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Abstract

At aqueous interfaces, the structure of water differs significantly from the structure in
bulk fluid. In particular, the water density at the interface exhibits an oscillating profile
and the orientation of the water molecules at the interface is strongly anisotropic. The
molecular structure of the interfacial water has a decisive effect on the local dielectric
function, as well as on the interfacial viscosity. In addition, the non-spherical shape of
water molecules affects the fluid dynamics. Despite their importance for the behavior
of liquid flowing under strong confinement – as is ubiquitous in biological systems, in
colloidal suspensions and in micro- and nanofluidics – these molecular interfacial effects
are neglected in standard continuum theories of water dynamics. The work described
in this thesis is aimed at incorporating molecular information inferred from molecular
dynamics simulations into continuum theory to describe the non-equilibrium dynamics of
aqueous solutions at interfaces.

First, we extract the interfacial profile of the full dielectric tensor of pure water from
molecular dynamics simulations, and incorporate the results into a mean-field description
of the interfacial electrostatics. Comparing the results to literature values, we show that
the dielectric profile of pure water is both necessary and sufficient to explain the exper-
imental double-layer capacitance of carbon-based surfaces. Second, we investigate the
hydrodynamic properties of the interfacial water layer, and quantify the effect of hydro-
dynamic slip or enhanced interfacial viscosity on pressure-driven and electrokinetic flow.
Third, we formulate a generalized Navier-Stokes equation, including the effect of rotating
water dipoles, and calculate the effect of spinning water molecules on electrokinetic flow.
We show that whereas a static electric field does not induce flow in a purely dipolar fluid,
a rotating electric field can be used to drive an electro-hydraulic pump. Finally, we incor-
porate the profiles of the dielectric function and the viscosity into a combined mean-field
and continuum theory of electrokinetic flow to calculate the electro-osmotic mobility and
surface conductivity of charged solutes. Using this framework, we are able to explain both
the experimentally observed saturation of electro-osmotic mobility as a function of bare
surface charge density and the universally measured excess surface conductivity within a
single model.
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Zusammenfassung

An wässrigen Grenzflächen unterscheidet sich die Wasserstruktur wesentlich von der Struk-
tur im inneren Volumen des Wassers. Insbesondere weist die Wasserdichte an der Grenz-
fläche ein oszillierendes Profil auf, und die Orientierung der Wassermoleküle an der Grenz-
fläche ist stark anisotrop. Diese Molekülstruktur des Wassers hat einen entscheidenden Ein-
fluss auf die lokale dielektrische Funktion, sowie auf die Grenzflächenviskosität. Darüber
hinaus beeinflusst die nichtsphärische Form der Wassermoleküle die Flüssigkeitsdynamik.
Trotz ihrer großen Bedeutung für das Verhalten der Flüssigkeit unter starken räumlichen
Beschränkungen – welche in biologischen Systemen, kolloidalen Suspensionen sowie mikro-
und nanofluidischen Anwendungen universell auftreten – werden diese molekularen Grenz-
flächen-Effekte in Standard-Kontinuums Theorien der Wasserdynamik vernachlässigt.
Diese Doktorarbeit zielt auf die Einbeziehung molekularer Informationen, abgeleitet aus
Molekulardynamik-Simulationen, in Kontinuumstheorien, um damit die Nichtgleichge-
wichts-Dynamik von wässrigen Lösungen an Grenzflächen zu beschreiben.

Zuerst extrahieren wir das Grenzflächenprofil des vollständigen dielektrischen Tensors
von reinem Wasser aus Molekulardynamik-Simulationen. Diese Ergebnisse werden an-
schließend in eine molekularfeldtheoretische Beschreibung der Grenzflächen-Elektrostatik
aufgenommen. Durch Vergleich mit Literaturwerten zeigen wir, dass das dielektrische
Profil von reinem Wasser sowohl notwendig ist, als auch ausreichend, um die experi-
mentelle Oberflächenkapazität von Kohlenstoff-basierten Oberflächen zu erklären. Zwei-
tens untersuchen wir die hydrodynamischen Eigenschaften des Grenzflächenwassers und
quantifizieren die Auswirkung des hydrodynamischen Schlupfs bzw. der erhöhten Grenz-
flächenviskosität auf druckgetriebene und elektrokinetische Strömungen. Drittens formu-
lieren wir eine verallgemeinerte Navier-Stokes Gleichung unter Berücksichtigung rotieren-
der Wasserdipole, und berechnen die Auswirkung dieser molekularen Wasserrotation auf
elektrokinetische Strömung. Wir zeigen, dass, obwohl ein statisches elektrisches Feld in
einer rein dipolaren Flüssigkeit keine Strömung erzeugt, ein rotierendes elektrisches Feld
verwendet werden kann, um eine elektro-hydraulische Pumpe anzutreiben. Schließlich neh-
men wir die Profile der dielektrischen Funktion und der Viskosität in einer kombinierten
Molekularfeld- und Kontinuumstheorie der elektrokinetischen Strömung auf, und berech-
nen die elektroosmotische Mobilität und die Oberflächenleitfähigkeit geladener Teilchen.
Dieser theoretische Rahmen erlaubt uns, sowohl die experimentell beobachtete Sättigung
der elektroosmotischen Mobilität in Abhängigkeit der blanken Oberflächenladungsdichte,
als auch die universell gemessene überschüssige Oberflächenleitfähigkeit innerhalb eines
einzigen Modells zu erklären.
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Chapter 1
Introduction

Water is the primary constituent of biological cells [1], and finds extensive use as a solvent
as well as a working fluid in technological applications. In particular the number of applica-
tions of micro- and nanofluidic technology has been rising rapidly over the past decades [2].
Inherent to the small size of nanofluidic devices, surface characteristics dominate the bulk
flow properties and as device dimensions shrink even further, interfacial effects become
ever more important. Moreover, a variety of different strategies actually exploit boundary
effects to manipulate fluids, such as acoustic streaming [3] and electrokinetic effects [4].
A limiting case of small-scale fluid flow is found in biological systems, where membrane
channels and pumps transport fluids and biological molecules on a single-molecular scale
[5, 6]. The ambitious goal of nanofluidics is to reach the single-molecular length scale in
man-made devices and to manipulate flows on the scale of biopolymers and single pro-
teins. Apart from microscopic applications, such as micrometer-scale laboratories, arrays
of nanofluidic channels can be used in macroscopic pumps, desalination devices and elec-
trokinetic power plants [7–11]. For all applications, ranging from microscopic analysis
devices to large-scale power plants, a profound comprehension of the behavior of liquid
flowing under strong confinement is required [12]. Likewise, to acquire a better understand-
ing of proteins such as aquaporin and other membrane channels [13, 14], the mechanisms
behind single molecular flows need elucidation [15]. Because of the large surface-to-volume
ratio, describing the fluidic properties on this scale involves a precise determination of the
electrostatic and hydrodynamic characteristics of the aqueous interface.

1.1 The Helmholtz-Smoluchowski Equation

Particles in aqueous solution typically acquire a net charge, which is compensated for by
an excess of counterions in the electrolyte. In electrokinetics, this charge separation is
used to drive fluid flow along charged surfaces by means of an applied electric field. For
the understanding of the dynamics of water, ions and macromolecules in biological cells,
which are crowded with highly charged molecules, electrokinetics are of great significance.
Equally important, electrokinetics are of interest for technological applications, primarily
because they are the preferred method to drive micro- and nanofluidic flows in “lab-on-
a-chip” devices. Moreover, electrokinetic experiments provide a sensitive probe of the



2 Dielectric Permittivity

electrostatic and hydrodynamic properties of the aqueous interface. The basic model
of electrokinetic flow consists of a uniform electric field E applied parallel to a uniformly
charged infinite plane in contact with a continuum electrolyte of relative dielectric constant
ε and spatially constant viscosity η. At large distances from the interface, the flow velocity
u parallel to the charged surface is expressed by the Helmholtz-Smoluchowski equation,

u = −εε0 ζ
η

E, (1.1)

named after Hermann Helmholtz [16] and Marian Ritter von Smolan Smoluchowski [17].
In Eq. 1.1, ε0 is the permittivity of vacuum and ζ is the electrostatic potential at the
shear plane. Eq. 1.1 is valid for electrokinetic flow in arbitrary geometry, provided that
the typical length scale a of the charged objects exceeds the Debye screening length κ−1

of the electrolyte by a large margin, κa ≫ 1. In the opposite limit, κa ≪ 1, a factor 2/3
appears on the right-hand-side of Eq. 1.1 [18]. Although the fluid velocity u is measured
far away from the interface, its origin lies within the first few nanometers directly adja-
cent to the surface: the region where the counter-charge accumulates. Within this region,
the water density varies appreciably, typically showing a peak close to the interface with
subsequent oscillations, reaching bulk value after ∼ 1 nm. Moreover, the water orienta-
tion is highly anisotropic: water molecules directly at the interface tend to orient with
their hydrogen atoms toward the surface, whereas the second layer of water molecules are
preferentially oriented in the opposite direction, etc., alternating for several layers. The
polar ordering of the water molecules gives rise to a strong electric field in the interfacial
region, showing sharp oscillations around zero that decay over a similar length scale as
the density fluctuations. Inherent to the varying water structure, the dielectric permit-
tivity ε and the viscosity η are not spatially constant, but depend on the distance to the
surface instead. Clearly, these inhomogeneous profiles, and consequently the effects of the
interfacial molecular structure, are missing from the continuum expression of Eq. 1.1.

In the following sections, we will discuss the effects of the interfacial molecular structure
on the fluid dynamics, focusing on the dielectric permittivity ε, the viscosity η and the
effect of molecular rotation.

1.2 Dielectric Permittivity

One of the most salient properties of water is its high molecular polarity. As a result,
electrostatic interactions in aqueous environments are drastically modified with profound
implications for the behavior of ions, proteins and membranes in solution [19]. Experiments
and simulations have shown that the dielectric function of homogeneous water exhibits two
singularities for wave vectors at molecular length scales, indicating anomalous screening
effects in bulk water [20]. To what extent interfacial water exhibits similar anomalies is
less clear [21]. Experimental capacitance studies have led Stern to propose a model for
an aqueous interface where the dielectric constant is reduced over a nanoscopic width
[22]. Whether this layer reflects ionic or rather intrinsic water properties is not specified
in the original Stern model. However, recent terahertz spectroscopy experiments have
shown that the dielectric properties of water itself are modified at interfaces within a layer
of molecular size [23]. Without considering an explicit interfacial dielectric profile, the
relation between the non-local dielectric function and the Stern-layer contribution to the
capacitance has been established [24], including non-linear effects [25]. Using approximate
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statistical mechanical methods, the decrease of the interfacial capacitance for a dipolar
fluid has been related to molecular ordering and orientation [26]. However, a method for
extracting dielectric profiles from interfacial water orientational and spatial distributions,
as well as detailed knowledge of the profiles themselves have been lacking so far.

A thorough understanding of the interfacial dielectric behavior of water is a prerequisite
for correct modeling of ion distributions [27] and double-layer interactions [28], as well as
electrokinetic effects. Similarly, the interfacial dielectric function is a key ingredient to
solvent-implicit approaches toward protein and macro-molecular modeling [29]. Control
over the interfacial dielectric constant is also crucial for a number of industrial applications,
including high power and long duration energy storage devices [30]. Finally, dielectric
effects are one contribution to the hydration repulsion between polar surfaces [19, 31].
The dielectric properties of interfacial water have been studied using both simulations
and analytic approaches. One shortcoming of previous analytic approaches is that the
water bulk behavior, including the above-mentioned anomaly, is typically not accounted
for [32, 33]. At the same time, previous simulations with explicit water and ions could
not be analyzed within the existing theoretical framework. One reason for the complexity
is the appearance of higher order multipole moments, which are particularly essential at
interfaces [34].

1.3 Viscosity

A growing amount of literature indicates that on small length scales, the hydrodynamic
boundary condition deviates from the usual no-slip condition [35, 36]. Experimentally, the
viscosity is defined as the proportionality constant between the shear force per unit area
and the resulting velocity gradient. Close to a wall, this proportionality constant appears
to be different from the bulk value. In the first few molecular layers next to the interface,
this is caused by the changing water structure, most notably the dipolar orientation and
the oscillating density profile. In addition, at hydrophobic walls there is a density depletion
gap between the wall and the fluid [37–39]. Directly at the wall, the velocity gradient can
therefore be very different from the bulk velocity gradient in a Couette shearing scenario.
On a molecular scale, even “true slip” of the first molecular layer along the wall can be
imagined.

On a simple level, the assumption that the surface stress is linearly related to the
surface velocity via a friction coefficient, which equates the surface stress to the viscous
shear stress, leads to the notion of a slip length [40]. A finite slip length greatly enhances
flow rates through small channels. The slip length exhibits a sensitive dependence on
the microscopic properties of the surface, increasing as the contact angle grows and the
surface becomes more hydrophobic, and scaling proportional to the depletion length to the
fourth power [41]. Due to their hydrophobic nature and the large vacuum gap between
wall and fluid, carbon nanotubes appear to have very large slip lengths, up to tens of
micrometers [42], making them promising candidates for use as channels [43] and pumps
[44] in nanofluidic devices.

Alternatively, the effect of the interfacial hydrodynamics can be modeled by a space-
dependent viscosity profile η (r), with r the spatial coordinates. Whether a slip length,
a viscosity profile or a combination of the two provides the more accurate model of the
hydrodynamic boundary condition depends on surface type and molecular composition.



4 Water Rotation

1.4 Water Rotation

Ever since the first electrophoretic measurements it has been known that nominally un-
charged substances in pure water, such as air bubbles and oil droplets, move toward
the positive electrode and thus behave as effectively negatively charged [45]. Based on
streaming-potential [46], titration [45], and thin-film stability studies [47], this behavior
is attributed to the interfacial accumulation of negatively charged ions such as oh−. For
the air-water interface, however, recent second-harmonic generation [48] as well as spec-
troscopy experiments and simulations [49] suggest that not oh− but h3o

+ shows enhanced
interfacial adsorption. This discord has stirred fierce discussions [45, 49, 50]. A way out
of the dilemma was proposed in recent molecular dynamics (md) simulations of aqueous
interfaces, where pure water without any added ions induced electrophoresis of the same
sign and size as observed experimentally for air bubbles or oil droplets [51].

The ability of electric fields to produce hydrodynamic shear at pure-water interfaces
opens attractive possibilities in other geometries, such as water-filled carbon nanotubes
[52]. For flow through such tiny capillaries, the electrostatic boundary conditions strongly
influence the permeability to charged species. The electrostatics of a small channel em-
bedded in a medium of very low dielectric constant leads to a large self-energy barrier
for ions to enter the confined region [53, 54]. In many biological channels, transport of
ions is facilitated by inclusion of fixed charges in the channel walls [55], coating walls with
dipolar surface groups [56, 57] and screening by salt [58]. Fixed charges outside a carbon
nanotube are found to affect the pressure-driven passage of water molecules through the
nanotube as well [59]. Even more intriguing is the observation that carbon nanotubes
filled with pure water exhibit electro-osmotic flow when either an electric field is applied
[60] or point charges are fixed outside the channel [61]. Similarly, electro-osmotic flow is
found in uncharged channels filled with solutions of the relatively symmetric salts sodium
chloride and potassium chloride [62–64].

The mechanism for this water-induced electrophoresis was speculated to be related to
the interfacial water structure, involving static properties such as dipolar ordering [65] and
density profile [66], as well as dynamic properties such as surface viscosity and slip length
[67]. In particular, the appearance of a non-zero ζ-potential in absence of free charges was
speculated to be related to the electrostatics in the boundary layer: water molecules tend
to orient, leading to a strong dipolar field in the first few molecular layers next to the
interface. The coupling of the electric field to this dipole density was thought to induce
flow via rotation of individual molecules [51, 60]. Although exciting, these results raise
concern as fundamental laws of physics appear to be violated. In particular, the effects
seem at odds both with Onsager’s reciprocal theorem, since an externally applied pressure
drop cannot cause a steady electric current because of the absence of free charges, and with
thermodynamics, since the electric field performs no work in the steady state. Despite the
great fundamental importance, a theory that combines hydrodynamics and electric-field
effects for interfacial water has been missing until now.

1.5 Ion-Surface Interactions

Apart from charging by an external electric source (for conducting surfaces) and charging
by ionization of chemical surface groups, surface charge can originate from specific adsorp-
tion of ions. The propensity of an ion to adsorb on to a surface depends on its chemical
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properties, such as size, charge and polarizability, as well as on the chemical properties of
the surface. A third important factor is the molecular structure of the interfacial water.
The combined potential due to the aforementioned effects is termed the potential of mean
force (pmf), which can be incorporated into the Poisson-Boltzmann equation as a non-
electrostatic contribution to the potential. In Ref. [xi], we determine the pmfs of br−, i−,
cl− and na+ at a hydrophobic self-assembled monolayer (sam) from md simulations, and
calculate the disjoining pressure between two sams from the modified Poisson-Boltzmann
equation. The results show that specific adsorption of ions contributes significantly to
the surface charge density and should be taken into account when fitting experimental
data. Splitting the pmf, however, into contributions from the Lennard-Jones potential,
the polarizability, the image charge potential and the electrostatics of the ordered water
molecules, fails to capture the results from the md simulations. In this thesis, we qualita-
tively model the pmf, taking into account the effect of the inhomogeneous dielectric profile
and the hydration potential due to the varying density profile. To account for specific ion
adsorption in all other calculations, we include heuristic non-electrostatic potentials that
are similar to the ones from Ref. [xi] for distances larger than ∼ 3 Å.

1.6 Molecular Modeling: Molecular Dynamics Simulations

For direct investigation of interfacial properties, simulation techniques are particularly
valuable. For the work described in this thesis, the molecular information is obtained from
all-atom classical molecular dynamics (md) simulations, in which Newton’s equations of
motion are integrated numerically for a system of non-polarizable molecules [68]. The time-
step used is typically ∼ 10−15 s, allowing total simulation times of the order of nanoseconds
to microseconds for systems of ∼ 104 atoms, which are appropriate time and length scales
to capture the molecular motion (orientational relaxation time ∼ 10−12 s [69–71]) and the
equilibrium structure of liquid water. In classical md simulations, the interaction potential
between two atoms i and j at distance rij is modeled by the spherically symmetric potential

Uij (rij) = Uc
ij (rij) + Ulj

ij (rij) , (1.2)

with the Coulomb potential being given by

Uc
ij (rij) =

qiqj
4π εε0 rij

, (1.3)

and the Lennard-Jones potential by

Ulj
ij (rij) = 4 ǫij

[

(

σij
rij

)12

−
(

σij
rij

)6
]

. (1.4)

The parameters needed for each atom pair ij are the charges qi and qj, the Lennard-Jones
interaction strength ǫij and the interaction radius σij. Water molecules are modeled as
single Lennard-Jones spheres, having three (spc/e [72]) or four (tip4p/2005 [73]) partial
point charges at fixed positions within the molecule. These water models satisfactorily
reproduce, among other quantities, the water structure factor (measured using x-ray or
neutron diffraction and calculated in md simulations from the radial distribution func-
tion), bulk dielectric constant and water density, which warrants sufficient confidence that
classical md simulations can be used to quantify the molecular structure of interfacial
water.
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1.7 Outline

The work described in this thesis is aimed at the integration of continuum modeling
with molecular information provided by md simulations, in order to describe the static
and dynamic properties of water and electrolytes at charged and uncharged surfaces. In
Chapter 2, we derive the theoretical framework needed to calculate the dielectric response
tensor from molecular dynamics simulations, and determine its components at the in-
terface between a solid surface and pure water using md simulations. We incorporate
the dielectric profile, which includes the effect of molecular interfacial structure, into a
mean-field (Poisson-Boltzmann) description of the interfacial electrostatics. Similarly, md
simulations provide detailed insight into the mechanism of surface slip [74], which sets
the hydrodynamic boundary conditions used for the Navier-Stokes equations. In Chap-
ter 3, we investigate the effect of interfacial hydrodynamic slip on the energy dissipation
in pressure-driven flow and the thermodynamic efficiency of electrokinetic pumping. In
Chapter 4, we include the dipolar water ordering at interfaces and the molecular rotation
of water molecules into a generalized Navier-Stokes equation and determine the conditions
under which the spin field contributes to the fluid flow. Simulations of ions at interfaces
renders information on the characteristics and extent of ion adsorption, which is used to
complement the Poisson-Boltzmann equation, see Ref. [xi]. Ultimately, this multi-scale
modeling scheme allows us to formulate a modified Helmholtz-Smoluchowski equation (Eq.
1.1), including the effects of molecular structure. In Chapter 5, we combine the effects of
the viscosity profile, the dielectric profile and the non-electrostatic ion-surface interactions
to calculate electrokinetic mobility, as well as the electric surface conductivity at charged
surfaces.



Chapter 2
Profile of the Static Permittivity
Tensor of Water at Interfaces

In this chapter, we derive the theoretical framework to calculate the dielectric response
tensor and determine its components for water adjacent to hydrophilic and hydropho-
bic surfaces using molecular dynamics simulations. For the non-polarizable water model
used, linear response theory is found to be applicable up to an external perpendicular
field strength of ∼ 2 V/nm, which is well beyond the experimental dielectric breakdown
threshold. The dipole contribution dominates the dielectric response parallel to the inter-
face, whereas for the perpendicular component it is essential to keep the quadrupole and
octupole terms. Including the space-dependent dielectric function in a mean-field descrip-
tion of the ion distribution at a single charged interface, we reproduce experimental values
of the interfacial capacitance. At the same time, the dielectric function decreases the elec-
trostatic part of the disjoining pressure between two charged surfaces, unlike previously
thought. The difference in interfacial polarizability between hydrophilic and hydrophobic
surfaces can be quantized in terms of the dielectric dividing surface. Using the dielectric
dividing surface and the Gibbs dividing surface positions to estimate the free energy of a
single ion close to an interface, ion-specific adsorption effects are found to be more pro-
nounced at hydrophobic surfaces than at hydrophilic ones, in agreement with experimental
trends. The work described in this chapter has been published in Refs. [iii] and [vi].

2.1 Introduction

Electrostatic interactions between charged objects in aqueous solution, such as lipid mem-
branes, proteins and ions, are profoundly influenced by the surrounding water [19]. Each
charge embedded in the dielectric environment of the water couples to the local electric
field, which comprises both the displacement field emanating from the charged objects and
the polarization field stemming from the dielectric medium. In a macroscopic approach,
the effect of the water on electrostatic interactions is quantified by means of the static
dielectric tensor ε, which is spatially constant and diagonal in bulk. Close to an interface,
however, the effect of the water is more intricate. The water density near an interface
strongly deviates from its bulk value and the proximity of a surface restricts the molecular
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dynamics [75]. Short-ranged interactions between macroscopic objects in water that go
beyond homogeneous continuum electrostatics, such as hydration forces and hydrophobic
effects, are often attributed to this local variation of the solvent structure [31, 76]. Because
of the extremely polar nature of water molecules, the water structure directly affects the
electrostatic environment, making the dielectric tensor inherently space-dependent. The
effect of the solvent structure strongly depends on the nature of the interface: hydrophobic
and hydrophilic surfaces have a vastly different influence on the adjacent water [77, 78].

Within the framework of linear response theory, the space-dependent dielectric response
function can be expressed as a non-local tensor, depending on the positions of the source
and the response [24, 25, 79]. In Fourier space, the non-local dielectric tensor of bulk
water exhibits two singularities for wave vectors on molecular length scales [20]. Whether
similar anomalies appear in the space-dependent static dielectric function of interfacial
water has long remained unclear.

The capacitance formed by a charged interface and its counterions serves as a sensitive
probe of dielectric interface effects. It has been known for almost a century that the Gouy-
Chapman model overestimates the experimental data of interfacial capacitance, which has
been ascribed to variations of the dielectric constant at the interface [80, 81]. In the
Stern model of the electric double layer, the variation of the dielectric tensor is accounted
for by the combination of a length scale and an effective interfacial dielectric constant,
reproducing the experimental capacitance [22]. In the limit of low salt concentration,
it has been shown how the Stern layer contribution to the capacitance emerges from
the introduction of a non-local dielectric function, independent of the exact form of the
dielectric profile [24]. Also the relation between the dielectric profile and the length scale
appearing in the Stern model has been established [25]. However, an explicit calculation
of the interfacial dielectric profile of water has been lacking up to now.

The question of whether the decrease in the dielectric profile reflects ionic or intrinsic
water properties is still subject to debate. The decrease in the dielectric constant has been
attributed to the high ionic concentration close to charged interfaces [82], or to dielectric
saturation due to the corresponding high electric field strength [83]. However, recent
terahertz spectroscopy experiments on carbohydrates [84] and lipid membranes [23] have
shown that the dielectric response of water itself is modified within an interfacial layer
of molecular size. Theoretical attempts to relate the dielectric response to molecular dy-
namics have been based on analytical as well as simulation studies. Analytical approaches
include approximate statistical mechanical methods, which have been used to show that
the reduced dielectric constant at the interface is associated with molecular ordering and
orientation [26]. In another analytical approach, water polarization has been included
explicitly in a mean-field description [32, 33], where molecular effects such as the above-
mentioned singularities are not accounted for. Simulations with explicit water and ions did
not allow for straightforward interpretation previously, partly because of the appearance
of higher-order multipole moments. In fact, the preferred orientation of water molecules
near an interface is set by the fundamental asymmetry stemming from the quadrupole
and higher-order even multipole moments [34, 85, 86]. This asymmetrical water structure
plays a decisive role in the dielectric response of water at an interface, which is ignored
in many studies [87]. Recently, we have shown that the electric quadrupole and octupole
moments are essential components of the interfacial dielectric function [88].

The dielectric function in thin interfacial layers strongly affects the forces between
macromolecules and surfaces as a result of the long range of the electrostatic force. Fur-
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thermore, a knowledge of the space-dependent dielectric tensor is indispensable to the
interpretation of the ionic surface propensity [89] and solvation free energy [27, 90, 91], as
well as the electrophoretic mobility of solutes and the double-layer capacitance [80, 81]. In
addition, the dielectric tensor is a vital ingredient for coarse-grained calculations, where
the water is taken into account implicitly. Finally, the electrostatics close to a solid in-
terface are crucial from a technological point of view, in particular for the design of novel
energy storage media based on the double-layer capacitance.

In this chapter, we thoroughly investigate the consequences of the interfacial dielectric
profile for the interfacial capacitance, the hydration interaction between charged plates in
water and the ion adsorption energy at hydrophilic and hydrophobic surfaces. First, we
present a complete derivation of the expressions used to calculate the components of the di-
electric response tensor at planar interfaces from molecular dynamics simulations. Second,
we calculate the dielectric tensor of pure water adjacent to both hydrophilic (hydroxyl-
terminated) and hydrophobic (hydrogen-terminated) diamond surfaces. We show that the
salient differences between the two surface types can be quantified in terms of a single
length scale, set by the position of the dielectric dividing surface. Third, we investi-
gate the effect of the higher-order electric moments on the electric potential profile across
the interface. Fourth, we incorporate the space dependence of the dielectric tensor in a
Poisson-Boltzmann description of a salt solution at a charged interface. Comparing with
experimental values, we show that including the dielectric response of pure water suffices
to capture the dependence of the double-layer capacitance on the salt concentration. Fifth,
we calculate the disjoining pressure between two charged surfaces using the same Poisson-
Boltzmann description. On the Poisson-Boltzmann level, the dielectric profile appears to
be insufficient to describe the strong, short-ranged repulsive forces commonly measured
between both charged and uncharged surfaces in water [92]. Finally, we estimate the free
energy of a single ion near a dielectric boundary, and show that the different dielectric
characteristics of hydrophilic and hydrophobic surfaces have a pronounced effect on ion
adsorption. All equations are given in si units.

2.2 Theoretical Framework

2.2.1 Linear Response

Most general, the dielectric response function depends on the position r of the displace-
ment field D (r), the position r′ of the local electric field E (r′) and on the field magnitude.
In the linear response regime, a change in displacement field is linearly related to a change
in electric field,

∆D (r) = ε0

∫

εnl

(

r, r′
)

· ∆E
(

r′
)

dr′, (2.1)

with ε0 the permittivity of vacuum and εnl (r, r
′) the non-local dielectric tensor. If the

electric field is constant in space, ∆E (r) = ∆E, the response function is automatically
local,

∆D (r) = ε0ε (r) · ∆E with ε (r) =

∫

εnl

(

r, r′
)

dr′, (2.2)

making the usual locality assumption εnl (r, r
′) = ε (r) δ (r − r′) superfluous. Alterna-

tively, the inverse dielectric response function is defined by [24]

∆E (r) = ε−1
0

∫

ε−1
nl

(

r, r′
)

· ∆D
(

r′
)

dr′, (2.3)
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with ε−1
nl

(r, r′) the functional inverse of εnl (r, r
′), defined by

∫

εnl (r, r
′) ε−1

nl
(r′, r′′) dr′ =

δ (r − r′′). The inverse dielectric response function is automatically local when the dis-
placement field is constant in space, yielding

∆E (r) = ε−1
0
ε−1 (r) · ∆D, (2.4)

with ε−1 (r) the inverse dielectric function. Note that the relation ε (r) ε−1 (r) = 1 does
not hold without additional assumptions.

2.2.2 Multipole Expansion

In a classical approximation, the polar molecules are regarded as being composed of atoms,
located at positions rij , carrying point charges qij. The total charge density ρ (r) is given

by averaging over the partial charges qij of all atoms j (i) and all molecules i,

ρ (r) =
∑

i

∑

j(i)

qij δ
(

r − rij
)

. (2.5)

We will now expand the electric field in terms of molecular multipole moments, starting
from the integral equation for the electric field [93],

ε0E (r) =
1

4π

∫

ρ
(

r′
) r − r′

|r − r′|3 dr′. (2.6)

After inserting Eq. 2.5, the integration variable is shifted from r′ to r′ + rij − ri, leading
to

ε0E (r) =
1

4π

∫

∑

i

∑

j(i)

qijδ
(

r′ − ri
) (r − r′) − (rij − ri)

| (r − r′) − (rij − ri)|3
dr′, (2.7)

where ri is some arbitrary reference position in the molecule. The fraction in Eq. 2.7 is
then expanded for the case where the intramolecular distance rij−ri is much smaller than
the distance between charge and field points r − r′,

ε0E (r) =
1

4π

∫

∑

i

∑

j(i)

qijδ
(

r′ − ri
)

×
[

r − r′

|r − r′|3 +
(

rij − ri
)

· ∇′ r − r′

|r − r′|3

+
1

2

(

rij − ri
) (

rij − ri
)

: ∇′∇′ r − r′

|r − r′|3 + . . .

]

dr′,

(2.8)

where the minus sign of −(rij − ri) cancels the minus sign of ∇′ (r − r′) = −∇ (r − r′).
Next, all gradient terms are integrated by parts,

ε0E (r) =
1

4π

∫

r − r′

|r − r′|3
[

∑

i

∑

j(i)

qijδ
(

r′ − ri
)

−∇′·
∑

i

∑

j(i)

qijδ
(

r′ − ri
) (

rij − ri
)

+
1

2
∇′∇′ :

∑

i

∑

j(i)

qijδ
(

r′ − ri
) (

rij − ri
) (

rij − ri
)

− . . .

]

dr′.

(2.9)
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The separate components appearing in Eq. 2.9 can be expressed in terms of the molecular
multipole moments of order l ∈ {0, 1, 2, . . . }, which are defined as

pli =
1

l!

∑

j(i)

qij
(

rij − ri
)l
, (2.10)

with j running over all partial charges qij of molecule i. The power inside the summation
is understood as a serial direct vector multiplication, making pli a tensor of rank l. The
density of each multipole moment is defined as

Pl (r) =
∑

i

pli δ (r − ri) , (2.11)

where the summation is carried out over all molecules [94]. Using Eqs. 2.10 and 2.11, Eq.
2.9 becomes

ε0E (r) =
1

4π

∫

r − r′

|r − r′|3
[

P0

(

r′
)

−∇′ · P 1

(

r′
)

+ ∇′∇′ : P2

(

r′
)

− . . .

