem
Some techniques have found acceptance in both HCI and SE and may help to close the
gap between them. Two of them are scenarios and prototypes, which are in the focus of
this dissertation.

A scenario defines a single, concrete flow of interactions between a user and the
system, where the user tries to solve some specific task with help of the system. An in-
teraction can be initiated by the user, such as pressing a button, or by the system, such
as playing an alarm sound. A scenario not only defines the interactions, but it may also
describe the context in which the interactions take place. Scenarios can be represented
in different ways, for example as narrative scenarios using natural language, which
can contain inconsistencies and ambiguities, or using a formal language to ensure that
the representation is consistent and unambiguous. Independent of their representation,
however, scenarios should not contain technical details about the system, but only use
terminology from the application domain.

In software engineering, scenarios are mostly used for requirements elicitation and
system demonstrations during client acceptance tests, where the term client describes
the role of the person who awarded the project contract and who is mostly interested in
managerial and financial issues regarding the project. In human-computer interaction,
scenarios are used for usability tests and definition of the users’ context to improve user
acceptance of the delivered system, where the term user describes the role of the people
who are eventually going to work with the system once it has been deployed.

When scenarios are represented as narrative scenarios, they have both benefits and
drawbacks. Their narrative style and use of terminology solely from the application
domain makes it possible for all stakeholders to take part in the requirements elicitation
process, as the narrative representation does not require any knowledge about formal
notations. In this dissertation, the term stakeholder stands for both clients and users.
The lack of an underlying structure, however, is one of the drawbacks of using narra-
tive scenarios for describing requirements, as the information it contains cannot easily
be accessed without reading the whole scenario. It is also not possible to establish a
relationship between single parts of a narrative scenario and subsequent development
artifacts like use cases or functional requirements. Another disadvantage of narrative

3

Chapter 1 Introduction

scenarios is their lack of interactivity, which is the capability of an artifact to react
to user input. While a narrative scenario describes the interactions between a user and
a system in detail, it does not provide any way for users to actually experience and
evaluate the interactions themselves.

A prototype is a system that contains selected functionality of a larger system under
development, potentially also with reduced quality compared to the requirements of the
system under development, such as missing security constraints or lower performance.
Prototypes are used by software engineers mainly to build early system demonstrations
for technology evaluation and system integration tests. In human-computer interaction,
prototypes are constructed to give users early hands-on experience and to evaluate dif-
ferent usage contexts. Prototypes can help in the evaluation of the feasibility of technical
solutions like algorithms or architectures, or for the evaluation of user interface design
proposals by letting stakeholders experience the flow of interactions prior to system
implementation. This way, problems can be identified and resolved early on, reducing
costly changes that would otherwise only be detected during later stages of development
or even after deployment. However, prototypes fall short regarding two aspects. First,
they only convey an idea about how interactions between user and system are supposed
to take place, but they do not provide any information about the context of system
use. Depending on the type of system that is being developed, information about the
context of system use can be essential for making decisions during later phases of soft-
ware development. Regarding the example of doctors making their round as described
above, the information that the wireless network connection might break down when
a doctor changes the room can guide developers to use appropriate design patterns to
cope with this situation. Second, prototypes are often not well documented, so that only
the creator of a prototype has information about which functionalities of a system have
been prototyped. If this person is no longer available and the information has not been
externalized so that it is accessible by other project members, the utility of a prototype
can be reduced significantly [Sch96].

Using both narrative scenarios and prototypes can help in mitigating the problems
mentioned above. Narrative scenarios provide information about the context of system
use that cannot be derived from a prototype, and prototypes provide the interactivity
that is lacking in narrative scenarios. But if narrative scenarios and prototypes are
developed in parallel without an underlying unified model, there is the risk that the
resulting artifacts diverge and thus lead to an inconsistent requirements specification
(see also Chapter 8).

To overcome these problems, this dissertation presents the Script framework. It
provides the Script model, which is a unified meta model for modeling narrative sce-
narios and prototypes, making them accessible for subsequent development steps on
a fine-grained level, e.g. by referencing individual interactions of a scenario in a use
case step, or individual user interface elements of a prototype when identifying analy-
sis model elements. The meta model establishes a close relationship between narrative
scenarios and prototypes, so that each prototype is related to a narrative scenario that

4

1.2 Outline

describes the interactions that are realized by the prototype, including the context of its
application. Each narrative scenario is accompanied by a prototype that allows users
to experience the interactions themselves that are described in the narrative scenario.
This close relationship allows to perform continuous consistency checking to ensure that
narrative scenarios and prototypes stay consistent when either of them is changed. The
Script Editor, which is the reference implementation of the Script model, utilizes this
relationship to automatically notify the developer whenever a change to a narrative sce-
nario requires changes to the according prototype in order to keep them consistent, and
vice-versa. Additionally, this dissertation describes how models that are based on the
Script model can be used to automatically generate different scenario representations,
including storyboards (see Section 4.4.2) and videos that depict the interactions between
user and system for demonstration purposes.

A controlled experiment was conducted, which shows that the Script framework
ensures significantly better consistency of narrative scenarios and prototypes compared
to uncoupled usage.

1.2 Outline

The remainder of this dissertation is organized as follows: Chapter 2 gives a short in-
troduction to the fields of human-computer interaction (HCI) and software engineering
(SE) and presents existing approaches that try to close the gap between the two fields.
These approaches are categorized depending on whether they focus on processes or ar-
tifacts, where the approach presented in this dissertation belongs to the latter category.
Chapter 3 focuses on scenarios and use cases as means for gathering requirements, and
presents approaches for either representing them using formal languages or making them
better understandable by enhancing them with appropriate visualizations. Chapter 4
gives an overview of the field of prototyping and prototype classifications, and presents
approaches for prototyping as well as for managing knowledge that is contained in proto-
types.

Chapter 5 describes the Script model, which consists of the scenario meta model
and the interaction meta model that allow for the definition of interactions between
user and system in an implementation-independent way, and the scenario prototype
structural meta model and scenario prototype interaction meta model that allow for the
creation of prototypes for two-dimensional graphical user interfaces. Chapter 6 explains
the activities that belong to the application of the Script framework in a software
development project, and how artifacts that result from the application of the Script
framework can be utilized for subsequent development steps besides the modeling of
scenarios and prototypes. Chapter 7 gives an overview of the user interface and the
architecture of the Script Editor, which has been developed in order to evaluate the
Script framework. Chapter 8 presents the experiment that has been conducted to

5

Chapter 1 Introduction

show that the Script framework improves the consistency of narrative scenarios and
prototypes when they are developed in parallel, and discusses its results.

Chapter 9 summarizes the contributions that have been presented in this dissertation
and gives an outlook to future directions of research.

6

Chapter 2

User-Centered Software Engineering

The disciplines of human-computer interaction (HCI) and software engineering (SE) have
largely developed next to each other, each with different areas of concern. Software engi-
neering focused on the development of repeatable processes, identification of principles,
and reuse techniques to successfully deliver complex systems within time and budget
in a changing environment, while human-computer interaction focused on studying and
improving the interactions between users and systems and to deliver usable systems.
Although it seems that the two fields would benefit from each other, their integration
has not yet happened in the large.

Seffah et al. [SGD05] observed that the challenges in the collaboration of practition-
ers from HCI and SE are manifold. First, people from both disciplines have different
backgrounds and different understandings of usability (people gap) and both regard their
respective fields as the more important (responsibility gap). On the technical side, the
increased decomposition of systems into manageable parts leads to a strong decoupling
of user interface and underlying system. While this is a desired outcome in general, it
poses a problem to improving usability of systems, as this often not only requires changes
to the visual parts of a user interface alone, but also involves fundamental changes to
the flow of interactions that are supported by a system (modularity fallacy).

From a management perspective, managers often have the impression that they cannot
spend resources on usability, which also results in a lack of training for developers. In
contrast, Marcus describes some examples and figures that show how good usability can
also be quantified in terms of return-on-investment (ROI) [Mar02]. Nielsen advocates the
discount usability engineering approach [Nie93], where usability engineering describes
a sub-discipline of HCI that is devoted to the development of methods for increasing the
usability of software systems. Discount usability engineering only requires the use of
three techniques that are both easy to learn and cheap to apply: scenarios, simplified
thinking aloud and heuristic evaluation. Nielsen’s definition of scenarios actually refers
to prototypes that allow users to play through a single scenario, where the sequence
of user actions and system reactions is predetermined, and which are thus simple to
create. Simplified thinking aloud is a method where users explain to developers their
thoughts and experiences while they play through a scenario, but where developers only
take notes instead of the organizational overhead of videotaping the whole session and

7

Chapter 2 User-Centered Software Engineering

analyzing it afterwards, as it is the case with traditional thinking aloud user studies.
With heuristic evaluation, Nielsen promotes the application of a small set of usability
heuristics instead of creating large style guides with thousands of rules developers are
required to learn and follow.

The chapter is organized as follows: Section 2.1 gives a brief overview of the roots and
sub-disciplines of HCI, especially “user-centered design”. Section 2.2 describes the princi-
ples of object-oriented software engineering and the software development methodology
this dissertation is based on. Section 2.3 describes the mental models of the designer and
the user of a system, and how they relate to models of the system. Section 2.4 presents
approaches that integrate HCI and SE into a discipline of user-centered software engi-
neering, either by coupling processes from both fields, or by defining artifacts that serve
as a bridge between both fields.

2.1 Human-Computer Interaction
Already back in 1990, Chignell stated “that there is as yet no science of human-computer
interaction” [Chi90]. He proposed a taxonomy that should serve as a guideline along
which HCI could evolve. The top-level elements of the taxonomy that he defined were
basic interface model, cognitive engineering, user interface engineering and applications.
The basic interface model is concerned with interactions between users and systems,
cognitive engineering consolidates approaches for applying models from cognitive science
to user interface design, user interface engineering collects the details about concrete
user interface design and guidelines, and applications gives a drafted sub taxonomy of
application domains which, to his consideration, are in need for HCI.

According to the ACM SIGCHI Curricula for Human-Computer Interaction [HBC+96],
the field of HCI has its roots in the fields of “computer graphics, operating systems, hu-
man factors, ergonomics, industrial engineering, cognitive psychology, and the systems
part of computer science”. Hewett et al. [HBC+96] provide a working definition for
HCI, as they constitute that no commonly agreed upon definition for HCI exists yet:
“Human-computer interaction is a discipline concerned with the design, evaluation and
implementation of interactive computing systems for human use and with the study of
major phenomena surrounding them.”

The definition names “design [. . .] of interactive computing systems” as one of the
interests of HCI. In a more general context, Norman [Nor02] defined user-centered
design as a methodology for product design, where the needs and interests of the user
are the most important aspect and have priority over other aspects such as wealth of
functionality or aesthetics. Norman’s definition refers to the design of physical products
as well as software systems. Karat defined four main principles for user-centered design of
computer systems: early and continuous focus on users, early and continuous evaluation,
iterative design and integrated design [Kar97]. He puts a special focus on the fact that
usability is not solely decided by the design of the user interface, but also depends on

8

2.2 Object-Oriented Software Engineering

how well a system fits into its context of use. Based on the same idea, Gulliksen et al.
developed a set of design principles for user-centered design [GGB+05]. They derived
and refined it from their experience of an in-house study in their company, where they
started with an initial set of principles and modified them as the project into which the
study was embedded proceeded. As part of the principles they compiled, they advocate
the use of prototypes and evaluation of the planned system interactions in the real
context of the user. While this evaluation could be done with paper sketches and static
images of the user interface in the beginning, prototypes should be employed in later
stages of development.

In 2010, the International Organization for Standardization (ISO) released the stan-
dard 9241-210 “Human-centred design for interactive systems” [ISO10], which replaced
the standard ISO 13407 on human-centred design that was published in 2000. The stan-
dard uses the term human-centred design instead of user-centered design to make
explicit that it focuses not only on the people directly using a system, the users, but
also all other people who are indirectly involved or affected by the use of a system.
According to ISO 9241-210, human-centred design is an “approach to systems design
and development that aims to make interactive systems more usable by focusing on the
use of the system and applying human factors/ergonomics and usability knowledge and
techniques”. Any human-centred design approach should comply with the following six
principles [ISO10]: “the design is based upon an explicit understanding of users, tasks
and environments; users are involved throughout design and development; the design
is driven and refined by user-centred evaluation; the process is iterative; the design ad-
dresses the whole user experience; the design team includes multidisciplinary skills and
perspectives”.

2.2 Object-Oriented Software Engineering
Object-oriented software engineering is based on the idea of object-oriented modeling
and design [RBP+91]. A model is an abstraction of entities or concepts. As it is an
abstraction, a model leaves out details of the entity or concept it describes in order to
make it easier to understand and to focus on relevant aspects only. This requires a model
to have a purpose, as the purpose decides which are the relevant aspects that should be
part of the model. For the same entity or concept, it is possible to have a multitude
of models, all with different purposes and thus leaving out and representing different
aspects.

In object-oriented modeling, the basic building blocks of models are objects. An
object represents a single, unique entity or concept and encapsulates both data and
behavior. Rumbaugh et al. [RBP+91] define four attributes that are common for object-
orientated approaches: identity, classification, polymorphism, and inheritance. First,
two objects, even if they contain exactly the same data and behave the same way, are

9

Chapter 2 User-Centered Software Engineering

treated as two distinct objects (identity). Second, objects that share the same data
structure and behavior are grouped into classes. Objects that belong to the same class
are called instances of that class (classification). Third, the same operation may behave
differently when it is invoked on different classes, while the selection of the correct
behavior is hidden from the caller of the operation (polymorphism). Fourth, classes can
be organized hierarchically, where classes in a lower position of the hierarchy inherit the
data structure and behavior of their parent classes and augment it with additional data
structures and behavior (inheritance).

The idea of object-oriented software engineering then is to use object-oriented models
for building a model of the software to develop. Development starts with building
models of the application domain, without any reference to technical details about how
the software should be built. These application domain models then get gradually refined
with details about the system to be developed, i.e. the models of the application domain
are enhanced with concepts from the solution domain. When the models are sufficiently
detailed, they are used as a basis for implementation.

Software engineering is concerned with both the technical challenges of developing
software, as well as with the managerial aspects that need to be considered in order
to successfully deliver working software. The IEEE “Standard for Developing Software
Life Cycle Processes” (IEEE Std 1074-1997) [IEE97] defines 65 activities that need to
be taken into account when planning for a software development project, of which 17
belong to the project management group.

For this dissertation, the approach for object-oriented software engineering as de-
scribed by Bruegge and Dutoit is taken as reference [BD09]. They define three types of
models: the functional model, the object model and the dynamic model. The functional
model describes the functionality of the system from the point of view of the user, the
object model describes the structure of the application domain and the system to be
built, and the dynamic model describes the interactions between user and system as well
as system-internal behavior.

Their development process is based on the IEEE standard 1074-1997, but follows a
object-oriented methodology. As the challenges of project management are not of pri-
mary interest in this dissertation, only the six top-level activities of software development
are described in more detail. These are requirements elicitation, analysis, system design,
object design, implementation and testing. During requirements elicitation, the goal is
to identify the purpose of a system, including a description of the context in which it
is going to be used. In the analysis activity, a model of the application domain as well
as of the system to be built is created, although still on an abstract level without any
reference to concrete technologies used for realization. A first step towards realization
is taken during system design. In this activity, developers decompose the system into
smaller parts, define the hardware the system is supposed to run on and decide on other
high-level realization issues. The object design activity focuses on the creation of low-
level models of the system to be built, use of design patterns and concrete subsystem
interface design. Implementation refers to the activity of actually programming the sys-

10

2.3 Mental Models and System Models

designer's mental
model user's mental model

user interface model

<< creates >>

<< forms >>

<< interacts with >>

Figure 2.1: Mental models of designer and user. Adapted from [Nor02].

tem, and testing ensures that all parts of the system work together and that the system
fulfills the expectations of the clients and users.

Note that interface design, which is part of object design, refers to computer–computer
interfaces as well as interfaces between user and system. The design of the user interface,
however, already starts during requirements elicitation, where hand drawn sketches or
static images of the user interface are used to support the identification of requirements.
During analysis, boundary objects are defined that represent the interface between user
and system on an abstract level, for example a form that is presented to a user, but
without details about the arrangement of elements that are placed on the form. Addi-
tionally, navigational paths are defined that describe how users can navigate between
parts of the user interface. The detailed design of the user interface is then part of the
object design activity.

The order in which the activities are presented here should not imply any temporal
relationship. Only the development lifecycle that has been selected for a project decides
if, when and how often each activity is to be executed during the development of a
system.

This dissertation is focused on the activity of requirements elicitation, which is typi-
cally one of the first activities of a software development project. Achieving a complete,
consistent and correct requirements specification as a result from this activity is crucial,
as subsequent development steps rely on it. This means that errors or omissions that
have been introduced during requirement elicitation will need to be fixed later on, which
results in increased costs compared to having it done right in the first place [Boe81].

2.3 Mental Models and System Models
In order to better understand how users interact with a system, Norman [Nor02] de-
scribes the mental models of the designer and the user, and how designer and user
communicate by means of the user interface, which is shown in Figure 2.1. When a

11

Chapter 2 User-Centered Software Engineering

designer starts to work on the development of a system, they form a mental model of
how a user is supposed to interact with the system. This mental model of the designer is
represented by the designer’s mental model. The designer then transforms their mental
model into the user interface model, which represents the user interface that is eventually
shown to the user. Upon interaction with the user interface and its underlying model,
the user forms a mental model about how they think the system actually works, which is
represented by the user’s mental model. In many cases, like when developing a product
for mass distribution, designer and user do not get in contact with each other directly,
but only via the user interface model. Ideally, the mental model that the user develops
is identical or at least very close to the designer’s mental model, meaning that the user
understood how the designer intended the system to be used. Depending on the system,
however, users can be able to operate it even when their mental model is completely
different from the designer’s mental model, although in these cases the probability of a
user making an error is much higher compared to if they had the same mental model as
the designer [Nor02].

In the context of software engineering, the user interface model represents only one
part of the complete system model. As described in the previous section, the system
can be modeled from various viewpoints with help of the functional model, the dynamic
model and the object model, which is shown in Figure 2.2. The models depicted here
are not disjoint, however, as the user interface model contains aspects of all three system
models. It is part of the functional model, as the user interface plays an important role
in defining how the user can access functionality of the system; it is part of the dynamic
model, as the flow of interactions between user and system need to be defined; and
it is part of the object model, as the components that make up the user interface are
described in terms of objects and their relations.

The approach presented in this dissertation, with its focus on scenarios and proto-
types, also contributes to all three system models. Scenarios participate in the func-
tional model, as they give explicit examples of how a user accesses functionality of the
system. They also participate in the dynamic model, as they describe how the flow of
interactions between user and system take place. Prototypes participate in the object
model, especially of the user interface, as they provide a preliminary version of the user
interface for users to interact with. They also participate in the dynamic model, where
the interactions that are realized by the prototype are defined. These interactions are
supposed to be the same interactions that have been defined by the scenarios, so that
scenarios and prototypes actually represent the same set of interactions. The meta mod-
els for scenarios and prototypes, which are part of the Script framework, ensure that
this is the case, so that scenarios and prototypes are kept consistent.

12

2.4 Approaches for User-Centered Software Engineering

system model

object modelfunctional model dynamic model

prototypescenario

<< participates >>

<< participates >>

<< participates >>

<< participates >>

designer's mental
model user's mental model

user interface model

<< creates >>

<< forms >>

<< interacts with >>

Figure 2.2: Mental models and system models

2.4 Approaches for User-Centered Software
Engineering

The International Organization for Standardization realized the importance of usability
in software development, which lead to the amendment of ISO standard 12207:1995 for
software processes by a usability process in Amendment 1. This amendment has been
integrated into the main standard in ISO 12207:2008.

The adoption to everyday work practice, however, has not yet happened. A survey
with 63 HCI and 33 SE professionals that has been conducted by Jerome and Kazman
[JK05] shows that collaboration between practitioners from HCI and SE is basically
not happening. People working in one field have barely any knowledge about the other

13

Chapter 2 User-Centered Software Engineering

field, there is only a minimum of working together, and if, contact between HCI and SE
typically only happens late in development, during implementation and testing, which
makes it expensive to compensate for problems that have been introduced in the very
beginning of a project .

Workshops have been held in order to figure out how SE and HCI can work together
[BPTM03, JBKC04]. Also Seffah et al. investigated possible ways for integrating HCI
and SE [SM04, SDM05].

In the following, approaches that try to advance user-centered software engineering
by combining techniques and artifacts from HCI and SE are presented, first with a focus
on the process perspective, followed by approaches that focus on the artifacts that are
used by both disciplines. The approach presented in this dissertation with its focus on
scenarios and prototypes also belongs to the latter category.

2.4.1 Approaches with Focus on Processes
In order to make software engineers familiar with usability, Jokela proposes a workshop
approach called KESSU URD (usability requirements development), where usability
professionals and software engineers work together in a series of workshops in order to
determine the usability requirements for a project [Jok05]. The workshop setup defines
certain roles: a facilitator, who is a usability specialist and not part of the project team; a
member of the project team, who is responsible for usability; a decision maker, typically
the project manager; and a group of so-called “analysts” that consists of developers, but
may also contain people from other teams such as technical documentation and customer
service. The workshop consists of 10 steps that lead to the definition of a usability
requirements table in the end. An additional benefit of the collaborative structure of
the workshop is that the participants also learn from the usability specialist while they
work on defining the usability requirements.

The challenge of augmenting existing software development processes with usability
techniques has been tackled by Ferre et al. [FJM05] First, they define a relationship
between usability techniques and software development activities. Then they give a
description about which usability techniques can be applied when in a software develop-
ment process. They do not focus on a specific process, but only require it to be iterative.
In order to be applicable to as many existing software development processes as possi-
ble, they define a generic iterative process and explain when to apply which usability
technique referring to this generic process description. By mapping the concrete soft-
ware development process to the generic process, a project manager can decide which
usability techniques should be used.

Blomkvist analyzed the relationship between user-centered design processes and agile
development [Blo05]. He found out that although both share some basic principles
like iterative development and focus on people instead of processes, both are lacking
certain aspects with regard to the other: agile development does not necessarily put the
user in the center of development, but rather focuses on details about how a system

14

2.4 Approaches for User-Centered Software Engineering

is developed, and user-centered design processes do not cope well with frequent change
in requirements. He proposes three ways of overcoming these limitations: either by
enriching agile development with user-centered design methods, by making user-centered
design more agile, or by merging both disciplines into a combined approach.

An attempt to combine eXtreme programming (XP) [BA04] and usability engineering
(UE) is eXtreme usability (XU) presented by Holzinger and Slany [HS06]. It aims to
bring usability engineering techniques to eXtreme programming and thus merge both.
While XU is still in development, first evaluations with students showed that it is a
viable approach.

The experience-based human-centered design lifecycle is an approach proposed by Met-
zker and Offergeld [MO05]. They identified that a main problem of several user-centered
design processes is their premise that they completely replace established development
processes of a company in order to improve the company’s orientation towards user-
centered design. In contrast, the experience-based human-centered design lifecycle in-
tegrates with existing development processes. It consists of a reference model, which
lists recommended user-centered design activities, and an introduction–establishment–
improvement (IEI) process model that describes how to select appropriate user-centered
design activities and apply them in the existing development process. The IEI process
model is iterative, so that the selection and application of user-centered design activities
can be continuously improved.

Pyla et al. present a system called Ripple, which allows usability engineers and soft-
ware engineers to follow their own lifecycles in a concurrent fashion [PPAH05]. The
system keeps track of the current state of development of both groups and issues syn-
chronization messages whenever collaboration is necessary. This is the case, for example,
when both groups need to schedule meetings with users or when a document of one group
has changed and needs approval from the other group. Lifecycle descriptions and devel-
opment artifacts need to be stored in the Ripple system so that it can keep track of the
current status of development and automatically generate synchronization messages.

2.4.2 Approaches with Focus on Artifacts
Adams et al. describe the Usability & Software Architecture (U&SA) that takes usabil-
ity issues into account during architecture design [ABJ05]. They argue that usability
decisions often not only influence the visual appearance of an user interface, but also
require support in the architecture of a software system. If usability is not taken into
account during architecture design, changes required to improve usability later on can
be difficult to realize without changing the underlying architecture. They developed
a set of architecturally-sensitive usability scenarios, which are actually on the level of
abstraction of use cases, and which describe user–system interactions that require sup-
port from the system architecture. Each use case is annotated with information about
its benefits to the user, like being able to undo interactions, and the functionality the
system must provide in order to support the use case, like logging all user interactions.

15

Chapter 2 User-Centered Software Engineering

Based on this information, developers can decide whether the benefit to realize a use
case is worth the effort for the current project, and which steps are necessary in order
to realize it. Adams et al. applied their approach in the context of an industrial project
at NASA, where they developed a multi-user system to support scientists and engineers
on the Mars Exploration Rover mission.

The potential for collaboration between HCI and SE professionals based on use cases
has also been examined by Kujala [Kuj05]. In her industrial studies, she found that use
cases were often written by software engineers who had no user contact. This resulted
in use cases that were very technical and did not match the users’ contexts, which made
them hard to understand for users. She describes a three step approach in order to
integrate user-centered design with use case driven software engineering. In the first
step, small-scale field studies consisting of interviews and observations are conducted in
order to get to know the users and their working context. Second, user need tables are
created from the findings of the field studies. These list problems that are known or
openly expressed by users with current processes as well as possibilities for improvement,
which are typically more implicit. Last, use cases are derived based on the user need
tables that have been developed.

The Usability & Software Architecture and the approach described by Kujala utilize
use cases written in natural language for describing interactions between user and system
and are thus understandable for all stakeholders. Due to their level of abstraction
and the inclusion of alternative flows of interactions, however, use cases can lead to
different interpretations and misunderstandings. To compensate for these problems,
this dissertation relies on the use of scenarios, which focus only on a single, concrete
flow of interactions.

Carter et al. [CLSF05] try to bring together usability engineers and software engi-
neers by merging the artifacts that are created using the Putting-Usability-First (PUF)
methodology [Car97] with the Unified Modeling Language (UML). PUF has the concepts
of users, scenarios, tasks, content and tools. These are mapped to UML as follows: users
are mapped to actors, scenarios and tasks are both mapped to use cases, and content
and tools are mapped to attributes and methods, respectively. As the concepts in the
PUF methodology contain more information than what can be expressed using standard
UML elements, stereotypes are created and applied to the respective UML elements so
that the additional information from PUF can be stored. This kind of mapping ensures
that information that has been gathered using the PUF methodology gets forwarded
into the development phase of a project and is not lost during a transition from PUF to
UML.

The User Engineering process of IBM also utilizes UML in order to improve collab-
oration between usability engineers and software engineers [Rob05]. UML is used from
the beginning of a project in order to capture usability related information. The use of
UML as a notation familiar to software engineers is meant to foster understanding be-
tween usability engineers and software engineers. The User Engineering process consists
of the phases Business Opportunity, Understanding Users, Initial Design, Development,

16

2.4 Approaches for User-Centered Software Engineering

Deployment and Life Cycle, where Life Cycle refers to capturing user feedback to the
deployed system. The author notes that theses phases do not describe a waterfall-like
process, but that it is possible to return to a previous phase at any time if omissions or
errors are identified.

UMLi provides an extension of UML 1.1 that allows to model interactive applica-
tions [SP00, dSP03]. The extension is focused on the development of form-based user
interfaces and aims at user interface developers who are used to working with modeling
languages. UMLi introduces new elements to UML in order to be able to create abstract
user interface definitions and adds a user interface diagram that visualizes the hierarchi-
cal relationship between user interface elements. User interface elements are identified
from use case descriptions by inspecting the verbose description for verb forms denoting
an interaction between user and system, like “user enters” or “system displays”. UMLi
also extends the meta-model of activity diagrams with simplified notations to express
order independent selection of actions, optional action selection and repeated execution
of actions, which are identified as being common interactions in interactive applications.
UMLi further strengthens the importance of activity diagrams by using them to inter-
connect use cases, where activities describe the flow of events of the use cases, the related
user interface elements and domain elements.

The Capability Maturity Model (CMM) [Hum89] describes how mature a software
organization is regarding their software development processes. CMM defines five levels
of maturity, starting at level 1, the initial level. At this level, no management techniques
are in place, appropriate software engineering techniques are only used inconsistently,
and most development follows a trial-and-error approach and relies on the experience of
the developers. Projects are often over time and budget, and project success is generally
unpredictable. Organizations in level 2, the repeatable level, have a process in place
that allows to repeat successes from previous projects if the project settings are similar.
In level 3, the defined level, a process has been established that is standardized and
documented, and which gets tailored to the needs of each specific project. In level 4, the
managed level, measures about development process and product quality are collected
and controlled, and in level 5, the optimizing level, processes are continuously improved
based on these measures.

