
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

 

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Birgit Penzenstadler

TUM-I126

Mini-Guideline to Requirements
Engineering



1

Mini-Guideline to Requirements Engineering
Birgit Penzenstadler, Software & Systems Engineering, penzenst@in.tum.de

Abstract—Requirements engineering (RE) is an essential part
of any (software) development project. It captures and models the
domain as well as the needs of the stakeholders and systematically
derives the requirements and constraints until the information is
concrete enough to design a system that suits the needs. Thus,
RE provides a thorough understanding of the future system and
its environment. RE helps to find out what your customer wants
and actually needs, and provides the foundation for designing
the system that suits these requirements.

This guideline lends a hand in getting started with performing
requirements engineering in a software development project.
It explains how to proceed with RE, what information to
capture, and how to document the results. The approach is based
on a domain-independent content model for artefact-oriented
requirements engineering.

I. MOTIVATION AND BACKGROUND

When customers issue a contract, they want to see fast
progress and results. At the same time, most developers are
eager to start designing straight away having a lot of ideas in
mind that might help their customer.

The problem is: the later requirements are added (because
they were missing in the first iteration) or changed (because
there were conflicts or inconsistencies), the more expensive
your system’s development — likely to blast your project’s
budget calculation and imposing delay. A significant number
of software development projects fails due to insufficient re-
quirements engineering. So before you put effort in designing
a system that will probably not suit your customer’s needs,
better make sure that you have elicited the right requirements
and that they are consistent. To be prepared for this, you learn
how to perform requirements engineering.

Our course on requirements engineering for Master students
covers a wide range of topics, perspectives, and methods. To
integrate these topics and to provide a common backbone as
basis, we provide an artefact model that consists of a content
model and the respective structures for the items in the content
model. In Fig. 1, you see how the artefact model is composed
by content and structure and how they relate to each other.

Fig. 1. Artefact Model with Content and Structure.

We consider a content model a description of the general
content, to be created in requirements specifications. The
model is independent of a document structure or data sets
and especially independent of chosen description techniques
for representing the content. We provide suggestions for the
description techniques as a starting point.

II. OVERVIEW OF RE-PHASES

In general, we distinguish the following phases in the
requirements engineering process:

• Elicitation: find out about the information
• Analysis: think about it and structure it
• Specification & Documentation: write it down
• Validation & Verification: check back with stakeholder

Every requirement runs through these phases. Each phase is
realised in tasks that can also span across phases. To carry
out the tasks, there is a number of methods that can be used.
Figure 2 shows the relation between the terms illustrated by
an example.

Fig. 2. Overview of RE Phases, Tasks, and Methods.

In our approach, the information to be captured in RE is
defined in a Content Model. It serves as a checklist for the
different aspects to be considered. Furthermore, the Content
Model is a backbone to structure the specific tasks to be carried
out during the requirements engineering phases. These tasks,
for example, “gather goals”, are supported by methods and
techniques. The results from these activities are captured in
Content Items. The content items can be grouped according
to the information needs of a specific stakeholder.

Artefacts are content items with a predefined structure. A
complete artefact model is therefore too complex to explain
within this mini guideline, therefore we only ask you to
remember the definition. We choose such an artefact-oriented
approach because it allows for more flexibility in the process
that is carried out with respect to distributed work and schedul-
ing that defines strictly sequential, fine-grained process steps.



2

III. CONTENT MODEL

The following description of the domain-independent RE
content model in Fig. 3 is a first sketch of contents to be
covered by an artefact model (see Fig. 1). Thereby, an artefact
is a deliverable that is produced, modified, or used by a
sequence of tasks that have value to a role (taken by a
stakeholder). Artefacts are subject to quality assurance and
version control and have a specific type. The content model is
hierarchically structured into content items that define single
areas of responsibility and that are the output of a single
task. At its lowest level of decomposition, each content item
encompasses [MPKB10]:

1) Concepts: a concept defines the elements and their
dependencies on domain-specific description techniques
used to represent the concern of a content item. Concepts
have a specific type and can be decomposed to concept
items. The latter differentiation is made if different items
of a concept can be described with different techniques.