]

dr′. (2.12)

We use the identity

∇ · r − r′

|r − r′|3 = 4πδ
(

r − r′
)

(2.13)

to perform the integrals in Eq. 2.12, except for the P0 term, to which we will come back
later. The divergence of Eq. 2.12 equals

∇ · ε0E (r) = ∇ · 1

4π

∫

P0

(

r′
) r − r′

|r − r′|3 dr′

+

[

−∇ · P 1 (r) + ∇∇ : P2 (r) − . . .

]

,

(2.14)

from which the electric field E (r) follows as

ε0E (r) = D (r) − m (r) . (2.15)

The first term in the expansion on the right-hand side of Eq. 2.15 is the monopole term,

D (r) =
1

4π

∫

P0

(

r′
) r − r′

|r − r′|3 dr′, (2.16)

corresponding to the field from the free charges. The second term is the total polarization
density m (r),

m (r) = P 1 (r) −∇ · P2 (r) + ∇∇ : P3 (r) − . . . , (2.17)

which comprises contributions from the dipole moment per unit volume P 1, quadrupole
moment P2, octupole moment P3 and all higher-order moments. When calculating the
polarization in basic electrostatics, all multipole terms of order higher than the dipole
are often neglected [93], which is exact for a Stockmayer fluid, for example, where each
molecule carries an ideal dipole. For water however, the higher-order terms are of major
importance. Note that we could also calculate the multipole moments from all individual
atoms instead of averaging an expansion in molecular multipole moments. Although both
descriptions of the electrostatics are equivalent, clustering the atoms first to calculate
molecular multipole moments has the advantage of a vanishing monopole moment in the
case of neutral molecules.
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2.2.3 Fluctuation-Dissipation Theorem

To estimate the dielectric function from the polarization fluctuations, we write a statistical
mechanical expression for the ensemble-average excess polarization. The total interaction
energy of a water-filled volume V in absence of an external electric field is denoted U (X),
with X all relevant coordinates. The energy change ∆U upon application of an external
electric field is given by the coupling of the polarization to the field F inside the dielectric,

∆U =

∫

V
ψ (r) ρ (r) dr, (2.18)

with ψ the excess potential caused by the field, ∇ψ (r) = −F , and ρ (r) = ε0∇ · E (r)
the total charge density. The field F to which the fluid responds is constant in space.
Therefore, F is associated with either E or D/ε0 depending on the boundary conditions.
After one partial integration, the excess energy is given by

∆U = −
∫

V
∇ψ (r) · ε0E (r) dr = −

∫

V
F · m (r) dr, (2.19)

where we used that ε0E (r) = −m (r) in absence of free charges. Defining the total
polarization by

M =

∫

V
m (r) dr, (2.20)

the excess polarization density upon application of the external field F is given by [95–97]

∆m = 〈m〉F − 〈m〉0

=

∫

(m − 〈m〉0) exp [−β (U − M · F )]dX
∫

exp [−β (U − M · F )]dX
,

(2.21)

where 〈. . . 〉F and 〈. . . 〉0 denote the ensemble average with and without applied electric
field respectively. For molecules without atomic polarizability, the phase space over which
the integration in Eq. 2.21 is performed consists of the positions ri and orientations Ωi

of the permanent multipole moments, dX =
∏

i dridΩi, with i the molecular index. For
small field F , Eq. 2.21 can be linearized to yield

∆m ≈
∫

(m − 〈m〉0) (1 + βM · F ) exp [−βU ]dX
∫

exp [−βU ]dX
. (2.22)

Using short-hand notation for the ensemble averages, we obtain the excess polarization
vector as

∆m (r) ≈ β [〈m (r)M〉0 − 〈m (r)〉0〈M 〉0] · F . (2.23)

The term in brackets in Eq. 2.23 includes all nine components of the fluctuation tensor.

Boundary conditions. In a planar system with translational invariance in the x and y
directions and a dielectric discontinuity in z direction, the dielectric tensor is diagonal
with only two unique components: one parallel and one perpendicular to the surface.
Additionally, the electric field and the polarization density only depend on the z direction.
Maxwell’s equation ∇× E (z) = 0 implies

∇zEx (z) = ∇zEy (z) = 0, (2.24)
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so that E‖, corresponding to Ex or Ey, is independent of z everywhere. Using Eq. 2.2,
Eq. 2.15 and the symmetry condition ∆E‖ = E‖ gives

ε‖ (z) = 1 +
∆m‖ (z)

ε0E‖
. (2.25)

The constant field F‖ in Eq. 2.23 must correspond to the constant field E‖. Therefore,
combining Eqs. 2.23 and 2.25 leads to

ε‖ (z) ≈ 1 + ε−1
0
β
[

〈m‖ (z)M‖〉0 − 〈m‖ (z)〉0〈M‖〉0
]

. (2.26)

Now we turn to the perpendicular component ε⊥ (z). Maxwell’s equation for the displace-
ment field, ∇·D (z) = P0 (z), shows that the displacement field is constant in space when
P0 (z) = 0. Using the boundary condition ∆D⊥ (z) = D⊥, the inverse dielectric function
given in Eq. 2.4 becomes

ε−1
⊥ (z) = 1 − ∆m⊥ (z)

D⊥
. (2.27)

In the perpendicular case, the spatially constant field F⊥ must be associated with the
constant displacement field D⊥/ε0 . Consequently, combining Eqs. 2.15, 2.23 and 2.27, we
arrive at the fluctuation equation for the inverse perpendicular permittivity,

ε−1
⊥ (z) ≈ 1 − ε−1

0
β [〈m⊥ (z)M⊥〉0 − 〈m⊥ (z)〉0〈M⊥〉0] . (2.28)

Applying an external electric field, the dielectric tensor can be determined directly using
Eqs. 2.25 and 2.27. Eqs. 2.26 and 2.28 can be used when looking at the fluctuations in
absence of an external electric field instead.

2.2.4 Calculation of the Polarization Density

The perpendicular electric field is calculated from an integral over all charges,

E⊥ (z) = E⊥ (0) +

∫ z

0

ρ (z′)

ε0
dz′. (2.29)

In Eq. 2.29, E⊥ (0) is the external electric field. Using m (0) = 0 and Eq. 2.15 with the
fact that D⊥ is constant, we find the equation for the perpendicular polarization density

m⊥ (z) = −
∫ z

0
ρ
(

z′
)

dz′. (2.30)

To derive an expression for the parallel polarization, we virtually cut out a volume from the
simulation box. In the following text, we adopt two different but equivalent viewpoints.
First, we consider all partial charges on the atoms of each molecule explicitly. By cutting
the volume, some water molecules are split, forming a non-zero monopole density P0 (r)
on either side of the virtual cut. In the second viewpoint, idealized multipole moments
are located at a single point within each molecule, and the multipole moments are not
affected by cutting.

According to the first viewpoint, the net charge inside the volume that has been carved
out comprises only P0 (r), stemming from the water molecules that have been split by
cutting the volume, because the intact water molecules carry no net charge. Because the
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split water molecules are all located near the surface of the volume, the integrated charge
takes the form of a surface charge,

∫

V
ρ (r) dr =

∮

∂V
σ (r) dr, (2.31)

with σ (r) the surface charge density arising from P0 (r).

Adopting the second viewpoint, the total charge inside the volume is calculated from
the polarization,

∫

V
ρ (r) dr = −

∫

V
∇ · m (r) dr, (2.32)

which can be transformed into a surface integral,

∫

V
ρ (r) dr = −

∮

∂V
m (r) · n̂ dr. (2.33)

Realizing that Eqs. 2.31 and 2.33 hold for any volume V, we find σ (r) = −m (r) · n̂. To
calculate the polarization in x direction, we introduce a virtual cut perpendicular to the
x axis. We only cut the water molecules at the position of the virtual cut, closing the
volume without cutting any other molecules. The surface charge density resulting from
the split water molecules equals

σ (z) =

∫

P0 (x, z) dx, (2.34)

where the x dependence of P0 (x, z) has the form of a Dirac delta function at the position
of the cut. Along the surface of the cut, m (z) · n̂ = ±m‖ (z), and thus

m‖ (z) = ∓
∫

P0 (x, z) dx, (2.35)

where the different signs apply to closing the volume and integrating P0 (x, z) on the
different sides of the cut. To calculate m‖ (z), Eq. 2.35 is averaged over many different
cut positions along the x axis.

The polarization density components from Eqs. 2.30 and 2.35 are used to calculate
the components of the dielectric response tensor directly. Alternatively, the polarization
density is estimated from the expansion of Eq. 2.17, where the multipole densities are
calculated explicitly according to Eqs. 2.10 and 2.11. For this alternative method, we cal-
culate the contributions up to the octupole term. Higher order terms cannot be calculated
from the simulations with sufficient accuracy. The molecular multipole moments of Eq.
2.10 are calculated with respect to the position of the oxygen atom.

2.3 Simulations & Results

2.3.1 Simulation Setup

We perform molecular dynamics simulations of pure spc/e water in contact with a dia-
mond slab consisting of a double fcc lattice of carbon atoms using the gromacs molecular
dynamics simulation package [98]. The primary cell contains 928 water molecules and we
employ periodic boundary conditions in all directions. The carbon-water interaction is
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Figure 2.1: Top view of the two diamond surfaces: (a) hydrophilic (hydroxyl-terminated) and (b)
hydrophobic (hydrogen-terminated). The oxygen atoms are shown in red, the hydrogen in white and
the carbon in blue. (c – d) Corresponding molecular density profiles n (z) of two different water
models: spc/e (blue solid lines) and tip4p/2005 (red dashed lines), in absence of an external field.

determined by the Lennard-Jones parameters σcw = 0.3367 nm and ǫcw = 0.4247 kJ/mol
(gromos 96). We study two surface types: one terminated with hydroxyl groups, giving
a hydrophilic surface, and one terminated with hydrogen atoms, giving a hydrophobic
surface. On the hydrophilic surface, one in four terminal atoms of the diamond has a
hydroxyl group attached, corresponding to a surface coverage of xoh = 1/4 in the notation
of Ref. [74]. The hydroxyl groups are free to rotate. The hydrogen atoms terminating
the hydrophobic diamond have neither Lennard-Jones coefficients nor charge. The hy-
drogen atoms of the hydroxyl-terminated carbon atoms on the hydrophilic surface carry
a partial charge of 0.408 e, the oxygen atoms carry −0.674 e and the connecting carbon
atoms carry 0.266 e. The Lennard-Jones parameters of the oxide-water interaction are
σow = 0.3017 nm and ǫow = 0.8070 kJ/mol, and the hydrogen atoms have no Lennard-
Jones interaction. Images of the two surface types are shown in Fig. 2.1 (a – b). For the
hydrophilic surface, the position z = 0 is defined as the position of the oxygen atoms of
the hydroxyl groups, whereas for the hydrophobic surfaces it corresponds to the position
of the outermost carbon atoms. We simulate both surface types at vanishing external
electric field for a total time of 80 ns, and at field strengths of E‖ = 0.05 V/nm in parallel
direction and D⊥/ε0 = 0.5, 1.0, 2.0, 4.0 and 8.0 V/nm in perpendicular direction for a
total time of 35−60 ns. Simulations at the hydrophilic interface of up to 1.0 V/nm and at
the hydrophobic interface at 0.5 V/nm are run at constant pressure, using a semi-isotropic
Berendsen barostat. Simulations at higher field strength are run at constant volume. The
Lennard-Jones interaction is truncated at 1.0 nm using a shifted cutoff scheme. The
Coulomb force is treated using a real-space cutoff at 1.2 nm and pseudo-two-dimensional
particle mesh Ewald summation for the long-ranged interaction. To extract the excess
fields ∆E (z) and ∆D (z), the corresponding fields at vanishing external field are sub-
tracted. spc/e is a non-polarizable water model; therefore electronic polarization is not
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Figure 2.2: Top: Parallel dielectric function ε‖ (z) next to (a) the hydrophilic and (b) the hy-
drophobic diamond, calculated from the total polarization m‖ (z) (Eq. 2.35) and from an explicit
expansion of the polarization up to the octupole term (Eq. 2.17). The response is calculated in two
different ways: from the excess polarization ∆m‖ (z) resulting from an applied external electric field
in parallel direction of E‖ = 0.05 V/nm (Eq. 2.25) and from polarization fluctuations (Eq. 2.26).

Bottom: Inverse perpendicular dielectric function ε−1

⊥ (z) next to (c) the hydrophilic and (d) the
hydrophobic diamond, calculated from the total polarization m⊥ (z) (Eq. 2.30) and from an explicit
expansion of the polarization up to the octupole term (Eq. 2.17). The response is calculated in two
different ways: from the excess polarization ∆m⊥ (z) resulting from an applied external displace-
ment field in perpendicular direction (Eq. 2.27) and from polarization fluctuations (Eq. 2.28).
For the curves corresponding to the total polarization, the applied field is D⊥/ε0 = 0.5 V/nm.
The curves corresponding to the explicit expansion (dashed-dotted lines) have been averaged over
external field strengths of D⊥/ε0 = 2.0, 4.0 and 8.0 V/nm.

explicitly included in the model. However, electronic polarizability effects on molecular
interactions are implicitly included via the parametrization of the Lennard-Jones term of
the water model. The number density profiles at the two surface types are shown as solid
lines in Fig. 2.1 (c – d). At the hydrophilic surface, the water molecules gather very close
to the surface, whereas they form a depleted layer at the hydrophobic surface, conforming
to previous results [74]. Most notably, the first peak of the water density at the hydrophilic
surface is significantly higher than at the hydrophobic surface.

To examine the sensitivity of the results with respect to the water model used, we run
two short simulations (5 ns) of the same surfaces in contact with tip4p/2005 water [73],
which has been shown to reproduce the experimental structure factor of water very well
[99]. The density profiles of tip4p/2005 are shown as dashed lines in Fig. 2.1 (c – d).
Apart from a small discrepancy in the height of the first peak, the results are very similar
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to the results for spc/e water. In particular, the minima and maxima of the density
profiles coincide exactly. Although the quadrupole moment of tip4p/2005 is ∼ 20% larger
than that of spc/e (in the isotropic phase, the xx, yy and zz components of P̄2 equal
1.65 and 1.41×10−3 enm2 for tip4p/2005 and spc/e respectively, calculated with respect
to the oxygen atom, the bar denotes averaging over all orientations), the dipole moments
are almost identical (0.048 enm for tip4p/2005 and 0.049 enm for spc/e). Therefore, we
expect the dielectric response of the two water models to be similar.

2.3.2 Dielectric Response

For the parallel orientation, either of the Cartesian direction x or y can be used. In the
hydrophobic case, the diamond is perfectly isotropic, and the simulations give identical
results in the x and y directions. In the hydrophilic case, however, there is a non-zero
parallel polarization also in absence of an electric field. This kind of ferro-electric be-
havior is due to the anisotropy of the oh-lattice on the surface. Since proportionality is
assumed only for the excess quantities ∆E and ∆D, the polarization at zero external field
does not constitute a fundamental problem when using an applied external field. Never-
theless, problems may arise when using the fluctuation equation, because the fluctuation
tensor may not be diagonal. Therefore, we diagonalize the fluctuation matrix, aligning
the non-zero polarization at vanishing field in one direction. The diagonal fluctuation
tensor contains the eigenvalues of the fluctuation tensor for each value of z. The largest
eigenvalue corresponds to the direction tangential to the surface in which 〈M〉0 6= 0, the
second-biggest to the surface tangential direction in which 〈M〉0 = 0 and the smallest
eigenvalue corresponds to the direction normal to the surface. In our analysis, we use only
the second-largest eigenvalue of the fluctuation tensor, which to a good approximation is
not affected by the non-zero polarization at vanishing field.

The resulting profiles of the parallel dielectric function are plotted in Fig. 2.2 for (a)
the hydrophilic surface and (b) the hydrophobic surface, calculated using four different
methods. For the first two methods, the polarization density m‖ (z) is calculated from Eq.
2.35. The dashed lines result from an applied electric field of E‖ = 0.05 V/nm using Eq.
2.25 and the solid lines from the fluctuations at vanishing electric field using Eq. 2.26. For
both surface types, the profiles resulting from the fluctuation and applied field equations
coincide excellently. For the second two methods, the polarization is estimated from the
explicit expansion of Eq. 2.17 using terms up to the octupole moment. The multipole
moments are calculated from Eqs. 2.10 & 2.11, where ri is chosen to be the position of
the oxygen atom. Again, the response is calculated from both an applied electric field
using Eq. 2.25 (shown as dashed-dotted lines) and from the polarization fluctuations
using Eq. 2.26 (shown as dotted lines). The curves of the explicit expansion follow the
curves of the full polarization, confirming the equivalence of the methods for calculating
the polarization. The dielectric profile is roughly proportional to the number density, as
would only be expected for non-interacting dilute polar particles. Surprisingly however,
the first peak in the dielectric function at the hydrophobic surface is higher than at the
hydrophilic surface, in opposite order of the peak heights of the density profiles in Fig.
2.1. This disparity indicates that, although there are more polarizable molecules available
in the first density peak at the hydrophilic surface, their response to an electric field is
more restricted than at the hydrophobic surface. Qualitatively, this result corresponds
well to our notion that water is more strongly bound at hydrophilic surfaces. At the same
time, it clearly shows that the simple picture of non-interacting dilute polar molecules is
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Figure 2.3: (a – b) Parallel dielectric response calculated from the explicit multipole expansion
up to the octupole using Eq. 2.10 with Eqs. 2.11 & 2.17. The monopole and dipole (solid lines),
quadrupole (dashed lines) and octupole (dotted lines) contributions are shown separately at (c) the
hydrophilic and (d) the hydrophobic surface. All curves are calculated from the response to an
applied electric field of E‖ = 0.05 V/nm using Eq. 2.25.

not sufficient to describe the dielectric profile of liquid water.

In Fig. 2.2 we show the inverse perpendicular dielectric function at (c) the hydrophilic
surface and (d) the hydrophobic surface. Using the polarization m⊥ (z) from Eq. 2.30, the
response is calculated for an applied electric field of D⊥/ε0 = 0.5 V/nm (Eq. 2.27, dashed
lines) and from the fluctuations (Eq. 2.28, solid lines). As for the parallel response, the
curves coincide, confirming our formalism and the validity of linear response theory for the
applied field strength. Strikingly, ε−1

⊥ (z) passes through zero several times, which means
that ε⊥ (z) has several singularities, and that there are spatial regions where the response
is negative. This overscreening behavior is reminiscent of the non-local bulk dielectric
function [20], which evidently dominates the perpendicular response. The excess electric
field reaches zero where ε−1

⊥ (z) = 0 and reverses sign in the regions where ε−1
⊥ (z) < 0,

giving rise to several local minima in the resulting electrostatic potential, as we will discuss
in more detail in subsequent sections. In bulk, the inverse dielectric response corresponds
to a bulk dielectric constant of εbulk = 75, which is close to the literature value for spc/e
water of 71 [100]. Also shown in Fig. 2.2 (c – d) are the curves calculated from the explicit
expansion of Eq. 2.17 up to the octupole moment, showing a satisfactory agreement with
the response of the full polarization, as in the parallel case.

Multipole components. As the similarity of the curves in Fig. 2.2 distinctly show, the
first three terms of the multipole expansion of Eq. 2.17 suffice to describe the dielectric
tensor. To compare the contributions of the individual multipole moments, we show the
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Figure 2.4: (a – b) Inverse perpendicular dielectric response calculated from the explicit multipole
expansion up to the octupole using Eq. 2.10 with Eqs. 2.11 & 2.17. The monopole and dipole (solid
lines), quadrupole (dashed lines) and octupole (dotted lines) contributions are shown separately at
(c) the hydrophilic and (d) the hydrophobic surface. All curves are calculated from the average
response to applied electric fields of D⊥/ε0 = 2.0, 4.0 and 8.0 V/nm using Eq. 2.27.

first three terms separately. First, the sum of the first three terms of the parallel response
is shown in Fig. 2.3 at (a) the hydrophilic surface and (b) the hydrophobic surface.
Second, we show the corresponding components separately in Fig. 2.3 (c – d). Quadrupole
and octupole contributions show similar profiles at the two surface types, but the dipole
contribution clearly dominates the parallel response. In Fig. 2.4 (a – b), we show the sum
of the first three contributions to the perpendicular response, and the separate terms in
(c – d). Contrary to the parallel case, the higher-order terms are non-negligible. In fact,
the effect of the dipole is largely compensated for by the higher-order terms at both surface
types. This clearly illustrates the importance of the higher-order electric multipoles for
the perpendicular dielectric response.

Polarizability. For a dilute system of non-interacting particles, the dielectric function can
be written as 1+αn (r) /ε0 , with n (r) the number density of dielectric molecules and α a
microscopic polarizability attributed to each individual water molecule [96]. To describe
the dielectric constant in condensed media, corrections to the polarizability appear, as
in the famous Clausius-Mosotti expression. To quantify the deviation from the predicted
response of a dilute system of non-interacting polar particles, we calculate the space-
dependent polarizability, defined according to linear theory as

α‖ (z)

ε0
=
ε‖ (z) − 1

n (z)
and

α⊥ (z)

ε0
=

1 − ε−1
⊥ (z)

n (z)
. (2.36)

Clearly, because the dielectric profile is calculated using a non-polarizable water model,
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Figure 2.5: Polarizability as a function of z calculated from Eq. 2.36 in (a) parallel direction and
(b) perpendicular direction. Because of the non-polarizable water model used, the polarizability only
includes multipole orientational effects. The number density is plotted in panel (c) for comparison.

the polarizability α (r) does not explicitly include electronic, but only orientational polar-
ization. The main question is whether the polarizability exhibits any simple relationship
with the particle density. Both polarizabilities are plotted in Fig. 2.5 (a – b) as a func-
tion of z, together with the number density (c). In both the parallel and perpendicular
directions and at both surface types, the polarizability exhibits a dip at the position of
the highest density. Another prominent feature is that the parallel polarizability at the
hydrophobic surface is always higher than in bulk, whereas the parallel polarizability de-
creases at the hydrophilic surface. Overall, the curves show that the relationship between
the different components of the polarizability and the particle density is intricate, and
depends on surface type.

Beyond linear response. In Fig. 2.6, the perpendicular component of the inverse dielec-
tric constant (Eq. 2.27) is plotted as a function of z for different values of the external
electric field strength D⊥/ε0 . Apart from a slight difference between the curves taken at
constant pressure (up to 1 V/nm) and constant volume, the response at the hydrophilic
interface is largely independent of the applied field strength. At the hydrophobic interface,
on the other hand, the dielectric response is clearly non-linear at external field strengths
of 4.0 V/nm and above, as can be seen from the different responses to the different field
directions. At a positive electric field of 8.0 V/nm, the overscreening seems to be slightly
suppressed, as is commonly found in ionic liquids at high electric field strength [101, 102].
Thus, the linear response regime extends to higher field strengths at the hydrophilic inter-
face. It should be noted that the curves in Fig. 2.6 are calculated using a non-polarizable
water model, and therefore do not include electronic polarization or ionization effects.
Experimental results indicate that on timescales of 0.01–10 µs, dielectric breakdown of
water occurs at a field strength of the order of ∼ 0.1 V/nm [103]. That means that the
non-linear response due to multipole orientational effects shown in Fig. 2.6 is not expected
to play a role in the non-linear response of real water to external electric fields (note that
internal fields in charged double layers can be comparable to the values used in Fig. 2.6).
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Figure 2.6: Inverse perpendicular dielectric response function ε−1

⊥ (z) calculated from Eq. 2.27 at
different values of the external field strength D⊥/ε0 . The position z = 0 corresponds to the oxygen
layer at the hydrophilic surface and the outermost carbon layer at the hydrophobic surface.

We plot the corresponding density profiles in Fig. 2.7. Similar to the dielectric profile, the
density profile at the hydrophilic interface is independent of the external field strength,
whereas the density at the hydrophobic interface gradually changes with increasing elec-
tric field strength. The non-linear response at high electric field strength has a minor, but
distinct influence on the effective dielectric properties of the interface, as we will discuss
in the context of the effective dielectric interface position in the section on coarse-grained
modeling approaches.

2.3.3 Higher-Order Multipole Moments in Interfacial Electrostatics

The strong effect of the higher-order electric multipole moments on the interfacial water
structure manifests itself not only in the dielectric response, but also in the electric field
in the interfacial region in absence of an applied external electric field, and consequently
in the potential difference across an aqueous interface. For instance, this surface potential
difference is important for the calculation of single ion solvation free energies.

The perpendicular displacement field. In the absence of free charges, the displacement
field perpendicular to the interface is constant in space. When the expansion of the dis-
placement field is truncated after the dipole term, however, the resulting sum is certainly
not constant. An illustration is provided in Fig. 2.8, where we plot the perpendicular
components of the terms of Eqs. 2.15 and 2.17, summing to increasing order for the case
of vanishing displacement field. As can be seen in Fig. 2.8 (b), the sum E + P 1/ε0
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Figure 2.7: Molecular water number density n (z) at different values of the perpendicular external
field strength D⊥/ε0 .

varies appreciably across the interface, but the variation is largely compensated for by the
quadrupole term −∇ · P2/ε0 . The remaining oscillations are again almost fully compen-
sated for by the octupole term ∇∇ : P3/ε0 shown in Fig. 2.8 (c). The oscillations of the
hexadecapole term drop below the noise level, see Fig. 2.8 (d). Evidently, the higher-
order multipole moments, at least up to the octupole term, are critical to describing the
electrostatics at the interface properly.

Surface potential of aqueous interfaces. The value of the electrostatic potential differ-
ence across an air-water interface has been a source of confusion for decades, with people
not even agreeing on its sign. See Ref. [104] for a review. Experimental evidence indi-
cates that the water molecules are preferentially oriented with the dipole moment pointing
roughly along the surface plane at air-water interfaces [105] and at quartz-water interfaces
[106, 107], leaving the question of the sign of the dipole contribution open. It is well
known however, that the quadrupole contribution to the interface potential cannot be
ignored [34, 108, 109]. We calculate the interface potential of the water-diamond sur-
face, split into the dipole and quadrupole contributions. The potential profile across the
interfacial layer is given by

ψ (z) − ψ (zs) = −
∫ z

zs

E⊥

(

z′
)

dz′. (2.37)

with zs a reference position in the solid phase. In the following, we choose ψ (zs) = 0. In
case of a charge-free interface without external electric field, inserting Eqs. 2.15 and 2.17
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Figure 2.8: The perpendicular components of the terms of the multipole expansion given in Eqs.
2.15 and 2.17, summing the terms to increasing order. The profiles correspond to the hydrophobic
diamond surface without external displacement field. The electric field E⊥ (z) is calculated from
Eq. 2.29 and higher-order terms are calculated from Eqs. 2.10 & 2.11. The molecular multipole
moments are calculated with respect to the oxygen atom.

produces

ψ (z) =

∫ z

zs

P z
1 (z′)

ε0
dz′ −

∫ z

zs

dPzz2 (z′)

dz′ε0
dz′, (2.38)

where P z
1 (z) denotes the z component of the dipole density and Pzz2 (z) denotes the zz

component of the quadrupole density. Higher order moments do not contribute, because
integrals over the corresponding fields yield the boundary values of derivatives of the
multipole densities, which vanish because of the constant value of any multipole density
in both the charge-free solid and in bulk. When integrated across the entire interfacial
layer, the second term of Eq. 2.38 yields the negative difference between the quadrupole
density in the bulk liquid and the solid phase,

−
∫ zl

zs

dPzz2 (z′)

dz′ε0
dz′ =

Pzz2 (zs) − Pzz2 (zl)

ε0
= − P̄zz2

ε0
, (2.39)

with zl a position in the bulk liquid phase. The bar denotes the value in the isotropic
phase. The quadrupole moment of an spc/e water molecule in the isotropic phase is
calculated by isotropic angular averaging, giving p̄2 = 1.41 × 10−3 enm2 (xx, yy and zz
components). To obtain the quadrupole density P̄2, the molecular quadrupole moment is
multiplied by the bulk water number density nbulk = 33 nm−3 and divided by ε0 , yielding

P̄2

ε0
=





0.8428 0 0
0 0.8428 0
0 0 0.8428



 V. (2.40)
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2.38: the dipole contribution (dashed line) and the quadrupole contribution (dashed-dotted line).
The potential is calculated with respect to the reference electrostatic potential in the solid phase.

In Fig. 2.9, the potential profile across the interface, calculated from simulations of the
hydrophobic diamond in water, is plotted as a function of the perpendicular coordinate
z. The solid dark-blue line indicates the profile as calculated from Eq. 2.37, giving a
potential difference of −0.44 V between bulk liquid and solid. Taking only the dipole
contribution into account yields 0.40 V (red dashed line in Fig. 2.9), which has the
opposite sign. The voltage drop is restored to the correct value upon addition of the
quadrupole contribution (dashed-dotted light-blue line), which equals the value calculated
from averaging the quadrupole moment of the spc/e water model over all orientations (Eq.
2.40). Although the molecular dipole moment does not depend on the choice of origin,
both the dipole and quadrupole density depend on the reference point chosen for the
expansion. For water there is no choice of origin for which either one vanishes. Therefore,
both contributions are important for the total interface potential, but the relative values
of the dipolar and quadrupolar contributions vary depending on the choice of origin.

2.4 Coarse-Grained Modeling Approaches

2.4.1 Dielectric Dividing Surface

Instead of using the profile of the inverse dielectric response function, the dielectric profile
at an interface can be modeled by a sharp discontinuity, but shifted with respect to the
Gibbs dividing surface. The Gibbs dividing surface, which is the thermodynamically
defined interface position, is calculated as usual,

zgds = zs +

∫ zl

zs

n (zl) − n (z)

n (zl) − n (zs)
dz, (2.41)
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Table 2.1: Dielectric and Gibbs dividing surfaces of the two different surface types measured with
respect to the position of the outermost heavy atoms, i.e. the oxygen atoms of the hydroxyl group
at the hydrophilic surface and the carbon atoms at the hydrophobic surface.

