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Abstract

Metabolites are intermediate molecules of metabolic processes such as sugars, amino
acids, fatty acids or vitamins, which are nowadays measured in a high-throughput man-
ner. The term ‘metabolomics’ was coined for this new discipline around ten years ago,
taking up the popular trend of ‘omics’ words for large-scale measurements. Since me-
tabolites are strongly interconnected in a biochemical reaction network, the measured
metabolite concentrations are not independent. Statistical associations between metab-
olites can be assessed by measures like the Pearson correlation coefficient. Intuitively, if
two molecules are biochemically connected, then high concentrations of one metabolite
tend to coincide with high concentrations of the other metabolite, and vice versa. This
thesis provides an in-depth investigation of such statistical relationships between me-
tabolites in large-scale measurements. Our major aim is to verify whether metabolite
correlation structures carry a detectable footprint of the underlying metabolic reaction

networks.

A major drawback of regular Pearson correlations is their inability to distinguish between
direct and indirect associations. Even for distantly related molecule pairs, we regularly
observe profoundly high correlation coefficients that are hardly distinguishable from
those correlations of biochemically related species. To address the issue of unspecific
correlation coefficients and indirect effects, we use Gaussian graphical models (GGMs).
GGMs are based on so-called partial correlation coefficients and represent a specific class
of probabilistic graphical models, which encode the conditional independence structure
between measured entities. The partial correlation of two metabolites is given by the
pairwise correlation after the effects of all other metabolites have been removed. In this
thesis, we focused on evaluating whether GGMs on metabolomics data correspond to

real metabolic networks.

First, we evaluate whether GGMs have the capacity to reconstruct the topology of a
biochemical network by using computer-simulated reaction systems. This forward sim-
ulation approach has the advantage of knowing the correct topology beforehand. The
reconstruction succeeds for all reaction topologies, except for few scenarios like entirely
irreversible reaction chains or specific types of negative feedback loops. Interestingly,
reconstruction quality of the GGM is better for stronger variation of the input reaction
into the system. This indicates that strong variability as observed in a human metabol-
omics dataset is rather beneficial than detrimental for the reconstruction of metabolic
reactions with GGMs.



Second, we calculate a GGM on a real metabolomics datasets comprising 1000-3000
human serum samples with several hundreds of measured metabolites from a German
population cohort. Global inspection of the resulting GGM network reveals a modular
structure with respect to the underlying metabolic classes. That is, metabolites that
belong to the same class, like amino acids or sphingomyelins, tend to be more con-
nected than molecules from different classes. A manual investigation of subnetworks
with high partial correlations reveals known biochemical reaction cascades from the
beta-oxidation pathway and fatty acid biosynthesis. We systematically validate this
observation by comparing partial correlation coefficients with network distances from a
manually curated fatty acid pathway model. The analysis reveals significantly higher
partial correlations for metabolite pairs with a pathway distance of exactly one. While
this result was expectable, it had never been systematically shown before. Our findings
suggest that indeed GGMs are able to recover biochemical reaction steps from human

blood metabolomics data.

Third, we extend metabolomics GGMs by large-scale SNP genotyping data in order to
tackle a fundamental problem of the experimental field: Metabolomics measurements
usually generate a substantial amount of signals that are reliably detected in the samples,
but for which the biochemical identity of the respective compound remains unknown.
By combining metabolite-SNP associations, GGMs and publically available reaction
lists, we derive pathway classifications for a large fraction of these unknown metabo-
lites. Specifically, GGM edges with known metabolites or genetic associations with loci
encoding for a metabolic protein point us towards specific parts of the metabolic path-
way in which the unknown compound might be involved. For several cases, this even
allows for concrete identity predictions which are then validated experimentally. As an
additional result of the analysis, we find seven previously unreported loci of metabolic
individuality, i.e. loci where genetic variation coincides with changes in blood metabolite

concentrations.

Fourth, we biologically exploit the data-driven metabolic networks reconstructed by the
GGM approach in three different directions: (1) We introduce the concept of ‘effect
networks’, where we annotate a GGM with results from statistical analyses. For in-
stance, we color each metabolite node with relative metabolite differences between male
and female probands in the cohort. This graphical illustration then allows to identify
specific effects of gender differences within the metabolic pathway. The effect network
approach is furthermore applied to fat-free mass and Type-D personality as analyzed

phenotypes. (2) We develop a ‘differential’ GGM on the lipidome of glioblastoma cells
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under varying conditions. By running the estimation procedure on different subsets of
the available samples, we are able to identify specific effects on the lipidome of a com-
bined treatment with a chemotherapeutic agent and a gene construct. (3) We use the
GGM to define biologically meaningful groups of metabolites for two different biological
applications. Intuitively, since partial correlations are closely connected to biochemical
reaction systems, a clustering of the GGM will result in groups of biochemically related

metabolites.

Finally, we shift the focus to independent component analysis (ICA). Covariance-based
methods like GGMs miss higher-order statistical dependencies, which may contain ad-
ditional information on the underlying relationships. We introduce a Bayesian, noisy
ICA framework and discuss the application to the blood serum metabolomics data set.
The recovered statistically independent components each contain strong signatures of
individual metabolic pathways, including amino acid metabolism, lipid metabolism, and
energy metabolism. Moreover, the strength of one independent component (primarily
containing branched-chain amino acids) in the probands displays a stronger association

with plasma HDL concentrations than any metabolite.

Taken together, we demonstrated that GGMs and ICA are able to reconstruct pathway
signatures from high-throughput metabolomics data. Interestingly, our results could be
obtained from metabolomics data in human blood samples. This suggests that blood me-
tabolites not only represent products of leaking from larger metabolically active organs
into the vascular system, but carry a full footprint of the metabolic pathways. Moreover,
we showed that GGMs improved the detection of metabolome-phenotype associations
and possible pathological dysfunctions in blood samples. In summary, this thesis pro-
vided new insights and bioinformatical analysis methods for the statistical relationships

between metabolites, forming a more comprehensive picture of human metabolism.
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Zusammenfassung

Unter ‘Metaboliten’ versteht man Zwischenprodukte des Stoffwechsels, wie zum Beispiel
Zucker, Aminosduren, Fettsduren oder Vitamine. Seit einigen Jahren kénnen Metaboli-
ten in grofler Anzahl mit Hochdurchsatzmethoden gemessen werden. Diese neue Disziplin
nennt sich ‘Metabolomics’ und kniipft damit an den beliebten Trend der ‘omics’ Begrif-
fe flir systemweite Messungen an. Da Metaboliten in einem komplexen, biochemischen
Reaktionsnetzwerk verkniipft sind, stellen die entsprechenden Metabolitenkonzentratio-
nen keine unabhingigen Signale dar, sondern weisen starke Assoziationen miteinander
auf. Solche Zusammenhénge werden in der Regel durch statistische Methoden, wie dem
Pearson Korrelationskoeffizienten, erfasst. Eine biochemische Verbindung zwischen zwei
Metaboliten fithrt zu positiver Korrelation, d.h. hohe Konzentrationen des einen Meta-
boliten gehen mit hohen Konzentrationen des jeweils anderen einher und umgekehrt. In
dieser Arbeit wird ein detaillierter Analyseansatz solcher statistischer Zusammenhénge
zwischen Metaboliten in groflen Messdatensitzen entwickelt. Das Hauptziel ist dabei, zu
priifen, ob die Korrelationsstrukturen zwischen Metaboliten einen messbaren ‘Abdruck’

des darunterliegenden Stoffwechselnetzwerkes beinhalten.

Ein entscheidendes Problem von herkémmlichen Pearson-Korrelationen ist die Unfihig-
keit, zwischen direkten und indirekten Interaktionen in den Daten zu unterscheiden.
Selbst fiir lediglich entfernt verwandte Metabolitenpaare beobachtet man h#ufig hohe
Korrelationen, welche sich kaum von denen von direkt verkniipften Metabolitenpaaren
unterscheiden lassen. In dieser Arbeit werden Gaufische grafische Modelle (GGMs) einge-
setzt, um dieses Problem der unspezifischen Korrelationen gezielt zu bearbeiten. GGMs
basieren auf partiellen Korrelationskoeffizienten und gehoéren zu einer bestimmten Klas-
se probabilistischer grafischer Modelle, welche die bedingten Unabhéngigkeitsstrukturen
zwischen gemessenen Variablen abbilden. Die partielle Korrelation zwischen zwei Me-
taboliten errechnet sich aus der herkémmlichen paarweisen Korrelation, nachdem die
Effekte aller anderen Metaboliten entfernt worden sind. Ein Ziel dieser Arbeit ist es, zu
priifen, ob die Kanten in einem GGM tatséchlichen biochemischen Reaktionen entspre-

chen.

Im ersten Schritt werden wir die Anwendbarkeit von GGMs zur Rekonstruktion meta-
bolischer Netzwerke auf computersimulierten Reaktionssystem evaluieren. Da in solchen
Simulationsansitzen die tatséichliche Netzwerk-Topologie bereits bekannt ist, eignen sie
sich besonders zur Auswertung von Netzwerkrekonstruktionsverfahren wie den GGMs.

Fiir die Mehrzahl der simulierten Systeme rekonstruiert das GGM die Netzwerktopo-



viii

logie korrekt. Lediglich einige wenige Szenarien mit irreversiblen Reaktionsketten oder
bestimmten Formen der negativen Riickkopplung kénnen nicht korrekt erkannt werden.
Weiterhin zeigen wir, dass stérkere Variationen der Eingangsreaktionen in das System
zu einer verbesserten Rekonstruktionsqualitéit fithren. Dieses Ergebnis suggeriert, dass
starke Schwankungen, wie wir sie in menschlichen Metabolomicsdaten beobachten, fiir

den Rekonstruktionsprozess eher vorteilhaft als problematisch sind.

Im zweiten Schritt berechnen wir ein GGM auf Metabolomicsdaten einer groflen deut-
schen Populationskohorte mit mehreren hundert gemessener Metaboliten in 1000-3000
Proben. Das rekonstruierte Netzwerk weist eine modulare Struktur in Bezug auf die zu-
grundeliegenden metabolischen Klassen auf. Dies bedeutet, dass Metaboliten tendenziell
mit anderen Metaboliten derselben Klasse verbunden sind und eher wenige Verbindun-
gen zu anderen Klassen aufweisen. Weiterhin konnen wir bestimmte Teilnetzwerke mit
hohen partiellen Korrelationen bereits bekannten Stoffwechselwegen (‘Pathways’), wie
zum Beispiel der Beta-Oxidation und der Fettsduresynthese, zuweisen. Diesen Befund
konnen wir durch einen systematischen Vergleich aller partiellen Korrelationskoeffizien-
ten mit Netzwerkdistanzen aus einem Pathway-Modell des Fettsdurestoffwechsels weiter
belegen. Metabolitenpaare, die durch eine biochemische Reaktion direkt verbunden sind,
weisen signifikant hohere partielle Korrelation auf nicht direkt verbundene Paare. Zwar
war dies grundsétzlich zu erwarten, wurde aber in keiner Arbeit zuvor systematisch
gezeigt. Dieses Ergebnis belegt, dass GGMs tatséchlich biochemische Reaktionen in Me-

tabolomicsdaten aus menschlichem Blut ermitteln konnen.

Im néchsten Schritt wird der Metabolomics GGM Ansatz um SNP Genotypisierungsda-
ten erweitert. Das Ziel dieses Ansatzes ist die Bearbeitung eines grundsétzlichen Proble-
mes des Metabolomics Felds: In Metabolomicsexperimenten werden iiblicherweise eine
erhebliche Menge reproduzierbarer Signale erzeugt, fiir welche die biochemische Identitét
der zugrundliegenden Substanz noch nicht aufgeklirt werden konnte. Durch die Kom-
bination von Metabolit-SNP Assoziationen, GGMs und Reaktionslisten aus 6ffentlichen
Datenbanken kénnen wir Pathway Klassifikationen fiir eine grofie Anzahl dieser ‘unbe-
kannten” Metaboliten erstellen. Sowohl GGM Kanten zwischen unbekannten und be-
kannten Metaboliten als auch genetische Assoziationen zwischen unbekannten Metabo-
liten und genetischen Loci liefern entsprechende Hinweise auf die Stoffwechselwege, in
welchen der unbekannte Metabolit eine Rolle spielen konnte. In einigen Féllen kénnen
auf diesem Weg sogar konkrete Vorhersagen iiber die biochemischen Identitdten der Un-

bekannten hergeleitet werden, welche anschliefend experimentell getestet werden. Als
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Nebenprodukt unserer Analyse kénnen wir sieben neue genetische Loci identifizieren,

welche mit Konzentrationsverinderungen von Metaboliten im Blut einhergehen.

Die von den GGMs rekonstruierten, datengestiitzen metabolischen Netzwerke werden im
Folgenden in drei Ansétzen fiir biologische Fragestellungen verwendet. (1) Wir fithren
sogenannte ‘Effect networks’ ein, d.h. GGMs welche mit den Ergebnissen von differen-
tiellen statistischen Analysen annotiert werden. Beispielsweise werden die Knoten in
einem GGM mit geschlechtsspezifischen Unterschieden in den Metabolitenkonzentratio-
nen angefirbt. Durch diese grafische Darstellung kénnen wir anschliefend spezifische
Unterschiede in den Stoffwechselwegen zwischen Méannern und Frauen identifizieren.
Weiterhin wird der Effect network Ansatz fiir die Analyse von Stoffwechseleffekten des
Fettfreie-Masse-Index und der Type D Personlichkeit in den Probanden eingesetzt. (2)
Wir entwickeln einen ‘differenziellen’” GGM Ansatz und wenden ihn auf Lipidomics Da-
ten einer Glioblastom Zelllinie unter verschiedenen experimentellen Bedingungen an.
Durch Berechnung von GGMs auf verschiedenen Teilmengen der gemessenen Proben
konnen wir spezifische Effekte eines Chemotherapeutikums und einer speziellen Genthe-
rapie in den Stoffwechselprofilen detektieren. (3) Weiterhin werden die GGMs genutzt,
um biologisch sinnvolle Metabolitengruppen zu definieren. Da wir zuvor zeigen konn-
ten, dass partielle Korrelationen eine direkte Verbindung zu biochemischen Reaktionen
haben, wird ein entsprechendes Clustering der GGM Netzwerke folglich Gruppen von

biologisch verwandten Molekiilen produzieren.

Im letzten Ergebniskapitel beschéftigen wir uns mit Independent Component Analy-
sis (ICA). Kovarianz-basierte Methoden wie GGMs kénnen statistische Abhéngigkeiten
hoherer Ordnung, welche zusétzliche Informationen iiber die zugrundeliegenden Zusam-
menhénge liefern konnten, nicht erfassen. Wir stellen einen bayesschen ICA Ansatz mit
Fehlerterm vor und diskutieren die Anwendung auf die Blut-Metabolomicsdaten. Die
geschitzten Independent Components weisen starke Effekte von bekannten Stoffwech-
selwegen, wie zum Beispiel dem Aminosdurestoffwechsel, dem Lipidstoffwechsel, oder
dem Energiestoffwechsel, auf. Weiterhin konnen wir zeigen, dass die Stérke einer be-
stimmten Independent Component in den Probanden (welche primir verzweigtkettige
Aminoséuren beinhaltet) stirkere Assoziationen mit Plasma HDL Konzentrationen auf-

weist als die reinen Metabolitenkonzentrationen.

Zusammenfassend konnten wir zeigen, dass GGMs und ICA tatséchlich Teile von Stoff-
wechselwegen aus Hochdurchsatz-Datensétzen rekonstruieren kénnen. Von besonderem

Interesse ist hierbei, dass diese Ergebnisse aus Metabolomicsdaten von menschlichem



Blut gewonnen werden konnten. Metaboliten im Blut scheinen daher nicht lediglich
Transport- und Abfallprodukte von metabolisch aktiven Organen zu sein, welche sich
im Gefiafisystem wiederfinden, sondern enthalten vielmehr einen systematischen Ab-
druck der zugrundliegenden Stoffwechselwege. In der vorliegenden Arbeit wurden neue
Erkenntnisse und bioinformatische Methoden zur Analyse der statistischen Zusammen-
hénge zwischen Metaboliten vorgestellt, welche das bisherige Wissen iiber den mensch-

lichen Metabolismus erweitern.
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Chapter 1

Introduction

The investigation of human metabolism, and particularly the investigation of metabolic
disorders, are among the oldest research fields of mankind. For instance, diabetes melli-
tus was already recognized by the Egyptians around 1500 BC as a disorder of ‘too great
emptying of the urine’ [1]. Indians termed this disease ‘honey urine’ due to the obser-
vation that the urine of affected individuals attracted ants and flies. While obviously
the Indians could not determine the mechanistic reasons for their finding, this urine
test can be regarded as one of the first occurrences of an empirically determined disease
biomarker. It was not before the discovery of enzymes at the end of the 19th century [2]
when scientists were allowed to gain direct mechanistic insights into metabolic processes
for the first time. This marked the beginning of the field of biochemistry, giving rise to
a rapid development of experimental methods to monitor biochemical processes. With
the possibility to determine precise concentrations of a substance in a given biosam-
ple, researchers started to collect molecular biomarkers for various pathological states.
A classical example from modern medicine is the case of the phenylketonuria (PKU)
disorder. The most common form of PKU is caused by a loss-of-function mutation of
phenylalanine hydroxylase, an enzyme responsible for the conversion of phenylalanine to
tyrosine [3]. PKU is nowadays readily detected in newborn screenings by an increased
phenylalanine-to-tyrosine ratio in the blood. Hence, in addition to a mere biomarker of
the disease, this represents an early example of a metabolic readout that is directly linked
to the respective underlying pathway mechanism. Furthermore, PKU demonstrates a
well-defined interplay between the genetic makeup of individuals and their metabolism.
Novel experimental techniques nowadays shift the focus from the selected investigation

of specific phenotypes to large-scale metabolic screenings of many individuals and mul-
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tiple disease phenotypes. The main focus of this thesis will be the statistical analysis of
large sets of metabolic markers in human population cohorts, and the thorough inves-
tigation of the biochemical relationships between these markers. Furthermore, we will
demonstrate how to use these relationships to analyze phenotypic traits, e.g. a disease

state, the gender, or the body fat content, in a human population.

1.1 Metabolomics: the new field of large-scale small mol-

ecule measurements

With the advent of advanced measurement methods for small molecules at the end
of the 20th century, the new field of metabolomics was arising. Its goal is to measure
ideally all endogenous ‘metabolites’, i.e. metabolic intermediates like sugars, amino acids
and fatty acids, in a given biological sample [4, 5]. The term metabolomics was first
mentioned independently by Tweeddale et al. [6] and Oliver et al. [7] in 1998. They
referred to a ‘global metabolite pool (metabolome) analysis’, thereby taking up the
popular trend of ‘omics’ words for whole-system measurements. Metabolomics analyses
are predominantly performed using either mass spectrometry (MS) or nuclear magnetic
resonance spectroscopy (NMR) [8-10]. We will not go into the technical details of these
measurement techniques here, since in this work we rather analyze the final concentration
data than dealing with experimental particularities. Specific details on the MS-based

identification of metabolites in a heterogeneous sample will be given in Chapter 6.

Considering the information flow in biological systems, from DNA to RNA, proteins and
enzymes which finally act on the metabolites (Figure 1.1), the metabolome provides a
readout of the integrated response of cellular processes to genetic and environmental
factors [8]. It has therefore also been referred to as the ‘link between genotype and
phenotype’ [11]. It is to be noted that this can be seen as both an advantage and as a
pitfall of metabolomics measurements. On the one hand, metabolic profiles cover a wide
range of effects which allow us to capture genetic effects, health and disease states, and
nutritional habits. On the other hand, this heterogeneity might render the determination
of the possible sources of an effect hard to impossible. Nevertheless, important insights
into metabolism on both physiological and cellular scale have been gained in the past

few years.

Similar to transcriptomics and proteomics, possible applications of metabolomics ap-

proaches are manifold. An economically important branch, which was among the first



1.1. METABOLOMICS 3

Environment

: i F i !
Genome Transcriptome Proteome Metabolome
O CHy
Ho)K‘/kCH3
OGN, 2> \Gg B> 20/ o, T
A. QO /ﬁ OH
Y. .. PRe k~.-"'¢ k..-"x N v o o 1
c E

Figure 1.1: Metabolomics in the context of biological information flow. RNAs are transcribed
from the genomic DNA (A), which are then translated to proteins (B). Signaling cascades and
transcription factors regulate transcriptional activity (C). Metabolic enzymes and transporters
drive the biochemical pathways and thus directly affect metabolite levels (D), which can in turn
act as activity regulators on the proteins (E). Transcriptome, proteome and metabolome are
influenced by environmental factors, which include nutritional effects, health states, life style,
and environmental exposure. (F). Gray arrows represent effects from the environment on the
genome (through mutations) or from the transcriptome (through reverse transcription). These
mechanisms, however, can be considered relevant only on evolutionary scales or during specific
pathological processes.

to use this new technology, is the field of plant research. Studies go from fundamental
genome-metabolome interactions [12], over plant organ-specific metabolic investigations
[13] and host-pathogen interactions [14], to the quality assessment of wine [15]. Inde-
pendent of a specific taxonomic branch, metabolomics measurements can be used to
explore basic cell biological mechanisms. For instance, Fendt et al. [16] investigated
optimal enzyme concentration ranges that maintain metabolic homeostasis. Prominent
applications of metabolomics in human physiology are nutritional interventions, where
the intake of, for instance, sugar-rich or lipid-rich diets, might reveal metabolic sys-
tem properties not visible in the resting state alone [17, 18]. Such studies are usually

performed on small- to medium-sized groups of study probands.

A particularly important study type which has attracted wide interest in the past few
years are large-scale population studies in epidemiological settings. Due to substantial
technical advances in all ‘omics’ fields, it is now possible to obtain (mostly blood) metab-
olite profiles, genotypes, transcriptomics and proteomics measurements for thousands
of study participants. While certainly the statistical power for a random sample from
the general population is substantially lower than for classical case-control experiments,
such a dataset can be applied to a variety of different research questions. For instance,

population-based metabolomics analyses yielded biomarkers for diverse disease pheno-
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types, including eating disorders [19], osteoarthritis [20] and diabetes type II [21, 22].
Moreover, due to the generic nature of population studies, questions like the impact of
smoking on the metabolome [23], coffee consumption [24] or gender-specific differences

[25] could be answered on the same data sets.

The combination of genome-wide association studies (GWAS) with large-scale metabol-
omics measurements is a promising new approach [26-29]. GWAS search for statistical
associations between a given phenotypic trait, like a disease state or a metabolite con-
centration, and genetic variation in a population cohort. Such studies identified a series

of novel genetic loci that could be associated with human metabolic individuality.

An intuitive but important finding was the link between genetic variation in metabolic
transporters and enzymes with functionally associated metabolites. For instance, ge-
netic variation in a locus coding for an enzyme might lead to concentration changes of
substrates or products of the reactions the enzyme catalyzes. Furthermore, as discussed
above, metabolites are particularly interesting traits for GWAS, since the metabolome
represents an integrated phenotype. It is influenced by all regulatory layers, from ge-
netic mutations to nutrition-induced modulation of the metabolism. A comprehensive
genetic analysis like a GWAS is only possible due to the large sample sizes provided by
population-based studies. High-throughput genotyping methods currently only capture
genetic variation with a high frequency in the population (minor allele frequency of at
least 5%). The effects of such common variants on phenotypic traits have been shown
to be rather small and thus only detectable with highly powered statistical analyses
[30]. The reason for this two-fold: First, if a genetic variant excerts a strong phenotypic
effect, it will not be a common variant due natural selection mechanisms [31]. Sec-
ond, rare variants that show a strong effect will usually vanish in the overall population
if not specifically selected for. Capturing and analyzing rare variants is only possible
with extended profiling methods, like next-generation sequencing as shown in the 1,000

genomes project [32].

In this thesis, we primarily focus on metabolomics and genotyping data from the KORA
cohort [33], in combination with several phenotypes like gender or a disease state. KORA
(Kooperative Gesundheitsforschung in der Region Augsburg) is a research platform in
southern Germany with a primary focus on cardiovascular diseases, diabetes mellitus
type 2, and genetic epidemiology. The KORA cohort provides data on several thou-
sand participants with metabolomics measurements on diverse platforms, genotyping

data, transcriptomics, as well as a questionnaire-based survey of medication, disease
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state, nutritional habits, life style parameters, clinical chemistry, and basic anthropo-
metric parameters. A more detailed introduction on the KORA cohort will be given in
Chapter 2.

1.2 Metabolism and Systems Biology

Despite the tremendous progress in both biochemical research and later in the high-
throughput measurement of metabolites, understanding the functional relationships be-
tween metabolite concentrations and physiological traits remains a challenging task.
Metabolic research was therefore early on combined with ideas of systems level analy-
sis, which later lead to the field of systems biology. In fact, metabolic pathways were
among the first systems from molecular biology where rigorous mathematical modeling
was applied. The most famous early metabolic modeling framework is certainly meta-
bolic control analysis (MCA), which was developed by Kacser and Burns [34] in 1973.
Originally referring to ‘The Control of Flux’, the authors developed a specific type of
sensitivity analysis, which investigates the impact of changes in dynamic parameters on
certain properties of the system (i.e. steady state concentrations or molecule oscillation
amplitudes). Today there are hundreds of scientific publications using or building upon
the MCA approach, ranging from drug target discovery [35] over plant metabolism [36]

to biotechnological engineering [37].

Another branch of systems analyses in metabolic systems, mainly inspired by biotech-
nological research in microorganisms, was constraint-based modeling [38]. This method-
ological framework originally works on a list of biochemical reactions along with the
respective stoichiometry of each substrate and product. It introduced the concept of
metabolic fluz, i.e. the number of molecules flowing through each reaction per unit
of time. The central assumption is a constant equilibrium of internal metabolites in
a system. Enzymatic reactions are considered to be fast in comparison to the phys-
iological or chemical changes that drive the system from the outside. Consequently,
the system is assumed to be in steady state: despite constant mass flow through the
system, the actual metabolite concentrations remain unchanged. By only considering
combinations which maintain this required steady state, the number of possible flux
distributions in the system is drastically reduced. There are numerous applications of
the constraint-based metabolic modeling approach. For example, it was used to con-
solidate and refine genome-scale metabolic network reconstructions, to predict minimal

growth media, to determine robustness of metabolic networks, and to find optimal flux
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distributions for bacterial growth [39]. It is important to note that all methods which
employ the constraint-based modeling approach do not take into account actual molecule

concentrations.

With the availability of metabolomics datasets, new systems biological approaches were
developed that included metabolite concentration data into the analysis. Classical dy-
namic modeling and parameter fitting could then be applied to metabolic systems. For
example, Gupta et al. [40] derived a dynamic model of ceramide (a specific type of
sphingolipid) biosynthesis in activated macrophages. Time-course metabolomics and
transcriptomics data were used for parameter calibration of the model. The fitted pa-
rameters are then discussed to gain further insights into the system, in this case e.g.
the apparently sub-maximal activity of certain enzymes in the pathway. In another
study, we [18] developed a simplified model of fatty acid S-oxidation based on fasting
time-course metabolomics data in 15 healthy subjects. The estimated model parameters
could then be shown to improve statistical associations with anthropometric parameters

in comparison to the raw metabolite concentrations.

The majority of systems biological studies based on metabolomics data does not include
a dynamic modeling component. They primarily focus on multivariate statistical meth-
ods for high-dimensional data analysis, coupled with a systematic knowledge-based result
evaluation. For example, Hirai et al. [41] projected changes of glucosinolate metabolism
in Arabidopsis thaliana to known metabolic pathways. This allowed the authors to de-
tect specific metabolic responses to sulfur and nitrogen deficiency. As another example,
Xiao et al. [42] performed singular value decomposition on metabolomics data from the
prefrontal cortex, and subsequently determined which known metabolic pathways dis-
played significantly changed metabolite concentrations upon drug treatment. The model
class proposed for metabolomics analysis in this thesis, Gaussian graphical models, also

represents a member of this group of systems biological approaches.

It is important to acknowledge that systems biological models always represent an ab-
straction of the actual underlying mechanisms. The real biological system is obviously
more complicated than suggested by a formalized model. There are numerous pro-
cesses and general aspects, like physiological and cellular compartmentalization, trans-
port mechanisms, certain thermodynamical constraints and external factors that can
either not be observed or are too complex to be directly included in a model. Neverthe-

less, if we are aware of this abstraction and carefully interpret the results produced by
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a systems biological model, we may gain valuable insights into the underlying biological

system.

1.3 Bioinformatics resources for metabolic research

The evaluation of high-throughput data on a systematic scale heavily relies on publically
available pathway databases. Since the main concept of a systems biological analysis is
the automatic analysis of an entire dataset, the respective biological knowledge going
into the analysis must be represented in a computer-readable format as well. Cur-
rently, public databases usually focus on a specific subset of biochemical interactions.
For instance, the popular KEGG database [43] collects metabolic pathways and sev-
eral signaling pathways, whereas STRING [44] captures protein-protein interactions of
various types. Several projects attempt systematic integration of various molecule in-
teraction databases, such as ConsensusPathDB [45] — which however does not grant full
access to the underlying data — or the commercial Ingenuity Pathway Analysis software
(www.ingenuity.com). To the best of our knowledge, a free and comprehensive database

including multiple types of biological interactions has not yet been published.

It is furthermore important to acknowledge that all databases will show a substantial
amount of both false positives and false negatives due to misannotations and missing
experiments. Even more severe, a strong research bias can be expected for all datasets,
where well-studied biological pathways have a better coverage than less studied ones.
Moreover, the setup of organism- or even tissue-specific pathways sets is far from trivial.
For example, it was not before 2002 when metabolic reconstruction for a specific cell
type, the human erythrocyte, was published [46]. For more complex metabolic systems,
like the human hepatocyte, the first metabolic reconstructions were published within
the last years [47].

In this thesis, we will make use of appropriate, mostly metabolic pathway databases.
However, we have seen that we cannot (yet) consider any set of interactions derived from
a public databases to be actually complete. Issues of incompleteness and bias always
need to be kept in mind when performing systematic, knowledge-based data analyses

and the subsequent result interpretations.
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1.4 Exploiting biological variation

Metabolomics measurements from multiple biological samples usually contain a sub-
stantial amount of biological variation. This holds true for all biological domains, from
biological replicates of bacterial colonies, over tissue samples from clonal mice pop-
ulations, up to blood metabolomics samples from different subjects in a population
cohort. On the biochemical level, metabolite concentrations are determined by a set of
specific metabolic enzymes. Variabilities in enzyme activities, enzyme concentrations
and metabolite exchange rates - induced by a continuous spectrum of metabolic states
throughout measured samples - give rise to characteristic patterns in the metabolite
profiles which are directly linked the to underlying biochemical reaction network. We
will make use of the fact that metabolite concentrations do not represent independent
signals in the data, but display strong correlations which are a direct consequence of
the wiring of the underlying metabolic network. For example, if two molecules are con-
nected through a biochemical reaction, then high concentrations of one metabolite will

coincide with high concentrations of the other metabolite, and vice versa.

Furthermore, we assume that stronger variability in the data will lead to more profound
statistical dependencies between metabolites (Figure 1.2A). A single snapshot of metab-
olite concentrations cannot provide any information about the wiring of the underlying
network. Only if there is a substantial amount of biological variation in the measured
dataset, there will be a statistically detectable footprint of the biochemical network in
the data. In other words, measuring a biological system in heterogeneous, distinct met-
abolic states will reveal its biochemical wiring. Chapter 4 will provide concrete evidence
for this hypothesis. Importantly, we assume the different biological samples to have
identical underlying biochemical reaction systems. If strong differences in the underly-
ing network are expected, a differential evaluation of statistical dependencies might be
favorable (cf. Chapter 7.2).

Statistical relationships are commonly estimated using second-order dependencies like
the correlation coefficient, a measure of the linear association between two entities. Re-
cently, several studies attempted to elucidate the origins of such metabolite-metabolite

correlations in metabolomics data. We will discuss two of these studies in the following.

An early example on how to systematically investigate variation in metabolic systems
has been published by Steuer et al. [48] in 2003. The authors assumed stochastic fluctu-

ations of metabolites inside and outside of cells which are in identical states otherwise
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Figure 1.2: Connecting metabolite level variations with the underlying metabolic system. A:
Stronger variation in samples with identical underlying biochemical networks will lead to a more
profound establishment of statistical dependencies between metabolites. B: Steuer et al. [48]
devised a mathematical framework based on stochastic differential equations, which establishes a
direct connection between dynamical systems (represented as the corresponding Jacobian matrix)
and the observed pairwise covariances. C: In a later study, Camacho et al. [49] explained
covariance between metabolites using co-response profiles. Each enzyme introduces a specific
direction of covariance between metabolites, the overlaying of which results in the finally observed
correlation. Panels B and C were adapted from Krumsiek et al. [50].