2) Syntax: the syntax defines a concrete language or rep-
resentation that can be chosen for a specific concept.

3) Method: The method (or task) describes the sequence
of steps that is performed in order to make use of a
concept.

Context	  
Model	  

Stake-‐	  
holder	  

System	  
Vision	  

Objec:ves,	  
Goals	  &	  

Constraints	  

Usage	  Model	  	  
(Use	  Cases,	  Interface	  

Requirements)	  

Quality	  
Requirements	  

Lifecycle	  
Constraints	  

Product	  
Constraints	   Risk	  

List	  

Component	  
Model	  

Topology	  Deployment	  SoNware	  
Model	  

Context	  

System	  /	  Product	  
Requirements	  

Subsystem	  
Level	  

Technical	  
Architecture	  

Legend:	  
Content	  Item	  
Abstrac:on	  Level	  
Ini:al	  Input	  
(green	  field)	  

CPS	  Level	   CPS	  
Scenarios	  

Data	  
Model	  

Func:onal	  
Requirements	  
&	  Service	  
Model	  

Fig. 3. Domain-independent RE Content Model.

The arrows of Fig. 3 indicate that the contents are initially
(supposing green field development) derived from the preced-

ing contents. We are aware that green field development is
rarely the case and the model does not require green field.
However, it is easier to illustrate and explain in top-down
order. There are more influences that are not depicted in order
not to overload the graphic.

A. Abstraction Levels

The model is structured by means of four abstraction levels:
Environment, System, Logical Architecture and Technical
Architecture. Requirements Engineering focuses on the upper
two levels. The two lower abstraction levels are included
to facilitate integration with design and to enable bottom-up
promotion of technical constraints.

• Environment / Context (Operational and Business): The
Environment is described independently of a concrete
system.

• System / Product Requirements, Functional Architecture:
On this level, the interaction between users and system
is described within the problem domain (black box).

• Subsystem Level, Logical Architecture: On this level, the
system is described as white box in terms of structure and
behaviour while still not distinguishing between hardware
or software.

• Technical Architecture: This level describes the realisa-
tion of the system in hardware and software.

B. Content Items

The descriptions in Tables I, II, III, and IV are short
definitions of the content items depicted in Fig. 3.

TABLE I
CONTENT ITEMS OF THE OPERATIONAL ENVIRONMENT

Content Item Description
Domain Model A system-independent description of the domain

and the operational and business environment.
Stakeholder A description of individuals or organisations that

are related to the project.
Objectives, Goals and
Constraints

An objective is a major statement of intent to
be achieved by a project, while a goal is a
more concrete, prescriptive statement of intent
of one or more stakeholders. Constraints are
restrictions of any type. Objectives and Goals
are represented by same Concepts; we refine
Objectives into Goals.

The content items in the lower two abstraction levels are
usually not elaborated during requirements engineering. They
are defined here to facilitate relating to the design phase of
the development.



3

TABLE II
CONTENT ITEMS OF THE SYSTEM LEVEL

Content Item Description
System Vision An outline of the system’s capabilities and char-

acteristics.
Usage Model A description of observable system behaviour

and interaction from the viewpoint of the user
(use cases, scenarios).

Functions / Services The single units of functionality that realise the
behaviour specified in the usage model. Usage
Model and Functions (hierarchy) are both views
on black box behaviour from different perspec-
tives (domain vs. technical).

Quality Requirements A description of properties and conditions for
structure or behaviour of the system by use of
measures. Quality Requirements and Constraints
refer to the same quality model. There are several
views for quality that are determined by the
stakeholder who issues a quality requirement, for
example, user, maintainer, legislation, etc. One
quality attribute or also one quality requirement
can thereby also have several stakeholders.

Data Model The information processed during the execution
of functions.