Surface type zgds (nm) zdds
‖ (nm) zdds

⊥ (nm)

Hydrophilic 0.07 0.09 0.10

Hydrophobic 0.22 0.08 0.12

with n (z) the water density and zl and zs positions in the bulk liquid and solid phase
respectively. Equivalent to Eq. 2.41, we introduce the dielectric dividing surface,

zdds = zs +

∫ zl

zs

f (zl) − f (z)

f (zl) − f (zs)
dz. (2.42)

For the parallel dielectric dividing surface we take f (z) = ε‖ (z), and for the perpendicular

dielectric dividing surface we take f (z) = ε−1
⊥ (z). The values of zgds, zdds

‖ and zdds
⊥ at

vanishing external field are summarized in Tab. 2.1. The Gibbs dividing surface position
clearly shows that water at the hydrophilic surface moves close to the interface, whereas
water retreats from the hydrophobic surface. However, this difference in depletion layer
hardly manifests itself in the position of the dielectric dividing surface, which is similar for
both surface types. To quantify the difference between the two surface types, we look at
the dielectric interface shift δ = zdds−zgds. From Tab. 2.1 it follows δphob

⊥ = −0.10 nm and

δphob
‖ = −0.14 nm at the hydrophobic surface and δphil

⊥ = 0.03 nm and δphil
‖ = 0.02 nm at

the hydrophilic surface. Interestingly, the difference in parallel and perpendicular dielectric
interface shift is relatively small, whereas the different surface types actually give rise to
shifts of opposite sign. This remarkable difference in the dielectric interface shift signifies
that water at the hydrophobic surface is a “better dielectric” than at the hydrophilic
surface. For the perpendicular profile, the width of the dielectric variation has been
defined earlier in a similar way [24, 25]. The difference between the two definitions is that
zdds
⊥ as defined in Eq. 2.42 guarantees that the electrostatic potential far away from the

interface is correctly reproduced. This can be seen by realizing that zdds
⊥ corresponds to

the position where the extrapolated linear fits to the solid and bulk liquid potential profile
cross each other, see Fig. 2.10 (a). Using ∇ψ (z) = −E⊥ (z) and Eqs. 2.4 and 2.42, the
electrostatic potential difference between the liquid and the solid is given by

ε0 (ψ (zl) − ψ (zs)) = −D⊥

∫ zl

zs

ε−1
⊥ (z) dz

= −D⊥

(

∫ zdds
⊥

zs

dz +

∫ zl

zdds
⊥

dz

εbulk

)

,

(2.43)

for a constant displacement field D⊥. Therefore, using a sharp-kink approximation of the
dielectric profile,

ε⊥ (z) =

{

1 if z < zdds
⊥

εbulk otherwise,
(2.44)

ensures the correct asymptotic voltage profile far away from the interface. To compare
the dielectric interface position with the Gibbs dividing surface, the density profile and
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Figure 2.10: (a) Graphical representation of the construction of the perpendicular dielectric di-
viding surface zdds

⊥ by extrapolation of the bulk potential profile (Eq. 2.42, where ∆E⊥ is calculated
from Eq. 2.29 in separate simulations with and without external displacement field). The curve
shown corresponds to an external displacement field of D⊥/ε0 = 8.0 V/nm. (b) Corresponding
Gibbs dividing surface zgds. (c) Positions of the perpendicular dielectric dividing surface zdds

⊥ and
the Gibbs dividing surface zgds as a function of the applied perpendicular electric field. (d) Perpen-
dicular dielectric interface shift δ⊥ = zdds

⊥ − zgds as a function of the applied perpendicular electric
field.

the Gibbs dividing surface zgds are shown in Fig. 2.10 (b). In Fig. 2.10 (c), we show the
positions of zgds and zdds

⊥ , showing a mild dependence on the external displacement field
strength. For all values of the external displacement field, the dielectric dividing surface
is located close to the Gibbs dividing surface at the hydrophilic surface, displaced slightly
into the fluid, whereas at the hydrophobic surface, the dielectric interface is shifted toward
the solid surface. The perpendicular dielectric interface shift, defined as δ⊥ = zdds

⊥ − zgds,
is shown in Fig. 2.10 (d). At the hydrophilic surface, the dielectric interface shift slightly
declines at high external field strength, which means that the water becomes a slightly
better dielectric. At the hydrophobic surface, on the other hand, the dielectric interface
shift not only depends on the applied field strength, but also on the field direction, in
line with our results for the dielectric profiles. The trend as a function of field strength,
however, is to increase δphob

⊥ , which means that the dielectric becomes slightly worse.

2.4.2 Modified Poisson-Boltzmann Equation

We consider a charged planar surface with monovalent counterions, where the charge
density is laterally averaged and depends only on the z direction. For a charged surface
with counterions in solution neither E (z) nor D (z) is constant, so the integral of Eq. 2.3
does not yield a local dielectric function automatically. Therefore, inspired by Eq. 2.4, we
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assume
ε0E⊥ (z) = ε−1

⊥ (z)D⊥ (z) , (2.45)

which is a good approximation when D⊥ (z) varies slowly, i.e. at low salt concentration
and at low surface charge density. Taking the divergence of Eq. 2.45 and using ∇ψ (z) =
−E⊥ (z) leads to

ε0
d2ψ

dz2
= −D⊥ (z)

dε−1
⊥

dz
− ε−1

⊥ (z)
dD⊥

dz
. (2.46)

Inserting the Boltzmann expression for the ion density,

dD⊥

dz
= P0 (z) = −2ec0 sinh [−βeψ (z)] exp [−µ (z)], (2.47)

with c0 the ionic concentration in bulk, we arrive at the modified Poisson-Boltzmann
equation,

ε0
d2ψ

dz2
= −D⊥ (z)

dε−1
⊥

dz
+ 2ec0 sinh [−βeψ (z)] exp [−µ (z)] ε−1

⊥ (z) . (2.48)

The potential µ (z) contains all non-electrostatic contributions from the interface, such
as steric and solvophobic effects. The displacement field in the first term of Eq. 2.48 is
calculated as

D⊥ (z) =

∫ z

0
P0

(

z′
)

dz′, (2.49)

making Eq. 2.48 a second order integro-differential equation. Eqs. 2.47–2.49 are solved
numerically, imposing a fixed surface charge density σ0 as a boundary condition at z = 0.
The position z = 0 corresponds to the oxygen atoms at the hydrophilic surface and to the
outermost carbon atom at the hydrophobic surface.

Electrostatic potential. We calculate the electrostatic potential close to a surface carry-
ing a minute surface charge density σ0 = −0.006 e/nm2 (−1 mC/m2) at a salt concentra-
tion of 100 mM (0.1 mol/l). The effect that the finite salt concentration may have on the
dielectric profile ε⊥ (z) can be expressed in terms of the ionic excess polarizabilities ∆α±,

ε⊥ (z) = εh2o
⊥ (z) +

c+ (z)∆α+

ε0
+
c− (z) ∆α−

ε0
, (2.50)

with εh2o
⊥ (z) the pure water profile that we have calculated. In the following we set

∆α± = 0, which means that any effect that the finite salt concentration may have on the
profile ε−1

⊥ (z) is ignored. The electrostatic potential is shown in Fig. 2.11 (a – c) for two
different choices of µ (z): without a non-electrostatic interaction, µ (z) = 0, and including
a generic soft-wall repulsion, modeled by

µ (z) = γ exp [1 − z/λ], (2.51)

with λ the size of a typical ionic radius, λ = 0.15 nm and γ = 1. Strikingly, the electrostatic
potential at the hydrophobic interface changes sign between 0.2 and 0.4 nm from the wall,
locally enhancing the concentration of co-ions. This means that locally, the charge on
the surface is overscreened by the sum of polarization and ionic charges, a phenomenon
that is well known to occur in ionic liquids as well [102]. In Fig. 2.11 (d – f) we plot
the corresponding perpendicular electric field E⊥ (z) and the perpendicular displacement



28 Coarse-Grained Modeling Approaches

2.0

µ(z) exp[1-z/λ]

µ(z) 0

µ(z) 0
exp[1-z/λ]

E D /ε0

c+/c0 c  /c0
µ(z) 0

exp[1-z/λ]

1.51.00.50 2.01.51.00.50 2.01.51.00.50

z (nm) z (nm) z (nm)

0.2
0.1

0
-0.1
-0.2
-0.3

β
e

ψ

0.05

0

-0.05

-0.10

-0.15F
ie

ld
 (

V
/n

m
)

c
/
c

0

1.5

1.0

0.5

0

Hydrophilic Hydrophobica cεbulk

e f

g h i

b

d

Figure 2.11: (a – c) Electrostatic potential next to a charged surface (σ0 = −0.006 e/nm2),
calculated from the Poisson-Boltzmann equation (Eq. 2.48) and different models of the dielectric
function ε−1

⊥ (z). Curves are shown for the hydrophilic profile (left), the hydrophobic profile (mid-
dle), and ε−1

⊥ (z) = ε−1

bulk
(right). The bulk salt concentration is c0 = 100 mM. (d – f) Perpendicular

electric field E⊥ (z) and the perpendicular displacement field D⊥ (z) /ε0 . (g – i) Corresponding ionic
density profiles c+ (positive ions, solid lines) and c− (negative ions, dashed lines), normalized on
the bulk density c0 . We have used either no non-electrostatic potential (µ (z) = 0) or the repulsive
potential of Eq. 2.51 (µ (z) = exp [1 − z/λ] with λ = 0.15 nm).

field D⊥ (z) /ε0 . Importantly, the displacement field D⊥ (z) varies more slowly than the
electric field E⊥ (z), which justifies the use of the local approximation of Eq. 2.45. The
ionic densities c± (z) = c0 exp [∓βeψ (z) − µ (z)] are plotted in Fig. 2.11 (g – i), clearly
showing the effect of overscreening at the hydrophobic surface. Remarkably, when the
dielectric profile is used instead of εbulk, the ions accumulate closer to the surface. The
soft-wall repulsion, on the other hand, pushes the ions away from the surface, although its
effect on the electrostatic potential profile is minor. That means that in cases where the
non-electrostatic repulsion is less pronounced, we expect the counterions to be strongly
bound to the surface because of dielectric effects.

2.4.3 Capacitance of the Double Layer

The double-layer structure of the charged interface and its counterion cloud gives rise to
a capacitance. The vast amount of experimental data on interfacial capacitances provides
a direct test of the model for the dielectric profile. Because the point of vanishing surface
potential ψ0 = ψ (0) is hard to determine and because the capacitance may depend on
the surface potential, the differential capacitance is generally reported,

C =
dσ0
dψ0

. (2.52)
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Figure 2.12: Capacitance of the double layer, from Eq. 2.52 and the solution to the Debye-Hückel
equation (Eq. 2.53). The black lines are calculated assuming bulk permittivity in the entire fluid
and µ (z) = 0 (solid line) or µ (z) = exp [1 − z/λ] (dotted line). The blue lines (hydrophilic) and
red lines (hydrophobic) are calculated using different approximations for the dielectric properties:
the full profile ε−1

⊥ (z) or the sharp-kink approximation of Eq. 2.44 at either the dielectric dividing
surface zdds

⊥ or the Gibbs dividing surface zgds.

We calculate the differential capacitance of a Poisson-Boltzmann distribution of ions next
to a charged surface, comparing the models for the dielectric profile discussed above. Us-
ing the non-linear Poisson-Boltzmann equation, the differential capacitance depends on
the surface charge density, but using the Debye-Hückel approximation, the differential ca-
pacitance is constant and equal to the capacitance from the non-linear Poisson-Boltzmann
equation in the limit σ0 → 0. The Debye-Hückel limit is obtained by approximating Eq.
2.48 for small ψ (z),

ε0
d2ψ

dz2
= −D⊥ (z)

dε−1
⊥

dz
− 2ec0βe ψ (z) exp [−µ (z)] ε−1

⊥ (z) , (2.53)

which has to be solved together with Eq. 2.49. In Fig. 2.12, we show the double-layer
capacitance using the different models for the interfacial dielectric properties discussed
above, comparing the results to experimental data. The blue circles in Fig. 2.12 denote
experimental data on surfaces that are known to be hydrophilic (contact angle below
90◦), the red circles denote data on hydrophobic surfaces, and the black circles denote
data on surfaces of which the contact angle is unknown. The electrolytes used in the
experiments are sulfuric acid (h2so4) and potassium hydroxide (koh). See Appendix A
for further details and references. As a first model, we show the differential capacitance
of Eq. 2.52 as a function of salt concentration c0 using a dielectric constant equal to εbulk
and µ (z) = 0 (black solid line), which overestimates the experimental data by at least an
order of magnitude. This discrepancy led Stern to propose a model where a thin layer at
the interface has a lower dielectric constant than the bulk fluid [22]. Second, we include
the generic soft-wall repulsion given in Eq. 2.51, with λ = 0.15 nm and γ = 1. The
capacitance, shown as a black dotted line, captures neither the trend nor the magnitude
of the experimental data much better. Third, we use our calculated full dielectric profile
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ε−1
⊥ (z), shown in Fig. 2.2 (c – d), with µ (z) = 0 (solid colored lines), agreeing much

better with experiments. The hydrophilic profile (blue) yields a slightly higher capacitance
than the hydrophobic profile (red) at low salt concentration, which is generally expected
because of the better wetting characteristics [30]. The difference is minor however, because
the dielectric interface shift δ⊥ largely compensates for the depletion gap at hydrophobic
surfaces. Fourth, we use the sharp-kink approximation of Eq. 2.44 with µ (z) = 0 (dashed
colored lines). The results are almost indistinguishable from the curves calculated using
the full profiles ε−1

⊥ (z), as expected from the fact that the dielectric dividing surface is
designed to reproduce the electrostatic potential far away from the interface. Nevertheless,
the calculated capacitance is still relatively high compared to the experimental data, which
has to do with the fact that in the Poisson-Boltzmann approach the point-charge ions are
allowed to get arbitrarily close to the surface. Therefore, as a fifth model, we use the sharp-
kink approximation of Eq. 2.44 together with µ (z) from Eq. 2.51, shown as dotted colored
lines. Clearly, this model follows the experimental data very well. Values of the calculated
capacitance can be adjusted by fine-tuning the parameters γ and λ, which are expected to
depend on the surface and ion type. Finally, we show the capacitance using a sharp-kink
approximation for ε−1

⊥ (z) located at zgds (dashed-dotted lines), which does not perform
as well as the sharp-kink approximation located at zdds

⊥ . In fact, when using the Gibbs
dividing surface, the difference between hydrophilic and hydrophobic surfaces is quite large
at low salt concentration, which does not seem to be reflected in the experimental data.
Turning this argument around, the approximate equality of experimental data for the
double-layer capacitance on hydrophilic and hydrophobic surfaces displayed in Fig. 2.12
can be viewed as a confirmation of one of the main results of the present work, namely that
the effect of the depletion layer at hydrophobic surfaces is largely compensated for by the
dielectric properties of the first few interfacial water layers, effectively yielding dielectric
properties similar to those at hydrophilic surfaces.

Effective Stern layer permittivity. Within the original Stern model of a charge-free
interfacial region of width d with dielectric constant εint, the capacitance turns out to be
CStern = σ0/ψ0 = εint ε0/d. The same model yields Cbulk = εbulk ε0/d when the bulk value
ε = εbulk is assumed for the interfacial dielectric constant. Therefore the capacitance ratio
reflects the ratio of interfacial dielectric constants,

CStern

Cbulk

=
εint

εbulk
. (2.54)

Imposing Eq. 2.54, and dividing the capacitance which follows from the solution of the
Poisson-Boltzmann equation including the dielectric profile ε−1

⊥ (z) by the capacitance us-
ing the bulk assumption ε−1

⊥ (z) = ε−1
bulk

, we find that the estimate for εint varies between 10
and 30, depending on salt concentration, which corresponds well to earlier estimates based
on experimental data [80, 81]. Our results present a microscopic picture of the electrostatic
properties of the interfacial layer, allowing for the analysis of not only the double-layer ca-
pacitance, but also other properties, such as the electrostatic pressure between two plates
as a function of separation, as will be detailed next.
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Figure 2.13: Pressure between two like-charged hydrophilic and hydrophobic plates as a function
of the distance d between the plates, calculated from Eqs. 2.55 and 2.56 using different models for
the dielectric profiles ε−1

⊥ (z). The surface charge density is σ0 = −0.006 e nm−2.

2.4.4 Disjoining Pressure between Charged Plates

We determine the disjoining pressure between two plates from the free energy F calculated
using the Poisson-Boltzmann equation [80, 110–112],

βF = βσ0ψ0 +

∫

βψ (z)

2
P0 (z) +

∑

±

c± (z)

[

µ (z) + ln
c± (z)

c0
− 1

]

dz, (2.55)

with σ0 the surface charge density, ψ0 = ψ (0) the potential at the wall and c± (z) =
c0 exp [∓βeψ (z) − µ (z)] the ionic densities. The potential ψ (z) is calculated from the
non-linear Poisson-Boltzmann equation given in Eq. 2.48. The first term in Eq. 2.55
comes from the surface integral over the electrostatic energy of the surface charge density.
The pressure p (d) between two plates at separation d is given by

βp (d) = −dβF
dd

− 2c0 . (2.56)

For the dielectric profile between the two plates, we join the ε−1
⊥ (z) profiles from both

surfaces piecewise. The resulting pressure is shown in Fig. 2.13 for a 100 mM monovalent
salt solution and a surface charge of σ0 = −0.006 e nm−2 (−1 mC/m2), with µ (z) = 0.
Compared to a spatially constant bulk dielectric function (solid black line), the pressure
is lower when the full dielectric profile ε−1

⊥ (z) (solid colored lines) or the sharp-kink ap-
proximation of Eq. 2.44 (colored dashed lines) is used. Therefore, modifications of the
pressure between charged surfaces due to dielectric surface effects cannot explain, and
probably are also not related to, the exponentially decaying short-ranged hydration repul-
sion, which is found experimentally and theoretically between all kinds of polar surfaces
[92, 113]. Based on a mean-field type interpretation (without taking the dielectric profile
into account) of pressures obtained within atomistic simulations of charged surfaces, the
hydration repulsion has been associated with dielectric effects [114]. This differs from our
findings, according to which dielectric effects decrease the pressure between charged sur-
faces and therefore the hydration repulsion must come from solvation effects not directly
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connected to dielectric properties. Interestingly, the repulsion at short distances in Fig.
2.13 is found to be smaller between hydrophobic surfaces than between hydrophilic ones.
It is important to note that the pressures derived from the modified Poisson-Boltzmann
equation shown in Fig. 2.13 do not include hydration or solvophobic effects and conse-
quently vanish for zero surface charge density. Therefore, the message is that the dielectric
profile cannot explain the hydration repulsion (which also acts between neutral surfaces)
but nevertheless influences the electrostatic part of the double-layer pressure and in fact
makes the pressure between similarly charged surfaces less repulsive.

2.4.5 Ion-Surface Interactions

Correlated electrostatic effects such as the image charge repulsion at a dielectric boundary
cannot be treated on the mean-field level. However, for a single, finite-sized ion crossing
a dielectric boundary, the image charge repulsion has been calculated in Refs. [115, 116],
involving the effective dielectric radius of the ion. Tentatively, free energies calculated this
way may be included as a correction to the mean-field potential similar to the heuristic
potential µ (z). The image charge repulsion depends on the ionic radius, but ionic radii
inferred from crystal structures are too small and consistently overestimate hydration free
energies. To reproduce the Born solvation free energy, the distance between the ion and
the first water dipole has to be added to the crystal radius, see Refs. [117, 118] and
references therein. Motivated by our results for the planar interface, which show that
density and dielectric properties give rise to two distinct and largely independent length
scales, we propose a model for the ionic interaction with surfaces that distinguishes between
dielectric and non-electrostatic solvation-induced ion-surface interactions. Similar to the
Gibbs and dielectric dividing surfaces at planar interfaces, we introduce the ionic cavity
radius λc and the dielectric radius λd, see Fig. 2.14 (a – c). The expression for the image
potential is taken directly from Ref. [116]. We define the distance of the ion center to the
dielectric dividing surface position zdds

⊥ as z′ = z − zdds
⊥ . For z′ > λd, the image potential

of a monovalent ion is given by

Ui

(

z′
)

=
βe2

32π λd ε0ε1

[

4 +
(ε1 − ε2)

(ε1 + ε2)

2λd

z′

+
(ε1 − ε2)

2

(ε1 + ε2)
2

(

2λ2
d

λ2
d
− (2z′)2

+
λd

2z′
ln

2z′ + λd

2z′ − λd

)]

,

(2.57)

and for 0 < z′ < λd by

Ui

(

z′
)

=
βe2

32π λd ε0ε1

[

2 +
2z′

λd

+
ε1 − ε2
ε1 + ε2

(

4 − 2z′

λd

)

+
(ε1 − ε2)

2

(ε1 + ε2)
2

[

(λd + z′) (λd − 2z′)

λ2
d

+ 2z′λd

+
λd

2z′
ln

2z′ + λd

λd

]

]

+
βe2

16π λd ε0ε2

(

2ε2
ε1 + ε2

)2(

1 − z′

λd

)

.

(2.58)

The permittivities ε1 = εbulk and ε2 = 1 for z′ > 0. For z′ < 0, the same expressions can
be used with ε1 = 1 and ε2 = εbulk. Because we calculate the energy with respect to a
position in the bulk water, we subtract the Born energy Ub = e2/8πλdε0εbulk from Ui. In
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Figure 2.14: (a) Sketch of an ion with cavity radius λc (blue dashed line) and dielectric radius
λd (red dotted line). Also shown are sketches of (b) a hydrophilic and (c) a hydrophobic surface
with their respective Gibbs (blue dashed lines) and dielectric dividing surfaces (red dotted lines).
(c – d) Ionic free energy U (z) = Uh (z) + Ui (z) − Ub at (d) a hydrophilic surface and (e) a
hydrophobic surface, calculated from Eqs. 2.57-2.59. At the hydrophilic surface zdds

⊥ = 0.10 nm
and zgds = 0.07 nm, at the hydrophobic surface zdds

⊥ = 0.12 nm and zgds = 0.22 nm. The ions
have a cavity radius of λc = 0.15 nm and λc = 0.2 nm and the dielectric radii λd are 0.1 nm larger.

addition to the image potential, the ions are subject to a hydration potential, scaling with
the hydrated volume of the ion [67, 119–121]. To calculate the ionic volume, we use the
cavity radius λc. Whereas the image potential acts with respect to the dielectric dividing
surface, the hydration potential acts with respect to the Gibbs dividing surface. These
surface positions appear in different order at hydrophilic and hydrophobic surfaces. The
hydration energy is calculated from

Uh

(

z′′
)

=







−4π
3 λ

3
cβC if z′′ < −λc

0 if z′′ > λc

−π
3 (λc − z′′)2 (z′′ + 2λc) βC otherwise,

(2.59)

with z′′ = z−zgds and C = 2.8×10−19 J/nm3 [67]. We calculate the interaction potential
of a single ion next to a dielectric boundary as the sum of the hydration energy and the
image potential, U (z) = Uh (z) + Ui (z) − Ub.

In Fig. 2.14 we plot the calculated energy as a function of z for (d) a hydrophilic
surface and (e) a hydrophobic surface, for a small and a large ion. For the small ion,
the cavity radius λc = 0.15 nm and the dielectric radius λd = 0.25 nm, and for the
large ion λc = 0.2 nm and λd = 0.3 nm. We choose the dielectric radii larger than
the cavity radii, reflecting the fact that radii inferred from the solvation free energy via
the Born energy Ub are larger than cavity radii measured with diffraction methods [118].
It also conforms to our result that the dielectric dividing surface is displaced toward
the water phase compared to the Gibbs dividing surface at hydrophilic surfaces. The
curves clearly reflect the well-known positive correlation between ion size and adsorption
onto the surface, meaning that larger ions show a larger surface propensity compared to
smaller ions. Interestingly, this simple model already shows a striking difference between
hydrophilic and hydrophobic surfaces, which has recently been found in simulations as
well [122]. Because zgds > zdds

⊥ at the hydrophobic surface, the influence of the attractive
hydration potential is much more pronounced than at the hydrophilic surface. For ions
of λc = 0.2 nm, the hydration potential at the hydrophobic surface even dominates the
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interaction for 0.09 < z < 0.26 nm, which means that large ions adsorb onto hydrophobic
surfaces, but not onto hydrophilic surfaces. For distances larger than ∼ 0.3 nm from the
interface all potentials resemble the exponential function used previously for µ (z).

2.5 Summary & Conclusions

We have established the theoretical framework for calculating the dielectric response ten-
sor of water at an interface from molecular fluctuations and from an applied external field.
Whereas the parallel response can be calculated from the dipole moment only and roughly
follows the density profile, the perpendicular response exhibits several singularities that
can be captured properly only when higher-order multipole moments are taken into ac-
count. For the perpendicular dielectric response, the linear response regime extends to
an external field strength of at least D⊥/ε0 ≃ 2 V/nm, after which the response at the
hydrophobic interface becomes non-linear. Because on timescales larger than ∼ 10 ns,
dielectric breakdown in real water occurs at external field strengths one order of magni-
tude lower, the non-linear response of the non-polarizable, non-ionizable water model that
we use in our simulations is not expected to play a role in the dielectric response of real
water. Including the dielectric profile in a mean-field description of ion distributions at
a charged interface, we find that the experimental double-layer capacitance can be well
reproduced. In particular, this shows that the Stern layer is predominantly caused by the
dielectric interfacial features of water itself. Additionally accounting for the repulsive ion-
substrate interaction – corresponding to steric exclusion of ions from the direct proximity
of the wall – further improves the agreement with experimental data, but these direct
ion-surface interactions are not decisive for the features seen in the experimental capaci-
tance data. We quantify the difference between the dielectric response at hydrophilic and
hydrophobic surfaces in terms of a single length scale that we call the dielectric dividing
surface. Using this length scale, the similarity that is found experimentally between the
double-layer capacitance at both surface types can be rationalized very simply: although
a pronounced depletion layer exists at the hydrophobic interface, and therefore less wa-
ter is available than at the hydrophilic interface, the dielectric dividing surface position
is very similar at both surface types, measured with respect to the top layer of heavy
substrate atoms. In other words, water at the hydrophobic surface is a “better dielectric”
than at the hydrophilic surface. From the same mean-field description, we find that the
effect of the dielectric profile is to decrease the disjoining pressure between two charged
plates. Dielectric interface effects therefore cannot explain the universally observed hydra-
tion repulsion between polar surfaces directly. Finally, a simple model for the adsorption
of spherical ions at interfaces that distinguishes between dielectric and depletion effects,
both at the planar interfaces and around the ions, reveals the characteristic difference
between adsorption at hydrophilic and hydrophobic surfaces. In particular, it predicts the
adsorption of large ions onto hydrophobic surfaces, but not onto hydrophilic surfaces. In
future research, the effect of ions and finite surface separation on the dielectric profile and
the consequences of the full dielectric profile on the ionic free energy need to be addressed
in order to understand the interaction of charged and neutral surfaces in full detail.



Chapter 3
Hydrodynamic Slip and its Effect on
Electrokinetic Flow

In this chapter, we explore the effect of the hydrodynamic boundary condition on fluid
flow through small channels. In particular, we study water flow through carbon nanotubes
and rectangular silica nanochannels using continuum theory, including hydrodynamic slip
through the Navier boundary condition. We also study the effect of the hydrodynamic
boundary condition on the electro-osmotic motion of air bubbles and the effect of com-
pressibility and density variation on the flow profile perpendicular to a solid surface. The
material in this chapter has been published in Refs. [v] and [vii].

3.1 Introduction

For large-scale fluid flow along a solid boundary, it is well-established that the velocity
profile can be calculated using the so-called no-slip boundary condition, i.e. the condition
that the fluid velocity relative to the boundary vanishes at the boundary. At small length
scales, however, the hydrodynamic boundary condition for tangential flow along solid
surfaces typically differs from the no-slip boundary condition, which is important for fluid
flow through small channels [123]. The microscopic origin of the slipping behavior is still
unclear. The extent of slippage depends on charge density [124] and roughness [74] of the
solid surface, as well as pressure, impurities and dissolved gas in the liquid phase [123]. At
smooth, uncharged hydrophobic surfaces, water slippage increases strongly as a function
of the solid-liquid contact angle, indicating that hydrophobic surfaces exhibit more slip
than hydrophilic surfaces [74, 123]. In addition, the liquid viscosity at the interface is not
spatially constant. The viscosity variation is mainly caused by the varying water density
and the changing hydrogen bond structure at the interface.

The most common way to describe tangential slip at a solid surface is by imposing
proportionality between the rate of strain and the tangential velocity u‖ at the surface,

− b n̂ ·
(

∇u + (∇u)T
)

= u‖, (3.1)

with b being the slip length, u being the velocity and n̂ being the unit vector normal to
the interface, pointing into the solid. Eq. 3.1, which is referred to as the Navier boundary
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Figure 3.1: Sketch of the tangential velocity profile u‖ (blue lines) as a function of the coordinate
perpendicular to the surface in a Couette shearing experiment. The slip length b corresponds to
the distance where the linear extrapolation of the bulk velocity profile reaches zero. Two surface
types are shown: (a) a hydrophobic surface, with depletion layer and positive slip length b and (b)
a hydrophilic surface, with enhanced interfacial viscosity and negative b.

condition, describes the combined effects of the varying viscosity profile and molecular slip
of the first few layers of water molecules along the wall within a continuum model. The
equation does not hold for the components of the fluid velocity perpendicular to the solid
surface, to which we will come back below.

Two fundamentally different scenarios occur in nature. At hydrophobic surfaces, the
solid and the fluid are separated by a depletion gap, which decreases friction and gives rise
to a positive slip length [37–39], see Fig. 3.1 (a). The slip length depends on the width of
the depletion gap to the fourth power [74]. For water in carbon nanotubes, the depletion
gap is particularly large, and slip lengths of ∼ 50 µm are reported [42]. Their large slip
length indicates that water moves almost frictionless through carbon nanotubes, making
them particularly suited to be used as channels in nanofluidic applications. The water
viscosity appears to be constant up to the depletion gap [74]. At hydrophilic surfaces,
on the other hand, no depletion gap exists and the viscosity in the first few water layers
at the wall is higher than in bulk [74, 125]. The flow profile far away from the interface
can be modeled using Eq. 3.1 with a negative slip length b, corresponding to the width
of a stagnant layer of fluid sticking to the surface in a Couette shear flow experiment,
see Fig. 3.1 (b). The position at the boundary between the effectively stagnant layer
and the mobile fluid is generally referred as the shear plane. A stagnant layer hinders
flow through small capillaries, whereas a positive slip length greatly enhances flow rates.
In both pressure-driven and electrokinetic flows, these different hydrodynamic boundary
conditions drastically affect the energy conversion efficiency. In Sec. 3.2, we calculate the
energy dissipation in pressure-driven flow and the energy conversion efficiency in electroki-
netic flow as a function of the slip length. We show that the energy conversion efficiency
in hydrophilic silica channels is significantly reduced because of the stagnant layer, which
is estimated to be ∼ 3Å wide. In carbon nanotubes, on the other hand, the electrokinetic
energy conversion efficiency is predicted to reach over 90%.

At the air-water interface, the viscosity on the gas side of the shear plane practically
vanishes. When no heavy molecules are located in the gas phase, no momentum can be
transferred across the shear plane and the rate of strain tensor vanishes, corresponding
to the limit b → ∞. Depending on the viscosity profile across the interface, however, the
water density on the gas side of the shear plane may be non-zero, leaving the possibility
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of a finite slip length open. In Sec. 3.4, we calculate the electrophoretic mobility of
an air bubble as a function of the position of the shear plane for different values of the
slip length, using a charge density profile that originates from charge transfer across the
hydrogen bonds between water molecules [126].

Contrary to the fluid velocity tangential to the surface, the fluid velocity perpendicular
to the surface strictly meets the no-slip boundary condition at impermeable surfaces, which
means that the perpendicular fluid velocity at an immobilized surface equals zero,

u · n̂ = 0. (3.2)

In this case, the vanishing flow velocity is enforced by the condition that the water mass
cannot penetrate the solid surface. In contrast, a published molecular dynamics study of
water flow in carbon nanotubes suggests that the flow perpendicular to the surface can be
non-zero, which is speculated to be related to the interfacial structure and the microscopic
compressibility of water [62]. In Sec. 3.5, we refute these suggestions and show that
the no-slip boundary condition holds rigidly for the perpendicular component of the fluid
velocity, also for compressible fluids of spatially varying density.

3.2 Pumping & Energy Conversion

3.2.1 Dissipation in Pressure-Driven Flows

Conservation of momentum for a fluid flowing with space-dependent and time-dependent
velocity u (x, t) is expressed by the Navier-Stokes equation, which reads

̺
du

dt
= ∇ · P + F with

d

dt
=

∂

∂t
+ u · ∇, (3.3)

with F being an external force. We assume the fluid to be incompressible, leaving the
mass density ̺ constant. For fluids of spherically symmetric constituents, the stress tensor
P in Eq. 3.3 is given by

P = −pU + Π with Πij = η (∇jui + ∇iuj) . (3.4)

The hydrostatic pressure is denoted p, U is the unit tensor and η is the viscosity. The
balance equation for the kinetic energy contained in a flowing liquid follows from a scalar
product of the Navier-Stokes equation with the velocity, which in absence of external forces
gives [127]

̺
d

dt

u2

2
= ∇ · (P · u) − P : (∇u) . (3.5)

In steady state ∂u/∂t = 0 and Eq. 3.5 reduces to

0 = ∇ ·
(

−1/2 ̺u
2u + P · u

)

− P : (∇u) , (3.6)

where the first term on the right-hand side represents the convective energy flow, equal to
1/2 ̺ (u · ∇)u2 = 1/2 ̺∇ ·

(

u2u
)

, which needs not be zero in steady state. Integration over
a volume V and application of Gauss’s theorem yields

0 =

∫

∂V
n̂ ·
(

−̺u
2u

2
+ P · u

)

dA−
∫

V
P : (∇u) dV. (3.7)
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Using Einstein’s summation convention, we write the integral component-wise and insert
Eq. 3.4,

0 =

∫

∂V
n̂j

[

−̺u
2
iuj
2

− puj + η (∇jui + ∇iuj) ui

]

dA

−
∫

V
η (∇jui + ∇iuj)∇jui dV,

(3.8)

where we used P · u = −pδijui + η (∇jui + ∇iuj)ui and P : (∇u) = Pij∇jui and the
incompressibility of the fluid, ∇iui = 0. The surface of the volume ∂V consists of three
parts: an inlet, an outlet and a wall. At impenetrable walls n̂juj = 0. For flow through
a translationally invariant channel also the integrals over the inlet and outlet of the first
term in the surface integral vanish. The second term in the surface integral represents the
input power Q∆p, with the volume flux

Q =

∫

Ω
n̂juj dA, (3.9)

where Ω is the cross section of the channel and ∆p is the static pressure difference between
the inlet and outlet. The remaining term in the surface integral in Eq. 3.8 represents the
power dissipated by friction at the walls and depends on the extent of slip. The volume
integral represents the power dissipated within the fluid because of velocity gradients. In
our continuum description, we take the viscosity as a constant and introduce a slip length
b as a boundary condition,

− n̂jb∇jui|±d/2 = ui|±d/2, (3.10)

with d the height of the channel. For single-directional fluid flow, as appropriate for
an incompressible fluid flowing through a translationally invariant channel, the balance
equation becomes

Q∆p = −η
∫

∂V

u2
i

b
dA− η

∫

V
(∇jui)

2 dV, (3.11)

where the right-hand side equates to the dissipated power Pdiss..