Wisdom (Whitewater Interactive System Development with Object Models) [Nun01]
is a development method that provides a process, a model architecture and a nota-
tion. It aims at small software development companies, i.e. companies with less than
50 employees, who are currently operating on CMM level 1, following a custom-made
process or no process at all, and that are in need of a process that is able to cope with
constant change. The process part of Wisdom defines an evolutionary prototyping de-
velopment model with a focus on user-centered design. Wisdom tries to bring small
software companies to CMM level 3, where they take the Wisdom process model and
adjust it to the needs of their current project. The notational part of Wisdom is realized
as an extension of UML so that developers with knowledge of UML can build upon their
knowledge. Wisdom, however, restricts itself to a subset of UML in order to reduce the

17

Chapter 2 User-Centered Software Engineering

inherent complexity of the full UML specification, and adds missing elements that are
needed to express requirements for the design of the user interface. The model archi-
tecture of Wisdom defines and relates the various different models it uses in order to
support a user-centered design approach.

Blankenhorn and Jeckle describe a UML 2.0 profile that allows to model the static
aspects of a graphical user interface [BJ04]. In contrast to approaches that only allow
to model the hierarchical organization of the graphical user interface, e.g. a window
that contains a form that contains text fields, their approach also captures the concrete
arrangement of elements in two-dimensional space, e.g. the position and size of elements
on the user interface. As their profile conforms to the UML Diagram Interchange spec-
ification [Gro06], the resulting models can be serialized and exchanged between project
participants.

All of the afore-mentioned approaches build on UML as a basis to bring HCI and
SE together. While this is suitable for communication between usability engineers and
software engineers, users may not be familiar with the semi-formal notations of UML.
The Wisdom approach additionally encourages the use of prototypes for evaluation, how-
ever, it defines no clear relation between prototypes and other requirements specification
artifacts like scenarios, as the Script framework does.

18

Chapter 3

Requirements

Requirements stand at the beginning of every development project, no matter whether
for a physical product, a software system or a combination of both. Requirements
describe the desired features and properties that the resulting artifact should possess.
Functional requirements describe the functionality that should be provided, while non-
functional, or quality requirements describe properties that the resulting product must
have.

As described in Section 2.2, the activity that is concerned with gathering all relevant
requirements for a development project is called “requirements elicitation”. This activity
is crucial to the whole development project, as subsequent activities build upon the
requirements specification that is produced during requirement elicitation. Errors that
are introduced and stay unrecognized during this phase can propagate throughout all
subsequent activities until they are detected by the client or users once they start to
work with the deployed system, which can then lead to costly changes if large parts of
the system need to be reworked. [Boe81]

Requirement elicitation is a challenging task, as it involves both stakeholders, who
have knowledge in their application domain, but do not know much about the techni-
cal details of development, and developers, who have technical knowledge in building
a solution, but often only little experience in the application domain. The differences
in knowledge and vocabularies that these two groups of people use can lead to misun-
derstandings, which can result in erroneous requirements specifications. Nevertheless,
involving stakeholders in the requirements elicitation process is essential [HB95]. De-
velopers often prefer formal notations for requirements, as they are easier to test for
consistency, completeness, correctness and unambiguity. Many stakeholders, however,
are not familiar with formal languages, so that alternative representations of require-
ments need to be used in order to involve them into the requirements process.

This chapter is organized as follows: Section 3.1 presents approaches that make formal
requirements understandable for stakeholders without knowledge in formal languages via
visualization and simulation. Section 3.2 focuses on use cases and how they can benefit
from being enhanced with visual representations. Section 3.3 explains the concepts
behind scenarios, in what contexts they can be applied, techniques for deriving formal

19

Chapter 3 Requirements

specifications from natural language representations of scenarios, and augmentation or
representation of scenario using visual means.

3.1 Requirements Visualization and Simulation

The main goal of requirements visualization is to evaluate formalized requirements in or-
der to detect errors before development starts. As stakeholders are typically not familiar
with formal notations for requirements, visualizations can help them in understanding
and evaluating requirements models that have been constructed by developers.

Pérez and Valderas describe an approach for eliciting requirements for pervasive sys-
tems [PV09]. It allows users to specify the requirements of the system themselves using a
visual editor, based on an underlying model of available services and devices. The editor
shows a visual representation of the target environment, e.g. the map of a house, and
the user selects which services they want in which room, e.g. automatic illumination.
The editor then determines the devices that are necessary for providing the selected
services, e.g. a motion detector, and asks the user to place the required devices on the
map. Users can receive guidance by a requirements engineer if necessary. The immedi-
ate visual feedback via the editor actively involves users in the requirements process and
enables them to evaluate the resulting requirements specification to correctly express
their needs.

Pseudo software is another approach at making requirements accessible for stakehold-
ers [JC07, JC10]. It provides a unified requirements repository where users themselves
enter requirements about presentation, navigation between screens, input constraints,
business logic and test cases. To store this information, they use pseudo software which
only provides the user interface, but with no logic implemented. Users input the re-
quirements by adding it to the respective elements of the user interface, e.g. defining
the range of legal values for a text field. Requirements are not stored in a formal model,
however, but as plain text descriptions.

Requirements simulation is an extension to requirements visualization by taking tim-
ing into account. The SCR (Software Cost Reduction) method [HKLB98, BJHW00]
provides tools for capturing software requirements for safety-critical systems. In order
to evaluate the correctness of the requirements, simulations can be executed. SCR allows
to attach domain specific front-ends, such as the image of the cockpit of a jet, so that do-
main experts can operate and evaluate the simulation in a setting that they are familiar
with. Another example is given by Van et al. [VvLMP04], who present an approach that
is based on goal models and state machines to simulate requirements. Their approach
allows users to interact with the simulation and evaluate different flows of events. UML
state diagrams as well as real-world images can be attached to the simulation, e.g. the
images of a train with doors open (state 1) and doors closed (state 2) in the context of
specifying requirements of a train control system.

20

3.2 Use Case Visualization

All of these approaches are similar to the Script framework in that they aim at mak-
ing formal requirements understandable for stakeholders without knowledge in formal
notations. None of them, however, utilizes scenarios to gather requirements, which is
one of the main focuses of this dissertation.

3.2 Use Case Visualization

Scenarios and use cases stand in strong relation to each other, although their focus is
slightly different. Both are written from the point of view of the user, using only terms of
the application domain and without reference to implementation specifics. A scenario,
however, describes one single, concrete flow of interactions between user and system that
possibly spans multiple system functionalities, while a use case describes the interactions
regarding a single functionality of a system, but with all possible variations.

Use cases can be written with different levels of granularity regarding the details of
interactions. Essential use cases [Con95] focus on interactions between user and system
on an abstract level without specifying any details about how the user interacts with the
system. Essential use cases focus solely on the goals of the user, e.g. identification, and
not on any details of the realization of the system, e.g. identification using a keycard
or via an iris scan. Essential use cases, like use cases in general, are written solely in
the language of the user and the application domain, which allows users to relate to the
interactions described in the use case. Utilizing essential use cases prevents to narrow
down on a single solution too early in the beginning of development by keeping the
description of interactions on an abstract level. This advantage is a problem at the same
time, as the abstractness of essential use cases can lead to diverging interpretations by
clients, users and developers, and thus result in misunderstandings.

Use case descriptions can benefit from augmentation with appropriate visualizations
[GFHR95]. Especially when it comes to define the detailed layout of the user interface,
it is much more efficient if this is not done in textual formal, but rather with appropriate
images that display the user interface [KS07].

One example where this has been applied is the storyboard process for the selection
of commercial-off-the-shelf (COTS) components presented by Gregor et al. [GHO02].
They employ use cases to help users determine the required functionality and evaluate
how much of that functionality can be provided by using existing software solutions. Use
case visualizations are created by making screen shots of the existing software solutions
and enhancing them via graphic manipulation, or by creating mockups of completely
new user interfaces. These images are then arranged on a poster size graphic that shows
all steps of a use case from the user interface perspective.

The Use Case Workbench (UC Workbench) is a tool presented by Nawrocki and Olek
[NO05]. It allows to couple steps in a use case with images and generate a prototype
that enables users to step through the flow of interactions of the use case. Whenever

21

Chapter 3 Requirements

the user reaches a use case step that has been coupled with an image, it is shown next
to the textual description of the use case.

A more sophisticated approach is the Fast Feedback technique presented by Schneider
[Sch07]. It aims at capturing and validating use cases in requirements elicitation meetings
with stakeholders. It utilizes a tablet computer that is used during the meeting for noting
down information about use cases and for sketching user interface drafts alongside. The
technique is backed by a system that allows to immediately connect use case steps and
user interface sketches, and that provides a step-by-step animation of the flow of events
on the user interface, similar to UC Workbench. The interrelation between use case
steps and user interface drafts, however, is more elaborate than with UC Workbench.
It is not only possible to connect whole user interface sketches with use case steps, but
also regions on the user interface sketch, which are then highlighted by a red rectangle.
Stakeholders can pretend to interact with the sketches by drawing on them. As no
application logic can be defined with the Fast Feedback technique, the system does not
react to the user input, but instead the stakeholders’ interactions are recorded for later
analysis.

Development of use cases and user interface designs can also happen in parallel, as
described in the user interface based design process presented by Mrdalj and Jovanovic
[MJ02]. They rely on the availability of use cases and related early user interface vi-
sualizations in order to derive various analysis artifacts such as UML class diagrams,
sequence diagrams, collaboration diagrams and state chart diagrams from them.

The approaches presented in this section are based on the application of use cases,
which are similar to scenarios in that they describe interactions between user and system.
Use cases, however, do not focus on a single, concrete flow of interactions, but rather de-
scribe interactions on a more abstract level and include alternative flows of interactions,
thus bearing the risk of misunderstandings between developers and stakeholders due to
differing interpretations. Hence, this dissertation utilizes scenarios instead for describing
concrete interactions between user and system to ensure that all stakeholders have the
same understanding about how interactions between user and system are going to take
place.

3.3 Scenarios

According to Carroll, a scenario is “a narrative description of what people do and ex-
perience as they try to make use of computer systems and applications” [Car95]. A
scenario does not focus on describing only a single functionality of a system, but rather
describes a concrete flow of interactions between user and system that is understandable
by clients and users. In order to keep the complexity low, alternative flows of events are
not considered within a single scenario, but instead multiple separate scenarios must be
used to describe them.

22

3.3 Scenarios

Scenarios can be used with different purposes, from requirements elicitation to strate-
gic planning, and cover various timespans, from a whole year over a day down to single
keystrokes [GC04]. Scenarios can be used to describe the current situation in form of as-
is scenarios, or describe how future interactions are supposed to take place in the form
of visionary scenarios [CR92]. In visionary scenarios, the flow of interactions describes
the requirements on a system, i.e. what functionality a system must provide in order to
make the interactions possible. Scenarios have already found acceptance for use in soft-
ware development [HCR05], but it has also been recognized that working with scenarios
does not alleviate the need for continuous evaluation and adjustment of requirements
during the lifetime of a project [CRCK98]. Apart from their use for communication,
scenarios can also serve as input for other artifacts, such as prototypes, as has been
reported by Hertzum [Her03], although they did not elaborate on the relation between
scenarios and prototypes.

Scenarios are often in use with slightly different understandings of what is actually
meant by the term “scenario”. Rolland et al. identified 12 different scenario-based
approaches and evaluated them according to a framework with 4 dimensions, which are
form, contents, purpose and lifecycle. Form describes the representation of scenarios,
contents describes which information is expressed with scenarios, purpose describes the
reason for which scenarios are used, and lifecycle describes how scenarios are captured
and modified. They found that many approaches use natural language in order to
describe concrete situations or behaviors in an open-ended and informal way. [RBAC+98]

Using narrative scenarios has the major advantage that it allows to involve all stake-
holders without requiring prior training on some formal language. For subsequent devel-
opment steps, however, a formalized scenario representation is desirable, so that devel-
opers can directly access relevant parts of a scenario without requiring them to read large
amounts of plain text when they are looking for an information about an interaction that
is described in a scenario. Additionally, a formalized scenario representation also allows
to relate it to other requirements or system models on a fine level of granularity, thus
improving requirements traceability. Section 3.3.1 presents approaches for representing
scenarios in a formalized way.

Additionally, natural language used in narrative scenarios is sometimes not expres-
sive enough to describe complex situations or revolutionary ways of interacting with a
system. In these cases, scenario visualizations can support building a shared under-
standing among all stakeholders, similar to the application of use case visualizations
that have been presented in Section 3.2. An overview of existing approaches for scenario
visualization is given in Section 3.3.2.

3.3.1 Scenario Formalization
Scenarios are not only useful during requirements elicitation, but also for subsequent
steps of software development. In these cases, developers sometimes prefer formalized
representations over textual representations, as formalized scenarios can be transformed

23

Chapter 3 Requirements

into other models like state-based models for further processing [LDD06]. An overview
of existing scenario formalizations is given in this section.

The Unified Modeling Language (UML) 2.0 provides three types of diagrams for mod-
eling interactions: sequence diagrams, communication diagrams and interaction overview
diagrams [Gro12b]. A notation similar to UML sequence diagrams are Life Sequence
Charts [DH01] that allow to model more sophisticated situations, including conditions
that need to hold either once or during the whole execution.

ScenarioML is a notation described by Alspaugh, which allows to formally represent
the flow of interactions a scenario consists of [Als05]. It is based on Allen’s interval
algebra [All83] that allows to define how time intervals relate to each other, like occurring
sequentially or ending at the same time, and it uses XML syntax. ScenarioML allows
to explicitly state temporal relations between interactions in a scenario that otherwise
might get overlooked.

Elkoutbi et al. present an approach that is based on UML 1.0 [EKK99, EK00, EKK06].
For requirements acquisition, they use collaboration diagrams to specify scenarios and
use cases, and class diagrams for application domain modeling. They describe an al-
gorithm to automatically generate user interfaces and prototypes for evaluation based
on the created models. Their approach, however, requires a large scale modeling effort
upfront.

Hsia et al. describe an approach that uses trees of scenarios, where each node stands
for a single interaction and a path from the root to a leaf represents a single scenario.
These scenario trees are then converted into regular grammars. Their goal is to arrive at
a “precise, unambiguous, consistent and [. . .] complete” set of scenarios. These scenarios
are also used for requirements validation via generation of prototypes, while they do not
provide information about how this is to be achieved in detail. [HSG+94]

All of these approaches focus only on formal representations of scenarios, which has the
drawback that stakeholders can no longer work with them directly without prior training
in the formal language used. The Script framework compensates for this problem by
using a model-based notation of scenarios that also provides a narrative representation.

An approach that is based on natural language processing is presented by Kof [Kof07,
Kof08] . The goal is to analyze narrative scenarios and automatically identify missing
objects. Additionally, a message sequence chart (MSC) [GGR93] can be automatically
generated that depicts the flow of interactions that are described in the underlying
scenario.

Kaindl and Jezek developed an approach that analyzes scenarios in order to determine
which kind of user interface elements, like buttons and text fields, should be used in the
user interface [KJ02]. They formalize scenarios by analyzing each step in the flow of
interactions of a scenario and relate it to one or more functional requirements that
the system needs to fulfill. Functional requirements are then decomposed into low-
level interactions and classified according to their type of interaction, e.g. data input
or output. Based on this classification, classes of suitable user interface elements are
derived, e.g. text fields for data input.

24

3.3 Scenarios

While the last two approaches are based on the use of narrative representations of
scenarios, they do not provide interactivity so that users can evaluate the interactions
themselves.

3.3.2 Scenario Visualization
Scenarios are often represented as textual narratives using natural language. Text, how-
ever, is sometimes not expressive enough to unambiguously describe complex situations.
As a Chinese proverb says “A picture is worth a thousand words”, it is often useful to
augment textual scenario descriptions with supporting images. In other cases, where
scenarios are captured using a formal language, visualizations of the user interface or
the interactions described in a scenario can help in providing clients and users with
a representation they can understand without prior training, as has been described in
Section 3.1 for requirements in general.

The Script framework uses prototypes as a form of visualization for the scenario
models that are created from its underlying scenario meta model. While prototypes are
discussed in more depth in Chapter 4, this section gives an insight into existing scenario
visualization techniques.

A simple technique for scenario visualization is to attach images like static design
drafts of the user interface to the scenario description, either only for selected interactions
or all interactions of the scenario.

Alspaugh et al. evaluated the use of social agents to visualize scenarios in a virtual 3D
environment [ATB06]. Their approach is based on scenario descriptions in the formal
language ScenarioML, which has been described in the previous section. Actors and
entities of scenarios are mapped to virtual characters, and animations are automatically
generated that visualize the interactions that are described in the scenario. Additionally,
a text-to-speech system reads the textual descriptions of interactions in parallel to the
animation. Although an initial evaluation could not show that the identification of errors
with this approach is higher compared to text-only scenario descriptions, the inspection
of the animations during preparation revealed problems like missing interactions that
might have stayed undetected otherwise.

An approach that uses real-world video recordings of scenario interactions called Soft-
ware Cinema is described by Creighton [Cre05, COB06]. Its focus is not on interactions
between user and system on the level of the user interface, as it is of interest in this
dissertation, but rather on physical interactions between users and system. Hence, it
is tailored towards systems that do not follow traditional desktop interaction patterns,
but rather support mobile users that are in need of different interaction paradigms.
Formalisms underlying the approach allow to use the resulting videos for subsequent
development activities.

Another scenario visualization is part of the scenario-based requirements analysis
method (SCRAM) [Sut03]. It uses so called concept demonstrators that can playback a
predefined script, which represents the flow of interactions of a scenario. SCRAM allows

25

Chapter 3 Requirements

to use images in order to visualize the interactions of the scenario. The resulting concept
demonstrator is not intended for user operation but merely for demonstration purposes
in order to stir discussion with users.

All of these approaches enrich scenarios with visualizations in order to improve the
understandability of scenarios and ensure a common ground for discussion with stake-
holders. None of them, however, provides interactivity so that stakeholders can actively
experience the interactions that are described in a scenario, as it is possible with the
Script framework.

26

Chapter 4

Prototyping

Taken literally, a prototype is the “first of a type”, a notion that originated in the context
of the creation of physical goods. In that context, a prototype is an artifact that shares
all key features and attributes of the final product and serves as a template for mass
production [Flo86]. In the context of software development, the major challenge is not
the reproduction of a finished system, but rather the development of the “first” instance.
Here, prototyping is used to evaluate parts of a system before the complete system has
been built in order to gather insights on various aspects of the system.

Rapid prototyping emerged as a term for porting the activity of creating (physi-
cal) prototypes into the domain of software engineering, as explained by Tripp and
Bichelmeyer [TB90]. According to them, rapid prototyping is different from “classical”
i.e. physical prototyping in that the reason for prototyping is not to mitigate the conse-
quences of error (like an airplane prototype, which is built in order to ensure the airplane
is airworthy), but to increase efficiency of the development effort. Additionally, rapid
prototyping aims at the discovery of additional development goals and not only at the
satisfaction of goals that are already known.

Already in 1984, Alavi presents findings from a study [Ala84], which showed that pro-
totyping is beneficial as it provides a ground for discussion between stakeholders. As one
of the interviewed project manager stated: "The users are extremely capable of criticiz-
ing an existing system but not too good at articulating or anticipating their needs." This
corresponds to observations made by Boehm, who describes this as “I’ll know it when
I see it” (IKIWISI) [Boe00]. It describes users who can only really express their needs
once they start to evaluate a prototype, and not by defining them upfront. Prototypes
help users to make decisions, involve them into development and enable them to evaluate
requirements specifications more effectively than with paper-based documents [AH93].
Andriole also emphasizes the importance of prototyping and proposes a development
process that starts with initial requirements and system design and which then utilizes
prototypes for refining both [And94]. The importance of prototyping has also been rec-
ognized by Wasserman [Was96], who names it one of the eight fundamental ideas of
software development. He sees its advantages not only in the area of the development of
“interactive information systems”, but also for developing appliances like copy machines,
automated teller machines and the like, as they all have user interfaces.

27

Chapter 4 Prototyping

Prototyping has become an integral part of lifecycle models like Boehm’s spiral model
[Boe88] or the Usability Engineering Lifecycle of Mayhew [May99]. The International
Organization for Standardization (ISO) also recognized the importance of prototyping
and recommends to use prototypes to gather feedback from users regarding design al-
ternatives already during early phases of development, as described in ISO 9241-210:
“Human-centred design for interactive systems” [ISO10].

Prototyping, however, can only be an effective means if the goals that are to be
achieved by using prototypes have been identified upfront. Different kinds of prototypes
are suitable for evaluating different aspects of a system. In order to support the decision
for the kind of prototype most suitable, various people proposed different categorizations
for prototyping. A general distinction can be made between categorizations that analyze
prototypes as artifacts, and categorizations that refer to the process of prototyping
[BBLZ96].

The remainder of this chapter is organized as follows: Section 4.1 gives a short discus-
sion about prototyping and design, which is a relevant background to better understand
the motivations that stand behind the development of the Script framework. In Sec-
tion 4.2, approaches for classifying prototypes as artifacts are presented, followed by
classifications that refer to prototyping as a process in Section 4.3. Section 4.4 presents
various techniques for prototyping, and in Section 4.5, existing prototyping tools are
presented. Section 4.6 is dedicated to approaches for making knowledge available that
is contained in prototypes.

4.1 Prototyping vs. Design
Among other uses, prototyping can be utilized to support the development of the user
interface. When it comes to define those parts of an artifact or system that are visible
to and accessible by users, this activity belongs to the domain of design, and as such
some general design principles are also applicable for the design of interactive systems.
According to Buxton, one important aspect in design is to actively explore and broaden
the space of possible solutions instead of narrowing on one concrete solution too early
during development [Bux07, p.389]:

“The role of design is to get the right design.
The role of usability engineering is to get the design right.”

With usability engineering, he refers mainly to prototyping as a usability engineering
technique, especially in the form of iterative prototyping, where feedback gathered with
a prototype of version n feeds into the development of a refined prototype of version n+1.
This iteration on a specific artifact serves to “get the design right”. In contrast, design
strives to explore multiple alternative, potentially fundamentally different solutions to
provoke discussion and stir new ideas and insights, which is the goal of “get[ing] the right
design”.

28

4.1 Prototyping vs. Design

time

of

 d
es

ig
n

al
te

rn
at

iv
es

cr
ea

tio
n

ef
fo

rt
pe

r a
lte

rn
at

iv
e

design prototyping

Figure 4.1: Relation between number of design alternatives and creation effort per al-
ternative

The relation between design and prototyping is visualized in Figure 4.1. At the be-
ginning of a project, the number of design alternatives is supposed to be high, with
only little effort needed for the creation of each design, so that many alternatives can
be created and disposed easily. Through testing and evaluation, more appropriate de-
signs are distinguished from less suitable ones, so that the number of design alternatives
slowly reduces. The selected designs, however, get refined in more detail, thus raising
the creation effort for the remaining design alternatives.

The importance of evaluating multiple design alternatives has also been examined by
a study conducted by Tohidi et al. [TBBS06]. They observed that the ratings users gave
on an absolute scale to user interface designs where different, depending on whether they
were presented with multiple alternatives or only a single design. Most importantly, the
design that has been rated worst by the group with multiple design alternatives, received
much better scores from the group that was only presented that specific design, which
might have lead to false conclusions if the study had been the basis for the development
of a real product.

For the quick and easy creation of design alternatives, Buxton promotes the use of
sketches [Bux07]. It is important not to confuse sketching with prototyping, although
sketched designs of a user interface may well become part of a prototype. Sketching,
however, pursues different targets than prototyping.

First, sketching is a mental activity that helps designers to reflect on their current
knowledge, contained in their mind. While the creation of a sketch is driven by the
current knowledge of a designer, the representation of knowledge in form of a sketch leads
to new insights that result from “reading” the sketch, and thus leads to a modification
of the knowledge in the designer’s mind. The interplay between mind and sketch is

29

Chapter 4 Prototyping

mind
(contains knowledge)

sketch
(represents knowledge)

create

read

Figure 4.2: Interplay between mind and sketch. Adapted from [Bux07]

visualized by Figure 4.2. This use of sketching has also been observed by Tversky
[TSLD02].

Second, sketching is a design activity and hence takes part in the very beginning of a
project, where the goal is to create as many different alternative solutions as possible.
As such, a sketch differs from a prototype in various aspects, e.g. in that it tries to
explore rather than to refine, or that it is tentative rather than specific. The aspects in
which sketches differ from prototypes can be seen in Figure 4.3. Note that the depicted
terms denote the extremes of a continuous spectrum between sketches and prototypes.

The distinction between sketching and prototyping becomes blurred when it comes to
paper prototyping, which relies heavily on the use of user interfaces that are “sketched”
on paper. Buxton sees the major difference in how the sketched images are used. If
they are used by designers themselves to evaluate their ideas, or with a user in a setting
that allows to make instant modifications once new ideas come up, then Buxton qualifies
this as sketching. Once a paper prototype is evaluated in a more formal setting with
multiple users that are all presented the same user interface and where the focus is on
evaluating that specific design, that is, find out if the “design is right”, then this qualifies
as prototyping. [Bux07, p.381]

The Script framework takes a role similar to paper prototyping and is located be-
tween design and sketching on the one hand, and usability engineering and prototyping
on the other hand. It supports the creation of multiple alternative design ideas with as
little effort as possible. This is emphasized by a strong orientation on classical paper
prototyping and the goal of enabling designers to apply it without requiring major prior
training. Additionally, the resulting artifacts are suitable for evaluation with users and
further refinement in subsequent development activities.

4.2 Prototypes as Artifacts

This section gives an overview of approaches that analyze prototypes as artifacts and
classify them based on attributes that are inherent to them.

30

4.2 Prototypes as Artifacts

Tentative

Suggest

Sketch

Noncommittal

Provoke

Evocative

Propose

Explore
Question

Specific

Describe

Prototype

Depiction

Resolve

Didactic

Test

Refine
Answer

Figure 4.3: Continuum between Sketch and Prototype. Adapted from [Bux07]

4.2.1 Categories of prototypes

Lichter et al. provide a way of categorizing prototypes according to their experiences
from the use of prototyping in the industry [LSZ94]. They propose a categorization into
presentation prototypes, prototype propers, breadboard prototypes and pilot systems.

Presentation prototypes are used for acquisition before a project has started and serve
to convince clients that a system can be built, either regarding the use of some technology
or that the user interface is able to fulfill user requirements. As they are mainly used
for persuasion, they are typically created with a “quick-and-dirty” approach and are
disposed of after they have served their purpose.

A prototype proper is used during requirements engineering and can help to clarify
questions that arise during this activity. It realizes parts of the user interface or selected
functionalities where uncertainties exist and helps to resolve them in order to arrive at
a sound requirements specification. As such, it is used for communication between all
stakeholders, including clients and users.

A breadboard prototype focuses on the evaluation of technical details of the realization
of a system. Prototypes of this kind are often used implicitly without being named as
such, and they are mostly used for discussions between developers without the inclusion
of clients or users. Technical solutions found via a breadboard prototype may transition
into the final system implementation.

When a prototype is mature enough to be used in its destined context, it is called
a pilot system. While it may still only provide a subset of the complete set of features
defined, the features already available need to be realized to their full extend, which
includes satisfying requirements on performance, usability and the like. The close rela-

31

Chapter 4 Prototyping

tion between a pilot system and the final application blurs the strict distinction between
prototype and application.

4.2.2 Horizontal and Vertical Prototypes
In system designs that follow a layered architectural style, prototypes can be classified
into horizontal prototypes and vertical prototypes [LSZ94]. A layered architectural style
defines a system in terms of layers that group similar functionality and where each layer
must only depend on functionality provided by the same layer or underlying layers,
possibly even constrained to the layer directly beneath it. A common form is the three-
layered architectural style that consists of a database layer at the bottom, an application
logic layer, and a user interface layer on top.

A horizontal prototype is a prototype that is constrained to one layer of the system, but
where the selected layer is realized completely. While often employed as user interface
prototypes, a horizontal prototype can as well prototype any other layer of a system.
If a horizontal prototype is created in the former sense, it realizes the complete user
interface, but without any functionality behind it.

A vertical prototype in contrast is not confined to a single layer, but to a subset of the
functionality specified in the requirements specification. For this subset, however, the
implementation covers all layers from top to bottom to prove for technical feasibility.

4.2.3 Prototype Fidelity
Prototypes are often classified regarding their fidelity. The fidelity of a prototype is de-
termined by the attributes of a prototype that are visible to a user, not by the technical
details that relate to the creation of the prototype [RSI96]. The distinction between low
fidelity and high fidelity is a rather vague, nevertheless wide-spread approach. A more
fine-grained classification can be achieved by evaluating multiple dimensions indepen-
dently.

Low Fidelity and High Fidelity

Rudd et al. [RSI96] propose a classification of prototypes, which is mainly focused on
prototypes that have user visible components and that are intended for discussion with
clients and users.

According to their classification, a low fidelity prototype is a prototype that can be
produced with very little effort and which provides limited or no interaction at all. It
is used for exploring screen layouts and design alternatives, including details such as
colors and control placement, rather than user interaction. As such, it is supposed
to be operated by a facilitator, who either follows through a predefined scenario for
demonstration purposes, or who executes requests from users. Interaction is mostly
constrained to exchanging sheets of paper of a paper prototype or advancing slides of a

32

4.2 Prototypes as Artifacts

presentation to simulate screen flows. The main advantage of low fidelity prototypes are
that they can be created fast and cheap and thus allow to explore various alternatives
instead of narrowing down on one solution too early. On the other hand, they are too
coarse to guide developers in the implementation of the final system and can provide
only very limited help should questions about realization details of the user interface
arise.