(biological replicates). Two cells with an identical internal state will fall into qualita-
tively the same steady state after a given amount of time, but the actually measured
steady state concentrations of biochemical molecules might differ slightly. The main
contribution of the study was the derivation of a mathematical relationship between
metabolite covariance and the Jacobian matrix of the underlying dynamical system
(Figure 1.2B). The Jacobian matrix can be understood as a combination of the network
topology with specific rates for each reaction. In this framework, given a metabolic
network with given reaction rates, one can immediately derive the covariances between
all pairs of metabolites. Moreover, given measured covariance values between metabo-
lites, one can obtain information about the dynamics of the metabolic network acting
on the metabolite pools. The paper provided a first link between variation in measured

metabolite concentrations and properties of the underlying biochemical system.

A later study by Camacho et al. [49] shifted the focus from intrinsic fluctuations of the

metabolite levels to actual differences in enzyme levels, thus directly affecting reaction
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rates in the system. This scenario can be termed extrinsic variation; the states between
different cells actually differ and variations are not only due to stochastic fluctuations.
The main methodological concept of this study was the investigation of so-called ‘co-
response profiles’, which are related to the above-mentioned metabolic control analysis.
For fixed enzyme concentrations, the system will fall into a single, unique steady state
that can be represented as one dot in a 2D phase plane. Varying the concentration
of one enzyme at a given time will create a co-response profile for this enzyme in a
certain direction in metabolic space (solid lines in Figure 1.2C). The mixture of co-
response profiles of all enzymes in the system then produces the co-variation we observe
between metabolites (scatter plot in Figure 1.2C). The study thus provides a systematic
definition of the origins of pairwise correlations in metabolomics data given changes in
enzyme concentrations. Importantly, the paper also describes limitations of correlation-
based approaches. For example, if co-response profiles of similar strength are orthogonal,
the mutual covariance is canceled out and no correlation will be observed. Such issues
have to be kept in mind when attempting to reconstruct metabolic reaction networks

from steady state data.

In summary, both studies aimed to determine the origins of correlations on metabolomics
data, but used conceptually different methodological approaches. While the Steuer et
al. study focused on intrinsic, stochastic fluctuations of the metabolite levels, Camacho

et al. studied the effects of varying enzyme levels.

In this thesis, we aim to find an approximation of the biological variation between hu-
man individuals in a population cohort. Our modeling approach (Chapter 4) represents
a combination of both studies introduced above. Due to substantial differences in nu-
tritional habits, lifestyle and the current metabolic state between individuals, we will
allow for both variation in the enzyme concentrations as well as changes of metabolite
concentrations outside of the modeled system. Each sampled data point then resembles
one individual in the cohort. With respect to the illustration in Figure 1.2C, we are cer-
tainly in the strong variation scenario when analyzing population cohort metabolomics
data.
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Figure 1.3: Example of indirect effects and spurious correlations. Since variable A coordinately
affects B and C, the two variables will also be highly correlated, albeit not directly connected.
r represents the Pearson correlation coefficient between the respective variables.

1.5 The issue of indirect effects, spurious correlations and

false causality

A major drawback of correlation-based analysis is the inability to distinguish between
direct and indirect associations. Correlation coefficients are generally high in large-scale
omics data sets, suggesting a plethora of indirect and systemic associations. For exam-
ple, transcriptional coregulation among many genes will give rise to indirect interaction
effects in mRNA expression data [51]. Similar effects can be observed in metabolic
systems which, in contrast to genetic networks, contain fast biochemical reactions in
an open mass-flow system. Metabolite levels are supposed to be in quasi-steady state
compared to the time scales of upstream regulatory processes [52]. That is, metabolites
will follow changes in gene expression and physiological processes on the order of min-
utes and hours, but will appear unchanged on the order of seconds. These properties,
even though substantially different from mRNA expression mechanisms, also give rise

to indirect, system-wide correlations between distantly connected metabolites.

Unspecifically high correlations between two variables can usually be attributed to the
presence of further variables that were not accounted for in the pairwise analysis. Con-
sider the example with three variables shown in Figure 1.3, where by construction B
and C are directly linked to A'. Given some variation in the data, A and B as well
as A and C will be highly correlated — as expected. However, B and C will also be
highly correlated due to the shared influence of A, even though they are not directly
connected in the underlying network. A is called a confounding factor or confounding

variable with respect to the correlation between B and C [53]. The effect created by such

' A mathematically precise formulation of this three-variable scenario will be given in Chapter 3.
Briefly, B and C are set to A plus a certain amount of normal noise.
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a confounding factor is then referred to as spurious correlation. Examples of spurious
correlations can be found throughout all areas of life. For instance, investigating house
fires in San Francisco, there is a profound correlation between the number of fire engines
that were sent to a fire and the amount of damage the fire caused [54]. Obviously, it is
not the firemen who do the damage (a falsely inferred causality), but rather a missing
confounding factor, namely the actual size of the fire, which should have been taken
into account. Analogously to the example in Figure 1.3, the size of the fire is the causal

factor for both number of fire engine and damage of the fire.

Gaussian graphical models (GGMs) circumvent indirect association effects by evaluating
conditional dependencies in multivariate Gaussian distributions [51]. A GGM is an
undirected graph in which each edge represents the pairwise correlation between two
variables conditioned against the correlations with all other variables (also denoted as
partial correlation coefficients). GGMs have a simple interpretation in terms of linear
regression techniques. When regressing two random variables A and B on the remaining
variables in the data set, the partial correlation coefficient between A and B is given by
the Pearson correlation of the residuals from both regressions. Intuitively speaking, we
remove the (linear) effects of all other variables on A and B and compare the remaining
signals. If the variables are still correlated, the correlation is directly determined by the
association of A and B and not mediated by the other variables. A detailed introduction
to GGMs will be given in Chapter 3. Partial correlations have recently been applied to
biological data sets for the inference of association networks from mRNA expression data
[55-58], and for the elucidation of relationships between genomic features in the human
genome [59]. One previous study used partial correlations between genetic associations

to elucidate genetically determined relations between metabolites [12].

Note that confounding effects are the major reason why correlation is never to be con-
fused with causation. Causation will induce (some kind of) correlation, but whether or
not a high correlation also represents a direct causative effect needs to be carefully eval-
uated [60]. This also holds true for the partial correlations, since further non-measured
confounding factors might be present. Moreover, the directionality of causation cannot
immediately be obtained from pairwise correlations. Nevertheless, when applied and
evaluated appropriately, statistical association measures, and particularly partial corre-
lations, can provide substantial insights into a biological system. This is the major focus
of this thesis.



1.6. RESEARCH QUESTIONS 13

1.6 Research questions

The main goal of this thesis is to determine to which extent it is possible to recover
footprints of biochemical pathways from metabolomics data. Specifically, we will focus
on partial correlations and Gaussian graphical models on metabolomics data for the
reconstruction of metabolic pathways. For gene regulatory systems, the connection
between cellular processes and mRNA or protein correlations is often rather obvious
— direct transcriptional activation or common regulators result in positive correlation,
antagonistic processes lead to negative correlations. In contrast, for mass-flow systems
like metabolism, the nature of pairwise correlations is far from trivial. Small changes
at one point in the system might potentially propagate throughout the whole metabolic
network, without actual regulatory changes in between. This thesis will investigate
how biochemical reaction systems give rise to correlation structures of the respective

metabolite concentrations.

We will then ask how the resulting GGMs can be used in biological applications. Hav-
ing established metabolomics GGMs as a tool for the recovery of direct biochemical
relationships, we can use these unbiased, data-driven metabolic networks for functional
analysis. For instance, metabolomics GGMs can be used to further elucidate phenotypic
differences (e.g. gender or a disease state) in the population, or to transfer functional

classifications for insufficiently annotated metabolites.

Another important question specifically addressed in this thesis is the extent to which
metabolic pathways are reflected in the human blood. Most applications presented here
are based on metabolomics measurements from human serum samples. Blood can easily
and uninvasively be obtained in large population cohorts, but it represents a hetero-
geneous mixture of nutritional effects, transport mechanisms and disposal processes of
various organs and cell types. As discussed above, there are numerous studies which
successfully linked blood markers with cellular metabolic processes (recall for instance
the PKU disease). It has still been an open question, whether the impact of cellular
metabolism on the blood metabolome is rather localized and sporadic, or whether there
is a systematic signature of metabolic pathways in the blood. This thesis will give

substantial evidence for the latter scenario.
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Figure 1.4: Overview of the thesis. Starting from Gaussian graphical models (GGMs) as a
tool to elucidate the second-order conditional dependence structure of a dataset, we will discuss
various applications and extensions of the approach. Chapter 3 introduces the mathematical
backgrounds of GGMs. In Chapters 4 and 5, we evaluate GGMs as a tool to reconstruct bio-
chemical reaction networks on computer-simulated systems and real metabolomics data from
a population cohort. Chapter 6 then introduces an approach to combine GGMs with genetics
data in order to provide functional classifications of unknown metabolites. In Chapter 7 we
discuss applications of the GGM approach to elucidate group-specific metabolome differences
(e.g. between males and females), and to determine biologically meaningful metabolite groups.
Finally, Chapter 8 introduces independent component analysis (ICA) as a statistical tool which
extends the covariance-based analysis of GGMs.

1.7 Overview of this thesis

In the following, we will briefly outline the content of this thesis. A graphical overview

is given in Figure 1.4.

Chapter 2 introduces the KORA population and the different datasets used throughout
this thesis. We will discuss the ‘Biocrates’ and ‘Metabolon’ metabolomics measurements

as well as the genotyping data and further covariates.

In the introductory Chapter 3, we provide an overview of independence, conditional
distributions, covariance, correlations, partial correlations and Gaussian graphical mod-
els. A detailed derivation of the connection between partial correlation coefficients and

pairwise conditional independence for multivariate Gaussian distributions will be given.
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We discuss various mathematical properties of GGMs and review published estimation

algorithms.

Chapter 4 will then present an application of the GGM methodology to computer-
simulated reaction systems. We model biological variation by a log-normal noise model
on the metabolic reaction rates and create in silico metabolomics measurements by
forward simulation and steady state determination. In most scenarios, a GGM properly
reconstructs the correct network topology, while regular correlation coefficients fail to

distinguish direct from indirect relationships.

In Chapter 5, we apply the GGM methodology to a human metabolomics dataset of
151 measured metabolites, most of which are lipid species, in 1020 fasting serum samples
from the KORA F4 population. Applying both manual investigation and a systematic
analysis of the resulting metabolomics GGM, we find that, to a significant extend,
connected metabolites in the model indeed correspond to real biochemical reactions.
This finding demonstrates GGMs as a suitable tool for the unbiased reconstruction of

metabolic pathways from high-throughput metabolomics data.

Chapter 6 introduces a specific application of GGMs for the identification of unknown
metabolites. Untargeted metabolomics measurements frequently generate signals where
a certain substance can be reliably detected in the sample, but the precise biochemical
identity of the compound remains to be elucidated. By combining the GGM method-
ology with genome-wide association studies, we are able to derive pathway predictions
for a series of such unknown metabolites. For a number of cases, this even allows for a
concrete pathway classification, which is then experimentally validated in the lab. Fur-
thermore, we identify seven genetic loci that were previously unreported to associate

with blood metabolite concentrations.

Several further applications of metabolomics GGMs to specific biological questions are
then demonstrated in Chapter 7. In three projects, we integrate the GGMs with results
from differential concentration analyses of gender-specific differences, influences of the
fat-free body mass, and the type D personality on the metabolome. Using this specific
combination of classical statistical methods with the network-based GGM approach
(‘effect networks’), we can pinpoint specific changes in the metabolic pathways for the
respective phenotypic traits. Another application introduces the concept of differential
GGMSs, which we use to delineate specific metabolic changes in a glioblastoma cell line
under varying drug treatments. Finally, we will present two projects where GGMs were

used to define biologically meaningful metabolite groups. In one project, GGMs were
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used to further validate a novel enrichment algorithm, the other project provides an in-
depth analysis of metabolite ratios which have previously been shown to be particularly

useful in genome-wide association studies.

In Chapter 8 we extend the purely covariance-based analysis of metabolite dependen-
cies by integrating higher-order statistical moments. Specifically, we use a Bayesian vari-
ant of independent component analysis on the KORA metabolomics data. We can show
that the reconstructed statistically independent metabolite profiles contain strong signa-
tures of specific metabolic pathways, including amino acid metabolism, lipid metabolism,
and energy metabolism. Furthermore, the strength of a specific independent component
in the study participants represents a strong biomarker for blood HLD (high density

lipoprotein) levels.

The final Chapter 9 will discuss the scientific contributions in the context of the field

and discuss possible extensions and potential future projects.
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Materials
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Figure 2.1: Datasets analyzed in this thesis. We used metabolomics data measured on two
different experimental platforms, genotyping data and six general parameters from the KORA
F4 population. The missing value filtering step is required in order to get a full data matrix for
GGM calculation.

KORA (Kooperative Gesundheitsforschung in der Region Augsburg) is a research plat-
form in southern Germany with a primary focus on cardiovascular diseases, diabetes
mellitus type 2, and genetic epidemiology [33]. In four independent health surveys
(termed S1 to S4) between 1984 and 2001, data from a total of 18,000 participants were
collected. Two ten- and seven-year follow-up surveys for S3 and S4, termed F3 and F4,

were conducted to introduce a longitudinal component into the study. During the visits

17
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Figure 2.2: General characteristics of the 1,768 study participants from KORA F4 we mainly
worked with in this thesis. Vertical red lines indicate median values.

information on medical history, risk factors and life style (smoking, physical activities,
etc.), blood pressure, and anthropometric parameters (weight, body mass index, fat-free
mass, height, etc.) were gathered. Furthermore, for S3, S4, F3 and F4, we now have

genotyping data and metabolomics data from blood under fasting conditions.

In this thesis, we will primarily focus metabolomics and genotyping data from a subset
of 1,768 participants of the F4 survey (Figure 2.1). Of these participants, 858 were
male and 910 were female, the median age was 61, and the median body mass index
(BMI) was 27.5 (Figure 2.2). In addition to gender, age and BMI, we will use three
further parameters in our analyses: (1) Plasma high-density lipoprotein (HDL) levels, a
lipid-carrying particle class in the blood. (2) The fat-free mass index (FFMI), a height-
independent measure of fat-free mass based on the body fat percentage. (3) Information
on a type D personality, which can be understood as a general liability to psychological
distress [61].

Metabolomics data were measured on two different experimental platforms. First, a
total of 151 metabolites were measured by electrospray ionization tandem mass spec-
trometry (ESI-MS/MS) with the Biocrates AbsoluteIDQ kit. Details on the experi-
mental procedures can be found in Illig et al. [27]. The metabolite panel comprises 14
amino acids including 13 proteinogenic amino acids and ornithine; hexose (sugars with
6 carbon atoms, e.g. glucose and fructose); 23 acylcarnitines [Cx:y-carn| (with z car-
bon atoms and y double bonds), 7 hydroxy-acylcarnitines [Cx:y-OH-carn|, 6 dicarboxy-
acylcarnitines [Cx:y-DC-carn], and 2 methylated dicarboxy-acylcarnitines variants [Cx:y-
M-DC-carn]; 9 sphingomyelins [SM Cx:y] and 5 hydroxy-sphingomyelins [SM Cx:y-OH]; and
87 phosphatidylcholines (PC). These glycerophospholipids are further subdivided with respect
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to the presence of ester and ether bonds of fatty acid residues with the glycerol moiety. The set
contains 36 diacyl-PCs with two esterified fatty acid residues [PC aa Cx:y], 38 acyl-alkyl-PCs
with one ether-bond at the sn-2 position [PC ae Cx:y] and 13 lyso-PCs with only one ester-
ified fatty acid residue at the sn-1 or sn-2 position [lysoPC a Cx:y]. The mass spectrometry
technology cannot distinguish between the side chains of diacyl-phospholipids. The measured
compounds are thus associated with the sum of carbon atoms and double bounds for both fatty
acid residues. We used a subset of 1,020 samples for this analysis, which represents the first

batch of samples measured at our local metabolomics platform.

In addition to the Biocrates platform, serum samples were measured by Metabolon Inc., NC,
USA. Briefly, metabolic profiling was done using ultrahigh-performance liquid-phase chro-
matography and gas-chromatography separation, coupled with tandem mass spectrometry. De-
tails of the experimental procedures can be found in Suhre et al. [29]. The dataset contains a
total of 292 known compounds and 225 unknown compounds. An unknown represents a repro-
ducible signal in an untargeted metabolomics approach, whose precise biochemical identity has
not been elucidated yet. Unknown metabolites and their functional characterization will be the
main topic of Chapter 6.

In contrast to the lipid-centered Biocrates metabolite panel, the Metabolon panel covers a wide
range of metabolic processes. The known metabolites are subdivided into eight ‘super-pathways’
including ‘Lipid’, ‘Carbohydrate’, ‘Amino acid’, ‘Xenobiotics’, ‘Nucleotide’, ‘Energy’, ‘Pep-
tide’ and ‘Cofactors and vitamins’. In addition, each metabolite is associated with a more
fine-grained ‘sub-pathway’ like ‘Oxidative phosphorylation’, ‘Carnitine metabolism’ or ‘Va-
line, leucine and isoleucine metabolism’. Fatty acid-based lipids are described by the number
of carbon atoms, double bonds and, if applicable, position of the last double bond. For instance,
‘fatty acid 18:2(n-6)’ denotes a fatty acid with 18 carbon atoms and two double bonds, the last
of which lies at the n-6 position (between carbon atom 12 and 13). Phospholipids are named by
their headgroup and the fatty acids in both side chains. For example, PI(20:4(n-6)/0:0) repre-
sents a phosphatidylinositol containing an arachidonate residue (20 carbon atoms, four double
bonds, n-6) at the sn-1 position. PC(0:0/18:0) contains a 18:0 fatty acid at the sn-2 position.
Note that the current metabolite panel only measures lyso-phospholipids, that is phospholipids

with only one fatty acid chain.

The Metabolon dataset contains a substantial amount of missing values (178,325 missing values
out of 914,056 total values), which occur either due to measurement errors or signals below
the detection limit. For the GGM calculation, we require a full data matrix without missing

values. We therefore first excluded metabolites with more than 20% missing values, and then
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samples with more than 10% missing values. The filtered data matrix still contained n=1764
samples with 355 metabolites (217 knowns and 138 unknowns). Remaining missing values

were imputed with the ‘mice’ R package [62].

SNP genotyping was carried out using the Affymetrix GeneChip array 6.0 [29]. For our analy-
ses, we only considered autosomal SNPs passing the following criteria: call rate > 95%, Hardy-
Weinberg-Equilibrium p-value p(HWE) > 10—, minor allele frequency MAF > 1%. In total,
655,658 SNPs were left after filtering. Genotypes are represented by 0, 1, and 2 for major allele
homozygous, heterozygous, and minor allele homozygous with respect to the general popula-

tion.



Chapter 3

Gaussian graphical models

(GGMs)

This chapter introduces the basic concepts of independence, conditional distributions, covari-
ance, correlation coefficients and the subsequent definition of partial correlation coefficients.
We will discuss how this descriptive statistical measure gives rise to a specific probabilistic
model, a Gaussian graphical model (GGM), and determine implications for the overall de-
pendency structure between random variables. We will put a particular focus on conditional
independence between two random variables, which has a direct relationship to the inverse of
a covariance matrix in case of a multivariate Gaussian distribution. Several methods for the
estimation of GGMs will be introduced, both for the well-defined case where we have more
samples than variables, but also algorithms suitable for datasets with less samples than vari-
ables (the more common case in large-scale ‘omics’ analyses). The following sections lay the
mathematical groundwork for Chapters 4 through 7.

3.1 Independence, conditional distributions and condition-

al independence

In the following, we will briefly introduce independence, conditional distributions and condi-
tional independence. The concepts will be used throughout this chapter to estimate Gaussian
graphical models from the covariance matrix of a random vector. For a detailed introduction

to random variables and statistical fundamentals, we refer the interested reader to Grimmett
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and Stirzaker [63] or related literature. Let X and Y be two continuous random variables,
fx(z), fy (y) their respective marginal probability density functions and fx y (x,y) their joint
density. The variables X and Y are independent if and only if the joint density can be factorized

as

fxy(z,y) = fx()fy(y). (3.1)

Intuitively, independence implies that knowledge of the value of one variable provides no infor-
mation about the value of the other variable. We write X 1l Y to denote independence between

the two random variables X and Y.
The conditional probability density function of X given Y = y is defined as

fX,Y (x7 y)
fx(@|Y =y) = =——= Y{y | fr(y) >0} (3-2)
fy(y)
It represents the distribution of X when Y takes a value of y. Comparing equations (3.1) and
(3.2), the independence relation can be reformulated to X 1l Y < fx(z | Y =y) = fx(z).
This notation directly reflects the above-mentioned concept that one variable does not influence
the probability density of the other variable. The conditional probability density function for the
joint distribution of two variables X and Y given a third variable Z is defined analogously as
_ L fX,Y,Z(x7y) Z)
fxy @yl Z =2):=—==——=— V{z| fz(2) > 0}, (3.3)
fz2(2)
where fxy,z(x,y,2) represents the joint density of X, Y and Z. Independence can then be
extended to conditional independence of X and Y given a third variable Z:

XUY)|Z & fxy(myl|lZ=2)=fx|Z=2)fry|Z=2) Y{z|fz(2) >0},
(3.4)

where (X 1l Y') | Z states that X and Y are conditionally independent given Z. Moreover,
the concept can directly be generalized to more than one conditioning variable by introducing

further variables into the conditional probability density function.
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Figure 3.1: Illustration of covariance for bivariate normally distributed variables. Each quadrant
contributes negatively or positively to the total covariance value. Colors indicate the strength

of this effect. The plot shows 250 samples from a normal distribution with zero mean and

covariance matrix ¥ = (L 095).

3.2 Second moment-based statistics

Let X = (X1,..., X)) be a p-dimensional random vector of continuous random variables with
finite second moments. The covariance between two variables X; and X; with 4,5 € {1,...,p}
is defined as

Cov(Xi, X;) = 045 = E[(X; — E[Xi])(X; — E[X;])].

The matrix ¥ = (o;;) of covariance values is referred to as the covariance matrix. Covariance
provides a measure of the linear associations between the involved variables. Intuitively, positive
values indicate that if values of X; are above the mean, values of X; tend to be above the mean
as well, and vice versa (Figure 3.1). By normalizing the covariance with the respective standard

deviations of the random variables, we obtain the population correlation coefficient:

_ COV(Xi,Xj)
VVar(X;)/Var(X;)’

Corr(Xi,Xj) = Pij (35)

which is also referred to as the Pearson product-moment correlation coefficient [64]. Obviously,

—1 < pi; < 1, with 1 representing perfect linear correlation, and -1 perfect anticorrelation.
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Now let x = (x;) € R™*P be a realization of the random vector with n samples, then the
respective sample correlation coefficient 7;; is defined as

Do (Thi — %) (vh) — X;j)

v \/ZZ:1 (ki — iz‘)Q\/ZLl (zx; = %)

)

where X; = %Zzzl xy; represents the sample mean value of the data column x.;, for ¢ =
1,...,p. In the case of a normally distributed random vector X, sample means X; represent
the maximum likelihood (ML) estimators for the mean values E[X;], the sample covariance
LS (zki — X;) (wgj — X;) is the ML estimator for Cov(X;, X;) and, subsequently, r;; rep-
resents the ML estimator for p;; [65]. Note that in order to obtain an unbiased estimator for the
covariance whose expected value precisely equals the covariance, the normalization term ﬁ

instead of % needs be be applied. For the large sample sizes used our metabolomics analysis,

the differences between both estimators will be marginal.

A particularly important property for this thesis is the connection between decorrelation and
independence of two variables (see Section 3.1). In the multivariate Gaussian case, two variables

are (marginally) independent if and only if they are uncorrelated [66]:
XZJ_LXJ <:>,0ij:0 Vi,jE{l,...,p}. (36)

Since the shape a normal distribution is fully parametrized by the covariance matrix, the marginal
density of each variable is invariant to the value of the respective other variable if the pairwise
covariance (or correlation) is zero, cf. equations (3.1) and (3.2). Note that for arbitrary distri-
butions, only the direction X; 1l X; = p;; = 0 holds. Statistical independence always causes
zero correlation, but uncorrelated variables might still be dependent. The same holds true if
the two investigated variables are marginally normally distributed, but not jointly normally dis-
tributed [67].

A statistical test for non-zero correlation coefficients 7;; can be constructed using the Fisher

transformation [68]. The transformation is defined as:

1 1+ 7
2(ri) = 5 ln <+T7).

1*7‘1‘3‘
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For a true correlation value of zero and multivariate normally distributed X, the quantity z is
approximately normally distributed with mean 0 and variance ﬁ A two-sided p-value of r;;

being significantly different from zero can thus be obtained by
p-val(rij) = (1 — ¢ (Vn —3- 2(|ri;]))) - 2, (3.7)

where ¢ stands for the cumulative distribution function of the standard normal distribution.
Note that this procedure can easily be adapted to test the correlation coefficient for difference
from a non-zero value rg. In this thesis, however, we are only interested in correlations being
zero or not, i.e. absent or present statistical dependencies between the corresponding biological

molecules.

3.3 Partial correlations

As already discussed in Chapter 1.5, a major drawback for the application of correlation-based
measures in practice is their inability to distinguish between direct and indirect effects. Partial
correlation coefficients are able to circumvent this problem by estimating the relationship be-
tween two variables conditioned against a given set of other variables. The simplest and most
intuitive derivation of partial correlation coefficients is based on linear regression analysis. Let
V = {1,...,p} be the index set of all variables x € R"*P, and ) C V be an index subset
with 1 < |Q| < p—2. Letxg := (X; | i € Q) be the corresponding subset of random vari-
able realizations arranged in a matrix of column vectors. We regress two variables x;, x; with

i,j € V' \ Q on x¢ separately. For example, the linear regression model of x; on X reads

1
x; = | ¢ | Bio+xB; + €,
1
where [, is the coefficient of the intercept, 3; = (51'1, ceey ﬁi|Q|)T represents a column vector

of regression coefficients and ¢; represents a normally distributed error with zero mean [69]. We

then fit the coefficients as

Q| 2

(/Bi0713i> = arg mig. S 2k —Bio— D> Bu- (xQhut | (3.8)
=1

Bio,B; =1
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Figure 3.2: Derivation of partial correlation coefficients by linear regression. A: Influence dia-
gram of three random variables X, X; and X,. The relationship was modeled as X, ~ N (0,1)
and X; = X, +e1, X, := X, + ez with eg,ea ~ N (0,0.4). B: Realizations x4, x; and x;
of the random variables with n = 100 samples. €; and €; represent the residuals from linear
regression, see text. As expected, all three variables are strongly positively correlated. However,
when comparing the residual vectors of the regression of x; and x; on x, (bottom right), no
remaining correlation can be detected. The variables X; and X; are thus uncorrelated given Xj.
Colored lines mark the residuals for one selected data point.

where Bio and ,[Ail are the least square error estimates of 3o and 3;, respectively, and (x¢)x; rep-
resents the entry of xg at the position £,I. The residuals are then defined as
€ = Y p_y (xm — Bio — Egll By - (xqQ) kl). We regress x; analogously, yielding a residual

vector €;.

The |Q| — order partial correlation coefficient 7ij1@ of X; and x; given X is then defined as the

correlation between the respective residuals €; and €; from these regressions:
Tij\Q = COI‘I‘(éi, €j) . (39)

Figure 3.2 provides a detailed illustration of the idea for one conditioning variable. Note that the

regression calculation is only possible if X has full column rank, since otherwise the problem
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is ill-conditioned — we cannot estimate more independent coefficients in the model than we have
data points. This issue will be discussed in more detail in Section 3.5.

For multivariate normally distributed X, partial correlations have a direct relationship to condi-
tional distributions (see Section 3.1). Let R C V and Q C V be two distinct subsets of variables
in X. Then the covariance matrix X g|q (the covariance of X given X) of the conditional den-
sity is given by

SRrio = SRR — ERQEC;&?EQR, (3.10)

where Y g represents the covariance matrix reduced to the rows and columns of the index
sets R and @, respectively, and Eéé represents the inverse covariance matrix with according
subsetting. Note that the covariance of this conditional density is independent of the actual
value of the variables which are conditioned for. Now let (w;;) = Q = X! be the inverse
covariance matrix, also called precision matrix or concentration matrix of X. Using properties

of the inverse of partitioned matrices (Lauritzen [70], p.243f.), we obtain

Qur = Xrr — 2rE o0 EQR- (3.11)

Comparing equations (3.10) and (3.11), we see that X = Q. We now assume R =
{i,j} and Q = V' \ R, i.e. we investigate the conditional distribution of two variables given all

remaining variables. We can then reformulate this equality as

1 Wi —Wqq
Ypo = Qph = —— . (3.12)

@ RE " det Qgrr —Wjj Wjj
Hence, the variables X; and X are conditionally independent (zero covariance in the condi-
tional distribution) if and only if the respective entry w;; in the inverse covariance matrix is
zero. Similar to marginal independence, in the Gaussian case the value of one variable does not

influence the conditional probability density of the respective other variable, see equation (3.4).

The full-order partial correlation coefficient matrix Z = ((;;) := 74/ can now be derived by a

single matrix inversion step with subsequent normalization (Lauritzen [70], p.129f1.):

Z = (Cij) = —wij/ /@iy (3.13)

The inversion is only well-defined if X has full rank, which almost always the case if the number
of sample rows is equal to or larger than the number of variables p. This can easily be seen when

expressing the covariance calculation as a matrix operation. Without loss of generality, assume
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the samples x to have zero mean (by definition, covariance and correlation are invariant under
translation). Then the respective covariance matrix is given by Cov(x) = %XT -X. Since the rank
of a matrix product is smaller than or equal to the ranks of the respective multiplied matrices, it

follows that rank(Cov(x)) < rank(x).

The inverse covariance matrix ¥~ was first introduced by Dempster [71] in 1972 as a pa-
rameterization of multivariate Gaussian distributions. The procedure was originally termed co-
variance selection and developed to reduce the number of parameters required to describe the
distribution. Note that due to the normalization operation, we could also use the inverse Pearson
correlation matrix instead of the inverse covariance matrix in equation (3.13). Furthermore,
the entire procedure can analogously be performed on other types of correlation coefficients,
for instance Spearman’s rank correlation coefficient which is able to detect arbitrary monotonic
relationships [66, 72].

As seen above, partial correlations extend the marginal independence concept from equation

(3.6) to conditional independence (see Section 3.1) given the variables which are corrected for:
(Xi ain Xj) | XV\{i,j} 54 Cij =0 VZ,] S {1, . ,p}. (3.14)

The variables X; and X are conditionally independent given all remaining variables if and
only if their respective full-order partial correlation is zero. Again, under non-Gaussianity the
forward direction always holds, but the reverse direction might not be true (partially uncorrelated

variables could be conditionally dependent).

The statistical test for non-zero partial correlations is constructed analogously to the regular

Pearson correlations, see equation (3.7). The variance of the Fisher-transformed partial corre-

lations is now given by m, resulting in the following equation for two-sided p-value:

) = ;1n<1+@j>7 pal(Gy) =2+ (1-0 (Va—1Q1=3-2(¢y)) . (315)

1 —Gj
Note that in the full-order scenario |Q| = p — 2.

3.4 From correlations to graphical models

We now introduce graphical models, which represent a combination of concepts from probabil-

ity theory and graph theory. Graphical models represent a class of probabilistic models where
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Figure 3.3: Hypothetical graphical model of five random variables. Any two nodes that do not
share an edge in the graph are conditionally independent given the remaining variables.

conditional independence relationships between variables are represented by a graph [73]. The
central idea is that two random variables might be independent given another set of variables,
and thus their relationship needs not to be explicitly modeled. As an example, one prominent
type of graphical models in biomedical research are Bayesian networks, where the joint prob-
ability of random variables is expressed by a lower-dimensional factorization of conditional
distributions [74]. One example application of Bayesian networks is the inference of gene
regulatory networks from expression data [75]. Importantly, Bayesian networks are based on

directed, acyclic graphs, which prohibits the modeling of circular relationships.

In this thesis, we are particularly interested in Markov random fields, a specific type of graphical
models based on undirected graphs [76]. Let G = (V, E) be an undirected graph! with nodes
V and edges E C {{u,v} | u,v € V}, and X = (X,)pev a random vector of arbitrary
distribution. Then the random variables X, form a Markov random field with respect to G, if

they satisfy the pairwise Markov property:

That is, if no edge between two nodes is present in the graph, then the respective random vari-
ables are conditionally independent given all other variables. In other words, the variables that
cannot be statistically separated by conditioning against the other variables induce the edges of
G. Consider the example graph in Figure 3.3 and assume that X is a Markov random field with
respect to this graph. Then the pairwise Markov property states that, for instance, X, and X
are conditionally independent given the remaining three variables, since they do not share an
edge in the graph.