We now calculate the dissipation as a function of the slip length b for a given volume
flux Q. Ignoring edge effects, a pressure-driven fluid flow in a slit-like rectangular channel
forms a Poiseuille flow profile (calculated from Eq. 3.3 with Eq. 3.10),

ui = −∇ip

8η

[

d2 + 4bd− 4x2
j

]

, (3.12)

with ui the fluid velocity lengthways, xj the spatial coordinate along the height of the
channel and ∇ip = ∆p/l the pressure gradient along the length of the channel l. For a
given volume flux Q, the dissipation from Eq. 3.11 in a channel of width w becomes

Pdiss. =
12Q2ηl

w (d3 + 6d2b)
, (3.13)

from which it can be seen that increasing the slip length greatly reduces the power required
to achieve a flux Q when b becomes of the order of d.

A pressure difference across a cylindrical channel, such as a carbon nanotube, produces
a Hagen-Poiseuille flow profile. At the wall of the tube of diameter d we use the boundary
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Figure 3.2: Tangential flow profile ui as a function of the coordinate perpendicular to the surface
xj in (a) a Couette shearing simulation and (b) a Poiseuille flow simulation. The Couette flow is
driven by the forces on the diamond, leading to fixed surface velocities of: u0 = 6 (red), u0 = 17
(blue), u0 = 22 (green) and u0 = 28 (cyan) m/s. The Poiseuille flow is driven by a pressure
gradient of ∇ip = 0.5 (red), ∇ip = 1.0 (blue), ∇ip = 1.5 (green) and ∇ip = 2.0× 1015 Pa/m. The
curves have been fitted by (a) a linear profile and (b) a quadratic profile.

condition given in Eq. 3.10 restricted to the wall at +d/2. Inside a tube of diameter d≪ l
the flow profile is given by

ui = −∇ip

16η

[

d2 + 4bd− 4x2
j

]

. (3.14)

The dissipation for fixed Q equals

Pdiss. =
128Q2ηl

π (d4 + 8bd3)
. (3.15)

In carbon nanotubes, the slip length b can be two orders of magnitude larger than in
other hydrophobic channels and much larger than the diameter d [42], making the energy
dissipation scale inversely linear with the slip length. The resulting massive reduction of
the energy dissipation is a major advantage when using large arrays of parallel nanotubes
for filtering or desalination.

Molecular dynamics simulations. We perform non-equilibrium molecular dynamics sim-
ulations of a rectangular water slab confined between two diamond surfaces, consisting of
a double-fcc lattice of carbon atoms (gromos 96 force field: ǫ = 0.277 kJ mol−1 and
σ = 0.358 nm). The diamond has a contact angle of ∼ 111◦, as calculated from the virial
tensor following Ref. [128]. We simulate a Couette shear flow by applying equal but op-
posite forces Fi to the two diamonds along the direction of the channel, which is denoted
xi. The flow profiles resulting from applied forces of Fi = 23 pN, Fi = 47 pN, Fi = 70 pN
and Fi = 93 pN are shown in Fig. 3.2 (a). We simulate a Poiseuille flow by keeping the
diamond fixed and applying a constant force to the water molecules. In Fig. 3.2 (b),
we show the Poiseuille flow profiles resulting from force densities of ∇ip = 0.5 pN/nm3,
∇ip = 1.0 pN/nm3, ∇ip = 1.5 pN/nm3 and ∇ip = 2.0 pN/nm3. Lines have been fit-
ted to the Couette flow profiles and quadratic functions to the Poiseuille flows, yielding
viscosity and slip length for each curve. The slip length following from the Couette flow
equals b = 2.1 ± 0.2 nm and the slip length following from the Poiseuille flow equals
b = 1.9 ± 0.2 nm, showing no significant difference. There is also no significant differ-
ence between the results of the simulations at different driving forces. In conclusion, the
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Figure 3.3: Efficiency E of electrokinetic energy conversion as a function of slip length b in (a)
a rectangular channel and (b) a cylindrical channel, calculated from Eq. 3.21. The electrolyte
used is 0.1 mM monovalent ions with the electrophoretic mobilities of k+ and cl−. For both
geometries, the surface potential is fixed at −240 mV. The corresponding surface charge density
equals σ = −13 mC/m2 in the d = 0.5 nm cylindrical channel, σ = −24 mC/m2 in the d = 0.5 nm
rectangular channel and σ ≃ −60 mC/m2 for all other channels.

slip length gives a consistent and reproducible measure of the hydrodynamic boundary
condition at hydrophobic surfaces.

3.2.2 Electrokinetic Energy Conversion Efficiency

The calculation in Sec. 3.2.1 shows that a large slip length reduces the energy dissipation
in pressure-driven flows. However, a hydrostatic pressure difference is sometimes difficult
to generate on small scales. Therefore, electro-osmosis is the preferred mechanism to drive
nano-scale pumps [4]. We consider an electro-osmotic pump consisting of a slit-like or
cylindrical channel with a fixed surface charge density or surface potential operated with
a solution of monovalent ions. Under the influence of an electric field, the ions move
along the surface and drag the fluid along, driving a hydrostatic load impedance. The
load impedance connected to the channel is the hydrostatic equivalent of an electrical
load resistance connected to an electrical power source. Whereas efficiency is not crucial
for microscopic applications, it becomes important when nanofluidic devices are used in
parallel arrays that are designed to reach macroscopic sizes. In this section we calculate the
efficiency of the energy conversion from electrical power to a hydrostatic pressure difference
as a function of the slip length. Because of the inhomogeneity of the volume and current
flow densities, the standard flow densities and Onsager coefficients are integrated over the
cross section Ω of the channel [127].

Apart from the pressure gradient ∇p discussed in Sec. 3.2.1, the electrolyte is subject
to a voltage gradient ∇ψ, leading to an electro-osmotic flow. The electro-osmotic flow

velocity u
(ψ)
i is calculated from the Navier-Stokes equation (Eq. 3.3) with the external

forces

Fi = εε0∇2
jψ∇iψ and Fi = εε0

1

xj
∇jxj∇jψ∇iψ, (3.16)

in rectangular and cylindrical coordinates respectively. For the electrostatics, we impose
a constant surface charge density σ as a boundary condition, which gives

n̂j εε0∇jψ = σ. (3.17)
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Solving Eq. 3.3 with the forces of Eq. 3.16 and the boundary conditions Eqs. 3.10 and
3.17 gives

u
(ψ)
i (xj) =

∇iψ

η
(εε0 [ψ (d/2) − ψ (xj)] + bσ) , (3.18)

for both the rectangular and the cylindrical geometry.

Linear response theory. In the linear response regime, the electrical current I and fluid
volume flux Q are related to the pressure gradient ∇p and the voltage gradient ∇ψ via

[

Q
I

]

=

[

Λ11 Λ12

Λ21 Λ22

] [

−∇p
−∇ψ

]

. (3.19)

The hydrostatic output power per unit length of the channel equals Pout = −Q · ∇p, and
the electrical input power equals Pin = −I · ∇ψ. For electrokinetic power generation by
pressure-driven flow, input and output power are defined the other way around, but the
efficiency is calculated in the same way. The electrokinetic energy conversion efficiency
is given by the ratio E = Pout/Pin, which can be expressed in terms of the electrokinetic
response functions via Eq. 3.19. In the channel, the fluid velocity and electrostatic po-
tential (apart from the constant voltage gradient driving the pump) depend only on the
coordinate perpendicular to the channel wall, throughout the following calculation denoted
xj . The velocity, the electric current and the pressure gradient are only non-zero in the
direction along the channel wall, denoted xi. The Onsager coefficients can be expressed
as

Λ11 = −
∫

Ω

u
(p)
i

∇ip
dA

Λ21 = −e
∫

Ω
[n+ (xj) − n− (xj)]

u
(p)
i

∇ip
dA

Λ12 = −
∫

Ω

u
(ψ)
i

∇iψ
dA

Λ22 = e

∫

Ω
[ν+n+ (xj) + ν−n− (xj)] − [n+ (xj) − n− (xj)]

u
(ψ)
i

∇iψ
dA,

(3.20)

where the monovalent ions have electrophoretic mobilities ν± and number densities n± =
n0 exp (∓eψ/kbT ) with n0 the bulk density and kbT the thermal energy. The electrostatic
potential ψ (xj) is calculated numerically from the Poisson-Boltzmann equation, which

holds sufficiently well on small scales [124]. The pressure-driven flow velocity u
(p)
i (xj) is

given in Eqs. 3.12 and 3.14 for the rectangular and cylindrical geometries respectively,

and the electro-osmotic flow velocity u
(ψ)
i (xj) is given in Eq. 3.18. The surface of a

carbon nanotube is uncharged, but a finite surface potential can be achieved for nanotubes
by application of an external potential. Surface potentials also arise naturally due to
unequal surface adsorption of cations and anions. Note that in an experimental setup
the driving electric field will be at least partially screened by electron transport through
the nanotube, which will reduce the electric fields strength inside the nanotube. The
pressure gradient generated is linearly related to the volume flux via the hydrostatic load
impedance Zl, Q = ∇ip/Zl. The efficiency is maximized for a specific value of ZlΛ11,
which is the hydrostatic load impedance divided by the hydrostatic channel impedance
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Λ−1
11 . The value of the maximum efficiency E has a very simple form in terms of the

variable α = Λ2
12/Λ11Λ22 [129]:

E =
α

2 + 2
√

1 − α− α
. (3.21)

Using the no-slip boundary condition, the predicted maximum efficiency is only 7%,
whereas the measured efficiency in a silicon oxide channel of d = 75 nm reaches no more
than 3% [130]. To investigate the effect of slip, we use the hydrodynamic boundary con-
dition of Eq. 3.10. The efficiency from Eq. 3.21 is shown in Fig. 3.3 as a function of
slip length for different channel dimensions. We use the ion mobilities of k+ and cl− and
a bulk concentration of 0.1 mM, giving a Debye screening length of 30 nm. Clearly, the
efficiency increases drastically with increasing slip length. The variation of the efficiency
with respect to the channel diameter d is non-monotonic and different for different values
of the slip length. For a slip length of ∼ 2 nm, which is a reasonable number for hydropho-
bic surfaces [74], the efficiency in the 10 nm high rectangular channel reaches ∼ 20%. In
extension to the work of Ref. [131] we plot the efficiency for negative slip lengths. The
measured efficiency of 3% in a 75 nm high channel and 1% in a 490 nm high channel [130]
with a surface charge density of −60 mC/m2, which is the measured surface charge density
of silicon oxide [132], is consistent with a slip length of b = −0.3 nm, corresponding to one
static molecular layer, in good agreement with predictions by Ref. [74] for an oh-covered
surface.

In Fig. 3.3 (b), the efficiency is calculated for a cylindrical channel. The increase in
efficiency is similar to the planar case, but in carbon nanotubes the slip length can be as
much as ∼ 50 µm [42]. In all nanotubes considered, the efficiency for slip lengths of that
order is over 90%.

3.3 Onsager Reciprocal Relation

The electrokinetic phenomena described in Eq. 3.19 are an example of coupled irreversible
processes for which the Onsager reciprocal relations between the thermodynamic fluxes
and forces should hold [127, 133, 134]. The Onsager relation connects the electro-osmotic
fluid flow in response to an electric field directly to the electric current in response to a
pressure gradient, Λ12 = Λ21, first proven by Saxén using the no-slip boundary condition
[135]. Using the expressions of Eq. 3.20, we will proof this identity explicitly using the
boundary condition of Eq. 3.10.

Rectangular geometry. Using the Poisson equation, the streaming conductance Λ21 is
expressed as

Λ21 = εε0

∫

Ω
∇2
jψ
u

(p)
i

∇ip
dA. (3.22)

A double partial integration of Eq. 3.22 yields

Λ21 = εε0

∫

∂Ω
∇jψ

u
(p)
i

∇ip
n̂jdΓ − εε0

∫

∂Ω
ψ
∇ju

(p)
i

∇ip
n̂jdΓ + εε0

∫

Ω
ψ
∇2
ju

(p)
i

∇ip
dA, (3.23)

with Γ the path along the edge of the channel cross-section ∂Ω, located at xj = ±d/2.
Inserting the pressure-driven velocity of Eq. 3.12 and the electrostatic boundary condition
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of Eq. 3.17 and integrating the first two terms of Eq. 3.23 gives the expression

Λ21 = −wσ bd
η

− εε0wψ (d/2)
d

η
+ εε0

∫

Ω

ψ

η
dA, (3.24)

with w the width of the channel. To prove the Onsager relation, we insert the electro-
osmotic velocity of Eq. 3.18 into the expression for the electro-osmotic coefficient Λ12

given in Eq. 3.20, yielding

Λ12 = −1

η

∫

Ω
εε0 [ψ (d/2) − ψ (xj)] + bσ dA. (3.25)

Integration of Eq. 3.25 immediately shows Λ12 = Λ21.

Cylindrical geometry. The streaming conductance in cylindrical coordinates is given by

Λ21 = εε0

∫ d/2

0

1

xj
∇jxj∇jψ

u
(p)
i

∇ip
2πxj dxj, (3.26)

where we perform the integral in one dimension. Double integration by parts yields

Λ21 = 2πεε0

[

xj∇jψ
u

(p)
i

∇ip

]d/2

0

− 2πεε0

[

ψxj∇j
u

(p)
i

∇ip

]d/2

0

+ 2πεε0

∫ d/2

0
ψ∇jxj∇j

u
(p)
i

∇ip
dxj.

(3.27)

Using the electrostatic boundary condition of Eq. 3.17 and the pressure-driven flow ve-
locity of Eq. 3.14 we arrive at

Λ21 = −πσbd
2

4η
− εε0ψ (d/2)

πd2

4η
+ εε0

∫ d/2

0
ψ

2πxj
η

dxj . (3.28)

The electro-osmotic coefficient Λ12 is found by integration of the electro-osmotic flow
velocity in cylindrical coordinates

Λ12 = −1

η

∫ d/2

0
(εε0 [ψ (d/2) − ψ (xj)] + bσ) 2πxj dxj . (3.29)

Clearly, integration of Eq. 3.29 yields an expression identical to the one in Eq. 3.28.

Practically, the Onsager relation Λ12 = Λ21 means that when a system has a non-zero
electro-osmotic coefficient, i.e. it moves in response to an electric field, it must also have
a non-zero streaming conductance, i.e. it generates an electric current in response to an
applied pressure gradient. Because no steady-state electric current can be generated by
applying a pressure gradient, a system without mobile charges should not exhibit electro-
osmotic flow. Note, however, that rotational motion of dipolar molecules is not taken into
account in the current analysis.
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3.4 The ζ-Potential of Air Bubbles

Across the air-water interface, the viscosity drops from the water bulk value to the value in
air, which is close to zero. Calculating the ζ-potential of an air bubble requires knowledge
of the viscosity profile across its interface. The viscosity in the interfacial region is, in
general, different from the bulk water viscosity. We consider a planar air-water interface
with xj the coordinate perpendicular to the surface, which yields a valid description of
the electro-osmotic mobility when the radius of the bubble greatly exceeds the typical
length scale of the charge density profile. When we approximate the viscosity profile by
a step profile η (xj) = ηw(1 − θ(xj − x0

j )), which was found to be accurate for water at
a hydrophobic surface [74], the charges in the (effective) vapor phase cannot transfer any
momentum to the air bubble. Therefore, we take the coupling to the charges in the vapor
phase into account by a surface friction coefficient, quantified by the slip length, b, equal
to the viscosity divided by the friction coefficient. The Stokes equation reads

∇jη (xj)∇jui (xj) = −Eiρ (xj) , (3.30)

with xi being the coordinate parallel to the surface, η (xj) being the viscosity, ui (xj) being
the velocity parallel to the surface in response to an applied electric field Ei and ρ (xj)
the density of free charges. Integrating once with respect to xj and using the boundary
condition that ∇ui (xj) and the integral over all charges vanish in the bulk fluid leads to

η (xj)∇jui (xj) = −EiFj (xj) , (3.31)

with ∇ ·F (xj) = ρ (xj). Integrating Eq. 3.31 from a position xwj in the bulk water to x0
j ,

where the viscosity vanishes, gives

ui
(

x0
j

)

− ui
(

xwj
)

=
Ei
ηw

∫ x0
j

xw
j

ρ (xj)
(

xj − x0
j

)

dxj. (3.32)

Now we apply the Navier boundary condition at xj = x0
j ,

ui
(

x0
j

)

= −b∇jui (xj) |x0
j
, (3.33)

leading to

− ui
(

xwj
)

=
Ei
ηw

∫ x0
j

xw
j

ρ (xj)
(

xj − x0
j − b

)

dxj. (3.34)

The ζ-potential is defined as

ζ = −
ηwui(x

w
j )

ε0εEi
, (3.35)

with ε0 the permittivity of vacuum and ε the relative permittivity of water, for which we
take ε = 80. Combining Eqs. 3.34 and 3.35 gives [67]

ζ =
1

ε0ε

∫ x0
j

xw
j

ρ (xj)
(

xj − x0
j − b

)

dxj. (3.36)

Eq. 3.36 shows that the ζ-potential essentially equals the first moment of the charge
distribution.
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Figure 3.4: ζ-potential calculated from Eq. 3.36 as a function of the shear surface position x0

j ,

using the instantaneous charge density profile. The position x0

j is defined with respect to the Gibbs
dividing surface xgds

j . In the inset, we show the instantaneous charge density profile caused by the
charge transfer.

Usually, the charge density ρ (xj) originates from a non-zero ion concentration. Never-
theless, at a pure air-water interface there may be a contribution to the free charge density
stemming from the hydrogen bond network. Due to the ordering and orientation of water
molecules at aqueous interfaces, the hydrogen bond network is anisotropic [136]. The top
water layer has a small excess of hydrogen bond acceptors, whereas the second layer has
an excess of hydrogen bond donors. If a small charge transfer is associated with each
hydrogen bond, the asymmetry at the surface leads to a non-zero free charge distribution.
In Ref. [126], the charge density resulting from charge transfer is estimated using a com-
bination of classical and ab initio molecular dynamics simulations. In the following, we
use this charge density profile to calculate the electro-osmotic mobility of air bubbles in
pure water.

In Fig. 3.4, we plot the ζ-potential of an air bubble calculated from Eq. 3.36 for different
values of the effective slip length b, using the charge density profile ρ (xj) which is shown
in the inset. The charge density profile is calculated with respect to the Gibbs dividing
surface xgds

j , where xgds
j is determined separately at each time and lateral position (xi, xk)

to avoid smoothing by lateral and temporal surface fluctuations [137]. The position x0
j

of the effective shear surface is varied between a position in vacuum, corresponding to an
interfacial region with bulk viscosity, and a position up to several atomic layers inside the
fluid, where all water properties are expected to reach bulk values [136]. Simultaneously
varying the slip length b, we cover all different interfacial viscous properties that may
be expected based on simulations of water at hydrophobic surfaces [74]. Clearly, the ζ-
potential depends strongly on the value of b. If the transfer charge density is non-zero at
the position of the effective shear surface x0

j , then the bubble surface will not be stress-free

because of the hydrogen bonds spanning across x0
j . In addition, every air bubble has a

non-zero slip length due to its curvature [124]. The effective slip length b is given by

1

b
=

1

b0
+

1

a
, (3.37)

where b0 is the “intrinsic” slip length that is controlled by hydrogen bonds across the
dividing surface as well as friction due to interacting water molecules and charges in the
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Figure 3.5: ζ-potential calculated from Eq. 3.36 as a function of the shear surface position x0

j .

The position x0

j is defined with respect to the Gibbs dividing surface. In the inset, we show the
laterally averaged charge density profile caused by the charge transfer.

vapor and liquid phases, and a is the curvature of the bubble surface. Because of the
large number of hydrogen bonds across the effective plane of shear, we expect b0 to be
small for x0

j < 0.1 nm. For x0
j > 0.1 nm, the water density is very small, and b0 is

expected to be large. For values of b of several nanometers, which we consider as an
upper limit because this is the value for very hydrophobic surfaces, we find a ζ-potential
of several millivolts, that is, about an order of magnitude smaller than the ζ-potential of
∼ −35 mV measured for air bubbles in water [138]. Assuming that the transition from
bulk-like to vapor-like hydrodynamic properties occurs effectively at one molecular layer
beneath the surface, which is realistic in the view of the high self-diffusion constant of
the top water layer found in molecular dynamics simulations [139, 140], the ζ-potential
is negative. A negative peak is found at x0

j = −0.28 nm, that is, about one water layer
below the surface, effectively leaving the air bubble with a net negative charge. However,
the ζ-potential varies depending on the hydrodynamic properties of the interfacial region,
and a positive peak is obtained at x0

j = −0.10 nm. In Fig. 3.5, we show the ζ-potential
when the charge density profile is calculated with respect to the laterally averaged xgds

j

(ρ (xj) is shown in the inset). Qualitatively, the graph shows the same features as Fig.
3.4, but the amplitude of the ζ-potential is lower because the charge profile is smoothed
by lateral averaging.

In conclusion, the ζ-potential resulting from the charge transfer is small, even when
finite slip between the charges in the water and vapor phase is taken into account. The
sign of the ζ-potential can be positive or negative, depending on the nature of the viscosity
profile. To improve the current model, the viscosity profile across the air-water interface
needs to be calculated explicitly.

3.5 Radial Flow in Compressible Fluids

In Ref. [62], a non-zero radial velocity component is reported in a pressure-driven flow
inside a (16, 16) carbon nanotube, see Fig. 3.6 (b), in stark contrast with continuum
Poiseuille-flow predictions. The non-zero radial flow is claimed to be related to the in-
homogeneous density profile. Let us analyze the effect of compressibility and a space-



3. Hydrodynamic Slip 47

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

-50

Binned at:

x j(t)

x j(t -  δt)
1
2

fr
om

 J
os

ep
h
 a

n
d
 A

lu
ru

, 
N

an
ol

et
t.
 8

, 
45

2 
(2

00
8)

x j (nm)

u
j 
(m

 s
-1
)

0.6 0.8

0

10

20

30

u
j 
(m

 s
-1
)

x j (nm)

a b

Figure 3.6: Radial velocity inside a (16,16) carbon nanotube without reservoir. (a) Electro-
osmotic velocity calculated with binning at t (dashed red line) and the correct binning at t− 1/2 δt
(solid blue line). (b) Graph taken from Ref. [62] showing a pressure-driven radial velocity in the
same (16,16) carbon nanotube.

dependent mass density ̺ (x) on the radial velocity profile. The continuity equation in its
most general form is given by

∂̺

∂t
+ ∇ · (̺u) = 0. (3.38)

When the density ̺ (xj) and the velocity u (xj) depend on the radial coordinate xj, the
radial component of Eq. 3.38 reduces in steady state to

uj (xj)∇j̺ (xj) + ̺ (xj)
1

xj
∇j (xjuj (xj)) = 0. (3.39)

Multiplying by xj and integrating once over xj yields

∫

xjuj (xj)∇j̺ (xj) dxj +

∫

̺ (xj)∇j (xjuj (xj)) dxj = c, (3.40)

with c an integration constant. Integration by parts of the first term on the left-hand side
gives

xjuj (xj) ̺ (xj) = c. (3.41)

Eq. 3.41 fixes uj (xj) as a function of ̺ (xj). When the density ̺ (xj) vanishes at the wall
of the tube, the velocity should remain finite, showing that the only physical solution is
c = 0 and therefore uj (xj) = 0, also for compressible fluids of variable density.

To find out why the simulations of Ref. [62] exhibit a non-zero radial flow profile, we
calculate the radial velocity uj(xj) in simulations of a (16, 16) nanotube from radially
binned water molecule positions xj(t) according to uj(xj [t − τ ]) = (xj [t] − xj[t − δt])/δt
with δt the integration time step. The correct positioning of the velocity requires choosing
τ = 1/2 δt, and in this case uj vanishes, as shown as a solid line in Fig. 3.6 (a), in
agreement with standard hydrodynamic theory. Incorrectly using τ = 0 gives a spurious
non-vanishing uj profile (broken line), similar to profiles reported in Ref. [62]. The reason
for this is that a water molecule that at time t happens to be close to the surface is, due
to the impenetrability of the surface, likely to origin from a position further away from
the surface at time t− δt.
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3.6 Summary & Conclusions

We study the effect of a deviation from the no-slip boundary condition on the properties
of pressure-driven and electrokinetic flow through rectangular nanochannels and carbon
nanotubes, as well as the electrophoretic motion of gas bubbles. The extremely large slip
length measured in carbon nanotubes greatly reduces the fluidic resistance to pressure-
driven flow and at the same time enhances the efficiency of electrokinetic energy conversion.
Experimental values of the electrokinetic energy conversion efficiency in hydrophilic silicon
oxide channels can be modeled using a slip length of b = −0.3 nm, corresponding to one
highly viscous layer of water molecules at the interface. In the direction perpendicular
to the tube wall, the no-slip boundary condition holds rigidly, also for systems with spa-
tially varying density. Using the standard Navier-Stokes equation, we explicitly prove the
Onsager reciprocal relation for electrokinetic flow, namely that the electro-osmotic con-
ductance and the streaming conductance are equal. From the equality we conclude that
systems of spherically symmetric particles, as considered in this chapter, do not exhibit
electro-osmotic flow in static electric fields if no mobile charges are present. Rotation of
water molecules, which has not been taken into account so far, will be treated in detail in
Chapter 4. Finally, we show that the mobile charge density resulting from charge transfer
between water molecules does not contribute significantly to the electrophoretic mobility
of air bubbles in water, regardless of the hydrodynamic boundary conditions.



Chapter 4
Electrokinetics at Aqueous
Interfaces without Mobile Charges

We theoretically consider the possibility of using electric fields in aqueous channels of
cylindrical and planar geometry to induce transport in the absence of mobile ionic charges.
Using the Navier-Stokes equation, generalized to include the effects of water spinning,
dipole orientation and relaxation, we show analytically that pumping of a dipolar liquid
through an uncharged hydrophobic channel can be achieved by injecting torque into the
liquid, based on the coupling between molecular spinning and fluid vorticity. Pumping is
possible continuously, using rotating electric fields and suitably chosen interfacial boundary
conditions, or transiently, by suddenly switching on a homogeneous electric field. A static
electric field, however, does not induce a steady-state flow in channels, irrespective of the
geometry. Using molecular dynamics (md) simulations, we confirm that static fields do
not lead to any pumping, in contrast to earlier publications. The origin of the pumping
observed in md simulations of carbon nanotubes and oil droplets in a static electric field
is tracked down to an imprudent implementation of Lennard-Jones interaction truncation
schemes. The work described in this chapter has been published in Refs. [iv], [vii], [ix]
and [x].

4.1 Introduction

Efficient conversion of power from one form to another is nowadays a pressing issue. In flu-
idic applications, this mainly comes down to conversion between electrical and mechanical
energy: the key elements of fluidic systems are pumps for converting electrical power into
a hydrostatic pressure difference, and turbines or electro-osmotic power generators for the
reverse process. The realization of the full potential of laboratory minimization depends
crucially on the design and fabrication of these active fluidic components on the nano
scale. In particular, pumps are of critical importance for the two principal functionalities
of chip-sized laboratories: transport and mixing [2, 3].

It has long been recognized that electro-osmosis is a very efficient and scalable mech-
anism to use in nano-scale pumps [4]. The classical electro-osmotic pump is based on a
charged surface and operated with ionic solutions. Under influence of an electric field,
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the ions move along the surface and drag the fluid along. Alternatively, electro-osmotic
pumping can be achieved at a neutral channel surface with a salt solution of which the
cations and anions have different affinities for the surface [67, 141]. In this case, the asym-
metric distribution of ions generates a finite torque in the interfacial liquid layer, causing
the fluid to move in one direction.

The use of carbon nanotubes as channels and pumps in nanofluidic devices has been
a major aim for the nanofluidic community ever since the discovery that water moves
almost frictionless through carbon nanotubes, see Chapter 3 [42, 43]. However, the fact
that nanotubes are uncharged limits the possibilities for their use as active electro-osmotic
components. Different ways of pumping fluid with carbon nanotubes have been suggested.
Using molecular dynamics simulations, Insepov et al. demonstrated that gas molecules
can be moved peristaltically through a nanotube under influence of a traveling acoustic
wave [142]. A little later, Longhurst and Quirke showed that a temperature gradient
moves decane molecules through a nanotube, also using molecular dynamics simulations
[143]. A slightly different method was proposed by Král and Tománek, making use of the
semi-conducting properties of nanotubes to move particles through the tube due to the
coupling to laser-excited propagating electrons [144].

Many examples of efficient nano-scale pumps and channels are found in nature, where
different protein channels transport water, ions and macromolecules in a highly specific
manner across membranes [5, 6]. A synthetic channel exhibiting some of the selective
transport and fast flow properties of biological channels would have a wide range of possible
applications, not only for pumping, but also for filtering and desalination. To realize this
goal, Gong et al. designed a nanotube with a fixed external charge distribution mimicking
the charge distribution on an aquaporin channel. In molecular dynamics simulations, they
observed a finite water flow through the tube [61]. Fixed charges outside a carbon nanotube
also influence the pressure-driven passage of water molecules [59]. Finally, uncharged
channels filled with solutions of the relatively symmetric salts sodium chloride or potassium
chloride were found to exhibit electro-osmotic flow [62–64].

The pumping efficiency and performance of electrokinetically driven channels can be ex-
pressed in terms of the ζ-potential, which is a material property defined by the Helmholtz-
Smoluchowski equation

ζ = − ηu

εε0E
, (4.1)

with η the shear viscosity, εε0 the permittivity, E the electric field and u the bulk fluid
velocity in the direction of E. According to standard theory, a non-zero ζ-potential arises
only in the presence of mobile charged species, which limits the use of electrokinetic ef-
fects in uncharged nano-channels. However, the ζ-potential of solutes in water has been
a source of controversy for many years [45, 49, 50]. Ever since the first electrophoretic
measurements it has been known that nominally uncharged substances like air bubbles
and oil droplets in pure water exhibit a negative ζ-potential [45]. Generally, this negative
ζ-potential of uncharged solutes is attributed to the accumulation of negatively charged
ions at the solute surface [45–47]. In contrast with this traditional view, a recent simula-
tion paper reports non-zero ζ-potentials for heptane droplets in pure h2o without mobile
ions [51]. Similarly, several molecular dynamics simulations show electro-osmotic flow
in hydrophobic channels: Joseph and Aluru report flow in a carbon nanotube under a
constant electric field [60] and Gong et al. report flows in carbon nanotubes induced by
fixed charges outside the nanotube [44, 61]. Most of these simulations [51, 60, 61], the
results of which we will critically re-evaluate in this chapter, have been performed using
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the molecular dynamics simulation package gromacs [145]. Apart from their ability to
specifically adsorb different types of ions, aqueous interfaces have a strong ordering effect
on the first few molecular layers next to the interface. Molecules in the outermost inter-
facial water layer are preferentially oriented with their h-atoms pointing outward, giving
rise to a considerable dipole density [65]. This structured water next to the interface has
a profound influence on the dielectric properties, the viscosity and the interaction with
ions, among many other surface characteristics [36, 67]. In an attempt to rationalize the
surprising results of the simulation exhibiting electrokinetic effects at uncharged aqueous
interfaces, the coupling of the electric field to the dipolar surface layer was speculated to
provide an alternative mechanism for the appearance of a non-zero ζ-potential, inducing
flow through rotation of the ordered water molecules [51, 60].