In contrast, a high fidelity prototype looks and behaves like the final system with
respect to the user interactions that it supports. Users can evaluate the prototype
by themselves and interact with it as if the system already had been implemented.
Quality requirements like performance, accuracy or security, however, might not be
satisfied by the prototype. The focus of a high fidelity prototype is to give users the
opportunity to evaluate the flow of interactions and make suggestions for improvement
of the user interface. As the user interface is already in a very mature state, developers
can refer to it during implementation to clarify questions about the visual appearance
and interactiveness of the user interface. High fidelity prototypes can also be used for
marketing and training purposes or help in creating the documentation of the system.
Their high sophistication comes at the price of massively increased costs for creation
compared to low fidelity prototypes. Additionally, they tend to raise wrong expectations
with the clients, who take the prototype for the final system and cannot understand why
the actual development of the system might take quite some time after the prototype
has been made available to them.

Multi-Dimensional Fidelity

The classification of prototypes into low and high fidelity bears the problem that it sub-
sumes multiple orthogonal aspects of a prototype that deserve individual consideration.
To overcome this one-dimensional “fidelity barrier”, McCurdy et al. [MCP+06] devel-
oped a classification of prototypes according to five dimensions, which are level of visual
refinement, breadth of functionality, depth of functionality, richness of functionality and
richness of data model.

Level of visual refinement describes how “finished looking” the user interface of a proto-
type is. It ranges from hand-drawn sketches to pixel perfect high resolution imagery.

Breadth of functionality describes how much functionality a prototype offers to its
users. A prototype that ranges on the low end of this dimension provides only selected
functionality, while a prototype on the high end offers a large amount if not all func-
tionality that the final system is supposed to have.

Depth of functionality describes to how much detail a prototype has been realized
concerning user–system interaction. A prototype that allows users to execute each and
every step of the flow of interactions of a certain task is positioned on the high end on
this dimension.

Richness of interactivity describes how precisely a prototype reflects the kinds of
interactions the final system will support. Paper prototypes a located at the low end

33

Chapter 4 Prototyping

6

to evolve into an integrated prototype which could

be described by a position at the center of our

model. A version of the user interface developed

in Example 2 was implemented in the prototype in

Example 3. Results of other prototypes were also

integrated. This enabled a more complete user test

of features and user interface to take place.

This set of three prototypes from the same project

shows how a design problem can be simultaneously

approached from multiple points of view. Design

questions of role, look and feel, and implementa-

tion were explored concurrently by the team with

the three separate prototypes. The purpose of the

model is to make it easier to develop and subse-

quently communicate about this kind prototyping

strategy.

4. FURTHER EXAMPLES

In this section we present twelve more examples of

prototypes taken from real projects, and discuss

them in terms of the model. Examples are divided

into four categories which correspond to the four

main regions of the model, as indicated in Figure

3. The first three categories correspond to proto-

types with a strong bias toward one of the three

corners: role, look and feel, and implementation
prototypes, respectively. Integration prototypes

occupy the middle of the model: they explore a

balance of questions in all three dimensions.

4.1 Role prototypes

Role prototypes are those which are built prima-

rily to investigate questions of what an artifact

could do for a user. They describe the functional-

ity that a user might benefit from, with little atten-

tion to how the artifact would look and feel, or

how it could be made to actually work. Designers

find such prototypes useful to show their design

teams what the target role of the artifact might be;

to communicate that role to their supporting orga-

nization; and to evaluate the role in user studies.

A portable notebook computer
The paper storyboard shown in Example 4 was an

early prototype of a portable notebook computer

for students which would accept both pen and fin-

ger input. The scenario shows a student making

notes, annotating a paper, and marking pages for

later review in a computer notebook. The designer

presented the storyboard to her design team to fo-

cus discussion on the issues of what functionality

the notebook should provide and how it might be

controlled through pen and finger interaction. In

terms of the model, this prototype primarily ex-

plored the role of the notebook by presenting a

rough task scenario for it. A secondary consider-

ation was a rough approximation of the user inter-

face. Its marker, shown in Figure 4, is therefore

positioned near the role corner of the model and a

little toward look and feel.

Storyboards like this one are considered to be ef-

fective design tools by many designers because they

help focus design discussion on the role of an arti-

fact very early on. However, giving them status as

prototypes is not common because the medium is

paper and thus seems very far from the medium of

Look and feel

Integration

Implementation

Role

Figure 3. Four principal categories of prototypes on
the model.

Example 4. Storyboard for a portable notebook
computer [E4 Vertelney 1990].

Figure 4.4: Aspects of prototyping by Houde and Hill. From [HH97]

of this dimension, while prototypes on the high end typically also involve increased
implementation efforts.

Richness of data model describes how closely the data represented in a prototype
resembles real data from the application domain, both in quantity and appearance.
In cases where real datasets become rather large or complex, care must be taken not
to oversimplify datasets used in the prototype. Otherwise, positive evaluation results
achieved with the prototype may be non-representative for the appropriateness of the
system with real data.

4.2.4 Focus of Prototypes

Houde and Hill propose a classification of prototypes that is not based on the details of
its realization or appearance, but rather on the aspects of the system the prototype aims
at [HH97]. They differentiate between look and feel, role and implementation, which are
not mutually exclusive but span a triangle as can be seen in Figure 4.4, where a prototype
may occupy any place in-between, depending on the degree to which it focuses on each
aspect.

The role aspect describes how a system can support its users, that is, what role a
system may take in the actions of its users or how it may enable previously impossible
actions. The focus is not on the details of how the system actually looks and feels during
the interactions, or how the interactions are realized technically, but rather on which
interactions are possible at all and how they fit the users’ contexts.

The look and feel aspect focuses on the concrete realization of a system with respect
to the parts that are visible to a user. This includes both its appearance as well as
the concrete types of interactions the system offers its users. Look and feel prototypes

34

4.3 Prototyping as Process

are used to convey an idea about how the final system will look like and to enable
users to evaluate different types of interactions. However, they rather focus on singular
interactions and may not take into account the overall role of the system in the users’
context.

The implementation aspect describes how much a prototype focuses on the technical
feasibility of a system. Prototypes that focus solely on this aspect usually are used
only internal to the development team, however when it comes to evaluate quality re-
quirements like performance, user involvement can be useful also for an implementation
prototype.

Integration prototypes do not constitute a prototyping aspect by themselves, but rather
a combination of role, look and feel and implementation. Prototypes of this kind strive to
evaluate all aforementioned aspects in more or less equal depth. This results in increased
efforts for building an integration prototype, so that this kind of prototype is used rather
rarely and typically only during later phases of development.

4.3 Prototyping as Process
In contrast to analyzing prototypes as artifacts, prototyping can be analyzed from a
process perspective, where the focus is on the goals that are supposed to be achieved by
employing prototyping. The following categorization of prototyping processes is based
on findings from Floyd [Flo86] and Graham [Gra94]. This kind of classification is com-
plementary to the classification of prototypes as artifacts.

4.3.1 Revolutionary prototyping
The goal of revolutionary prototyping, which is sometimes also called “exploratory”
or “throw-away” prototyping, is to resolve communication problems that might come
up during requirements specification, either due to a lack of domain knowledge of the
developers, or originating from the fact that users might not be able to imagine in which
ways the system can support them.

Prototypes that are used in this context are supposed to be created fast and without
much development effort. The development environment for revolutionary prototyping
can be substantially different from the target environment, where the final system is to
be employed. This may be due to the fact that the target environment enforces the use
of programming languages that are not suitable for quick and easy prototype generation,
or because the target environment has not been yet decided at all.

Prototypes should allow users to perform a typical task of their every day work practice
with help of the prototype. Instead of only presenting one solution, ideally multiple
alternatives should be presented so that the most accepted features of each prototype
can then be integrated into the final system. However, it should be clearly communicated
to clients and users that these revolutionary prototypes only serve to stir ideas and input

35

Chapter 4 Prototyping

for requirements specification, and might not become part of the final system, neither
their underlying code nor the functionalities they represent.

4.3.2 Experimental Prototyping

Experimental prototyping aims at clarifying open issues about the system under devel-
opment. These issues may relate to the interaction between user and system or the
technical realization of the system. Prototypes used for experimental prototyping come
in different forms. They range from prototypes that realize the complete user interface
without any underlying functionality in order to get feedback from the user, over proto-
types that only support a single task but with full functional support, to prototypes that
provide the complete set of functionality as the final system, but quickly written in an in-
termediate language that does not fulfill performance requirements, or ignoring security
constraints. In contrast to prototypes from exploratory prototyping, prototypes used
for experimental prototyping can become part of the final system if this is technically
possible and if the code fulfills quality standards.

4.3.3 Evolutionary Prototyping

Evolutionary prototyping is based on the experience that requirements for a system are
in constant change, as the context surrounding a system changes constantly, which thus
leads to the arising of new requirements. The productive usage of a system itself also stirs
the identification of new or altered requirements. Therefore, evolutionary prototyping
describes an approach where a system is built up gradually instead of being completely
specified upfront and implemented in one huge effort. By building and deploying a sys-
tem step-by-step, each iteration of the system can serve as a prototype to gather feedback
for the next iteration, thus ensuring maximum alignment to the users’ needs. However,
this also requires users to accept the possibility of changes to existing functionality and
developers to follow a rigid work style to make evolutionary prototyping technically fea-
sible. In contrast to revolutionary prototyping, the development environment and target
environment are similar if not identical with evolutionary prototyping.

4.4 Techniques for Prototyping

In this section, various techniques for prototyping are presented. While the previous two
sections were concerned with rather abstract classifications of prototypes, this section
presents concrete techniques for using prototypes during software development.

36

4.4 Techniques for Prototyping

News

News heading

Lorem ipsum dolor sit amet,
consetetur sadipscing elitr

Prof.
Bruegge

PublicationsTeachingProjectsPeople

Background image

Welcome text

Lorem ipsum dolor sit amet, consetetur
sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et
dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et
justo duo dolores et ea rebum. Stet
clita kasd gubergren, no sea takimata
sanctus est Lorem ipsum dolor sit
amet.

News image

Logo
search

Figure 4.5: Wireframe of the web page of the Chair for Applied Software Engineering

4.4.1 Wireframe Prototyping

The term wireframe has its origin in the context of 3D modeling, where it denotes a
visual representation of an object only by its supporting structure, with intermediate
areas being empty and without its final color or texture applied. In the context of user
interface design, it stands for a version of the user interface that is only concerned with
general arrangement like size and positioning of user interface components, ignoring
details such as typeface, font size or color. Images are often replaced by simple boxes
with a cross in them and text is replaced by greeked text in order to focus attention
to layout issues rather than design details. An example of such a wireframe is given in
Figure 4.5. Wireframes can evolve from these rather abstract, low-fidelity (concerning
visual appearance) graphics to high-fidelity, polished looking designs as design proceeds.

Wireframe prototyping describes the use of wireframes to lay a basis for the design of
the user interface. A wireframe prototype can be restricted to a single wireframe of a
screen of the system, a set of wireframes that supports following through a specific se-
quence of interactions, or a complete set of wireframes covering the whole user interface.
Wireframe prototypes are easy to create as they can be drawn by hand or using any
drawing software available. They provide no interactivity themselves but can be used
for the creation of a digital prototype in case they are available in digital form. [AAB07]

4.4.2 Storyboard Prototyping

Storyboards are used in various disciplines and are most commonly known from the
movie industry. In this context, they constitute a comic-like representation of the final
movie and are used to anticipate costs and complexity during pre-production. [Wik12].

37

Chapter 4 Prototyping

Apart from the movie industry, they have also made their way into business management
to determine “brand touchpoints” that describe the situations in which users get in touch
with a brand or company [SM10].

In software development, storyboard prototyping is used to depict a concrete flow of
interactions between user and system, and has thus a very strong relation to scenarios.
A storyboard prototype can start as a purely textual narrative and evolve by including
images of the user interface [And89] or even video snippets of users interacting with
the system. A storyboard prototype may focus on a small sequence of interactions
belonging to one functionality, or it may be used to describe a larger sequence of related
interactions that exemplifies how certain functionalities are required to work together.
One advantage of using storyboard prototypes for software development is that they
help all stakeholders in gaining a shared understanding of what the system is supposed
to do, and to ensure that this focus does not get lost during development, even when
requests for additional or altered functionality arise.

For cases in which storyboard prototypes are used to depict the context of system
usage, Truong et al. conducted a study about best practices regarding certain aspects
of the imagery used in a storyboard [THA06]. They analyzed the use of accompanying
text, depiction of persons, level of detail, number of panels and the representation of
progression of time. According to the best practices they derived, accompanying text
should be used when presenting novel applications, depiction of persons should be used
when feedback on interactions is desired and not on details of the user interface, the level
of detail should be as abstract as possible in order not to confuse users with unnecessary
details, the number of panels should be between 3 and 5, and progression of time should
only be explicitly visualized if it is relevant for demonstrating a feature.

Unfortunately, the term “storyboard” is also used with a different, misleading inter-
pretation. In these cases, it refers to a 2D canvas-like visualization that depicts a subset
or all screens of an application as thumbnails, with arrows between them that symbol-
ize available navigation paths. A special form of this kind of storyboards are use case
storyboards [Kru99] that are used in the Unified Process [Kru04] to define an abstract
high-level description of the user interface belonging to a use case. They are in the form
of collaboration diagrams, with boundary objects as placeholders for windows and the
like. Also, Apple has included a feature called “Storyboards” into the latest version of
its development environment XCode, which allows to define user interface screens and
navigation between them in a manner described above.

This kind of visualization is certainly useful to get an overview of the individual screens
that an application needs to provide and their relationship to each other. As it does not
focus on describing a concrete flow of events of actual use of the system, however, the
term storyboard does not seem appropriate in this case and should rather be replaced
by something that better reflects the intention of its use, for example “navigation map”
or the like.

38

4.4 Techniques for Prototyping

4.4.3 Paper Prototyping
Paper prototyping utilizes the physical medium of paper for the creation of prototypes.
The user interface is drawn on sheets of paper in whatever fidelity seems fit for the
purpose, ranging from quick pencil sketches to colored, detailed drawings. In order to
evaluate a paper prototype, a user sits at a table and gets presented the first screen
drawing by a facilitator who takes the role of the computer. The user then interacts
with the drawing as if it was a functional user interface by tapping on buttons or writing
text in input fields. The facilitator executes the actions of the computer and overlays
snippets of images for system output or exchanges the whole drawing in case of a screen
change. The facilitator can be supported by additional people during a prototyping
session, who look up the currently needed drawings and snippets.

Paper prototypes have the big advantage that they are easy and fast to create. Drafts
of a user interface are drawn on sheets of paper and individual user interface elements
can be cut out in order to be reused on multiple screens. Depending on the application
that is being prototyped, either screens with placeholders for concrete data are created,
or partial or complete scenes are drawn that already have some or all instance data
embedded in their drawing.

Due to its independence of any electronic tool support, paper prototyping does not
require any tool knowledge and does not restrict initial design in cases where interactions
are to be defined that are not supported by a tool. Although its appearance may seem
too crude to be of any use, even this early draft of a user interface can help in the
evaluation of interaction designs and the detection of usability problems [Ret94, Sny03].
The creation of screen drawings via pencil and paper is a fast technique that allows to
iterate fast and often, so that different design alternatives can be evaluated with only
low creation effort, instead of focusing on a solution too early.

The use of paper prototypes, however, requires at least one facilitator to be present
all the time in order to take the role of the computer. As it relies on the physical
use of paper, paper prototyping is not easily applied in cases where users are locally
distributed. Some study results also report that paper prototyping may not always be
the preferred solution as participants might feel uncomfortable [STG03] or rather prefer
digital versions of paper prototypes [SB09].

4.4.4 Digital Prototyping
The term digital prototyping denotes any form of prototyping that is based on the use
of computer support for the creation of a prototype. As mentioned in Section 4.2.3,
the fidelity of a prototype can vary in multiple dimensions, for example in the visual
appearance or the amount of functionality it offers.

In the special case of a digital prototype whose fidelity is similar to a paper prototype,
Arnowitz et al. define it as a digital interactive prototype [AAB07]. It offers only
limited functionality which makes it easier to create, also for people with limited or no

39

Chapter 4 Prototyping

programming background. In current practice, standard office applications like Microsoft
Word or PowerPoint are often used to create digital interactive prototypes, as these
applications are often available at hand and designers are accustomed to working with
them [AAB07]. The amount of interactions that can be defined with these tools is limited
but sufficient for initial user tests. Compared to paper prototypes, digital interactive
prototypes have the advantage that the amount of additional work needed to create
them is limited and that they can be used for remote demonstrations and user testing,
which is not easily possible with paper prototypes.

As development proceeds, more sophisticated prototypes might be created that also
require larger programming efforts. In these cases, graphical user interface designers like
Google WindowBuilder [Goo12] for Java applications or Apple InterfaceBuilder [App11]
for Mac OS X and iOS applications help in the fast creation of user interfaces.

Prototypes that can be created with the Script framework are similar to digital
prototypes, as they have a close resemblance to paper prototypes (see Section 4.4.3)
with respect to how they are created, only that they can be executed on an electronic
device.

4.4.5 Video Prototyping
Video technology has already been used since end of the 1980s for prototyping of com-
puter systems. Vertelney reports about the use of video at Apple to visualize futuristic
user interfaces without requiring large implementation efforts upfront [Ver89]. She de-
scribes two different ways of using video: in the first case, the video shows only the
prospective user interface and the interactions that take place. In the second case, the
video shows both the user interface and the person interacting with the system. This
allows to also depict the context in which a user interacts with the system.

Mackay et al. use video during all four phases of their design process [MRJ00]. During
observation, they create video clips of use scenarios. Then they conduct video brain-
storming sessions, where new ideas are tried out and videotaped for later reference,
with the goal to create many alternative potential solutions. The third phase is design,
where the ideas from video brainstorming are evaluated and narrowed down to a single
solution. In this phase, a video prototype of the developed solution is created. Finally,
during the evaluation phase, video clips of users interacting with the created system are
recorded for later evaluation.

Creighton describes an approach called Software Cinema, where video technology is
used to create video prototypes of scenarios [Cre05, COB06]. His approach allows to
utilize the created video artifacts not only for discussion with stakeholders, but also to
use them for later stages of development., which is possible due to an underlying model
that connects video artifacts with Live Sequence Charts [DH01].

Video can also be used in participatory design settings, where users act out visionary
scenarios of their use of a system, using mockups that are made of foam blocks, for
example. While the users present their ideas about how interactions with the system

40

4.5 Prototyping Tools

should take place, they are videotaped and the video recording can then be used for
discussions with other users and developers [Bin99].

A special form of video prototyping is virtual video prototyping as presented by
Bardram et al. [BBL+02]. They use a virtual studio setup that allows to visually
combine real actors and props with prototypes of the user interface in real-time. This
not only saves time during post processing of the recorded material, but also allows
instant evaluation of how well a prototype integrates with its use context. However, the
composed image is only visible to the director and not the actors, who need to play their
role in an environment where all of the areas that are to be replaced with computer
images are in monochrome blue or green. This is necessary so that these areas can be
replaced easily later on. As a result, experienced actors need to play the role of the
potential users during recording, and the real users can only give feedback when they
get to see the final result.

In general, video prototypes follow a scenario-based approach in that they depict a
concrete flow of interactions between user and system, but they provide only limited
to no interactivity at all, so that they are rather used for demonstration purposes and
discussion starters.

4.4.6 Wizard-of-Oz Prototyping
Wizard-of-Oz prototyping [DJA93] is a technique that allows to gather user feedback for
a system without actually implementing it. Instead, a hidden facilitator takes the role
of the system and responds to user input accordingly. While the concept is similar to
paper prototyping, the major difference is that the users are not aware that the reactions
of the system are actually triggered by a person instead of the system itself. To them,
it looks like they were interacting with the working system. This technique is especially
useful for interaction styles that are not yet possible to realize or only with massive
development effort, such as speaker-independent, reliable voice recognition.

4.5 Prototyping Tools
During the last two decades, various prototyping tools, especially for the design of user
interface prototypes have emerged, which are presented in this section.

In the beginning of the 1990s, the QUICK tool and its related QUID (quick user
interface design) method have been developed that allow non-programmers to create
graphical systems using direct manipulation of images and a high-level programming
language that is easy to learn. The QUICK tool is directed at evolutionary prototyping,
as it creates code that is supposed to be used for further development [DDN92, ND92].

The Cooperative Interactive Storyboarding Prototyping (CISP) tool follows a similar
approach and allows to quickly design user interfaces from standard user interface el-
ements and assign them basic functionality. When executing the resulting prototype,

41

Chapter 4 Prototyping

traces of user interaction can be recorded, replayed afterwards and comments from users
to certain steps can be captured. The tool has been evaluated in the context of designing
a user interface for a VCR [MA93].

A range of tools has been developed based on the idea of creating electronic support for
classical paper-based sketching, especially when it comes to the design of user interfaces.

SILK (Sketching Interfaces Like Krazy) is one of the first tools for electronic sketching.
It is optimized for use with a pen-like input device and performs real-time recognition
of drawn widgets. It allows to add interactivity by defining transitions from one image
to another that are triggered when a user clicks on a certain area of an image. [LM95,
Lan96, LM01]

DENIM (Design Environment for Navigation and Information Models) follows a sim-
ilar approach and is geared towards web site designers with minimal or no programming
background [LNHL00]. It is also meant to be operated with a pen-style input device in
order to minimize the switching barrier for designer who are used to work with sketches
on paper. The tool allows to sketch web pages and define transitions between them. Is
also has a playback component included that allows to evaluate the navigation transitions
that have been defined. A zooming mechanism for the drawing canvas allows to change
the level of detail the designer wants to work with. At the lowest level, the designer can
modify individual elements of a page. At the farthest level, an overview of all pages and
the transitions between them is provided. In the initial version of DENIM, transitions
could only be triggered by left-clicking. In a later addition [LTL02], a choice between
multiple events for triggering a transition, like double-click or timer-based execution of
an event, was added.

A tool that is focused on the design of multimedia applications is DEMAIS (Designing
Multimedia Applications with Interactive Storyboards) [BKC01]. Similar to SILK and
DENIM, it supports pen-and-paper style input to comfort designers who prefer this as
their favorite way of exploring design alternatives. DEMAIS not only allows designers
to create digital sketches, but it also features a basic sketch detection for rectangles so
that designers can assign images, video and audio to rectangles that have been detected.
Additionally, designers can add text via keyboard, either for visual representation or
for narration via text-to-speech, and they can define behavior on sketched elements,
depending on user input or progression of time. In order to evaluate the defined behavior,
DEMAIS allows to play back the design and use it as a prototype.

All of these tools focus on creating prototypes that allow stakeholders to experience
the interaction with a system before it has been realized. None of them, however, es-
tablishes a connection between prototypes and other requirements specification artifacts
like scenarios, as it is the focus of this dissertation. This missing connection makes
it difficult for developers to decide how prototypes and scenarios relate to each other,
and bears the risk of inconsistencies when they are developed in a parallel, uncoupled
fashion.

42

4.6 Prototype Knowledge Management

4.6 Prototype Knowledge Management
Bäumer et al. identified the problem of making knowledge accessible that is contained
in prototypes, which is especially important when prototyping and final implementation
are performed by different teams [BBLZ96]. To tackle this problem, different approaches
have been developed, which are presented in the following.

Schneider proposes the FOCUS strategy [Sch96], which captures information that
emerges during the discussion between humans about a prototype. Its focus is on
prototypes that have been implemented in an object-oriented language. The discus-
sions that are to be captured take place between the developer of the prototype and
another developer who wants to know details about the implementation, and does not
involve communication with users. The approach is focused on programmed prototypes,
which requires coding skills for creation, while the Script framework focuses on digital
prototypes that can be created by people with potentially no programming background,
especially designers.

Ravid and Berry try to tackle the problem of knowledge management for prototypes
by proposing a six step approach to prototyping [RB00]. The first five steps are con-
cerned with a rather detailed analysis of the context of the system under development
and its application domain. The individual characteristics of the system are identified
and then the characteristics that are to be prototyped are selected. In the sixth step,
the prototype is implemented. While this approach ensures that it is known before-
hand which functionality is realized in the prototype, it requires substantial analysis
efforts upfront and is thus not suitable for rapidly evaluating different competing design
alternatives that should only take minimal effort in order to be easily disposable.

Memmel presents INSPECTOR [Mem09], a tool which is mainly focused on corpo-
rate user interface development. It supports prototype-driven requirements specification,
which means that a prototype is used as a basis for requirements specification, not vice-
versa. INSPECTOR features a zoom interface and allows to specify the user interface
on all levels of visual fidelity, from sketched low fidelity to nearly-polished high fidelity.
It follows a unified approach in that it also allows to store arbitrary documents and
scenario descriptions, storyboards, and task and role maps. Based on this information,
prototypes can be defined and used for evaluation, while simultaneously building up a
requirements specification. The INSPECTOR tool is similar to the Script framework
in that it recognizes the need for prototyping in early stages of development and provides
a unified environment to specify prototypes and requirements, including scenarios. The
INSPECTOR tool, however, only allows to attach textual scenario descriptions to proto-
types as a whole, which bears the problem that both need to be kept consistent manually
when either artifact is changed. Additionally, the automatic generation of derived doc-
uments and videos, as it is possible with the Script framework (see Section 6.6), is not
available.

Harel and Marelly developed the play-in/play-out approach, which combines proto-
typing and specifying requirements [HM03]. For play-in, a preliminary version of the

43

Chapter 4 Prototyping

user interface is used by domain experts to specify the desired behavior of the system.
This activity is straight-forward for the users in that they operate the user interface by
pressing buttons and entering values as if it was already functional, and defining system
responses in a similarly direct manner, by directly setting desired output values or visual
appearance of elements of the user interface. This activity can also be applied to abstract
visual representations of an object model instead of a user interface, where the user trig-
gers methods and sets attributes of objects. The underlying play-engine transforms the
user input into a formal requirements specification expressed in Life Sequence Charts
(LSCs). When the play-engine is set to play-out mode, the preliminary user interface
behaves like a prototype, which reacts to user input according to the previously play-in
behavior, and hence according to the underlying requirements specification. Similar to
the Script framework, the play-in/play-out approach relies on the use of scenarios,
but in this case users specify the system by playing in scenarios with a mockup of the
user interface, which are then automatically converted to LSCs. Users of this approach,
however, need to have knowledge about LSCs, as they not only interact with the GUI
mockups, but also with the LSCs themselves. This is different to the Script frame-
work, where users are not required to learn about the models underlying scenarios and
prototypes. In contrast, the Script framework represents scenarios as narratives, which
do not require knowledge about any formal representation.

Gabrysiak et al. propose an approach which is also called scenario-based prototyping
[GGS09, GGS11]. Their focus is primarily on the design of multi-user systems in a
corporate context. They start with an initial requirements elicitation that leads to an
initial process model using the Business Process Model and Notation (BPMN) [Gro12a].
Based on this model, they create a prototype and let users interact with it. Depending
on the role a user takes, they are presented different prototype visualizations, according
to the activities their role is responsible for as determined in the initial process model.
The interactions between user and prototype are not only recorded for evaluation, but
also for reuse in subsequent prototyping sessions. For example, consider a process that
requires role A to contact role B via email. When a user executes the prototype in role
A, all interactions are recorded, including the email the user writes to role B. If the
prototype is then executed in role B, the email composed previously by user in role A is
reused and presented to the current prototype user, thus making the evaluation of the
prototype much more realistic. All data gathered from prototype usage is fed into refine-
ment of the prototype and the underlying process description. Although the approach
of Gabrysiak et al. is called “scenario-based prototyping”, it actually operates on the
level of abstraction of use cases, which are related to each other via BPMN. Although
the prototypes can be generated automatically, the underlying BPMN model needs to
be created manually and thus requires knowledge in the use of BPMN. Additionally,
the approach only describes how to create generic prototypes to evaluate interactions
between roles and does not explain how a prototype with a specific user interface is to
be modeled or generated.

44

Chapter 5

The Script Model

As presented in the previous chapters, scenarios and prototypes are valuable aids in
developing systems with a focus on user-centered design. Narrative scenarios, which
are expressed in natural language and using terms of the application domain, provide
stakeholders with a concrete description about how interactions with the future system
are supposed to take place. As no prior training in formal notations is necessary in order
to read a scenario, every stakeholder can contribute to the requirements specification of
the system. As explained in Chapter 4, prototypes can be produced for several purposes.
With a focus on user-centered design, they are suited best to either communicate the
visual appearance of the future system, or to evaluate how the system best fits into a
context of use, be it a business process or the users’ everyday life.

In this dissertation, the focus is on the latter way of using prototypes, especially
during the early stages of software development, where the goal is to explore different
alternatives for the design of the user interface, and hence the ways users are supposed
to interact with the system. Instead of focusing on a single solution too early, different
possible solutions are evaluated with stakeholders to ensure that a best fit can be found.
For designers, this requires a willingness to create and also dispose of designs in a quick
and iterative manner. Hence, the use of low-fidelity prototypes that can be created
without much effort is the preferred approach in this stage of development [Won92,
STG03, RSI96, VSK96], which is also recommended by ISO standard 9241-210 [ISO10].
Additionally, the ISO standard recommends to create prototypes that allow stakeholders
to solve some realistic task in order to gather sensible feedback.