Product Constraints The quality-independent restrictions on func-
tional, logical, and technical architecture.

Lifecycle Constraints The restrictions and agreements concerning de-
velopment process, release, integration, and
maintenance. Product Constraints and Lifecycle
Constraints are based on the same concepts but
have different stakeholders.

Risk Report / List The description of potential problems related to
requirements or project.

TABLE III
CONTENT ITEMS OF THE COMPONENT LEVEL

Content Item Description
Component Model The structure and behaviour of the logical com-

ponents that realise the functions. Thereby, a
component can again be perceived as and treated
like a system.

IV. TASKS AND METHODS

The items of the content model are developed iteratively
across the phases mentioned in Sec. II and influence each
other. Nevertheless, to provide an order of describing a possi-
ble initial development of requirements, we give an example
of how the first steps can be conducted. We illustrate the
steps using the example of a business information system
for the fictitious company “Alpine Adventure Tours” (AAT)
that supports their course bookings, customer management,
procurement, and reporting.

A. Starting point

The most common starting point for requirements engineer-
ing is a customer who issues the desire for a specific software
solution. In the content model, this is one of the stakeholders.
They have a system vision. From your customer you get a first
version of the system vision and you get more stakeholders to
talk to.

TABLE IV
CONTENT ITEMS OF THE TECHNICAL LEVEL

Content Item Description
Topology The hardware and communication outline.
Software Model The packaging and communication of software

components.
Deployment The mapping of software to hardware and inte-

gration.

B. Finding the Stakeholders

One major pitfall for requirements engineering is to have
an incomplete list of stakeholders (content item on the Op-
erational Environment level in Fig. 3). This pitfall can easily
be avoided by systematically gathering the people who have
a potential interest in the system.

For every stakeholder, choosing the right vocabulary to
reach out to them is important. Whether or not a stake-
holder has technical knowledge, is involved with marketing,
or represents legal concerns — make clear that their points
of view are relevant and their requirements are taken into
account. Important common types of stakeholders that should
be checked for every system are:

• Customer
• User Groups
• Marketing & Sales
• Legislation
• Developers (Hardware and Software)
• Help Desk, Technical Support & Maintenance
Figure 4 shows the most important stakeholders of the

Alpine Adventure Tours example.

Fig. 4. Stakeholders of Alpine Adventure Tours.

A helpful reference for further reading is the taxonomy of
stakeholders by Ian Alexander, called onion model [Ale05].



4

C. Agreeing on System Vision & Scope

All stakeholders should agree on a common system vision
and scope. This implies that the system vision (content item
on the System level in Fig. 3) has to be understood by every
stakeholder involved — including non-technicians. We advise
to use a so-called rich picture [MH98] as illustration. A rich
picture captures the key elements of the system vision in (self-
explanatory or labelled) icons and depicts their interrelation.
Figure 5 shows a rich picture of the system vision of AAT.
Rich pictures have proven especially useful as basis for

Fig. 5. System Vision of Alpine Adventure Tours.

discussion in workshops and meetings. In documentation, i.e.
after the stakeholders have agreed on one version of the rich
picture, it should be accompanied by an explaining paragraph
in natural language.

D. Gathering Goals, Usage Model, and Constraints

From the stakeholders, we gather the goals (content item
on the Operational Environment level in Fig. 3). Goals can be
business goals, market goals, functional, quality, or technical
goals. The two most common forms of documenting goals are
natural language text and goal trees [vL01]. The latter have
the advantage of showing the relations between the goals.

Example goals from AAT are:
• Competition with other skiing regions demands high

customer satisfaction at low prices.
• Customers must get the business services from one hand.
• Increase of customer satisfaction by reduction of cus-

tomer complaints.
• Fast market expansion and branding the business image

in new markets with collaboration of existing local com-
panies.