In this chapter we discuss two central questions: First, can the dipolar ordering of
the water surface layer give rise to a non-zero ζ-potential in a static and uniform electric
field? And second, can the dipolar nature of water be exploited for electro-hydraulic power
conversion, and in that way enable the use of uncharged channels as active electrokinetic
components? We show that using a static electric field, electro-osmotic pumping of pure
water in a planar or cylindrical hydrophobic channel is impossible. This result, which
is confirmed by extensive molecular dynamics simulations, comes from an analysis based
on a generalized Navier-Stokes formulation that includes angular momentum in the form
of spinning molecules as well as dipolar ordering and relaxation. Employing rotating
electric fields combined with suitable boundary conditions, on the other hand, the coupling
between water molecular rotation and vorticity can be used to pump a dipolar fluid through
a nanofluidic channel.

4.2 Generalized Navier-Stokes Approach

4.2.1 Conservation of Angular Momentum

Whenever an internal force F int acts on some element of a continuum, stress builds up
that is described by a non-vanishing stress tensor P for which Pijn̂jdA = dF int

i , with dA
the surface area of the element and n̂ the vector normal to the surface. Note that in the
following we denote Pij as the shear stress tensor in order to distinguish it from the stress
tensor associated with the spinning of molecules. The shear stress tensor can be split into
a part corresponding to the hydrostatic pressure p and a friction part Π, which in turn
can be split into a symmetric part Πs and an antisymmetric part Πa,

P = −pU + Π and Π = Πs + Πa, (4.2)

with U the unit tensor. For a mono-atomic fluid the antisymmetric part Πa of the shear
stress tensor is zero. In a polar fluid, the interaction between two points in the fluid is not
only modeled via the internal force vector and the associated stress tensor, but also via
the torque per unit mass Γint. Equivalent to Cauchy’s stress principle for the force F int,
there is a spin stress tensor C for which Cij n̂jdA = dΓint

i holds. The total rate of change
of the angular momentum per unit mass L, integrated over a material volume V, can be
written as

∫∫∫

V

∂

∂t
(̺L) dV + ©

∫∫

∂V
(̺L) u · n̂dA =

∫∫∫

V
̺

dL

dt
dV, (4.3)

with u the velocity of the molecules and ̺ (x, t) the mass density. The material derivative
d/dt is defined as d/dt = ∂/∂t+ u · ∇. These considerations lead to the following balance
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equation for the total rate of change of L,

∫∫∫

V
̺

dL

dt
dV =

∫∫∫

V
̺ (Γ + x × F ) dV + ©

∫∫

∂V
n̂ · (C + x × P) dA

=

∫∫∫

V
̺ (Γ + x × F ) + ∇ · C + ∇ · (x × P) dV,

(4.4)

with x the position vector. Rearranging the last term on the right-hand side of Eq. 4.4
yields ∇· (x × P) = x× (∇ · P)+2Πa, where Πa

k = −1/2 ǫijkΠ
a
ij is the antisymmetric part

of the shear stress tensor in axial vector representation, with ǫijk the Levi-Civita tensor.
Realizing that Eq. 4.4 holds for any volume V yields the local conservation of total angular
momentum:

̺
dL

dt
= ̺ (Γ + x × F ) + ∇ · C + x × (∇ · P) + 2Πa. (4.5)

The total angular momentum can be written as the sum of the vorticity contribution x×u

and a spin contribution Iω, accounting for molecular rotation,

L = x × u + Iω, (4.6)

with I the moment of inertia per unit mass and ω the average angular velocity of the
constituent particles. The moment of inertia I is a tensor depending on the mass distri-
bution within the particles and on the local orientational distribution. Because of the
approximate mass isotropy of the water molecules, the tensor I is almost diagonal even if
the orientational distribution of water molecules is very anisotropic, as happens to be the
case close to an interface [146]. We therefore take I to be a diagonal tensor with value I.
For the first part of Eq. 4.6 we write down a separate conservation law, starting from the
conservation law for linear momentum,

̺
du

dt
= ̺F + ∇ · P. (4.7)

We take the vectorial product of x with Eq. 4.7, leading to

̺
d

dt
(x × u) = ̺ (x × F ) + x × (∇ · P) . (4.8)

The difference between Eqs. 4.5 and 4.8 gives the conservation law for the spin part of
the angular momentum density:

̺I
dω

dt
= ̺Γ + ∇ · C + 2Πa. (4.9)

To leading order, C only depends on ω. Equation 4.9 then shows that to leading order,
the only coupling between the vorticity part and the spin part of the angular momentum
comes from the antisymmetric part of the shear stress tensor Πa.

4.2.2 Material Equations

We now derive expressions for the terms occurring on the right-hand side of Eq. 4.9. If
two neighboring fluid elements moving with velocity u are rotating each with the angular
velocity ω = 1/2∇×u, the internal spin and the vorticity are synchronized, and no stress
results. The antisymmetric part of the shear stress tensor should therefore be a function
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Figure 4.1: Sketches of (a) the rectangular geometry and (b) the cylindrical geometry.

of 1/2∇× u − ω. Additionally, Πa should vanish when ∇× u = 2ω, and the axial vector
of Πa should have the same direction as ∇×u− 2ω [147]. Therefore, to leading order we
can write

Πa = ηr (∇× u − 2ω) , (4.10)

with ηr the vortex viscosity. To leading order, the spin stress tensor C should depend on
spatial differences in the spin field ω only. By equilibrating the second moments of the
force, the spin stress tensor can be proven to be symmetric [148]. Disregarding higher
derivatives as for the shear stress tensor we write

Cij = νv∇kωkδij + ν (∇jωi + ∇iωj − 2/3∇kωkδij) , (4.11)

with ν the spin viscosity, νv the volume spin viscosity and using the Einstein summation
convention as in the rest of the chapter. Combining Eqs. 4.9, 4.10 and 4.11 yields

̺I
dω

dt
= ̺Γ + 2ηr (∇× u − 2ω) + ν∆ω + (ν + 1/3 νv)∇∇ · ω. (4.12)

The flow velocity is described by the Navier-Stokes equation for incompressible fluids in
the absence of a body force,

̺
du

dt
= −∇p+ η∆u − ηr∇× (∇× u − 2ω) , (4.13)

with p the hydrostatic pressure and η the shear viscosity.

4.2.3 General Stationary Solution For Planar Substrates

Considering a rectangular geometry with the fluid confined to a slab between two sur-
faces, as sketched in Fig. 4.1 (a), both the velocity and spin field depend only on x3

because of translational invariance along the x1 and x2 directions. Additionally, because
of incompressibility, the velocity is restricted to the x1 direction, leading to u = ê1u1 (x3)
and ω = ω (x3). Thus, the only non-zero component of the vorticity ∇ × u is the x2

component. In steady state, Eq. 4.12 reduces to

0 =̺Γ1 + ν∇2
3ω1 − 4ηrω1

0 =̺Γ2 + ν∇2
3ω2 + 2ηr (∇3u1 − 2ω2)

0 =̺Γ3 + ν∇2
3ω3 − 4ηrω3 + (ν + 1/3 νv)∇2

3ω3,

(4.14)
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so if no torque is applied in x1 and x3 directions, the angular velocity in these directions
is zero. Assuming spatially constant hydrostatic pressure p, we work out Eq. 4.13 for the
assumptions mentioned above and integrate once over x3, leading to

(η + ηr)∇3u1 = 2ηrω2 + c1 (η + ηr) , (4.15)

where c1 is an integration constant that has to be determined from the boundary con-
ditions. Eq. 4.15 indicates that the vorticity arising from molecular rotation is a linear
function of the angular velocity of the molecules. Inserting Eq. 4.15 in the x2 component
of Eq. 4.14 yields the following differential equation for ω2,

0 =
̺Γ2

ν
+
(

∇2
3 − κ2

)

ω2 +
2c1ηr
ν

, (4.16)

which is valid for arbitrary torque Γ2. The square of the spin screening length κ used in
Eq. 4.16 is defined as

κ2 =
4ηηr

ν (η + ηr)
. (4.17)

If Γ2 has a spatial dependence, but is independent of ω2, Eq. 4.16 has the following
solution,

ω2 (x3) = c2e
κx3 + c3e

−κx3 +

∫ ∞

−∞

̺Γ2 (x ′
3) + 2ηrc1
2κν

e−κ|x3−x ′
3
| dx ′

3, (4.18)

where the constants ci are determined by the boundary conditions. The flow profile follows
from Eq. 4.15 as

u1 (x3) = c1x3 +
νκ2

2η

[

c2
κ
eκx3 − c3

κ
e−κx3 +

c4
κ

+

∫∫ ∞

−∞

̺Γ2 (x ′
3) + 2ηrc1
2κν

e−κ|x3−x ′
3
| dx ′

3 dx3

]

.

(4.19)

4.2.4 Torque from a Static Uniform Electric Field

The ζ-potential is given by the bulk fluid flow induced in the direction of a static electric
field. To solve Eq. 4.16 for this situation, we calculate the torque Γ = µ × E for a
constant electric field E0

1 in x1 direction. We model the dipolar ordering of the interfacial
water layer by an additional x3-dependent electric field Eµ3 (x3) in x3 direction. This field
accounts for the interaction between neighboring water molecules and plays the role of the
crystal field that is used in ordinary mean-field theory for magnetic systems. The total
electric field in the system becomes E = ê3E

µ
3 (x3) + ê1E

0
1 . The linear evolution equation

for the polarization density µ = µ (x3) is given by

dµ

dt
=

1

τ
(αE − µ) + ω × µ, (4.20)

with τ the relaxation time of the orientation and α the polarizability per unit mass.
Because of translational invariance and directional symmetry in x2 direction, the dipole
moment in x2 direction vanishes: µ2 = 0. Since also E2 = 0, it follows that the torque
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Γ1 = Γ3 = 0, and therefore ω1 = ω3 = 0 by virtue of Eq. 4.14. Eq. 4.20 is solved for µ in
steady state, yielding

µ1 =
αE0

1 + τω2αE
µ
3

1 + τ2ω2
2

and µ3 =
αEµ3 − τω2αE

0
1

1 + τ2ω2
2

. (4.21)

For the x2 component of the torque density, Γ2 = µ3E1 − µ1E3, it follows

Γ2 = −τω2α
(

E0
1
2
+Eµ3

2)

1 + τ2ω2
2

. (4.22)

Inserting Eq. 4.22 into Eq. 4.16 yields the following equation for the spin field,

0 = −̺τω2α
(

E0
1
2
+ Eµ3

2)

ν
(

1 + τ2ω2
2

) +
(

∇2
3 − κ2

)

ω2 +
2c1ηr
ν

. (4.23)

Strikingly, Eq. 4.23 is quadratic in the external field strength E0
1 , which means that

switching the sign of E0
1 leaves the equation invariant. Also, since c1 is an arbitrary

integration constant only subject to the spinning boundary conditions at the surface,
the sign of ω2 is undetermined, meaning that a non-zero value of ω2 would require a
spontaneous symmetry breaking, which seems unphysical. In fact, it can be shown that
in hydrodynamics, the stable solution corresponds to the solution of minimal dissipation
or minimal entropy production, which is obviously the solution corresponding to ω2 = 0
[127]. Therefore, the only physical and also stable solution is the one corresponding to a
vanishing spin field, ω2 = 0 and thus the integration constant c1 also vanishes, c1 = 0. If
ω2 = 0, the vorticity also vanishes according to Eq. 4.15, and no flow results. From the
Helmholtz-Smoluchowski equation (Eq. 4.1) it is directly evident that this means that
neutral solutes in a pure dipolar fluid without mobile charges have zero ζ-potential, in
accord with the Onsager reciprocal relation discussed in Sec. 3.3. This stands in contrast
with a few published molecular dynamics simulation results [51, 60, 61], as mentioned in
the introduction, and will be discussed and resolved with the help of molecular dynamics
simulations further below.

4.2.5 Homogeneous Time-Dependent Electric Fields

For time-dependent electric fields, the time derivatives on the left-hand sides of Eqs. 4.12
and 4.13 do not vanish. For homogeneous fields, however, all substantial time derivatives
reduce to partial time derivatives, due to the assumption that u1 (x3, t) is the only non-
zero component of the fluid velocity. Again, we consider the case where no electric field
is applied in x2 direction, and µ2 = 0 because of symmetry and translational invariance.
Because from Eq. 4.14 it follows that ω1 = ω3 = 0, the equations for the polarization
density (Eq. 4.20) reduce to

∂µ1

∂t
=

1

τ
(αE1 − µ1) + ω2µ3

∂µ3

∂t
=

1

τ
(αE3 − µ3) − ω2µ1.

(4.24)

Via ω2, changes in the polarization in x1 direction are coupled to changes in x3 direction
and vice versa, so the whole system of equations has to be solved simultaneously. The
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homogeneous solution (E = 0) to Eq. 4.24 equals

µ1 (x3, t) = e−t/τ (C1 sin Ω2 + C2 cos Ω2)

µ3 (x3, t) = e−t/τ (C1 cos Ω2 − C2 sin Ω2) ,
(4.25)

with Ci denoting integration constants and

Ω2 =

∫ t

0
ω2

(

x3, t
′
)

dt ′. (4.26)

The particular solutions of Eq. 4.24 depend on the electric field applied.

Torque from an electric field step function. For an electric field Eµ3 (x3) in x3 direction
that is constant in time and a spatially constant field in x1 direction of strength E0

1 that
is switched on at t = 0, the particular solution is a constant dipole density, leading to the
full solution

µ1 (x3, t) = e−t/τ (C1 sin Ω2 + C2 cos Ω2) +
αE0

1 + ατω2 (x3, t)E
µ
3 (x3)

1 + τ2ω2 (x3, t)
2

µ3 (x3, t) = e−t/τ (C1 cos Ω2 − C2 sin Ω2) +
αEµ3 (x3) − ατω2 (x3, t)E

0
1

1 + τ2ω2 (x3, t)
2 .

(4.27)

We determine C1 and C2 from the initial conditions: µ1 = 0 and µ3 (x3) = αEµ3 (x3) at
t = 0, giving non-zero expressions for both C1 and C2:

C1 (x3) =
αEµ3 (x3) τ

2ω2 (x3, 0)
2 − ατω2 (x3, 0)E

0
1

1 + τ2ω2 (x3, 0)
2

C2 (x3) = −αE
0
1 + ατω2 (x3, 0)E

µ
3 (x3)

1 + τ2ω2 (x3, 0)
2 ,

(4.28)

with ω2 (x3, 0) the spin field at t = 0. The torque density Γ2 = µ3E1 − µ1E3 becomes

Γ2 (x3, t) = e−t/τ
[

(

C1E
0
1 − C2E

µ
3 (x3)

)

cos Ω2 −
(

C2E
0
1 + C1E

µ
3 (x3)

)

sinΩ2

]

− ατω2 (x3, t)
(

E0
1
2
+ Eµ3 (x3)

2)

1 + τ2ω2 (x3, t)
2 .

(4.29)

The conservation law for the angular momentum (Eq. 4.12) and the Navier Stokes equation
(Eq. 4.13) form another set of coupled partial differential equations which are difficult to
solve in the general case. However, considering the fact that Γ2 contains both sines and
cosines of Ω2 it is clear that ω2 (x3, t) = 0 is no longer a solution. For t → ∞, Eq. 4.29
reduces to the torque from a constant electric field (Eq. 4.22), and the flow vanishes.
In conclusion, suddenly switching on a spatially constant electric field will give rise to a
transient pumping effect that quickly fades away.

4.2.6 Torque from a Rotating Electric Field

Continuous pumping of fluid can only be achieved when a steady-state torque is injected
into the system. The easiest way to apply a steady-state torque to a dipolar fluid is using
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a rotating electric field. Adding an electric field that is rotating in the x1 − x3 plane to
the dipolar ordering field Eµ3 , the total electric field is given by

E1 = Eγ sin γt and E3 = Eγ cos γt+ Eµ3 (x3) , (4.30)

with γ the frequency and Eγ the amplitude of the rotating field. Again, we assume
u = ê1u1 (x3) and ω = ω (x3). Because of the combination of the rotating field and the
time-independent field Eµ3 , the torque, and therefore the spin and velocity fields, depend on
time. This time dependence, however, is a periodically varying contribution to otherwise
constant quantities. Because we are not interested in the short-time scale behavior of the
flow, we time-average Eqs. 4.12 and 4.13 over one cycle of the rotating field, leading to
the analogues of Eqs. 4.14 and 4.15, now containing the time-averaged quantities Γ̄2 (x3),
ω̄2 (x3) and ū1 (x3). Inserting the rotating electric field into Eq. 4.20 for the time evolution
of the dipole moment, we find the following solution,

µ1 (x3, t) = αEγ cosφ sin (γt− φ) +
αEµ3ω2τ

1 + ω2
2τ

2

+ e−t/τ (C1 cosω2t+ C2 sinω2t)

µ3 (x3, t) = αEγ cosφ cos (γt− φ) +
αEµ3

1 + ω2
2τ

2

+ e−t/τ (C2 cosω2t− C1 sinω2t) ,

(4.31)

where we use the definition φ = arctan [(γ − ω2) τ ]. In Eq. 4.31, ω2 depends on x3, and
C1 and C2 are constants that can be determined from the initial conditions. Therefore,
if the field has persisted for a sufficient amount of time, the dipole density will follow the
electric field with a phase difference φ. The time-averaged torque is given by

Γ̄2 =
γ

2π

∫ 2π
γ

0
(µ3E1 − µ1E3) dt. (4.32)

Inserting E from Eq. 4.30 and µ from Eq. 4.31 we find in the long-time limit

Γ̄2 =
αE2

γ (γ − ω2) τ

1 + (γ − ω2)
2 τ2

− αEµ3
2
ω2τ

1 + ω2
2τ

2
. (4.33)

The appearance of Eµ3 in the equation for the time-averaged torque comes from the fact
that the spin field couples the dipole density in x3 direction to the dipole density in
x1 direction. Because Eµ3 depends on x3, the equation for ω̄2 (Eq. 4.16 with Γ2 and
ω2 replaced by Γ̄2 and ω̄2 respectively) does not have an analytical solution anymore.
To proceed, we first solve for ū1 analytically using a perturbative approximation for the
torque, afterwards we solve for ū1 numerically.

Perturbative analysis. For the sake of power counting we assume the electric fields Eγ
and Eµ3 to be of order E. Because the polarization µ depends linearly on the electric
field, the torque Γ = µ × E is proportional to E2. To leading order, the spin field ω2

is proportional to the torque Γ2, and therefore also to E2. Performing a perturbation
analysis of Eq. 4.33 in powers of E yields to leading order

Γ̄2 =
αE2

γγτ

1 + γ2τ2
+ O

(

E4
)

. (4.34)
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Figure 4.2: Rescaled flow velocity in channels of rescaled height κh = 3 (top) and κh = 30
(bottom) for vanishing spin slip length s = 0. Solid lines depict the flow profiles from the per-
turbative approach for (a) and (d): a symmetric hydrophilic channel (Eq. 4.42), (b) and (e): a
symmetric hydrophobic channel (Eq. 4.43) and (c) and (f): a channel with a hydrophilic bottom
and hydrophobic top surface (Eq. 4.47). The numerical solutions to Eqs. 4.15, 4.16 and 4.33 are
shown as dashed lines, using the interfacial dipolar orientation field Eµ

3 (x3) from simulations as
input.

The effect of the ordering field Eµ3 is of fourth order in the electric field strength, and
therefore negligible compared to the leading second order. Nevertheless, pumping of fluid
is only possible through surface effects: if the molecules at the boundary are completely
free to spin, no momentum will be transferred and no pumping will occur. Obviously,
the surface dipolar orientation has a major influence on the spin field at the wall, and
neglecting it eliminates most of the interesting physics. Therefore, in the following analysis
we include the surface effects of the dipolar order through the boundary condition for the
spin field. With Eq. 4.34, Eq. 4.16 has the following solution,

ω̄2 =
̺Γ̄2 + 2ηrc1

νκ2
+ c2e

κx3 + c3e
−κx3, (4.35)

with integration constants ci. Using Eq. 4.15 we finally obtain

ū1 =

[

̺Γ̄2 + 2c1 (ηr + η)

2η

]

x3 +
νκ2

2η

[

c2
κ
eκx3 − c3

κ
e−κx3 +

c4
κ

]

. (4.36)

Boundary conditions. Eq. 4.36 contains 4 integration constants. At each channel wall,
positioned at x3 = ±h, there are two boundary conditions, one for the velocity field and
one for the spin field. We assume that the velocity at the wall linearly depends on the
local shear stress,

∓ b±∇3ū1|±h = ū1|±h, (4.37)

where b is commonly referred to as the slip length, with b− the slip length at the lower
plate and b+ at the upper plate. For the spin boundary condition, we introduce the spin
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slip length s [149]

∓ s±∇3ω̄2|±h = ω̄2|±h, (4.38)

with s− the spin slip length at the lower plate and s+ at the upper plate. In a micro-
scopic description, the spin slip length will be largely determined by the restriction on the
spinning of the molecules at the wall imposed by orienting wall interactions and by the
interaction between neighboring interfacial water molecules. On the hydrodynamic theory
level, we treat the slip lengths as free parameters.

Symmetric boundaries. For symmetric boundary conditions b− = b+ = b and
s− = s+ = s, Eq. 4.36 gives the following result,

ū1 =
Θ [(κbCs + Sn)x3 − (b+ h) sinhκx3]

2 [κ (b+ h) (Cs + κs Sn) + (ηr/η) (κhCs − Sn + (b+ h)κ2s Sn)]
, (4.39)

where we use the abbreviations Sn = sinhκh and Cs = coshκh. The typical frequency (or
shear rate) is defined by the parameter combination

Θ =
̺αE2

γγτ

η (1 + γ2τ2)
. (4.40)

From Eq. 4.39 and the expression for Θ it follows that the largest amplitude of the flow
profile is achieved for γτ = 1, which means for a driving frequency that equals the dipolar
relaxation frequency. From calculations and molecular dynamics simulations it is known
that the spin viscosity ηr is an order of magnitude smaller than the shear viscosity η
[150, 151]. In the limit ηr ≪ η, Eq. 4.39 reduces to

ū1 = Θ

[

(κb cosh κh+ sinhκh) x3 − (b+ h) sinhκx3

2κ (b+ h) (coshκh+ κs sinhκh)

]

. (4.41)

Clearly, the spin slip length s only affects the magnitude of the flow, and not the flow
profile. Taking s = 0, which is reasonable in view of the strong orienting field at the
boundary, and b = 0, corresponding to hydrophilic boundaries, Eq. 4.41 can be further
simplified to yield

ū1 = Θ

[

x3 sinhκh− h sinhκx3

2κh cosh κh

]

. (4.42)

In Figs. 4.2 (a) and 4.2 (d), the flow profile of Eq. 4.42 is shown as a solid line for
channels of rescaled height κh = 3 and κh = 30 respectively. Taking s = 0 and b → ∞,
corresponding to very hydrophobic surfaces or air-water interfaces, on the other hand, Eq.
4.41 simplifies to

ū1 = Θ

[

x3

2
− sinhκx3

2κ cosh κh

]

, (4.43)

as shown in Figs. 4.2 (b) and 4.2 (e). It is easy to see that for all symmetric channels, the
integrated flux Φ vanishes and the net pumping is zero:

Φ =

∫ h

−h
ū1 (x3) dx3 = 0. (4.44)

Therefore, the symmetry in x3 direction has to be broken in order to achieve pumping.
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Asymmetric boundaries. We consider the limiting case of a channel with a hydrophilic
bottom surface (b− = 0) and a hydrophobic top surface (b+ → ∞). For symmetric spin
slip conditions s− = s+ = s we find from Eq. 4.36

ū1 = Θ

[

(x3 + h)κ cosh κh− sinhκh− sinhκx3

2κ (coshκh+ (1 + ηr/η) κs sinhκh)

]

, (4.45)

which for ηr ≪ η reduces to

ū1 = Θ

[

(x3 + h)κ cosh κh− sinhκh− sinhκx3

2κ (coshκh+ κs sinhκh)

]

. (4.46)

For reasons already mentioned – and because again the spin slip length does not affect the
shape of the flow profile – we set it to zero, s = 0, leading to

ū1 = Θ

[

x3 + h

2
− sinhκh+ sinhκx3

2κ cosh κh

]

. (4.47)

The profile of Eq. 4.47 is shown in Figs. 4.2 (c) and 4.2 (f) as solid lines. In the asymmetric
case, the integrated flow of the channel is for large channels (κh ≪ 1) given by

Φ =

∫ h

−h
ū1dx3 ≃ Θh2, (4.48)

and thus Φ is clearly finite. It follows by comparison with simple shear flow that Θ is a
measure of the shear rate in the channel.

4.2.7 Numerical Solution

To verify the validity of the assumptions inherent to the perturbative approximation,
we solve Eq. 4.16 with Eq. 4.33 for the spin field and Eq. 4.15 for the velocity field
numerically, subject to the boundary conditions of Eqs. 4.37 and 4.38. As input, the
polarizability α and relaxation time τ are needed, as well as the interfacial orienting
dipole field Eµ3 . To obtain those parameters we perform a series of molecular dynamics
simulations.

Relaxation parameters. We simulate a box of 2180 spc/e water molecules (4.0 × 4.0 ×
4.0 nm, isotropic pressure coupling, periodic boundary conditions in all directions) with
an initially isotropic distribution of water dipoles. At t = 0 we turn on an electric field in
x1 direction of strength E0

1 = 0.1 Vnm−1. Relative to experimental values this is a strong
electric field, but it is verified that the response is still reasonably linear. We perform 10
cycles of orientation (field turned on for 25 ps) and relaxation (field turned off for 25 ps),
and average the result of the orientation part of each cycle. In Fig. 4.3 (a), we plot the
average dipole moment per water molecule as a function of time. With a molecular dipole
moment of spc/e water of µspc/e = 0.05 nm e, we see that the dipolar orientation is
sufficiently far from being saturated and we are thus in the linear-response regime. With
E = E0

1 ê1 and µ1 = 0 at t = 0, the solution to Eq. 4.20 is

µ1 = αE0
1

(

1 − e−t/τ
)

. (4.49)

Fitting Eq. 4.49 to the curve in Fig. 4.3 (a) gives a dipolar relaxation time of τ = 7±2 ps
and a polarizability per unit mass of α = 3.3±0.3×106 m2eV−1kg−1, with e the elementary
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Figure 4.3: (a) Average dipole moment per molecule, m0µ1 with m0 the mass of a water molecule,
as a function of time after turning on an electric field of 0.1 V nm−1 (solid line). Shown as a
dashed line is a fit with Eq. 4.49, and the applied electric field is shown in the inset. Electric
field due to the dipolar ordering Eµ

3 as a function of x3 for (b) a hydrophilic diamond and (c) a
hydrophobic diamond.

charge. The value for τ agrees within 20 per cent with experimental numbers [69] and
the value for the polarizability gives in conjunction with the Kirkwood-Fröhlich formula,
ε = 1+̺α/ε0 with ̺ = 998 kgm−3, a value for the dielectric constant of ε = 61±6, which
is quite close to the known result of ε = 71 for the spc/e water model [100]. The small
deviation might be caused by non-linear effects at the field strength used.

Interfacial orienting dipole field. We also calculate the intrinsic orienting field Eµ3 (x3)
from molecular dynamics simulations. We simulate two different systems, a hydrogen-
terminated diamond and a hydroxide-terminated diamond, as a typical hydrophobic and
hydrophilic system, respectively. The hydroxide-terminated surface is constructed by re-
placing every second c-h group at the surface of the diamond by a c-o-h group, represent-
ing a surface coverage of xoh = 1/2, in the notation of Ref. [74]. The systems are solvated
in a box of dimensions 6 × 3 × 5 nm containing 1856 spc/e water molecules, and the
electric field is calculated from integrating the charge density over the normal coordinate
x3. In Fig. 4.3 (b – c), the resulting profiles of Eµ3 are shown as a function of x3 for the
two diamond surface types.

Other parameters. The parameters used in the comparison are η = 10−3 Pa s, ηr = 0.1η
[150], ̺ = 103 kg m−3 and κ2 = 4ηηr/ [ν (η + ηr)]. For the spin viscosity, of which no
estimates are available for water, we make the assumption ν = a2ηr with a = 0.3 nm of the
order of the water molecule diameter. This assumption seems reasonable as it is very well
obeyed by e.g. liquid nitrogen [151–153]. As an example, we choose s− = s+ = 0.5 nm and
b− = b+ = 1.5 nm, which are reasonable values for a hydrophobic surface [74]. As a dashed
line in Fig. 4.4 (a), the torque density Γ̄2 (x3) obtained from Eq. 4.33 is shown as a function
of x3. The torque density is calculated for a rotating electric field and the Eµ3 profile of the
hydrophobic diamond, which is shown in Fig. 4.3 (c). The perturbative approximation
of the torque density according to Eq. 4.34 is represented by a solid line. Apart from
the first ∼ 0.5 nm at the wall, the variations in the numerically calculated torque density
are small compared to the mean value, and the agreement with the perturbative result is
very good. Directly at the wall there are strong oscillations in the torque density, owing
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Figure 4.4: (a) Torque induced by a Eγ = 0.1 Vnm−1 electric field, rotating at a frequency
of 0.14 THz (γ = τ−1), (b) the resulting spin field ω̄2 (x3) using symmetric boundary conditions
of s = 0.5 nm and (c) the resulting flow profile ū1 (x3) using symmetric boundary conditions of
b = 1.5 nm. The numerical solutions to Eqs 4.15, 4.16 and 4.33 are shown as dashed lines and the
analytical approximations, given in Eqs. 4.34, 4.35 and 4.36 are shown as solid lines.

to the dipole field Eµ3 and the non-linearity of Eq. 4.33. In Figs. 4.4 (b) and 4.4 (c), the
numerical solutions to Eqs. 4.15, 4.16 and 4.33 for the spin and velocity field are shown
as dashed lines. In the same graphs, the perturbative approximations of Eqs. 4.35 and
4.36 for the spin field and the velocity field are shown as solid lines. Despite the strong
oscillations of the torque density directly at the wall, the perturbative approximations are
in fair agreement with the numerically calculated profiles, justifying the approximation
for small electric field. For the symmetric boundary conditions b± = 0 and b± → ∞,
and for the asymmetric boundary conditions b− = 0, b+ → ∞, the numerical solutions
are shown as dashed lines in the top panels of Fig. 4.2, again showing good agreement
with the analytically calculated profiles. For the curves shown in Fig. 4.2 we employ
for Eµ3 (x3) the simulation results obtained with the hydrophilic diamond surfaces for the
surfaces with b = 0, and the simulation results obtained with the hydrophobic diamond
surfaces for the surfaces with b→ ∞.

Power dissipation. For a rotating electric field we calculate the power dissipation per
unit volume of fluid directly from the rotating dipole moment, leading to the average
power dissipation of

P̄ =
γ

2π

∫ 2π/γ

0
̺
∂µ

∂t
· E dt. (4.50)

Inserting the expressions for µ from Eq. 4.31 and discarding terms of O
(

E4
)

, we obtain
the explicit solution

P̄ = γηΘ. (4.51)

At the typical microwave oven driving frequency of γ = 2π × 2.5 GHz and an electric
field strength of Eγ = 10−4 Vnm−1 we find P̄ = 9 GWm−3. A similar calculation for a
unidirectional oscillating electric field, on the other hand, yields P̄uni = γηΘ/2, which is
the standard expression for the dissipation due to dipolar relaxation given in Ref. [69], for
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example. We thus see that rotating and planar electric fields exhibit identical dissipation;
the factor 2 coming from the difference in the spatially averaged quadratic field strength.