As has been shown by Rudd et al., the level of fidelity of a prototype influences the
kind of feedback that is gathered from users [RSI96]. They found out that low-fidelity
representations are more suitable if feedback on general issues is wanted, like the flow of
interactions as compared to details of the screen layout. On the other hand, Walker et
al. found out that the level of fidelity and the type of presentation (electronically or on
paper) did not influence the quality of the feedback they collected [WTL02]. Hence, they
promote to use whatever approach fits best into the current state of a project. Especially,
they promote to use low-fidelity prototypes, no matter if on paper or electronically, in
the early stages of development, where quick iterations and modifications are necessary.
As part of the Usability Engineering Lifecycle, Mayhew [May99] also promotes the use of

45

Chapter 5 The Script Model

Figure 5.1: Example of a screen generated with the Screen-Based Scenario Generator.
From [HY88]

low-fidelity prototypes in the beginning of a project in order to ensure that the attention
of users is focused on the interaction with the system and not on details about its visual
appearance.

Narrative scenarios and prototypes have some major drawbacks if they are used sepa-
rately. Narrative scenarios need to be enhanced with visualizations, as natural language
is not suitable for describing user interfaces. Adding static images alone is not sufficient,
as they do not enable users to experience what the interaction with the system will feel
like. Prototypes on the other hand can provide the interactiveness scenarios are miss-
ing. They also allow to evaluate which role a system might take in a given context by
handing them to users and letting them gather experience on their own. But more often
than not, the interactions that have been realized with a prototype are not documented
[Sch96]. Additionally, they cannot convey any information about the context in which
a system is used.

In order to exploit the usefulness of scenarios and prototypes to their biggest extent,
they should not only be applied side-by-side. The combination of scenarios and proto-
types can yield benefits that are greater than their isolated use. Weidenhaupt et al.
conducted a study where they analyzed 15 projects regarding the use of scenarios. The
results showed that two-thirds of the projects used both scenarios and prototypes, which
was beneficial if not crucial to project success according to the interviewed project leads
[WPJH98]. The study also revealed that a major problem was to keep scenarios and
prototypes in sync, for which no tool support exists yet.

However, the idea of combining scenarios and prototypes is not new. Already in 1988,
the Screen-Based Scenario Generator [HY88] relied on a combination of scenarios and
prototypes. As its prototypes are restricted to terminal-based menu driven programs,

46

scenario prototype interaction meta model

scenario prototype structural
meta model

scenario meta model

interaction meta model

Figure 5.2: Overview of the Script model, which consists of the scenario meta model,
the interaction meta model, the scenario prototype structural meta model
and the scenario prototype interaction meta model

as depicted in Figure 5.1, it is unattractive for modern application development. More
important, the scenarios that drive the prototypes are not explicitly accessible by the
user, but hidden in the prototype logic, which diminishes their usefulness as narrative
descriptions of user-system interactions.

The problems described above lead to the development of the Script (scenario-
driven prototyping) framework and the model it is based on, which is presented in
this chapter. The Script model provides a meta model for defining scenarios and
prototypes, and has been developed iteratively, based on discussions with colleagues,
an analysis of available commercial tools in this area, and interviews with professionals
who are concerned with design and prototyping [Fel12]. The prototypes that are in the
focus of the Script framework are limited to a specific flow of interactions, namely the
one defined by the related scenario. Hence, the prototypes of the Script framework
are called scenario prototypes. An overview of the meta models that belong to the
Script model is shown in Figure 5.2.

As scenarios and scenario prototypes that are created using the Script framework
are represented as models, they can be integrated with other requirements specification
tools, either by exchange of model elements or by directly integrating tool support for
the Script framework into an existing tool. The latter way of integration is preferred
as it ensures that artifacts are kept in one place and that they are directly accessible in
later phases of the development.

The chapter is organized as follows: Section 5.1 presents the scenario meta model and
the interaction meta model, which define the structure of a scenario and the interactions

47

Chapter 5 The Script Model

scenario meta model

interaction meta model

name
UsageScenario

ScenarioPart

*

description
Action

textRange
actionAttribute

ActionParam*

triggers ▶UserAction SystemAction*

{ordered}

{ordered}

InteractionDescription

text
ContextDescription

*

Figure 5.3: Scenario meta model and interaction meta model

described by it. This part of the model is independent of the technology used for building
the system and thus applicable to any kind of scenario. These two meta models constitute
the first part of the Script model. The second part of the Script model allows to
defines a scenario prototype that enables the user to evaluate the role of the system in
its context. This part of the Script model is realized by the scenario prototype structural

meta model described in Section 5.2, and the scenario prototype interaction meta model

described in Section 5.3. As the meta models have relationships defined between each
other, changes to artifacts based on one model can be propagated to artifacts based on
the other models, thus keeping them consistent. Section 5.4 explains how scenarios and
scenario prototypes are related to each other regarding their multiplicity, and Section 5.5
discusses criteria that determine the applicability of the Script framework.

5.1 Scenario Meta Model and Interaction Meta
Model

The first part of the Script model is targeted at modeling scenarios and the interactions
they describe. The focus is on usage scenarios, which describe the interactions between
user and system on a very detailed level, like entering values in input fields and pressing
buttons. This level of detail is necessary to thoroughly evaluate the role of a system, as
more abstract descriptions leave too much room for diverging interpretations.

48

5.1 Scenario Meta Model and Interaction Meta Model

The scenario meta model and interaction meta model can be seen in Figure 5.3. The
scenario meta model consists of a UsageScenario that has a name and acts as a container
for the scenario content. It contains multiple ScenarioParts, which carry the content of
the scenario. A ScenarioPart can either serve as a ContextDescription or as an Interaction-

Description. In the former case, it provides information about the context of system usage
instead of describing any user–system interaction. This information is stored in the text

field of a ContextDescription. In the latter case, an InteractionDescription serves as a
bridge to the interaction meta model by referencing an Action from the interaction meta
model.

The interaction meta model describes concrete interactions between user and system
independent of the technology used for realization of the system. In the interaction meta
model, the abstract class Action provides a textual description of the action that takes
place. These actions differ in whether a user or the system performs the action, hence
two more specific types of Action exist, which are UserAction and SystemAction. For
every UserAction, the system needs to give some feedback in order to inform the user
that it received their input. Otherwise, the user does not know if the system recognized
their input and might even think that the system has crashed [Nor02]. Hence, the
UserAction has an association to the SystemActions it triggers and which represent the
confirmation of the system that it received the input from the user.

Based on this meta model, the following instantiations regarding ScenarioParts and
Actions are possible, which are depicted in Figure 5.4:

1. A ScenarioPart provides information about the context of a scenario. In this case,
the ScenarioPart is of type ContextDescription and holds the relevant information
as narrative in its text field.

2. A ScenarioPart represents an action performed by the user. In this case, the
ScenarioPart is an instance of type InteractionDescription and has an association
to a UserAction, where the description of the UserAction verbally explains what
action has been performed by the user. As the system needs to give some feedback
that shows that it correctly understood the user action, one or multiple System-
Actions should be connected to the UserAction via the “triggers” association.

3. A ScenarioPart represents an action that has been triggered by the system and
not as a response to a UserAction. The instance of ScenarioPart is also of type
InteractionDescription. This is the case when the system has been activated for
some other reasons such as the countdown of a timer, the receipt of an email or
the like. While this action might cause a reaction by the user, it does not trigger
it like in case 2, as the user is not part of the system.

Note that both the ScenarioParts of a UsageScenario, as well as the SystemActions
triggered by a UserAction are ordered. Their ordering reflects the chronological order
in which the actions take place. The model does not explicitly provide any means

49

Chapter 5 The Script Model

:SystemAction:SystemAction

:ContextDescription :InteractionDescription : InteractionDescription

:UserAction :SystemAction

:SystemAction

1 2 3

Figure 5.4: Possible instantiations of the scenario meta model and interaction meta
model

for expressing parallelism. Should it be necessary to describe events that happen in
parallel, where each event starts with some action and ends with some action, they
can be converted to a sequential order of actions as follows: Assume two events e1

and e2 are supposed to happen in parallel. At the beginning of each event, the system
displays to the user that it starts processing, and at the end it displays that it has
finished. Hence, each event can be decomposed into a starting SystemAction starti

and an ending SystemAction endi, which can then be arranged in sequential order as
desired. In case event e2 happens while event e1 is running, the resulting sequential
order of SystemActions would read: start1–start2–end2–end1. As a reminder, the aim
of the model is not to provide an exact requirements specification, but rather to provide
stakeholders with an idea about how interactions with the system might behave.

The interaction meta model also defines the ActionParam, of which each Action might
have multiple instances. Each ActionParam represents a part of the Action’s description
that is relevant to the execution of that Action. As an example, there might be a
UserAction where a user enters her name into a text field. The description of the Action
might thus read “She enters ’Lisa’ as her name.” This sentence contains the information
that the value “Lisa” is entered into the system. In order to make this information
accessible by specialized subtypes of Action, an ActionParam can be instantiated. More
information about ActionParams is given in Section 5.3, where the interactions between
user and system are detailed.

In the interaction meta model, no reference to any kind of technology, like voice input
or gesture recognition, is made. Scenarios and interactions that are defined with this

50

5.2 Scenario Prototype Structural Meta Model

model may use any kind of technology, either existing or yet to be developed. The
model is only intended to keep information about which interactions take place in which
order, but nothing about how they are supposed to be realized. The details about the
interactions are stored as plain text in the description field of an Action. This makes it
applicable for a broad range of software development.

In order to derive a narrative scenario representation readable for a stakeholder, the
texts of all ScenarioParts and descriptions of attached Actions are concatenated. The
resulting text shows a close resemblance to a narrative scenario. An editing tool for
the scenario meta model and interaction meta model should try to make the duality of
model and textual representation as unobtrusive as possible in order to allow system
designers to work with it even if they are not familiar with modeling. A description of
the prototypical tool developed in the scope of this dissertation is given in Chapter 7.

5.2 Scenario Prototype Structural Meta Model
The second part of the Script model is concerned with modeling scenario prototypes
and the interactions that are defined by them.

As could be seen in Chapter 4, prototypes can be built for many different purposes.
The prototypes that are supported by the Script model are strongly related to paper
prototypes, only that they exist digitally. In order to get a better understanding of the
components that (paper) prototypes are made of, some terminology is defined upfront:

A screen defines the static structure of a coherent set of user interface elements. For
smaller mobile devices like smartphones, this typically corresponds to the whole content
of the display. On larger mobile devices like tablets and desktop-sized computers, this
typically corresponds to a window. Note that the notion of a screen is only concerned
with the static structure, not with the content that is displayed. For example, when
considering a typical mail application like Mozilla Thunderbird or Microsoft Outlook,
the screen consists of a left column showing the available mailboxes, an upper right part
that shows all available mails and a lower right part that shows the content of a selected
mail. As long as this layout does not change, the screen stays the same, no matter which
mailbox or mail is selected.

A scene is an instance of a screen, which also takes into account the content that
is being displayed. Thus, regarding the mail application example, if a different mail is
selected so that the content of the lower right part changes, this would constitute a new
scene, while the underlying screen stays the same.

The scenario prototype meta model is based on the concepts of paper prototyping as
described in Section 4.4.3. A notable limitation of paper prototypes is their restricted
ability to react to arbitrary user interaction. As all scenes that are supposed to be
presented to the user (that is, the screens with the concrete data to be displayed) need
to be prepared in advance, only a small set of possible interactions can be realized
with this kind of prototyping. Another drawback of paper prototyping comes with the

51

Chapter 5 The Script Model

scenario prototype structural meta model

position
size
rotation
visible
text

GUIElementAppearance*

name
size

GUIScene

filename
nativeSize
horizontalScrollingEnabled
verticalScrollingEnabled

GUIElementImage

*

{ordered}

0..1

Figure 5.5: Scenario prototype structural meta model

medium is uses: paper. Depending on the set of interactions that should be available
with a paper prototype, the amount of paper sheets and snippets that need to be kept
around during execution can grow huge and make the fluid operation of the prototype a
challenging task for the facilitator, who takes the role of the computer. Additionally, it
is not easy to use paper prototyping in order to evaluate mobile applications in their real
context. Finally, when a prototype design has been decided on for further refinement
and development, the paper prototype and the knowledge it contains are not easily
accessible for a developer, as they are neither digitally available nor connected to other
development artifacts.

The scenario prototype meta model provides the basis for a digital equivalent to a
paper prototype, and hence focuses on two-dimensional graphical user interfaces (GUIs),
compensating for the shortcomings mentioned above. Prototypes which are based on
this model are called scenario prototype, since they enable users to experience a concrete
scenario. An important aspect in the creation of the meta model was to keep it as generic
as possible in order to support a large number of applications, without constraining it
unnecessarily to a specific platform. Additionally, any tool support for working with the
meta model should be able to completely hide the model from the user and allow them
to create prototypes as easily as if they were doing classical paper prototyping. This
is important as to retain a spirit similar to sketching on paper, i.e. trying out various
design alternatives instead of narrowing down on one solution prematurely. In order
to maximize the acceptance of the Script framework, it needs to be usable without
requiring users to learn about or actively conform to the underlying model.

52

5.2 Scenario Prototype Structural Meta Model

The scenario prototype structural meta model is shown in Figure 5.5. The basic units
of a scenario prototype are scenes that are displayed to the user. These scenes are called
GUIScene in the meta model. A scene consists of the structure of the user interface as
well as the concrete data that is displayed, and thus resembles a single sheet in classical
paper prototyping. It has a name and a size, which can change from scene to scene.
One example of a changing scene size is a prototype for a mobile device, where the
orientation of the device changes between two scenes. This would be represented by two
scenes where width and height have been swapped.

A GUIScene consists of multiple regions that allow users to interact with the proto-
type. Such a region is called GUIElementAppearance, as it corresponds to a representation
of a user interface element. The ordering of GUIElementAppearances is important as it
defines which regions are located above others in case their borders are overlapping. This
concept is similar to layers in graphics applications. Note that a GUIElementAppearance
does not necessarily have a visual representation of its own; in many cases, it simply
marks a region on the underlying graphic a user can interact with. Each GUIElement-
Appearance has a position and size that defines the “hot zone” where a user interaction
can take place. It also has a rotation and a flag defining if it is visible or not. The latter
is of interest for defining sequences of interactions. A GUIElementAppearance can also
have a text defined with it.

As stated above, a GUIElementAppearance does not need to have an image of its
own, in which case it simply marks a region on the underlying graphic that allows for
user interaction. In case it is supposed to have a visual representation, it is linked to an
instance of a GUIElementImage. This object stores information about the file containing
the image data and the native size of the image. By default, an image is scaled to fit
the size defined by its GUIElementAppearance. In order to work with long lists and
other elements that do not fit into a scene completely, horizontal and vertical scrolling
can be enabled separately for a GUIElementImage. For example, consider the region
constituting a GUIElementAppearance and the image of a list shown in the left part of
Figure 5.6. If no scrolling mode was set, then the image would be displayed as in part (a).
If verticalScrolling was enabled, then the image would be displayed as in part (b). The
lower dotted gray part of the image in part (b) would not be visible, but instead the user
could scroll inside the region defined by the GUIElementAppearance in order to access
the lower part of the image.

A GUIElementAppearance can also have a text defined with it. This is because with
classical paper prototyping, every text that is shown to the user either needs to be
prepared as a separate piece of paper with the text on it, or the text needs to be written
onto the underlying picture during the prototyping session. For a scenario prototype,
this means that every text to be displayed would need to be available as a separate image,
which causes a lot of additional work for the designer of the prototype. As entering and
displaying text is a common interaction on GUIs, the model allows to specify a text for
a GUIElementAppearance that should be displayed inside the region it defines. This is
not only relevant for the static model of a scenario prototype, but especially when it

53

Chapter 5 The Script Model

Entry
Entry

Entry

Entry

Entry

Entry
Entry
Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

GUIElementAppearance

Image

(a) (b)

Figure 5.6: Example of GUIElementImage without (a) and with (b) scrolling enabled

comes to specifying the interactions between user and system that are described in the
next section.

As can be seen by the aggregation of GUIElementAppearance to itself, it is possible
to nest GUIElementAppearances inside each other. The child objects are only visible
and active when their parent objects are visible and active. In case a GUIElement-
Appearance has a GUIElementImage and at least one type of scrolling is active, child
GUIElementAppearances can also be located on the protruding part of the image. For
example, on the list shown in Figure 5.6 (b), it is possible to create a child GUIElement-
Appearance on the lowest item of the list. In this case, the user of the prototype had to
scroll down the list in order to activate it.

Typically, a GUIScene consists of at least one GUIElementAppearance that fills the
whole space of the GUIScene and that has an image attached to it. This images con-
stitutes the background image of the GUIScene. Multiple GUIElementAppearances can
be located “on top” of it, i.e. in layers above it, which means they are positioned fur-
ther behind in the list of GUIElementAppearances of the GUIScene. These additional
GUIElementAppearances either bring their own visual representation that adds up to
the resulting scene that is displayed to the user, or they have no image attached, in
which case they mark regions on the background image users can interact with.

As an example, consider the case of a simple login dialog displayed in Figure 5.7.
Part (a) shows the final GUIScene presented to the user. Part (b) displays how this
scene is composed of single GUIElementAppearances, which are recognizable by their
blue border. On the lowest level, a GUIElementAppearance is positioned that has an
image which contains the texts “Login” and “Password”, and areas for entering text.

54

5.3 Scenario Prototype Interaction Meta Model

(a)

(b)

Figure 5.7: Example of layering in a GUIScene. Part (a) shows the resulting scene, part
(b) shows the division into single GUIElementAppearances

Note that these are part of the image and provide no functionality by themselves. In
order to allow the user to click on the text fields and enter text, the upper two GUIEle-
mentAppearances are added that have the same size as the text fields, but no image
of their own. This way, interactivity can be added to otherwise static images. The
“Cancel” button and “OK” button are not part of the underlying graphic and thus two
GUIElementAppearances are added that have an image of their own. All images that
are defined via GUIElementAppearances are merged when a GUIScene is presented to
the user.

5.3 Scenario Prototype Interaction Meta Model
This section describes the concrete UserActions and SystemActions that are defined for
a scenario prototype. As a reminder, a scenario prototype is only concerned with the
interactions between user and system, not the internal operations of the system. Hence,

55

Chapter 5 The Script Model

scenario prototype interaction meta model

newPosition
MoveAction

newVisibility
ShowHideAction

newSize
ResizeAction

newText
SetTextAction

transition
ChangeSceneAction

duration
delay

SingleAction

*

GUIAction

ParallelActionGroup

◀ actionTarget
ChangeAppearanceAction

newRotation
RotateAction

UserClickAction

◀ newScene

◀ performedOn

scenario prototype structural meta model

position
size
rotation
visible
text

GUIElementAppearance*

name
size

GUIScene

filename
nativeSize
horizontalScrollingEnabled
verticalScrollingEnabled

GUIElementImage

*

{ordered}

0..1

scenario meta model

interaction meta model

name
UsageScenario

ScenarioPart

*

description
Action

textRange
actionAttribute

ActionParam*

triggers ▶UserAction SystemAction*

{ordered}

{ordered}

InteractionDescription

text
ContextDescription

*

Figure 5.8: Complete model of Script

the scenario prototype interaction meta model is restricted to modeling the behavior of
the GUI.

The complete Script model can be seen in Figure 5.8. For the scope of this disserta-
tion, only a UserClickAction has been defined in the scenario prototype interaction meta
model as concrete type of UserAction, linking to the GUIElementAppearance on which
the action can be performed. While the restriction to UserClick is certainly a limitation,
to click (or to tap on a device with touch input) is still one of the most important user
actions on a GUI, and other user actions can often be substituted by clicking. For ex-
ample, in a system that is operated with a touch interface, instead of allowing the user
to swipe on an element, a small arrow can provide the same functionality when clicked.
Although the feel of the interaction is different than in the final system, the evaluation
of the role of the system is not compromised, regarding the classification of prototypes

56

5.3 Scenario Prototype Interaction Meta Model

by Houde and Hill (see Section 4.2.4). However, the scenario prototype interaction meta
model is intended to be extended to support other user actions as well.

The case of a user entering data requires special attention. The scenario prototype
follows the sequence of actions that are defined by a scenario, thus only the data defined
in the scenario can be entered. Whenever users enter data into a system, they need to
be able to see if the system has recognized their input. In the case of textual input via
keyboard, typically the entered characters are echoed on screen. In terms of the scenario
prototype meta model, the action of a user entering data is realized as a combination of
a UserAction, that represents the user clicking on a GUIElementAppearance where they
want to enter some data, and a resulting SystemAction, that defines how the system
displays the data that the user entered, as defined in the underlying scenario. In other
words, the system skips the details of data input by the user and immediately displays
the result to the user, i.e. the entered data. In case of a mobile application, where
data is typically entered with an onscreen keyboard, an intermediate step can be defined
where the image of an onscreen keyboard appears, and a click on the keyboard results
in the data being filled in automatically. Though possible, it is normally not useful to
define a prototype that requires the user to enter each and every character manually,
as the text that can be entered is predefined in the scenario and most users are already
familiar with the concept of a keyboard.

The main part of the scenario prototype interaction meta model is dedicated to the
possibilities for the system to react to a UserAction. This model is focused on 2D GUIs,
but it is possible to extend the model in order to build prototypes with, for example
audible SystemActions like playing an alarm sound or speech output, by subclassing
SystemAction accordingly. Each SystemAction can either be realized by a SingleAction

or a group of ChangeAppearanceActions that take place in parallel, as described below.
A SingleAction defines a duration and a delay for its execution.

Two types of SingleActions can be distinguished: actions that operate on a GUI-
ElementAppearance, and actions that change the currently visible scene. For a Change-

SceneAction, a transition can be specified that describes if and how the change of scenes
should be animated. As the available transition types depend on the platform the proto-
type is developed for, they are not specified in the model, but can instead be stored with
textual identifiers, e.g. “flip”.

The other type of SingleAction is the ChangeAppearanceAction. It is performed on
a targeted GUIElementAppearance, which can also be the one that triggered the ac-
tion. ChangeAppearanceActions can be further refined into actions that modify single
parameters of a GUIElementAppearance. For example, a ShowHideAction results in a
GUIElementAppearance to be displayed or hidden once the action is performed. This is
especially useful if the targeted GUIElementAppearance has an image attached, so that
the image appears or disappears on the user interface of the scenario prototype.

Multiple sequential animations can be realized by using multiple SystemActions, each
corresponding to a SingleAction or a ParallelActionGroup, which can contain multiple
ChangeAppearanceActions. The delay parameter inherited from SingleAction can be

57

Chapter 5 The Script Model

used to precisely coordinate multiple ChangeAppearanceActions that are grouped in a
ParallelActionGroup.

As mentioned in Section 5.1, the ActionParam in the interaction meta model allows to
access values that are defined in the description of a scenario. This is mostly of interest
in combination with the SetTextAction. Consider again the example of a UserAction
where a user enters her name into a text field. Assume the description of the Action
reads “She enters ’Lisa’ as her name.” Instead of setting the attribute newText of the
SetTextAction manually to the value “Lisa”, the SetTextAction can refer to an Action-
Param that identifies the part of the scenario text that contains the value to be used in
the action. Thus, changes in the scenario description get immediately reflected in the
scenario prototype.

The combination of all four models allows to simultaneously develop scenarios and
scenario prototypes while ensuring that both stay consistent. Each user–system interac-
tion of a scenario is represented by an InteractionDescription and is linked with either
a UserAction or a SystemAction of a scenario prototype, which adds interactivity to
it. Conversely, the InteractionDescription connects each Action in a scenario prototype
to a scenario, which provides context information with its ContextDescriptions. These
connections enable developers to navigate between scenarios and prototypes, and allow
tools to automatically check for consistency. Additionally, the meta model for scenarios
and scenario prototypes makes them accessible to developers in subsequent development
steps on a fine-grained level.

5.4 Relationship between Scenario and Scenario
Prototype

A prototype in the general sense enables users to experience an arbitrary number of
user–system interactions. It can allow users to enter arbitrary data, either without
actually influencing how the flow of events in the prototype proceeds, or it contains some
business logic that correctly responds to the user input. The latter type of prototype
most certainly requires some programming effort in order for such a prototype to be
realized.

The type of prototypes that are in focus of the Script framework are scenario proto-
types. These prototypes can be classified in that they do not allow arbitrary user input,
but only data that has been predefined in a related scenario can be entered during the
execution of the prototype. Still, a single scenario prototype might allow several scenar-
ios to be traversed. To some extend, this can also be realized with the scenario prototype
model presented in this dissertation, as described next.

In order to construct a deterministic scenario prototype model, each GUIElement-
Appearance must only be related to one instance of a specific subclass of UserAction.
Otherwise, e.g. if two UserClickActions were related to one GUIElementAppearance, it

58

5.5 Criteria of Applicability

would be undefined which UserClickAction is activated once a user clicks on the GUI-
ElementAppearance. However, a UserClickAction might relate to multiple ScenarioParts
that belong to different scenarios, e.g. scenarios that describe normal and exceptional
behavior, where certain interactions overlap. If multiple subclasses of UserAction are
available, they can be used to specify different system responses to UserActions on a
GUIElementAppearance, depending on the type of UserAction. These can also be part
of different scenarios.

Regarding GUIScenes, it is possible to reuse a GUIScene for multiple scenarios if dif-
ferent GUIElementAppearances of the GUIScene are relevant for the different scenarios.
For example, consider a GUIScene that depicts a main menu with three options. In
one scenario, the first option is selected, and in another scenario the third option is
selected. In this situation, the same GUIScene might be used for both scenarios, with
two GUIElementAppearances, one for the first option and one for the third. Each of the
GUIElementAppearances specifies the system reactions as defined by their respective
scenario. This kind of GUIScene reuse might of course also be relevant for the sequence
of interactions of a single scenario.

Although possible, the representation of multiple scenarios with a single scenario
prototype is not recommended, as it bears the potential risk of unintentionally mak-
ing changes to interactions of one scenario while editing another scenario. The apparent
advantage of having to change less GUIScenes when adjustments are necessary can easily
become a disadvantage. When it comes to evaluate different design alternatives, intro-
ducing high coupling too early in the beginning of a project can hinder the exploration
of the design space.

5.5 Criteria of Applicability
As has been presented in Chapter 4, the field of prototyping is very broad. Instead
of trying to support all possible kinds of prototyping, the Script framework has been
developed to support a focused set of prototyping situations. In the following, the criteria
that influence the applicability of the Script framework are discussed.

5.5.1 Platforms
In order to determine the applicability of the Script framework for a given platform, a
distinction has to be made between the scenario meta model and interaction meta model
on the one hand, and the scenario prototype meta models on the other hand.

As described before, the scenario meta model and interaction meta model make no
reference to any technology used for realizing interactions. Their only focus is on struc-
turing the interactions that take place between user and system, and they do not model
the way how these interaction are realized. Their use is thus not limited to any technol-
ogy, like a certain platform or interaction technology.

59

Chapter 5 The Script Model

In contrast, the scenario prototype meta models that are presented in this disserta-
tion have a clear focus on the development of two-dimensional graphical user interfaces
(2D GUI). They are concerned with the description of prototypes that allow users to
experience the interaction with a system. Hence they can be applied for evaluating any
kind of system that utilizes a 2D GUI, independent of the operating system or hardware
platform. Potential types of systems reach from classical desktop applications, to appli-
cations for mobile devices such as mobile phones and tablets, to embedded devices with
a graphical user interface, assuming their ability to play back the prototype in order to
evaluate it in its destined context.

5.5.2 Modes of Interaction

Regarding the interaction meta model, virtually any type of user–system interaction can
be expressed, as the interaction meta model only defines an abstract UserAction. In the
description of the action, any existing or novel interaction mode can be described. When
it comes to the definition of an according prototype, a textual description is no longer
sufficient, but instead subclasses of UserAction need to be defined in order to derive a
prototype from the model.

For the scope of this dissertation, only a UserClickAction has been defined in the
scenario prototype interaction meta model as action that can be performed by a user.
As already argued in Section 5.3, while this is certainly a limitation, to click (or to tap
on a device with touch input) is still one of the most important user actions on a GUI,
and other user actions can often be substituted by clicking. For example, in a system
that is operated with a touch interface, instead of allowing the user to swipe1 on an
element, a small arrow can provide the same functionality when tapped. Although the
feel of the interaction is different than in the final system, the evaluation of the role of
the system is not compromised, regarding the classification of prototypes by Houde and
Hill (see Section 4.2.4).

However, it is possible to extend the scenario prototype interaction meta model with
additional ways for users to interact with a prototype. For example, a UserSwipeAction
could be defined, with specializations depending on the direction of the swipe.

When it comes to evaluate interaction modes that require more sophisticated interac-
tion patterns like speech input, the scenario prototype meta model is no longer suitable.
In these cases, other prototyping techniques, which most likely also require some amount
of manual programming, should be chosen.

1A swipe is an interaction, typically on a device with touch input, where the user puts their finger on
the device and moves it into a direction while simultaneously lifting the finger up, as if giving the
underlying GUI element a drift.