• Providing the best service to customers.
• Achieving market lead in skiing courses at region

“Zugspitze”.
Apart from the stakeholders, there are other sources of

information, usually documents. Some important information
sources are:

• Legacy systems and user documentation
• Laws, standards, and regulations
• Customer complaints, unintended uses
To turn the goals into concrete requirements, they have to be

refined. The goals that refer to the services to be provided by
the system are refined into descriptions of usage behaviour.
This often requires additional input from both stakeholders
and other information sources. The results of this analysis are
captured in the content item Usage Model (on the System level
in Fig. 3). Usage can be captured either in service descriptions
or in use cases and scenarios. The usage model is a black box
specification of the behaviour that hides any realization detail.
Figure 6 shows the use case overview of AAT and Figure 7
depicts a detail of the scenario derivation.

Fig. 6. Use Case Overview of Alpine Adventure Tours.

Fig. 7. Scenario Detail of Alpine Adventure Tours.

Constraints describe restrictions that arise from the business
context (like management or laws) or from the system’s op-
erational environment (like hardware constraints). Both types
have to be listed with references to their original source.



5

E. Documenting Requirements

On the basis of the goals, the usage model, and the con-
straints, the requirements are derived and documented. Write
your requirements SMART — specific, measurable, attainable,
realisable, and time bounded (objective must be achieved by
a specific date in the project plan).

Your requirements need a number of attributes:
• ID, version, and configuration (if applicable)
• Origin, author, and responsible
• Rationale and tracing to related requirements or artefacts
• Priority and status
A popular template for requirements documentation is the

Volere Template [RR06], see Fig. 8.

Fig. 8. Volere Template for Requirements.

F. Quality Assurance and Acceptance

There are two major stages of review to perform — one by
your colleagues (internal) and one by your customer (external).
The internal review checks understandability, completeness,
consistency, precision, correctness, traceability, and change-
ability.

The external review by the customer performs the same
checks plus the decision whether the requirements specifica-
tion actually describes what they want. Your goal is agreement
with the customer and acceptance of your requirements spec-
ification — and the preceding internal review is the basis.

G. Managing Requirements

Your requirements are likely to be changed by the customer
and other stakeholders during development. Therefore, it is
important to establish a proper change management process
that keeps your requirements specification consistent and their
change history traceable. Best practice is to issue change
requests that are decided on. These decisions, as well as other
decisions taken during development, should be documented for
future reference. A helpful template for decision documenta-
tion is provided by Tyree [TA05]. It captures issue, decision,
status, assumptions, constraints, implications, related decisions
and requirements. The extent of a template should be adapted
to the project settings — but: document the decisions.

V. CONCLUSION

This guideline gives concrete steps on the way to accom-
plish your first requirements engineering project. We welcome
feedback to further improve it for the future.

ACKNOWLEDGEMENTS

Thanks a lot to Veronika Bauer, Maximilian Junker, and
Mario Gleirscher for input and helpful feedback on earlier
versions of this guideline.

REFERENCES

[Ale05] Ian F. Alexander. A taxonomy of stakeholders: Human roles in
system development. International Journal of Technology and
Human Interaction, 1(1):23–59, 2005.

[MH98] Andrew Monk and Steve Howard. The rich picture: a tool for
reasoning about work context. Interactions, 5(2):21–30, 1998.

[MPKB10] Daniel Mendez, Birgit Penzenstadler, Marco Kuhrmann, and
Manfred Broy. A meta model for artefact-orientation: Fundamen-
tals and lessons learned in requirements engineering. In Proc. of
the 13th International Conference on Model Driven Engineering
Languages and Systems, 2010.

[RR06] James Robertson and Suzanne Robertson. Volere: Requirements
specification template, 2006. http://www.volere.co.uk/.

[TA05] Jeff Tyree and Art Akerman. Architecture decisions: Demystify-
ing architecture. IEEE Softw., 22:19–27, March 2005.

[vL01] Axel van Lamsweerde. Goal-oriented requirements engineering:
A guided tour. In Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering, page 249, 2001.