Heating effects. Heating of water under influence of microwave radiation is a well-known
phenomenon which deserves careful consideration when designing an electro-hydraulic
pump. The channel height 2h at which the temperature difference between the center and
the wall of the channel has a value ∆T is calculated from equating the heat transport
through a surface area A to the power dissipated in a volume hA,

kA∆T

h
= P̄ hA, (4.52)

with k the heat transport coefficient, which has the value k = 0.6 Wm−1K−1 for water.
At γ = 2π × 2.5 GHz and Eγ = 10−4 Vnm−1, the height of the channel for which the
temperature difference has the value ∆T = 10 K follows from Eq. 4.52 as h = 0.03 mm.
This directly shows that heating of the fluid due to dipolar dissipation is negligible for
nanofluidic applications. For larger devices, heating should be further reduced, which can
be achieved by reducing the driving frequency or the electric field strength.

Pumping efficiency. As a measure of the efficiency of electro-hydraulic pumping with a
rotating electric field, we compare the dissipation P̄ from Eq. 4.51 to the power dissipation
in a simple shear flow generated by a force F0ê1 acting on the top surface and a force −F0ê1
acting on the bottom surface. We set the shear rate, which equals ∇3u1 = F0/ηA, equal
to Θ/2 in order to match the shear generated in the rotating electric field case. The power
dissipated per unit volume turns out to be

Pshear =
2F0∇3u1

A =
ηΘ2

2
. (4.53)

The dissipation ratio is given by

Pshear

P̄
=

Θ

2γ
≪ 1, (4.54)

where for the last inequality we assumed that the response frequency Θ is typically much
smaller than the driving frequency γ. It transpires that generating shear flows by exerting
surface forces is for typical parameters more efficient than using a rotating microwave,
but a microwave-driven pump might be advantageous in certain devices and applications,
because of the lack of mechanical parts, for example.

Length scales. In the limit of ηr ≪ η, we find a spin screening length κ−1 = 0.15 nm,
using the molecular length scale a = 0.3 nm. Conventional devices used to create a
shear flow can be easily constructed down to a channel size of several tens of micrometers
[154, 155]. The length scale κ−1 ≃ 0.15 nm shows that the limit κh ≫ 1 is relevant and
realized already for nanometer-sized channels. A rotating electric field is therefore useful
for creating shear flows in channels of a few nanometer up to tens of micrometers, where
conventional devices are difficult to use and dipolar heating is not problematic yet. In
the limit κh ≫ 1, the profiles in the planar channels converge to a simple shear flow,
with a shear rate of Θ/2. Although the maximum shear rate is obtained for γτ = 1, let
us consider the experimentally easily realizable driving frequency of γ = 2π × 2.5 GHz,
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which is the driving frequency of a common microwave oven. For a realistic external field
strength Eγ = 10−4 V nm−1, water viscosity η = 10−3 Pa s and density ̺ = 103 kg m−3

we find a response frequency of Θ = 570 s−1 and thus predict sizeable shear effects.

4.2.8 Cylindrical Geometry

We take x1 to be the axial coordinate, x2 the angular coordinate and x3 the radial co-
ordinate, see Fig. 4.1 (b). Note that this is an uneven permutation of the usual form of
the cylindrical coordinates. Again, we assume u = ê1u1 (x3) (axial flow) and ω = ω (x3)
(only dependent on the radial coordinate). The Navier Stokes equation transforms to

̺
du1

dt
=

η

x3

∂

∂x3

(

x3
∂u1

∂x3

)

+
ηr
x3

∂

∂x3

(

x3
∂u1

∂x3
− 2x3ω2

)

(4.55)

Integrating Eq. 4.55 once over x3 yields in the stationary state

0 = (η + ηr)
∂u1

∂x3
− 2ηrω2 −

c1 (η + ηr)

x3
. (4.56)

At the same time,

̺I
dω2

dt
= ̺Γ2 + 2ηr

(

∂u1

∂x3
− 2ω2

)

+
ν

x3

∂

∂x3

(

x3
∂ω2

∂x3

)

. (4.57)

Combining Eqs. 4.56 and 4.57 gives the cylindrical equivalent of Eq. 4.16,

0 =
̺Γ2

ν
+
(

∇2
3 − κ2

)

ω2 +
2c1ηr
νx3

, (4.58)

with ∇2
3 = x−1

3 (∂/∂x3) x3 (∂/∂x3). In this section we solve Eqs. 4.56 and 4.58 for different
scenarios.

Static electric field. The torque resulting from a static electric field is given again by
Eq. 4.22. In analogy to the planar case, a static field does not induce a flow through the
nanotube.

Constant torque. A steady-state torque, on the other hand, will induce a flow in the
cylindrical geometry. Equivalent to the planar case, the torque resulting from a rotating
electric field is in good approximation a constant given by Eq. 4.34. Different from the
planar situation, however, Eq. 4.58 with constant Γ2 does not have an analytical solution.
Therefore, we solve Eq. 4.58 numerically, after which the velocity profile is calculated from
integrating Eq. 4.56. The geometry needed to generate an electric field rotating in the
x1 −x3 plane consists of two concentric cylinders with radii R1 and R2, with the radius of
the inner cylinder R1 > 0 because Eq. 4.58 diverges in the limit x3 → 0. A rotating field
is generated by applying a sine-like potential difference between the inner cylinder and the
outer cylinder, and a cosine-like potential difference between two additional electrodes at
both ends of the tube. The boundary conditions at x3 = R1, R2 are given by the equivalent
expressions of Eqs. 4.37 and 4.38. Due to the intrinsic asymmetry of the system in x3

direction, the velocity profile not only depends on the difference R2 −R1, but also on the
absolute value of R1. For R1 → ∞, Eq. 4.58 approaches Eq. 4.16, so we only treat the
case for small R1 here. In Fig. 4.5, the numerically calculated flow profile is shown for two
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Figure 4.5: Numerical results for the flow velocity between two concentric cylinders for values
of the rescaled inter-cylinder distance κ (R2 −R1) = 3 (top) and κ (R2 −R1) = 30 (bottom). The
boundary conditions used are symmetric hydrophilic (a) and (d), symmetric hydrophobic (b) and
(e) and hydrophilic inner cylinder with hydrophobic outer cylinder (e) and (f).

different values of the rescaled distance κ (R2 −R1) between the two concentric cylinders.
The case of symmetric hydrophilic boundary conditions, b− = b+ = 0, is shown in Figs.
4.5 (a) and 4.5 (d). Contrary to the planar case, the net flow Φ as defined in Eq. 4.44 is
non-zero due to the asymmetry of the geometry in x3 direction. In Figs. 4.5 (b) and 4.5
(e) the flow profile is shown for symmetric hydrophobic boundaries, b−, b+ → ∞. In this
case the net flow is zero because no momentum can be transferred between the tubes and
the fluid. Finally, in Figs. 4.5 (c) and 4.5 (f) the profile is shown for a hydrophilic inner
cylinder and a hydrophobic outer cylinder, showing a net positive flow.

4.2.9 Viscosity of a Fluid Consisting of Non-Spherical Particles

Viscosity is generally measured in shear flows. We consider a one-dimensional shear flow
of non-spherical particles in a slit of height 2h, known as a Couette flow, and investigate
the effect of molecular rotation on the effective viscosity. To generate a shear flow, forces
F0ê1 and −F0ê1 are applied to the top and bottom plates of the slit. The combination of
the Navier-Stokes equation and conservation of angular momentum (Eq. 4.16) in absence
of a body torque gives the following equation for the spin field,

0 =
(

∇2
3 − κ2

)

ω2 +
2c1ηr
ν

, (4.59)

which has the solution

ω2 =
2c1ηr
κ2ν

+ c2e
κx3 + c3e

−κx3. (4.60)

In absence of a body force, as is appropriate for a Couette flow, the vorticity is given by
Eq. 4.15,

∇3u1 =
2ηr
η + ηr

ω2 + c1. (4.61)
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Because u1 (−x3) = −u1 (−x3), the vorticity is even, and ω2 (x3) = ω2 (−x3). Inserting
this boundary condition in Eq. 4.60 gives c2 = c3. Solving Eq. 4.61 and using the
symmetry condition u1 (0) = 0 yields

u1 =

(

ηr
η

+ 1

)

c1x3 +
4ηrc2

κ (η + ηr)
sinhκx3. (4.62)

The integration constants c1 and c2 are set by the boundary conditions on the spin and
velocity field. For the spin field ω2 we take the boundary condition given in Eq. 4.38 with
the spin slip length s± = s, from which the integration constant c2 follows as

c2 = − c1ηr
κ2ν (κs sinhκh+ coshκh)

. (4.63)

For relatively large channels (κh ≫ 1) – which is any channel with a height exceeding
several nanometers – c2 ≈ 0. The boundary condition on the velocity field comes from
the force on the plates. The relation between the stress tensor and the internal force F int

resisting the external force F 0 is given by

dF int
i = Pijn̂jdA =

(

−pδij + Πsij + Πaij
)

n̂j dA, (4.64)

which for the given geometry becomes

dF int
1 = η∇3u1 + ηr (∇3u1 − 2ω2) n̂3 dA. (4.65)

Using that a force F0 is applied across the surface area A of each plate, the boundary
condition on the velocity field is expressed as

c1 =
F0

(η + ηr)A
. (4.66)

Inserting c1 and c2 into the equation for the flow profile gives

u1 =
F0

ηA

[

x3 +
ηr sinhκx3

κ (η + ηr) (κs sinhκh+ coshκh)

]

. (4.67)

For channels of kh ≫ 1, Eq. 4.67 reverts to the usual equation for a Couette flow. Since
viscosity is usually measured in large channels, that means that the rotation does not
have an influence on the viscosity measured in a shear flow. The vortex viscosity ηr does
affect the flow profile close to the wall via the second term in Eq. 4.67, but since ηr ≪ η
[150, 151], deviations from the pure Couette flow profile are minor.

4.3 Molecular Dynamics Simulations

4.3.1 Interaction Energy

In molecular dynamics simulations, the Lennard-Jones force is typically truncated at a
finite cut-off distance, which can be effectuated in various ways. The default way is
to keep the force unchanged out to r = rc, where the force is set to zero, leaving a force
discontinuity at r = rc. We will refer to this method as the simple cut-off scheme. Another
way is to attenuate the force smoothly to reach zero at r = rc without discontinuity. In
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Figure 4.6: Truncated Lennard-Jones force between two water molecules for rc = 0.8 nm for the
two different truncation schemes. Also shown is the original Lennard-Jones force. Details of the
truncation region are shown in the insets for the simple cut-off (left) and the shifted cut-off scheme
(right).

gromacs, this so-called shifted force Fs is implemented by adding a non-linear function
to the original force Fo,

Fs =

{

Fo + ar2 + br3 if r < rc
0 if r ≥ rc.

(4.68)

The coefficients a and b are given by

a = −768 ǫ σ12 r−15
c + 240 ǫ σ6 r−9

c

b = 720 ǫ σ12 r−16
c − 216 ǫ σ6 r−10

c , (4.69)

with ǫ and σ the parameters of the Lennard-Jones interaction and rc the truncation length
in nanometers. The original Lennard-Jones force is given by

Fo = 4ǫ

[

12
σ12

r13
− 6

σ6

r7

]

. (4.70)

The interactions between dissimilar atoms are calculated by ǫij =
√
ǫiǫj and σij =

√
σiσj,

with i and j indices denoting atom type. Examples of the simple and the shifted force are
plotted in Fig. 4.6. The curves have been verified by running simulations of two colliding
particles.

Other simulation details. The long-range electrostatics are handled using particle mesh
Ewald summation. For the simple cut-off scheme, the real-space truncation length for
both the Coulomb interaction and the Lennard-Jones interaction is set equal to the list
radius, which is the default option in gromacs. For the simple cut-off scheme, setting
the list radius larger than the truncation length is not allowed in gromacs. For the
shifted scheme, the real-space truncation length for the Coulomb interaction and the
list radius is set 0.2 nm larger than the Lennard-Jones interaction. The temperature is
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Figure 4.7: Snapshots of the planar simulation systems consisting of (a) a water slab in contact
with a slab of heptane, (b) a water slab confined by two diamond blocks, and (c) a water slab
confined by two graphene sheets.

kept constant at 300 K using a Berendsen thermostat. All systems are equilibrated at a
constant pressure of 1 bar using a Berendsen barostat, after which the substrate is frozen
and the simulations are run at constant volume, except for the nanotube simulations with
reservoir, where an anisotropic Parrinello-Rahman barostat is used throughout the entire
simulation. We use periodic boundary conditions in all directions. We perform molecular
dynamics simulations for both Lennard-Jones truncation schemes and for different values
of rc.

• It is verified that the update frequency of the list of interacting atoms has no influence
on the velocity of the molecules.

• For the simple cut-off scheme, choosing a list radius smaller than the truncation
length is found to make no difference.

• Running simulations using single (32 bits) or double (64 bits) numerical precision
gives the same results.

• Changing the real space Coulomb truncation length does not make any difference,
as expected.

• Choosing the list radius and real-space Coulomb cut-off length equal to the Lennard-
Jones truncation length in the shifted scheme does not change the results.

• Using a Nosé-Hoover thermostat instead of a Berendsen thermostat does not change
the velocity of the molecules.

4.3.2 Flow Profiles

Planar geometry with a homogeneous electric field. We simulate three different planar
substrates in pure water. The first simulation system consists of a hydrogen-terminated di-
amond surface (double fcc, 2323 c-atoms, 226 h-atoms), solvated in 920 water molecules,
giving a total system size of 3.2 × 3.2 × 4.7 nm. The carbon atoms are modeled by the
gromos 96 force field (ǫc = 0.277 kJ mol−1 and σc = 0.358 nm). The hydrogen atoms
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Figure 4.8: Results of the simulation of the planar diamond system (contact angle ∼ 111◦) at
E = 0.4 V nm−1 as a function of the distance to the wall x3, using the simple cut-off Lennard-
Jones truncation and cut-off length rc = 0.8 nm. (a) Density profile of the fluid. (b) Velocity in
x1 direction. (c) Spin field ω2 (solid line) and vorticity ∇3u1 (dashed line).

have their usual mass, but the Lennard-Jones parameters are set to zero. The contact an-
gle of the diamond equals ∼ 111◦, as calculated from the virial tensor following Ref. [128].
A second set of simulations are performed for an oil slab solvated in water. The simulation
box has a size of 4.0×4.0×5.9 nm, containing 250 ch3(ch2)5ch3 (heptane) molecules and
1013 water molecules. The heptane is modeled exactly as in Ref. [51], with 5 unified ch2

atoms (Lennard-Jones parameters: ǫch2
= 0.411 kJ mol−1, σch2

= 0.407 nm) terminated
with 2 ch3 atoms (Lennard-Jones parameters: ǫch3

= 0.867 kJ mol−1, σch3
= 0.375 nm).

The third simulation system consists of two frozen sheets of graphene, separated by a
vacuum gap of 2.5 nm. The Lennard-Jones parameters of the carbon atoms are identical
to the ones used for the diamond simulations. The system is solvated in 1339 spc/e water
molecules, giving a system size of 4.3 × 4.4 × 4.9 nm. The graphene sheet has a contact
angle of ∼ 180◦. All simulation systems are visualized in Fig. 4.7.

First, we present simulation results for the diamond surface with a simple cut-off scheme
at rc = 0.8 nm. The water density between two periodic images of the diamond is shown
in Fig. 4.8 (a). We define the bulk of the system as the region where the water density is
constant. The velocity of the fluid is calculated from a numerical derivative of the positions
of the centers of mass of the molecules. In Fig. 4.8 (b), the velocity profile of the centers
of mass of the water, u1 (x3), is shown. The velocity in x1 direction is clearly non-zero,
and the fluid moves in the direction of the external electric field, in marked contrast to the
analytical results presented in the preceding sections. We will clarify this contradiction
further below. As a dashed line in Fig. 4.8 (c), the x2 component of the vorticity ∇3u1 is
shown, together with the spin field ω2, depicted as a solid line. According to Eq. 4.15 the
vorticity should be a linear function of the spin field. Although the vorticity is non-zero,
the spin field is zero over the whole range, indicating an unphysical decoupling of the spin
and the vorticity, which might serve as a first hint to the failure of the simulation method.
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Figure 4.9: Snapshots of the nanotube simulations without reservoir with (a) a (10,0) cnt, (b)
a (16,0) cnt and (c) a (16,16) cnt.

Cylindrical geometry with a homogeneous electric field. For the cylindrical geometry
we simulate three carbon nanotubes (cnt’s): a (10,0), a (16,0) and a (16,16) cnt, with
diameters of 0.782 nm, 1.25 nm and 2.17 nm respectively, as shown in Fig. 4.9. The
tubes have a length of 10, 10 and 5 nm, containing 37, 202 and 358 water molecules
respectively. The c-c bond has a length of 0.142 nm and the Lennard-Jones parameters of
the carbon atoms are identical to the ones used for the diamond simulations. The cnt’s
are equilibrated in a large bath of solvent using a semi-isotropic Berendsen barostat at
1 bar. After equilibration, the water outside the nanotube is removed. In axial direction,
the simulation box is set to the same size as the nanotube, so the nanotube is connected
directly to its periodic image. In the other two directions, the box size is 5 × 5 nm.

In Fig. 4.10 (a), we plot the density inside a (16,16) cnt using a simple cut-off scheme
at rc = 0.8 nm. Inside the carbon nanotube, the density never reaches a constant value.
Since the velocity shows a plug profile, see Fig. 4.10 (b), we calculate the average velocity
of all water molecules inside the tube to use for further analysis. In Fig. 4.10 (c), the spin
field ω2 is shown as a function of x3. The noise near the nanotube wall and in the center
is due to bad statistics, caused by molecules entering the depletion layer for a very short
time near the wall and by the small averaging volume in the center. In between the center
and the surface, the spin field is zero like in the planar case.

4.3.3 Truncation Length Dependence

Planar systems with homogeneous electric fields. In Fig. 4.11 (a – c), the ζ-potential
of the three planar substrates is shown for the two different truncation schemes. The
ζ-potential is calculated from Eq. 4.1 and the error bars depict the statistical standard
deviation of the velocity in the bulk region as defined above. Clearly, the ζ-potential of all
three substrates depends strongly on the truncation scheme used. This dependence on the
truncation scheme has no physical meaning, since the minute change of the force profile
should not lead to such a tremendous variation of the flow velocity. Besides, according
to our analytic calculation, the flow must vanish irrespective of details of the force. The
unphysical dependence on the cut-off length in the simple truncation scheme vanishes for
large values of the truncation length, and the ζ-potentials in both cut-off schemes converge
to zero. The truncation length dependence of the ζ-potential shows that the non-zero flow
observed in Figs. 4.8 (b) and 4.10 (b) and by Refs. [51, 60] is an artifact related to the
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Figure 4.10: Results of simulations of a (16,16) carbon nanotube without reservoir using the
simple cut-off scheme and cut-off length rc = 0.8 nm. (a) Density inside the nanotube as a function
of the radial distance x3 from the center. (b) Axial velocity in x1 direction as a function of x3. (c)
Spin field in x2 direction as a function of x3.

implementation of the Lennard-Jones force truncation in the simple cut-off scheme.

Cylindrical geometry with homogeneous electric fields. The ζ-potential of each nano-
tube is calculated from the average velocity inside the tube using Eq. 4.1. In Fig. 4.11
(d – f), we plot the ζ-potentials of the three nanotubes as a function of the truncation
length, showing the same convergence to zero electro-osmotic flow as in the rectangular
cases. This zero-flow result is in agreement with our analytical theory for the cylindrical
geometry. Comparison of our results for the planar and cylindrical cases show that the
spurious flow effect is obtained irrespective of details of the geometry.

Nanotubes with reservoir. Identical to Ref. [60], we also simulate a (16,0) carbon
nanotube of length 9.8 nm connecting two reservoirs as shown in Fig. 4.12 (a), to compare
our results quantitatively to the results of Ref. [60]. We use a Nosé-Hoover thermostat and
an anisotropic Parrinello-Rahman barostat. For each scheme and various rc, we simulate
for 5 ns and collect the last 3 ns for analysis while for rc = 1.0 nm we extend the simulation
time by 40 ns. The total size of the periodically repeated reservoir is 4.0 × 3.6 × 1.8 nm.
There are 1057 water molecules in the system.

To estimate the ζ-potential of the (16,0) cnt connecting two reservoirs, we calculate
the flux in x1 direction through a cross section located at one end of the nanotube. Note
that our definition of the flux differs from the definition used in Ref. [60], see Sec. 4.3.5.
The cumulative flux is shown as a function of time for both cut-off schemes in Fig. 4.12
(b), from which the flux is calculated using linear regression. The average velocity u1

inside the nanotube is calculated by dividing the flux by the linear molecule density inside
the nanotube, after which the ζ-potential is calculated from Eq. 4.1. The resulting ζ-
potential is shown in Fig. 4.13 (b) as a function of the truncation length. Although the
ζ-potential is smaller than when in absence of reservoirs, which has to do with the friction
a water molecule encounters when entering or exiting the nanotube, again the results show
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Figure 4.11: Left: The ζ-potential of three planar systems, (a) an oil slab, (b) a hydrophobic
diamond and (c) a graphene sheet in pure water as a function of the truncation length rc, calculated
from the velocity in the bulk region (see text). Right: The ζ-potential of three cylindrical systems,
(d) a (10,0) carbon nanotube, (e) a (16,0) carbon nanotube and (f) a (16,16) carbon nanotube,
calculated from the average velocity inside the tube.

a striking yet unphysical difference between the cut-off schemes: For the simple cut-off
at rc = 1.0 nm we find an average flux of 22 ± 8 ns−1, comparable to 34.0 ± 5.2 ns−1

from Ref. [60], while the shifted cut-off exhibits vanishing flux. In the limit rc → ∞, the
spurious difference between the cut-off schemes disappears and the water flux vanishes, in
accordance with the generalized hydrodynamic theory presented in the previous sections.
We simulate exactly the same system of a (16,0) carbon nanotube between reservoirs using
the alternative simulation package lammps [156]. In lammps, both the simple cut-off and
the shifted cut-off as used in gromacs are implemented. As shown in Fig. 4.13 (b), the
flux vanishes, even for small rc, regardless of the cut-off scheme. We conclude that electro-
osmosis, i.e. the electric-field induced steady flow, of pure water in a carbon nanotube is
a simulation artifact and related to the implementation of the cut-off scheme in gromacs
[145].

The effect of ions. We also simulate an artificial hydrophobic surface identical to the
one used by Huang et al. [67, 141], solvated in 1 M sodium chloride. The surface consists of
an fcc lattice of atoms with Lennard-Jones parameters ǫfcc = 0.686 kJ mol−1 and σfcc =
0.337 nm and has a contact angle of 140◦. The Lennard-Jones parameters of the ions are
given by ǫna = 0.0617 kJ mol−1 and σna = 0.258 nm for na+ and ǫcl = 0.446 kJ mol−1 and
σcl = 0.445 nm for cl−. The inter-plate distance corresponds to a pressure of 10 ± 5 bar
[141].

As shown in Fig. 4.13 (a), the artificial hydrophobic surface has a non-zero ζ-potential.
Huang et al. use a simple cut-off scheme with a truncation length of 1.0 nm and the
lammps simulation package, giving zero electro-osmotic flow. The fact that our simula-
tions yield a non-zero ζ-potential using a simple cut-off scheme indicates that this is a
gromacs-related issue, and not due to the simple cut-off per se. Note that in simulations
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Figure 4.12: (a) Snapshot of the (16,0) nanotube simulations with reservoir. (b) Cumulative
flux through the tube as a function of time for an electric field strength of 1 V/nm for the two
different Lennard-Jones cut-off schemes with rc = 1.0 nm, simulated with gromacs. For each
cut-off length, the ζ-potential is calculated from the derivative of the cumulative flux as shown in
(b), the line density inside the tube and Eq. 4.1.

of electrolyte solutions at neutral surfaces a small, but finite electrokinetic effect can exist
in principle, because the sodium and chloride ions have slightly dissimilar surface affinities,
giving rise to a small electrostatic surface potential. However, this small contribution is
totally dominated by the erroneous flow generated within the simple cut-off scheme.

Zero-field flux. As a simple test of the effect of the electric field, we perform long
simulations of a 9.8 nm long (10, 0) nanotube between reservoirs with and without electric
field. The results are shown in Fig. 4.14 for zero and non-zero external electric fields.
Most strikingly, the flux is non-zero for the simple cut-off scheme, shown in Fig. 4.14 (b),
regardless of whether an external electric field is applied or not. The same effect is in fact
displayed in Fig. 1 of Ref. [60]. Again, in the shifted scheme this unphysical effect is
absent. Since it is self-evident that in the absence of an electric field no flux should result,
this proves our point most forcefully that something is fundamentally wrong with the
simple cut-off scheme as implemented in gromacs, leading to erroneous coupling between
orientation and flux. The residual flux fluctuations for the shifted cut-off scheme shown
in Fig. 4.14 (a) suggest that the simulations in the (10, 0) nanotube have not converged
on the time scale of 40 ns, which simply makes the (10, 0) nanotube unsuited for studying
equilibrium properties in general.

Point charges at carbon nanotubes. For a set of fixed point charges the electric field is
spatially inhomogeneous. We simulate the system shown in Fig. 4.15 (a) for 5 ns, collect
the last 3 ns for analysis and calculate the flux as a function of the cut-off length for the
two different cut-off schemes. We use a Berendsen thermostat and update the neighbor
list every 10 timesteps. We define the three negative charges next the to nanotube to be
in one charge group and the three compensating positive charges in another (see below
for further explanation). The differences between our system and the system used in Ref.
[61] are that the charges next to our tube are negative, external charges and tube atoms
are frozen, our tube is longer and our reservoir is larger. From the flux and the average
number of particles per unit length we calculate the average velocity inside the tube, shown
in Fig. 4.15 (b) as a function of the cut-off length for the two different truncation schemes.
Clearly, the velocity depends on the cut-off length like in the case of a homogeneous electric
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Figure 4.14: Cumulative flux through a (10,0) carbon nanotube with (red lines, field strength
1 V/nm) and without (blue lines) external electric field. Cutoff schemes used are (a) shifted and
(b) simple, both at rc = 1.0 nm. The flux is calculated according to the unconditional definition
(see Sec. 4.3.5 “Definition of Flux” in the text). The system size is 3.0× 2.7× 13.7 nm containing
1008 spc/e water molecules.

field and simple cut-off. However, the velocity resulting from an inhomogeneous electric
field also shows a cut-off length dependence for a shifted cut-off scheme. This shows that
using a shifted cut-off scheme does not necessarily prevent the flow. Indeed, since there
is nothing unphysical about the simple cut-off per se, we have no reason to believe that
a shifted cut-off should perform better in any case; it is the numerical implementation of
the cut-off scheme in gromacs that produces questionable results.

Following a recent publication [157], we also investigate the effect of the use of charge
groups. For a charge group, Coulomb interactions are calculated for all individual charges
in the group, but the position of each individual charge is approximated by the geometrical
mean of the constituent particles [158]. In the simulations by Ref. [61] and the simulations
shown in Fig. 4.15 the fixed charges close to the nanotube are grouped within a single
charge group. The artificial pumping disappears for both cut-off schemes even for a short
cut-off length of 0.7 nm if we do not use a charge group for the fixed external charges.
This confirms the findings of Ref. [157]. Finally, using the alternative simulation package
namd 2, the directional flux vanishes altogether [159].

Nanoscale pumping of water by AC electric fields. Contrary to static electric fields,
time-dependent electric fields can in principle be used to drive a system without free
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Figure 4.15: (a) Snapshot of the (10,0) nanotube with fixed negative charges. The charges are
located at 1.92 nm, 2.64 nm and 2.88 nm distance from the right end of the tube and the distance
between the charges and the nanotube is δ = 0.093 nm. Charges are -0.5, -0.5 and -1 e from left
to right, with charges of opposite sign at the bottom of the box for compensation. The system size
is 8.8 × 8.4 × 8.8, the tube length is 4.8 nm and the system contains 8389 tip3p water molecules.
The neighbor list is updated every 10 timesteps of 2 fs each. (b) Dependence of the average axial
velocity u1 inside the nanotube on the cut-off length rc for the two different cut-off schemes.

charges, as we have shown in Sec. 4.2. Using md simulations, we demonstrate pumping
of water through a carbon nanotube (cnt), employing a periodic array of oscillating
point charges attached to the outside of the cnt [160]. The oscillating charges generate
a running electromagnetic wave, which induces flow through two distinct mechanisms:
dipole rotation (as discussed in Sec. 4.2) and polarization-dragging. The latter hinges
upon the force exerted on a dipole moment by the first spatial derivative of the electric
field, and is found to dominate over the dipole rotation mechanism in this case. We refer
to Ref. [iv] for details.

4.3.4 Dependence of the Flow Velocity on Other Simulation Parameters

For inhomogeneous electric fields resulting from a set of point charges, there are a few
additional simulation settings that may influence the resulting water dynamics [157]. To
speed up the simulation, each molecule carries a list of molecules with which it has sig-
nificant interaction, the so-called neighbor list. Reducing the update frequency of this list
speeds up the calculation, while increasing the risk of inaccuracies. In Fig. 4.16 (a) we
show the ζ-potential of a planar hydrophobic diamond (double face-centered cubic lattice
of c-atoms, contact angle θ = 111◦) in a homogeneous electric field as a function of the
number of steps between neighbor list updates (nstlist). The Lennard-Jones simple cut-off
is set to rc = 0.8 nm. A value of nstlist = 1 means the list is updated every step. From Fig.
4.16 (a), we conclude that for a spatially constant electric field the neighbor list update
frequency does not have a significant influence on the ζ-potential of the solute.

In case of numerical artifacts, a dependence on the size of the integration time step
may be expected as well. In Fig. 4.16 (b), the spurious ζ-potential of a hydrophobic
diamond is shown as a function of the integration time step for rc = 0.8 nm. Larger time
steps than 2 fs are not possible because of the fast dynamics of the hydrogen atoms. The
flow dynamics do not depend significantly on the integration time step, showing that the
problem is not related to integration accuracy.

Like any flow, the magnitude of the spurious flow depends strongly on the particularities
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Figure 4.16: (a) Dependence of the spurious ζ-potential of a hydrophobic diamond (contact angle
of 111◦) on the number of steps between neighbor list updates (nstlist) using a timestep of 1 fs and
(b) dependence on the integration time step using nstlist = 50. (c) The ζ-potential of a diamond
surface as a function of contact angle and (d) the ζ potential of an artificial hydrophobic surface
(θ = 140◦) with 1 M nacl as a function of the molecular water density N/V, using a timestep of
1 fs and neighbor list update frequency of 1/50 timesteps. Dashed lines are drawn as a guide to
the eye. We use a simple Lennard-Jones cut-off at rc = 0.8 nm (a-c) and rc = 1.0 nm (d). The
electric field strength is 0.4 V/nm (a-d) and the system size in (a-c) is 3.2×3.2×4.7 nm containing
928 spc/e water molecules and one diamond. System size in (d) is 3.9×3.9×16.4 nm, containing
2052 spc/e water, 40 na+ and 40 cl− molecules confined between two slabs.

of the system, most notably the contact angle of the substrate and the pressure in the
system. In Fig. 4.16 (c) we show the ζ-potential of the diamond surface in contact with
pure water. The contact angle of the diamond is modified by adjusting the Lennard-
Jones interaction strength ǫ between the carbon atoms and the water molecules. For
each simulation system, the contact angle is determined from the virial according to the
method employed by Ref. [128]. All simulations are done using a simple cut-off truncation
scheme and a truncation length of rc = 0.8 nm. Using shifted truncation, the electro-
osmotic flow is zero for any contact angle. Shown in Fig. 4.16 (d) is the ζ-potential of an
artificial single face-centered cubic lattice (Lennard-Jones parameters ǫfcc = 0.686 kJ/mol,
σfcc = 0.337 nm, θ = 140◦) in a solution of 1 M nacl in water as a function of the average
number density of water N/V in the volume between the plates. Calculating the pressure
from the force on the center of mass of each plate divided by the plate area gives a pressure
of 1 bar at an average density of 29 nm−3. We use a simple cut-off scheme for the Lennard
Jones interaction with a truncation length of 1.0 nm. The apparent ζ-potential decreases
with increasing density. We note that the dependence of the ζ-potential on the surface
contact angle and the water density shown in Fig. 4.16 are spurious, in the sense that the
electro-osmotic flow should vanish altogether in this case. This is also true for the salt
solution, since the cations and anions of nacl show almost the same adsorption affinities
on a hydrophobic surface. Fig. 4.16 does show, however, that the magnitude of the artifact
varies appreciably depending on the particularities of the system, and that the spurious
flow is most pronounced for hydrophobic systems with a low average density of water
molecules, a class of systems to which carbon nanotubes belong as well.