'For a detailed introduction to graph theory, we refer the reader to specialized text books, e.g. Bondy
and Murty [77]
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There are two additional, equivalent Markov properties which further clarify the connection
between conditional dependencies and the underlying graph. First, the local Markov property
ati:

Xi 1L X\ (ne(i)ufiy) | Xne(i)s (3.17)

where ne(7) represents the set of graph neighbors of node i. For our example scenario, this indi-
cates that X, will already be conditionally independent of X,, X and X, by only conditioning
against X 4. Second, the global Markov property:

Xa 1L XplXc, (3.18)

where A, B, C C V represent distinct node subsets, and C separates A from B in the graph. In
Figure 3.3, { X}, X} separate { X, } from { X4, X}, and thus X, and X as well as X, and X,

are conditionally independent given Xj and X..

If X follows a multivariate normal distribution, then the corresponding random field is called
a Gaussian Markov random field or Gaussian graphical model [78]. For the remainder of this
thesis, we will refer to the second term, Gaussian graphical model, or its abbreviation ‘GGM’.
From equation (3.14) and the pairwise Markov property we can immediately see when a normal
distribution is Markov with respect to a graph G = (V, E):

{i,it¢ E = (;=%;"=0.

Whenever no edge is present between the two nodes in the graph, the respective full-order partial
correlation coefficient must be zero. This relationship provides a straightforward approach to
construct a GGM if the covariance matrix can be properly inverted. We simply construct the

graph which contains an edge for each non-zero entry of X1
{Z,]} el & Cij #0 Vi,jeV. (3.19)

The statistical challenge lies in determining whether an entry ¢;; should be considered zero or
non-zero. Throughout this thesis, we will employ the statistical test of non-zero partial cor-
relation coefficients, including appropriate adjustments for type I errors (i.e. false positives),
introduced in equation (3.15). This simple GGM estimation approach has also been referred
to as edge exclusion [79]. Starting from a fully connected graph, we remove as many edges as
possible given the conditional distribution of each variable pair. More involved GGM estimation
procedures are usually only required if the covariance matrix cannot be properly inverted, see
Section 3.5.
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At this point it is important to understand that the pairwise Markov property is not an equivalence
relation. That is, it requires conditional independence for pairs of nodes without an edge, but
not conditional dependence for nodes that do share an edge. For example, any multivariate
distribution is Markov with respect to a fully connected graph. Therefore, GGM estimation
should include a minimality constraint, in order to derive a smallest possible graph such that the
Markov property still holds (cf. Castelo et al. [80]). The graph constructed using equation (3.19)
merely represents one possible GGM for the underlying distribution which might still contain
edges that could be removed. Specifically, conditioning against all other variables might not be
appropriate in all cases. The covariance of two variables conditioned against all other variables
is non-zero, but there exists a smaller set of variables where this covariance would turn zero.
One then needs to decide which type of conditional association one considers to be ‘correct’.
This issue needs to be kept in mind when applying the approach to real data later. In practice,

we will employ the edge exclusion approach from equation (3.19).

A graph-based representation of the conditional dependency structure between random variables
has several advantages. First and most obvious, a graph represents a convenient mathematical
structure suitable for visualization and manual interpretation. This will become particularly im-
portant when analyzing GGMs with hundreds of variables later in this thesis. Second, the graph
provides systematic insights into the variable relationships. Inspecting the example graph in
Figure 3.3, for instance, demonstrates not only that X, and X are conditionally independent
given all other variables, but also that the conditioning against X; and X, would have sufficed to
separate these variables. Third, graph theory represents a well-established scientific field with a
plethora of algorithms and methods that can immediately be applied. To this end, several GGM
estimation methods specifically exploit the Markov properties in order to reconstruct the depen-

dency structures in a graph-based fashion (see Section 3.5 for examples of such approaches).

Taken together, the graph of a Markov random field contains conditional independence informa-
tion of the underlying distribution.The Markov properties represent the foundation for a rigorous
theory and a plethora of methods and applications, which will not be discussed in further de-

tailed here. We refer the interested reader to the pertinent literature [70, 80, 81].

3.5 The small n, large p problem

In the previous sections we have seen that full-order partial correlations cannot be properly
calculated if the rank of the data matrix is lower than the number of variables p (which in par-

ticular is the case when we have less samples n than variables). Microarray studies yield tens
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of thousands of measured variables, and even for the metabolomics setups used in this thesis we
can by now measure on the order of 500 different compounds. Only for large-scale population
studies like KORA, with around 1000 to 3000 measured samples we can match the number of
variables for the metabolomics experiments, let alone reaching sufficiently many samples for
mRNA expression measurements. Several methods, especially motivated by questions from
omics analyses, employ regularization approaches to circumvent the n < p issue and never-
theless allow for an estimate of partial correlations or, more general, conditional independence.
Although most applications presented in this thesis do not require such methods due to the high
number of measured samples, investigating the respective algorithms in detail yields further

insights into the nature of partial correlation coefficients and GGMs.

Even for situations where we do have sufficiently many samples to invert the covariance ma-
trix, the obtained estimate might not reflect the correct conditional independence relationships.
While the empirical covariance always represents the maximum likelihood estimate of the co-
variance matrix in the data, it might substantially deviate from the true covariance underlying
the measurements for low sample sizes [82, 83]. All methods introduced in the following di-
rectly or indirectly tackle the problem of covariance instability, either by statistical means or by

exploiting the graphical model properties introduced in Section 3.4.

Graph-based methods

A specific class of GGM estimation methods suitable for small n, large p scenarios are graph-
based methods that exploit the properties introduced in Section 3.4. We will review three exam-
ple algorithms in the following. First, de la Fuente et al. [55] introduced an approach which only
calculates up to third-order partial correlations, i.e. |@Q| < 3, for the elucidation of associations

in genomics data.

Such low-order partial correlations can even be calculated for very small sample sizes. More
specifically, the calculation only requires rank(x) > |@Q| + 1 (fitting one regression coefficient
for each covariate, and one for the intercept). For each pair of variables, the algorithm iterates
through all possible combinations of either one, two or three conditioning variables. If the
respective partial correlation drops below significance level at least once, the edge is removed
from the graph. Recall the global Markov property introduced on page 30. A k-order partial
correlation approach will reconstruct the correct model whenever any two nodes in the (true)
underlying dependency network can be separated by removing maximally & other nodes. In the

example graph from Figure 3.3, first-order partial correlations would not have been sufficient
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to properly separate X, and X4, whereas already second-order partial correlations would have
reconstructed the correct graph. Whether or not the removal of only three nodes will be sufficient
for real biological networks might be debated. Importantly, the authors state that the primary
goal of the approach was not to entirely reconstruct the underlying network correctly, but rather
to correct for the ‘most active’ paths in the network and generate new hypotheses on biochemical
interactions. On the other hand, we will see in Chapter 5 that this approach works reasonably

well for a lipid-focused metabolomics dataset.

The second algorithm, published by Castelo et al. [80], follows an approach quite similar to the
de la Fuente et al. study. Instead of enumerating all possible combinations for small k values,
they randomly draw conditioning variable sets in the sense of a Monte Carlo approach, followed
by computation of a non-rejection rate. This rate represents the number of times the null hy-
pothesis of zero partial correlation was rejected. Lower values here indicate a higher probability
of a present edge in the true underlying graph. The method allows larger sets of conditioning
variables, on the order of k = 10 or k¥ = 20 (given that n > k). The approach is developed on a
rich statistical and graph theoretical framework, representing a valuable contribution on its own.
For instance, the authors formalize the above-mentioned node separation concept into graph
property called outer connectivity. A major drawback of the approach as such is the vast num-
ber of variable combinations which arise for larger values of k. For example, from a measured
set of 150 metabolites, we can draw around 10'® subsets of size k¥ = 10, a number which can
obviously not even be remotely reached by a Monte Carlo sampling approach. The probability
of actually drawing a suitable set of conditioning variables that separates the two variables under
investigation, or at least sufficiently lowers their partial correlation to create a detectable signal,
might be unfeasibly low. The approach is evaluated on toy data in the original publication, and

was later applied to reverse-engineer regulatory networks from E.coli expression data [84].

Another graph-based GGM estimation approach employing the Markov properties has been
published by Pefia [79] in 2008. The concept of the algorithm is based on the local Markov
property (equation 3.17). Instead of the ‘neighborhood’ of a node, the author refers to the
Markov boundary (MB) of a node, which is equivalent to the Markov property concept. The
MB is reconstructed from the data for each variable separately. The algorithm alternates be-
tween (1) adding new variables to the Markov boundary which display the highest, significant
partial correlations to the variable under investigation given the current MB, and (2) removing
variables from the boundary whose partial correlations have vanished given the current MB. A
particularity of this approach is the integration of false-discovery rate control directly into the
algorithm. The advantages of this method are calculation speed and good reconstruction perfor-

mance for low sample sizes. Problems might arise due to the ‘greedy’ character of the algorithm
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which might not take into account complex interactions between variables. In the original publi-
cation, the method has been used to reconstruct interaction networks from yeast expression data
(300 samples, 6316 transcripts). A specific high-scoring subnetwork around iron homeostasis is

briefly discussed, where four iron transporter transcripts present central hubs in the network.

Bootstrap aggregation

A simple way of generating an estimate of the inverse covariance matrix, which we require to
compute full-order partial correlations, is to use the Moore-Penrose pseudoinverse. It represents
a generalization of the standard matrix inverse, can be calculated for any singular matrix and re-
duces to the standard inverse if possible [85]. In an empirical Bayes approach termed algorithm,
Schifer and Strimmer [57] used the pseudoinverse in combination with bootstrap aggregation
(bagging) in order to generate a stable estimate of partial correlations in a low sample size sce-
nario. For bagging, bootstrap samples are drawn from the original dataset, the desired statistic is
calculated for each of these samples independently, and finally a mean (bagged) estimate of the
statistic is obtained. This procedure reduces the variance of the estimated statistic. The authors
report two approaches, one where a bagged estimate of the correlation matrix is obtained and
only one pseudoinverse is calculated, and one where the pseudoinverse is subject to bagging.
The former variant is reported to be more suitable for the n < p situation, whereas the latter one
displays small error and good statistical properties when n is on the order of p (which they call
the critical n zone). Note that statistical testing is more involved for this approach, since the
earlier introduced Fisher transformation model, see Equation (3.15), is not appropriate for this
scenario. As a biological application, the authors estimate a GGM from breast cancer expres-
sion data, followed by a manual investigation of high-scoring subnetworks. Interestingly, the
authors later admitted this method to be computationally too demanding for very large p (e.g.

above 1000) [83], and actually removed it from the corresponding GGM estimation R package?.

Shrinkage

As an alternative method to variance reduction of the covariance estimator using bagging, the
same authors suggested a shrinkage-based covariance estimation in the same year [83]. This
algorithm will be used in Chapter 7.2 to estimate GGMs from lipidomics data with very low
sample sizes. Similar to bagging, the general idea of shrinkage methods (also called biased

estimation) is to shrink the variance of an estimator, yet however with a substantially different

’http://cran.r-project.org/web/packages/GeneNet/GeneNet . pdf



3.5. THE SMALL N, LARGE P PROBLEM 35

statistical approach. The basic concept is as follows: In addition to the actual model U to be
estimated (in our case, the full covariance matrix) which might be statistically unstable, one
defines a lower-dimensional submodel T, which usually contains a substantial estimation bias
but is easy to calibrate due to a small amount of parameters. A shrinkage estimator is then
defined as U* = A\T — (1 — A\)U, where the shrinkage parameter A defines the ‘mixture’ of true
model and submodel. The particular challenge is then to find an optimal value for the shrinkage

parameter A, such that the difference between estimated and true parameters is minimal.

The shrinkage target T can have various forms, depending on the respective problem. For covari-
ance estimation, the authors suggest a ‘diagonal, unequal variance’ target, i.e. all off-diagonal
elements are zero and each variable is allowed to have a different variance. The model then
reduces from p - (p + 1)/n to only p parameters to be estimated. Furthermore, the authors
demonstrate how to determine the optimal shrinkage intensity A for this target model analyti-
cally. While obviously T does not represent a proper estimation of the true covariance matrix,
it is statically stable even for small sample sizes. Furthermore, the authors show that in fact any
target T will lead to a reduction of the variance of the estimator. The reduction might however
be neglectable for a strongly misspecified target. With a statistically stable and reasonably accu-
rate estimate of the true covariance matrix, one can then obtain the full-order partial correlation

matrix by matrix inversion.

The shrinkage approach including subsequent partial correlation estimation was then applied to
expression data from E.coli under stress conditions, on a total of p=102 preselected transcripts
under n=8 experimental conditions. The authors describe a specific high-scoring subnetwork
around the genes lacA, lacZ and lacy, i.e. transcripts around the lac operon which they func-
tionally link to the respective experimental conditions. For method comparison, the authors also
generated a ‘relevance network’ based on shrinkage-based (common) correlation coefficients
and a GGM based on a graphical Lasso approach. They claim that the correlation-based ap-
proach is not suitable for recovering biologically reasonable associations, and that the approach
should merely be used to assess marginal statistical independence, cf. equation (3.6). For the
lasso GGM, they report a structural bias, since this method implements sparsity per node in-
stead of for the whole network. This creates a structural constraint on the network which might
prohibit estimation of the correct dependency structure in biological networks. The authors con-
clude by a critical statement on the usage of correlation-based measures in the bioinformatics
field. Correlations are often applied ‘rather blindly’ to datasets with many variables and only
few samples. As discussed, these estimators can then perform very poor and should be replaced

by a statistically more robust variant.
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Further approaches

In addition to the graph-based and estimator variance-reducing approaches mentioned above,
there are numerous further GGM estimation methods suitable for n < p scenarios. For instance,
several algorithms employ L (Lasso) regularization for GGM estimation [86—88]. The basic
idea of Lasso regression is a penalty term for non-zero coefficients, which then automatically
induces sparsity of the model. This approach is not to be confused with the linear regression
given in equation (3.9). Rather, variables are regressed onto each other with Lasso penalty, and
if at least one (or alternatively both) variable has a non-zero coefficient on the other variable, the
estimated value in X ~! will be non-zero. Other methods employ Bayesian ideas for GGM esti-
mation, which allows to define prior distributions for the partial correlation matrix. For instance,
Wong et al. [89] set up a Bayesian framework for covariance selection, with a Markov Chain
Monte Carlo (MCMC) algorithm to sample from the posterior distribution. It is to be noted that
the priors employed in this study do not represent prior knowledge, e.g. from biochemical path-
ways, but rather represent structural properties like sparsity of the estimated graph. A further
branch of estimation approaches deals with robust estimation of Gaussian graphical models, i.e.
account for effects of outliers in the data. We will not go into detail here and refer the reader to

Miyamura and Kano [90] as an exemplary study.

Taken together, there are numerous methods for GGM estimation based on different statistical
and graph theoretical findings for the inverse covariance matrix. They provide both, valuable
alternatives to the simple matrix inversion steps in cases where we have less samples than vari-

ables, but also interesting insights into the properties of this class of graphical models.



Chapter 4

GGMs on computer-simulated

reaction systems

The forward simulation of artificially constructed models is a valuable tool for the evaluation
of network inference methods, which we will use prior to their application to real metabol-
omics data sets. The goal of this approach is to determine the general capabilities of GGMs
to distinguish direct from indirect biochemical reactions, and to discover possible problems and
pitfalls. Specifically, we dynamically model biochemical reactions by ODEs in order to evaluate
the metabolite correlation structures that arise in metabolic systems. As discussed in Chapter
1.4, previous works focused on the modeling of biological replicates with intrinsic noise on the
metabolite levels [48], or varying enzyme concentrations [49]. In contrast, we here investigate
the effects of variation of enzymatic activity and metabolic states in a human population co-
hort. Such variation might be genetically determined or, more likely, be the result of distinct
regulatory effects and metabolic states between individuals. All reaction systems were imple-
mented as ordinary differential equations (ODEs) with simple mass-action kinetics rate laws
and reversible Michaelis-Menten-type enzyme kinetics. In order to account for the enzymatic
variability, we applied a log-normal noise model, which has been previously described to be a

reasonable approximation of cellular rate parameter distributions [91].

The results reported in this chapter are part of the following publication:

* Krumsiek, J., Suhre, K., Illig, T., Adamski, J., and Theis, F.J. Gaussian graphical modeling
reconstructs pathway reactions from high-throughput metabolomics data.. BMC Syst Biol,
5(1):21, 2011

37
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4.1 Modeling metabolic reaction systems by ODEs

We now introduce the methodological backgrounds for the modeling and simulation of meta-
bolic reaction systems.

Letz = (z1,...,x,) be a vector of metabolite concentrations and S € Z™*" the stoichiometry
matrix of a dynamical system with m metabolites and r reactions. Each column in S represents
the compound stoichiometry of a single reaction, with negative values for the educts of a re-
action and positive values for its products (cf. Palsson [92]). Furthermore, we define an educt

stoichiometry matrix S¢, which only contains the negative values from .S. The reaction rate

laws v can be written as v(x, k) = diag(k)c(x), where k := (kq,...,k,) represents a vector
of elementary rate constants and cj(z) := [[";x; “, j = 1,...,r contains the products of

substrate concentrations according to the law of mass action [93]. For example, for the reaction

x1 + T9 — T3 we obtain ¢ = 129, and 221 + 3xo — 2x3 yields ¢ = z1%x23.

For enzyme-catalyzed reactions 4, the corresponding entries in v are formulated using reversible

Michaelis-Menten-type kinetics [94, 95] instead of the mass-action term above:

+ —
P (8] e [P

K}Sw K ]\jf

where V.7,

max and Vo are the product and substrate formation constants, respectively, K3, and

K%, represent the Michaelis constants for substrate and product, [S] represents the substrate
concentration and [P] represents the product concentration. Note that we omitted reaction-
specific parameter indices for simplicity here. Allosteric regulation was modeled using a mixed

inhibition mechanism, which extends the rate law from equation (4.1) as follows:

Vitax Vinax
Yoes - [S] — Yap= - [P]

with [I] being the inhibitor concentration, K; the binding rate of the inhibitor to the enzyme and

Vi

K;; the binding rate of the inhibitor to the substrate-enzyme (or product-enzyme) complex. In a

simple mixed (non-competitive) inhibition scenario, we assume K; = Kj;.
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The ordinary differential equations (ODEs) describing the temporal evolution of the system are
now given by

i—f =S v(z,k). (4.1)
In order to introduce variability, each parameter is subject to fluctuations according to a log-
normal distribution with mean 1 and changing variances: k; ~ LogN(1,c?). For fixed S and
k, Pearson and partial correlations are calculated by drawing the vector £ 5000 times from the
parameter distribution, calculating the corresponding metabolite steady state concentrations and
logarithmizing the obtained values. If the system contains only zeroth-order and first-order reac-
tions (i.e. input reactions and reactions with only one substrate), the steady state concentrations
for a given k can be readily computed by equating (4.1) to zero and solving for ¢ using linear
algebra techniques. On the other hand, if higher order reactions are present, the ODEs are inte-
grated numerically and simulated until equilibrium to get corresponding steady states. For this
purpose, a variable-order solver for stiff differential equations (ode15s) from MATLAB was
used [96].

4.2 GGMs reconstruct direct relationships in artificial re-

action systems

In the following, we will first discuss the general reconstruction capabilities of Gaussian graphi-
cal models on varying biochemical network topologies. The subsequent sections will then focus
on particular features of these systems, including subtle topology changes, input noise, enzyme-

catalyzed reactions and negative feedback.

The default standard deviation o for the simulations was set to 0.2 for the underlying normal
distribution. For each of the 5000 parameter samples, we calculated the metabolite steady state
concentrations on log-scale, and subsequently estimated the GGM by calculating partial corre-

lation coefficients.

The first network we analyzed consists of a linear chain of three metabolites with different vari-
ants of reaction reversibility (Figure 4.1A-C). We observe high pairwise correlations for metab-
olites in mutual equilibrium due to reversible reactions (Figure 4.1A). This is in accordance with
previous findings from Camacho et al. [49], where correlation-generating mechanisms in met-
abolic reaction networks were identified. Furthermore, this simple example demonstrates how

partial correlation coefficients in GGMs discriminate between directly and indirectly related
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Figure 4.1: Evaluation of correlation networks (CN) and Gaussian graphical models (GGM) on
artificial systems. Line widths represent relative edge weights in the respective networks (scaled
to the strongest edges). A: Linear chain of three metabolites with reversible intermediate re-
actions. While the standard Pearson correlation network (CN) is fully connected, implying an
overall high correlation of all metabolites, the GGM correctly discriminates between direct and
indirect interactions. B: Linear chain with irreversible intermediate reactions. Neither CN nor
GGM can distinguish direct from indirect effects, as metabolite A equally determines the levels
of both B and C in our steady state scenario. C: Linear chain with irreversible reactions and
input/output reactions for each metabolite. Although the edge weights for both CN and GGM
are generally lower, the GGM now correctly predicts the network topology. D+E: Branched-
chain first-order networks are correctly reconstructed by the GGM. F: Cofactor-driven network
resembling the first three reactions from the glycolysis pathway. The correlation network fails to
predict the correct pathway relationships. G: Non-linear system with a bi-molecular reaction.
The GGM predicts only a only weak interaction between B and C. This is due to counterantag-
onistic processes of isomerization and substrate participation in the same reaction.
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metabolites. If only irreversible reactions are employed in the chain, neither regular correlation
networks nor GGMs can distinguish between direct and indirect effects (Figure 4.1B). Species
A is the only input metabolite in the system, and thus completely determines the levels of both
B and C. This leads to generally high and non-distinguishable correlations between the three
metabolites. However, if we introduce exchange reactions for all species, the GGM again cor-
rectly describes the network connectivity (Figure 4.1C). Such exchange mechanisms are likely
to be present for most intracellular metabolites, which usually participate in multiple metabolic
pathways (see e.g. KEGG PATHWAY online). Note that for this third case both regular and par-
tial correlation values are notably lower than for the first two chain variants. In addition to linear
chains, pathway modules consisting of branched topologies with first-order, reversible reactions

are correctly reconstructed in the GGM (Figure 4.1D+E).

Next, we studied the influence of cofactor-driven reactions on the reconstruction. Cofactors
are ubiquitous substances usually involved in the transfer of certain molecular moieties or redox
potentials [97]. We investigated such cofactor-coupled reactions (a) because they introduce non-
linearity in the simulated dynamical systems, and (b) because cofactors are usually involved in
many reactions and thus generate network-wide metabolite dependencies. We set up a network
resembling the first three reactions from the glycolysis pathway. It consists of four metabolites
and two energy transfer-related cofactors, ATP and ADP, involved in two phosphorylation reac-
tions [98]. Again the GGM precisely describes metabolite connectivity in the system, whereas
a regular correlation graph leads to false interpretations of the network topology (Figure 4.1F).
Cofactors were modeled with input and output reactions to the rest of the metabolic system in
order to account for the above-mentioned participation of cofactors in various reactions of the
system. Again, it makes a substantial difference whether such exchange reactions are included
in the model or not. Since our toy model only represents a small part of a larger system, missing
exchange reaction for cofactors would create a false mass conservation relation that compro-

mises correlation calculation.

Finally, we investigated the effects of rate laws with non-linear substrate dependencies in the
absence of cofactors. We modeled a reversible, bimolecular split reaction with isomerization of
the two substrates (Figure 4.1G). An example of such a reaction network can be found in the
glycolysis pathway between fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate and dihy-
droxyacetone phosphate. Our simulations demonstrate that again a regular Pearson correlation
network cannot delineate direct from indirect relationships in the pathway. The GGM only de-
tects a weak association between B and C. This is due to counterantagonistic processes in this
reaction setup: isomerization and other reversible reactions generally induce positive correla-

tions, whereas coparticipation as substrates in the same reaction induces negative correlations.
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Such effects of correlation-generating mechanisms which cancel each other out have been de-
scribed before [49] and pose a problem to all reconstruction approaches which rely on linear

dependencies.

4.3 Analysis of reconstruction stability in selected first-

order networks

In addition to the detailed analysis of the seven networks from Figure 4.1, we systematically
investigated the discrimination stability of GGMs on various first-order reaction systems (Fig-
ure 4.2). These include: (1) Three metabolites connected in a row (Chain 3), with all 8 variants
of reversible inner reactions and reversible external reactions. (2) Five metabolites connected
in a row (Chain 5), with all 8 variants of reversible inner reactions and reversible external re-
actions. (3) A branching pathway (Split), with all 8 variants of reversible inner reactions and
reversible external reactions. (4) An irreversible feed-forward loop motif (FFL), and one variant
with external reactions. (5) An irreversible branching and merging motif (Diamond), and one
variant with external reactions. (6) A densely interconnected network of six player with several

subvariants (Dense).

In order to objectively evaluate the discrimination between directly and indirectly connected

metabolites, we calculated sensitivity and specificity as:

TN

= — — and =
sens and spec TNLFP’

TP +FN
with TP true positives, FP false positives, TN true negatives, F'IN false negatives [99].

A metabolite pair is considered true positive if it exhibits a partial correlation above the threshold
and has a direct pathway connection; a false positive represents a metabolite pair also above the
threshold but with no direct pathway connection; a false negative pair lies below the threshold
but does have a direct pathway connection; and finally a true negative pair lies below the thresh-
old and also has no direct pathway connection. The F} score was calculated as the harmonic

mean of both quantities [100]:

sens - spec
=2 7p.
sens + spec
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We generated samples of 1000 simulations (i.e. 1000 measured data points) with log-normal
noise and subsequent partial correlation computation. This procedure was repeated 100 times.
For each of these 100 runs we calculated the discriminatory power according to the area under
the ROC curve. The 100 F} values for each network for both regular and partial correlations are

visualized in Figure 4.3.

In general, partial correlations display a profoundly higher discrimination quality than Pearson
correlations, further confirming our findings from Section 4.2. As expected, Pearson corre-
lations usually yield perfect sensitivity (all true interactions are captured), but a poor speci-
ficity (‘false positives’ introduced by indirect associations). For instance, the reversible reaction
chains with and without exchange reactions are perfectly reconstructed by partial correlations
(median F; = 1.0), whereas Pearson correlations show F scores of 0.8. Similar effects can be
observed for the more complex network topologies ‘Big split’, ‘FFL’, ‘Diamond’ and ‘Dense’.
Only for one case, ‘Dense, all irrev., no intermed., in+out’, Pearson correlations produce a
slightly better F score than partial correlations (F1=0.75 and F1=0.71, respectively). However,
this network cannot be considered properly reconstructed, as also shown in Figure 4.4 (bottom

right) in the following section.

We observed the following reconstruction features for partial correlations: (1) Networks with
reversible reactions show perfect discrimination (except for a few cases in the Big split, rev, all
out network which we attribute to parameter outliers). (2) Irreversible reactions generally impair
the discrimination quality. For the chains, there is no discrimination at all between directly
and indirectly connected metabolites. (3) Input and especially output reactions improve the
quality and make discrimination possible even for the irreversible straight chains. (4) GGMs can
delineate intricate relationships as seen in the FFL and Diamond networks. (5) Discrimination
works acceptable for all variants of the Dense network, but never perfect due to irreversible
reactions and missing input/output mechanisms. (6) Since multiple runs produce different AUC
results (widths of boxes in Figure 4.3), there is a certain stability issue for GGM calculation. It
is to be noted however, that for systems with very instable discrimination results (e.g. ‘Chain 3,

irrev’), this is due only to subtle changes in the correlation values.
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Figure 4.2: Variants of first-order networks. We investigated a total of 32 reaction systems,
including linear chains with combinations of reaction reversibility and boundary reactions, a
split motif, a feed forward loop, a diamond-shaped network and a densely interconnected reaction
system.
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4.4 Stronger input noise generally improves discrimina-

tion quality

In the next step, we analyzed increasing fluctuation strengths for the input reaction of the first
metabolite in all toy networks. Applying the log-normal noise model, we ranged the standard
deviation of the underlying normal distribution from 0 to 10 for the input reaction of the first

metabolite. Standard deviations for all other reactions were kept constant at a value of 0.5.

In order to actually quantify the discrimination properties, we here investigated raw partial cor-
relation coefficients rather than analyzing the F score (Figure 4.4). For all networks where dis-
crimination is generally possibly, we observe an increase in discrimination strength for higher
strengths of the input noise. We exemplarily discuss the ‘Chain 3, irrev, all in’ network. For
low values of the input noise mean value, the GGM cannot distinguish between directly and
indirectly connected metabolites; an effect of the above-mentioned irreversibility of reactions.
For an input noise strength of 1 or higher, however, the system is capable of reconstructing the
topology correctly. The analysis also demonstrates that irreversible reaction chains without any
exchange reactions can never be delineated, irrespective of the input noise. Other scenarios like

the reversible reaction chains can always be properly reconstructed.

The relationship between input noise and reconstruction quality has important implications for
the analysis of real metabolomics datasets. In a heterogeneous human population study like
KORA, we expect a variety of different metabolic states. Therefore, the availability of substrates
for a given pathway might drastically vary between two probands, and thus the ‘input noise’ in
the real population is most certainly high. Compared with our simulations, we conclude that a
high heterogeneity in the metabolomics samples might be beneficial rather than problematic for

the GGM reconstruction approach. This is in accordance with our hypothesis from Chapter 1.4.
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Figure 4.5: Linear reaction chain of four metabolites with reversible internal reactions.

4.5 Enzyme kinetic rate laws only marginally affect GGM

estimation

The next question we addressed with artificial reaction networks was the influence of enzyme-
catalyzed reactions and variations in the respective parameters on GGM estimation. We set up
reaction chains with four metabolites (Figure 4.5) incorporating reversible enzymatic reactions.

The log-normal noise assumption of cellular rate parameters can be interpreted as a log-normal
variation of Vj,,x parameters in the Michaelis-Menten case. Since K/ is supposed to be an in-
trinsic property of the respective enzyme-substrate interaction, this parameter was kept constant

throughout all simulations.

Similar to the first-order case described above, one simulation consists of drawing 1000 param-
eter sets, calculating a steady state for each parameter sample and subsequent GGM estimation
using the obtained 1000 steady states. We performed simulations for (a) varying mean values
of V., while V.. was kept constant in order to investigate different degrees of reaction re-
versibility; (b) varying constant values of both K, parameters to introduce different levels of
response linearity; (c) varying mean values of the zeroth-order input reaction carrying A into
the system; (d) varying levels of overall noise strengths, i.e. the standard deviation of the un-
derlying log-normal distribution. All parameters means were again set to 1 by default, except
for K where we chose a constant value of 0.01. We only accepted parameter combinations
that reach a stable steady state. In contrast to mass-action kinetics, Michaelis-Menten kinetics
introduce an upper bound to the reaction rate (namely V,.x). Specifically, if the constant influx
into the system exceeds the net rate from A to B, A will grow infinitely large. These scenarios

are biochemically not viable and have thus been ignored.

For all variations of V.7

max

the GGM distinguishes direct from indirect interactions (Figure 4.6A).
) =2,

= 100, the discrimination quality is impaired. This is in line with the observa-

Only if the forward reaction rate exceeds the backward reaction by far, e.g. log10(V,}
that is V.,

max

tion that purely irreversible reactions cannot be distinguished in the mass-action case. For the
cases log10(V.

max

) = 3 and 4, unusually high regular Pearson correlations occur (mean overall

correlation >0.985), and thus the seemingly improved GGM reconstructions cannot be consid-
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Figure 4.6: GGM discrimination quality for Michaelis-Menten kinetics with varying parameter

settings. A: PCC changes for the maximal forward reaction rate

V+

max*®

B: Changing the constant

saturation parameter K ;. C: Input noise strength, i.e. variation of the reaction which produces
the first metabolite in the cascade. D: Overall noise strength (o of log-normal distribution). Blue
circles represent metabolite pairs that are directly connected in the underlying network, whereas
red circles stand for unconnected metabolite pairs. Generally, the reconstruction capabilities of
GGMs are not strongly influenced by enzyme rate law parameters. PCC = partial correlation

coefficient.

ered meaningful for these cases. Note that V. was kept at a constant value of 1, and thus the

parameter value in this plot represents the ratio between forward and backward reaction rate.

Other enzyme kinetics parameters did not display significant impacts on GGM calculation (Fig-

ure 4.6B-D). This is particularly interesting for the Michaelis constants K, which adjust the

degree of saturation in the activation curve. Low values in this parameter cause a quick satura-

tion towards the respective V.« value. However, since our approach does not investigate actual

reaction speeds but rather the steady state levels at equilibrium, the effect on reconstruction

quality is neglectable.