60

5.5 Criteria of Applicability

5.5.3 Degree of User Interface Content Change
The interactivity of a scenario prototype is defined by UserActions and the resulting
SystemActions. In the scenario prototype interaction meta model presented in this dis-
sertation, the possible UserActions have been restricted to UserClick, and the available
SystemActions comprise moving, rotating and scaling GUIElementAppearances, mak-
ing them visible or invisible, and setting the text that is displayed by them. While
these actions already allow to express many user–system interactions, still not all kind
of systems can be prototyped.

This is especially true for systems with a high degree of user interface content change.
This means that an important part of the system functionality results in a frequent
change of large portions of the user interface. Typical examples of such systems are
games, especially realtime games that allow to move in a three-dimensional space, and
software like drawing tools, whose main focus is on the manipulation of a canvas-like
interface. While it might still be possible to prototype certain aspects of these kinds of
systems, the designer needs to consider if the simplifications that have to be made too
strongly limit the usefulness of the prototype.

5.5.4 Amount of User–System Interaction
The amount of user-system interaction is not only relevant for the Script framework,
but for all prototyping approaches that aim at evaluating the role of a system in its con-
text. For systems with only a very small amount of user–system interactions regarding
frequency and complexity, the application of role prototyping (see Section 4.2.4) might
not be necessary. Instead, once the small set of interactions has been identified, addi-
tional effort should be invested to make those interactions as user-friendly as possible.

However, as soon as the interactions between user and system happen more frequent
and/or consist of more than only a very simple flow of interactions, it is strongly recom-
mended to apply the Script framework from the very beginning of development.

61

Chapter 5 The Script Model

62

Chapter 6

Application of Script

In the previous chapter, the models of the Script framework have been described. This
chapter deals with the details of applying the Script framework in the context of a
software development project.

The chapter is organized as follows: Section 6.1 describes the activities that are in-
volved in applying the Script framework in a development effort. Section 6.2 explains
how the Script framework can be integrated into existing software development life-
cycles. Section 6.3 describes two ways in which the Script models can be traversed.
Section 6.4 discusses potential sources of graphics for use in scenario prototypes and their
suitability regarding the intention of the Script approach. Section 6.5 explains how
scenarios and scenario prototypes that result from application of the Script framework
can be used for subsequent requirements specification activities. Section 6.6 shows how
static documents, such as textual descriptions and storyboards, as well as videos can be
automatically generated from the Script models.

6.1 Activities in the Script Framework

The activities that belong to the Script framework are part of the requirements elicita-
tion phase (see Section 2.2). The activities that are involved when applying the Script
framework can be seen in Figure 6.1 as a UML activity diagram. The swim lanes depict
which activities are to be executed by which role. Activities that are located on the
border of a swim lane require participation of multiple roles.

The Script framework involves two main roles: that of a designer and that of an user.
Note that both roles may be filled by multiple persons. Designers are concerned with
building the system, more specifically with defining the flow of interactions and creating
a first draft of the user interface, while users are eventually going to use the system
once it has been developed. They possess knowledge about the application domain and
current work practices on a very detailed, operational level. They must not be confused
with other stakeholders like clients, who fund the project, but often do not have such
detailed knowledge about work practices. The success of a project may well depend on
the ability to get access to real users, while often it might not be easy to achieve this.

63

Chapter 6 Application of Script

Designer User

Elicit initial
scenarios

changes
necessary?

Evaluate scenario
prototypes

Create initial
scenario prototypes

Refine scenario
prototypes

Refine scenarios

[yes]

[no]

Analyze problem
statementProject Kickoff

Requirements
Analysis

Figure 6.1: Overview of the activities involved for applying the Script framework

The designer starts by analyzing the problem statement that has been provided by the
client in order to get a first impression about the general direction of the project. This
includes a first definition of the set of users involved and the tasks they need to perform
with the system. In the next step, designer and users come together to derive an initial
set of scenarios. Standard scenario elicitation techniques as described in Section 3.3 can
be used for this activity. As usual, focus should be set on covering both typical scenarios
as well as examples of exceptional, but likely scenarios.

After that, it is the task of the designer to create an initial set of scenario prototypes
according to the developed scenarios. Once they are finished, scenarios and scenario
prototypes get evaluated by the users. If the evaluation shows that either a scenario or
a scenario prototype requires changes, first the scenarios are reviewed together with the
users. When designer and users agree on the state of the scenarios, the designer adjusts
the scenario prototypes in order to reflect the changes. Note that the decision point
“changes necessary?” also refers to the need for new scenarios or the deletion of existing
scenarios. In the latter case, it is advised not to completely dispose of the already defined
scenarios and scenario prototypes, but rather to keep them and mark them as no longer
relevant, which might change at a later time.

64

6.2 Script in Development Lifecycles

Once the set of scenarios and scenario prototypes requires no more changes, so that
the decision point “changes necessary?” can be answered with “no”, development pro-
ceeds and the resulting artifacts can be used in subsequent development activities like
requirements analysis.

6.2 Script in Development Lifecycles
The activities of the Script framework are designed to be part of a development lifecycle
that eventually results in delivering a running system.

The Script framework has the advantage that it is not intrusive with respect to the
development lifecycle. It consists of requirements elicitation activities that only require
the underlying lifecycle to have a phase for developing system requirements. As can
be seen in Figure 6.1, the Script framework in itself allows iteration. This however
does not limit its applicability for iterative development lifecycles. Even in a mostly
sequential lifecycle, the Script framework could well be applied, as it does not enforce
iterations crossing the boundary of the requirements phase.

These properties makes it just as suitable for any iterative and incremental develop-
ment lifecycle as well. The description of the Script activities in Section 6.1 did not
mention anything about completeness of the set of scenarios and scenario prototypes.
This is by intention, as it is up to the underlying development lifecycle to decide when
the critical mass for proceeding to the next development activity has been reached.
This allows to build systems iteratively and incrementally, adding additional scenarios
in every iteration.

Regarding the development methodology, however, the Script framework does make
some assumptions. It requires the willingness to apply user-centered design (UCD)
techniques, most importantly scenarios and prototyping, which form its basic principles.
The Script framework can be considered a UCD method itself. However, it tries to
bridge the gap between UCD and software engineering by providing a model that makes
the resulting artifacts accessible for later phases of the development.

6.3 Sequence of Model Traversal
The activities presented in the Section 6.1 suggest a use of the Script model that starts
with the scenario meta model and interaction meta model for modeling scenarios, and
then moves on to the scenario prototype structural meta model and interaction meta
model for defining the related prototype. This corresponds to the path labeled (a) in
Figure 6.2.

Another sequence of model traversal is also possible. In this case, a designer decides to
first build (parts of) a scenario prototype and defines the underlying scenarios afterwards.
The path labeled (b) in Figure 6.2 depicts this situation. This approach can be useful

65

Chapter 6 Application of Script

scenario prototype interaction meta model

newPosition
MoveAction

newVisibility
ShowHideAction

newSize
ResizeAction

newText
SetTextAction

transition
ChangeSceneAction

duration
delay

SingleAction

*

GUIAction

ParallelActionGroup

◀ actionTarget
ChangeAppearanceAction

newRotation
RotateAction

UserClickAction

◀ newScene

◀ performedOn

scenario prototype structural meta model

position
size
rotation
visible
text

GUIElementAppearance*

name
size

GUIScene

filename
nativeSize
horizontalScrollingEnabled
verticalScrollingEnabled

GUIElementImage

*

{ordered}

0..1

scenario meta model

interaction meta model

name
UsageScenario

ScenarioPart

*

description
Action

textRange
actionAttribute

ActionParam*

triggers ▶UserAction SystemAction*

{ordered}

{ordered}

InteractionDescription

text
ContextDescription

*

(a)

(b)

Figure 6.2: Orders of Script model traversal

in situations where a first meeting with users already took place, so that the designer
already has a general understanding of the system context and wants to quickly try out
alternative solutions. The choice of which path to follow does not need to be made
upfront, but can be changed depending on the current situation.

6.4 Graphical Input for Script

Depending on the needs of the development project, the graphics used for scenario
prototypes can come from different sources. Independent of where the graphics come
from, it is important that they still communicate a “work-in-progress” attitude to the user
of the scenario prototype. If the graphics, and hence the resulting scenario prototype,
already bear a polished and finished look, feedback from users may no longer tackle
general workflow issues, but they rather focus on details of the GUI design like layout
and choice of color or fonts. While this is valuable feedback during later stages of
development, in the beginning of a project the primary goal is to validate the flow of
interactions of a scenario. Therefore, working with images that underline the fluidity
of the details of the GUI design stimulate focusing on the relevant parts of a scenario
prototype, namely the interactions it defines. Suitable for this kind of focusing are
images that bear a sketchy look, as if they had been quickly scribbled on a piece of
paper and are thus welcome to be altered or disposed of.

The scenario prototype structural meta model has no notion of standard user interface
concepts like windows, buttons, text boxes and the like. Instead, it only knows about the
abstract concepts of GUIScenes and the GUIElementAppearances they contain. This
might seem like a limitation, as prototyping tools exist that provide the same user
interface elements that are used during implementation later on [MA93, HM03]. These

66

6.4 Graphical Input for Script

tools let designers create user interfaces by selecting standard elements from a palette
and arrange them on screen. Most of these tools provide export functionalities that not
only allow to create images of the user interface, but also to directly export them to a
development tool or even directly to code.

This apparent drawback of the scenario prototype structural meta model is in fact
one of its strengths. As it is not restricted to existing user interface libraries, it is
applicable for the design of arbitrary user interfaces, either using standard user interface
elements or designing non-standard, highly specialized designs where every screen is
designed individually. For the design of standard interfaces, it is possible to build an
editor that refines the scenario prototype structural meta model and provides a palette
of standard user interface elements, so that the resulting GUIs can be directly reused
during development.

6.4.1 Paper-Based Sketching
As with classical paper prototyping, graphics can be created with pen and paper and
be digitized afterwards for use in a scenario prototype. Many current mobile phones
feature integrated cameras with a resolution high enough to adequately capture images
which can be used for a scenario prototype. In case such a device or a similar one is
available, no additional hardware is necessary for digitizing “analog” designs. However,
the digital images may need some post-processing, as they need to be cropped to the
right size for use in a scenario prototype. In case they were photographed maybe even
more sophisticated correction of the perspective is necessary in case the photograph was
not taken completely perpendicular to the supporting underlay.

Some of this work like correction of the perspective can be automated. Sketching
sheets can be printed that contain special markers. Once they are photographed, an
algorithm detects the markers and derives the necessary perspective corrections. For
the design of GUIScenes, tool support can even go further. In case the size of scenes for
the target platform is predefined, as it is the case with mobile devices where the whole
display size should be used, sketching sheets with the previously mentioned markers and
placeholders can be printed. Once they are photographed, an algorithm can not only
derive the necessary perspective corrections, but also automatically crop the design to
the right size. Such an approach has the benefit that a designer can focus on the creation
of design alternatives completely independent of any technological restrictions. Such a
tool support ensures that the follow up effort for creating a scenario prototype is kept
at a minimum.

6.4.2 Digital Sketching
As described in Section 4.5, a broad range of tools exist that allow designers to create
sketches using electronic support. The resulting images are typically very similar to
sketches made with pen and paper and are thus just as suitable for use with the Script

67

Chapter 6 Application of Script

framework. Some digital sketching tools are geared towards the design of user interfaces,
which sometimes also include functionality to recognize the elements drawn by a designer
and replace them with standard user interface elements. This kind of automatism should
be treated with caution. If it results in the designs looking too finished, such a tool should
not be used or the automatism should be turned off if possible in order to retain the
“work-in-progress” character.

6.4.3 Building from Predefined Shapes
Many digital design tools allow to create drawings based on predefined shapes that are
available via palettes. Designers can take arbitrary numbers of those predefined shapes,
place them on their drawings and modify them to some extend regarding size, color,
etc. These tools can be divided into two subgroups: tools that are solely concerned with
creating images, and tools that are part of an integrated development environment (IDE).
Tools from the former category typically have more flexibility concerning the type of
drawings that can be created and also allow arbitrary shapes to be created. Typical
representatives of this category are Microsoft Visio or OmniGraffle by The Omni Group.
These tools can be extended by adding custom palettes with elements to choose from.
As mentioned before, it is important that the resulting drawings still reflect the “work-in-
progress” character that is necessary to elicit appropriate feedback from users. This need
has been recognized by palette creators, so that palettes with standard user interface
elements are available that look like they were sketched by hand, for example the Konigi
OmniGraffle Sketch Stencils [Kon12].

User interface design tools from the second category are targeted at the final design
of a user interface. Therefore they usually only provide user interface elements that are
available for a given platform, which restricts the creative freedom that is necessary in
the beginning of a project to evaluate the design space. Also, as they are meant to be
used for final software development, the resulting user interfaces necessarily look rather
finished, which works against the intentions of the Script framework, and should thus
be avoided.

6.5 System Specification
The Script model focuses on the description of a small but representative set of concrete
interactions between user and system. As such, it does not constitute a general model
of the system to be built, but may well be the basis for the development of such a model
that takes the role of a system specification. While certain development methodologies,
especially from the agile community, argue that such a model is not needed anyway,
many established methodologies require the existence of a formal and complete system
specification. Models created from the Script model can be the basis for and part of
such a specification.

68

6.5 System Specification

The analysis model is one of the first models that are created during software de-
velopment and that is part of the specification. It gathers and formalizes information
about the application domain and the system to be built so that it can be checked for
completeness, correctness and consistency. The analysis model consists of three parts:
a functional, a dynamic and an object model. The Unified Modeling Language (UML)
provides various diagram types for capturing and visualizing each of these models. Most
commonly used are use case diagrams for the functional model, activity, state and se-
quence diagrams for the dynamic model, and class diagrams for the object model. In
the following sections, the relationship between the Script model and selected UML
concepts are shown.

6.5.1 Deriving Use Cases
Compared to narrative scenario descriptions, the scenario meta model and interaction
meta model of the Script framework have the advantage that they already provide
some structuring for a scenario. UserAction and SystemAction as defined in the inter-
action meta model are similar to the steps in a flow of events of a use case [Coc01]. In
general, the scope of a scenario is broader than that of an use case. It captures context
information that might not show up in a use case as it does not directly influence the
interaction between user and system, and it can span many different functionalities of a
system in a sequence that may be specific for that concrete scenario. In contrast, a use
case focuses on a rather small, coherent set of interactions that are required by a user
in order to solve a single task. Another important difference between scenarios and use
cases is that a use case abstracts from concrete data used in an interaction and that it
also allows to define exceptional behavior.

The relation between the scenario meta model and interaction meta model on the
one hand, and the use case meta model on the other hand can be seen in Figure 6.3.
As a UsageScenario is meant to describe a longer thread of interactions, it can relate to
multiple UseCases that each define a coherent subset of the interactions. In case multiple
UsageScenarios exist for similar interactions in order to describe normal and exceptional
behavior, it is also possible that a single UseCase relates to multiple UsageScenarios.

A UsageScenario is divided into multiple ScenarioParts. Whenever a ScenarioPart is
of type InteractionDescription, it is related to an according Action. A UseCase typically
consists of UseCaseSteps that describe the flow of events of an interaction. UseCaseSteps
are only concerned with those parts of a scenario that relate to user–system interactions,
so that the association is between UseCaseStep and Action rather than to ScenarioPart.
The single actions defined in a UsageScenario are too detailed for a UseCaseStep, as they
also describe the specific behavior of the corresponding scenario prototype. To achieve
the abstraction necessary for a UseCase, it can be necessary to relate multiple Actions
to a single UseCaseStep. As mentioned before, there can be multiple UsageScenario
describing regular and exceptional behavior, which are both defined in the same UseCase
and which share certain UseCaseSteps.

69

Chapter 6 Application of Script

scenario meta model

interaction meta model

name
UsageScenario

ScenarioPart

*

description
Action

textRange
actionAttribute

ActionParam*

triggers ▶UserAction SystemAction*

{ordered}

{ordered}

InteractionDescription

text
ContextDescription

*

use case meta model

UseCase

UseCaseStep

*

*

*
*

*

SystemStepActorStep

Figure 6.3: Relation between scenario meta mode, interaction meta model, and use case
meta model

6.5.2 Extracting User Interface Model

The scenario prototype structural meta model focuses on the visual appearance of scenes
for use in a scenario prototype. As such, it not only defines which elements are visible
in a scene, but also which concrete data they display, which is most often determined by
their image. This is also reflected in the naming of the class “GUIElementAppearance”
in the scenario prototype structural meta model. It not only represents an element of the
user interface, but also its concrete state that is relevant for the GUIScene it is located
in, hence its concrete “appearance”.

When it comes to define the generic layout of the user interface, it is necessary to
generalize from this concrete representation in order to remove redundancies and make
the resulting user interface model more precise. The resulting model can be seen in
Figure 6.4. Multiple GUIScenes that are based on the same layout of the user interface
and that only differ in the concrete data they show, can be abstracted to a GUIScreen.
Accordingly, multiple GUIElementAppearances that represent the same logical element
can be abstracted to a GUIElement. A GUIScreen then contains multiple GUIElements
and a GUIElement can serve as a container for other GUIElements, analog to the rela-
tions between GUIScene and GUIElementAppearance. Additionally, a GUIScreen can
be related to multiple other GUIScreens, as can be seen by the many-to-many relation-
ship on GUIScreen. This association represents the possible ways of navigating between
GUIScreens. This association also constitutes the basis for visualizing GUIScreens and
the navigation paths between them in a navigation map (see Section 4.4.2).

70

6.5 System Specification

scenario prototype structural meta model

position
size
rotation
visible
text

GUIElementAppearance*

name
size

GUIScene

filename
nativeSize
horizontalScrollingEnabled
verticalScrollingEnabled

GUIElementImage

*

{ordered}

0..1

user interface meta model

*

*

position
size

GUIElement

name
size

GUIScreen

*

*

{ordered}

*

relatedScreens

*

Figure 6.4: Relation between scenario prototype structural meta model and user inter-
face meta model

The generalization of GUIElementAppearances to GUIElements is also a necessary
prerequisite for the identification of analysis model elements that is described in the
following section.

6.5.3 Identifying Analysis Model Elements
In this section, the focus is on the object model of the application domain and the
system under development. This model is called analysis model . It is represented by
class diagrams, in particular with classes, attributes, methods and associations between
classes. While attributes and methods eventually need to become part of some class, it is
possible that they are identified before their containing class has been found. Until then,
they may exist as elements in their own right. With respect to the Script framework,
both scenarios and scenario prototypes can be analyzed regarding their ability to add
to the definition of the analysis model .

Although the scenario meta model does provide some structuring of the scenarios,
the concrete content of a scenario is only available in natural language. The problem
of extracting system specifications from natural language has been tackled by various
researchers. One of the first was Abbott [Abb83, Abb87] back in 1983. Although at that
time there was yet no notion of object-orientation, his technique for extracting formal
system definitions from natural language descriptions has become the basis for many
other approaches. Kof [Kof10] and others [KNS+08] who work in the field of natural

71

Chapter 6 Application of Script

User Interface Elements

Action ElementsData I/O Elements

Figure 6.5: Roles of user interface elements

language processing (NLP) have further refined and automated this technique, which
was a purely manual task in the beginning. These approaches can also be applied to the
textual descriptions of UsageScenarios defined by the scenario meta model in order to
identify elements of the structural model.

A new possibility for identifying elements of the analysis model is posed by the scenario
prototype structural meta model. GUIScenes and GUIElementAppearances defined by
it can be used for identifying necessary elements in the analysis model . Mrdalj and
Jovanovic follow a similar approach [MJ02], but on a more abstract level. They first
define a use case model, develop according prototypes and use those to derive the required
elements of the analysis model . Although the approach sounds very similar to Script
in general, it differs in some crucial aspects. First, they assume users of their approach to
be familiar with UML, which excludes designers with no modeling background. Second,
they rely on use cases, which, although they focus on the user of a system, bear the risk
of misunderstandings and differing expectations due to their abstract level. And third,
they provide no details about where the prototypes come from, what their structure is
and how they are related to use cases. Also, no concrete description of how to identify
structural model elements from prototypes is given.

Role of User Interface Elements

In order to identify elements of the analysis model from scenario prototype meta models,
the role of each user interface element needs to be analyzed. The Venn diagram presented
in Figure 6.5 shows the possible roles a user interface element can take. Note that it
refers to single user interface elements, i.e. elements that cannot sensibly be divided into
smaller parts, like labels or single images. The total set of all user interface elements
is represented by the outer circle. It constitutes all visible elements of a user interface.
A subset of these elements may belong to the subset of Action elements, to the subset
of Data I/O elements or both. Elements from the Action subset, e.g. buttons, enable
the user to trigger some operation on the underlying system. Here, the focus is only

72

6.5 System Specification

analysis object meta modeluser interface element role

*

*

*

**

*

*

*

2

DataIOElement

ActionElement

Class

Method

Attribute

Association

Figure 6.6: Relation between role of an user interface element and analysis meta model

on actions that invoke some business logic in the underlying system, and that do not
only result in mere changes on the user interface. Elements from the Data I/O subset,
like text fields and labels, are used for data input by the user or for displaying data to
the user by the system. As the intersection shows, elements can be part of both Action
and Data I/O subset. Elements that belong to neither subset are static user interface
elements like logo images or similar.

The classification helps to decide if a user interface element relates to an attribute, an
association or a method of a class in the analysis model , as visualized in Figure 6.6. The
roles from the Venn diagram in Figure 6.5 are depicted as abstract classes. User interface
elements that belong to the Action subset most likely correspond to a method in the
analysis model , where, as before, the focus is on methods that invoke some business logic
and not only perform actions on the user interface. Elements from the Data I/O subset
can relate to one or more attributes and information about one or more associations, for
example the amount of referring objects. The attributes are not required to be part of
the same class, as the intention of the user interface element can be to display aggregate
information. For user interface elements that belong to the intersection of Action and
Data I/O subsets, all of the afore-mentioned applies. Like the scenario meta model
and interaction meta model, this kind of mapping between user interface elements and
analysis model elements is technology independent and therefore not only applicable to
2D GUIs that are the primary focus of the Script framework.

Mapping between Scenario Prototype Meta Models and Analysis Model

The elements that are readily available from a scenario prototype are instances of
GUIScenes and GUIElementAppearances. However, multiple instances can represent
the same concept, only with other concrete data based on the underlying scenario. As
analysis model elements abstract from the concrete data, the more abstract notions of

73

Chapter 6 Application of Script

analysis object modelGUI prototype model

personDetails:GUIScreen

homeCountry:GUIElement

Person:Class

Country:Class

◀
 co

nt
ai

ns

refersTo ▶

refersTo ▶
name:Attribute partOf

:Association

Figure 6.7: Example for identification of attributes, classes and associations

GUIScreen and GUIElement as described in Section 6.5.2 are the primary source for
analysis model element identification.

First, GUIElements that contain no nested GUIElements are analyzed in more detail.
They correspond to user interface elements as discussed in the previous paragraph. A
single GUIElement can however contain multiple user interface elements, as this kind
of granularity may have been sufficient for the creation of the scenario prototype. So
in order to map a GUIElement to one or more analysis model elements, it has to be
decomposed into single user interface elements. This can be done by visually inspecting
the related GUIElementAppearances. Each of the contained user interface elements is
then assigned one or more roles according to Figure 6.5. Depending on the roles that
have been identified, the relation between role and meta model as depicted in Figure 6.6
can be used to decide if the element in questions contributes to the identification of one
or more analysis model elements.

In case a GUIElement has nested GUIElements, first the above described procedure
is followed for all child GUIElements. Afterwards, the procedure is applied to the con-
taining GUIElement, taking care that already identified analysis model elements from
child GUIElements are not referenced repeatedly.

GUIScreens can also contribute to the identification of analysis model elements, mostly
to the identification of Classes. Especially on mobile devices, where display size is
limited, it is likely that the whole GUIScreen is used to represent a single entity. In
case a GUIElement that is part of this GUIScreen relates to Attributes of another Class,
this also leads to the identification of Associations between the Class represented by the
GUIScreen and the Classes that contain the Attributes represented by the GUIElement.

To visualize this situation, consider the example displayed in the instance diagram of
Figure 6.7, which describes an excerpt from a typical address book application. In the
GUI prototype model, a GUIScreen called “personDetails” exists that displays informa-
tion about a person. It has a GUIElement named “homeCountry”. The GUIScreen has
been analyzed and it has been found to relate to a Class called “Person” in the analysis
model . The GUIElement displays the name of the home country that has been selected

74

6.6 Document Export

for a person, hence the Attribute “name” of the Class “Country” is identified. As the
GUIElement is part of the GUIScreen, this also triggers the identification of an Associ-
ation between the Classes “Person” and “Country”. This is depicted by the dashed lines
in Figure 6.7.

So far, only elements from the scenario prototype structural meta model have been
used for identifying elements of the analysis model . But also the Actions defined in the
scenario prototype interaction meta model can help in element identification. At a first
glance, a GUIElementAppearance that has a UserAction defined on it might look like a
good candidate for the identification of a Method in the analysis model . This has to
be treated with caution though, as a UserAction primarily relates to a change on the
user interface that does not necessarily have influence on the business logic. A typical
example where this is the case is a UserAction that is actually only concerned with a
user entering data. A more detailed description on this kind of interactions is given in
Section 5.3.

Instead, a ChangeSceneAction can be a good indicator for identifying an Association
between two Classes. Consider the case where a GUIElement corresponds to an Attribute
or a Method of Class A, and the GUIScreen that is the target of the ChangeSceneAction
corresponds to Class B. This suggests a strong relationship between those two Classes
and may hence result in the identification of an Association between them.

The heuristics presented in this section can only play a supporting role in the iden-
tification of analysis model elements from scenario prototypes. Their suitability largely
depends on the scenarios that have been realized and the way the scenario prototypes
have been constructed. The resulting analysis model will most likely not be complete,
as the available scenarios and scenario prototypes typically do not cover all aspects of
the system, but only the most relevant ones. Although manual processing still takes
a dominant role in this activity, the scenario prototype meta models can nevertheless
provide a basis for the identification of analysis model elements.

6.6 Document Export

In addition to the direct extraction of system models, the Script models allow to
export several types of documents. These can be used as a basis of discussion and for
information exchange between designers and stakeholders.

6.6.1 Static Documents

The Script models allow to generate static documents, both textual and visual. An
overview of possible combinations is given below:

75

Chapter 6 Application of Script

Text only

The first way of creating static documents is the creation of traditional, narrative sce-
nario descriptions. In order to create a textual representation of a UsageScenario, all
ScenarioParts are analyzed and the extracted text fragments are appended to each other.
For a ContextDescription, the text from the text field is extracted. In case of an Inter-
actionDescription, the text of the description field of the connected Action is extracted.
If the Action is of type UserAction, also the texts from the description fields of all
triggered SystemActions are collected.

Images only

The Script models also enable the export of scenarios as a sequence of images that
depict the state of the user interface after each interaction, without any accompanying
textual description. This way, storyboards of scenarios can be created and it can be
evaluated if the flow of screen states is understandable even without additional textual
explanations. Depending on the desired level of granularity, it can be chosen whether a
separate image, i.e. a “screenshot” should be created after each SystemAction, or only
after a group consisting of a UserAction and the SystemActions it triggered, has been
evaluated.

Combination of text and images

It is also possible to create documents that combine both the expressive power of images
and the textual explanations that compensate for ambiguities that might arise from the
visual representations alone. As in the “Images only” case above, the desired level of
granularity for image creation can be chosen. In case only an image of the visual appear-
ance before and after a group of UserAction and triggered SystemActions is exported,
the intermediate steps can be deduced from the accompanying textual description. An
example for such a type of export can be seen in Appendix A, where static exports
of the prototypes that have been used for the evaluation of the Script framework are
presented.

6.6.2 Video Generation

The Script framework is not restricted to the generation of static documents. As
scenarios are not only available in textual, unstructured format, but also have an un-
derlying model describing the flow of interactions in detail, it is possible to exploit this
information in order to create animated videos of the described interactions. Chang
and Ungar realized the importance of providing the user with visual clues of what is
happening on the user interface. They promote to use animations whenever possible
for user interface changes such as appearing, disappearing or moving windows [CU93].

76

6.6 Document Export

While their argumentation is geared towards development of user interface frameworks,
it is also applicable in the context of documenting the flow of interactions in a scenario.

Instead of creating a static document as described in the previous section, the Script
model can be used for creating a video of the flow of interactions of a scenario. To achieve
this, the ScenarioParts of a UsageScenario are analyzed sequentially. If the ScenarioPart
is of type ContextDescription, it does not describe any interaction between user and
system, but rather about the context of usage. In the resulting video, the textual
description defined by it can be displayed as a text panel or a synthesized voice-over
narration can be generated using text-to-speech technology.

Each InteractionDescription can be directly visualized by executing the UserActions
and SystemActions that it relates to. The resulting video is then similar to a screen
recording of a user interacting with the prototype, only that it does not require this
work to be done manually. Another advantage of automatic video creation over manually
creating screen recordings is that changes in the prototype can be directly reflected in
videos by simply regenerating the video. The tedious task of recreating a screen recording
every time a prototype is modified—with all potential post-processing work that can be
involved—is no longer necessary.

77

Chapter 6 Application of Script

78

Chapter 7

The Script Editor

In order to evaluate the Script framework, a prototypical tool—the Script Editor—
was implemented that allows to simultaneously edit prototypes and textual scenarios.