4.3.5 Definition of Flux

In the first paper on water in carbon nanotubes, Hummer et al. found that the filling of
nanotubes goes in bursts [43]. This bursting behavior seems manifest also in simulation
trajectories of Ref. [60], particularly in the (10,0) nanotube. Let us discuss the way bursts
in the cumulative flux emerge in the original analysis of Ref. [60]. Due to conservation
of mass, the average flux through a given cross section of the carbon nanotube does not
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Figure 4.17: Axial flux (x1 direction) through a (10,0) nanotube (a) and a (16,0) nanotube (b)
at E1 = 1.0 V nm−1 using simple cut-off at rc = 1 nm. Shown in red is the flux calculated using
the straightforward counting of molecules, shown in blue is the conditional flux, where molecules
exiting the tube are counted only if they previously entered from the other side. Simulation boxes
are identical to the ones described in Figs. 4.13 and 4.14. We use a time step of 1 fs and neighbor
list update every 50 steps.

depend on the position of the cross section. Therefore, without restricting the generality
of our arguments, we define the flux as the number of water molecules passing the edge of
the simulation box. This we call the cumulative flux. In Ref. [60], on the other hand, the
flux is defined as the number of particles exiting the tube on one end that have previously
entered on the other end. This definition we denote as the conditional cumulative flux and
it implicitly contains a tube length dependence. We perform simulations of 40 ns with
a 5 ns equilibration period using a 1.0 nm simple cut-off scheme and an electric field of
1 V/nm. In Fig. 4.17 (a – b) we show the results for two tube diameters, (10,0) and (16,0)
respectively, both connecting two reservoirs. The results have been analyzed using both
the straightforward counting of molecules passing the edge of the box (denoted as flux),
and using the definition from Ref. [60] (denoted as conditional flux). For long times, both
definitions of the flux converge to the same value but for shorter times, there are distinct
differences. The first, obvious effect of the conditional definition of the flux is that the
first particles exiting the tube, which are the particles that were located in the tube from
the start, do not contribute to the conditional flux since they did not previously enter the
tube. This explains the initial 4−8 ns waiting time and suggests that using the conditional
definition of the flux is not very efficient in terms of computer time. The second effect is
a suppression of noise: particles moving back and forth are only counted if their motion
persists for the full tube length. This explains the striking lack of noise in the results
shown in Ref. [60], as well as a large part of the alleged bursting behavior. From the
unconditional flux, the bursting is by far not as pronounced as in the filling curves from
Hummer et al. [43].

4.4 Summary & Conclusions

Using a combination of analytical theory based on a generalized Navier-Stokes equation
and molecular dynamics simulations, we show that interfacial water ordering does not
give rise to steady-state flow in static electric fields. This means that the interfacial dipole
potential due to the water ordering does not contribute to the ζ-potential. Nevertheless,
electro-hydraulic pumping of dipolar fluids is possible: an electric field step function gives
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rise to transient flow, while a rotating electric field in an asymmetric channel can be used to
drive flows in steady state. In a symmetric channel, a rotating electric field induces a shear
profile, but no net pumping. An electric field in the shape of a traveling wave, produced
by phase-shifted ac voltages applied to an array of external electrodes, can also be used to
drive pure water through a carbon nanotube. The equilibrium flow observed with static
electric fields in previous molecular dynamics simulations of pure water, however, were
caused by particularities of the simple Lennard Jones force truncation scheme in gromacs.
The unphysical dependence of the flow velocity on the Lennard-Jones truncation scheme
vanishes for truncation length rc → ∞ for all simulated geometries and surfaces. Using a
shifted Lennard-Jones truncation scheme within gromacs, pure water does not give rise
to a non-zero ζ-potential for any value of the truncation length, in agreement with the
analytical theory presented. Using the lammps molecular dynamics package, the spurious
flow effect is not observed, regardless of the truncation scheme used. Small values of the
truncation length also lead to spurious flow in the presence of the static inhomogeneous
electric field produced by fixed charged outside a carbon nanotube. In contrast with the
situation for homogeneous electric fields, the spurious flow persists when using a shifted
truncation scheme, vanishing only for large values of the truncation length. We conclude
that the spurious flow observed in molecular dynamics simulations of both planar and
cylindrical geometries is an implementation-related issue in gromacs, and not caused by
the use of truncation schemes per se.



Chapter 5
Electro-Osmotic Mobility and
Electric Surface Conductivity

We calculate the electro-osmotic mobility and surface conductivity at a solid-liquid in-
terface from a modified Poisson-Boltzmann equation, including spatial variations of the
dielectric function and the viscosity that where extracted previously from molecular dy-
namics simulations of aqueous interfaces. The low-dielectric region directly at the interface
leads to a substantially reduced surface capacitance. At the same time, ions accumulate
into a highly condensed interfacial layer, leading to the well-known saturation of the
electro-osmotic mobility at large surface charge density regardless of the hydrodynamic
boundary conditions. The experimentally well-established apparent excess surface conduc-
tivity follows from our model for all hydrodynamic boundary conditions without additional
assumptions. Our theory fits multiple published sets of experimental data on hydrophilic
and hydrophobic surfaces with striking accuracy, using the non-electrostatic ion-surface
interaction as the only fitting parameter. This chapter is based on Ref. [ii].

5.1 Introduction

When immersed in water, particles typically acquire a net surface charge, which is com-
pensated for by a cloud of counterions in solution. This surface charge usually dominates
the interactions between particles in colloidal suspensions. The bare surface charge density
can be measured using charge titration [161]. It is well established, however, that the bare
surface charge density cannot be used directly in classical models to describe dynamic
properties of colloidal suspensions, such as coagulation kinetics, electro-osmotic mobility
and effective viscosity [80, 162–164]. Instead, the ions and water molecules within a few
molecular diameters from the surfaces of the colloidal particles decisively affect the suspen-
sion’s macroscopic kinetic behavior. A deep understanding of the relation between bare
surface charge, electro-osmotic mobility and the closely related phenomenon of surface
conductivity is of supreme importance in many areas of physical chemistry. For instance,
electrophoresis is commonly used in modern-day biochemistry for separation of chemicals
based on minute differences in surface properties [165]. Furthermore, electrokinetic driving
is the method of choice to generate flow in microfluidic devices [2, 3], which are becoming
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Figure 5.1: Sketch of the basic model and general features of experimental data. (a) An electric
field E‖ parallel to a surface with bare charge density σ0 produces an electro-osmotic flow pro-
file u‖ (z), from which the electrokinetic surface charge density σek is calculated. The conductive
surface charge density σc is calculated from the electric current I in response to E‖. (b) σek is
experimentally found to saturate as a function of σ0 ; saturation occurs at higher values for hy-
drophobic surfaces than for hydrophilic surfaces. (c) σc exceeds σek at all surface types. (d) When
the bulk salt concentration c0 is raised, σek increases at hydrophobic surfaces, and decreases at
hydrophilic surfaces.

ever more popular tools for biochemical analysis and clinical pathology. On a much larger
scale, seismic activity in water-saturated soil produces electrokinetic signals, which are
found to precede large earthquakes [166] and can be exploited for seismic imaging of the
sub-surface [167]. Finally, the electrostatic and hydrodynamic properties of the colloid-
water interface determine the stability of colloidal systems [168, 169], which is a crucial
factor in many branches of chemical industry, such as food, water purification, pharma-
ceuticals, paints, and ceramics. To comprehend and control the macroscopic behavior of
each of these systems, detailed knowledge of the hydrodynamic and electrostatic proper-
ties of the interfacial molecular layers is indispensable. Despite the immense practical and
fundamental interest, however, the effect of these microscopic properties on macroscopic
kinetics is poorly understood.

Electrokinetic measurements in controlled environments are a particularly sensitive tool
to assess the dynamic properties of interfacial layers. The basic model for an electrolyte in
contact with a surface carrying an immobilized bare surface charge density σ0 is sketched
in Fig. 5.1 (a). Driven by a tangential electric field E‖, counterions move along the
surface, dragging water molecules along. This electro-osmotic flow profile u‖ (z) can be
used to estimate the “electrokinetically active” surface charge density σek, using the Gouy-
Chapman model and the Stokes equation with a no-slip boundary condition. At the same
time, the electric conductivity of the interfacial fluid is higher than the bulk conductivity
due to the presence of counterions [170, 171], to an extent that is usually expressed by the
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Dukhin number [172]. In conjunction with a suitable model, this surface conductivity can
be used as an alternative way of estimating the surface charge density [132], leading to the
conductive surface charge density σc. Clearly, the precise values of σek and σc are highly
model-dependent, and typically, σ0 , σek and σc do not agree. As a specific numerical ex-
ample, we consider silica nanochannels, where measuring the electrokinetic surface charge
density using the streaming current at low salt concentration gives σek = −4 mC/m2

[173]. Calculating the conductive surface charge density in the same type of channels from
measurements of the electric conductance, on the other hand, yields σc = −50 mC/m2

[132], whereas the literature value for the bare charge density of silica, calculated from
titration at a bulk salt concentration of 1 mM, is even higher: σ0 = −100 mC/m2 [174].
This example shows that the discrepancies mentioned are not small corrections, but ma-
jor effects. In particular, three puzzling, but universal experimental trends have impeded
the advancement of colloidal science in the past. First, the electrokinetic surface charge
density σek is found to saturate as a function of the bare surface charge density σ0 , in-
dependent of surface roughness or polarity [80, 175, 176], see the sketch in Fig. 5.1 (b).
Traditionally, this issue has been rationalized using the inhomogeneity of the viscosity at
the interface [176]. Assuming a hydrodynamically stagnant interfacial water layer, the cal-
culated electrokinetic surface charge density σek is found to agree with experiments [175].
Using this model on hydrophobic interfaces, however, where the fluid is known to slip
along the surface (see Chapter 3), the electrokinetic surface charge density σek exceeds the
bare surface charge density σ0 , contrary to experimental evidence. Second, the conductive
surface charge density σc is found to exceed the electrokinetic surface charge density σek
[130, 132, 173, 177–180], see Fig. 5.1 (c). This excess surface conductivity is referred
to as anomalous surface conduction, and is found for all systems, independent of surface
composition [179–181]. Traditionally, the excess surface conductivity is rationalized by
the awkward assumption that ions in the hydrodynamically stagnant layer still conduct
charge [80, 172, 179, 180, 182–185], which is clearly at odds with physical intuition. Third,
whereas the electrokinetic surface charge density σek increases with increasing bulk salt
concentration c0 at hydrophobic surfaces, such as silver iodide, it decreases at hydrophilic
surfaces, such as titanium oxide and iron oxide-hydroxide [80, 175], see Fig. 5.1 (d).

Whereas the interfacial viscosity has been widely used to rationalize and model the ex-
perimental results described above, the interfacial dielectric function has not been taken
into account up to now. In this paper, we include the variation of the dielectric function,
which has been shown to work well in the description of interfacial capacitance [88], as
well as the variation of the viscosity at the interface on the mean-field level. Including
a low-dielectric layer at the surface leads to accumulation of counterion charge close to
the interface, thereby reducing the electro-osmotic flow independent of the hydrodynamic
boundary conditions. The relation between counterion condensation enhancement and sat-
uration of the electrophoretic mobility has been established earlier for branched polymeric
particles of roughly spherical shape [186]. In contrast, the surface conductivity is affected
less by the ion condensation, explaining the discrepancies between the bare, conductive
and electrokinetic surface charge densities.

5.2 Mobility and Conductivity

We consider a charged planar surface in contact with water, having translational invariance
in the x and y directions. The dielectric tensor, the viscosity, the electric field and the
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displacement field only depend on the perpendicular coordinate z.

5.2.1 Electrokinetic Surface Charge Density

For laminar flows, the electro-osmotic flow velocity profile u‖ (z) in response to a parallel
electric field E‖ is calculated from the Stokes equation,

∇η (z)∇u‖ (z) = −ρ (z)E‖, (5.1)

with spatially varying viscosity η (z) and charge density ρ (z). Note that ρ (z) is the ionic
charge density and polarization charges do not enter the force balance, as shown earlier
[187]. The hydrodynamic boundary condition of either slip or a high-viscosity layer is
taken into account via the viscosity profile η (z), which in conjunction with the condition
u‖ (0) = 0 is designed to reproduce the flow profile at macroscopic distances from the
interface, as will be elaborated later. The electro-osmotic mobility is found by integrating
Eq. 5.1 twice using u‖ (0) = 0 as a boundary condition,

u‖ (z)

E‖
= −

∫ z

0

D⊥ (z′)

η (z′)
dz′, (5.2)

with D⊥ (z) being the displacement field perpendicular to the surface, which obeys Gauss’s
law, ∇D⊥ (z) = ρ (z). Experimentally, electro-osmotic velocity is measured far away from
the interface. Assuming that the permittivity is spatially constant and equal to its bulk
value εbulk, and η (z) = ηbulk in Eq. 5.2, the electro-osmotic mobility is given by the
Helmholtz-Smoluchowski equation,

lim
z→∞

u‖ (z)

E‖
= −ε0εbulk

ηbulk
ζ, (5.3)

with ζ =
∫∞
0 (D⊥ (z) /ε0 εbulk) dz being the electrostatic potential at z = 0. A derivation

of Eq. 5.3 is given in Appendix B. Because the surface potential is typically not measured
directly, it is often more convenient to express ζ in terms of the equivalent surface charge
density. Using the standard Poisson-Boltzmann relation between the surface potential
and the surface charge density, which is valid on the mean-field level, the electro-osmotic
mobility of Eq. 5.2 is expressed as an equivalent surface charge density, referred to as the
electrokinetic surface charge density σek,

σek =

√

8c0 ε0εbulk
β

sinh

[

βe ζ

2

]

, (5.4)

with c0 the bulk salt concentration. Eq. 5.4 is known as the Grahame equation. The ζ-
potential is calculated using Eq. 5.3, where the electro-osmotic mobility is either measured
experimentally or calculated from Eq. 5.2. A derivation of Eq. 5.4 is given in Appendix
B.

5.2.2 Conductive Surface Charge Density

The electric conductivity close to charged surfaces is enhanced with respect to the bulk
due to the presence of excess ionic charges. This surface conductivity can be conveniently
measured in small channels at low salt concentration, in which case the contribution from
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the bulk vanishes [132]. The surface conductivity is given by the sum of a convective part,
due to the electro-osmotic flow, and a conductive part, due to the electrophoretic mobility
of the ions,

I

E‖
=

∫ ∞

0
e
[

c+ (z) − c− (z)
] [

u‖ (z)/E‖

]

dz

+

∫ ∞

0
e
[

ν+ (c+ (z) − c0 ) + ν− (c− (z) − c0 )
]

dz,

(5.5)

with ν± the electrophoretic mobility of the positive and negative ions. Note that we
subtract the bulk contribution to the conductive part of Eq. 5.5. Similar to the Grahame
equation (Eq. 5.4), the surface conductivity can be expressed as an equivalent surface
charge density using the Gouy-Chapman theory, giving

σc =
κ2ηbulk

4ec0 + νκ2ηbulk

√

I

E‖

√

I

E‖
+

32e2c2
0

κ3ηbulk
+

8ec0 ν

κ
. (5.6)

A derivation of Eq. 5.6 is given in Appendix B. Since the predominant salt types being
considered in the experiments that we compare our results with (Sec. 5.5.2) are k+ (ν+ =
7.62 × 10−8 m2/Vs), cl− (ν− = 7.91 × 10−8 m2/Vs) and no−

3 (ν− = 7.40 × 10−8 m2/Vs),
we assume ν+ = ν− = ν, which is a good approximation for both kcl and kno3.

5.3 Viscosity & Dielectric Profile

Viscosity profile. We model the variations in viscosity at the interface by a step function,

η (z) =

{

ηi if z < zs
ηbulk otherwise,

(5.7)

with ηi the viscosity in a layer of width zs and ηbulk the bulk viscosity. Note that the
definition of a viscosity at sub-atomic length scales is problematic, and the profile of Eq.
5.7 is only intended to reproduce, within a continuum model, the flow characteristics found
experimentally at distances z > zs. For most hydrophobic surfaces the fluid slips along the
wall [36], which is commonly taken into account by the Navier hydrodynamic boundary
condition, b∇u‖ (z) |0 = u‖ (z) |0, with positive slip length b. In simulations of water at a
very hydrophobic diamond surface, the viscosity is found to be constant and equal to the
bulk value ηbulk for z > 0.15 nm, leading to a slip length of b = 2.15 nm. Setting u‖ (0) = 0,
we reproduce the same flow profile for z > zs by assigning ηi = ηbulk/15 and zs = 0.15 nm.
For most hydrophilic surfaces, on the other hand, the fluid in the first molecular layer
adjacent to the wall sticks to the surface [36]. Molecular dynamics simulation on smooth
hydrophilic surfaces have shown that the interfacial layer is not truly stagnant, it merely
has an enhanced viscosity [74, 125]. Following the simulation results of Ref. [74] we take
zs = 0.3 nm and ηi = 3ηbulk. In Fig. 5.2 (a), we show the viscosity profile η (z) of Eq.
5.7 at hydrophilic and very hydrophobic surfaces. For easy reference, we characterize each
viscosity profile by its apparent slip length,

b = zs (ηbulk/ηi − 1) . (5.8)

Electrophoretic mobility. In general, the electrophoretic mobility of ions ν± depends on
the ion concentration and the viscosity of the fluid [188]. The ion mobility directly at
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the interface is not known (note that the conclusion that the interfacial mobility equals
the bulk mobility [182] relies heavily on the electrostatic model used). Here, we use the
simplest approach, where only the bulk-like viscous drag on the ions is taken into account,
resulting in a mobility that is inversely proportional to the local viscosity.

Dielectric profile. In order to describe the dielectric profile at a similarly simplistic level
as the viscosity, we use a step function as well,

ε⊥ (z) =

{

1 if z < zdds
⊥

εbulk otherwise,
(5.9)

with zdds
⊥ the dielectric dividing surface as defined in Sec. 2.4.1 [88]. The profile in Eq.

5.9 is designed to reproduce the electrostatic potential calculated in molecular dynamics
simulations at positions z & 1 nm from the interface [88]. For zdds

⊥ we use two different
values: zdds

⊥ = 0.10 nm, corresponding to a hydrophilic surface, and zdds
⊥ = 0.12 nm,

corresponding to a very hydrophobic surface, as directly taken from Sec. 2.4.1. The
inverse dielectric profiles ε−1

⊥ (z) in the approximation of Eq. 5.9 are shown in Fig. 5.2 (b)
for hydrophilic and very hydrophobic surfaces.

5.4 Scaling Analysis

In this section, we qualitatively investigate how the dielectric profile ε⊥ (z) as given in Eq.
5.9 affects the counterion distribution, and consequently σek and σc.

Counterions at a charged plate. The electrokinetic and conductive surface charge den-
sities defined in Eqs. 5.4 and 5.6 are directly affected by the viscosity profile η (z). The
dielectric profile ε⊥ (z) does not affect σek and σc directly, but it does have a decisive
influence on the ion distribution, which in turn has a major impact on σek and σc. For a
qualitative picture of the effect of ε⊥ (z), we consider the situation of an infinite charged
plate in contact with a solution containing only counterions. We keep the viscosity con-
stant, η (z) = ηbulk. According to the Gouy-Chapman model, the ions form a diffuse layer
when ε⊥ (z) = εbulk, and by definition σek = σc = σ0 . This relation is also valid in the limit
of low salt concentration (c0 → 0), in which case the solution contains only counterions.
Using the profile of Eq. 5.9, on the other hand, a large portion of the ions will condense
into the low-dielectric area because of the steep increase of the electric potential resulting
from the low dielectric constant. This model of a low-dielectric layer of condensed ions
has been proposed long ago by Otto Stern based on experimental double-layer capaci-
tance data [22], and we have confirmed in Sec. 2.4.3 that Eq. 5.9 in conjunction with a
mean-field model indeed reproduces the salt-concentration dependence of the double-layer
capacitance [88]. In our present scaling analysis, we use a delta function as a model for
the charge distribution to mimic the condensed layer of ions,

ρ (z) = −σ0δ (z − d) , (5.10)

with d the typical distance to the surface. A typical value of d would be the radius of an
ion. The electrophoretic mobility of Eq. 5.2 is integrated by parts, which leads to

ζ = − 1

ε0εbulk

∫ ∞

0
z ρ (z) dz, (5.11)
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Figure 5.2: (a) Normalized viscosity profile (Eq. 5.7). (b) Inverse dielectric profile ε−1

⊥ (z) (Eq.
5.9). (c) Non-electrostatic potential µ± (z) (Eq. 5.21) with α = 1. Also shown is an ion with
diameter a.

using the definition of ζ given in Eq. 5.3. Inserting Eq. 5.10 into Eq. 5.11 gives

ζ =
σ0 d

ε0εbulk
(5.12)

which scales linearly with σ0 for a given distance d. The behavior of σek, defined by Eq.
5.4 and using Eq. 5.12, as a function of σ0 depends on how d behaves as a function of σ0 .

To calculate the conductivity we insert Eq. 5.10 into Eq. 5.5,

I

E‖
=

∫ ∞

0

(

−σ0
u‖ (z)

E‖
+ ν|σ0 |

)

δ (z − d) dz. (5.13)

The flow velocity at z = d turns out to be u‖ (d) = −E‖σ0d/2ηbulk, from which the
conductivity follows as

I

E‖
=

σ2
0 d

2ηbulk
+ ν|σ0 |. (5.14)

Contrary to the electro-osmotic mobility, which depends linearly on σ0 , the conductivity
scales with σ2

0
. That means that the conductive surface charge density σc will exceed the

electrokinetic surface charge density σek for large σ0 (provided d does not become infinites-
imally small), which rationalizes the experimentally measured excess surface conductivity
that is sketched in Fig. 5.1 (c). The analysis above shows that the so-called anoma-
lous surface conduction follows naturally from the standard dynamic equations when the
double-layer width deviates from the standard mean-field prediction for a uniform dielec-
tric constant.

5.5 Modified Poisson-Boltzmann Equation

To quantitatively examine the electrokinetic and conductive surface charge densities σek
and σc as a function of the bare surface charge density σ0 , we solve the Poisson-Boltzmann
equation in conjunction with the Stokes equation (Eq. 5.1) using the dielectric profile of
Eq. 5.9 and the viscosity profile of Eq. 5.7.

Modified Poisson-Boltzmann equation. We assume that the electric field is linearly
related to the displacement field by the local inverse dielectric tensor ε−1

⊥ (z),

ε0E⊥ (z) = ε−1
⊥ (z)D⊥ (z) , (5.15)
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where ⊥ indicates the component perpendicular to the interface. Eq. 5.15 is a good
approximation in case of a slowly varyingD⊥ (z) [24, 88]. Taking the derivative of Eq. 5.15
and using ∇ψ (z) = −E⊥ (z), with ψ (z) the electrostatic potential, and ∇D⊥ (z) = ρ (z),
with ρ (z) the ionic charge density, we arrive at the modified Poisson equation

ε0∇2ψ (z) = ε−1
⊥ (z) ρ (z) −D⊥ (z)∇ε−1

⊥ (z) . (5.16)

The displacement field D⊥ (z) is given by

D⊥ (z) =

∫ z

0
ρ
(

z′
)

dz′. (5.17)

Eqs. 5.16 and 5.17 constitute an integro-differential equation [33]. We consider a solution
of monovalent ions. The free charge density is calculated from the ionic densities c+ (z)
and c− (z),

ρ (z) = e (c+ (z) − c− (z)) , (5.18)

with e being the absolute charge of an electron. To ensure that the ionic density does not
exceed its physical limit set by the ionic volume, we include a fermionic steric interaction
to calculate the ionic densities from the unrestricted ionic densities c̃+ (z) and c̃− (z) [189–
192],

c± (z) =

√
2 c̃± (z)√

2 + a3
+ (c̃+ (z) − c0 ) + a3

− (c̃− (z) − c0 )
, (5.19)

with c0 being the bulk salt concentration and a+ and a− being the diameters of positive
and negative ions respectively. The denominator in Eq. 5.19 restricts the maximum
density c± (z) to

√
2 a−3

± , which is the maximum density of close-packed (face-centered
cubic or hexagonal close-packed) spheres of diameter a±. The unrestricted ionic densities
c̃+ (z) and c̃− (z) follow the Boltzmann distribution

c̃± (z) = c0 exp [−µ± (z) ∓ βeψ (z)], (5.20)

with β being the inverse thermal energy and µ+ (z) and µ− (z) being the non-electrostatic
contributions to the potential of the positive and negative ions respectively. Combining
Eqs. 5.16, 5.17, 5.18, 5.19 and 5.20 yields the modified Poisson-Boltzmann equation.

Non-electrostatic potential. For the non-electrostatic potential µ± (z), we use a heuristic
function of the form

µ± (z) = α exp [1 − 2z/a±] . (5.21)

The dependence of the non-electrostatic potential on the surface and ion type is parame-
terized by the ion diameter a± and the interaction strength α. In Fig. 5.2 (c), we show
the non-electrostatic potential of Eq. 5.21 with α = 1, together with a sketch of an ion
with diameter a. We first set α = 0 to show the trends of σek and σc and then use α as a
fit parameter to compare with experimental data.

Volume fraction. Because it better reflects the distribution of the ions than the density
of point charges, we plot the fraction ϕ± (z) of the volume occupied by ions, calculated by
convolution of the point charge density with the molecular volume v± (z),

ϕ± (z) =

∫

c±
(

z′
)

v±
(

z − z′
)

dz′, (5.22)
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Figure 5.3: Volume fraction of ions, calculated from a convolution according to Eq. 5.22 of
the ion density c+ (z) with the molecular volume of Eq. 5.23, using (a) a bulk dielectric constant
and (b) a dielectric dividing surface at zdds

⊥ = 0.1 nm, as appropriate for a hydrophilic surface.
The corresponding electro-osmotic mobility profiles are shown (c, d) for four different viscosity
profiles (Eq. 5.7 with the parameters listed in Tab. 5.1), with apparent slip length b calculated
using Eq. 5.8: ηbulk/ηi = 15 and zs = 0.15 nm (b = 2.1 nm, dashed lines), ηbulk/ηi = 5 and
zs = 0.15 nm (b = 0.6 nm, dash-dotted lines), no slip (solid lines) and ηbulk/ηi = 1/3 with
zs = 0.3 nm (b = −0.2 nm, dotted lines). The bare surface charge density equals σ0 = −0.6 e/nm2

and the bulk salt concentration is c0 = 1 mM. For the steric interactions defined in Eq. 5.19 we
use a+ = a− = 0.3 nm and no non-electrostatic ion-wall interaction: µ± (z) = 0.

with v± (z) dz the volume of an ion slice of width dz,

v± (z) =

{

π
(

a2
±/4 − z2

)

if |z| < a±/2
0 otherwise.

(5.23)

The volume fraction is used only for plotting the ion distribution; for all calculations we
still assume that the charge is located at a single point in the center of the ion.

5.5.1 Numerical Results & Discussion

We numerically solve the modified Poisson-Boltzmann equation (Eqs. 5.16–5.20) using a
fixed bare surface charge density σ0 located at z = 0 and vanishing electrostatic potential
at infinity as boundary conditions. The ion centers are allowed to approach z = 0, thereby
partly penetrating the solid, which accounts for surface softness. For the fermionic steric
repulsion of Eq. 5.19 we use a± = 0.3 nm.

In Fig. 5.3 we show the volume fraction profile of counterions ϕ+ (z), at bulk salt
concentration c0 = 1 mM, for two different approximations of the dielectric function: (a)
ε⊥ (z) = εbulk and (b) using ε⊥ (z) from Eq. 5.9 with the hydrophilic zdds

⊥ = 0.1 nm. The



88 Modified Poisson-Boltzmann Equation

Table 5.1: Combinations of zs and ηi used for the viscosity profile of Eq. 5.7. We also give the
apparent slip length b according to Eq. 5.8.

No Surface type zs (nm) ηbulk/ηi b (nm)

1 Hydrophilic 0.3 1/3 −0.2

2 No slip – 1 0.0

3 Moderately hydrophobic 0.15 5 0.6

4 Very hydrophobic 0.15 15 2.1

non-electrostatic interaction is set to zero, µ± (z) = 0. The bare surface charge density
is σ0 = −0.6 e/nm2, which is the value measured for silica at 10−3 M kcl and ph = 7.5
[161]. Clearly, the counterions accumulate much closer to the wall when the dielectric
profile is taken into account, which is due to the steep increase of the potential in the low-
dielectric region. It should be noted that, although the density of ions directly at the wall
is enhanced, it never exceeds its physical limit because of the fermionic steric repulsion
introduced in Eq. 5.19. The electro-osmotic mobility u‖ (z) /E‖ in the first nanometer next
to the surface, calculated from Eq. 5.2, is shown in Figs. 5.3 (c)–(d) using the viscosity
profile from Eq. 5.7 with four different combinations of ηi and zs, which are listed in
Tab. 5.1. Each combination can be characterized by its apparent slip length using Eq.
5.8: very hydrophobic (ηbulk/ηi = 15 and zs = 0.15 nm, giving b = 2.1 nm), moderately
hydrophobic (ηbulk/ηi = 5 and zs = 0.15 nm, giving b = 0.6 nm), no slip (ηi = ηbulk, b = 0)
and hydrophilic (ηbulk/ηi = 1/3 and zs = 0.3 nm, giving b = −0.2 nm). Figs. 5.3 (c) and
(d) already show a strikingly different behavior: the mobility is significantly lower when a
dielectric dividing surface zdds

⊥ is taken into account via Eq. 5.9 compared to using εbulk.

First puzzle: Saturation of the electrokinetic surface charge density. In Fig. 5.4,
we plot (a) the electrokinetic surface charge density σek, defined in Eq. 5.4, and (c) the
conductive surface charge density σc, defined in Eq. 5.6 as a function of the bare sur-
face charge density σ0 , using a bulk dielectric constant (ε⊥ (z) = εbulk) and four different
viscosity profiles (Eq. 5.7 with the parameters listed in Tab. 5.1). Using the very hy-
drophobic viscosity profile (No 4. in Tab. 5.1, b = 2.1 nm) or the moderately hydrophobic
profile (No 3. in Tab. 5.1, b = 0.6 nm), the electrokinetic surface charge density σek
exceeds the bare surface charge density σ0 , contrary to experimental evidence [175]. The
correct behavior, σek < σ0 , is only recovered when using a viscous layer (No 1. in Tab.
5.1, b = −0.2 nm). At the same time, however, σc is also lowered, at roughly the same
rate as σek, see Fig. 5.4 (c). When a dielectric dividing surface is introduced, shown in
Figs. 5.4 (b) & (d), the electrokinetic surface charge density saturates as a function of
the bare surface charge density for all viscosity profiles. Because experiments show that
saturation of σek occurs at every surface type, we conclude that a dielectric profile of the
form of Eq. 5.9 is necessary to explain the trend of the experimental mobility data that
is sketched in Fig. 5.1 (b). The main effect of the hydrodynamic boundary condition is
that σek saturates at higher values at hydrophobic surfaces then at hydrophilic surfaces,
again in agreement with experimental data [193]. Interestingly, the electrokinetic surface
charge density rises above σ0 for low values of σ0 , to which we will come back below.
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Figure 5.4: Electrokinetic surface charge density σek (a, b) and conductive surface charge density
σc (c, d) as a function of the bare surface charge density σ0 , using a bulk dielectric constant
ε⊥ (z) = εbulk on the left (a, c) and using ε⊥ (z) from Eq. 5.9 on the right (b, d), with zdds

⊥ = 0.1 nm
(hydrophilic) when b ≤ 0 and zdds

⊥ = 0.12 nm (hydrophobic) when b > 0. The parameters of the
viscosity profiles used are listed in Tab. 5.1: No 1. Hydrophilic, dotted lines (zs = 0.3 nm,
ηbulk/ηi = 1/3, b = −0.2 nm); No 2. No slip, solid lines (ηi = ηbulk, b = 0); No 3. Moderately
hydrophobic, dashed-dotted lines (zs = 0.15 nm, ηbulk/ηi = 5, b = 0.6 nm); No 4. Very hydrophobic,
dashed lines (zs = 0.15 nm, ηbulk/ηi = 15, b = 2.1 nm). For all curves, the bulk salt concentration
is c0 = 1 mM. No non-electrostatic interaction potential is used, µ± (z) = 0, and for the steric
interaction a± = 0.3 nm.