4.6 Negative feedback might compromise discrimination

Another important aspect of enzyme-catalyzed reactions are allosteric regulation mechanisms,

like end-product inhibition for instance, which constitutes a negative feedback from the end to

the beginning of a pathway [101]. We set up a linear reaction chain with enzyme kinetics and

an inhibition of the last metabolite to onto the first reaction of the cascade (Figure 4.7). For

the initial analysis, forward maximal reaction rates Vi« Wwere set twice as fast as the backward

reactions in order to ensure a directed mass flow. The reconstruction results differ depending

on whether exchange reactions are included in the system or not (Figure 4.7A). If the inhibitory

module represents a closed system (no external fluxes except for the first and last metabolite),

the regulatory interaction does not influence GGM calculation. The net metabolite turnover
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Figure 4.7: End-product inhibition modules without (A) and with (B) exchange reactions. When
modeled as an open system (with exchange reactions), A is decoupled from the other metabolites
and reconstruction fails at this point. Dashed lines mark enzyme inhibition interactions, larger
arrows to the right indicate faster forward than backward reactions.

speed might be drastically affected, but the topological effects of this reaction chain on the
correlation structure remain unchanged. In contrast, when exchange reactions are introduced
(Figure 4.7B), the inhibition decouples A from the other metabolites and the reconstruction
fails for the connectivity of this metabolites.

To further investigate this relationship, we performed simulations using standard parameter val-
ues for enzyme kinetics with ranging values of the inhibition parameter K;, once without and
once including exchange fluxes for intermediate metabolites (Figure 4.8). As discussed above,
if no exchange fluxes are present, the inhibition strength does not significantly affect discrim-
ination quality. Mass-flow has to be routed through the metabolite chain, independent of any
feedback effects. Note that for K; values below 1073, the system reaches steady states only
after a very long simulation time and A grows unusually large. We do not expect such situations
to occur in a real biological system, since a very strong inhibition essentially corresponds to a
full blocking of the pathway at the respective reaction. Without further exchange reactions, me-
tabolite A would drastically accumulate in the system which will in most cases not be desirable.
If exchange fluxes are introduced, the inhibitory influence decouples A from the remaining me-
tabolites if K; falls below a certain threshold. In the plot, we observe one of the blue circles
(representing the partial correlation between A and B) reaching noise levels for K; = 10! and
below. Conclusively, we need to keep in mind that strong inhibitory feedbacks might impair the

reconstruction process and lead to false negative results.
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Figure 4.8: Influence of the inhibition strength on metabolic network reconstruction. Blue circles
represent directly connected metabolites, red circles indicate distant metabolites in the underly-
ing network. If no exchange fluxes are present (left) the inhibition does not affect reconstruction
at all. With exchange fluxes (right), reconstruction will be impaired if the inhibition is sufficiently
strong (low K;).

4.7 All systems exhibit unique steady states

For all systems used in our study it was necessary to verify that they can only only exhibit a
single stable steady state. Multistability is an import aspect in many biological systems, see
Tyson et al. [102], Craciun et al. [103], Huang et al. [104] to name but just a few. In our
case, however, multiple equilibria could result in to false correlation patterns, possibly leading
to misinterpretations of the reconstructed pathway reactions. Therefore we used the ERNEST
toolbox [105] to structurally verify uniqueness of a single steady state independent of actual
parameter assignments. In the following, we discuss the results for all biochemical networks.
For a detailed discussion of the deficiency theorems and strong sign determination, we refer the

reader to the respective original publications cited below.

o All first-order networks in our study show a deficiency of zero [106] and thus cannot

exhibit more than one positive steady states.

e For the enzyme-driven networks with reversible Michaelis Menten kinetics and the bi-
molecular split network, the deficiency zero theorem does not hold. However, the defi-
ciency one theorem [106] applies in this case, and the stoichiometric matrix is strongly
sign determined (SSD) [107], so the networks do not have the capacity for multiple equi-

libria.
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e The stoichiometry matrix of the cofactor network (Figure 4.1F) is SSD, so this system
also gives rise to a single steady state for any given parameter combination.

e The mixed-inhibition enzyme mechanisms are known to constitute bistability [103]. How-
ever, in the two parameter combinations reported in this study, several parameters differ
by several orders of magnitude. Our toy models do not cover such a huge range of param-
eters and, more importantly, such parameter differences are also not expected to occur in
a human population cohort with similar metabolic states (namely fasting). In order to fur-
ther ensure monostability for our parameter ranges, we let the system run from 1000 dif-
ferent initial states each, for 100 parameter combinations in reasonable parameter ranges.
Initial values were uniformly drawn between zero and 1000 times the metabolite concen-
trations of the detected steady state. We did not encounter a single case where a system
with identical parameters ended up in a different steady state for a different initial value

setting.

4.8 Conclusion

In this chapter, we set up a series of biochemical reaction systems in order to evaluate the re-
construction capabilities of GGMs. The advantage of such toy systems is that we know both the
input and the expected output of the method, and can thus objectively assess which dynamical

systems a GGM can reconstruct and where possible problems might occur.

We deduced a set of important aspects to be considered when interpreting partial correlation
coefficients in reaction systems: (a) Metabolites in equilibrium due to reversible reactions
can readily be recovered, whereas irreversible reactions might pose a substantial problem for
correlation-based reconstruction attempts (in accordance with Camacho et al. [49]). (b) Input
and output reactions for intermediate metabolites, however, improve the reconstruction accu-
racy. Such exchange reactions are likely to be present for most naturally occurring metabolites
due to highly interconnected metabolic pathways. (c¢) Metabolite connectivity in cofactor-driven
networks can be accurately reconstructed. The presence of exchange reactions for cofactors, as
they are likely to be present in real systems, has substantial impact on the reconstruction quality.
The connectivity of the cofactors themselves, however, remains spurious. (d) Non-linear rate
laws and antagonistic, correlation-generating mechanisms might impair reconstruction quality.
(e) With an increasing amount of fluctuations on the input reaction, the partial correlation differ-
ence between direct and indirect interactions increases for certain network topologies (e.g. for

the irreversible linear metabolite chains). This indicates that a high heterogeneity of metabolic
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states in a population data set like the KORA cohort might be beneficial rather than problematic
for our approach. (f) Saturation effects in enzyme-catalyzed reactions do not pose a problem for
the reconstruction process. However, inhibitory influences in metabolic modules that include

exchange reactions might decouple metabolites and lead to false negative results.

Taken together, the results on simulated biochemical reaction systems are promising and encour-
age GGM application to real metabolomics datasets. We generated a general overview of which
network wirings can be reconstructed, and where problems are to be expected. Furthermore, we
have seen that stronger variation on the system inputs is rather beneficial for the reconstruction
than impairing it. This represents the modeling evidence for the ‘stronger variation, stronger as-
sociation’ hypothesis we postulated in Chapter 1.4. In the following chapters, we will generate
GGMs on real metabolomics datasets from the KORA population cohort, along with biological

interpretations of the generated models.
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Chapter 5

GGMs reconstruct pathway
reactions from high-throughput

metabolomics data

After evaluating the general capability of Gaussian graphical models (GGMs) to distinguish
between direct and indirect reactions, we now focus on a real metabolomics data set. In the
following, we estimate a GGM using targeted metabolomics data from the German population
study KORA [33] (“Kooperative Gesundheitsforschung in der Region Augsburg”), see Chapter
2. We here used the dataset measured using the Biocrates AbsoluteIDQ kit, containing 1020
targeted metabolomics fasting blood serum measurements with 151 quantified metabolites. The
metabolite panel includes acyl-carnitines, four classes of phospholipid species, amino acids and

hexoses.

We will see that the GGM is sparse in comparison to the corresponding Pearson correlation
network, displays a modular structure with respect to different metabolite classes, and is stable
towards changes in the underlying data set. We demonstrate that top-ranking metabolite pairs
and further densely connected subgraphs in the GGM can be attributed to known reactions in
the human fatty acid biosynthesis and degradation pathways. In order to systematically verify
this finding, we map partial correlation coefficients to the number of reaction steps between all
metabolite pairs based on a literature-curated fatty acid pathway model. We observe statistically
significant discriminatory features of GGMs to distinguish between directly and non-directly
interacting metabolites in the metabolic network. In addition, low-order partial correlations

represent a suitable alternative to full-order GGMs for the present dataset. Finally, we will
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summarize and discuss the relevance of GGMs for metabolomics data sets, point out limitations
of the method and suggest future steps.

All results reported in this chapter are part of the following publication:

* Krumsiek, J., Suhre, K., Illig, T., Adamski, J., and Theis, F.J. Gaussian graphical modeling
reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst Biol,
5(1):21, 2011

5.1 Network modularity calculation

In the following, we describe the network modularity calculation procedure required in Section
5.2. We define the adjacency matrix &;; of a new unweighted, undirected graph induced by all

significantly positive partial correlations in (;;:

)

0, else

. :_{ L ifp(Gy) > &

where & represents the significance level after multiple testing correction. Now let (V1,. .., Vg)
be the partitioning of the metabolites into the six metabolite classes: acyl-carnitines, diacyl-
PCs, lyso-PCs, acyl-alkyl-PCs, sphingomyelins and amino acids (the hexose is left out as only a
single metabolite belongs to that class). We calculate the relative out-degree R;; € R6*%6 from
each class to the other classes (i.e. the proportion of edges each class shares with the other

classes) as:

where A(V', V") = 3",cy jeyn &ij represents the total number of edges between V' and V",
and V' = |JV; contains all metabolites in the network. The total network modularity ) of the
network can be quantified according to White and Smyth [108] as:

6
Q=)
i=1

Vi, Vi) A(W,V>>2

A )
A(V,V) <A(V, V) (5.1)

Intuitively, this measure compares the within-class edges with the edges to the rest of the net-

work. The more edges there are within each class in comparison to the other classes, the higher
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Figure 5.1: Network properties of the correlation network (CN) and Gaussian graphical model
(GGM) inferred from the KORA Biocrates data set (1020 participants, 151 quantified metabo-
lites). A+B: Graphical depiction of significantly positive edges in both networks, emphasizing
local clustering structures. Each circle color represents a single metabolite class. C+D: His-
tograms of (121) = 11325 pairwise correlation coefficients (i.e. edge weights) for both networks.
Green lines indicate the median values, red lines denote a significance level of 0.01 with Bon-
ferroni correction. The CN displays a general bias towards positive correlations throughout
all metabolites. For the GGM, the median value lies around zero and we observe a shift to-
wards significantly positive values. E4F: Modularity between metabolite classes measured as
the relative out-degree from each class (rows) to all other classes (columns). The GGM (right)
shows a clear separation of metabolite classes, with some overlaps for the different phospholipid
species diacyl-PCs, lyso-PCs, acyl-alkyl-PCs and sphingomyelins. Values range from white (0.0
out-degree towards this class) to black (1.0). PCs = phosphatidylcholines.
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@ will be. Note that equation (5.1) can also be applied to weighted graphs. To assess the signif-
icance of the observed value, we perform graph randomization by edge rewiring [109, 110] and
subsequent calculation of (). During the rewiring process we randomly pick two edges from the
network and exchange the target nodes of each edge. In order to achieve sufficient randomiza-
tion, this operation is repeated 5 - e times, where e represents the number of edges in the graph.
To perform edge reshuffling on weighted graphs, we decided on a neighbor-preserving variant
as described in Hartsperger et al. [111].

5.2 The GGM displays a sparse, modular and robust struc-

ture

Both regular Pearson correlation coefficients and partial correlation coefficients (see Chapters
3 and 4) were calculated on logarithmized metabolite concentrations. A manual inspection of
QQ plots revealed that metabolite concentrations are usually closer to a log-normal than to a
normal distribution!. All edges corresponding to correlation values significantly different from
zero induce the networks displayed in Figure 5.1A+B.

In order to exclude correlation effects generated by genetic variation in the study cohort, we
investigated the influence of the 15 SNPs reported in Illig et al. [27] on GGM calculation. If
a SNP coordinately affects the concentrations of two metabolites, and the SNP is not included
in the GGM analysis, a spurious correlation between the metabolites could occur (cf. Chapter
1.5). However, we found genetic effects on the resulting partial correlation coefficients to be
neglectable (Figure 5.2). This indicates that Gaussian graphical models recover intrinsic prop-
erties of the metabolic system, and that effects of natural genetic variation are neglectable for

our calculations.

Pearson correlation coefficients show a strong bias towards positive values in our data set (Fig-
ure 5.1C); a typical feature of high-throughput data sets also observed e.g. in microarray ex-
pression data, which can be attributed to unspecific or indirect interactions [51]. We obtain
5479 correlation values significantly different from zero with @ = 8.83 - 1077 (a = 0.01 af-
ter Bonferroni correction), yielding an absolute significance correlation cutoff value of 0.1619.
In contrast, the GGM shows a much sparser structure with 417 significant partial correlations
after Bonferroni correction (Figure 5.1D). Most values center around a partial correlation coef-

ficient of zero, whereas we observe a clear shift towards positive significant values. Note that

1QQ plots can be downloaded from http://helmholtz-muenchen.de/cmb/ggm
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Figure 5.2: Effects of genetic variation on GGM calculation. SNP data were integrated with the
metabolite concentrations by appending 15 further columns to the data set, thus extending the
1020 x 151 data matrix to a 1020 x 166 matrix. We then compared the 151 x 151 metabolite
sub-matrix with the original partial correlation matrix without SNPs. Changes are generally
small for all partial correlations (—1.28 - 107> £ 8.09 - 1073, left histogram), and also when only
investigating significant partial correlations (3.8 - 107% 4 1.02 - 1072, right histogram).

negative partial correlations provide particular information that will be discussed at the end of
Section 5.3.

The GGM displays a modular structure with respect to the seven metabolite classes in our panel,
while the class separation in the correlation network appears rather blurry (Figure 5.1E+F). We
observe a clear separation of the amino acids and acyl-carnitines from all other classes. The four
groups of phospholipids (diacyl-PCs, lyso-PCs, acyl-alkyl-PCs, and sphingomyelins) still show
locally clustered structures, but are strongly interwoven in the network. This is probably an
effect of the dependence of all phospholipids on a similar fatty acid pool and, subsequently, the
biosynthesis pathway acting on this substrate pool. In order to get an objective quantification
of this observation, we calculated the group-based modularity () on all significantly positive
GGM edges according to Newman and Girvan [112]. The same measure was calculated for
10° randomized GGM networks (random edge rewiring). For the original GGM we obtain a
modularity of () = 0.488, and the random networks yield @ = 0.118 £ 0.016, resulting in a
highly significant z-score of z = 23.49. Furthermore, the modularity value induced by using
the metabolite classes was compared to a partitioning optimized by simulated annealing. The
optimized modularity is only slightly higher with ) = 0.557 and the resulting partitioning is
very similar to the metabolite classes (results not shown). Performing the modularity analysis

with the full, weighted partial correlation matrix produces equivalent results.

An important question for a multivariate statistical measure such as partial correlations is the

robustness with respect to changes in the underlying data set. Furthermore, the dependence



60 CHAPTER 5. GGMS ON METABOLOMICS DATA

A 120

100

B 02

©

(=)
o
o
a

s
(=)

abs. frequency
(2]
(=}

0.05

Mean PCC difference
o

N
(=)

0.026 0.027 0.028 0.029 0.03 G170 380 590 800 1010

Mean abs. PCC difference No. of samples

o

Figure 5.3: A: Mean differences of partial correlation coefficients from the values calculated
for the original dataset, obtained by generating 1000 bootstrap samples and then calculating
the mean absolute distance to the original correlations. Deviations from the original values are
relatively low, indicating a high stability of PCC with respect to changes in the dataset. B:
Mean differences from the original dataset for varying sample sizes. For each tested dataset
size, the respective number of samples was randomly drawn from the original dataset 100 times
(standard deviations are plotted in black).

of the measure on the size of the data set needs to be addressed. To answer these questions,
we performed two types of perturbations of our data set. First, we applied sample bootstrap-
ping with 1000 repetitions and compared the resulting partial correlations to the original data
set (Figure 5.3A). We observe small mean absolute differences with low standard deviation
(0.03 £ 8.2 - 10~%). This indicates that for a large data set with n = 1020 samples, GGMs are
robust against the choice of samples. We assume that each distinct metabolic state in the cohort
is captured by a bootstrap sample, and thus all information required to calculate the GGM is
contained. In addition to the bootstrap analysis, we estimated partial correlations for continu-
ously decreasing sample sizes (Figure 5.3B). For each data set size we randomly picked samples
from the original data set and repeated the procedure 100 times. The analysis shows that the
GGM is stable even under decrease of the sample number. For instance, for a data set containing
only around half of the original samples (n = 530) we obtain a mean absolute partial correlation
difference of 0.03 + 6.9 - 10~%. Only when the number of samples gets close to the number of
variables (m = 151) the correlation matrix becomes ill-conditioned and strong differences from
the original partial correlations occur. These problems of smaller metabolomics studies could be
dealt with by regularization approaches or the usage of low-order partial correlations (Chapter
3.5). Taken together, these results indicate that the analyzed metabolomics data set is sufficient

to robustly elucidate the statistical relationships between the measured metabolites.
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Metabolite 1 Metabolite 2 PCC Comment
Val xLeu 0.821 Branched-chain amino acids
SM C18:0 SM C18:1 0.767 SCD/SCD5 desaturation
SM C16:1 SM C18:1 0.765 ELOVL6
PC ae C34:2 PC ae C36:3 0.752 2 reaction steps
SM (OH) C22:1 SM (OH) C22:2 0.743 sphingolipid-specific desaturation?
PC aa C34:2 PC aa C36:2 0.735 ELOVL1/ELOVL6 elongation
C10:0-carn C8:0-carn 0.735  [-oxidation step
lysoPC a C16:0 lysoPC a C18:0 0.731 ELOVL6 elongation
PC aa C38:6 PC aa C40:6 0.709 ACOX1/3 + various ELOVLs
SM (OH) C14:1 SM (OH) C16:1 0.686 sphingolipid-specific elongation?
PC aa C36:4 PC aa C38:4 0.672 ACOX1/3 + various ELOVLs
PC aa C32:1 lysoPC a C16:1  0.661 C16:0/C16:1 phospholipid association
PC aa C38:5 PC aa C40:5 0.653 various ELOVLs
PC ae C34:3 PC ae C36:5 0.607 at least 3 reaction steps
PC aa C36:5 PC aa C38:5 0.596 ACOX1/3 + various ELOVLSs
SM C24:0 SM C24:1 0.577  sphingolipid-specific desaturation?
PC ae C32:1 PC ae C32:2 0.574 SCD/SCD5 desaturation
SM (OH) C22:2 SM C24:1 0.567 possible elongation intermediate
C18:1-carn C18:2-carn 0.561 pB-oxidation intermediate

Table 5.1: Top 20 positive GGM edge weights (i.e. partial correlation coefficients, PCC) in our
data set along with proposed metabolic pathway explanations. Most metabolite pairs can be
directly linked to reactions in the fatty acid biosynthesis pathway, the S-oxidation pathway or
amino acid-associated pathways.

5.3 Strong GGM edges represent known metabolic path-

way interactions

The next step in our analysis was the manual investigation of metabolite pairs displaying strong
partial correlation coefficients. Remarkably, we are able to provide pathway explanations for
most metabolite pairs in the top 20 positive partial correlations (Table 5.1). In the following, we
will specifically discuss interesting, high-scoring metabolite pairs along with their responsible
enzymes in the metabolic pathways.

The highest partial correlation in the data set with ¢ = 0.821 is found for the two branched-
chain amino acids valine and xLeucine, where the latter compound represents both leucine and
isoleucine (which have equal masses and are not distinguishable by the mass-spectrometry ap-
proach used for this study). The three metabolites are in close proximity in the metabolic net-
work concerning their biosynthesis and degradation pathways. Further related amino acid pairs
that display significant partial correlations are histidine and glutamine (¢ = 0.383), glycine and
serine (¢ = 0.326) as well as threonine and methionine (¢ = 0.298).
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Clear-cut signatures of the desaturation and elongation of long chain fatty acids can be seen for
various sphingomyelins and lyso-PCs (Figure 5.4A). For example, SM C18:0 and SM C18:1
strongly associate with ( = 0.767, most probably representing the initial A9 desaturation step of
the polyunsaturated fatty acid biosynthesis pathway from C18:0 to C18:1-A9 by SCD (Steaoryl-
CoA desaturase). The similarly high partial correlation between SM C16:1 and SM C18:1 (( =
0.765) as well as lysoPC a C16:1 and lysoPC a C18:1 (¢ = 0.315) can be attributed to the
ELOVL6-dependent elongation from C16:1-A9 to C18:1-Al1. Interestingly, this reaction is
not contained in the public reaction databases but has been previously described by Matsuzaka
etal. [113].

We identify a variety of strong GGM edges between diacyl-PC (lecithins, PC aa) and acyl-
alkyl-PC (plasmalogens, PC ae) metabolite pairs (Figure 5.4B). For instance, PC aa C34:2 and
PC aa C36:2 associate strongly with ¢ = 0.735, and PC aa C36:4 and PC aa C38:4 show a
partial correlation of ¢ = 0.672. While the first pair can be precisely explained by an elonga-
tion from C16:0 to C18:0 by ELOVLS6, different combinatorial variants come into play for the
PC aa C36:4/PC aa C38:4 pair. Our mass-spectrometry technique only measures brutto compo-
sitions, that is the bulk side chain carbon content and total degree of desaturation. Depending
on the exact composition of both fatty acid residues in the respective lipids, this association
could be caused by long-chain elongations (C14 to C16 and C16 to C18 through fatty acid
synthase and ELOVL6, respectively), by very-long-chain elongations (C22:4 to C24:4 through
ELOVL2 or ELOVLS) and even by peroxisomal S-oxidation of fatty acids (through ACOX1 or
ACOX3). An interesting situation arises for the phospholipids PC ae C34:2, PC ae C36:3 and
PC ae C36:2. From its brutto formula the latter species could represent an intermediate step be-
tween the other two metabolites. However, it associates poorly with both other phospholipids,
which in turn display a strong partial correlation (¢ = 0.752). This finding can be explained by
distinct fatty acid side chain compositions, showing differential incorporation of C18:0, C18:1
and C18:2 (Figure 5.4B, bottom).

For the acyl-carnitine group we observe a remarkably high partial correlation of ( = 0.735
for C8-carn and C10-carn and further acyl-carnitine pairs with a carbon atom difference of two
(Figure 5.4C). These associations can be attributed to the S-oxidation pathway, i.e. the catabolic
breakdown of fatty acids in the mitochondria [97]. During this degradation process, Ca units
are continuously split off from the shrinking fatty acid chain. Four acyl-CoA dehydrogenases,
ACADS, ACADM and ACADL, ACADVL, catalyze the rate limiting reactions of S-oxidation
for different fatty acid chain lengths [43, 114]. Our interpretation of acyl-carnitine correlations

as signatures of mitochondrial S-oxidation is in accordance with Illig et al. [27], where asso-
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Figure 5.4: Biochemical subnetworks identified by the GGM. Line widths correspond to partial
correlation coefficients. A: Elongation and desaturation signatures, most likely mediated by
ELOVL6 and SCD, for C16 and C18 fatty acids incorporated in lyso-PCs and sphingomyelins.
B: Top: Diacyl-phosphatidylcholine (PC aa) species with elongation and peroxisomal S-oxidation
associations. Several combinatorial variants of side chain compositions are possible for C36:4
and C38:4, and thus different enzymes could mediate this connection. Bottom: Alkyl-acyl-
phosphatidylcholines (PC ae) with supposedly distinct side chain composition, giving rise to a low
association with a directly connected species (C36:2). C: Recovered -oxidation pathway from
C18 down to C4. Four enzymes with overlapping substrate specificities catalyze the rate-limiting
reactions of this pathway. D: Two high-scoring triads, where metabolite pairs with a pathway
distance of two constitute strong partial correlations. This feature of partial correlations aids in
the reconstruction of the network topology beyond the direct neighborhood of each metabolite.

ciations between C8+C10, C12 and C4 with genetic variation in the ACADM, ACADL and
ACADS loci, respectively, were identified.

We observe several associations that are not directly attributable to enzymatic interactions in the
fatty acid biosynthesis or degradation pathways. For instance, lysoPC a 18:1 and lysoPC a 18:2
share a strong GGM edge (¢ = 0.543) although the A12-desaturation step from oleic acid to
linoleic acid is known to be missing in humans [115]. This missing reaction gives rise to the es-
sentiality of fatty acids in the w-6 unsaturated fatty acid pathway. A functional explanation could
be a systemic equilibrium between the two fatty acids or remodeling processes specific for the
lyso-PC metabolite class. Further examples are high partial correlations between the hydroxy
sphingomyelins SM (OH) C22:1 and SM (OH) C22:2 (¢ = 0.743) as well as the sphingomye-
lins SM C24:0 and SM C24:1 (¢ = 0.577). To the best of our knowledge, there is no evidence
for such fatty acid desaturation reactions in humans. The detected associations might therefore
represent novel pathway interactions recovered by the Gaussian graphical model.

Negative values play a particular role in the interpretation of partial correlations coefficients.
On the one hand, they obviously occur whenever regular negative correlations are involved.

Mechanisms giving rise to negative correlations are, for example, coparticipation in the same
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reaction (cf. Figure 4.1E), mass conservation relations [49] or opposing regulatory effects. It is
to be noted, however, that negative correlations are rare in our specific metabolomics data set
(cf. Figure 5.1C). On the other hand, due to the mathematical properties of partial correlation
coefficients, negative partial correlation coefficients occur whenever two metabolites A and B
have a strong correlation with a third metabolite C, but do not share a high correlation value
with each other. Two examples from our data set are shown in Figure 5.4D. First, SM C18:0
is negatively partially correlated with SM C16:1, and both of these in turn are highly positively
partially correlated with SM C18:1. The fatty acids C16:1 and C18:0 have no direct connection
in the pathway, causing the strong negative partial correlation value. A similar situation can be
found for three diacyl-PCs: PC aa C34:2 and PC aa C36:1 show a high partial correlation with
PC aa C36:2, but a negative partial correlation with each other. Again, there is no possible direct
reaction from a C34:2 lipid species to a C36:1 species. Not all metabolite triads in the network
show such a one-negative/two-positive motif. But if present, they provide another step in the
reconstruction of metabolic pathways (beyond the direct neighborhood of each metabolite) by
detecting metabolites which are exactly two steps apart. Furthermore, the d-separation rule
from graphical modeling theory suggests that for these cases we can infer directionality of the
associations. The only directed topology compatible with this correlation structure is from the
two uncorrelated variables towards the third one. For more information on the methodology, we

refer the reader to Freudenberg et al. [59].

5.4 Establishment of a literature-curated fatty acid path-

way model

The analyses from the previous section strengthened our conception that a GGM inferred from
blood serum metabolomics data represents true metabolite associations. To systematically as-
sess how GGM edges and pathway proximity between our lipid metabolites are related, we
generated a literature-based model of fatty acid biosynthesis (Figure 5.5A). Pathway reactions
of the human fatty acid metabolism were drawn from three independent databases: (1) H. sapi-
ens Recon 1 from the BiGG databases (confidence score of at least 4) [116], (2) the Edinburgh
Human Metabolic Network reconstruction [117] and (3) the KEGG PATHWAY database [43]
as of July 2010. The reaction set was subdivided into two groups: (1) Fatty acid biosynthesis
reactions which apply to the metabolite classes lyso-PC, diacyl-PC, acyl-alkyl-PC and sphin-
gomyelins. (2) S-oxidation reactions representing fatty acid degradation to model reactions
between the acyl-carnitines. The [-oxidation model consists of a linear chain of C2 degra-
dation steps (C10—C8—C6 etc.). Fatty acid residues with identical masses, that cannot be
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Figure 5.5: Fatty acid biosynthesis model and pathway distance calculation method. A: De
novo synthesis of fatty acids with initial SCD-dependent desaturations (left), and the w-3 and
w-6 poly-unsaturated fatty acid pathways (middle and right). Note that we omitted the specific
positions of each double-bond since the mass-spectrometry technique in our study does not
resolve positional information. B: Exemplary distance calculation on two lyso-PCs. We project
lipid side chain compositions onto the respective fatty-acid biosynthesis reactions. Reaction
reversibility is not taken into account in our calculation, i.e. distances are always symmetric.
C: If no known pathway connection between two fatty acids exists, we assign a formal distance
of infinity. D: For phospholipids that contain two fatty acid residues we need to take into
account all combinatorial variants. We here show three variants for the connection between
PC aa C38:4 and PC aa C38:5. In these examples, PC aa C38:4 could either consist of C18:0+C20:4
or C16:0+C22:4, while PC aa C38:5 could be C18:0+C20:5 or C16:0+C22:5. The shortest possible
distance, one in this case, will be used for further calculations.
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distinguished by our mass-spectrometry technology, are merged into a single metabolite in the
reaction set. For instance, the polyunsaturated fatty acids C20:4A8,11,14,17 from the w-3 path-
way and C20:4A5,8,11,14 from the w-6 pathway have identical numbers of carbon atoms and

double bonds and are thus merged into a single metabolite C20:4.

In the next step, we mapped the partial correlation coefficients from the KORA data set onto the
minimal number of reaction steps between each pair of metabolites (pathway distance). Since
our metabolite panel contains fatty-acid based lipids, we project the respective lipid composi-
tions onto the fatty acid biosynthesis pathway (Figure 5.5B-D).

5.5 Partial correlation coefficients discriminate between

directly and indirectly connected metabolites

We observe a strong tendency towards significantly positive partial correlations for a pathway
distance of one, i.e. directly connected metabolite pairs, for all five metabolite classes (Figure
5.6A). In total, 86 out of 130 partial correlations (66%) for a pathway distance of one are signifi-
cantly positive. For instance, for the lyso-PC class nearly all partial correlation coefficients for a
pathway distance of one are above significance level, whereas most values for a distance of two
or larger remain insignificant. Some outliers from this observation, however, require closer in-
spection: First, for some metabolite classes we observe negative partial correlation values for
metabolite pairs that are exactly two steps apart in the metabolic pathway: 10 of 73 partial cor-
relations in the diacyl-PC class and 2 of 2 partial correlations in the sphingomyelin class are
significantly negative for a distance of two. These negative values are effects of the coregulated
metabolite triads described previously in this chapter. Second, we find 91 of 932 (~ 9.8%) un-
connected metabolite pairs (pathway distance = co) with a partial correlation above significance
level. These pairs represent potentially novel pathway predictions, missing interactions in the

model or effects upstream of the metabolic network like enzyme coregulation.

A direct comparison of both partial and Pearson correlation coefficients for the diacyl-phospha-
tidylcholine class is shown in Figure 5.6B. As described earlier in this chapter, we observe a
general over-abundance of significant Pearson correlations independent of the actual pathway
distance. Even for the metabolites without a known pathway connection, 1394 of a total of 1569
Pearson correlations are significant (88.85%, over all classes), in contrast to 131 out of 1569 for
the partial correlations (8.35%).
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Figure 5.6: Systematic evaluation of partial correlation coefficients versus pathway distances.
Dashed lines in A and B indicate a significance level of 0.01 with Bonferroni correction. A: Path-
way distances from our consensus model against partial correlation coefficients for the five lipid-
based metabolite classes in our data set. We observe an enrichment of high partial correlations
for a pathway distance of one, which rapidly drops for an increasing number of pathway steps.
B: Comparison of partial correlation coefficients and Pearson correlation coefficients. Pearson
correlation coefficients are generally high, independent of the actual pathway distance, indicating
for systemic coregulation effects throughout the lipid metabolism. C: Wilcoxon rank sum test
p-values between the partial correlation distributions of directly and indirectly connected pairs,
and sensitivity/specificity/F; values measuring the discriminatory power to distinguish direct
from indirect pairs.

The significantly different correlation value distributions between directly and indirectly linked
metabolites (Figure 5.6A+B) barely provide a good quantification of the actual discrimination
accuracy of this feature. Therefore, we assessed the discriminative power of partial correlations
to tell apart direct from indirect interactions by means of sensitivity and specificity. The sensi-
tivity evaluates which fraction of directly connected metabolites in the pathway are recovered
by significant GGM edges, whereas the specificity states how many of the significant edges
actually represent a direct connection. A commonly used tradeoff measure between sensitivity
and specificity is the F score, which is defined as the harmonic mean of both quantities, see
Chapter 4.3. Figure 5.6C lists sensitivity, specificity and F} for all 5 metabolite classes along
with an evaluation of partial correlation distribution differences between directly and indirectly
linked metabolites (determined by Wilcoxon’s ranksum test). F7 values over 0.75 and signifi-
cant p-values for the ranksum test indicate a strong discrimination effect of partial correlation
coefficients concerning direct vs. indirect pathway interactions. Possible reasons for non-perfect

sensitivity and specificity values will be discussed in detail at the end of this chapter.
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Figure 5.7: Nlustration of low-order partial correlations in metabolic reaction systems. If there is
more than one path between two nodes in the underlying network, first-order partial correlations
cannot correctly reconstruct the topology.

5.6 Low-order partial correlations

The data set from our present study contained enough samples to calculate full-order partial
correlations, i.e. pairwise correlations conditioned against all other n-2 metabolites. However,
previous studies demonstrated that low-order partial correlation approaches can already be suf-

ficient to elucidate direct interactions [55, 59].