The current implementation allows to create prototypes for devices running on Apple
iOS. As explained above, the Script framework is applicable for all kinds of development
projects that require a user interface, be it smart phones, desktop applications, or even
embedded systems, as long as they provide a graphical user interface. The Script
Editor features a one-click integration with the iOS-Simulator, so that prototypes can
be instantly tested while editing. It is also possible to deploy a prototype on a device
running iOS and thus evaluate it in its designated context of use.

The chapter is organized as follows: Section 7.1 presents the user interface of the
Script Editor and explains how model inconsistencies are immediately communicated
to the user. Section 7.2 gives an overview of the architecture of the Script Editor
and the frameworks that are involved in its implementation. Section 7.3 presents the
components that have been used in order to set up a workflow for creating and deploying
prototypes for iOS devices.

7.1 User Interface
The user interface of the Script Editor is split into three parts, as can be seen in
Figure 7.1. On the left side is the Navigator, which displays the GUIScenes and Us-
ageScenarios that are contained in a project. GUIScenes have the icon of a small camera
and UsageScenarios that of a text page. For organizational purposes, the concept of a
folder has been added so that it is possible to give the project some hierarchical struc-
ture. Folders can be nested inside each other and can contain both GUIScenes and
UsageScenarios.

The large gray area on the upper right side is reserved for the Scenario Prototype
Editor and Scenario Editor, which will be explained in detail below.

On the lower right side, tabs for multiple views are located. The Properties view
is used for showing properties of a selected element if available. The Validation view
shows information about validation errors that occur whenever scenario prototypes and
scenarios become inconsistent. An example for this situation is given below. The Emf-

79

Chapter 7 The Script Editor

Figure 7.1: The Script Editor

Store Browser allows to define and access remote repository locations. Projects can be
published to these repositories so that they can be retrieved by other users, and changes
can be committed and retrieved from a repository. The History Browser can be used to
track the changes that have been made to a model element. Finally, the Error Log and
Console are used for debugging purposes.

In the next two sections, the Scenario Prototype Editor and the Scenario Editor are
presented in detail. Note that the Script Editor itself is still in a prototypical state and
currently requires to first create a prototype and then edit the related scenario. This
corresponds to path (b) of model traversal as explained in Section 6.3.

7.1.1 Scenario Prototype Editor

The user interface of the Scenario Prototype Editor is shown in Figure 7.2. It can be
opened up by double-clicking a GUIScene in the Navigator on the left. The editing

80

7.1 User Interface

Figure 7.2: The Scenario Prototype Editor

area has a light blue, checkered background, which makes it easier to distinguish it
from images with white background. In Figure 7.2, a GUIElementAppearance with
the scanned image of a hand-drawn menu (“Home Automation Controller”) has been
defined as background. On top of that, a transparent GUIElementAppearance is located
on the area of the pictorial “Floorplan” button, visualized by the dashed blue border.
GUIElementAppearances can be created using the “GUIElement” entry on the palette
on the right side of the editor.

As the transparent GUIElementAppearance is currently selected, a popup menu is
shown for performing actions on the GUIElementAppearance. Apart from deleting and
updating the GUIElementAppearance, an image can be set or removed, and actions
can be defined that should be triggered once a user clicks or taps on the GUIElement-
Appearance.

81

Chapter 7 The Script Editor

Figure 7.3: The Scenario Prototype Editor, showing an inconsistency between scenario
prototype and scenario, which is displayed with an error icon in the Scenario
Prototype Editor and a warning icon in the Navigator

The Properties view on the lower right shows various attributes relating to a GUIEle-
mentApperance. To ease the identification of GUIElementAppearances, a name can be
defined. In the next row, the coordinates of the GUIElementApperance are displayed,
and it can be selected whether the GUIElementAppearance should be visible by default.
This can be deselected if it should only become visible in response to an user interaction
with another GUIElementAppearance of the GUIScene.

In the next row, it can be defined to which UsageScenarios the interaction with this
GUIElementAppearance belongs. This corresponds to the association between the class
InteractionDescription from the scenario meta model and Action of the interaction meta
model. Whenever the Actions of a GUIElementAppearance are added to a UsageSce-
nario, the Script Editor automatically creates a new InteractionDescription and adds
it to the list of ScenarioPart of the UsageScenario.

The last row is used for defining the actions that should be triggered by clicking (or
taping) a GUIElementAppearance. The editor currently only supports the definition of
UserClickActions, hence it is not mentioned explicitly, but only the resulting System-

82

7.1 User Interface

Figure 7.4: The Validation view, listing an inconsistency between scenario prototype and
scenario, which is shown as a validation error

Actions are listed. Whenever the first triggered SystemAction is defined, the triggering
UserClickAction is created automatically, and removed upon removal of the last remain-
ing SystemAction. The SystemActions are executed sequentially as they are displayed in
in the list. Multiple SystemActions can be grouped in a ParallelActionGroup. When a
SystemAction is selected, its properties are shown on the right of the list. In the case of
the ChangeSceneAction shown in Figure 7.2, duration and delay are set to their default
values. The field “target” defines which GUIScene should be shown next, and the field
“transition” allows to define an effect that should be used for switching GUIScenes.

Whenever there is an action defined for a GUIElementAppearance, there also needs to
be at least one UsageScenario to which it is related. If this is not the case, there is an in-
consistency between scenario and scenario prototype, which is communicated to the user

83

Chapter 7 The Script Editor

Figure 7.5: The Scenario Editor

as an error. Consider the situation in Figure 7.3, which is similar to Figure 7.2 but no
UsageScenario has been related to the actions defined for the GUIElementAppearance.
The user is informed about this inconsistency with an error icon that is displayed on the
affected GUIElementAppearance. A warning icon is added to its containing GUIScene
in the Navigator, so that the error does not get overlooked when the respective Sce-
nario Prototype Editor is not open. Figure 7.4 shows the according error entry in the
Validation view.

7.1.2 Scenario Editor
The user interface of the Scenario Editor is shown in Figure 7.5. Apart from the name
of the UsageScenario, which can be defined in the top-most text field, the majority of
the editor is devoted to the ScenarioParts of the UsageScenario. Each ScenarioPart has
a set of control at its front, which allows to move it up or down one position, move it to
the first or last position, and delete it from the UsageScenario.

A ScenarioPart can be of type ContextDescription or InteractionDescription. If it is a
ContextDescription, it should describe the context of system usage, with no user–system
interactions taking place. To enter this information, the Scenario Editor provides a large
text field, as can be seen by the first entry in Figure 7.5.

In case a ScenarioPart is of type InteractionDescription, then for the related Action a
text field is displayed that corresponds to its description field. In case of a UserAction, a

84

7.2 Architecture

Eclipse Rich Client Platform (RCP)

Eclipse Modeling Framework (EMF)

EMFStore EMF Client
Platform (ECP) Graphiti

SCRIPT Editor

Figure 7.6: Layers of the Script Editor

text field is shown for each SystemAction that is triggered by the UserAction. Whenever
the GUIScene that is shown to the user changes, this is indicated by the name of the
newly shown GUIScene being printed in bold letters.

The behavior of deleting a ScenarioPart is slightly different depending on the type of
the ScenarioPart that is being deleted. When the ScenarioPart is of type ContextDe-
scription, it is simply deleted from the model, and hence the textual description stored
with it needs to be re-entered should it be required later on. When the ScenarioPart is of
type InteractionDescription, it is deleted from the model as well. In this case, however,
the textual descriptions are preserved, as they are part of the related actions, which
belong to the scenario prototype and hence do not get deleted. If the actions defined
in the scenario prototype are not related to any other UsageScenario, the removal of
the InteractionDescription triggers a validation error and the user is informed about the
inconsistency.

7.2 Architecture
The software architecture of the Script Editor is a layered architecture as depicted in
Figure 7.6. The lowest layer is the Eclipse Rich Client Platform (RCP) [Ecl12e]. Eclipse
RCP allows to derive native GUI applications for various operating systems, such as
Windows, Linux and Mac OS X from the same source.

The second layer is the Eclipse Modeling Framework (EMF) [Ecl12a]. EMF provides
facilities for data modeling and handling, including automatic code generation for model
classes, adapters and editors, automatic change tracking and notification, and data se-
rialization. EMF also provides a validation framework that allows to define constraints
on a model which need to hold in order for a model to be considered valid. Whenever a

85

Chapter 7 The Script Editor

JSON
prototype
definition

compiled
code

SCRIPT Editor Prototype
Converter

iOS Simulator/
Device

Objective-C
Compiler

source
code

Figure 7.7: Components of the Script evaluation setup

constraint does not hold, the validation framework throws an error, which can be han-
dled automatically by application logic, or displayed to the user. In the Script Editor,
the validation framework is used to ensure consistency between scenarios and scenario
prototypes. The Script model has been defined using EMF and the according model
classes have been generated from the model.

The third layer consists of EMFStore, the EMF Client Platform (ECP) and Graphiti.
EMFStore [Ecl12c] is a version control system similar to Subversion, but instead of files
in the filesystem it operates on models that are based on EMF. EMFStore tracks all
changes that are made to models and provides facilities to send changes to a common
repository and retrieve and apply changes of other users respectively.

ECP [Ecl12b] provides generic browsing and editing functionalities for EMF-based
models. The navigator view of ECP visualizes models in a tree-like structure, and the
generic editor of ECP provides a user interface to inspect and modify attributes of model
elements via reflection at runtime, without any manual coding necessary.

Graphiti [Ecl12d] is a graphics framework that integrates with EMF-based models and
that provides a sensible set of default functionality and behavior, so that implementation
efforts can be concentrated on the business logic. In the Script Editor, Graphiti was
used for creating the Scenario Prototype Editor.

7.3 Components of Evaluation Setup
For the evaluation of the Script framework, a set of components has been realized to
construct a workflow that allows to create prototypes for the Apple iOS platform. Parts
of it, however, are platform independent, so that workflows for other platforms can be

86

7.3 Components of Evaluation Setup

created easily. Figure 7.7 shows the components that are involved in the workflow and
the types of artifacts that are exchanged.

Just like the Script framework in general, the Script Editor is platform agnostic and
allows to create prototypes for a wide range of platforms, no matter if for mobile, desktop,
or even embedded computing. The prototypes that are created using the Script Editor
can be exported in JSON (JavaScript Object Notation) format together with all used
image files for exchange with other editors, for compilation, or for interpretation. The
advantage of the JSON format is its compact notation, which reduces file sizes e.g. for
transmission over the Internet, while still being human-readable.

In the course of this dissertation, the goal was to create prototypes that can be exe-
cuted on a device running Apple iOS. This could have been achieved by either creating a
generic playback engine that directly reads the JSON prototype definition and interprets
it on the iOS device, or by creating an intermediate tool that creates a standalone native
iOS application, which can then be deployed like any regular application. As the Apple
policies for iOS application development prohibit the creation of applications that can
load and execute additional code during runtime, the latter approach was chosen.

The Prototype Converter reads the prototype specification in JSON format and first
creates a set of Objective-C classes from it. This has the advantage that for very so-
phisticated prototypes, it is possible to intercept this step and add custom code to the
prototype. The source code is then compiled using the standard Objective-C compiler,
and the resulting application is started in the iOS Simulator or can be deployed on an
iOS device for testing in its desired use context.

87

Chapter 7 The Script Editor

88

Chapter 8

Evaluation

One of the main goals of the Script framework is to keep scenario prototypes and
scenarios consistent during development. In order to assess the effectiveness of the
Script framework with respect to this goal, a controlled experiment was conducted,
which is described in this chapter.

Section 8.1 describes the design of the experiment and the hypothesis that underlies
it. Section 8.2 gives an overview of the setup of the experiment and explains the tasks
the participants where presented with. Section 8.3 discusses the results and findings
from the evaluation.

8.1 Experimental Design
Keeping artifacts consistent means that for every change to one artifact, it has to be
determined if also changes to other artifacts are necessary, and to apply these additional
changes. As an example, a change to a contextual description of a scenario does not
require a change to a related scenario prototype in case the change of context does not
manifest in the scenario prototype. Analogously, a minor rearrangement of elements in a
scenario prototype does not require changing the related scenario. In contrast, a change
to the interactions that are realized in a scenario prototype does requires a change to
the corresponding scenario, as otherwise the scenario and the scenario prototype would
no longer describe the same flow of interactions. If changes are not properly propagated
to other artifacts, they become inconsistent.

In order to determine the effectiveness of the Script framework regarding the consis-
tency between scenarios and scenario prototypes, a quantification is needed that allows
for an evaluation. Therefore, the types of changes that are necessary in order to keep
scenarios and scenario prototypes consistent have be analyzed and according error types
have been defined.

The resulting error types refer to a propagation of changes from a prototype to its
related scenario. Although the participants of the experiment were free to decide whether
they wanted to edit the scenario prototypes or scenarios first, all of them started to edit
the scenario prototypes and adjusted the related scenarios afterwards.

The following four types of errors have been identified:

89

Chapter 8 Evaluation

E1: A scenario has not been updated at all.

E2: An action that was added to the prototype has not been added to the scenario.

E3: An action that was deleted from the prototype has not been deleted from the
scenario.

E4: An action has been put in the wrong position in the scenario.

The error E4 requires a little explanation. The Script framework allows to auto-
matically check for consistency between scenarios and prototypes, meaning that every
interaction described in a scenario has also been realized in a prototype, and vice versa.
However, only a scenario defines a chronology on the interactions via the order of its
ScenarioParts, while a prototype only defines that an interaction exists, which can be
triggered by a user. Whenever a new interaction is defined on a prototype, the Script
Editor requires the designer to also add the interaction to the related scenario in order
to keep it consistent with the prototype. As the new interaction was not part of the
scenario before, its correct position in the chronology is unknown, and hence it is ap-
pended to the end of the scenario by default. The designer then needs to bring the new
interaction to the correct position in the chronology in the scenario, otherwise this is
regarded as an error of category E4.

While the errors E2–E4 refer to single actions, E1 refers to a set of actions that should
have been edited as part of a work package. Given these types of errors, the hypothesis
underlying the experiment was formulated as follows:

H0 : The sum of errors that are made using the Script framework is equal or higher
than using separate tools for the parallel development of prototypes and scenarios.

Accordingly, the alternative hypothesis reads:

HA : The sum of errors that are made using the Script framework is less than using
separate tools for the parallel development of prototypes and scenarios.

The dependent variable of this experiment was the sum of errors each participant
made, regardless of the category the errors belonged to. This is a rather conservative
calculation, as the severity of the classes of errors can be argued to be different. When-
ever someone forgot to edit a scenario altogether (E1), they could no longer make any
error that belongs to one of the other categories (E2–E4). As each work package required
to add or remove several actions in a scenario, an error from category E1 might thus
mask several errors from the other categories, especially E2 and E3. While it would be
legitimate to substitute each error of category E1 with the maximum possible amount
of errors of the categories E2 and E3, for the sake of transparency all error categories
were treated as equal.

The independent variable of this experiment was the tool setup the participants
were provided with for solving the given work packages. It had two values, unified and

90

8.2 Tasks

separate. The unified tool setup consisted of the Script Editor for both editing scenario
prototypes and scenarios. The separate tool setup used only the prototyping features
of the Script Editor, while the textual scenarios was edited using Microsoft Word, but
without requiring any tool knowledge beyond simple plain text editing.

To account for differences in the experience of the participants, their level of educa-
tion was chosen as controlled variable and a randomized block design was applied so
that the participants were evenly distributed across the unified and separate tool setups.
When registering for the experiment, the participants had to select their level of educa-
tion, where they could choose between Bachelor student, Master student, Ph.D. student
and industry professional.

8.2 Tasks
The experiment required the participants to work on scenarios and scenario prototypes
for a fictive development project that had the goal of developing a mobile user interface
for a home automation system. The domain of home automation was chosen as it was
expected to be easily understandable by all participants, while at the same time being
unusual enough to prevent a distortion of the results due to varying prior knowledge in
the field. The scenarios and scenario prototypes that were given to the participants can
be seen in Appendix A.

The participants were split into a unified group and a separate group according to the
tool setup they had to use. Both groups were given the same initial set of scenarios
scenario prototypes and had to alter them in the course of the experiment. The ex-
periment consisted of four work packages, where each work package consisted of several
tasks. A reprint of the work packages that were handed to the participants is given in
Appendix B.

The experiment did not take place in parallel with all participants at once, but in-
dividual meetings with each participant were scheduled according to their preferences.
During the meeting, a facilitator gave a short introduction to the study and played the
role of the client for the reviews. There was no maximum working time that restricted
the duration of each experiment session, but instead the fastest three participants of
each group were promised a shopping coupon as a reward. This competition imposed
a time pressure on the participants and made it thus more similar to a real industry
project. As the experiment should resemble a project that follows an iterative develop-
ment process, the participants first received only two of the four work packages. After
successful completion of the first two work packages, they were handed the last two work
packages.

Each experiment session went as follows:

1. First, the participant received a one-page introductory document, a training video
which explained the relevant features of the Script Editor and the two initial
scenarios and scenario prototypes. They had a fixed amount of time for reading

91

Chapter 8 Evaluation

the introductory document, watch the video and get to know the scenarios and
scenario prototypes. This time did not count against their competition time.

2. Afterwards, they were handed the first two work package with tasks that required
them to alter the scenarios and scenario prototypes. The timekeeping for the
competition started with the handout of the work packages.

3. As soon as the participant felt confident that they had solved all tasks, they notified
the facilitator.

4. The facilitator then reviewed the scenario prototypes to ensure that all tasks had
been solved completely and correctly. If necessary, the facilitator requested the
participant to rework parts of the work packages.

5. If necessary, the participant fixed the parts of the work packages that needed
rework.

6. The facilitator reviewed the changes and then handed out work packages three and
four.

7. The participant worked on the new work packages and again notified the facilitator
once they were finished.

8. As before, the facilitator reviewed the scenario prototypes and requested changes
in case not all tasks had been solved as expected, which were then fixed by the
participant.

In the introductory document, the participants were informed about the course of the
experiment, including that the scenario prototypes would be reviewed during the ses-
sion. However, the introductory document emphasized that they also need to keep the
scenarios consistent with the scenario prototypes. To prevent that they unintentionally
or deliberately omitted the editing of scenarios in order to save time, the introductory
document explicitly noted that errors in the scenarios would give them a time penalty
in the final evaluation of the results.

The training video presented the Script Editor and explained all functionalities that
were relevant for solving the tasks. The participants had access to the video during
the whole course of the experiment and were encouraged to refer to it whenever they
were unclear about how to use certain functionalities. The video for the separate group
had a duration of about 5.5 minutes and for the unified group of about 12 minutes.
The difference in duration comes from the fact that the video for the unified group
explained the Scenario Prototype Editor (see Section 7.1.1) and the Scenario Editor (see
Section 7.1.2). The video for the separate group only explained the Scenario Prototype
Editor. For the editing of the textual scenarios using Microsoft Word, they did not get
an introduction, as they used only basic text editing features of Microsoft Word and
could be assumed to be familiar with it.

92

8.3 Experiment Results

Bachelor
students

Master
students

Ph.D.
students

Professionals total

unified group 3 4 3 3 13
separate group 3 5 2 3 13

Table 8.1: Distribution of experiment participants to groups

Sum of
errors
E1

Sum of
errors
E2

Sum of
errors
E3

Sum of
errors
E4

total

unified group 0 0 0 9 9
separate group 13 5 7 1 26

Table 8.2: The sums of errors that were made by the participants of each group, cate-
gorized by type of error as described in Section 8.1

8.3 Experiment Results
In total, 26 participants took part in the experiment, both students and professionals,
who were distributed between the separate and the unified group. To account for differ-
ences in the experience of the participants, a randomized block design regarding their
level of education was used, so that Bachelor students (6 total), Master students (9
total), Ph.D. students (5 total) and professionals (6 total) were evenly, randomly dis-
tributed between the two groups. The detailed distribution of experiment participants
to groups is shown in Table 8.1.

8.3.1 Number of Errors
As described in Section 8.1, the sum of all errors in all categories for each participant
was taken as measure.

The null hypothesis as described in Section 8.1 was that designers using the Script
framework make the same amount or even more errors than those who use separate tools
for editing scenario prototypes and scenarios. Table 8.2 shows the sums of errors that
the participants of each groups made, categorized by the type of error as described in
Section 8.1. To evaluate the results, the Mann-Whitney U test was chosen as the results
could not be assumed to be normally distributed and the sample size was relatively small
(n = 26). The medians of the unified and separate group where 0 and 1 errors. The
distribution of sum of errors of the two groups could be shown to differ significantly on
a .05 significance level and with medium effect size according to Pearson’s r (U = 45,
n1 = n2 = 13, Z = −2.14, p = 0.016, r = 0.42).

Hence, the null hypothesis H0 can be rejected and instead the alternative hypothesis
HA can be accepted.

93

Chapter 8 Evaluation

Apart from the statistical evaluation, it is worth mentioning that no participant from
the unified group made any error of category E1–E3, and only some of them made errors
of category E4, which means that they put actions in the wrong position in the scenario.
However, all participants of the unified group complained—with good reason—about
the poor usability of the Scenario Editor and the massive cognitive load it creates in its
current implementation. This is because due to time constraints, only a rudimentary
version of the Scenario Editor could be realized that automatically appends new actions
to the end of a scenario, and that requires the user to move the action to the right
position using up and down buttons. Whenever there are so many actions in a scenario
that it requires the user to scroll to see all actions, not loosing orientation while moving
actions becomes rather challenging. Improvements on the Scenario Editor are thus likely
to further reduce the number of errors that are made when using the Script framework.

8.3.2 Working Time
Due to the fact that the Script Editor was still in a prototypical state, it was assumed
that the unified group needs more time than the separate group for solving all tasks of
the work packages. This assumption was based on the fact that participants from the
unified group not only had to learn about the Scenario Prototype Editor, but also about
the Scenario Editor, including its usability flaws described in the previous section.

However, the evaluation of the working time showed that the average working time of
the unified group was even slightly lower than that of the separate group, if only about
one minute (1:05 hours versus 1:06 hours). The standard deviation in both groups was
rather high, with about 16.5 minutes in the unified group and about 24 minutes in the
separate group.

The slowest participants from the unified group and separate group needed 1 hour
43 minutes and 1 hour 50 minutes, respectively. The fastest participant from the unified
group needed about 43 minutes, compared to about 39 minutes for the fastest participant
from the separate group. As the difference between the fastest participants is only 4
minutes, an improvement of the Scenario Editor that results in an increased performance
of as little as 10% would suffice to bring them on a par.

8.3.3 Exit Interview
After the participants finished all work packages, they were posed a set of conclud-
ing statements that they should rate on a 5-point scale between -2 and +2, where -2
stands for “totally disagree with the statement” and +2 stands for “totally agree with
the statement”. The statements were as follows:

• S1: “The scenarios help me in understanding the scenario prototypes in the prepa-
ration phase.”

• S2: “I like the idea of using both scenarios and scenario prototypes.”

94

8.3 Experiment Results

• S3: “The Script Editor is usable.”

• S4: “It was easy to keep scenarios and scenario prototypes consistent.”

• S5: “The error and warning icons motivated me to keep scenarios and scenario
prototypes consistent.”

The last statement was only posed to participants of the unified group, as only their
tool setup allowed for automatic checks of consistency between scenario prototypes and
scenarios.

For S1, less participants of the unified group rated the scenarios helpful compared to
participants of the separate group (averageu = −0.08, averages = 0.77). Some of them
explained this with the missing possibility to view scenario texts directly in the Scenario
Prototype Editor. The responses to S2 showed that both groups were about equally
positive about the combined use of scenarios and scenario prototypes (averageu = 1.69,
averages = 1.62). In the responses to S3, there is a clear shift towards the negative
end in the unified group that used the Scenario Editor, which clearly indicates that it
needs to be improved concerning its usability and which has also been confirmed by
the participants (averageu = 0.15, averages = 1.08). However, the tool combination
seemed to reduce the subjective difficulty of keeping scenarios and scenario prototypes
consistent, as can be seen from the responses to S4 (averageu = 0.15, averages = −0.15).
Finally, the majority of the participants in the unified group considered the visualization
of inconsistencies between scenarios and scenario prototypes via error and warning icons
as a good motivation to make them consistent again, as can be seen in the responses to
S5 (averageu = 1.62).

On a side note, 23% of the participants in the separate group (3 of 13), mentioned
they wished they had been given a single tool for both editing scenario prototypes and
scenarios instead of having to switch between two tools, without knowing that this was
the setup of the unified group, which used the Script Editor.

8.3.4 Threats to Validity
This section discusses how certain threats to validity of the experiment have been ad-
dressed.

In order to ensure that differences in the results of both groups could be correctly
attributed to differences in the tool setup, some precautions have been taken. To cope

95

Chapter 8 Evaluation

−2
disagree

−1 0 1 2
agree

unified (avg: −0.1)
separate (avg: 0.7)

Rating

N
um

be
r o

f a
ns

we
rs

0
1

2
3

4
5

Figure 8.1: Responses to S1: “The scenarios help me in understanding the scenario proto-
types in the preparation phase.”

with influences from the level of knowledge of participants, a randomized block design
was used. This ensured that each group had about the same amount of people with
the same educational background. The randomized assignment of people to groups
prevented selection bias. To limit the influence of the facilitator as far as possible, the
only personal interaction that took place was for the evaluation of the scenario prototypes
during the experiment. The necessary information about the tool was provided in form
of a video, and the introductory information and work package information was handed
to the participants as PDF documents.

The results of the experiment can be generalized with caution. Although many partic-
ipants were either students or working in a university context, 26% of the participants
(6 of 26) had a professional background. The total number of participants, however,
was relatively small. The experiment setup and the work packages that were given to
the participants were based on experiences from real-world projects and the experiment
took place in an office environment which was similar to a typical office setting.

96

8.3 Experiment Results

−2
disagree

−1 0 1 2
agree

unified (avg: 1.7)
separate (avg: 1.6)

Rating

N
um

be
r o

f a
ns

we
rs

0
2

4
6

8
10

Figure 8.2: Responses to S2: “I like the idea of using both scenarios and scenario
prototypes.”

−2
disagree

−1 0 1 2
agree

unified (avg: 0.2)
separate (avg: 1.1)

Rating

N
um

be
r o

f a
ns

we
rs

0
2

4
6

8
10

Figure 8.3: Responses to S3: “The Script Editor is usable.”

97

Chapter 8 Evaluation

−2
disagree

−1 0 1 2
agree

unified (avg: 0.2)
separate (avg: −0.2)

Rating

N
um

be
r o

f a
ns

we
rs

0
1

2
3

4
5

Figure 8.4: Responses to S4: “It was easy to keep scenarios and scenario prototypes
consistent.”

−2
disagree

−1 0 1 2
agree

unified (avg: 1.62)

Rating

N
um

be
r o

f a
ns

we
rs

0
2

4
6

8
10

Figure 8.5: Responses to S5: “The error and warning icons motivated me to keep sce-
narios and scenario prototypes consistent.”

98

Chapter 9

Conclusion and Future Work

This dissertation explained why a closer collaboration between the fields of human-
computer interaction (HCI) and software engineering (SE) is necessary, especially re-
garding the challenges both fields are confronted with due to the growing importance of
mobile devices. The use of scenarios and prototypes, which are techniques that found
acceptance in both fields, has been identified as a promising approach. The need for an
underlying unified model has been pointed out, as the uncoupled use of scenarios and
prototypes bears the risk of diverging artifacts, resulting in inconsistent requirements
specifications.

As a solution to this problem, the Script framework for unified treatment of scenarios
and scenario prototypes has been presented, which provides interactivity as well as
traceability of requirements. The underlying model has been explained in detail and
outlooks on possible extensions of the model have been given. It has been shown how
the model can be used in the context of a development project, and how artifacts based
on the model can be incorporated into subsequent development steps such as use case
specification and identification of analysis model elements. Additionally, it has been
shown how the model allows to generate various artifacts such as narrative scenario
descriptions, storyboards with textual explanations, and videos depicting the flow of
interactions, which can be used for demonstration purposes.

The results of a controlled experiment were presented, which showed that the use of
the Script framework for parallel development of scenarios and scenario prototypes
resulted in significantly less errors than compared to uncoupled development.

9.1 Contributions
In the following, the main contributions that have been presented in this dissertation
are summarized.

The core contribution of this dissertation is the Script framework and its under-
lying model. The Script model consists of the scenario meta model and interaction
meta model, which allow to define scenarios in a semi-structured, technology indepen-
dent form, and the scenario prototype meta models, which allow to define scenario
prototypes for 2D GUIs. As the Script model unifies the treatment of scenarios and

99

Chapter 9 Conclusion and Future Work

scenario prototypes, it enables tools to perform automatic checking of consistency be-
tween scenarios and scenario prototypes to ensure that they do not become inconsistent
during development.

The Script framework provides traceability from scenarios to scenario prototypes
and vice versa via the interaction meta model, which relates interactions described in
a scenario to interactions that have been realized in a scenario prototype. The Script
framework makes scenarios and prototypes accessible on a fine-grained level, such as
single interactions of a scenario or single user interface elements of a scenario prototype,
and thus allows to establish traceability links to other artifacts such as use cases or
analysis model elements.

It has been shown how models that are based on the Script model can be used
as the basis for other modeling activities during software development, including the
extraction of use cases from the scenario meta model and interaction meta model, the
identification of GUI elements from the scenario prototype structural meta model, and
the identification of analysis model elements from the scenario prototype structural meta
model.