Second puzzle: Anomalous surface conductivity. We plot the conductive surface charge
density σc as a function of the electrokinetic surface charge density σek in Fig. 5.5, using
(a) ε⊥ (z) = εbulk and (b) the dielectric profile of Eq. 5.9. Without dielectric profile, σc
is close to, or below σek, whereas σc features a steep increase when the dielectric profile
is used, in agreement with the experimental trends sketched in Fig. 5.1 (c). Thus the
excess conductivity, which is traditionally referred to as anomalous surface conductance
[179–181, 194], follows directly from the dielectric profile ε⊥ (z).

Third puzzle: Salt-concentration dependence of the electrokinetic surface charge den-

sity. In Fig. 5.6 (a), we plot the electrokinetic surface charge density σek as a function
of the bare surface charge density σ0 at different values of the bulk salt concentration c0 .
Curves are shown for a very hydrophobic surface (No 4. in Tab. 5.1: b = 2.1 nm and
zdds
⊥ = 0.12 nm) and for a typical hydrophilic surface (No 1. in Tab. 5.1: b = −0.2 nm

and zdds
⊥ = 0.10 nm). Clearly, the electrokinetic surface charge density is higher at hy-

drophobic surfaces than at hydrophilic surfaces at all salt concentrations, in accordance
with experimental results [175, 193]. The difference between the surface types is primarily
caused by the different viscosity profiles; zdds

⊥ is comparable for both surface types. Sim-
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Figure 5.5: Conductive surface charge density σc versus electrokinetic surface charge density
σek, (a) using ε⊥ (z) = εbulk and (b) using Eq. 5.9 with zdds

⊥ = 0.1 nm (hydrophilic) when b ≤ 0
and zdds

⊥ = 0.12 nm (hydrophobic) when b > 0. Eq. 5.7 is used for the viscosity profile, with
the parameters listed in Tab. 5.1. For all curves, the bulk salt concentration is c0 = 1 mM. No
non-electrostatic interaction potential is used, µ± (z) = 0, while steric interaction (Eq. 5.19) is
included with a± = 0.3 nm.

ilar to the experimental trend sketched in Fig. 5.1 (d) [175], the behavior as a function
of salt concentration is opposite at the two surface types: Whereas σek increases with
increasing salt concentration at the hydrophobic surface, it decreases with increasing salt
concentration at the hydrophilic surface. The reason for this opposite behavior is that for
moderate and high bulk salt concentration, c0 > 10−3 M, the charge distribution shifts
toward the wall upon increasing c0 (decreasing Debye screening length), and more charge
is located in the region of varying viscosity. At hydrophilic surfaces, the effect of the higher
viscosity in the interfacial layer is to decrease the electrokinetic surface charge density σek,
whereas at hydrophobic surfaces the low viscosity increases σek. At low salt concentra-
tions, c0 ≤ 10−3 M, the effect diminishes because the width of the charge distribution in
that regime is not determined by the bulk salt concentration.

Apart from the dependence on surface type discussed above, the electrokinetic surface
charge density also depends on the specific ion-surface interaction, which has a significant
non-electrostatic component. In our calculations, this contribution is modeled by the
function µ± (z) given in Eq. 5.21, which has only one parameter, α (keeping the decay
length fixed and equal to the ion diameter a±). In Fig. 5.6 (b), we plot σek as a function
of σ0 for different values of the non-electrostatic interaction strength α for fixed c0 =
1 mM. Positive values of α repel ions from the surface, thereby increasing σek, whereas
negative values attract ions to the surface, decreasing σek. Interestingly, varying α within a
moderate range of only several times the thermal energy has an equally large effect on σek as
the surface-type dependence shown in Fig. 5.6 (a). To calculate the value of α, the surface
adsorption excess can be compared with molecular dynamics simulations. Simulations of
uncharged polar and non-polar self-assembled monolayers show that cations are attracted
to polar surfaces, but repelled from non-polar ones [122]. From these results we expect
that α is negative for hydrophilic surfaces and positive for hydrophobic surfaces. Note
that the ion-surface potential may be much more complex than the simple form assumed
in Eq. 5.21.
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Figure 5.6: (a) Effect of the bulk salt concentration c0 on the electrokinetic surface charge density
σek as a function of the bare surface charge density σ0 for hydrophilic surfaces (blue lines), calculated
using zs = 0.3 and ηbulk/ηi = 1/3 (No 1. in Tab. 5.1) in combination with zdds

⊥ = 0.10 nm, and
for hydrophobic surfaces (red lines), calculated using zs = 0.15 nm and ηbulk/ηi = 15 (No 4. in
Tab. 5.1) in combination with zdds

⊥ = 0.12 nm. For all curves a± = 0.3 nm and µ± (z) = 0. (b)
Dependence of σek on the strength α of the non-electrostatic potential µ± (z) given in Eq. 5.21.
For illustration purposes, we use the hydrophilic dielectric dividing surface zdds

⊥ = 0.10 nm and
bulk viscosity ηi = ηbulk. The bulk salt concentration c0 = 1 mM.

5.5.2 Fitting Experimental Data

In the previous sections we have shown that the dielectric profile of Eq. 5.9 induces
condensation of ions into a thin layer, and that the resulting electrokinetic and conductive
surface charge densities qualitatively correspond to the experimental trends sketched in
Fig. 5.1. In the following, we will fit the model to published experimental data using the
interaction strength α of the non-electrostatic potential µ± (z), given in Eq. 5.21, as a free
parameter.

In Fig. 5.7, we show measurements of the electrokinetic surface charge density σek taken
from Ref. [175] as symbols, together with the fitted curves. At the hydrophilic surfaces, the
model captures the data very well over the entire range of the bare surface charge density
σ0 . Note that the data presented in Ref. [175] have been corrected using a different model
for the anomalous surface conduction, and that the raw data reproduced here have been
reconstructed. At the hydrophobic surface, the electrokinetic surface charge density σek
exceeds the bare surface charge density for |σ0 | < 0.15 e/nm2, which is reproduced by
the model. Originally, this apparent extra electrokinetic surface charge was considered
to be a measurement error [175]. From our calculations we conclude, however, that it
is possibly caused by hydrodynamic slip at the solid surface. At high absolute values of
the bare surface charge density σ0 , the model disagrees with the experimental data at the
hydrophobic surface, which probably has to do with the simplified model used. The fit
parameter α is negative at the hydrophilic surfaces, indicating that ions are attracted to
polar surfaces, and slightly positive at the hydrophobic surface, indicating that ions are
repelled from non-polar surfaces, in line with results from molecular dynamics simulations
[122]. Again, the opposite trend of σek as a function of bulk salt concentration at the two
surface types in Fig. 5.7 is captured very well within our model.

As symbols in Fig. 5.8, we reproduce experimental data of the conductive surface charge
density σc as a function of the electrokinetic surface charge density σek at (a) hydrophilic
surfaces and (b) hydrophobic surfaces in contact with a kcl solution at several low salt
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ek
the values reported

in Ref. [175]. For the hydrophilic curves, zdds
⊥ = 0.10 nm, zs = 0.3 nm and ηi = 3ηbulk, giving

b = −0.2 nm (viscosity profile No 1 in Tab. 5.1). For the hydrophobic curves, zdds
⊥ = 0.12 nm,

zs = 0.15 nm and ηi = ηbulk/15, giving b = 2.1 nm (viscosity profile No 4 in Tab. 5.1). The fit
parameters used are α = −0.25 (tio2), α = −1.7 (feooh) and α = 0.25 (agi).

concentrations c0 . The data on silica particles [195] and polystyrene particles [181, 196]
have been taken from literature directly. The data on rectangular silica channels [130] have
been fitted numerically with the Gouy-Chapman model for a slit-like geometry to extract
σek and σc from the streaming potential and the electrical conductance respectively. The
spread in the data is likely to be caused by the different materials and geometries used in
the experiments. In Fig. 5.8 (a), we show our model for the hydrophilic viscosity profile
(No 1. in Tab. 5.1: b = −0.2 nm) using α = 0 (solid line) and α = −1 (broken line) for
illustration. The salt concentration for all calculated curves is c0 = 1 mM, because at low
salt concentration the dependence of σek and σc on c0 is minor. The model captures the
data very well, using an attractive non-electrostatic potential with an interaction strength
between α = 0 and α ≃ −1. For the curves in Fig. 5.8 (b), we use the viscosity profile
No 4. in Tab. 5.1 (b = 2.1 nm), as appropriate for very hydrophobic surfaces. We use
α = 0 (solid line) and α = 1 (dotted line), showing that the hydrophobic surface can be
modeled with a non-electrostatic interaction around α = 0, or a slightly repulsive potential
of the order of α = 1. The slight non-electrostatic attraction at the hydrophilic surface
and repulsion at the hydrophobic surface corresponds well to the fit parameters used to
model σek in Fig. 5.7, as well as to the trend expected from simulations of uncharged
polar and non-polar surfaces [122]. However, fitting the capacitance data shown in Fig.
2.12 in Sec. 2.4.3, which are taken in a different concentration regime, requires a repulsive
non-electrostatic potential for all data. The only difference in the model is the use of
the viscosity profile, which is not needed to calculate the capacitance. Therefore, the
discrepancy is likely to be related to the fact that we use the viscosity profiles from
molecular dynamics simulations at atomically smooth surfaces. A more accurate viscosity
profile, or including the effect of surface roughness, may reconcile the different results.
Alternatively, the effective boundary position at which the electrostatic external potential
is applied, on which the double-layer capacitance depends sensitively, might be displaced
from the aqueous phase in measurements on conducting materials, such as graphene layers.



5. Mobility & Conductivity 93

-0.2-0.10

-0.2

-0.1

0

-0.4-0.3-0.2-0.10

σ
c
 (

e/
n
m

2 )

σek (e/nm2) σek (e/nm2)

-0.4

-0.3

-0.2

-0.1

0

c0 (mM)

0.316
1
3.16
10

1
0

α

-1
0.1

HydrophobicHydrophilic

ba

Figure 5.8: Conductive surface charge density σc versus electrokinetic surface charge density
σek for different systems in contact with a kcl solution of bulk concentration c0 . (a) Data from
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red, Ref. [196]). Curves are shown for interaction parameters α = 0 and α = −1 (hydrophilic)
and α = 0 and α = 1 (hydrophobic), using a bulk concentration of 1 mM.

5.6 Summary & Conclusions

Using a dielectric profile with a low-dielectric layer at the interface, as extracted from
molecular dynamics simulations, in a modified Poisson-Boltzmann equation, we are able to
explain three well-established experimental puzzles that have not been understood within
the context of a single model before. First, we capture the saturation of the electro-
osmotic surface charge density σek as a function of the bare surface charge density σ0 .
Second, we explain the excess surface conductivity commonly measured in electrokinetic
experiments, making the assumption of anomalous electrical conductance behind the shear
plane superfluous. Third, we reproduce the opposite trends of the electro-osmotic mobility
as a function of salt concentration at hydrophilic and hydrophobic surfaces. The physical
mechanism leading to the observed behavior is the enhanced condensation of ions close to
the surface, which is due to the low effective dielectric constant. This causes saturation of
the electrokinetic surface charge density, but not of the conductive surface charge density,
explaining the notion of anomalous excess surface conductivity.
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Chapter 6
Final Observations & Outlook

The aim of the work described in the preceding chapters is to incorporate information
about the molecular structure of interfacial water into the description of the static and
dynamic properties of aqueous solutes, using molecular dynamics (md) simulations to
complement continuum theory. We show that the use of continuum theory enables us to
reach length and time scales that are unattainable using only md simulations. At the same
time, it provides us with the flexibility to easily vary system parameters such as geometry,
salt concentration and surface charge density. One of the most significant advantages of
this combination of molecular detail, flexibility of model parameters and sufficiently large
scale is that it allows direct comparison with experimental data. Our multiscale modeling
approach thus provides us with the means for experimental verification of our theoretical
models, and simultaneously offers new insight into the molecular origin of experimental
observations.

Summarizing the results of our work, we first establish the framework to extract the
full tensorial dielectric interface profiles from md data (Chapter 2). Especially the per-
pendicular dielectric profiles ε−1

⊥ (z) exhibit rich structure and distinct differences between
hydrophobic and hydrophilic surfaces. In the context of coarse-grained Poisson-Boltzmann
modeling, experimental capacitance data are well reproduced, indicating the validity of
our theoretical approach. We show that a low-dielectric interfacial layer – a concept known
as the Stern layer – arises naturally from dielectric interfacial effects of pure water, at least
at low salt concentration. In this way, we establish the molecular origin of the Stern layer,
which has been used in models of the electric double layer for almost a century. The di-
electric dividing surface position is suggested as a straightforward definition of the width
of a Stern layer with ε = 1.

Second, we quantify how the hydrodynamic boundary condition influences electrokinetic
flow (Chapter 3). In particular, we show that the electrokinetic energy conversion efficiency
in hydrophilic nanofluidic channels agrees well with the hydrodynamic model of a single
interfacial water layer with strongly enhanced viscosity. In addition, using estimates from
ab initio simulations, we show that charge transfer between water molecules – which is
one of the molecular effects disregarded in classical md simulations – does not contribute
significantly to the electrophoretic mobility of gas bubbles.

Third, we incorporate molecular spinning of water into the Navier Stokes equation,
showing that electrokinetic pumping of water in absence of mobile charges is possible with
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rotating electric fields, which opens the way for efficient power conversion in nanoscopic
devices (Chapter 4). Similarly, an electric field in the shape of a running wave, generated
by an array of externally attached electrodes, may be used to drive the flow of pure water
through a carbon nanotube. Static electric fields in an electro-neutral dipolar fluid do not
give rise to flow, however, even in the presence of dipolar surface ordering. That means
that, although the polar molecular ordering has a decisive influence on the interfacial
electrostatics as well as on the distribution of ions at charged interfaces, it does not have
a direct effect on the mobility of solutes in static electric fields. This result marks the end
of a surge of debate and speculation about molecular ordering as the possible origin of the
observed electrophoretic mobility of nominally uncharged oil droplets and gas bubbles in
pure water, proving that its source must be found elsewhere.

Finally, we incorporate the combined effects of the varying dielectric permittivity and
the viscosity profile into a modified continuum theory, and numerically calculate the
electro-osmotic flow and the electric surface conductivity of charged surfaces (Chapter
5). Our model captures the experimental trends of the electro-osmotic flow as a function
of the bare surface charge density, as well as its dependence on the bulk salt concentration
with high accuracy. Moreover, the experimentally well-established excess surface conduc-
tivity, generally referred to as anomalous surface conductivity follows directly from our
model. The latter result makes the assumption of electrical conductance through other-
wise static water layers – which has been the common explanation of the experimental
observations – superfluous. Our model provides direct insight into the molecular origin of
the dynamic properties of interfacial water layers, which have been elusive and subject to
speculation for a long time.

In conclusion, we show that classical molecular dynamics simulations can be used to pro-
vide the molecular information missing from standard continuum theory, and that taking
the profiles from md simulations into account yields very good agreement with experimen-
tal data on a wide range of static and dynamic properties of aqueous interfaces. Therefore,
at the current stage, our modeling scheme seems to contain sufficient complexity to ex-
plain a number of at-first-sight disconnected and hitherto puzzling experimental findings
and trends. Needless to say, however, it only constitutes a first step toward a complete
description of the intricate electrostatic and electrokinetic properties of charged surfaces
in a unified framework.

Future work could be aimed at extending our modeling to include a number of important
effects that have been left out up to now; examples include charge regulation at the
surface as a function of varying salt concentration, surface roughness and curvature and
electrofriction effects [197], as well as electrostatic correlation effects beyond the mean-field
level [198]. We have also made some rigorous simplifying approximations, e.g. in studying
planar surfaces in contact with pure water and modeling the viscosity and dielectric profiles
by simple square-well functions (Chapter 5). In the remainder of this chapter, we list
possible directions for future research.

Ions at interfaces. All profiles calculated in this thesis are extracted from md simulations
of pure water at uncharged surfaces. The influence that ions and surface charges have on
the hydrodynamic interfacial properties and on the dielectric profile comprises both the
effect of atomic polarizability and the effect of highly charged objects on the local water
structure. Modifications to the dielectric profile and non-linear effects are expected at high
salt concentrations. In addition, surface charges cause electrofriction, which affects the
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hydrodynamic properties of the interface. It is unclear whether such contributions can be
calculated from classical md simulations, or whether e.g. quantum-chemical simulations
are needed.

Another simplification used in our current work is to treat the non-electrostatic surface-
ion interaction using a simple exponentially decaying function. Ion adsorption potentials
may be much more complex, and deserve attention in future investigations.

Polar ions. Propensity of the water ions hydronium (h3o
+) and hydroxide (oh−) for

adsorption on different surface types remains controversial. Different experimental results
have contradictory interpretations, and conclusions from md simulations are questionable
because of the lack of reliable force fields. In Ref. [i], we report on the optimization
of a classical md force field for hydronium and hydroxide with respect to the solvation
free energy and the activity coefficient. In future work, these force fields can be used to
gain insight in the molecular properties that determine the behavior of the water ions at
aqueous interfaces.

Non-local dielectric effects. High surface charge density reduces the typical decay length
of the displacement field. When the characteristic length scale of the displacement field
variation reaches the typical length scale on which the dielectric profile varies, the full
non-local dielectric tensor is needed to properly calculate the electrostatics. The limits
of applicability of our current approach, as well as a suitable theoretical framework to
treat non-local dielectric effects on a molecular level have not been established and need
attention in future studies.

Effects beyond mean-field theory. In this thesis, all electrostatics have been treated on
the mean-field level, which provides an excellent description of some of the most commonly
encountered systems, namely monovalent ions at moderate salt concentrations. The ap-
proximation breaks down, however, for high surface charge density, as well as for high
counterion valency, in which case correlated effects such as image-charge interactions and
ion-ion correlations gain importance.

Non-ideal surfaces and complex geometries. Finally, the viscosity profile, density and
dielectric profile at inhomogeneously charged, corrugated and curved surfaces deviate from
the predictions for smooth planar surfaces, but to which extent is unclear. Therefore, more
research is needed to establish whether our current theoretical models of the interfacial
properties can be used as building blocks to extend our current theoretical framework to
more complicated geometries and surface types.
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Appendix A
Literature Values of the
Double-Layer Capacitance

This appendix contains an overview of published experimental values of the double-layer
capacitance on various carbon-based surfaces in aqueous electrolytes. The capacitance
of the electrical double layer is measured using cyclic voltammetry, galvanostatic charge-
discharge or ac impedance spectroscopy. The accessible surface area is determined using
n2 adsorption.

In the tables below, we have grouped the different measurements based on the contact
angle in aqueous solution; when below 90◦, the substrate is classified as hydrophilic (listed
in Tab. A.1), otherwise as hydrophobic (listed in Tab. A.2). The scattering in the data
between substrates and electrolytes is larger than the structural difference between hy-
drophilic and hydrophobic substrates. Nevertheless, when a specific substrate is modified
to become more hydrophilic, for example using functional groups or doping, the double-
layer capacitance increases [30, 199]. Materials of which the contact angle is unknown or
unclear are displayed in Tab. A.3. Many of the materials used for double-layer capacitors
belong to the class of so-called activated carbons, which are treated with a gas plasma or
a strong acid or base solution to make the surface more porous. The specific capacitance
of the activated carbons is shown in Tab. A.4. While increasing the total capacitance of
the sample, activation of a carbon surface often decreases the capacitance per unit surface
area dramatically [200, 201]. Although the mechanism leading to this decrease is unclear,
we can safely assume that a part of the additional surface area created by the activation
process is inaccessible to the electrolyte, and therefore does not contribute to the double-
layer capacitance. Because of these poorly defined surface characteristics, Fig. 2.12 of Sec.
2.4.3 only contains the data from Tabs. A.1, A.2 and A.3.
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Table A.1: Double-layer capacitance of hydrophilic carbon-based materials.
Surface material Contact angle Electrolyte Concentration Capacitance Ref.

(◦) (M) (µF/cm2)

Carbon fibers 24 - 37 [202] h2so4 0.5 6.0 [203]a

7.5

9.2

12.9

Carbon-coated al2o3 57 h2so4 1 7.0 [199]

Nitrogen-doped 41 11.4

Boron-doped 60 12.9

Oxidated polyvinyl- 45 - 67 h2so4 1 13.2 [204]b

pyridine [205, 206]

Blend with coal-tar 14.3

pitch

aDifferent values correspond to different commercial samples (untreated).
bValues estimated by voltammetry at 1 mVs−1. The blend with coal tar pitch is 1 : 1.

Table A.2: Double-layer capacitance of hydrophobic carbon-based materials.
Surface material Contact angle Electrolyte Concentration Capacitance Ref.

(◦) (M) (µF/cm2)

Boron-doped diamond > 90 [207] h2so4 0.1 3.7 [208]a

7.1

kcl 0.1 3.4

4.5

nano3 0.1 3.8

6.3

naoh 0.1 3.9

4.8

Carbide-derived carbon > 90 [209] h2so4 2 11.4 [210]

tic, sic & sic/tic 13.8

11.8

Graphite 98 [211] koh 6 17.5 [212]b

16.7

19.2

25.9

33.9

41.6

51.4

64.0

Graphene nanosheets 127 [211] koh 7.6 29 [213]c

26

52

Carbon black h2so4 1 8 [214]

Graphite powder nacl 5.6 35

aThe different values correspond to ac impedance and cyclic voltametry measurements, respectively.
bThe surface area of natural graphite was increased using ball-milling; different values correspond to

different milling times.
cDifferent values correspond to different concentrations of oxidant used to prepare the graphene sheets.
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Table A.3: Double-layer capacitance of materials with unknown contact angle.
Surface material Electrolyte Concentration Capacitance Ref.

(M) (µF/cm2)

Porous carbon h2so4 1 5.3 [215]

Porous carbon with polyaniline 9.0

Silica-templated mesoporous carbon h2so4 1 12.8 [204]

10.1

7.4

9.3

11.4

9.4

Silica-templated mesoporous carbon h2so4 1 7.3 [216]

2 14 [217]

2 13 [218]

Silica-templated mesoporous carbon h2so4 1 10.2 [219]a

10.6

10.7

10.9

koh 6 9.8

10.9

8.9

10.6

Mesoporous carbon with nio koh 2 18.2 [220]

Carbon aerogel koh 4 23 [214]

koh 6 28.5 [221]

Porous carbon koh 6 33 [201]

Self-ordered mesoporous carbon lipf6 1 10 [222]

Nitrogen-containing mesoporous carbon koh 6 39.2 [200]b

Ordered mesoporous carbon 10.0

Porous carbon from carbonization koh 6 20.8 [223]c

of poly(vinylidene chloride) 22.0

20.8

18.2

15.2

12.9

Diamond film nacl 0.5 3.7 [224]d

Polyacrylonitrile h2so4 1 24.9 [204]

Blend with coal tar pitch 20.3

17.5

tic/tio2 h2so4 2 14.8 [210]

Carbon composite from waste paper koh 6 43.2 [221]

aData taken at two different samples, using galvanostatic discharge at 100 mAg−1 and using cyclic
voltammetry at 1 mVs−1.

bData taken at the lowest scan rate (2 mVs−1).
cDifferent values correspond to different carbonization temperatures (400◦C – 900◦C).
dAfter equilibration in electrolyte, assuming complete wetting at the maximum of the capacitance.
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Table A.4: Double-layer capacitance of different kinds of activated carbons.
Surface material Electrolyte Concentration Capacitance Ref.

(M) (µF/cm2)

co2 activated porous carbon koh 6 13 [201]

9.6

koh activated porous carbon 10

8.8

Nitrogen-containing mesoporous koh 6 26.2 [200]

carbon, activated with koh 13.7

11.3

Ordered mesoporous carbon, koh 6 11.2 [200]

activated with koh 12.7

12.4

koh-activated carbon h2so4 1 20.4 [225]a

25.1

26.9

naoh-activated carbon 24.7

25.0

28.9

Wood-origin hno3-activated carbon h2so4 1 11.6 [226]b

10.3

19.1

25.5

23.0

32.6

Activated carbon nacl 5.6 19 [214]

o2-activated carbon fibers 6.6 [203]

7.0

9.1

13.2

aDifferent values correspond to different carbonization temperatures (600◦C – 700◦C).
bData taken using galvanostatic charge-discharge at 50 − 100 mAg−1; Different values correspond to

samples with different surface functional groups.



Appendix B
Electrokinetics Within the
Gouy-Chapman Model

We derive the electro-osmotic mobility, the electrokinetic surface charge density and the
conductive surface charge density from the Gouy-Chapman model.

Gouy-Chapman model. The standard Poisson equation is given by

ε0εbulk∇2ψ (z) = −ρ (z) . (B.1)

According to the standard Boltzmann equation, the charge density ρ (z) equals

ρ (z) = −2ec0 sinh [βeψ (z)] . (B.2)

The solution to the Poisson-Boltzmann equation (Eqs. B.1–B.2) for a monovalent elec-
trolyte at a charged plane is

ψ (z) = − 2

βe
ln

1 + γ exp [−κz]
1 − γ exp [−κz] , (B.3)

with
γ = −κλ+

√

κ2λ2 + 1. (B.4)

The inverse Debye screening length κ and the Gouy-Chapman length λ are given by

κ =

√

2e2c0β

ε0εbulk
and λ =

2ε0εbulk
βe|σ| . (B.5)

The electro-osmotic mobility is related to the charge density by the Stokes equation, which
reads

ηbulk∇2u‖ (z) = −ρ (z)E‖, (B.6)

for spatially constant viscosity ηbulk.

Electro-osmotic mobility. Eliminating the charge density ρ (z) from Eqs. B.1 and B.6
yields

ε0εbulk∇2ψ (z) =
ηbulk
E‖

∇2u‖ (z) . (B.7)
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Integrating twice with boundary conditions ∇ψ (z) = ∇u‖ (z) = 0 for z → ∞ and the
no-slip boundary condition u‖ (0) = 0 gives the electro-osmotic mobility,

u‖ (z)

E‖
=
ε0εbulk
ηbulk

[ψ (z) − ψ (0)] . (B.8)

Defining ψ (0) = ζ and using ψ (z → ∞) = 0 leads to the Helmholtz-Smoluchowski equa-
tion as shown in Eq. 4.1.

Electrokinetic surface charge density. To solve the Poisson-Boltzmann equation (given
by Eqs. B.1 and B.2) for a fixed surface charge density σ, we multiply both sides of Eqs.
B.1 and B.2 by 2∇ψ (z), giving

ε0εbulk∇ [∇ψ (z)]2 = 4ec0 sinh [βeψ (z)]∇ψ (z) . (B.9)

Integrating both sides, we arrive at

ε0εbulk [∇ψ (z)]2 =
4c0
β

(cosh [βeψ (z)] − 1) , (B.10)

where we used cosh [βeψ (z)] = 1 for ψ (z) = 0. Rewriting with the help of
√

coshx− 1 =√
2 sinh [x/2], we arrive at

∇ψ (z) = −
√

8c0
βε0εbulk

sinh

[

βeψ (z)

2

]

, (B.11)

where the minus sign applies because ∇ψ (z) must be negative for positive values of ψ (z).
From the electroneutrality condition and ∇ψ (z) = 0 for z → ∞ we find that the surface
charge density equals

σ = −
∫ ∞

0
ρ (z) dz = −ε0εbulk∇ψ (0) . (B.12)

Combining Eq. B.11 with Eq. B.12 gives the Grahame equation

σ =

√

8c0ε0εbulk
β

sinh

[

βe ζ

2

]

. (B.13)

Eq. B.13 defines the electrokinetic surface charge density σek when the ζ-potential is
calculated using Eq. 4.1.

Conductive surface charge density. The surface conductivity is given by Eq. 5.5. Similar
to the Grahame equation, the surface conductivity can be expressed as an equivalent
surface charge density using the Gouy-Chapman theory. For convenience, we split Eq. 5.5
in three parts: the convective part (first line),

I(1)

E‖
=

∫ ∞

0
e
[

c+ (z) − c− (z)
] [

u‖ (z)/E‖

]

dz, (B.14)

and two conductive parts (second line),

I(2)

E‖
=

∫ ∞

0
eν+ (c+ (z) − c0 ) dz

I(3)

E‖
=

∫ ∞

0
eν− (c− (z) − c0 ) dz.

(B.15)
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Inserting the electro-osmotic mobility of Eq. B.8 and the charge density of Eq. B.1 in Eq.
B.14 gives

I(1)

E‖
= −ε

2
0ε

2
bulk

ηbulk

∫ ∞

0
∇2ψ (z) [ψ (z) − ψ (0)] dz, (B.16)

which can be integrated by parts to give

I(1)

E‖
=
ε20ε

2
bulk

ηbulk

∫ ∞

0
[∇ψ (z)]2 dz, (B.17)

using ∇ψ (z) = 0 for z → ∞. Inserting the derivative of Eq. B.3 in Eq. B.17 yields

I(1)

E‖
=
ε2
0
ε2
bulk

ηbulk

∫ ∞

0

[

4κγ exp [−κz]
βe (1 − γ2 exp [−2κz])

]2

dz

=
ε20ε

2
bulk

ηbulk

[

− 8κγ2 exp [−2κz]

β2e2 (1 − γ2 exp [−2κz])

]∞

0

=
ε2
0
ε2
bulk

ηbulk

8κγ2

β2e2 (1 − γ2)
.

(B.18)

The second part of the conductivity equals

I(2)

E‖
=

∫ ∞

0
eν+c0

[

(

1 + γ exp [−κz]
1 − γ exp [−κz]

)2

− 1

]

dz

=

∫ ∞

0
eν+c0

[

4γ exp [−κz]
(1 − γ exp [−κz])2

]

dz

= eν+c0

[

− 4γ exp [−κz]
κ (1 − γ exp [−κz])

]∞

0

= eν+c0
4γ

κ (1 − γ)
.

(B.19)

Similarly,
I(3)

E‖
= −eν−c0

4γ

κ (1 + γ)
. (B.20)

Summing up I =
∑

i I
(i) and rewriting in terms of κ gives the total excess conductivity

I

E‖
=

32γ2e2c20
κ3 (1 − γ2) ηbulk

+
4γec0 ν+

κ (1 + γ)
− 4γec0 ν−
κ (1 − γ)

. (B.21)

For simplicity, we assume ν+ = ν− = ν, so Eq. B.21 becomes

I

E‖
=

γ2

1 − γ2

[

32e2c20
κ3ηbulk

+
8ec0 ν

κ

]

, (B.22)

which is inverted to give the following surface charge density, using Eqs. B.4 and B.5

σ =
κ2ηbulk

4ec0 + νκ2ηbulk

√

I

E‖

√

I

E‖
+

32e2c2
0

κ3ηbulk
+

8ec0 ν

κ
. (B.23)

Eq. B.23 defines the conductive surface charge density σc when the conductivity is calcu-
lated using Eq. 5.5.
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