We will exemplarily discuss the case of first-order partial correlations. Reconstruction results
will be correct for two given nodes whenever the removal of one other node is sufficient to
separate the two nodes in the underlying (true) graph. Removing nodes from the network is the
graphical depiction of conditioning against variables in the underlying statistical dependence
structure (recall the Markov properties described in Chapter 3). If multiple paths through the
graph are possible between two nodes, conditioning against just one further node cannot be
enough to rule out indirect effects. Consider the two example scenarios given in Figure 5.7.
For the first network both first-order partial correlations and the GGM (in this case identical
to second-order partial correlations) correctly reconstruct the network topology. For instance,
A and D can be separated by conditioning on either B or C (or both). In the second network,
however, removing just one node from the network is not sufficient to separate the indirectly
connected nodes, and thus first-order partial correlations fail to reconstruct the correct topology.
The same principles hold true for higher-order partial correlations. In general, in order for n-th-
order partial correlations reconstruct the network topology correctly, any indirectly connected
pair of nodes in the underlying graph must be separable by the removal of n nodes. Since

we do not know the true dependency structure, the usage of GGMs is a simple and unbiased
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Figure 5.8: Comparison of low-order partial correlation approaches. As expected, Oth order
partial correlations (regular Pearson correlations) provide only weak discrimination abilities be-
tween directly and indirectly connected metabolites. First-, second- and third-order partial
correlations, however, perform reasonably well in comparison to the full-order GGM.

reconstruction approach; given that they can be properly estimated from the given amount of

samples in the data set.

In order to assess how low-order partial correlations perform in comparison to the full-order
GGM, we calculated first-, second- and third order partial correlations from the metabolomics
data set using the approach described in de la Fuente et al. [55] (Figure 5.8). Surprisingly,
especially first-order partial correlations worked remarkably well in discriminating direct from
indirect interactions in the real data. This result provides two valuable pieces of information.
First, low-order partial correlation approaches, which require much less samples to obtain stable
estimates, appear to be a suitable alternative to GGMs for the metabolite panel used in this
study. Second, the high relative scoring of first-order partial correlations provides insights into
the correlation structures in the data set. In particular, this result indicates that the underlying
metabolic pathways are primarily composed of acyclic, linear chains, which fits well to the fatty

acid pathways dominating our measured lipid species.

We did not consider the application of further ‘n<p’ GGM estimation algorithms introduced in
Chapter 3 here. First, other algorithms working on the Markov properties will most likely gen-
erate very similar results to those obtained with the low-order partial correlations. Second, the
covariance matrix will be well-estimated in a scenario with 1020 samples and 151 metabolites,

so the benefit of shrinkage approaches will be marginal.
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5.7 Conclusion

In this chapter, we addressed the reconstruction of metabolic pathway reactions from high-
throughput targeted metabolomics measurements. Previous reconstruction approaches employed
pairwise association measures, primarily standard Pearson correlation coefficients, to infer net-
work topology information from metabolite profiles [48, 49, 118, 119]. We here demonstrated
the usefulness of Gaussian graphical models and their ability to distinguish direct from indirect
associations by estimating the conditional independence structures between variables. GGMs
are based on partial correlation coefficients, that is the Pearson correlation between two metab-

olites corrected for the correlations with all other metabolites.

We inferred both a GGM and a regular correlation network from a large-scale metabolomics data
set with 1020 standardized samples from overnight fasting individuals. We investigated the in-
fluence of the 15 genome-wide-significant SNPs from this study on our GGM and demonstrated
that genetic variation in the general population is neglectable for partial correlation calculation.
We found that the GGM displays a much sparser structure than regular correlation networks.
Only around 400 partial correlation values were above significance level (~3.6%), whereas half
of all Pearson correlation values were significant after Bonferroni correction. This depicted the
nature of partial correlation coefficients to neglect indirect associations between distantly related
metabolites. We detected a strongly modular structure in the GGM with respect to the different
metabolite classes, except for the four types of phospholipids which appear slightly interwoven.
This provides a unique picture of the separation of metabolic pathways (synthesis, degradation
and amino acid metabolism), but also the interaction between different lipid classes dependent
on a single intracellular fatty acid pool. Finally, GGMs were stable with respect to both choice
and number of samples in the data set. Even a smaller data set with only a few hundred samples
would have been sufficient to achieve the results from this study. The estimation of GGMs for
data sets with less samples than metabolites is possible (see Chapter 3.5), but deviations from

the true partial correlation coefficients have to be expected.

Manual investigation of high-scoring substructures in the GGM revealed groups of metabo-
lites that could be directly attributed to reaction steps from the human fatty acid biosynthesis
and degradation pathways. We detected effects of ELOVL-mediated elongations and FADS-
mediated desaturations of fatty acids as well as signatures of the catabolic S-oxidation pathway.
For instance, our method successfully recovered a direct elongation from C16:1 to C18:1, which
has been experimentally shown by Matsuzaka et al. [113] but is not present in the public reaction
databases. Furthermore, we identified highly negative partial correlations as an indication for

a pathway distance of two, serving as a further hint in the reconstruction of metabolic network
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topology. In order to systematically evaluate whether high partial correlations represent direct
interactions, we generated a consensus model of fatty acid biosynthesis reactions from three
publically available reaction databases. By mapping partial correlation coefficients to the num-
ber of reaction steps between two metabolites we detected a statistically significant enrichment
of high values for a pathway distance of one. We calculated a high accuracy for partial corre-
lations to discriminate between directly and indirectly associated metabolites, as measured by
sensitivity, specificity and the F; measure. Interestingly, we could show that the discrimination
quality of low-order partial correlations [55], especially the first-order variants, is close to the
full-order GGM. Even though this might be a feature specific to the metabolite panel used in this
study, low-order partial correlations represent a suitable alternative especially for studies with
only few samples. If more samples than variables are available, full-order GGMs as an unbiased

approach conditioning against as many parameters as possible should be preferred.

Further analyzing those edges in the GGM that could not be explained by known pathway in-
teractions represents a promising task for future analyses. Specifically, the edges that were con-
sidered false positive in our modeling framework, i.e. high partial correlations without a known
reaction evidence, will be of particular interest. Several cases were exemplarily discussed in
this chapter, e.g. the strong GGM edge between lysoPC a 18:1 and lysoPC a 18:2, which can-
not be explained by the common fatty acid pathway, or the association between SM C24:0 and
SM C24:1, for which there is no evidence in the known human metabolic network. Removing
all explainable edges from our GGM will generate a list of pathway hypotheses which could

then be subjected to further examination and validation.

Interestingly, the metabolomics data used in this study originated from human blood, while we
could infer strong signatures of intracellular and even inner-mitochondrial processes. Previous
studies on blood plasma samples detected similar relationships with cellular processes based on
genetic associations [27] and case/control drug trials [120]. In this work we could now show that

blood metabolite profiles alone are sufficient to capture the dynamics of metabolic pathways.

However, GGMs can never provide a perfect reconstruction of the underlying system. There are
several factors that lead to the absence of high partial correlations between interacting metab-
olites, that is false negative edges in the GGM: (a) Counterantagonistic correlation-generating
processes and bimolecular reactions (see Chapter 4.2) might lead to the elimination of pairwise
association; cf. Camacho et al. [49]. (b) The respective enzyme might not be active in the current
metabolic state, or its effects on the respective metabolite pools are neglectable. (c) Contrary
to our general finding that even blood plasma metabolites carry strong signatures of metabolic

pathways, the signal might be diminished for certain types of metabolites. Furthermore, the
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actual origins of blood plasma metabolites, e.g. in terms of cell type or tissue activity leading to
the detected metabolite signals, still remain to be unraveled. The above-mentioned mechanisms

are possible explanations for the non-perfect sensitivity values observed in Figure 5.6C.

In conclusion, this initial study presented Gaussian graphical models as a valuable tool for
the recovery of biochemical reactions from high-throughput targeted metabolomics data. The
following two chapters of this thesis will use the GGM approach for the functional annotation

of metabolites as well as the delineation of group-specific metabolome differences.



Chapter 6

Mining the unknown: A systems
approach to metabolite

identification

In this chapter, we present an approach to utilize Gaussian graphical models in combination
with data on genetic variation, in order to derive functional annotations of unknown metabo-
lites. Recently, genome-wide association studies (GWAS) on metabolic quantitative traits have
proven valuable tools to uncover the genetically determined metabolic individuality in the gen-
eral population [26-29, 121]. Interestingly, a great portion of the genetic loci that were found
to significantly associate with levels of specific metabolites are within or in close proximity to
metabolic enzymes or transporters with known disease or pharmaceutical relevance. Moreover,
compared to GWAs with clinical endpoints, the effect sizes of the genotypes are exceptionally
high.

While these previous GWAS focused on metabolic features with known identity, untargeted
metabolomics approaches additionally provide quantifications of so-called ‘unknown metabo-
lites’. An unknown metabolite is a small molecule that can reproducibly be detected and quan-
tified in a metabolomics experiment, but whose chemical identity has not been elucidated yet.
In an experiment using liquid chromatography (LC) coupled to MS, such an unknown would be
defined by a specific retention time, one or multiple masses (e.g. from adducts), and a character-
istic fragmentation pattern of the primary ion(s). An unknown observed by NMR spectroscopy
would correspond to a pattern in the chemical shifts. Unknowns may constitute previously un-

documented small molecules, such as rare xenobiotics or secondary products of metabolism,

73
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or they may represent molecules from established pathways which could not be assigned using
current libraries of MS fragmentation patterns [122, 123] or NMR reference spectra [124].

The impact of unknown metabolites for biomedical research has been shown in recent metabol-
omics-based discovery studies of novel biomarkers for diseases and various disease-causing
conditions. This includes studies investigating altered metabolite levels in blood for insulin
resistance [22], type 2 diabetes [21], and heart disorders [125]. A considerable number of high-
ranking hits reported in these biomarker studies represent unknown metabolites. As long as
their chemical identities are not clarified, the usability of unknown metabolites as functional

biomarkers for further investigations and clinical applications is rather limited.

In mass-spectrometry-based metabolomics approaches, the assignment of chemical identity usu-
ally involves the interpretation and comparison of experiment-specific parameters, such as accu-
rate masses, isotope distributions, fragmentation patterns, and chromatography retention times
[126-128]. Various computer-based methods have been developed to automate this process.
For example, Rasche and colleagues [129] elucidated structural information of unknown metab-
olites in a mass-spectrometry setup using a graph-theoretical approach. Their approach attempts
to reconstruct the underlying fragmentation tree based on mass-spectra at varying collision en-
ergies. Other authors excluded false candidates for a given unknown by comparing observed
and predicted chromatography retention times [130, 131], or by the automatic determination
of sum formulas from isotope distributions [132]. Furthermore, Gipson et al. [133] and Weber
and Viant [134] integrated public metabolic pathway information with correlating peak pairs in
order to facilitate metabolite identification. However, these methods might not be applicable for
high-throughput metabolomics datasets that have been produced in a in fee-for-service manner,

since the mass spectra as such might not be readily available.

Approaching the problem from a conceptually different perspective, we here present a novel
functional metabolomics method to predict the identities of unknown metabolites using a sys-
tems biological framework. By combining high-throughput genotyping data, metabolomics
data, and literature-derived metabolic pathway information, we generate testable hypotheses
on the metabolite identities based solely on the obtained metabolite quantifications (Figure 6.1).
No further experiment-specific data such as retention times, isotope and fragmentation pattern

are required for this analysis.

The concept of our approach is based on the following observations: As discussed above, GWAS
with metabolic traits can reveal functional relationships between genetic loci encoding meta-
bolic enzymes and metabolite concentration levels in the blood. Moreover, we have seen in
the previous chapters that GGMs can identify biochemically related metabolites from high-
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throughput metabolomics data alone. These observations suggest that if an unknown compound
displays a similar statistical association with a genetic locus in a GWAS or a known metabolite
in a GGM, then this may provide specific information of where it is located in the metabolic
network. Based on this information we can then derive testable hypotheses on the biochemi-
cal identity of the unknown metabolite. This annotation idea parallels classical concepts from
functional genomics, where for instance co-expression between RNA transcripts is used to pre-
dict the function of poorly characterized genes [44, 135], or protein functions are inferred from

protein-protein interactions [136].

In the following, we first conduct a full genome-wide association study on 655,658 genotyped
SNPs with concentrations of 292 known and 225 unknown metabolites in fasting blood serum
samples from the KORA F4 population (Metabolon data set, cf. Chapter 2). This dataset is less
lipid-centered than the Biocrates dataset used in Chapter 5 and provides a broad coverage of
metabolic pathways, including central energy metabolism, steroid hormones and xenobiotics.
We then compute a Gaussian graphical model including both known and unknown metabolites.
In a third step, we integrate the results of the GWAS and GGM computations and combine them
with metabolic pathway information from public databases to derive predictions for a total of
106 unknown metabolites. In order to validate the approach, we investigate six distinct cases in
detail. We derive specific identity predictions for a total of nine unknown metabolites, which
we then confirm experimentally. Finally, we discuss the relevance of newly discovered genetic
loci and unknown identity predictions in the context of existing disease biomarker discovery

and pharmacogenomics studies.

All results reported in this chapter are part of the following publication:

* Krumsiek, J., Suhre, K., Evans, A.M., Mitchell, M.W., Mohney, R.P., Milburn, M.V,
Wigele, B., Romisch-Margl, W., Illig, T., Adamski, J., Gieger, C., Theis, FJ., and Kas-
tenmiiller, G. Mining the unknown: A systems approach to metabolite identification. PLoS
Genetics, 8(10):e1003005, 2012.

Furthermore, a patent application of the method has been filed:

* Identity Elucidation of Unknown Metabolites. U.S. Patent Application No. 61503673 Un-
published, filing date Jul. 1, 2011. (Michael Milburn, applicant)
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Figure 6.1: Data integration workflow for the systematic classification of unknown metabolites.
We combine high-throughput metabolomics and genotyping data in Gaussian graphical models
(GGMs) and in genome-wide association studies (GWAS) in order to produce testable predic-
tions of the unknown metabolites’ identities. These hypotheses are then subject to experimental

verification by mass-spectrometry. Six such cases have been fully worked through and are pre-
sented in Table 6.3.
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6.1 Methods

Gaussian graphical models

To ensure log-normality, we compared QQ-plots against normal distributions for both non-
logarithmized and logarithmized metabolite concentrations (analogously to Chapter 5)'. All
distributions were closer to log-normality than to regular normality, so we logarithmized the
metabolite concentrations for the following analysis steps.

Age, gender and SNP effects were removed by adding the respective variables and SNPs states
to the data matrix. Recall that for each pairwise correlation, GGMs automatically correct for
all remaining variables in the data matrix. SNP states were coded as numerical values of 0, 1
and 2, such that linear regression calculation corresponds to an additive genetic model (see next
section). Note that age, gender and SNPs were not investigated as an actual node in the network
but merely used for the correction procedure, an inherent effect when adding variables to the
GGM. For the later analysis steps, we then only considered metabolite-metabolite edges in the

network.

Genome-wide associations

In order to avoid spurious false positive associations due to small sample sizes, only metabolic
traits with at least 300 non-missing values were included and data-points of metabolic traits that
lay more than 3 standard deviations off the mean were excluded by setting them to ‘missing’
in the analysis (leaving 273 known and 213 unknown metabolites). Genotypes are represented
by 0, 1, and 2 for major allele homozygous, heterozygous and minor allele homozygous indi-
viduals, respectively. We employed a linear model to test for associations between a SNP and a
metabolite assuming an additive mode of inheritance. Statistical tests were carried out using the
PLINK software (version 1.06) [137] with age and gender as covariates. Based on a conservative
Bonferroni correction, associations with p-values < 1.6-107!? meet genome-wide significance,
corresponding to a significance level of @=0.05. A SNP was associated with a gene whenever
there was at least one other SNP lying in the transcribed region of this gene (from 5’UTR to
3’UTR) that displays an LD > 0.8 with the query SNP. A detailed description of the GWAS
procedure can be found in Suhre et al. [29].

1QQ plots can be downloaded from http://helmholtz-muenchen.de/cmb/ggm
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Metabolic pathway model and functional annotations

Metabolic reactions were imported from three independent human metabolic pathway resources:
(1) H. sapiens Recon 1 from the BiGG databases [116], (2) the Edinburgh Human Metabolic
Network (EHMN) reconstruction [117] and (3) the KEGG PATHWAY database [43] as of Jan-
uary 2012. We attempted to create a highly accurate mapping between the different metabo-
lite identifiers of the respective databases, in order to ensure the identity of each compound in
our list. Entries referring to whole groups of metabolites, such as ‘phospholipid’, ‘fatty acid
residue’ or ‘proton acceptor’ were excluded from our study. Furthermore, we did not consider
metabolic cofactors such as ‘ATP’, ‘CO3’, and ‘SOy4’ etc. in our analysis, since such metabolites
unspecifically participate in a plethora of metabolic reactions. For each enzyme catalyzing one
or more reactions in our pathway model, we retrieved functional annotations from two indepen-
dent sources: (i) GO-Terms from the Gene Ontology [138] and (ii) enzyme pathway annotations
from the KEGG PATHWAY database [43].

6.2 Genetic associations link unknown metabolites to func-

tionally related genes

In the first step of our analysis, we conducted a GWAS with the concentrations of known and
unknown metabolites, testing a total of 655,658 genotyped SNPs from the KORA cohort for as-
sociation. In total, we observe 34 distinct loci that display metabolite associations at a genome-
wide significance level (Figure 6.2). Out of these 34 loci, 15 associate with at least one unknown
compound. From the 213 unknown metabolites analyzed here, 28 show at least one genome-
wide significant hit. For 12 loci, an unknown compound constitutes the strongest association
of all tested compounds. Seven of these loci (SLC22A2, COMT, CYP3AS, CYP2C18, GBA3,
UGT3A1, rs12413935) have not been described in GWAS with metabolic traits previously and
thus represent new genetic loci of metabolic individuality.

The genome-wide significant genetic associations that include at least one unknown compound
are presented in Table 6.1. Based on the observation that metabolites associating with genetic
variants in or near enzymes are likely to be functionally linked to these proteins, we used the
GWAS data to derive hypotheses on the potential identity of the respective unknowns. For in-
stance, the SNP rs296391 in close proximity to the SULT2A1 gene (sulfotransferase family,
cytosolic, 2A, dehydroepiandrosterone DHEA-preferring) strongly associates with the concen-
trations of the unknown metabolites X-11440 and X-11244 (p = 1.7-10"** and p = 2.1-10726,



—log(p)

6.2. GENETIC ASSOCIATIONS 79

top: unknowns bottom: knowns
40 — a A A a ' A A
: : :
20 — ' i )
| : : | i
el nte PRI a e (W | e wa's ' ™ d 1
0 — | [l \ \ [ I I \ \ \
I NI [ \ N LTl [ I I
3, -v:'l ! ¥, .-Qr' !-l . o ‘ [] rl s qo o* ?
[ : 5 1 I
20 - | . ! i
1
i
i
40 — v v v v v

-
N
w
N
[$,]
»

7 8 9 10 11 12 13 14 15 16 17181920 22

chromosome position

Figure 6.2: Manhattan plot of genetic associations. The strength of association for known (bot-
tom) and unknown (top) metabolites is indicated as the negative logarithm of the p-value for
the linear model. Only metabolite-SNP associations with p-values below 10~6 are plotted (grey
circles). Red triangles represent metabolite-SNP associations with p-values below 10~4%. Hori-
zontal lines indicate the threshold for genome-wide significance (& = 1.6 - 1071°) corresponding
to a = 0.05 after Bonferroni correction); vertical dashes indicate loci at which this threshold is
attained.
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Locus Locus Info Lead-SNP Metabolite p-value Published associations References
B . . . _ . ‘M%H . . .
PYROXD?2 U%.E&Em b:oymoiamuawm:_mam s4488133 X-12092 2.2-10 : :.:535\55.50 (urine) / [21]
oxidoreductase domain 2 X-12093 1.4-10727 dimethylamine (plasma)
X-11529 3.3.1078!
X-11538 1.4-10737
L ] o 22
SLCO1B1 MWMMME anion transporter family, bile rs4149056 W-Wwwmw MW Wmlmo eicosenoate / tetradecanedioate [29]
X-12456 8.4-10717
X-14626 2.1-107138
SLC22A2 ”Mwmwmwm% Mthmwmonﬁmza cation 316020 X-12798 1.7-10°  New ;
X-12510 1.5-10~°6
NATS N-acetyltransferase 8 rs7598396 X-11787 3.0-10737  N-acetylornithine [29]
X-12093 8.9.10722
X-11 1.1-10—48
COMT catechol-O-methyltransferase rs4680 593 O|: New -
X-01911 5.8-10
CYP3A5 w;w%wm%wmwm%“ family 3, subfamily | ;0040455 x-12063 1.5-10%  New -
sulfotransferase family, cytosolic, X-11440 1.7-10~% .
SULT2A1 dehydroepiandrosterone-preferring rs296391 11244 9.1.10-26 dehydroepiandrosterone sulfates [139]
X-11530 2.1-10738
- . —30
UGTIA UDP glucuronosyltransferase 1 rs6742078  il44l 5:6-107" | ilirubin (E,E) / oleoylcarnitine [29]
family, polypeptide A complex locus X-11793 2.6-10—26
X-11442 1.2-10725
ACADL acyl-CoA dehydrogenase, long-chain rs2286963 X-13431 2.7-10733 C9 / C10:2 [27]
ACADM wmwwwoo\y dehydrogenase, - medium- 19134854 x.11421 1.9-10727 (12 / C10, hexanoylcarnitine / oleate  [26, 27, 29]
CYP2C18 mﬁmmwmwwwmwwﬁw family 2, subfamily  7g96133  x-11787 4.0-102%  New .
GBA3 glucosidase, beta, acid 3 (cytosolic) rs358231 X-11799 2.9.10~17 New -
X-14189 1.5-10716
angiotensin I converting enzyme X-14208 4.6-10715 .
ACE (peptidyl-dipeptidase A) 1 rs4343 X.14205 10 10-14 aspartylphenylalanine [5]
X-14304 2.7-10712
UGT3A1 UDP  glycosyltransferase 3 family, 3358334 x_11445 24-10712  New .
polypeptide Al
- [no known gene locus] rs12413935  X-06226 4.0-10~11 New -

Table 6.1: Genome-wide significant associations (p < 1.6 - 1071%) involving unknown metabolites. We observe associations at 15 genetic
loci that involve genes from various biological processes. Note that most of these genes code for proteins that are related to metabolic

activities in the body, thereby providing information that allows to derive concrete hypotheses on the biochemical identity of each

unknown. Previously published associations with known metabolites provide further evidence on specific parts of a pathway in which the
unknown might be involved.
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respectively). The enzyme encoded by SULT2AI, a bile salt sulfotransferase, converts steroids
and bile acids into water-soluble sulfate conjugates for excretion [140]. Thus, we may speculate
that X-11440 and X-11244 are biochemically related to steroids, bile acids, or water-soluble
sulfate conjugates. Additional insights can be gained from genetic associations that involve
both known and unknown metabolites. For instance, X-12510, X-11787, X-12093 and N-
acetylornithine strongly associate with genetic variation at the NATS locus. NAT8 encodes the
protein N-acetyltransferase 8. In this case, we may speculate that the unknowns represent simi-
lar substrates or products of the N-acetylation processes linked to this enzyme. Finally, we can
link the results obtained here with results from other GWAS on metabolic traits. For example,
the unknown metabolite X-13431 associates with a genetic variant in the ACADL (acyl-CoA
dehydrogenase, long-chain) gene. This locus does not associate with any other metabolite in
the present study, but was previously reported to associate with the medium-chain length car-
nitines C9 and C10:1 [26, 27]. Proteins from the ACAD family catalyze rate-limiting reactions
in the B-oxidation pathway which generally associate with carnitines. This observation suggests
that X-13431 may be a member of this medium-chain length carnitine family. These examples
demonstrate that concrete information on the biochemical identity of unknown metabolites can

be derived from our experimental dataset by using the GWAS approach.

6.3 Gaussian graphical modeling provides a biochemical

context for unknown metabolites

In the second step of our analysis we focused solely on intrinsic relations between the mea-
sured metabolites and, in particular, on associations between known and unknown compounds.
To this end, we again calculated a metabolomics Gaussian graphical model (see Chapter 5).
In order to obtain a dataset that is independent of our genetic analysis, and to avoid circular
arguments, co-variations in metabolite concentrations that are due to association with genetic
variants (SNPs) were specifically removed from the data by adding the SNPs to the data matrix.
A partial correlation was included in the model if it is significantly different from zero with
a=0.05 after Bonferroni correction, yielding a corrected significance level of & = 7.9 - 10~7
and an absolute partial correlation cutoff of 0.178. The resulting GGM consists of a total of 399
out of 62,835 theoretically possible edges (0.64% connectivity, Figure 6.3A). In line with our
previous observations from Chapter 5, metabolites tend to be strongly connected within their
respective metabolic class, while links between different classes are rare. We obtained a mod-
ularity of () = 0.389 and a randomized modularity of Q = —0.0041 &£ 0.0222, resulting in a
z-score of z = 17.71 (compared to () = 0.488 and z = 23.49 for the Biocrates data GGM in
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Figure 6.3: Gaussian graphical modeling. GGMs embed unknown metabolites into their bio-
chemical context. A: Complete network presentation of partial correlations that are significantly
different from zero at a=0.05 after Bonferroni correction. The unknown metabolites are spread
over the entire network and are involved in various metabolic pathways. B-D: Selected high-
scoring sub-networks. We observe that GGM edges directly correspond to chemical reactions
which alter specific chemical groups (e.g. carbonyl groups and methyl groups). Solid lines de-
note positive partial correlations, dashed lines indicate negative partial correlations. Line widths
represent partial correlation strengths.
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Metabolite 1 Metabolite 2 ¢ Interpretation

X-11847 X-11849 0.901 biochemical link between two unknowns
3-indoxyl sulfate X-12405 0.84 tryptophan metabolism

X-11452 X-12231 0.832  biochemical link between two unknowns
X-12094 X-12095 0.822  biochemical link between two unknowns
guanosine inosine 0.798  nucleosides

X-11441 X-11442 0.76 biochemical link between two unknowns
androsterone sulfate epiandrosterone sulfate 0.755  steroid sulfates

X-11537 X-11540 0.753  biochemical link between two unknowns
X-02269 X-11469 0.734  biochemical link between two unknowns
X-11204 X-11327 0.706  biochemical link between two unknowns
decanoylcarnitine octanoylcarnitine 0.689 [-oxidation signatures

linoleamide (18:2n6) oleamide 0.654 C18:1/C18:2 acylamides
3-methyl-2-oxovalerate 4-methyl-2-oxopentanoate 0.646 branched-chain amino acid degradation
catecholsulfate X-12217 0.601  catechol metabolism

X-14189 X-14304 0.593  biochemical link between two unknowns
1,5-anhydroglucitol (1,5-AG) X-12696 0.58 sugar metabolism
dehydroisoandrosterone sulfate  X-18601 0.575  steroid hormones
PE(20:4(57,87,117,147)/0:0) X-12644 0.57 phospholipids (PE)

X-14208 X-14478 0.558  biochemical link between two unknowns
caffeine paraxanthine 0.554  caffeine metabolism

X-11423 X-12749 0.549  biochemical link between two unknowns
PC(18:2(9Z,127)/0:0) PC(0:0/16:0) 0.544  phospholipids (PC)

piperine X-01911 0.526  amino acid-derived alkaloids
2-hydroxypalmitate 2-hydroxystearate 0.523  hydroxy fatty acids

X-14056 X-14057 0.519  biochemical link between two unknowns
3-methyl-2-oxovalerate isoleucine 0.514  isoleucine degradation

X-11244 X-11443 0.51 biochemical link between two unknowns
urea X-09706 0.506  urea metabolism

isoleucine leucine 0.506  branched-chain amino acids
PE(20:4(n-6)/0:0) PE(18:2(9Z,127)/0:0) 0.502 phospholipids (PE)

Table 6.2: Interpretation of top-ranking partial correlation coefficients (PCC>0.5). Connec-
tions between two known metabolites indicate a direct metabolic relationship, e.g. between
purines (guanosine/inosine) or steroid hormones (androsterone sulfate/epiandrosterone sulfate).
A link between a known and an unknown compound therefore provides evidence for a shared
metabolic pathway. For instance, the link between 3-indoxylsulfate and X-12405 suggests a

role of this unknown in tryptophan metabolism. Abbreviations:

PC=phosphatidylcholine,

PE=phosphatidylethanolamine, (=partial correlation coefficient. Italic text represents hypo-
thetical known-unknown connections.
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Figure 6.4: Class-wise modularity of the GGM without (left) and with unknowns (right). Colors
encode the relative out-degree from each class (rows) to all other classes (columns). Again, we
observe strong links within each class and rather weak partial correlations between classes. Some
overlaps between related classes (e.g. amino acids and peptides) can be observed. Moreover, the
rightmost column in the right-hand figure demonstrates that unknowns are tightly integrated in
the GGM.

Chapter 5). The class-wise modularity again shows strong edges within each class, and some

overlaps between related groups like “Amino acid” and “Peptide” (Figure 6.4, left).

Inspecting the GGM in detail, we observe that the unknowns are tightly integrated within the
network and connected to known compounds of various metabolic classes. This is reflected
both in the overall network (Figure 6.3A; Figure 6.4, right) and in the top list of high-scoring
GGM edges (Table 6.2), where 18 of the 30 strongest partial correlations comprise at least one
unknown metabolite. The second-highest partial correlation in the dataset actually involves a
known-unknown metabolite pair, namely 3-indoxylsulfate and the unknown metabolite X-12405
(¢ = 0.840). For pairs of known metabolites, we consistently observe associations of biochemi-
cally related metabolites from various metabolic pathways, such as the metabolites inosine and
guanosine (¢ = 0.798), which are involved in nucleotide metabolism, or androsterone sulfate and
epiandrosterone sulfate (¢ = 0.755), which represent related steroid hormone metabolites. Other
pathways with related metabolite pairs include amino acid metabolism, lipid metabolism, bile
acid metabolism, and xanthine metabolism. Following our line of reasoning, correlating pairs

of a known and an unknown metabolite then directly point to specific pathways on which the
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Figure 6.5: High-scoring GGM subnetwork around three bilirubin stereoisoforms containing 7
unknown metabolites.

unknown metabolite may lie. The investigation of the network structure around the unknown

compounds provides an additional biochemical context.

We selected four high-scoring sub-networks in the GGM to show that this concept is indeed
applicable to real data. The first two of these sub-networks consist of a series of interme-
diate compounds from purine metabolism, including guanosine, inosine, xanthine derivatives
and urate (Figure 6.3B+C). In these cases, one can actually follow the addition and removal of
chemical groups by following the edges in the GGM network: Most edges in these sub-networks
correspond to the change of either a single methyl group at the purine double-ring structure or
to the removal of a ribose residue in the reaction from nucleosides to xanthine variants. While
the compounds in both sub-networks appear structurally similar, the distinction into two groups
by the GGM is indeed biochemically sound. The metabolites in Figure 6.3B correspond to en-
dogenous substances in the nucleoside pathway, whereas the molecules in Figure 6.3C relate
to signals from xenobiotic metabolism of drugs and caffeine. Here, the unknown metabolites
X-11422 and X-10810, as well as X-14473 and X-14374 are prominently placed in the net-
works, making them direct targets for closer inspection with respect to endogenous xanthines

and xenobiotics, respectively.

The third sub-network comprises three androsterone sulfate variants, which belong to the class
of steroid hormones (Figure 6.3D). We observe direct GGM links between the unknowns X-
11450, X-11244 and X-11443 with both dehydroepiandrosterone sulfate (DHEAS) and epi-
androsterone sulfate, suggesting androsterone derivatives as likely candidates for these three
metabolites (note that the systematic search in the next section will provide further evidence
for the steroid hypothesis). The fourth sub-network involves different stereoisomers of biliru-
bin, which is the degradation product of the oxygen transporter hemoglobin [97] (Figure 6.5).

In this sub-network, we observe high partial correlations between the bilirubin variants and a
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Figure 6.6: Positive control: Classification of known compounds by majority voting amongst
their respective GGM neighbors. No random sample achieved an F} score equal to or greater
than the real GGM, yielding an empirical p-value below 1078.

series of unknown metabolites (X-11441, X-11530, X-11442, X-11793, X-11809, X-14056,
and X-14057). The seven unknown compounds in this GGM sub-network are thus likely to be

involved in hemoglobin degradation processes.

Taken together, the examples confirm that concrete information on the biochemical identity of
unknown metabolites can be derived from the present experimental dataset by using the GGM

approach.