Another contribution is the possibility to generate a variety of artifacts from models
that have been created with the Script framework, and that can be used for information
exchange or for discussion with stakeholders to elicit requirements. First, it is possible to
generate executable scenario prototypes that convey a feeling about the interaction with
the system to stakeholders, which is one of the major goals of the Script framework.
Second, the Script framework also allows to generate textual documents, which can
contain either narrative scenario descriptions, a combination of both narrative scenario
descriptions and still images depicting the user interface, or storyboards that visualize
the flow of interactions of a scenario with images only. And third, based on the infor-
mation that is captured with the Script model, it is possible to automatically generate
videos of the interactions between user and system. These may prove especially useful
in situations where face-to-face meetings are not possible due to differences in location
and/or timezone.

The Script framework has been evaluated with a controlled experiment, which
showed that its use significantly reduces the number of errors that are made when trying
to develop scenarios and scenario prototypes in parallel.

9.2 Future Work
In the course of research for this dissertation, some topics have been identified that might
benefit from further investigation.

While the scenario meta model and interaction meta model provide a technology
independent way of representing the interactions of a scenario, the scenario prototype
models focus on the development of 2D GUIs. Both the scenario prototype structural
meta model and interaction meta model could be extended to allow for the definition

100

9.2 Future Work

of additional input and output modalities, like gestures or voice input for user actions,
and sound playback or text-to-speech for system actions.

Additionally, in its current state, the Script framework only supports the creation
of scenario prototypes that run on a single device, no matter if it is a desktop computer
or a mobile device. A useful extension of the Script framework would be to allow to
define different devices that take part in the execution of a scenario prototype. This
would allow to better evaluate multi-user systems as each participant could take part
in the evaluation with an individual device. However, this also requires an underlying
infrastructure for synchronizing all involved devices during playback.

In this dissertation, the focus was on the creation and documentation of scenarios
and scenario prototypes. While the evaluation of those artifacts with stakeholders is
of great importance, the details about how feedback from stakeholders can be collected
and stored was out of scope. An extension of the Script framework could provide
facilities to gather feedback from stakeholders on scenarios and scenario prototypes that
arises during reviews and evaluations, and directly connect it to the underlying model
elements that are affected. The dialectic model of questions, options and criteria (QOC)
[MYBM91] might prove beneficial for storing the rationale that emerges during reviews
and evaluations.

After its deployment, a system only seldom gets used for a longer period of time
without any changes necessary. More often than not, the context in which a system is
used changes and thus a modification of the system is needed in order to reflect the new
situation. If such a modification does not happen, users try to use the system in such
a way that they can still solve their tasks at hand, even if the system was not intended
to be used that way. As a result, users may be less efficient than it would be possible
if the system was adjusted to the changed context. To find out if users actually use the
system in ways different than intended from the original specification, the actual system
usage could be monitored and compared to the intended, specified usage described with
models of the Script framework. The resulting discrepancy could then be used as an
input for further development activities.

101

Chapter 9 Conclusion and Future Work

102

Appendix A

Experiment Prototypes Description

This appendix presents a storyboard version of the prototypes that were handed to
participants of the experiment described in Chapter 8. Note that participants of the
experiments were not handed this storyboard, but they could experience the interactions
themselves in the iOS Simulator.

Each image shows the state of the user interface before an interaction takes place. The
text underneath it describes the context, if relevant, and which interaction is performed,
based on the underlying scenario. The flow of interactions is supposed to be read from
left to right and top to bottom.

103

Appendix A Experiment Prototypes Description

A.1 Storyboard for Scenario 1: “Peter comes home”

Peter is sitting in the train on his way home from work. Shortly before the train
reaches his stop, Peter decides to configure his home devices so that he has a nice
welcome. Therefore he takes out his iPhone and starts the Home Automation
Controller app.

1. On the start screen, he selects the
floor plan.

2. The system shows a plan of his flat.
Peter selects the hallway light, which is
currently off.

3. Peter switches on the light. 4. To have a more pleasant welcome,
he sets the light intensity to 60%.

104

A.1 Storyboard for Scenario 1: “Peter comes home”

5. Then he taps the back button. 6. The system returns to the floor
plan. Peter now selects the light in the
living room.

7. The system shows the details of the
living room light. Peter switches the
light on.

8. Then he taps the back button. The
system returns to the floor plan.

105

Appendix A Experiment Prototypes Description

9. Peter now selects the temperature
setting.

10. The system shows the temperature
details, with the current temperature
being 18 degrees. Peter sets the
temperature to 22 degrees.

11. Then he taps the back button. 12. The system returns to the floor
plan. Last, he selects the shutter.

106

A.1 Storyboard for Scenario 1: “Peter comes home”

13. The system shows the details for
the shutter. Peter commands the
shutter to close.

14. The system displays that the
shutter is now closing. Peter taps on
the back button.

15. The system returns to the floor
plan. Peter is satisfied with his
settings. He closes the app and puts
the iPhone back into his pocket.

107

Appendix A Experiment Prototypes Description

A.2 Storyboard for Scenario 2: “Peter programs”
Peter is sitting on the couch and decides to program the shutter. He wants it to open
in the morning and close in the evening. Therefore he takes out his iPhone and starts
the Home Automation Controller app.

1. On the start screen, he selects
“Programming”.

2. The system shows an empty list.
Peter selects to add a new command.

3. The system shows the screen for
defining automatic commands. Peter
selects the “device” field.

4. The system shows a dialog with all
available devices by name. Peter
selects “Living Room Shutter”.

108

A.2 Storyboard for Scenario 2: “Peter programs”

5. The system hides the dialog and
sets the device to “Living Room
Shutter”. In the field for the value of
the command, Peter enters “up”.

6. Then, he saves the command. The
system returns to the list of
commands, where the new command
now appears.

7. Peter selects to add another
command.

8. The system again shows the screen
for defining new commands. Peter
selects the “device” field.

109

Appendix A Experiment Prototypes Description

9. The system shows a dialog with all
available devices by name. Peter
selects “Living Room Shutter”.

10. The system hides the dialog and
sets the device to “Living Room
Shutter”. Peter changes the time of
day to 7 p.m.

11. In the field for the value of the
command, Peter enters “down”.

12. Then, he saves the second
command.

110

A.2 Storyboard for Scenario 2: “Peter programs”

13. The system returns to the list of
commands, where now both commands
appear. Peter is satisfied, closes the
app and puts away his iPhone.

111

Appendix A Experiment Prototypes Description

112

Appendix B

Experiment Work Package
Descriptions

In this appendix, the work package descriptions that were given to the participants of
the experiment are reprinted.

Each work package description starts with a short motivational text that explains why
the change is requested and gives a textual summary of the changes. The largest part of
the work package description consists of scene images on the left hand side and textual
scenario descriptions on the right side. Both images and scenario text describe how the
new flow of interactions should be after the participants applied the necessary changes.
In order to make it easier for the participants to find the position in the prototype where
the changes start, the first image of each work package depicts an already existing scene
from which on the changes should be applied.

Each work package explicitly requested to modify both prototypes and scenarios so
that they stay consistent. Only participants in the unified group, however, used the
Script Editor where both the scenario and prototype editing component were enabled,
and which automatically warned them whenever scenarios and prototypes were no longer
consistent.

113

Appendix B Experiment Work Package Descriptions

114

!"#$%&"'"()*"$+,%
%
-*).%/.+*"01/).%)2%13"%*$)1)14*"%2)$%13"%2/$+1%+0".#$/),%5"%$"#(/6"&%13#1%13"%
+"78".1/#(%)*"$#1/).%)2%"#03%+/.9("%&"'/0"%/+%#%:/1%1"&/)8+;%<3"$"2)$"%5"%5)8(&%
(/="%1)%1"+1%#.%#(1"$.#1/'"%53"$"%#((%&"'/0"+%/.%13"%(/'/.9%$))>%#$"%#00"++/:("%#1%
).0"%'/#%#%(/+1%'/"5;%%
%
?"%#($"#&4%+"18*%+0".#$/)%@%#.&%*$)1)14*"%@%#+%#.%#(1"$.#1/'"%2()5%)2%"'".1+;%
A("#+"%"B1".&%13">%5/13%13"%/.1"$#01/).+%&"+0$/:"&%:"()5;%<3"%/./1/#(%+1"*+,%
53"$"%A"1"$%+5/103"+%).%13"%3#((5#4%(/931,%+3)8(&%+1#4%13"%+#>";%
%
C+%4)8%0#.%+"",%13"%(/'/.9%$))>%&"'/0"+%#$"%.)%().9"$%)*"$#1"&%)."%#21"$%#.)13"$,%
:81%$#13"$%#((%#1%).0";%C((%/>#9"+%13#1%4)8%>/931%.""&%#$"%#'#/(#:("%/.%13"%
screens%#.&%snippets%2)(&"$+;%
%

%
DEF%
%

C((%*$"'/)8+%+1"*+%+1#4%13"%+#>";%

%

<3/+%/+%13"%2())$%*(#.%#21"$%A"1"$%18$."&%
).%13"%3#((5#4%(/931;%G)1"%13#1%13"%/0).%
2)$%13"%3#((5#4%(/931%/+%(/1;%
%
A"1"$%1#*+%).%13"%)'"$'/"5%/0).%2)$%13"%
(/'/.9%$))>;%
%
%

%

<3"%+4+1">%+3)5+%13"%)'"$'/"5%
+0$"".;%
%
H.%13"%)'"$'/"5%+0$"".,%A"1"$%1#*+%).%
13"%(#>*%+(/&"$%1)%18$.%).%13"%(/'/.9%
$))>%(#>*;%<3".%3"%0)>>#.&+%13"%
+3811"$%1)%0()+";%

%

C21"$%3"%>#&"%#((%+"11/.9+,%A"1"$%1#*+%
).%13"%:#0=%:811).;%%

%

<3"%+4+1">%$"18$.+%1)%13"%2())$%*(#.;%
<3"%2())$%*(#.%.)5%#(+)%+3)5+%13#1%13"%
(/'/.9%$))>%(/931%3#+%:"".%(/1;%
%
G)1"%13#1%13"%/0).+%2)$%1">*"$#18$"%
#.&%+3811"$%!"#$"%%03#.9"%13"/$%
#**"#$#.0"%&"*".&/.9%).%13"/$%+1#1";%

%
%

Appendix B Experiment Work Package Descriptions

118

!"#$%&"'"()*"$+,%

%

-)$%./"%&"'01"%*$)2$#33042%*#$.,%5"%4""&%.)%&)%#%3)&0601#.0)4%.)%./"%1)33#4&%

&".#0(+%+1$""47%8"%+/)5"&%./"%*$).).9*"%.)%1:+.)3"$+%#4&%3#49%)6%./"3%

3"4.0)4"&%./"%50+/%6)$%;"042%#;("%.)%+"("1.%5/"./"$%./"%1)33#4&%+/):(&%;"%

"<"1:."&%"'"$9%=)4	%.)%-$0	,%)4%>#.:$	%#4&%>:4	,%)$%"'"$9a%%

%

?..#1/"&%9):%1#4%604&%#4%"<1"$*.%6$)3%./"%1/#42"&%+"@:"41"%)6%+1"4"+%6)$%./"%

$).).9"7%A/"%$"3#04042%+."*+%+/):(&%+.#9%./"%+#3"7%

B("#+"%:*&#."%+1"4#$0)%C%#4&%*$).).9*"%C%#11)$&042(9%#4&%(".%B"."$%+"("1.%./"%

D=)%E%-$F%)*.0)4%6)$%;)./%./"%D:*F%#4&%D&)54F%1)33#4&+7%

%

%

GHI%

%

?((%*$"'0):+%+."*+%+.#9%./"%+#3"7%

%

J*)4%*$)2$#33042%./"%60$+.%1)33#4&,%

B"."$%+"("1."&%DK0'042%L))3%>/:.."$F%

#+%&"'01"7%A/0+%$"+:(.+%04%./"%+1"4"%.)%

./"%("6.7%

%

B"."$%+"("1.+%D=)E-$F%#+%6$"@:"419%6)$%

./"%4"5%1)33#4&7%

%

M4%./"%60"(&%6)$%./"%'#(:"%)6%./"%

1)33#4&,%B"."$%"4."$+%D:*F7%

%

A/"4,%/"%+#'"+%./"%1)33#4&7%

%

GHI%

%

A/"%04."$3"&0#."%+."*+%+.#9%./"%+#3"7%

%

B"."$%+"("1."&%DK0'042%L))3%>/:.."$F%

#+%&"'01"%#4&%D*737F%#+%	%)6%.03"%6)$%

./"%+"1)4&%1)33#4&7%

%

B"."$%+"("1.+%D=)E-$F%#+%6$"@:"419%6)$%

./"%4"5%1)33#4&7%

%

M4%./"%60"(&%6)$%./"%'#(:"%)6%./"%

1)33#4&,%B"."$%"4."$+%D&)54F7%

%

A/"4,%/"%+#'"+%./"%+"1)4&%1)33#4&7%

%

A/"%+9+."3%$".:$4+%.)%./"%(0+.%)6%

1)33#4&+,%5/"$"%4)5%;)./%

1)33#4&+%#**"#$7%

%

%

!"#$%&"'"()*"$+,%
%
-"%.#'"%#%/""&%0)$%1.#/2"%3/%4."%*$)2$#553/2%+1"/#$3)%67%89$%9+#:3(34;%"<*"$4+%
&"4"$53/"&%4.#4%4."%+"("143)/%)0%4."%&"+3$"&%&"'31"%0$)5%#%(3+4%:;%/#5"%3+%/)4%
'"$;%9+"$%0$3"/&(;=%>/+4"#&,%4."%+;+4"5%+.)9(&%/#'32#4"%4)%4."%0())$%*(#/%#/&%("4%
4."%9+"$%+"("14%4."%&"+3$"&%&"'31"%0$)5%4."$"=%
%
?("#+"%#&@9+4%+1"/#$3)%6%#/&%*$)4)4;*"%6%#11)$&3/2%4)%4."%"<#5*("%+"A9"/1"%)0%
+1"/"+%:"()B=%
%

%
CDE%

%

F((%*$"'3)9+%+4"*+%+4#;%4."%+#5"=%

%

?"4"$%4#*"&%)/%GH"BI%3/%)$&"$%4)%1$"#4"%
#%/"B%1)55#/&=%J."%+;+4"5%+.)B+%4."%
+1$""/%0)$%&"03/3/2%#94)5#431%
1)55#/&+=%
%
?"4"$%+"("14+%4."%G&"'31"I%03"(&=%%

%

J."%+;+4"5%+.)B+%4."%0())$*(#/%B34.%
#((%#'#3(#:("%&"'31"+=%
%
?"4"$%+"("14+%4."%(3'3/2%$))5%+.944"$=%%%

%

J."%+;+4"5%$"49$/+%4)%4."%/"B%
1)55#/&%+1$""/,%B."$"%GK3'3/2%L))5%
M.944"$I%.#+%:""/%+"4%#+%&"'31"=%

%
J."%$"5#3/3/2%0()B%)0%"'"/4+%+4#;+%4."%+#5"=%J."%*$)2$#553/2%)0%4."%+"1)/&%
1)55#/&%+.)9(&%#(+)%9+"%4."%0())$*(#/%0)$%&"'31"%+"("143)/=%

!"#$%&"'"()*"$+,%
%
-#./%01+2)3"$+%4"(2%1."#+/%#5)12%26"%*#$2%7.%26"%+0".#$7)%86"$"%9"2"$%0()+"+%26"%
+6122"$%4$)3%26"%)'"$'7"8%+0$"".%867("%6"%7+%.)2%#2%6)3":%;)3"%)4%26"3%#$<1"&%
26#2%26"/%6#'"%4()8"$%5)="+%).%26"7$%87.&)8%+7((+%#.&%26#2%26"/%#$"%#4$#7&%26#2%
26"7$%4()8"$+%37<62%<"2%61$2%86".%26"%+6122"$%0()+"+%867("%26"/%#$"%.)2%#2%6)3":%
%
>&&727).#((/,%)1$%3#$?"27.<%&"*#$23".2%.)2"&%26#2%72%+""3+%#%572%+2$#.<"%26#2%
9"2"$%&73+%26"%6#((8#/%(7<62:%@6"/%8)1(&%*$"4"$%)1$%*$)2)2/*"%2)%#(()8%&7337.<%
26"%(7'7.<%$))3%(7<62%7.+2"#&%)4%26"%6#((8#/%(7<62,%#+%267+%3#?"+%1*%#%3106%5"22"$%
+2)$/:%
%
@6"$"4)$"%8"%$"A1"+2%/)1%2)%#(2"$%+0".#$7)%B%#.&%*$)2)2/*"%B:%9("#+"%47.&%5"()8%
26"%+"A1".0"%)4%7.2"$#027).+%4)$%26"%#&&"&%7.2"$#027).+:%
%

%
CDE%

%

%

%

9"2"$%+"("02"&%26"%)'"$'7"8%4$)3%26"%
4())$*(#.:%F"%+87206"&%26"%(#3*%).,%+"2%
26"%2"3*%2)%8#$3%#.&%0)33#.&"&%26"%
+6122"$%2)%0()+":%
%
>42"$%6"%3#&"%#((%+"227.<+,%9"2"$%2#*+%
).%26"%5#0?%5122).:%

%

@6"%+/+2"3%$"21$.+%2)%26"%4())$*(#.:%
%
G#0?%).%26"%4())$%*(#.,%6"%$"#(7H"+%26#2%
6"%6#+%#%4()8"$%5)=%).%26"%87.&)8%+7((:%
I.%)$&"$%2)%*$"'".2%72%4$)3%<"227.<%61$2,%
6"%&"07&"+%2)%+2)*%26"%+6122"$%#<#7.:%
@6"$"4)$"%6"%+"("02+%26"%+6122"$:%

%

@6"%+/+2"3%+6)8+%26"%+6122"$%+0$"".,%
86"$"%26"%+6122"$%7+%3#$?"&%#+%
01$$".2(/%<)7.<%&)8.:%
%
9"2"$%2#*+%).%J&)8.K%7.%)$&"$%2)%+2)*%
26"%+6122"$:%

%

@6"%+/+2"3%+6)8+%26#2%26"%+6122"$%6#+%
+2)**"&:%
%
9"2"$%2#*+%26"%5#0?%5122).:%

%

@6"%+/+2"3%+6)8+%26"%4())$%*(#.%#<#7.:%
%
9"2"$%8#.2+%2)%()8"$%26"%7.2".+72/%)4%
26"%(7'7.<%$))3%(7<62%7.%)$&"$%2)%6#'"%#%
3)$"%*("#+#.2%8"(0)3":%@6"$"4)$"%6"%
+"("02+%26"%(7'7.<%$))3%(7<62:%

%

@6"%+/+2"3%+6)8+%26"%&"2#7(+%)4%26"%
(7'7.<%$))3%(7<62:%
%
9"2"$%+"2+%26"%7.2".+72/%2)%LMN:%

%

@6"%+/+2"3%+6)8+%26#2%26"%7.2".+72/%
6#+%5"".%()8"$"&:%
%
9"2"$%2#*+%).%26"%5#0?%5122).:%@6"%
+/+2"3%+6)8+%26"%4())$%*(#.%#<#7.:%

%
%

List of Figures

2.1 Mental models of designer and user. Adapted from [Nor02]. 11
2.2 Mental models and system models . 13

4.1 Relation between number of design alternatives and creation effort per
alternative . 29

4.2 Interplay between mind and sketch. Adapted from [Bux07] 30
4.3 Continuum between Sketch and Prototype. Adapted from [Bux07] 31
4.4 Aspects of prototyping by Houde and Hill. From [HH97] 34
4.5 Wireframe of the web page of the Chair for Applied Software Engineering 37

5.1 Example of a screen generated with the Screen-Based Scenario Generator.
From [HY88] . 46

5.2 Overview of the Script model, which consists of the scenario meta model,
the interaction meta model, the scenario prototype structural meta model
and the scenario prototype interaction meta model 47

5.3 Scenario meta model and interaction meta model 48
5.4 Possible instantiations of the scenario meta model and interaction meta

model . 50
5.5 Scenario prototype structural meta model 52
5.6 Example of GUIElementImage without (a) and with (b) scrolling enabled 54
5.7 Example of layering in a GUIScene. Part (a) shows the resulting scene,

part (b) shows the division into single GUIElementAppearances 55
5.8 Complete model of Script . 56

6.1 Overview of the activities involved for applying the Script framework . 64
6.2 Orders of Script model traversal . 66
6.3 Relation between scenario meta mode, interaction meta model, and use

case meta model . 70
6.4 Relation between scenario prototype structural meta model and user in-

terface meta model . 71
6.5 Roles of user interface elements . 72
6.6 Relation between role of an user interface element and analysis meta model 73
6.7 Example for identification of attributes, classes and associations 74

7.1 The Script Editor . 80

129

List of Figures

7.2 The Scenario Prototype Editor . 81
7.3 The Scenario Prototype Editor, showing an inconsistency between sce-

nario prototype and scenario, which is displayed with an error icon in the
Scenario Prototype Editor and a warning icon in the Navigator 82

7.4 The Validation view, listing an inconsistency between scenario prototype
and scenario, which is shown as a validation error 83

7.5 The Scenario Editor . 84
7.6 Layers of the Script Editor . 85
7.7 Components of the Script evaluation setup 86

8.1 Responses to S1: “The scenarios help me in understanding the scenario
prototypes in the preparation phase.” . 96

8.2 Responses to S2: “I like the idea of using both scenarios and scenario
prototypes.” . 97

8.3 Responses to S3: “The Script Editor is usable.” 97
8.4 Responses to S4: “It was easy to keep scenarios and scenario prototypes

consistent.” . 98
8.5 Responses to S5: “The error and warning icons motivated me to keep

scenarios and scenario prototypes consistent.” 98

130

Bibliography

[AAB07] Jonathan Arnowitz, Michael Arent, and Nevin Berger. Effective prototyping
for software makers. Elsevier, 2007.

[Abb83] Russell J Abbott. Program design by informal english descriptions. Com-
mun. ACM, 26(11):882–894, November 1983. ACM ID: 358441.

[Abb87] Russell J Abbott. Knowledge abstraction. Commun. ACM, 30(8):664–671,
August 1987. ACM ID: 27652.

[ABJ05] Rob J. Adams, Len Bass, and Bonnie E. John. Experience with using
general usability scenarios on the software architecture of a collaborative
system. In Ahmed Seffah, Jan Gulliksen, and Michel C. Desmarais, edi-
tors, Human-Centered Software Engineering — Integrating Usability in the
Software Development Lifecycle, volume 8, pages 87–112. Springer-Verlag,
Berlin/Heidelberg, 2005.

[AH93] S. Asur and S. Hufnagel. Taxonomy of rapid-prototyping methods and tools.
In , Fourth International Workshop on Rapid System Prototyping, 1993.
Shortening the Path from Specification to Prototype. Proceedings, pages 42–
56. IEEE, June 1993.

[Ala84] Maryam Alavi. An assessment of the prototyping approach to information
systems development. Commun. ACM, 27(6):556–563, June 1984.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Commun.
ACM, 26(11):832–843, November 1983.

[Als05] T. A Alspaugh. Temporally expressive scenarios in ScenarioML. Institute
for Software Research Technical Report UCI-ISR-05, 6, 2005.

[Ana12] Strategy Analytics. Android captures record 39 percent share of global
tablet shipments in q4 2011. Technical report, Bosten, MA, USA, January
2012.

[And89] S. J Andriole. Storyboard Prototyping a New Approach to User Require-
ments Analysis. QED Information Sciences Inc., Wellesley, Mass, 1989.

131

Bibliography

[And94] S.J. Andriole. Fast, cheap requirements: prototype, or else! Software,
IEEE, 11(2):85–87, 1994.

[App11] Apple. Xcode 4 user guide: Designing user interfaces in xcode.
https://developer.apple.com/library/mac/#documentation/ ToolsLan-
guages/Conceptual/Xcode4UserGuide/InterfaceBuilder/InterfaceBuilder.html,
October 2011.

[App12a] Apple. Apple reports first quarter results. Technical report, Cupertino,
January 2012.

[App12b] Apple. Apple’s app store downloads top 25 billion. Technical report, Cu-
pertino, March 2012.

[ATB06] Thomas A. Alspaugh, Bill Tomlinson, and Eric Baumer. Using social agents
to visualize software scenarios. In Proceedings of the 2006 ACM symposium
on Software visualization - SoftVis ’06, page 87, Brighton, United Kingdom,
2006.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[BBL+02] Jakob Bardram, Claus Bossen, Andreas Lykke-Olesen, Rune Nielsen, and
Kim Halskov Madsen. Virtual video prototyping of pervasive healthcare
systems. In Proceedings of the 4th conference on Designing interactive sys-
tems: processes, practices, methods, and techniques, DIS ’02, page 167–177,
London, England, 2002. ACM. ACM ID: 778738.

[BBLZ96] D. Bäumer, W. Bischofberger, H. Lichter, and H. Züllighoven. User inter-
face prototyping-concepts, tools, and experience. In Software Engineering,
1996., Proceedings of the 18th International Conference on, pages 532–541,
1996.

[BD09] Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engineering
Using UML, Patterns, and Java. Prentice Hall, 3 edition, August 2009.

[Bin99] Thomas Binder. Setting the stage for improvised video scenarios. In CHI
’99 extended abstracts on Human factors in computing systems - CHI ’99,
page 230, Pittsburgh, Pennsylvania, 1999.

[BJ04] Kai Blankenhorn and Mario Jeckle. A UML profile for GUI layout. In Math-
ias Weske and Peter Liggesmeyer, editors, Object-Oriented and Internet-
Based Technologies, volume 3263, pages 110–121. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2004.

132

Bibliography

[BJHW00] M. Brockmeyer, F. Jahanlan, C. Heitmeyer, and E. Winner. A flexible, ex-
tensible simulation environment for testing real-time specifications. Com-
puters, IEEE Transactions on, 49(11):1184–1201, 2000.

[BKC01] Brian P. Bailey, Joseph A. Konstan, and John V. Carlis. DEMAIS: design-
ing multimedia applications with interactive storyboards. In Proceedings
of the ninth ACM international conference on Multimedia, MULTIMEDIA
’01, page 241–250, New York, NY, USA, 2001. ACM.

[Blo05] Stefan Blomkvist. Towards a model for bridging agile development and
User-Centered design. In Ahmed Seffah, Jan Gulliksen, and Michel C.
Desmarais, editors, Human-Centered Software Engineering — Integrating
Usability in the Software Development Lifecycle, volume 8, pages 219–244.
Springer-Verlag, Berlin/Heidelberg, 2005.

[Boe81] Barry W. Boehm. Software Engineering Economics. Prentice Hall, New
Jersey, November 1981.

[Boe88] B. W Boehm. A spiral model of software development and enhancement.
Computer, 21(5):61–72, May 1988.

[Boe00] B. Boehm. Requirements that handle IKIWISI, COTS, and rapid change.
Computer, 33(7):99–102, 2000.

[BPTM03] J. Belenguer, J. Parra, I. Torres, and P. J Molina. HCI designers and
engineers: It is possible to work together? CLOSING THE GAPS: Software
Engineering and Human-Computer Interaction, 2003.

[Bux07] Bill Buxton. Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2007.

[Car95] J. M Carroll. Scenario-based design: envisioning work and technology in
system development. John Wiley and sons, New York, NY, USA, 1995.

[Car97] Jim A. Carter. Putting usability first in the design of web sites. Toronto,
Ontario, Canada, November 1997.

[Chi90] Mark H. Chignell. A taxonomy of user interface terminology. SIGCHI Bull.,
21(4):27, 1990.

[CLSF05] Jim A. Carter, Jun Liu, Kevin Schneider, and David Fourney. Transform-
ing usability engineering requirements into software engineering specifica-
tions: From PUF to UML. In Ahmed Seffah, Jan Gulliksen, and Michel C.
Desmarais, editors, Human-Centered Software Engineering — Integrating

133

Bibliography

Usability in the Software Development Lifecycle, volume 8, pages 147–169.
Springer-Verlag, Berlin/Heidelberg, 2005.

[COB06] Oliver Creighton, Martin Ott, and Bernd Bruegge. Software Cinema-Video-
based requirements engineering. Requirements Engineering, IEEE Interna-
tional Conference on, 0:109–118, 2006.

[Coc01] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, Bosten,
MA, USA, 2001.

[Con95] Larry L. Constantine. Essential modeling: use cases for user interfaces.
interactions, 2(2):34–46, April 1995.

[CR92] John M. Carroll and Mary Beth Rosson. Getting around the task-artifact
cycle: how to make claims and design by scenario. ACM Transactions on
Information Systems, 10:181–212, April 1992.

[CRCK98] J.M. Carroll, M.B. Rosson, G. Chin, and J. Koenemann. Requirements
development in scenario-based design. IEEE Transactions on Software En-
gineering, 24:1156–1170, December 1998.

[Cre05] Oliver Creighton. Software Cinema: Employing Digital Video in Require-
ments Engineering. PhD thesis, Technische Universität München, München,
June 2005.

[CU93] Bay-Wei Chang and David Ungar. Animation: from cartoons to the user
interface. In Proceedings of the 6th annual ACM symposium on User inter-
face software and technology, UIST ’93, page 45–55, New York, NY, USA,
1993. ACM.