6.4 Combining GGMs and GWAS allows deriving specific

pathway annotations for unknown metabolites

The next step in our analysis was the integration of the GGM and GWAS approaches with gen-
eral pathway information from external databases, in order to generate concrete predictions for
the unknowns’ metabolic pathway memberships. As a feasibility test, we first asked whether
the local neighborhood of a known metabolite in the GGM can be used to correctly predict its
metabolic class. Each metabolite is annotated with one out of eight super-pathway annotations:
Carbohydrate, Lipid, Nucleotide, Amino acid, Xenobiotics, Energy, Peptide and Cofactors and
vitamins. A majority voting approach was implemented, where each known metabolite is as-
signed to the pathway that occurs most frequently amongst its GGM neighbors. We then de-
termine whether this indeed corresponds to the true pathway of the metabolite. This approach
yields a classifier quality of F7=0.718. Recall that I can be regarded as a quantitative trade-
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off between sensitivity and specificity of a classifier (see Chapter 4.3). In order to objectively
evaluate classification performance, we generated 10® randomly rewired GGM networks and re-
calculated the majority predictions. No random sample achieved an F score equal to or greater
than the real GGM, revealing classification abilities far beyond random (p < 10~8, Figure 6.6).
It is to be noted at this point, that the actual quality of our classifier might be even higher, since
GGM connections between different classes should not always be considered false positive. As
an example, metabolites assigned to different inherently related classes such as “amino acid”
and “peptide” might actually belong to the same pathway. A classical hypergeometric enrich-
ment analysis [141] among the neighbor classes of a node in the network is not appropriate,
since the inherent sparseness of a GGM is not compatible with the null model behind an enrich-
ment approach. While obviously majority voting is amongst the simplest possible classifiers, it

is easy to implement and performs well for the task at hand.

We then combined functional annotations for both GGM neighbors and GWAS hits for each
unknown in order to derive specific pathway classifications. For unknowns that did not have a
known metabolite neighbor in the GGM, we also investigated the 2- and 3-neighborhoods. Since
these hits certainly represent weaker evidence than a direct GGM neighbor, we distinguish be-
tween ‘GGM hit’ and ‘direct GGM hit’ in the following. Functional annotations were obtained
from three sources: (1) The sub-pathway assignment provided for each known metabolite in
the GGM neighborhood, (2) the GO functional terms for the associated gene of all genome-
wide significant GWAS hits, and (3) the KEGG pathways on which the associated genes lie.
To the best of our knowledge, there is presently no consistent mapping between annotations
from different functional classification schemes available, so we here had to perform the only
non-automatic step in the analysis: By manual interpretation of different functional classes (Fig-
ure 6.7A), we derive a single consensus pathway annotation for a total of 106 of the unknown
metabolites (Figure 6.7B). For 98 unknowns, we obtained annotations from the GGM network,
with 74 of these hits representing direct GGM hits. From the 28 genetics hits introduced in the
section before, 27 were in a known genetic region with functional annotation. Overlaying the
direct edge GGM set and the GWAS set, we obtained 16 unknowns with both biochemical and
genetic evidence (Figure 6.7C). From this set of high confidence predictions, we then selected

several unknowns which were forwarded to detailed analysis and experimental validation.
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Figure 6.7: Semi-automatic prediction of unknown metabolite identities. A: Examples of how
to determine pathway classifications based on the functional annotations of GGM and GWAS
hits. We present two metabolites, X-11421 and X-11244, whose GGM and GWAS associations

clearly point into carnitine and steroid metabolism, respectively.

B: Overview of unknowns

functionally annotated by both GGMs and the GWAS approach. ‘GGM’ refers to an unknown
metabolite which is three or less steps away from the unknown in the GGM, whereas ‘direct
GGM’ represents direct neighbors in the network. C: Pathway predictions for the 16 unknowns
with both direct GGM and GWAs annotations. Unknowns marked with a star were subjected
to in-depth analysis followed by experimental validation in the following.
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Scenario name Unknowns Evidence used Prediction Validated as

X-14208 Phe-Ser or Ser-Phe Phe-Ser
DIPEPTIDE X-14205 GGM, genetics Glu-Tyr or Try-Glu a-Glu-Tyr

X-14778 Phe-Phe Phe-Phe
STEROID X-11244 GGM, genetics sulfated androsterone androstene disulfate
HETE X-12441 GGM, pathway hydroxy-arachidonate (HETE) 12-HETE

X-11421 . carnitine species, with cis-4-decenoyl-carnitine
CARNITINE X-13431 GGM, genetics, pathway 6 to 10 carI}z)on atoms nonanoyl cai"/nitine *
BILIRUBIN X-11793 GGM, genetics oxidized bilirubin variant oxidized bilirubin variant *
ASCORBATE X-11593 GGM, genetics, pathway  O-methylascorbate O-methylascorbate *

Table 6.3: Six specific scenarios and their experimental validations. Predictions marked by * are
supported by exact mass, fragmentation pattern and chromatographic retention time; however,
validation using a pure standard compound as a reference is pending since these compounds are
presently commercially unavailable in pure form.

6.5 Experimental validation of nine predictions in six dis-

tinct scenarios

In total, we investigated six metabolic scenarios in-depth and attempted experimental confir-
mation of the respective predictions (Table 6.3). In the analysis of these scenarios we used all
available evidence, the metabolite correlations, genetic associations, biochemical data, and in

addition the molecular masses reported with the known and unknown compounds.

Scenario 1: Our first scenario, DIPEPTIDE, represents the prediction and successful valida-
tion of three unknown metabolites involved in short-peptide metabolism (Figure 6.8, left). In
the GGM, we observe X-14205, X-14208 and X-14478 in close proximity to various dipep-
tides, to glutathione derivatives, and to two longer fibrinogen-related peptides. The primary
pieces of genetic evidence for this case are the GGT1 locus, which shows a strong association
to S-gluthathionyl-L-cysteine, and the ACE locus, which connects to aspartyl-phenylalanine, X-
14205, and X-14208. GGT1 encodes for the protein y-glutamyl transpeptidase, which transfers
glutamyl-residues from glutathione in order to generate short-chain peptides [142]. This fits
well into the network picture, since GGT1 is connected to the glutathione derivative, which
in turn shares a GGM edge with y-glutamyl-glutamine. ACE, on the other hand, encodes
the angiotensin I converting enzyme, a peptidase that cleaves dipeptide fragments from an-
giotensin precursors and other functional oligopeptides. Since the biochemical and genetic
evidence pointed us to short peptides, and dipeptides in particular, we enumerated all possi-
ble 400 (=20x20) combinatorial variants of dipeptides and checked the mass against the masses
of the three unknowns under investigation. As an example, we shortened the list of candi-
dates for X-14208 from 2,732 (ChemSpider search) to only 8 molecules, respectively. For
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Figure 6.8: Detailed investigation of three scenarios (DIPEPTIDE, STEROID, and HETE). In
order to generate concrete hypotheses on the unknowns’ identities, we assembled all available
information for each scenario. This includes biochemical edges from the GGM, genetic associ-
ations from the GWAS, pathway annotations as well as mass information. For details of the
predicted identities, see Table 6.3 and main text.

experimental validation, we first checked the plausibility of the candidates with respect to the
fragmentation spectra and determined the exact masses. The accurate mass determined for X-
14208 is 252.11172 4+ 0.001 Da, supporting the chemical formula C1oH14N20,4. While the
formula still matches more than 1,200 molecular structures, the prediction of this unknown
as a dipeptide leaves only two candidate molecules, namely phenylalanylserine (Phe-Ser) and
serylphenylalanine (Ser-Phe). Both variants were obtained from a commercial source and run
on the LC-MS/MS platform. The retention index [143] and the fragmentation spectrum received
for Phe-Ser matched the index and spectrum of X-14208, whereas Ser-Phe produced a clearly
different spectrum (Figure 6.9). Thus, the identity of X-14208 was experimentally confirmed as
the dipeptide phenylalanylserine. Importantly, using our integrated approach, we were able to
identify X-14208 by only testing two candidate molecules. The other two unknowns, X-14205
and X-14478, were identified through similar experiments as a-glutamyltyrosine (a-Glu-Tyr)
and phenylalanylphenylalanine (Phe-Phe), respectively.

Scenario 2: In the second scenario, STEROID, we investigated an unknown metabolite (X-
11244) for which both GGM and GWAS data strongly indicate an identity related to steroid-
hormone compounds: X-11244 is tightly linked via GGM edges to dehydroepiandrosterone sul-
fate and two other unknowns, which in turn connect to epiandrosterone sulfate and androsterone
sulfate (Figure 6.8, middle). Furthermore, X-11244 displays a highly significant genetic asso-
ciation (p = 2.1 - 10726) with rs296391, which lies in strong LD in the SULT2A1 gene locus.
SULT2A1 encodes for a member of the sulfotransferase family 2A, dehydroepiandrosterone-
preferring, further strengthening the metabolic context. Based on the GGM and GWAS results,
we hypothesized that X-11244 is a steroid sulfate related to androstane. Experimentally, the

primary loss of a fragment with a nominal mass of 98 and the presence of an ion at 97 m/z ob-



6.5. EXPERIMENTAL VALIDATION 91
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Figure 6.9: Experimental confirmation of X-14208 as phenylalanylserine. Two possible dipeptide
variants were predicted and consequently tested. The fragmentation spectrum of pure Phe-Ser
matches that of the unknown compound, whereas the spectrum for pure Ser-Phe differs visibly.
Moreover, the retention index (RI) of Phe-Ser is similar to the RI of X-14208, whereas that of
Ser-Phe is significantly different.

servable in the fragmentation spectrum of X-11244 indicate the presence of at least one sulfate
group in this unknown. The exact mass determined for X-11244 supports the chemical formula
C19H3008S3. Querying ChemSpider for this chemical formula yields only four results, one of
which corresponds to an androstene disulfate variant (ChemSpider ID 21403154). Analysis of
several disulfated androstenes demonstrated similar retention times and fragmentation spectra.
Among the tested variants, 4-androsten-3/3,173-disulfate showed the best match. Given that
other isomers are also possible, which cannot necessarily be chromatographically resolved, we
annotated X-11244 more generically as ‘androstene disulfate’.

Scenario 3: In the third scenario, HETE, we made explicit use of known biochemical interac-
tions derived from three publically available pathway databases. We searched for cases where an
unknown shows GGM connections to known compounds for which a direct pathway interaction
with a metabolite having the same mass as the unknown exists. The unknown metabolite X-
12441 does not show any genome-wide significant SNP hits and only a single GGM neighbor:
cis-5,8,11,14-eicosatetraenoic acid (arachidonate, Figure 6.8, right). Arachidonate constitutes
pathway connections to several other lipid-related metabolites, including a variety of hydroxy-
arachidonate variants (HETEs). These variants have the chemical formula CooH3203 with a
molecular weight of 320.2351 Da, matching the mass of the unknown. We thus hypothesized
that X-12441 represents a HETE species. Experimentally, the determination of the exact mass
of the unknown further supported our hypothesis, as the accurate mass determined for X-12441
matches the chemical composition of HETE to a precision of 0.002 Da. A number of HETE
isoforms were experimentally tested, including the 5, 8,9, 11, 12 and 15 isoforms. All isoforms
produced unique fragmentation spectra that permitted the precise identification of the unknown
X-12441 as the 12-HETE isoform.
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Figure 6.10: Scenario CARNITINE. A: X-11421 associates with ACADM, which catalyzed a
rate-limiting step in B-oxidation and has previously been shown to link to plasma acyl-carnitines.
Furthermore, the unknown is connected to C6 and C8 carnitines in the GGM. X-11421 has been
verified as cis-4-decenoyl-carnitine. B: X-13431 is associated with ACADM (another variant
of the beta-oxidation enzymes) and C11 fatty acid. In accordance with previous associations
between ACADL and C9 carnitines, X-13431 has been confirmed as nonanoyl (C9) carnitine.

Scenario 4: In the CARNITINE scenario, we investigated two specific unknowns that, on the
one hand, display associations with fatty acid derivatives (in particular with acylcarnitines) and,
on the other hand, associate with enzymes of the acyl-coenzyme A dehydrogenase (ACAD)
class. Acylcarnitines represent a transport form of fatty acids tagged for mitochondrial transport
and subsequent S-oxidation [144]. In Chapter 5 we already demonstrated strong GGM edges
between carnitine species with a carbon atom difference of two. Furthermore, previous meta-
bolomics GWAS revealed genetic associations between various acylcarnitines and loci encoding
for B-oxidation-related ACAD enzymes (e.g. Illig et al. [27]).

The first unknown metabolite, X-11421, shares significant GGM edges with C8 and C6 car-
nitines and further associates with ACADM, the ACAD enzyme for medium-chain length fatty
acyl residues (Figure 6.10A). In the context of our previous findings and considering the mass
peak of X-11421 (314.2 m/z, pos. mode), we therefore hypothesized that X-11421 is a medium-
chain length carnitine with 10 carbon atoms. Matching our computational prediction, this un-
known has indeed been experimentally identified as cis-4-decenoyl-carnitine, a carnitine with
10 carbon atoms and an w-6 double bond, by testing the pure compound. It has to be noted
that carnitines shift elution times dramatically in relation to their RI markers on the analytical
platform used in this work. The cis-4-form was confirmed in a spiking experiment in a well

characterized human plasma sample, which was run with original samples.

The second unknown metabolite, X-13431, is linked to a C11 free fatty acid in the GGM and
associates with the ACADL locus (Figure 6.10B). In a previous study, this locus has been shown

to associate with C9 carnitine levels [27]. This observation together with the molecule mass peak
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Figure 6.11: Scenario BILIRUBIN. The unknown X-11793, several bilirubin isomers and
biliverdin are tightly connected via both the GGM and the UGT1A locus. Experimentally,
there is strong evidence that X-11793 represents an epoxidized bilirubin variant.

detected for the unknown (302.3 m/z, positive mode) makes C9 carnitine a good candidate for
X-13431. Our prediction is experimentally confirmed by the fragmentation of X-13431 as the
molecule produces fragments shared by mid- and long-chain acylcarnitines and several neutral
losses (loss of 59 m/z and 161 m/z) that are highly diagnostic of carnitines. With respect to
chromatography, X-13431 elutes between C8 and C10 carnitines, thus further supporting the
hypothesized C9 carnitine. The accurate mass of 301.22476+0.0015 Da determined for X-
13431 corresponds to the molecular formula C16H3;NOy4, which also matches C9 carnitine.
Due to the lack of a commercial source for pure C9 carnitine, the final confirmation of the

predicted chemical identity by testing the pure compound is still pending.

Scenario 5: In the BILIRUBIN scenario, we focused on the unknown metabolite X-11793,
which shares a GGM edge with a specific bilirubin stereoisomer (EE) and associates with the
UGT1A locus encoding for the enzyme UDP glucuronosyltransferase 1 family, polypeptide A.
The bilirubin stereoisomers, which show close proximity in the GGM, are degradation prod-
ucts of heme, the oxygen-carrying prosthetic group contained in hemoglobin [145]. For fur-
ther metabolization and excretion, the very insoluble bilirubin must be transformed into soluble
derivatives. Glucuronidation of bilirubin represents the main mechanism for this transforma-
tion in the human metabolism. The reaction is mainly catalyzed by an enzyme encoded at the
UGT1AL1 locus [146, 147], matching the observations in our data that X-11793 and three of the

four degradation products display genetic associations with the UGT1A locus.

Since X-11793 is embedded in the biochemical and genetic network of bilirubin derivatives
and also shares their association with the UGT1A locus, we assumed that X-11793 represents
a further bilirubin derivative. Moreover, the mass difference between bilirubin and X-11793 is
15.9, which might correspond to the addition of oxygen. We therefore predicted X-11793 to

be an (ep)oxidized bilirubin as a possible result of bilirubin oxidation mediated by cytochrome
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Figure 6.12: Scenario ASCORBATE. X-11593 associates with the COMT locus on the one hand,
and is connected to the ASCORBATE pathway on the other hand. We thus hypothesized that
the unknown represents an O-methylated ascorbate, which is in accordance with the observed
mass spectrum and chromatography retention time.

P450. Such oxidation processes have previously been suggested as alternative routes for the
metabolization of bilirubin besides glucuronidation [148].

From an experimental perspective, the neutral accurate mass of X-11793 of 600.25859 Da,
corresponding to C33H36N4O7, perfectly matches the formula for the predicted (ep)oxidized
bilirubin variant. The fragmentation pattern produced by the unknown molecule further supports
the hypothesis: Bilirubin generates fragments with 285 m/z and 299 m/z corresponding to a
cleavage of the central C-C bond of the molecule. If the hypothesized ep(oxidized) bilirubin
broke at the same position, it would produce fragments with 299 m/z and 301 m/z accordingly,
which both occur in the fragmentation spectrum of X-11793. The final confirmation of the
prediction by running pure epoxidized bilirubin is still pending due to the lack of commercial

sources of the pure substances.

X-11793 identified as (ep)oxidized bilirubin might represent an interesting additional biomark-
er for the efficacy of heme degradation processes, which plays an important role in various
diseases. Serum concentrations of bilirubin as well as the UGT1A locus are not only associ-
ated with bilirubin turnover-related syndromes such as jaundice, but also with different cancer
variants and coronary heart disease (CHD) [146, 149-151]. While jaundice is caused by high
bilirubin concentrations, bilirubin has proven to be an effective antioxidant [152], which might
explain the association found between reduced risk of CHD and various forms of cancer with

higher bilirubin concentrations.

Scenario 6: In the ASCORBATE scenario, we investigated the unknown X-11593, which is

close to threonate, ascorbate and related substances in the GGM. These metabolites are tightly
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interconnected in the ascorbate (vitamin C) pathway. Furthermore, we found significant asso-
ciations of X-11593 with SNPs in the gene encoding catechol-O-methyltransferase (COMT),
an enzyme relevant for the inactivation and degradation of many drugs. COMT O-methylates

molecules with catechol-like structures.

Since, according to the GWAS, X-11593 is probably a substrate or a product of O-methylation,
we determined the mass differences to the known metabolites neighboring X-11593, namely
ascorbate and threonate. While the mass difference of X-11593 and threonate is 54, X-11593
and ascorbate show a mass difference of 14, which corresponds to the addition of a methyl
moiety. Moreover, in ascorbate, the double bond within the 5-ring with its two hydroxyl moi-
eties could ‘mimic’ the corresponding planar substructure in catechol, on which COMT is usu-
ally working. Finally, the methylation of ascorbate through the catalysis of COMT has already
been shown experimentally [153]. These observations make O-methylated ascorbate derivatives
(most probably 2-O-methylascorbate) good candidates for X-11593. From an experimental per-
spective, our hypothesis is supported by the accurate neutral mass of 190.04787 Da determined
for X-11593. Based on the accurate mass, the molecular formula for X-11593 is C;H;Og,
matching our prediction. The retention time of X-11593 shows a slight shift compared to the
time for ascorbate. This shift matches the shift expected for adding a methyl group. Moreover,
X-11593’s primary fragment loss is 60, which is the same as for ascorbate. The loss of 15, also
seen for X-11593, is typical for phenols substituted with a -OH and -OCH3. Due to the lack of a
commercial source for 2-O-methylascorbate the confirmation through the spectrum of the pure

substance is still pending

6.6 Discussion of novel genetic associations

We developed and validated a novel integrative approach for the biochemical characterization
of ‘unknown metabolites’ from high-throughput metabolomics and genotyping datasets. Our
method allows for the functional annotation of previously unknown metabolites and, as a conse-
quence, enhances the interpretability of metabolomics data in genome-wide association studies
and biomarker discovery. For the first time, we systematically evaluated genetic associations of
unknown metabolites, thereby discovering seven new loci of metabolic individuality. By clas-
sifying a series of unknown metabolites, we gained new insights into the functional interplay
between genetic variation and the metabolome both for previously reported and new loci. Fur-

thermore, several of the unknown compounds that we identified as well as their newly associated
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loci were independently reported in disease-related studies. In the following, we discuss three
recently published studies.

COMT & hepatic detoxification

The first example is a recent biomarker study, where Milburn et al. [154] reported an association
of X-11593 with hepatic detoxification. In our GWAS, we find a strong association of X-11593
with the COMT locus, which encodes the catechol-O-methyltransferase enzyme. COMT is
responsible for the inactivation of catecholamines such as L-dopa and various neuroactive drugs
by O-methylation [155]. Following our identification approach, we experimentally confirmed
the identity of X-11593 as O-methylascorbate. Notably, O-methylascorbate is a known product
of ascorbate (vitamin C) O-methylation by COMT [153, 156]. Thus, our observations establish
a link between O-methylascorbate blood levels, common genetic variation in the COMT locus

and COMT-mediated liver detoxification processes.
ACE & hypertension

The second study relates to the ACE gene locus, which is a known risk locus for cardiovascular
disease, hypertension and kidney failure. The protein encoded by the ACE locus, angiotensin-
converting enzyme, is an exopeptidase which cleaves dipeptides from vasoactive oligopeptides,
and plays a central role in the blood pressure-controlling renin-angiotensin system [157]. More-
over, the ACE protein is a target for various pharmaceuticals, especially in the treatment of
hypertension [158]. Steffens et al. [125] recently published a study on metabolic differences be-
tween depressed and non-depressed individuals suffering from heart failure. They reported two
differentially regulated unknown metabolites measured using the same metabolomics platform
as the one used here. These two potential biomarkers, X-11805 and X-03094, were also ana-
lyzed in the present study. In our GGM network, X-11805 is in close proximity to angiotensin-
related peptides. It may thus be involved in blood pressure control processes. The second
unknown metabolite, X-03094, is directly connected to cholesterol in the GGM and therefore
may represent a metabolic intermediate of cholesterol metabolism. Blood cholesterol levels in
turn are a major risk factor for coronary heart disease [159]. Thus, our predictions suggest a

potential biological link for both unknowns to the associations reported by Steffens et al.
UGT1A/ACADM & insulin resistance

The third example is an explorative study to detect biomarkers for insulin sensitivity. Gall et al.
[22] reported several known metabolites (most prominently a-hydroxybutyrate) as biomarkers
for insulin resistance. They also reported a series of unknown metabolites among their top
hits. Here, we investigated three of these unknowns: X-11793 associates with UGT1A (UDP
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glucuronosyltransferase 1) and most likely represents a bilirubin-related substance. Moreover,
we experimentally validated X-11421 and X-13431, which display a strong association with
ACADM (acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain), as acylcarnitines con-
taining 10 and 9 carbon atoms, respectively. The identification of these latter two unknown me-
tabolites as medium-chain length acylcarnitines is coherent with reports by Adams et al. [160].
The authors found elevated blood plasma acylcarnitine levels in women with type 2 diabetes.
Functionally, they attributed this finding to incomplete 3-oxidation. Thus, our identification of
X-11421 and X-13431 now suggests incomplete 5-oxidation as an explanation for the associa-
tions found by Gall et al. and implies that acylcarnitines containing 10 and 9 carbon atoms are

potential biomarkers for insulin resistance.

6.7 Conclusion

In summary, we integrated high-throughput metabolomics and genotyping data from a large
population cohort for elucidating the biochemical identities of unknown metabolites. To this
end, we applied metabolomics genome-wide association studies and Gaussian graphical model-
ing in order to link these unknown metabolites with known metabolic classes and biological pro-
cesses. For six specific scenarios, we went from systematic hypothesis generation over detailed
investigation and identity prediction to direct experimental confirmation. Similar validations
may now be undertaken for the remaining predictions that we report in Figure 6.7. Finally, we
demonstrated the benefit of our method by discussing several of these newly identified metabo-
lites in the context of existing biomarker discovery studies on liver detoxification, hypertension

and insulin resistance.

Our present approach can be extended in several directions. It can be combined with method-
specific, automated techniques that further reduce the search space of candidate metabolites.
Previously mentioned methods relying on mass-spectra [129] or chromatographic properties
[131] are suitable candidates here. Furthermore, the biochemical context provided by the GWAS
might be used in more detailed analyses, i.e. by taking into account the specific chemical trans-
formation a given enzyme catalyzes. The method can be directly transferred to other types of
metabolomics datasets not specifically originating from MS experiments, such as NMR-based

metabolomics.

Beyond the application to metabolite identification, our study demonstrates the general potential
of functional metabolomics in the context of genome-wide association studies. The comprehen-
sive metabolic picture provided by GGMs in combination with GWAS allows for the detailed
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analysis of metabolic functions, chemical classes, enzyme-metabolite relationships and meta-
bolic pathways.



Chapter 7

The potential of metabolomics
GGMs: Further applications

In the previous three chapters, we demonstrated the ability of Gaussian graphical models to re-
construct pathway reactions from metabolomics data. Importantly, this data-driven metabolic
network reconstruction is not dependent on existing knowledge and able to embed metabolites
with weak pathway evidence (like the phospholipids in Chapter 5) and even unknown metabo-
lites (in Chapter 6). We next asked how to further exploit these metabolic networks biologically.
A major focus of this chapter will be concepts from differential network biology [161], where
group-specific differences (e.g. between healthy and diseased) are investigated in a network con-
text. Most of the projects were performed in collaborations with other research groups from the
Institute of Epidemiology, the Genome Analysis Center and the Institute of Bioinformatics and

Systems Biology at the Helmholtz Zentrum Miinchen.

In Section 7.1, we introduce the concept of ‘effect networks’, where GGMs are combined with
results from statistical analyses. We present applications from three collaboration projects:
(1) Gender-specific differences in the KORA study participants, (2) associations between the
fat-free body mass and the metabolome and (3) the impact of a Type-D personality on the
metabolome. A complementary approach of using sample groups is then introduced in Section
7.2. We developed a differential GGM approach which directly uses the experimental design
in order to elucidate specific perturbations introduced by a chemotherapeutic treatment of the
U87 glioblastoma (brain cancer) cell line. In Section 7.3 we introduce a study where GGMs
were used to define biologically meaningful metabolite groups for a novel enrichment algo-

rithm called phenotype set enrichment analysis. Finally, in Section 7.4, GGM edges are used to
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Figure 7.1: The concept of ‘effect networks’. We combine GGMs with the results from a differ-
ential statistical analysis, e.g. between two groups like gender or healthy/disease. The resulting
network then combines both biochemical relationships and the metabolic effect of the group
under investigation.

shed light on the role of metabolite ratios and p-gains. P-gains are specific measure of statistical

association for metabolite pairs introduced in metabolomics genome-wide association studies.

Most of the projects discussed in the following are based on data from the KORA cohort (cf.
Chapter 2) either with measurements from the Biocrates platform (Chapter 5) or the Metabolon
platform (Chapter 6). Since different research groups tend to apply different quality control
and missing values treatment procedures, or had access to only a limited subset of the data, the

number of samples and metabolites used for each particular project differ slightly.

7.1 Group-specific metabolome differences: Effect networks

In the following, we present three projects where we combined results from statistical analyses
with Gaussian graphical models (‘effect networks’, Figure 7.1). In all projects, metabolite con-
centration differences were investigated with respect to a specific grouping or phenotype in the
data (male/female, fat-free body mass, Type-D personality). A statistical model usually yields
a coefficient which represents the strength of association. For instance, in a linear regression
model, the coefficients from the fitted model represent a quantitative measure of the association
strength. These values can then be color-coded and visualized in the GGM network. Inspection
of the resulting networks allows to evaluate the statistical signal in the context of their biochem-
ical interactions. A major advantage of GGMs over publically available pathway networks is

that they can readily be calculated on any data matrix, without the need for high-quality func-
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tional annotations. In this thesis, we will only manually investigate the effect networks; future
projects will extend this approach by computational methods like graph clustering and statistical

enrichment.

Note that our effect network approach belongs to the class of differential network biology meth-
ods, which have recently been attributed a central role for upcoming high-throughput data anal-
yses [161].

7.1.1 Gender-specific differences of blood metabolites

It is well-acknowledged that gender differences, i.e. being male or being female, are substantial
and can be detected throughout various levels of biological organization. For example, consid-
erable sexual dimorphisms have been reported for behavioral traits [162], brain morphometry
[163], mental disorders [164], and fat metabolism [165], to name but just a few examples.
Obviously, such differences may be a problem for population-based studies, which might be
hampered by sex bias [166], but are in parallel an interesting field for fundamental research on
its own [167]. Again using data from the KORA study, we sought to determine differences in
the blood serum metabolome between males and females. The study was published in

* Mittelstrass, K., Ried, J.S., Yu, Z., Krumsiek, J., Gieger, C., Prehn, C., Roemisch-Margl,
W., Polonikov, A., Peters, A., Theis, F.J., Meitinger, T., Kronenberg, F., Weidinger, S., Wich-
mann, H.E., Suhre, K., Wang-Sattler, R., Adamski, J., and Illig, T. Discovery of Sexual
Dimorphisms in Metabolic and Genetic Biomarkers. PLoS Genetics, 7(8):¢1002215, 2011.

The analysis was based on a total of 3,300 individuals from the KORA F3 and F4 cohorts, and
used a total of 131 measured metabolites measured using the AbsoluteIDQ™™ kit. Note that
this set differs from the dataset introduced in Chapter 2, having more samples (the study was
conducted after our initial GGM analysis) and a slightly different quality control leaving only
131 metabolites.

Linear regressions were carried out with metabolites as dependent variables, gender as the ex-
planatory variable, and age and BMI as covariates for correction. That is, we fitted linear models

of the form:

m; = Bo; - © | + Bu; - gender + Bo; - age + (B3; - BMI + ¢; fori = (1,...,p), (7.1)
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Figure 7.2: Metabolic differences between males and females. Green arrows indicate metab-
olite classes upregulated in females, whereas blue arrows represent higher concentrations in
males. Several sphingolipids, phosphatidylcholines and serine and glycine are higher in fe-
males. In contrast, C6 sugars (primarily glucose), lyso-phosphatidylcholines, acylcarnitines (rep-
resenting [-oxidation intermediates) and other amino acids are higher in males. Abbreviations:
PC=phosphatidylcholine. Reprinted from Mittelstrass et al. [25].

where m; represents the concentration vector of the ¢-th metabolite, gender, age and BMI are the
respective phenotype vectors (one value for each sample), the [3.; represent the fitted coefficients,
€; is a normally distributed error term and p is the number of metabolites (131 in this case).
Gender is coded with discrete values of zero and one. The linear model is then fitted according

to equation (3.8) in Chapter 3.

For a detailed list of results we refer the reader to the original publication. Briefly, phosphatidyl-
cholines, sphingomyelins, as well as serine and glycine were generally higher in females com-
pared to males (Figure 7.2). In contrast, lysophosphatidylcholine levels, acylcarnitines, C6-
sugars (which primarily represents glucose), and the remaining amino acids were higher in
males than in females. In total, 102 out of 131 metabolites were reported to be significantly

different after Bonferroni correction between genders. In addition to the metabolomics analysis
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alone, we reported a strong gender difference for the genetic association between the CPS1 lo-
cus (carbamoyl-phosphate synthase 1) and glycine. In this thesis, however, we will focus on the

metabolic changes only.

In addition to the rather knowledge-driven result analysis displayed in Figure 7.2, we applied
our GGM methodology to get a more comprehensive picture of gender differences. Projecting
the 31; values from equation (7.1) onto the GGM allows to actually follow the propagation of
gender difference effects through the metabolic network (Figure 7.3). Importantly, for this anal-
ysis the GGM was corrected for gender-specific effects (by adding gender to the data matrix),
in order to specifically avoid re-using the same data. Since in a Gaussian graphical model each
pairwise correlation is corrected for all remaining variables, adding a column to the data matrix
will automatically remove confounding effects of this variable on the GGM. We applied a high
cut-off of (=0.3 to emphasize strong inter-metabolite effects for this analysis. With this cutoff,
the GGM contains a total of 1.28% out of all possible edges (Figure 7.4A). The distribution
of partial correlation coefficients resembles the distribution shown in Figure 5.1, thus further
emphasizing the stability of GGM estimations for the given sample size. Note that in contrast
to the GGM calculated in Chapter 5, we here omitted negative edges and focused only on pos-
itive partial correlations. As discussed in that chapter, negative correlations generally represent

a special case of partial correlations which can be excluded for this analysis.

In order to further investigate topological properties of the GGM, we plotted the number of
clustered groups in the GGM as a function of the absolute partial correlation cutoff (Figure
7.4B). For this analysis, we excluded singleton metabolites without any partial correlation above
the threshold. Most non-singleton groups emerge in the cutoff range between 0.3 and 0.7, which
corresponds to the cutoffs from Figure 7.3. For our lower cutoff of 0.3, we obtain 14 groups,

which can here be regarded as independent phenotypes in the metabolite pool.

Strikingly, sex-specific effects appear localized with respect to both the measured metabolic
classes and the GGM structure. For instance, while most sphingomyelin concentrations were
shown to be higher in females (Figure 7.2), they also represent a connected component in the
GGM (Figure 7.3). Similarly, acylcarnitines are higher in males and mostly share partial cor-
relation edges with other acylcarnitines. The analysis suggests that sex-specific concentration
differences affect whole metabolic pathways rather than being randomly spread over the differ-

ent metabolites.

One specific result in this combined analysis is of particular interest. Three metabolite pairs
display strong edges in the GGM, but substantially different gender-specific regulation (yellow
ellipses in Figure 7.3). Specifically, lysoPC a C20:3, lysoPC a C20:4 and lysoPC a 18:2 concen-
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Figure 7.3: Gender effect network. Gaussian graphical model illustrating the propagation of gender-specific effects through the metabolic
network. Each node represents one metabolite whereas edge weights correspond to partial correlation strengths. The diagram only shows
partial correlations > 0.3. This networks is essentially based on the same dataset as the GGM shown in Figure 5.1, only on a slightly
smaller set of metabolites and a higher partial correlation cutoff. Node coloring represents the strength of association — measured using
Bi1 from equation (7.1) — towards either males or females. Asterisks indicate significantly different metabolites between genders. Yellow
highlighted metabolite pairs differ by a C18:0 fatty acid residue. Reprinted from Mittelstrass et al. [25].
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Figure 7.4: Topological properties of the GGM used in the gender study. A: Histogram of partial
correlation coefficients. For the chosen cutoff (=0.3, the network contains 1.28% of all possible
edges. B: Number of connected components in the GGM as a function of the absolute partial
correlation cutoff. For (=0.3, we obtain 14 non-singleton groups. The vertical dashed lines at
¢=0.5 and (=0.7 correspond to the two additional partial correlation cutoffs annotated in Figure
7.3.

trations are significantly higher in males, whereas their respective GGM neighbors PC aa C38:3,
PC aa C38:4 and PC ae C36:2 are higher in females. Interestingly, each pair of lyso PC and di-
acyl PC shares a carbon atom / double bond difference of exactly C18:0. Thus, the regulation
of C18:0 (stearic acid) might represent a key metabolic difference between males and females.
From the network point-of-view, C18:0 differences may be regarded as an entry point of gender
differences into the metabolic network. Differences between males and females primarily arise
from these localized positions in the metabolic pathway and further observed differences might
rather be caused by propagation of the signal through the network.

In summary, this study presented a possibility to use GGMs for the extended analysis of sta-
tistical associations in metabolomics data. Our results assign a key role to stearic acid as a
possible entry point of gender-specific metabolic differences. Importantly, the approach is not
limited to allegedly biased metabolic pathway databases, since only measured metabolomics
data with a phenotypic trait are required. The study is currently being repeated with data from
the Metabolon platform, which provides are broader panel of measured metabolites in contrast
to the lipid focused Biocrates kit used here. Furthermore, the analysis will be extended by
a specifically designed enrichment algorithm which directly points out areas in the metabolic
network carrying a localized signal.
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7.1.2 Metabolome associations with fat free mass

In this study, we investigated associations between the blood metabolome and features of body
composition. In particular, we analyzed the fat-free body mass (FFM) which mainly represents
skeletal muscle mass [168]. FFM has been used in various contexts, for instance to investigate
associations of early nutritional programming and metabolic disease risk [169], weight loss
due to lung diseases [170, 171] or the effects of anabolic steroids on body mass [172]. Since
especially changes in lipid metabolism can be expected for varying fractions of fat-free mass, the
Biocrates metabolites here allow for an explorative investigation of possible impacts of muscle
content on the human metabolome. As a proxy of skeletal muscle mass, we used the fat-free
mass index (FFMI), which is a height-independent measure of fat-free mass based on the body
fat percentage. To the best of our knowledge, it represented the first systematic study comparing
FFMI with high-throughput metabolomics data. The analysis was again performed on data from
the KORA F4 study (3061 probands) for discovery, and complemented by samples from KORA
S4 for replication. This dataset is identical to the one used in Section 7.1.1. A co-authored

manuscript for the project has been prepared:

* Jourdan, C., Petersen, A.K., Gieger, C., Doring, A., lllig, T., Wang-Sattler, R., Meisinger, C.,
Peters, A., Adamski, J., Prehn, C., Suhre, K., Altmaier, E., Kastenmiiller, G., Romisch-Margl,
W., Theis, EJ., Krumsiek, J., Wichmann, H.E., and Linseisen, J. Association between Fat
Free Mass and Serum Metabolite Profile in a Population-Based Study at Two Points in Time.
PLoS ONE, 7(6):e40009, 2012.

A linear regression analysis with metabolites as dependent variables, FFMI as the explanatory
variable, and age and gender as covariates for correction was performed analogously to equa-
tion (7.1) in section 7.1.1. The analysis revealed significant associations with the FFMI for
various metabolites from different metabolic classes. For instance, the branched-chain amino
acids (BCAAs), tyrosine and phenylalanine were found to be positively associated with FFMI.
Furthermore, a positive association of the ratio of branched-chain amino acids to glucogenic
amino acids was discovered. This indicates increased BCAAs concentrations in relationship to
glucogenic amino acids in subjects with higher FFMI. For the carnitine class, an increase in short
odd-chained carnitines (especially C3 and C5) with FFMI as well as a decrease of long chain
C18 carnitine was detected. This combination of associated metabolites suggests an increased
[-oxidation rate for higher FFMI values.

To further elucidate the biochemical context of the recovered FFMI effects, we again colored the
metabolomics GGM with S-values from linear regression analysis (Figure 7.5). Two clusters

of particular interest will be discussed in the following. First, ‘cluster 1’ in this figure shows
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diverse, rather unlocalized effects. Interestingly, however, PC aa 38:3 appears in the center
of this cluster and represents the only phospholipid species with a positive association to the
FFMI. The GGM neighbors of PC aa 38:3 do not display any significant impacts of the FFMI.
Hence, this phospholipid might represent a specific point in the metabolome association with
fat-free body mass, whereas surrounding metabolic interaction partners are decoupled in terms
of effect propagation. A bulk fatty acid side chain composition of 38:3 most probably either
represents a combination of the w-6 unsaturated 20:3 with 18:0, or of the w-3 or w-6 18:3
with 20:0. It might thus be worthwhile to further investigate the fatty acid biosynthesis or
degradation pathways specifically involving these fatty acids species. ‘Cluster 2’ contains a set
of coordinately downregulated phosphatidylcholines with very long fatty acid side chains. In
line with our findings from the carnitine class, the GGM results further strengthen the hypothesis

of an increased fatty acid oxidation in subjects with a higher relative amount of fat-free mass.

Taken together, in this project we repeated the effect network approach with FFMI as the ana-
lyzed phenotype. We found indications for increased oxidation of fatty acids with higher FFMI
as well as a rather isolated signal for the diacyl phosphatidylcholine C38:3, which requires fur-

ther in-depth investigations.
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7.1.3 Effects of Type D personality on the metabolome

We applied effect network approach in an additional project, where metabolomics differences
of study participants diagnosed with a Type-D personality were investigated. Since the statis-
tical backgrounds of graph coloring were already thoroughly introduced, we will only briefly
describe the results here. A Type-D personality refers to a mental characteristics, where patients
show a general liability to psychological distress, e.g. social inhibition and negative affect [61].
Moreover, Type-D has been associated with an increased risk of cardiovascular disease [174].
Again, we statistically assessed the differences between healthy and diseased subjects for all
metabolites. We used data from the KORA F4 cohort with Metabolon measurements, including
unknown metabolites (cf. Chapters 2 and 6).

The study is currently being published:

* Altmaier, E., Emeny, R., Krumsiek, J., Lacruz, E., Lukaschek, K., Haefner, S., Kastenmiiller,
G., Romisch-Margl, W., Prehn, C., Mohney, R.P., Milburn, M. V., Illig, T., Adamski, J., Theis,
ElJ., Suhre, K., and Ladwig, K.H. Metabolomic profiles in individuals with negative affec-
tivity and social inhibition: a population-based study of Type D personality. Psychoneuroen-

docrinology, in press.

For 1,509 out the 1,768 KORA F4 participants we had questionnaire information on mental
health, and a total 387 participants were subsequently diagnosed with a Type-D personality. A
linear regression analysis with metabolites as dependent variables, the Type-D state as the ex-
planatory variable, and age, gender, HDL, LDL, cholesterol, triglycerides, hypertension, BMI,
diabetes and the intake of antidepressive medications as covariates for correction was performed
(analogously to equation (7.1) in section 7.1.1). The statistical analysis of metabolite concen-
trations alone only revealed a single metabolite, kynurenine, which was significantly associated
with Type-D after multiple testing correction. Kynurenine represents a trypthophan metabolite
and was decreased in Type-D individuals. Interestingly, though distinct with respect to their
pathogenesis, depression and schizophrenia have previously been reported to associated with

kynurenine as well [175].

Using Gaussian graphical models, we could furthermore detect clusters of borderline-significant
metabolite sets which, in the network context, still contained interesting signals. In particular,
four metabolite clusters showing a Type-D impact could be identified: (1) several steroid sul-
fates and X-18601, which most likely also represents a steroid (cf. Figure 6.3) are connected
in the GGM and display a positive association with Type-D. Interestingly, steroid hormones

have previously been linked with schizophrenia [176]. (2) Tyrosine, gamma-glutamyltyrosine
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and gamma-glutamylphenylalanine were down-regulated in Type-D individuals. This associa-
tion suggests a relationship of Type-D with the tyrosine-dopamine neurotransmitter pathway.
(3) Caffeine, paraxanthine, piperine and X-11485 displayed lower concentrations in affected
individuals. This signal most likely reflects dietary differences between affected and healthy in-
dividuals (suggesting that Type-D personalities drink less coffee). (4) Finally, 3-indoxylsulfate
and X-12405 also displayed a negative association with Type-D.

In summary, we demonstrated another application of the effect network approach. Using the
network context between metabolites, we uncovered statistical associations that would have
been considered insignificant otherwise. Methodologically, we will attempt to develop network-
based clustering algorithms which assign actual p-values instead of manually deriving groups

from the networks.
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7.2 Differentially regulated metabolism in glioblastoma cells

Malignant primary brain tumors, such as glioblastoma, are nearly always fatal despite consid-
erable progress in clinical cancer therapy [178]. Glioblastoma are characterized by a resistance
to apoptosis stimuli and the invasion of surrounding normal tissue. Experimental access to
glioblastoma cells for in vitro experiments is given through the U87 cell line, which was de-
rived from a human grade IV glioma in 1968 [179], and has been used in numerous publications
since its generation [180, 181]. Moreover, U87 was the first fully sequenced cancer cell line
genome [182]. A decade ago, Lang et al. [183] reported apoptosis and G2 arrest in U87 cells
transfected with the tumor suppressor p53, followed by treatment with the chemotherapeutic

agent Irinotecan or its active metabolite SN-38.

We investigated lipidomics data from U87 cells under seven treatment conditions — out of which
only one constitutes a relevant apoptotic effect on the immortal brain tumor cells — and one
control condition without treatment. Using a specialized Fourier-Transform Ion-Cyclotron-
Resonance (FT-ICR) MS/MS technique [184], 167 polar lipids were measured across six lipid
classes. In contrast to the phosphatidylcholine-centered metabolite panel from the Biocrates
platform (cf. Chapter 2), the U87 experiments comprise phospholipids with additional head
groups, including phosphatidylinositols (PI), phosphatidylserines (PS), phosphatidylethanol-
amines (PE), phosphatidic acid and sphingomyelins. Furthermore, a series of gangliosides were
measured, a glycosylated lipid class specific to the nervous system [185]. The measured lipid
panel also displays the previously-mentioned side chain ambiguity problem. That is, we again

only get the sum of carbon atoms and double bonds for lipids with two fatty acyl side chains.

Cells were grown under eight different medium conditions (Table 7.1) in three biological repli-
cates with three technical replicates each. All possible combinations of 24h treatment of SN-38
(chemotherapeutic agent), p53 (tumor suppressor viral transfection), and DI312 (control ade-
novirus vector transfection) were applied. Interestingly, the variant were p53 is applied first
and SN-38 afterwards induces modest apoptosis and cell cycle arrest in Ga, whereas the reverse
treatment induces almost almost complete arrest in G2 and apoptosis of the majority of cells.
Since the latter effect does not allow a proper analysis of the lipidome, we consider the p53/24hr
+ SN-38/24hr treatment to be the relevant experimental condition for our analyses. The data set
was originally published by He et al. [178].

We applied a differential Gaussian graphical modeling approach in order to elucidate specific

metabolic changes introduced by the apoptosis-inducing treatment variant. The study was per-
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Condition | Effect

DI312/24hr + SN-33/24hr | —
p53/24hr + SN-38/24hr | modest apoptosis and cell cycle arrest in Ga (relevant)

SN-38/24hr + DI312/24hr | almost complete Go arrest and apoptosis of 90% of the cells

SN-38/24hr + p53/24hr | —

DI312 | —

p53/24hr | —

SN-38/24hr | —

no treatment | —

Table 7.1: Experimental conditions for USTMG glioblastoma cells. Out of the eight possible
combinations, one induces almost full apoptosis, and one induced modest apoptosis with cell
cycle arrest. The latter is considered relevant or ‘active’ for our study. SN-38: treatment with
chemotherapeutic agent. p53: tumor suppressor viral transfection. DI312: control adenovirus
vector transfection.

formed in close collaboration with Nikola Miiller and Anke Meyer-Baese and was published

in:

* Mueller, N.S., Krumsiek, J., Theis, F.J., Bohm, C., and Meyer-Baese, A. Gaussian graphical
modeling reveals specific lipid correlations in glioblastoma cells. volume 8058, page 805819.
SPIE, 2011.

From the methodological point-of-view, this project was particularly challenging due to the very
small number of samples. In the following, we briefly summarize the introduced concepts and

subsequent findings.

A differential Gaussian graphical model of glioblastoma metabolomics
data

The experimental design for the glioblastoma study is substantially different to the epidemio-
logical analyses discussed in the previous sections. Specifically, we here have eight different
experimental conditions, out of which only one actually induces the desired apoptosis and cell
cycle arrest effects in U87 cells (Table 7.1). Investigating pairs of measured metabolites, there
are generally three scenarios of how the data point of this condition could influence their corre-
lations (Figure 7.7): (1) The correlation could be unspecific, that is leaving in or out the specific
data point would not significantly change the respective correlation. (2) In a treatment-induced
scenario, the metabolites are actually uncorrelated, but coordinately react in the same direction

upon treatment. We then observe a correlation which would not be present if the data point was
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Figure 7.7: Influence of data points from the relevant treatment on pairwise correlations. See
main text for a detailed description of the three scenarios. Note that replicates have been omitted
in this diagram for simplicity.

left out. (3) Finally, there could be a treatment-suppressed situation, where the metabolites are
correlated but only one of them changes upon the specific treatment. This would diminish the

otherwise present correlation if the data point was used in the correlation analysis.

The GGM-based method to generate a treatment-specific metabolome network works as fol-
lows: First, the GGM based on all eight conditions is estimated, followed by eight specific
GGMs where each experimental condition is left out once. Since we had considerably less sam-
ples than variables, and the covariance matrix of metabolites can thus not be inverted, we here
employed a shrinkage-based GGM approach developed by Schéifer and Strimmer [83] (see also
Chapter 3.5). GGMs were again constructed by means of statistical significance of the respec-
tive partial correlations, here assessed by a false-discovery rate [186] approach with ¢=0.01.
An edge between two metabolites is then included in the differential GGM if it fulfills either
one out of two criteria: (1) The edge is not present in the GGM where the active experimental
condition was left out, but present in all other GGMs including the full GGM based on all sam-
ples (treatment-induced edge). (2) Vice versa, the edge is present in the GGM where the active
condition was left out, but absent in all other GGMs (treatment-suppressed edge). As a re-
sult, we obtain a differential GGM for the glioblastoma lipidome, containing treatment-specific
metabolite-metabolite associations resulting from the combination of p53 transfection prior to
SN-38 chemotherapy. The network contains 45 out of the original 167 lipids, and 33 edges out

of which 25 are treatment-induced and 8 are treatment-suppressed (Figure 7.8).

The results point out several positions in the metabolic network where specific changes due
to the treatment might have occurred. For instance, three out of five measured sulfatides (a
specialized class of ceramides) are present in the network. In particular, the oxidized sulfatide
(34:2)+0 plays a prominent role in the differential GGM with five suppressed edges. Further-
more, 17 out of 32 measured gangliosides (a lipid class primarily present in the nervous system)
occur differentially regulated in the GGM. Finally, 14 out of 55 phosphatidylinositols (a com-
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Figure 7.8: Differential GGM of glioblastoma lipidomics data. Colors indicate positive or neg-
ative correlations. Solid and dashed lines represent treatment-induced or treatment-suppressed
edges with respect to the ‘p53/24hr 4+ SN-38/24hr’ treatment. We observe an overrepresentation
of sulfatides, gangliosides, and phosphatidylinositols in the network.

mon membrane lipid class) appear in the differential network. An in-depth biological analysis
of the obtained results, possibly with experimental support from the collaboration partners, was

left for future projects.

In summary, this project introduced an alternative approach of analyzing sample groups using
GGMs. In contrast to the effect networks from the previous section, we here directly took into
account the experimental design of the study. Certainly, the statistical power for GGM calcu-
lation with only eight (or even less for the sub-GGMs) samples should be considered rather
limited. On the other hand, in the original shrinkage-based GGM paper (Schifer and Strimmer
[83]), the authors also worked on a set with only 8 experimental conditions and p = 102 mea-
sured variables. The differential GGM approach introduced here represents a pilot study which
can be extended to other projects with more samples and by going deeper into the biological

interpretation of the obtained results.
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7.3 Phenotype set enrichment analysis

In this project, the GGM was used to define biologically meaningful metabolite groups. These
groups were used as substrates for a previously published enrichment algorithm which incor-
porates multiple phenotypic traits at once in a genome-wide association study (GWAS). The
method is called phenotype set enrichment analysis (PSEA) and has been published by Ried
et al. [187]. Usually, GWAS primarily either focus on single phenotypic traits, like like diabetes
type II [188] or coronary heart disease [189], or carry out the analyses for multiple phenotypes
independently, as for instance in the metabolomics GWAS published recently [27, 29]. The
PSEA algorithm, in contrast, performs an integrated statistical test of a gene' against a whole
set of phenotypes. The rationale behind this approach are supposedly stronger associations of
these phenotype sets with genetic variation in a locus than with the single phenotypes alone.
Briefly, the study showed that using this method, new gene-phenotype associations can be re-

vealed as well existing ones confirmed.

The statistical test behind the method is based on an aggregate of the single phenotype statistics
followed by a permutation step in order to derive an empirical p-value. Note that this approach
is very similar to the weighted enrichment algorithm we developed in Chapter 8, only that in our
case we are working with contributions from the source matrix of an independent component

analysis instead of statistical test statistics from a GWAS.

The following section describes how our metabolomics Gaussian graphical modeling method-
ology helped to defined meaningful phenotype sets in a data-driven manner, irrespective of the
genetic associations. In contrast to the previous sections, rather than following the spread of a
statistical signal through the network, we were interested in metabolite groups naturally arising

from the partial correlation network.

Metabolomics GGMs and PSEA

Metabolite concentrations were used as phenotypic traits, and GGMs were employed to define
the respective phenotype sets. For this project, partial correlations based on both the Biocrates
dataset (Chapter 5) and on the Metabolon dataset (Chapter 6, but only calculated on the known
metabolites) were used. The partial correlation matrices were cut at different absolute partial

correlation values (0.3 and 0.45). This yields two granularities of connected components in the

!This actually refers to a gene and not a SNP, since the authors first combine all SNP hits of a given
gene into a single statistic.
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graph, and thus overlapping clusters of metabolites. As already seen in the previous chapters,
these clusters are homogeneous with respect to the annotated metabolic classes or major path-
way assignments (e.g. carnitines, phosphatidylcholines, amino acids, etc.). Thus, independent
of the partitioning of metabolites provided by, for instance, putatively biased pathway databases,
we here generated biologically feasible sets from dependency structures in the data only. The
PSEA was then carried out both on 1,809 genotyped individuals from the KORA cohort for
discovery, as well as on data from the Twins UK study [190] for replication. Interestingly, sev-
eral loci could be detected using the GGM-based metabolite sets that would otherwise only be
detectable by the usage of metabolite ratios. While the ratios represented a (rather successful
but) simple approach to capture metabolic relationships, GGMs specifically describe the metab-
olites’ biochemical relations. Furthermore, using metabolite sets defined by the GGM instead

of ratios tremendously reduces the amount of statistical tests that have to be performed.

In summary, this application represents another case study utilizing the dependency structures
behind metabolomics data in the sense of a data-driven metabolic network. Here, the GGM
provide substrate sets for the evaluation of a weighted enrichment algorithm developed by our
collaboration partners. From a conceptual point-of-view, using biochemically related groups of
metabolites instead of single metabolites in a GWAS might improve the power of the analysis.
Note that this idea resembles the effect networks from Section 7.1, where we also combine
common statistical analyses with the network structure in order to improve the sensitivity and

biological relevance.
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7.4 Metabolite ratios, genetic networks and GGMs

Recent metabolomics studies demonstrated metabolite ratios, that is the concentration of one
metabolite divided by the concentration of another, as valuable markers for statistical analyses.
For instance, metabolite ratios have been used to detect metabolic relationships with medication
[120], smoking [23] and genetic variation [27, 29]. This effect can most probably be attributed
to the reduction of biological variation for correlated metabolites. When two metabolites dis-
play similar concentration patterns, then taking the ratio of both concentrations cancels out the
biological variation and produces a more accurate readout of the current relationship between
the two compounds. In particular, metabolite ratios turned out to substantially improve p-values
and increase the explained variance in statistical analyses compared to the metabolite concen-
trations alone [27, 29]. Historically, metabolite ratios have long been known to be valuable
biomarkers, e.g. the phenylalanine-tyrosine ratio for the diagnosis of phenylketonuria [191], or

the lactate-pyruvate ratio for the detection of deficiencies in energy metabolism [192].

The above-mentioned studies introduced a specific measure which captures the improvement in
statistical association due to using the metabolite ratio: the p-gain. It is defined as the ratio of

the smaller of the two single metabolite p-values divided by the p-value of the ratio:

min (p(M;| SNP), p(Mz| SNP))
p(M1/M3|SNP) 7

p-gain (M7, M, SNP) =

where M; and Ms represent metabolites, SNP is a specific SNP under investigation, and
p(z| SNP) represents the p-value obtained when regressing x against the SNP in a model with
additive genetic effects. In other words, it reflects the factor of p-value decrease achieved by
taking the ratio. A major drawback of the p-gain application, however, was (a) the usage of
vague ‘rule-of-thumb’ criteria to determine whether a p-gain itself be considered significant or
not, and (b) the lack of a systematic evaluation of whether metabolite pairs with high p-gain
values indeed represent biologically meaningful connections. Therefore, in a collaboration with
Ann-Kristin Petersen, we sought to investigate both statistical as well as biological properties of
p-gains:
* Petersen, A.K., Krumsiek, J., Wigele, B., Theis, FJ., Wichmann, H.E., Gieger, C.,
and Suhre, K. On the hypothesis-free testing of metabolite ratios in genome-wide and

metabolome-wide association studies. BMC Bioinformatics, 13:120, 2012.

A specific derivation of the cumulative distribution function of p-gains is provided in this work,
which then allows to construct statistical tests for the p-gain measure. In the following, we

will summarize the findings of this paper and then provide a direct comparison of GGMs with
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genetically-determined metabolic networks resulting from GWAS with metabolite ratios. From
the statistical side, the main finding of this work was a connection between p-gain significance
and the metabolite correlation structure: If two metabolites are uncorrelated, then their ratio will
display a high variation. Thus, a high p-gain is required in order to be considered significant in
this case. On the other hand, if metabolites are strongly correlated, then their ratio will display

low variation, and already modest p-gain values may become significant.

The p-gain significance calculation method was then used on n=1,814 samples from the KORA
cohort with metabolomics measurements from the Metabolon platform and the large-scale geno-
typing data (the same dataset as in Chapter 6, without unknown metabolites). P-gains were
then compared to several predefined pathway-based metabolite sets in order to evaluate whether
pairs with a high p-gain are ‘biologically related’ (i.e. participating in the same pathway). The
analysis showed that even down to a p-gain value of 10, 13.97% of all metabolite pairs were

biologically related for at least one of the metabolite sets.

The p-gain values were systematically compared to the data-driven metabolite pairs defined by
the metabolomics GGM. Note that this analysis is not part of the original publication. The num-
ber of metabolites pairs that display a p-gain above a given threshold rapidly decreases for larger
p-gain cutoffs (Figure 7.9A). For instance, while there are 2396 metabolite pairs with a p-gain
above 103, only 65 pairs show a p-gain above 10'°. Interestingly, higher p-gain values for me-
tabolite pairs from the genetics analysis coincide with lower p-values for the respective GGM
edge (Figure 7.9B). This indicates an interesting relationship between associations with genetic
variation in the large population cohort and intrinsic dependencies between the metabolites as
determined by the GGM. Both GGM and GWAS appear to recover similar pairs of metabo-
lites from the data independently. In other words, there is not only a biochemical footprint of

metabolic pathways in the blood serum data, but also a genetically-determined one.

Lists of metabolite pairs with a high p-gain can be regarded as a genetically-determined metab-
olite association network extending and complementing the structures detected by the GGM or
the integrated GGM/genetics networks discussed in Chapter 6. Importantly, these networks con-
tain ternary edges between two metabolites and one SNP (represented by its respective gene)
each, thus adding an additional layer of functional information. A small example network is
shown in Figure 7.9B. It displays several metabolite-gene associations for carnitine metabolism
and ACAD (S-oxidation enzymes as well as several fatty acids and the SCD desaturase enzymes.
Note that MSH4 represents a poorly characterized homolog from E.coli, which possibly repre-
sents a meiosis-specific protein. Given the associations shown here, the functional annotation

might be reconsidered to represent a fatty-acid related enzyme. Importantly, in this association
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network, the ternary metabolite-metabolite-gene associations provide more complex relation-
ships than the simple genetic associations investigated in Chapter 6.

Taken together, we performed a rigorous analysis of a simple statistical enhancement of genome-
wide association studies. The results will further aid in the analysis of GWAS and a more mean-
ingful interpretation of the p-gains derived from metabolite ratio analysis. Compared with GGM
edges, metabolite pairs with higher p-gain values tend to have smaller p-values in the GGM,
providing a direct link between genetically-determined metabotypes and intrinsic metabolite
dependencies. Finally, we outlined an extended genetic network approach which incorporates

both metabolite ratio information as well as genetic information.
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Figure 7.9: Network analysis for metabolite ratios, the p-gain and GGMs. A: The number
of metabolite pairs above a given threshold rapidly decreases for increasing p-gain values. B:
Relationship between p-gain and GGM edge p-values. For each p-gain (x-axis) we collected
all metabolite pairs that constitute a p-gain of at least this value and subsequently calculated
the median GGM edge p-value of the corresponding metabolite pair list (y-axis). We observe
a clear tendency of lower GGM edge p-values for higher p-gain values, providing a direct link
between genetic associations and intrinsic metabolite dependencies. B: Genetically-determined
metabolic network derived from genotyping data combined with metabolomics. We show an
exemplary subnetwork of lipid-associated processes including ratio information. FEach small
circle represents one ratio, connecting two metabolites and one gene locus each. The original
SNPs are not provided in this diagram; genes were assigned via linkage disequilibrium as before
(cf. Chapter 6, Table 6.1).
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Chapter 8

Beyond covariance: Higher-order
dependencies in metabolomics
data

In the past chapters, we discussed the inference and functional analysis of Gaussian graphical
models (GGMs) on metabolomics data. While we have seen that GGMs recover biologically
related pairs of metabolites, covariance-based approaches only exploit second-order dependen-
cies in the data (recall that variance is the second central moment of a distribution). However,
in practice we frequently observe higher-order dependencies, which may yield additional in-
formation that is otherwise neglected. Metabolomics data, for instance, will never perfectly
follow a Gaussian distribution even after logarithmizing', thus leaving multivariate dependen-
cies which cannot be captured. Another prominent example of a second-order statistics-based
analysis, principal component analysis (PCA), searches for mutually decorrelated directions in
the data matrix, which then explain maximal variance [193]. PCA is commonly used as a tool
for the initial analysis of high-dimensional data sets, especially in the metabolomics field [194].
In this study, we aimed at using the full-order multivariate statistics in an explorative analysis
of metabolomics data; hence we proposed the use of independent component analysis (ICA)
as a statistically motivated extension of PCA for metabolomics data [195]. The introduction of
statistical independence here naturally generalizes the concept of decorrelation for non-normal
data.

1QQ plots against a normal distribution can be downloaded from
http://helmholtz-muenchen.de/cmb/ggm
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For ICA we assume metabolite profiles to be composed of statistically independent components
(ICs), whose mixture makes up the measured metabolomics profile. Let X = (x;;) € RTP
be the pre-processed data matrix, where each of the n rows corresponds to one measured study
proband, and each of the p columns represents one metabolite. For a given number of compo-

nents k, independent component analysis attempts to find a factorization of the data matrix

k
Tij = Zau - 815 + €ijs (8.1)
=1

where the mixing matrix A = (a;) is of dimension n x k, the source matrix S = (s;;) is k x p,
and ¢;; represents independent, normally distributed noise (Figure 8.1A). The particularity of
ICA is the requirement of all rows s;. in S (which we will refer to as IC;) to be samples of
a statistically independent random vector. Interpreted biologically, each row in S represents a
distinct metabolic process, which contributes to the overall concentration profile. The matrix A,
on the other hand, reflects how strong each of these processes is active in a given sample (study
proband in our case). In other words, instead of describing the metabolome of each proband by
p numeric values, after ICA we can equivalently represent the metabolome using only £ << p

values. It can be shown that the decomposition into A and S is unique given sufficiently many
samples [196, 197].

In biomedical research, ICA is commonly used as a method for high-dimensional data reduction
and analysis. Early applications from the neuroscience field include the analysis of electroen-
cephalographic measurements [198] and fMRI data [199-201]. For molecular biology, ICA
has frequently been used to analyze transcriptomics data, e.g. for cancer classification [202—
204] or the investigation of cell differentiation [205, 206]. Moreover, several studies already
applied ICA in the context of metabolomics data, for instance for the analysis of plant para-
sites [207] and toxins [208], and for metabolite fingerprinting [209]. While certainly interesting
for their respective biological questions, these metabolomics studies merely used ICA as a data
compression and visualization method rather than functionally investigating the reconstructed
independent components in detail. The only studies which, to the best of our knowledge, per-
formed a functional analysis of A and S are (i) Wienkoop et al. [210], who did a joint ICA
of metabolomics and proteomics data in starch metabolism and (ii) Martin et al. [211], who

investigated the development of colitis in mice using NMR metabolomics.

For this study we employed a Bayesian independent component analysis approach. The key idea
of Bayesian inference is to interpret each parameter as a random distribution. These distributions
are then estimated using Bayes rule, for example by Markov chain Monte Carlo methods, or

simply by maximum a posteriori estimation. With an inferred parameter distribution at hand,
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Figure 8.1: A: Independent component analysis model applied to metabolomics data. The data
matrix X is decomposed into the product of a mixing matrix A and a source matrix S, cf. equa-
tion (8.1) in the text. The source matrix contains statistically independent profiles of metabolites
(s1., termed ‘IC’ = independent component throughout the chapter), whereas the mixing matrix
represents the contribution strengths of each component to the respective metabolomics sample.
B: Concept of pathway enrichment performed for each independent component. We statistically
assess whether the IC contributions for the metabolites from a specific pathway are higher than
expected by chance. C: Each column in the mixing matrix represents a newly derived variable
in the dataset which can be correlated with other proband-specific traits.
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we can obtain both conventional point estimates, but also parameter error estimates as provided
by the respective variance. Moreover, by choosing adequate priors, we can include known
information beforehand. In our case, we require nonnegative values of both the source and the
mixing matrix. We argue that such nonnegativity better represents biological processes than
arbitrarily negative matrix entries. In classical ICA, the choice of model parameters such as
the number of components k to be reconstructed is a non-trivial problem. Usually, an ad-hoc
number of components is chosen, thereby accepting possible fusions of components (if too
few are selected) or generation of information-free noise components [195]. A series of tools
for identifying the correct model have been developed in the ICA community, mostly using
heuristics e.g. based on clustering similar components [212, 213]. We here evaluate the Bayesian
Information Criterion (BIC) for each ICA calculation to get a trade-off between model accuracy
(how close the matrix product gets to the original data matrix) and the number of parameters in
the model. Finally, we select the number of components for which we obtained the highest BIC
value. Methodologically, we applied a Bayesian mean-field ICA method [214], which uses an

EM-like parameter estimation scheme.

The novelty of our approach is the application of a parameter-free, Bayesian, noisy ICA ap-
proach to metabolomics data, followed by a functional analysis of both independent metabolite
processes in S as well as proband-specific signals in A. Parameter-free, noisy, Bayesian here
refers to, (i) avoiding a manual selection of the number of components k, (ii) obtaining an ac-
tual distribution for S, thus providing confidence intervals for the reconstructed values, and (iii)

allowing for an independently estimated noise term ¢;;.