[DDN92] Sarah Douglas, Eckehard Doerry, and David Novick. QUICK: a tool for
graphical user-interface construction by non-programmers. The Visual
Computer, 8(2):117–133, March 1992.

[DH01] Werner Damm and David Harel. LSCs: breathing life into message sequence
charts. Form. Methods Syst. Des., 19(1):45–80, 2001.

[DJA93] N. Dahlbäck, A. Jönsson, and L. Ahrenberg. Wizard of oz studies — why
and how. Knowledge-Based Systems, 6(4):258–266, December 1993.

[dSP03] P. P da Silva and N. W Paton. User interface modeling in UMLi. IEEE
Software, 20(4):62– 69, August 2003.

[Ecl12a] Eclipse. Eclipse modeling framework project.
http://www.eclipse.org/modeling/emf/, April 2012.

134

Bibliography

[Ecl12b] Eclipse. EMF client platform. http://eclipse.org/emfclient/, May 2012.

[Ecl12c] Eclipse. EMFStore project home. http://eclipse.org/emfstore/, April 2012.

[Ecl12d] Eclipse. Graphiti. http://eclipse.org/graphiti/, May 2012.

[Ecl12e] Eclipse. Rich client platform. http://www.eclipse.org/rcp/, April 2012.

[EK00] Mohammed Elkoutbi and Rudolf K. Keller. User interface prototyping
based on UML scenarios and High-Level petri nets. In Mogens Nielsen and
Dan Simpson, editors, Application and Theory of Petri Nets 2000, volume
1825, pages 166–186. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[EKK99] M. Elkoutbi, I. Khriss, and R. K Keller. Generating user interface proto-
types from scenarios. pages 150–158, 1999.

[EKK06] Mohammed Elkoutbi, Ismaïl Khriss, and Rudolf K. Keller. Automated
prototyping of user interfaces based on UML scenarios. Automated Software
Engineering, 13(1):5–40, January 2006.

[Fel12] Albert Feller. Evaluation and development of a prototyping tool for mobile
graphical user interfaces: a practical view. Master’s thesis, Technische
Universität München, Munich, Germany, March 2012.

[FJM05] Xavier Ferre, Natalia Juristo, and Ana M. Moreno. Which, when and how
usability techniques and activities should be integrated. In Ahmed Seffah,
Jan Gulliksen, and Michel C. Desmarais, editors, Human-Centered Software
Engineering — Integrating Usability in the Software Development Lifecycle,
volume 8, pages 173–200. Springer-Verlag, Berlin/Heidelberg, 2005.

[Flo86] C. Floyd. A systematic look at prototyping. In R. Budde, K. Kuhlenkamp,
L. Mathiassen, and H. Züllighoven, editors, Approaches to Prototyping.
Springer-Verlag GmbH, July 1986.

[Gar12] Gartner. Gartner says worldwide smartphone sales
soared in fourth quarter of 2011 with 47 percent growth.
http://www.gartner.com/it/page.jsp?id=1924314, February 2012.

[GC04] Kentaro Go and John M. Carroll. The blind men and the elephant. inter-
actions, 11(6):44–53, November 2004.

[GFHR95] P. A Gough, F. T Fodemski, S. A Higgins, and S. J Ray. Scenarios-an
industrial case study and hypermedia enhancements. In , Proceedings of
the Second IEEE International Symposium on Requirements Engineering,
1995, pages 10– 17. IEEE, March 1995.

135

Bibliography

[GGB+05] Jan Gulliksen, Bengt Göransson, Inger Boivie, Jenny Persson, Stefan
Blomkvist, and Åsa Cajander. Key principles for User-Centred systems
design. In Ahmed Seffah, Jan Gulliksen, and Michel C. Desmarais, edi-
tors, Human-Centered Software Engineering — Integrating Usability in the
Software Development Lifecycle, volume 8, pages 17–36. Springer-Verlag,
Berlin/Heidelberg, 2005.

[GGR93] J. Grabowski, P. Graubmann, and E. Rudolph. The standardization of
message sequence charts. In Software Engineering Standards Symposium,
1993. Proceedings., 1993, pages 48 –63, September 1993.

[GGS09] G. Gabrysiak, H. Giese, and A. Seibel. Interactive visualization for elici-
tation and validation of requirements with Scenario-Based prototyping. In
Requirements Engineering Visualization (REV), 2009 Fourth International
Workshop on, pages 41–45, 2009.

[GGS11] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Towards next gen-
eration design thinking: Scenario-Based prototyping for designing complex
software systems with multiple users. In Christoph Meinel, Larry Leifer, and
Hasso Plattner, editors, Design Thinking, Understanding Innovation, pages
219–236. Springer Berlin Heidelberg, 2011. 10.1007/978-3-642-13757-0_13.

[GHO02] Sallie Gregor, Joseph Hutson, and Colleen Oresky. Storyboard process to
assist in requirements verification and adaptation to capabilities inherent
in COTS. In John Dean and Andrée Gravel, editors, COTS-Based Software
Systems, volume 2255 of Lecture Notes in Computer Science, pages 132–141.
Springer Berlin / Heidelberg, 2002. 10.1007/3-540-45588-4_13.

[GM03] L. Gorlenko and R. Merrick. No wires attached: Usability challenges in the
connected mobile world. IBM Systems Journal, 42(4):639–651, 2003.

[Goo12] Google. WindowBuilder user guide. http://code.google.com/intl/de-
DE/javadevtools/wbpro/, March 2012.

[Gra94] Ian Graham. Object-oriented methods. Addison-Wesley, 1994.

[Gro06] Object Management Group. UML diagram interchange.
http://www.omg.org/spec/UMLDI/1.0/, April 2006.

[Gro12a] Object Management Group. Business process model and notation.
http://www.bpmn.org/, May 2012.

[Gro12b] Object Management Group. Object management group - UML.
http://www.uml.org/, February 2012.

136

Bibliography

[HB95] Karen Holtzblatt and Hugh R Beyer. Requirements gathering: the human
factor. Commun. ACM, 38(5):31–32, 1995. ACM ID: 203361.

[HBC+96] Thomas Hewett, Ronald Baecker, Stuart Card, Tom Carey, Jean
Gasen, Marylin Mantei, Gary Perlman, Gary Strong, and William
Verplank. ACM SIGCHI curricula for Human-Computer interaction.
http://old.sigchi.org/cdg/cdg2.html, 1996.

[HCR05] Steven R. Haynes, John M. Carroll, and Mary Beth Rosson. Integrat-
ing User-Centered design knowledge with scenarios. In Ahmed Seffah, Jan
Gulliksen, and Michel C. Desmarais, editors, Human-Centered Software En-
gineering — Integrating Usability in the Software Development Lifecycle,
volume 8, pages 269–286. Springer-Verlag, Berlin/Heidelberg, 2005.

[Her03] Morten Hertzum. Making use of scenarios: a field study of conceptual
design. International Journal of Human-Computer Studies, 58(2):215–239,
February 2003.

[HH97] Stephanie Houde and Charles Hill. What do prototypes prototype? In
M Helander, T Landauer, and P Prahbu, editors, Handbook of Human-
Computer Interaction. Elsevier Science B. V, Amsterdam, 1997.

[HKLB98] Constance L Heitmeyer, James Kirby, Bruce G Labaw, and Ramesh
Bharadwaj. SCR*: a toolset for specifying and analyzing software require-
ments. In Proceedings of the 10th International Conference on Computer
Aided Verification, CAV ’98, page 526–531, London, UK, 1998. Springer-
Verlag. ACM ID: 733627.

[HM03] David Harel and Rami Marelly. Specifying and executing behavioral re-
quirements: the play-in/play-out approach. Software and Systems Model-
ing, 2(2):82–107, July 2003.

[HS06] Andreas Holzinger and Wolfgang Slany. XP + UE -> XU praktische er-
fahrungen mit eXtreme usability. Informatik-Spektrum, 29(2):91–97, Febru-
ary 2006.

[HSG+94] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen. Formal
approach to scenario analysis. IEEE Software, 11(2):33–41, March 1994.

[Hum89] Watts S. Humphrey. Managing the Software Process. Addison-Wesley Pro-
fessional, January 1989.

[HVF03] Morten Borup Harning, Jean Vanderdonckt, and Murielle Florins. Closing
the gaps: Software engineering and Human-Computer interaction. Zu?rich,
Switzerland, September 2003.

137

Bibliography

[HY88] P. Hsia and A. T Yaung. Screen-Based scenario generator: a tool for
scenario-based prototyping. In Software Track, Proceedings of the Twenty-
First Annual Hawaii International Conference on System Sciences, 1988.
Vol.II, volume 2, pages 455–461. IEEE, January 1988.

[IEE97] IEEE. IEEE standard 1074 for developing software life cycle processes,
1997.

[ISO10] ISO. ISO 9241-210:2010 human-centred design for interactive systems, 2010.

[JBKC04] Bonnie E. John, Len Bass, Rick Kazman, and Eugene Chen. Identifying
gaps between HCI, software engineering, and design, and boundary objects
to bridge them. page 1723. ACM Press, 2004.

[JC07] Jung-Sing Jwo and Yu Chin Cheng. Pseudo software: a new concept for
iterative requirement development and validation. In Asia-Pacific Software
Engineering Conference, volume 0, pages 105–111, Los Alamitos, CA, USA,
2007. IEEE Computer Society.

[JC10] Jung-Sing Jwo and Yu Chin Cheng. Pseudo software: A mediating instru-
ment for modeling software requirements. Journal of Systems and Software,
83(4):599–608, April 2010.

[JK05] Bill Jerome and Rick Kazman. Surveying the solitudes: An investigation
into the relationships between human computer interaction and software
engineering in practice. In Ahmed Seffah, Jan Gulliksen, and Michel C.
Desmarais, editors, Human-Centered Software Engineering — Integrating
Usability in the Software Development Lifecycle, volume 8, pages 59–70.
Springer-Verlag, Berlin/Heidelberg, 2005.

[JL08] Kasper Løvborg Jensen and Lars Bo Larsen. The challenge of evaluating
the mobile and ubiquitous user experience. Sydney, Australia, 2008.

[Jok05] Timo Jokela. Guiding designers to the world of usability: Determining
usability requirements through teamwork. In Ahmed Seffah, Jan Gulliksen,
and Michel C. Desmarais, editors, Human-Centered Software Engineering
— Integrating Usability in the Software Development Lifecycle, volume 8,
pages 127–145. Springer-Verlag, Berlin/Heidelberg, 2005.

[Kar97] John Karat. Evolving the scope of user-centered design. Commun. ACM,
40(7):33–38, July 1997.

[KBB03] Rick Kazman, Len Bass, and Jan Bosch. Bridging the gaps between software
engineering and Human-Computer interaction. In Proceedings of the 25th
International Conference on Software Engineering, ICSE ’03, page 777–778,
Washington, DC, USA, 2003. IEEE Computer Society.

138

Bibliography

[KJ02] Hermann Kaindl and Rudolf Jezek. From usage scenarios to user interface
elements in a few steps. In Computer-Aided Design of User Interfaces III,
Computer-Aided Design of User Interfaces. Kluwer Academic Publishers,
Dordrecht, Netherlands, 2002.

[KNS+08] Tommi Kärkkäinen, Miika Nurminen, Panu Suominen, Tuomo Pieniluoma,
and Ilari Liukko. UCOT: semiautomatic generation of conceptual mod-
els from use case descriptions. In Proceedings of the IASTED International
Conference on Software Engineering, SE ’08, page 171–177, Innsbruck, Aus-
tria, 2008. ACTA Press. ACM ID: 1722635.

[Kof07] L. Kof. Scenarios: Identifying missing objects and actions by means of
computational linguistics. In Requirements Engineering Conference, 2007.
RE ’07. 15th IEEE International, pages 121–130. IEEE, October 2007.

[Kof08] L. Kof. From textual scenarios to message sequence charts: Inclusion of
condition generation and actor extraction. In 16th IEEE International Re-
quirements Engineering, 2008. RE ’08, pages 331–332. IEEE, September
2008.

[Kof10] L. Kof. From requirements documents to system models: A tool for interac-
tive Semi-Automatic translation. In Requirements Engineering Conference
(RE), 2010 18th IEEE International, pages 391–392. IEEE, October 2010.

[Kon12] Konigi. OmniGraffle sketch stencils. http://konigi.com/store/product/
omnigraffle-sketch-stencils, April 2012.

[Kru99] Philippe Kruchten. Use-Case storyboards in the rational unified process. In
Proceedings of the Workshop on Object-Oriented Technology, page 249–250,
London, UK, 1999. Springer-Verlag.

[Kru04] Philippe Kruchten. The Rational Unified Process: An Introduction.
Addison-Wesley Professional, Bosten, MA, USA, 2004.

[KS07] Margrethe Adde Kjeøy and Gerd Melteig Stalheim. Use cases in practice:
A study in the norwegian software industry. June 2007.

[Kuj05] Sari Kujala. Linking user needs and use Case-Driven requirements engi-
neering. In Ahmed Seffah, Jan Gulliksen, and Michel C. Desmarais, edi-
tors, Human-Centered Software Engineering — Integrating Usability in the
Software Development Lifecycle, volume 8, pages 113–125. Springer-Verlag,
Berlin/Heidelberg, 2005.

[Lan96] James A. Landay. SILK. In Conference companion on Human factors in
computing systems common ground - CHI ’96, pages 398–399, Vancouver,
British Columbia, Canada, 1996.

139

Bibliography

[LDD06] Hongzhi Liang, Juergen Dingel, and Zinovy Diskin. A comparative survey
of scenario-based to state-based model synthesis approaches. page 5. ACM
Press, 2006.

[Li09] Yang Li. Beyond pinch and flick: Enriching mobile gesture interaction.
Computer, 42(12):87–89, December 2009.

[Lie12] Michael Liedtke. Android market checks out, google play moves
in. http://news.yahoo.com/android-market-checks-google-play-moves-
180102522.html, March 2012.

[LM95] James A Landay and Brad A Myers. Interactive sketching for the early
stages of user interface design. In Proceedings of the SIGCHI conference
on Human factors in computing systems, CHI ’95, page 43–50, Denver,
Colorado, United States, 1995. ACM Press/Addison-Wesley Publishing Co.
ACM ID: 223910.

[LM01] J.A. Landay and B.A. Myers. Sketching interfaces: toward more human
interface design. Computer, 34(3):56–64, 2001.

[LNHL00] James Lin, Mark W. Newman, Jason I. Hong, and James A. Landay.
DENIM: finding a tighter fit between tools and practice for web site design.
In Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI ’00, page 510–517, New York, NY, USA, 2000. ACM.

[LSZ94] H. Lichter, M. Schneider-Hufschmidt, and H. Züllighoven. Prototyping
in industrial software projects-bridging the gap between theory and prac-
tice. IEEE Transactions on Software Engineering, 20(11):825–832, Novem-
ber 1994.

[LTL02] James Lin, Michael Thomsen, and James A Landay. A visual language
for sketching large and complex interactive designs. In Proceedings of the
SIGCHI conference on Human factors in computing systems: Changing our
world, changing ourselves, CHI ’02, page 307–314, Minneapolis, Minnesota,
USA, 2002. ACM. ACM ID: 503431.

[MA93] Kim Halskov Madsen and Peter H Aiken. Experiences using cooperative in-
teractive storyboard prototyping. Commun. ACM, 36(6):57–64, June 1993.
ACM ID: 163268.

[Mar02] A. Marcus. Return on investment for usable user-interface design: Examples
and statistics. Aaron Marcus and Associates, Inc. Whitepaper, 2002.

[May99] Deborah J. Mayhew. The usability engineering lifecycle: a practitioner’s
handbook for user interface design. Morgan Kaufmann, 1999.

140

Bibliography

[MCP+06] Michael McCurdy, Christopher Connors, Guy Pyrzak, Bob Kanefsky, and
Alonso Vera. Breaking the fidelity barrier: an examination of our current
characterization of prototypes and an example of a mixed-fidelity success.
In Proceedings of the SIGCHI conference on Human Factors in computing
systems, CHI ’06, page 1233–1242, New York, NY, USA, 2006. ACM.

[Mem09] Thomas Memmel. User Interface Specification for Interactive Software Sys-
tems. PhD thesis, April 2009.

[MJ02] Stevan Mrdalj and Vladan Jovanovic. User interface driven system design.
ISSUES IN INFORMATION SYSTEMS, (Volume III), 2002.

[MO05] Eduard Metzker and Michael Offergeld. An interdisciplinary approach for
successfully integrating Human-Centered design methods into development
processes practiced by industrial software development organizations. In
Murray Reed Little and Laurence Nigay, editors, Engineering for Human-
Computer Interaction, volume 2254, pages 19–33. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2005.

[MRJ00] Wendy E Mackay, Anne V Ratzer, and Paul Janecek. Video artifacts for
design: bridging the gap between abstraction and detail. In Proceedings of
the 3rd conference on Designing interactive systems: processes, practices,
methods, and techniques, DIS ’00, page 72–82, New York, NY, USA, 2000.
ACM. ACM ID: 347666.

[MYBM91] Allan MacLean, Richard M. Young, Victoria M. E. Bellotti, and Thomas P.
Moran. Questions, options, and criteria: elements of design space analysis.
Hum.-Comput. Interact., 6(3):201–250, September 1991.

[ND92] D. G Novick and S. A Douglas. QUID: a quick user-interface design method
using prototyping tools. In Proceedings of the Twenty-Fifth Hawaii Inter-
national Conference on System Sciences, 1992, volume ii, pages 709–718
vol.2. IEEE, January 1992.

[Nie93] Jakob Nielsen. Usability Engineering. Academic Press, Boston, September
1993.

[NO05] Jerzy Nawrocki and Łukasz Olek. UC workbench – a tool for writing use
cases and generating mockups. In Hubert Baumeister, Michele Marchesi,
and Mike Holcombe, editors, Extreme Programming and Agile Processes in
Software Engineering, volume 3556 of Lecture Notes in Computer Science,
pages 230–234. Springer Berlin / Heidelberg, 2005. 10.1007/11499053_34.

[Nor02] D.A. Norman. The design of everyday things. Basic Books, New York, NY,
USA, 2002.

141

Bibliography

[Nun01] Duarte Nuno Jardim Nunes. Object Modeling for User-Centered Develop-
ment and User Interface Design: The Wisdom Approach. PhD thesis, April
2001.

[Ove06] Doug Overton. ’No fault found’ returns cost the mobile industry $4.5 billion
per year. http://www.wds.co/news/whitepapers/20060717/20060717.asp,
July 2006.

[PPAH05] Pardha S. Pyla, Manuel A. Pérez-Quiñones, James D. Arthur, and H. Rex
Hartson. Ripple: An event driven design representation framework for
integrating usability and software engineering life cycles. In Ahmed Seffah,
Jan Gulliksen, and Michel C. Desmarais, editors, Human-Centered Software
Engineering — Integrating Usability in the Software Development Lifecycle,
volume 8, pages 245–265. Springer-Verlag, Berlin/Heidelberg, 2005.

[PV09] F. Perez and P. Valderas. Allowing End-Users to actively participate within
the elicitation of pervasive system requirements through immediate visual-
ization. In Requirements Engineering Visualization (REV), 2009 Fourth
International Workshop on, pages 31–40, 2009.

[RB00] A. Ravid and D. M. Berry. A method for extracting and stating software
requirements that a user interface prototype contains. Requirements Engi-
neering, 5(4):225–241, December 2000.

[RBAC+98] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N. Maiden,
M. Jarke, P. Haumer, K. Pohl, E. Dubois, and P. Heymans. A proposal for
a scenario classification framework. Requirements Engineering, 3(1):23–47,
March 1998.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-oriented modeling and design. Prentice-Hall, Inc.,
1991.

[Ret94] Marc Rettig. Prototyping for tiny fingers. Communications of the ACM,
37(4):21–27, April 1994.

[Rob05] Dave Roberts. Coping with complexity. In Ahmed Seffah, Jan Gulliksen,
and Michel C. Desmarais, editors, Human-Centered Software Engineering
— Integrating Usability in the Software Development Lifecycle, volume 8,
pages 201–217. Springer-Verlag, Berlin/Heidelberg, 2005.

[RSI96] Jim Rudd, Ken Stern, and Scott Isensee. Low vs. high-fidelity prototyping
debate. interactions, 3(1):76–85, January 1996.

142

Bibliography

[SB09] Vinícius Costa Segura and Simone Diniz Barbosa. UISK: supporting Model-
Driven and Sketch-Driven paperless prototyping. In Proceedings of the 13th
International Conference on Human-Computer Interaction. Part I: New
Trends, page 697–705, Berlin, Heidelberg, 2009. Springer-Verlag.

[Sch96] Kurt Schneider. Prototypes as assets, not toys: why and how to extract
knowledge from prototypes. In Proceedings of the 18th international con-
ference on Software engineering, ICSE ’96, page 522–531, Washington, DC,
USA, 1996. IEEE Computer Society.

[Sch07] Kurt Schneider. Generating fast feedback in requirements elicitation. In
Proceedings of the 13th international working conference on Requirements
engineering: foundation for software quality, REFSQ’07, page 160–174,
Berlin, Heidelberg, 2007. Springer-Verlag. ACM ID: 1768916.

[SDM05] Ahmed Seffah, Michel C. Desmarais, and Eduard Metzker. HCI, usability
and software engineering integration: Present and future. In Ahmed Seffah,
Jan Gulliksen, and Michel C. Desmarais, editors, Human-Centered Software
Engineering — Integrating Usability in the Software Development Lifecycle,
volume 8, pages 37–57. Springer-Verlag, Berlin/Heidelberg, 2005.

[SGD05] Ahmed Seffah, Jan Gulliksen, and Michel C. Desmarais. An introduction
to Human-Centered software engineering. In Ahmed Seffah, Jan Gulliksen,
and Michel C. Desmarais, editors, Human-Centered Software Engineering
— Integrating Usability in the Software Development Lifecycle, volume 8,
pages 3–14. Springer-Verlag, Berlin/Heidelberg, 2005.

[SM04] Ahmed Seffah and Eduard Metzker. The obstacles and myths of usability
and software engineering. Commun. ACM, 47(12):71–76, December 2004.
ACM ID: 1035136.

[SM10] M. Sutherland and N. Maiden. Storyboarding requirements. IEEE Software,
27(6):9–11, December 2010.

[Sny03] Carolyn Snyder. Paper prototyping: the fast and easy way to design and
refine user interfaces. Morgan Kaufmann, San Francisco, CA, USA, 2003.

[SP00] Paulo Silva and Norman W. Paton. UMLi: the unified modeling language
for interactive applications. In Andy Evans, Stuart Kent, and Bran Selic,
editors, «UML» 2000 — The Unified Modeling Language, volume 1939,
pages 117–132. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[STG03] Reinhard Sefelin, Manfred Tscheligi, and Verena Giller. Paper prototyping
- what is it good for? In CHI ’03 extended abstracts on Human factors

143

Bibliography

in computing systems - CHI ’03, page 778, Ft. Lauderdale, Florida, USA,
2003.

[Sut03] A. Sutcliffe. Scenario-based requirements engineering. In Requirements
Engineering Conference, 2003. Proceedings. 11th IEEE International, pages
320–329, 2003.

[SY06] S. R Subramanya and B. K Yi. User interfaces for mobile content. Com-
puter, 39(4):85– 87, April 2006.

[TB90] Steven D. Tripp and Barbara Bichelmeyer. Rapid prototyping: An alter-
native instructional design strategy. Educational Technology Research and
Development, 38(1):31–44, March 1990.

[TBBS06] Maryam Tohidi, William Buxton, Ronald Baecker, and Abigail Sellen. Get-
ting the right design and the design right. In Proceedings of the SIGCHI con-
ference on Human Factors in computing systems, CHI ’06, page 1243–1252,
New York, NY, USA, 2006. ACM.

[THA06] Khai N Truong, Gillian R Hayes, and Gregory D Abowd. Storyboarding:
an empirical determination of best practices and effective guidelines. In
Proceedings of the 6th conference on Designing Interactive systems, DIS ’06,
page 12–21, University Park, PA, USA, 2006. ACM. ACM ID: 1142410.

[TSLD02] Barbara Tversky, T Stahovic, J Landay, and R Davis. What do sketches
say about thinking? In AAAI Spring Symposium on Sketch Understanding.
AAAI Press, 2002.

[Ver89] L. Vertelney. Using video to prototype user interfaces. ACM SIGCHI
Bulletin, 21:57–61, October 1989.

[VSK96] Robert A. Virzi, Jeffrey L. Sokolov, and Demetrios Karis. Usability problem
identification using both low- and high-fidelity prototypes. In Proceedings of
the SIGCHI conference on Human factors in computing systems: common
ground, CHI ’96, page 236–243, New York, NY, USA, 1996. ACM.

[VvLMP04] Hung Tran Van, A. van Lamsweerde, P. Massonet, and C. Ponsard. Goal-
oriented requirements animation. In Requirements Engineering Conference,
2004. Proceedings. 12th IEEE International, pages 218–228, 2004.

[Was96] A. I Wasserman. Toward a discipline of software engineering. IEEE Soft-
ware, 13(6):23–31, November 1996.

[Wik12] Wikipedia. Storyboard. http://en.wikipedia.org/wiki/Storyboard, March
2012.

144

Bibliography

[Won92] Yin Yin Wong. Rough and ready prototypes: lessons from graphic design. In
Posters and short talks of the 1992 SIGCHI conference on Human factors
in computing systems, CHI ’92, page 83–84, New York, NY, USA, 1992.
ACM.

[WPJH98] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer. Scenarios in system
development: current practice. Software, IEEE, 15(2):34–45, 1998.

[WTL02] Miriam Walker, Leila Takayama, and James A L. High-Fidelity or Low-
Fidelity, paper or computer? choosing attributes when testing web proto-
types. PROC. HUMAN FACTORS AND ERGONOMICS SOCIETY 46TH
ANNUAL MEETING, pages 661—665, 2002.

145

	Acknowledgements
	Abstract
	Kurzfassung
	Table of Contents
	Conventions
	1 Introduction
	1.1 The Problem
	1.2 Outline

	2 User-Centered Software Engineering
	2.1 Human-Computer Interaction
	2.2 Object-Oriented Software Engineering
	2.3 Mental Models and System Models
	2.4 Approaches for User-Centered Software Engineering
	2.4.1 Approaches with Focus on Processes
	2.4.2 Approaches with Focus on Artifacts

	3 Requirements
	3.1 Requirements Visualization and Simulation
	3.2 Use Case Visualization
	3.3 Scenarios
	3.3.1 Scenario Formalization
	3.3.2 Scenario Visualization

	4 Prototyping
	4.1 Prototyping vs. Design
	4.2 Prototypes as Artifacts
	4.2.1 Categories of prototypes
	4.2.2 Horizontal and Vertical Prototypes
	4.2.3 Prototype Fidelity
	4.2.4 Focus of Prototypes

	4.3 Prototyping as Process
	4.3.1 Revolutionary prototyping
	4.3.2 Experimental Prototyping
	4.3.3 Evolutionary Prototyping

	4.4 Techniques for Prototyping
	4.4.1 Wireframe Prototyping
	4.4.2 Storyboard Prototyping
	4.4.3 Paper Prototyping
	4.4.4 Digital Prototyping
	4.4.5 Video Prototyping
	4.4.6 Wizard-of-Oz Prototyping

	4.5 Prototyping Tools
	4.6 Prototype Knowledge Management

	5 The Script Model
	5.1 Scenario Meta Model and Interaction Meta Model
	5.2 Scenario Prototype Structural Meta Model
	5.3 Scenario Prototype Interaction Meta Model
	5.4 Relationship between Scenario and Scenario Prototype
	5.5 Criteria of Applicability
	5.5.1 Platforms
	5.5.2 Modes of Interaction
	5.5.3 Degree of User Interface Content Change
	5.5.4 Amount of User–System Interaction

	6 Application of Script
	6.1 Activities in the Script Framework
	6.2 Script in Development Lifecycles
	6.3 Sequence of Model Traversal
	6.4 Graphical Input for Script
	6.4.1 Paper-Based Sketching
	6.4.2 Digital Sketching
	6.4.3 Building from Predefined Shapes

	6.5 System Specification
	6.5.1 Deriving Use Cases
	6.5.2 Extracting User Interface Model
	6.5.3 Identifying Analysis Model Elements

	6.6 Document Export
	6.6.1 Static Documents
	6.6.2 Video Generation

	7 The Script Editor
	7.1 User Interface
	7.1.1 Scenario Prototype Editor
	7.1.2 Scenario Editor

	7.2 Architecture
	7.3 Components of Evaluation Setup

	8 Evaluation
	8.1 Experimental Design
	8.2 Tasks
	8.3 Experiment Results
	8.3.1 Number of Errors
	8.3.2 Working Time
	8.3.3 Exit Interview
	8.3.4 Threats to Validity

	9 Conclusion and Future Work
	9.1 Contributions
	9.2 Future Work

	A Experiment Prototypes Description
	A.1 Storyboard for Scenario 1: ``Peter comes home''
	A.2 Storyboard for Scenario 2: ``Peter programs''

	B Experiment Work Package Descriptions
	List of Figures
	Bibliography