The chapter is organized as follows: First, we apply ICA to a large dataset of human blood
serum metabolomics samples of 1764 probands and 218 measured metabolites (Figure 8.1A),
and estimate the number of components k using the above-mentioned Bayesian mean-field ICA
approach. Next, we investigate the source matrix S, first by manual investigation and then by
calculating the statistical enrichment of known metabolic pathways in each component (Fig-
ure 8.1B). We demonstrate that the approach outperforms PCA, k-means clustering as well as
fuzzy c-means with respect to biological pathway enrichment. In the final results part, we cor-
relate the columns of the mixing matrix A to HDL (high-density lipoprotein) concentrations in
blood plasma (Figure 8.1C). One independent component correlates stronger with HDL con-
centrations than all metabolites in the dataset alone. We thereby establish a novel connection
between blood plasma HDL and branched-chain amino acids, and discuss potential biological

implications.

All results reported in this chapter are part of the following publication:
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* Krumsiek, J., Suhre, K., Illig, T., Adamski, J., and Theis, F.J. Bayesian Independent Com-
ponent Analysis recovers pathway signatures from blood metabolomics data. Journal of
Proteome Research, 11(8):41204131, 2012.

We published a preliminary extension to independent subspace analysis on a similar dataset in
Gutch et al. [215].

8.1 Methods

Bayesian ICA model & component selection

In this study we used the Metabolon dataset without unknown metabolites (cf. Chapters 2 and 6).
For preprocessing, the data matrix X was column-normalized to unit variance and subsequently

scaled between 0 and 1.

We solved the described noisy source separation problem by probabilistic independent compo-
nent analysis [216, 217]. Assuming normally distributed white noise with covariance matrix 3,

the mixing model results in the model likelihood
1
P(X|A,S, %) = (det 27%) /2 exp <—2tr(X —AS) Ty I(x — AS)> :

which describes the probability of observing data X given mixing matrix A, sources S and noise
with covariance ¥.. Instead of maximizing this likelihood, we follow a Bayesian approach and
consider the model posterior P(A,S, ¥|X) o« P(X|A,S,X)P(A)P(S)P(X) with (indepen-
dent) priors P(A), P(S) and P(X). Full sampling of this posterior is too time consuming and
requires more elaborate Markov Chain Monte Carlo sampling. We decided to follow a simpler
two-step EM-type algorithm by iteratively estimating first source posterior P(S|X, A, Y) and
then point estimates of A and 3 using a MAP (maximum-a-posteriori) estimator. We used a
mean-field based algorithm proposed by Hgjen-Sgrensen et al. [214], since it allows flexible
choice of source priors. We assumed nonnegative mixing matrix and exponentially distributed
source weights. We then analyzed the resulting point estimates for mixing matrix and noise
covariance as well as the source distributions, which are shown componentwise as mean and

standard deviation.

The model assumes a fixed number % of source components. We determined the optimal num-

ber of components using the Bayesian information criterion (BIC) [218]. It is here defined as
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BIC = —pL + 3(nk + 1)log(p), where L represents the log-likelihood of the fitted ICA model.
We chose the k for which BIC gets minimal.

The information content of each independent component was assessed by means of kurtosis, i.e.
the fourth standardized moment. The kurtosis 3; of each IC; is defined as

5 LY (85 -S0)'

(% iy (S — ST‘-)Q)W

where p is the number of metabolites (i.e. the number of columns in S) and S;. denotes the

average value of independent component <.

Weighted enrichment analysis

Let p again be the number of metabolites in our dataset and ¢ be the number of distinct class
annotations. We investigate the class enrichment in a vector w of non-negative weights: w; €
R, for each metabolite ¢ = 1,...,p. Class assignments are specified in the Boolean matrix
B = (b;;) of dimension p x ¢ by

{ 1, if metabolite ¢ belongs to class j
ij =

0, else

We now compute the class enrichment vector e of dimension c as e = B - w € R€, i.e. for each

class we simply sum up the contributions of all metabolites that belong to that specific class.

The values in e have no properly defined scale and can thus not be directly interpreted. Instead,
we randomly shuffle the metabolite-class associations 7 = 107 times and recalculate a random-
ized vector e,.. Let f contain the number of randomized values among all sampled e, that are
larger than the respective elements in e. We compute the empirical p-value vector of length c as
p:= { The result vector p thus contains one empirical p-value for the enrichment of each class

in w.

PCA, k-means and fuzzy c-means clustering

Principal component analysis (PCA) represents a standard multivariate data analysis procedure

reviewed, for instance, in Shlens [193]. Briefly, similar to ICA, PCA represents a mixture
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model, where the data matrix X is split into two matrices A and S such that X = A - S. In
contrast to ICA, S is here chosen such that all components are decorrelated, i.e. cov (ST) =0.
For k-means and fuzzy c-means clustering, we used the MATLAB-integrated functions kmeans
and fcm, respectively. As a second variant of the fuzzy c-means approach, we only set the
highest value of each metabolite in the fuzzy clustering matrix to 1 and the rest to O (thus again
creating a hard clustering as produced by k-means). For all methods but ICA we logarithmized

and subsequently column-normalized the data matrix.

Regression analysis

Associations between HDL values and the component strength vectors (columns) of the mixing
matrix as well all metabolites were estimated using linear regression analysis. Before perform-
ing the actual analysis we removed from the data (i) age effects by only taking the residuals
from a linear regression of the mixing matrix and the metabolite matrix columns on age, and (ii)
gender-specific effects by subtracting the group-wise medians from each column in the data. We
then regressed the HDL values on both the mixing matrix columns and each metabolite using the
MATLAB regress function. P-values were obtained from the t-distribution with studentized
residuals, the explained variance is determined by the coefficient of determination R?. For the
linear model forward feature selection algorithm based on AIC (Akaike information criterion),

we used the R platform function step with setting direction=’forward’.

8.2 Bayesian noisy ICA on metabolomics data

For data preprocessing, we normalized each column in the data matrix (1764 probands, 218
metabolites) to a standard deviation of 1 and subsequently scaled the values between 0 and 1.
The following ICA calculations are based on the Bayesian mean-field ICA approach described in
Hgjen-Sgrensen et al. [214]. We assumed a nonnegativity prior for A, an exponential distribution
(and thus positive values) for S, and an isotropic noise model for ¢;;. In order to determine the
number of components k to be used, we calculated the Bayesian Information Criterion (BIC) for
k = 2 up to k = 30 components, with 100 random initial conditions (Figure 8.2A). The diagram
demonstrates (i) proper convergence of the algorithm due to similar BIC values in multiple runs
for each k, and (ii) a clear BIC peak around 7 to 10 components. The highest score in the
analysis was achieved for one run at £ = 8, so we chose this number of components for all

subsequent analysis steps. For higher numbers of k&, the increase in reconstruction quality is
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Figure 8.2: Selection of the number of components. A: The Bayesian information criterion (BIC)
of the ICA model was estimated according to Hgjen-Sgrensen et al. [214] for a range of k values,
with 100 random initial value conditions for each k. We observe a clear peak around 7 to 10
components and choose k = 8 for all subsequent analyses. B: Stability analysis. The estimation
variance is higher when performing ICA on bootstrap samples, but the position of the minimum
BIC peak remains stable.
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Figure 8.3: The source matrix S, grouped by the 8 metabolic super-pathways in our dataset.
Rows are pairwise statistically independent and contain the contributions of all metabolites to
the respective component. Already from this visual inspection we can see enrichments for specific
pathways in each component, e.g. Amino acid in IC; and ICs and Lipid in IC4 and ICg.

not sufficient to compensate for the penalty imposed due to more parameters in the model. In
order to verify the stability of the choice of k with respect to changes in the underlying dataset,
we employed a sample bootstrapping approach (8.2B). This robustness analysis did not reveal

significant differences to the full dataset run.

The resulting matrices S (with estimated parameter variance) and A are visualized in Figures
8.3/8.4 and 8.7, respectively, and will be subject to detailed functional analyses in the following

sections.

8.3 Manual investigation of independent components in S

While the separation of the metabolomics dataset into 8 independent components might be
sound from a statistical point-of-view, we have to ask whether we can gain insights into meta-
bolic processes underneath giving rise to the data. Each component consists of a vector s;. of
non-negative contribution strengths, that is one value for each metabolite (Figure 8.3). In order
to get an overview of the metabolic functions the components might be involved in, we man-
ually investigated the 15 strongest contributions for each component (Figure 8.4). Estimation

certainty is generally high, as indicated by small error bars resulting from the probabilistic ICA
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For instance, ICs contains branched-chain amino acids and their degradation product among
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Error bars indicate standard deviations from
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approach. Functionally, we observe prominent metabolites from each independent component
to be biologically related. The following paragraph briefly describes each of the eight recon-
structed independent components with respect to biochemical characteristics of the top-scoring

metabolites.

IC; primarily contains amino acids and related substances. Among the top-scoring metabo-
lites in this component are amino acids containing functional amine groups, like glutamine,
histidine, arginine and carnitine, as well as several aromatic compounds, including tryptophan
and phenylalanine. The strongest metabolites in ICy are again primarily amino acids. We ob-
serve phenylalanine and tryptophan in the top-scoring compound list, and in particular various
branched-chain amino acids. Valine, leucine and isoleucine constitute high contributions, but
also their direct degradation products 3-methyl-2-oxobutyrate, 4-methyl-2-oxopentanoate and
3-methyl-2-oxovalerate, respectively. Independent component IC3 exclusively contains long
chain fatty acids comprising 12 to 20 carbon atoms among its 15 strongest metabolites. This
includes fatty acids with both even numbers of carbon atoms as well as a few odd numbered
fatty acids, and various levels of desaturation (i.e. number of double bonds). IC, represents
a rather heterogeneous set of fatty acid-based lipids. These include short and medium chain
fatty acids, hydroxy fatty acids, two polyunsaturated fatty acids (arachidonate and dihomo-
lineolate), and several phospatidylinositols. The fifth independent component ICs contains
as its strongest entries several metabolites involved in energy homoeostatic processes. This
includes phosphate and acetylphosphate, lactate, pyruvate, but also carbohydrates like glu-
cose and mannose. ICg contains both signals from amino acids (including glutamine, tryp-
tophan, phenylalanine, isoleucine, valine and proline), and from lipid metabolism including
phosphatidylethanolamines and medium chain fatty acids. IC7 also constitutes a rather mixed
component with metabolites from tryptophan metabolism (glycosyltryptophane, kynurenin, 3-
indoxylsulfate), nucleotide-related substances (pseudouridine, N1-methyladenosine), carbohy-
drates (myo-inositol, erythronate, erythritol) and others. Finally, ICg primarily represents the
phosphatidylcholine (PC) lipid class, particularly lyso-PCs with a single fatty acid residue bound
to either the sn-1 or sn-2 position of the glycerol backbone. Fatty acid side chains vary from

medium chain saturated 14:0 up to poly-unsaturated fatty acid residues 20:4.

Taken together, these results suggest that each metabolomics profile represents a mixture of sta-

tistically independent signals, each of which corresponds to a distinct part in cellular metabolism.
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8.4 Systematic analysis and statistical enrichment

Motivated by the findings of our manual investigation, we next asked the question whether this
signal can be systematically verified. More specifically, we evaluated whether the reconstructed
independent components indeed represent distinct subparts of cellular metabolism. For this pur-
pose, we designed a weighted class enrichment algorithm. Regular hypergeometric enrichment
tests like gene set enrichment analysis (GSEA) [141] and metabolite set enrichment analysis
(MSEA) [219] analyze discrete yes/no assignments of each analyzed item (metabolite in our
case) to one or more classes. Our approach, in contrast, takes into account the weight of each
item in the group (in our case the contribution of each metabolite to each IC) in order to calculate

the corresponding enrichment.

For each metabolite, one of the following eight super-pathway annotations was provided: ‘Lipid’,
‘Carbohydrate’, ‘Amino acid’, ‘Xenobiotics’, ‘Nucleotide’, ‘Energy’, ‘Peptide’, ‘Cofactors and
vitamins’. Furthermore, there are a 61 sub-pathway annotations like ‘Oxidative phosphoryla-
tion’, ‘Carnitine metabolism’ or ’Valine, leucine and isoleucine metabolism’. In the following
analysis we first determined whether each independent component significantly enriches me-
tabolites from one of the super-pathways (p < 0.01). For each enriched super-pathway, we
then investigated whether the component also enriches one of the sub-pathways (Table 8.1).
Further confirming the manual analysis, we observe strong enrichments for amino acids, lipids
and energy metabolism. In particular, independent components separate histidine, branched-
chain amino acid (valine, leucine, isoleucine) and tryptophan-related processes in the amino
acid super-pathway class. For the lipid class, we observe two mixed components involving var-
ious types of fatty acids as well as a third, glycerolipid-centered component. The energy-related
component splits into oxidative phosphorylation and central carbon metabolism (glycolysis,

gluconeogenesis and pyruvate metabolism).

We compared the weighted enrichment algorithm with hypergeometric enrichment as used in
GSEA and MSEA. The weighted approach displays a slightly higher sensitivity for the detection
of enriched pathways, but the results of weighted and hypergeometric enrichment are generally
comparable (results not shown). Importantly, however, hypergeometric enrichment requires a
hard yes/no assignment of metabolites to each component, i.e. whether it can be considered
‘present’ in the component or not. This introduces an additional cutoff parameter that needs to
be defined before the analysis. Weighted enrichment, on the other hand, works parameter-free

and directly uses the actual strength of each metabolite in the components.
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Super pathway | p Sub-pathway P
IC; | Amino acid 3.0-1077 Histidine metabolism 4.6-1073
IC,; | Amino acid < 1.0-1077 | Valine, leucine and isoleucine metabolism 8.0-10"
IC¢ | Amino acid 4.0-1073 Valine, leucine and isoleucine metabolism 3.5-1073
IC; | Amino acid 5.4-1074 Tryptophan metabolism 4.0-1073
Fatty acid, saturated, even 2.3-1074
Fatty acid, monoene 4,0-1077
IC;3 | Lipid < 1.0-1077 | Fatty acid, monoene, odd 4.3-1074
Fatty acid, polyene 6.6-1074
Carnitine metabolism 7.1-1073
Fatty acid, saturated, even 2.0-1073
1C, | Lipid 39.10-5 Fatty :auc%d7 saturated, odd 7.2 10:i
Fatty acid, polyene 1.2-10
Fatty acid, saturated, monohydroxy 1.0-1073
ICs | Lipid < 1.0-1077 | Glycerolipid metabolism <1.0-1077
IC, Energy 2.0-107% Oxidative phosphorylation <1.0-1077
Carbohydrate 2.4-1073 Glycolysis, gluconeogenesis, pyruvate metabolism | 1.5- 1073

Table 8.1: Statistical enrichment of metabolic pathways in the independent components. We em-
ployed a weighted enrichment test which makes use of the actual contributions of each metabolite
in the ICs (see main text). As suggested by our manual investigation, we find strong enrichment
for different parts of metabolism, e.g. amino acid pathways, lipid-specific pathways, and energy-
related processes. Interestingly, except for a few overlaps, each IC specifically enriches a distinct
major pathway.

We furthermore complemented the functional enrichment analysis from an information theo-
retical point-of-view, by inspecting the information content in each independent component.
ICA seeks for maximal non-Gaussianity, a feature commonly measured by the fourth central
distribution moment (kurtosis). Decreasingly ordered kurtosis values for all eight components
are displayed in Figure 8.5. Interestingly, the two components containing the least amount of
information, namely ICg and IC3 are those that displayed a significant overlap in functional
enrichment with other components (IC, and ICy, respectively). This indicates that kurtosis can
be used to sort out components containing rather little biological information; an approach that
has been employed in previous studies already [209, 210]. On the other hand, components dis-
playing significant, distinct associations with biological processes also contain a high amount
of information (e.g. ICg and IC;). This finding establishes an appealing bridge between the
statistical information content in the reconstructed components, and the biological information

content encoded therein.
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Figure 8.5: Kurtosis as a measure of information content for each independent component.
Remarkably, those components with a high information content also tend to display strong
functional enrichment of a metabolic pathway.

8.5 Comparison with PCA and k-means clustering

To get an objective view of the quality of our ICA approach, we compared the weighted enrich-
ment results obtained using Bayesian ICA with commonly used data analysis techniques. We ran
the enrichment calculations on the results of principal component analysis (PCA) and k-means
clustering with the same number of components (or clusters), see Figure 8.6. Furthermore, we
introduce the concept of consistent and inconsistent sub-pathway enrichments. The enrichment
of a sub-pathway is considered inconsistent, if the super-pathway this sub-pathway belongs to
is not enriched in the same component. For ICA, we detect one inconsistent enrichment of the

gamma-glutamyl peptide pathway for ICs, which enriches the amino acid super-pathway.

PCA yields seven out of eight enriched components, with a total of three distinct enriched
super-pathways. For the sub-pathway enrichment, six enrichments can be considered incon-
sistent since the respective super-pathways are not enriched in the same component. Several
components display similar enrichments as independent components from the ICA. Specif-
ically, IC2/PCs as well as IC4/PCy enrich branched-chain amino acids, IC3/PC; as well as
IC4/PC,4 show specific fatty acid pathway enrichments, IC5/PCg enrich the glycolysis path-
way, and finally ICs/PCj; enrich the glycerolipids. PCA does not detect enrichments of histidine
metabolism (IC;), oxidative phosphorylation (IC5) and tryptophane metabolism (IC7). Further-
more, p-values for PCA enrichment are generally higher in comparison to ICA (colors in Figure
8.6), e.g. with three out of seven enriched super-pathways which are only borderline significant.
K-means clustering produces a substantial number of enrichments for sub-pathways which are
mostly inconsistent. In other words, k-means recovers parts of the metabolism, which however

do not belong to the same super-pathway and cannot be considered as specific metabolic signals.
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Figure 8.6: Comparison of pathway enrichment for ICA, PCA and k-means clustering. ICA
and PCA produce generally comparable results, but ICA appears more sensitive (enriches more
super-pathways), more specific (less inconsistent enrichments) and displays lower association p-
values. Note that the components are not comparable in order, e.g. IC; does not correspond to
PC;.
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To further compare ICA with a regular clustering algorithm that supports weighted cluster as-
signments, we applied fuzzy c-means clustering. The analysis produced no significantly en-
riched clusters with respect to the super-pathways, and only few enriched sub-pathways. Finally,
c-means clustering with subsequent selection of the clusters displaying the highest contribution
for each metabolite (see Methods) yields similar results as the k-means approach. Detailed en-
richment results of Bayesian ICA, PCA, k-means, and the two variant of c-means clustering are

collected in the supplementary material of the original publication.

8.6 Analyzing the mixing matrix A — associations with
HDL

Up to this point we have demonstrated that, to a certain extent, metabolomics profiles may be in-
terpreted as a mixture of independent processes from different parts of the metabolic pathways.
We next sought to investigate whether the mixing matrix A contains biologically interesting
information as well. Recall that A gives us another 8 variables for each sample (proband in
the study cohort) in addition to the metabolite concentrations. These 8 variables encode how
strong each IC, i.e. each recovered biological process, contributes to the respective metabo-
lite profile. As can be seen in the clustering displayed in Figure 8.7, the IC weights certainly
contain proband-specific information suitable for further analysis. The question now is how
to determine whether these weights represent biologically meaningful descriptors. A straight-
forward approach is to correlate the columns of A with other, sample-specific parameters and
measurements (Figure 8.1C). One such example is provided in a transcriptomics ICA study by
Schachtner et al. [206], where the mixing matrix columns were compared with so-called design
vectors — which essentially encode the different conditions cells in that particular study were

cultured in.

We here chose blood plasma high-density lipoprotein (HDL) levels, which represent a complex
quantitative trait influenced by a variety of metabolic and physiological parameters [220]. HDL
belongs to the class of lipoproteins, small particles circulating in the blood responsible for the
transport of insoluble lipids through the body. We conducted a linear regression analysis of both
metabolites and IC strengths against HDL levels, corrected for gender and age effects (Figure
8.8A). Associations with HDL are generally high throughout the dataset, with 88 out of 218
metabolites and 5 out of 8 ICs displaying statistically significant associations (o« = 0.05 after
Bonferroni correction). Two independent components, ICy and IC;, show profound signals with

p-values below 10~17. Remarkably, IC; even constitutes the strongest association throughout all
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Figure 8.7: The mixing matrix A. Rows represent the strengths of each independent component’s
contribution to the respective proband metabolome. The hierarchical clustering in proband
direction demonstrates the presence of clear-cut groups reconstructed from the ICA. Each column
in the matrix is then subject to correlation with plasma HDL levels in the next step.
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Figure 8.8: Linear regression of plasma HDL levels on metabolite levels and independent com-
ponent contributions, corrected for gender and age effects. A: The strongest association of all
variables is constituted by ICs, followed by the branched-chain amino acids, other amino acids
and several phosphatidylcholines. B: Negative correlation between plasma HDL and the con-
tribution strength of ICs (which primarily contains contributions from branched-chain amino
acids). Note that negative values for the IC occur due to the correction for gender and age.

analyzed variables. As described above, ICy primarily contains signatures of the three branched-

chain amino acids valine, leucine and isoleucine as well as their respective degradation products.

We detect a negative effects on plasma HDL levels for both branched-chain amino acids alone,
and for the IC, contribution strength (‘Effect’ column in Figure 8.8A, and Figure 8.8B). This
means, a stronger contribution of this component, and thus higher values of the involved metab-
olites, coincides with lower values of HDL. This finding represents a novel connection between
branched-chain amino acids and blood plasma HDL levels. For comparison, we performed the
HDL comparison with loadings from PCA instead of ICA. The branched-chain amino acid prin-
cipal component displays a profoundly weaker association with HDL than ICs (p = 3.28-107°).
The strongest association of a principal component with HDL ranks number 20 in the sorted as-

sociation list.

In order to get an additional comparison with common regression-based approaches, we gen-
erated a linear model with multiple metabolite predictor variables. To this extent, we ran a
forward feature selection approach based on AIC (Akaike information criterion, see Methods).
Interestingly, when ordering the metabolites by their importance for the overall model perfor-
mance, isoleucine is the only branched-chain amino acid-related metabolite appearing among

the top hits (results not shown). This is an effect of high correlations between metabolites:
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Once isoleucine is added to the model, the other branched-chain amino acid compounds cannot
improve model performance any further. Hence, while such a multipredictor linear regression
model might produce a reasonably good description of HDL levels, the interpretation of metab-

olites with high weights in this model might be misleading.

8.7 Conclusion

In this study, we evaluated a Bayesian independent component analysis (ICA) approach as a
tool for the investigation of a population-based metabolomics dataset containing 1764 probands
and 218 metabolites. The Bayesian framework provides several advantages over a regular ICA:
(1) We can implement distribution priors (a nonnegativity constraint in our case) to construct
a biologically meaningful factorization of the data matrix. (2) Since we get distributions of
fitted parameters, we obtain information on the estimation certainty for each entry in S. (3)
Using a Bayesian Information Criterion-based model selection approach, we can automatically

determine the number of components to be reconstructed from the data.

We evaluated the source matrix S of statistically independent metabolite profiles from a bio-
logical point-of-view and demonstrated strong enrichment of distinct metabolic pathways in the
reconstructed components. This implies that the human blood metabolome represents a mixture
of overlaying, statistically independent signals, each of which can be attributed to a specific
set of metabolic pathways. While this concept is quite similar to the idea of eigengenes and
eigenmetabolites [221], our approach extends the standard ICA approach by a Bayesian, noisy

framework which allows for the estimation of confidence intervals for the reconstructed values.

The results obtained from the investigation of S are in general accordance with our findings
from Gaussian graphical models (GGMs) of metabolomics data, as described in the previous
chapters. While GGMs only evaluate pairwise associations instead of whole groups as in the
ICA approach, the recovery of functionally related metabolites from blood plasma metabol-
omics samples is similar for both approaches. This fosters the idea of an actual snapshot of an
organism’s metabolism in the blood, rather than mere signatures of transportation and disposal

processes in this biofluid.

Correlating the columns of the mixing matrix A with plasma HDL levels, we detected a possi-
bly novel association between branched-chain amino acids and HDL blood plasma levels. HDL
represents a complex, heterogeneous phenotype which is still poorly understood and associated

with a variety of biological processes [222, 223]. The metabolic process encoded by indepen-
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dent component 2 in our study now adds an additional piece of functional information for the
interpretation of plasma HDL. Interestingly, both HDL levels and branched-chain amino acids
are well-known to be strongly connected with obesity, insulin resistance and diabetes type II. On
the one hand, branched-chain amino acid levels are altered as a direct consequence of changed
insulin sensitivity, and have been shown to be markers for the prediction of future diabetes type
II [224, 225]. Furthermore, leucine is known to directly interact on a cellular level with the in-
sulin signaling cascade [226]. On the other hand, the pathological phenotype is known to lower
HDL blood plasma levels, a condition that severely increases the risk for cardiovascular disease
[227]. Using cross-sectional metabolomics data from a population cohort, we could now estab-
lish the additional association between branched-chain amino acids and HDL, irrespective of
a diabetic phenotype. Interestingly, we could recover this association despite the unsupervised
approach taken by ICA. In other words, independent component 2 has not been specifically tai-
lored to explain HDL levels, but rather seems to reflect an intrinsic metabolic process around
branched-chain amino acids that strongly associates with HDL. The only (biologically motivat-
able) assumption going into the ICA model is the independence of metabolite profiles to hold

throughout all samples in the data.

We systematically compared the ICA results with commonly used multivariate data analysis
methods like PCA and k-means clustering. The comparison with PCA was of particular interest
here, since it is widely used for metabolomics data and, similar to ICA, also represent a linear
mixture model separating the data matrix into a source and a mixing matrix. While PCA pro-
duced a series of enriched components with direct IC counterparts, ICA appeared to be more
sensitive. Specifically, ICA enrichments were generally stronger in comparison to PCA and
detected several pathway enrichments that could not observed for PCA. Moreover, our findings
from the HDL analysis could not be reproduced in the PCA approach. These results could be
due to the rather arbitrary constraint of orthogonal basis vectors in PCA, which can hardly be
biologically motivated. The notion of statistically independent processes acting in the system,

as recovered by the ICA, can directly be interpreted in the context of a metabolic system.

Taken together, Bayesian ICA on metabolomics data can be used both to reconstruct meaningful
metabolic profiles which underly the measured concentrations, and to detect novel relationships

with complex phenotypic traits like plasma HDL levels.



Chapter 9
Summary & Outlook

The field of metabolomics has tremendously advanced in the past few years, with discover-
ies in epidemiology [228, 229], nutritional challenging [17, 230] and molecular cell biology
mechanisms [16, 231]. Metabolite profiles are frequently used for both biomarker discovery
of phenotypic states (like a disease state), but also to elucidate general metabolic mechanisms
for fundamental research. Understanding the functional relationships between metabolite con-
centrations and physiological traits, however, remains a challenging task. Especially from a
statistical or bioinformatical point-of-view, dealing with high-dimensional data matrices pro-
duced by metabolomics measurements holds numerous problems and pitfalls. In this thesis,
we laid a particular focus on exploring statistical metabolite dependencies, which arise due to
naturally occurring biological variation in large datasets. For the first time in a systematic fash-
ion, we applied Gaussian graphical models, which estimate conditional dependencies between
variables, to metabolomics data in order to tackle the problem of indirect effects and spurious
correlations. Furthermore, an independent component analysis model was applied to metabol-
omics data, which is capable of detecting higher-order statistical relationships beyond pairwise
covariance. In the following, we will summarize the scientific contributions developed in this

thesis, and discuss possible extensions and future directions.

Scientific achievements

The following novel scientific contributions and insights were obtained throughout the work of
this thesis:

143
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e Gaussian graphical models are generally capable of reconstructing the structure of com-

puter-simulated reaction systems when applying a log-normal noise model to the reaction
parameters (Chapter 4). We furthermore demonstrated a few exceptions where recon-
struction was impaired, like feedback mechanisms, which need to be kept in mind when
working with real data. In general, the forward simulation of reaction systems is a valu-
able tool to determine beforehand what we can expect to recover using GGMs, and what

might remain hidden.

A statistically significant fraction of metabolite pairs which share an edge in the Gaussian
graphical model are also directly connected in the metabolic pathway (Chapter 5). This
indicates that the simple correlation structures between metabolites carry a strong, sys-
tematic signal of the underlying pathways, which are detectable in high-throughput data
when accounting for indirect effects. Furthermore, those metabolite pairs which we con-
sidered ‘wrong’ in our analysis might be worthwhile for further analysis. False positives,
i.e. pairs with significant partial correlations but no known pathway connection, might
represent previously unknown pathway reactions or specific co-regulatory mechanisms.
False negatives, i.e. pairs with insignificant partial correlations but a known biochemical
interaction, might point towards the specificity of a metabolic reaction. The reaction is

present in the organism, but no signal is detectable in the blood system.

GGMs can be exploited to derive functional classifications of unidentified metabolites
from untargeted metabolomics experiments (Chapter 6). In combination with large-scale
genotyping data and pathway database information, systematic classifications can readily
be obtained. For some cases, the metabolic context provided by this integration approach
is even precise enough to derive a testable chemical identity prediction. Several of our
newly assigned metabolite identities shed new light on existing biomarker studies on liver

detoxification, hypertension and insulin resistance.

In addition to the unknown classification analysis in Chapter 6, we detected seven new loci
of metabolic individuality: SLC22A2, COMT, CYP3AS, CYP2C18, GBA3, UGT3Al,
and rs12413935 (for the last locus, no known gene has been annotated yet). To the best of
our knowledge, no previous studies associated variations in these SNP loci with changes

in blood metabolite concentrations.

Applying the GGM methodology to various biological questions in Chapter 7, we were
able to generate specific insights for the respective biological systems under investigation:
(1) Gender-specific metabolome differences might originate from a particular change in

stearic acid (C18:0) metabolism. (2) Investigating the association between fat-free body
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mass and metabolome changes, we detected a specific signal for the phosphatidylcho-
line C38:3, which does not appear to propagate through the metabolic network. Further-
more, we detected a coordinated downregulation of phosphatidylcholines with very long
fatty acid side chains. (3) A differential GGM approach elucidated specific metabolic
changes in a glioblastoma cell line upon chemotherapeutic treatment and gene therapy.
Specifically, the partial correlations between oxidized sulfatides, gangliosides and phos-
phatidylinositols were affected by the treatment. (4) GGMs can be used to define bio-
logically meaningful metabolite groups in the sense of a graph clustering. In the simplest
approach, a high partial correlation cutoff will yield a graph with multiple connected com-
ponents, which then represent groups of biochemically related metabolites. In summary,
all of these examples represent studies where the systematic metabolic picture provided

by a GGM aided the biological interpretation of results.

Investigating higher-order statistical associations beyond covariance in an independent
component analysis, we detected profound pathway footprints for entire groups of metab-
olites in the data (Chapter 8). Furthermore, these pathway signatures displayed a stronger
correlation with blood HDL levels than any metabolite alone. ICA can thus be seen as a
promising alternative to GGM analysis, which investigates group-wise signals in addition

to solely pairwise associations as estimated by correlation measures.

In contrast to most previous systems biological frameworks for metabolism, our modeling
and network inference approach specifically works with metabolomics data. For example,
constraint-based modeling [38], which was tremendously successful for almost 20 years,
has never been properly adapted for metabolomics data. In combination with the inte-
grated pathway models we derived in Chapter 5 and especially Chapter 6, we developed

a generic approach for the functional analysis of cross-sectional metabolomics data.

Methodologically, we introduced several approaches to verify the stability of GGM es-
timation, both using varying sample sizes and sample bootstrapping (Chapter 5). Fur-
thermore, we introduced a preliminary differential GGM algorithm, which detects group-

specific changes in metabolite associations (Chapter 7).

A particularly important feature of a data-driven metabolic reconstruction approach is
the conceptual independence from prior knowledge, which is still far from complete for
human metabolism. For example, numerous measured substances cannot be found in
public reaction databases and subsequently not be analyzed in a knowledge-driven fash-
ion. Moreover, we have seen in Chapter 6 that unknown metabolites constitute a plethora
of both biochemical and genetic interactions. With the GGM approach, these unknowns
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may be kept in the dataset and subjected to follow-up analyses like the network-based
biomarker discovery approaches from Chapter 7.1.

o All results could be obtained from metabolomics data of human blood in a large popu-
lation cohort. This provides important insights into the nature of metabolites that can be
found in the blood. Inspecting the GGMs shown in Figures 5.1 and 6.3, the majority of
all metabolites is connected to other compounds in the network. Furthermore, throughout
the work of this thesis, we found only very few examples of GGM edges that appear to be
biologically unreasonable. Our results thus suggest that metabolites present in the blood
are not only products of unspecific leaking from larger metabolically active organs into
the vascular system, but also carry a full footprint of the metabolic pathways. Where these
signal actually originate from, i.e. liver, muscle or other tissues, is still to be determined.

Taken together, human blood metabolomics data contain strong footprints of biochemical path-
ways, which can be reconstructed using statistical methods like GGMs and ICA. Furthermore,
reconstructed metabolic pathways can be used to address biological questions like group-specific

metabolome differences on a systematic level.

Since our metabolomics GGMs were estimated from a very large number of samples, they can
be used as a ‘ground truth’ for other metabolomics projects with smaller sample sizes. If we
assumed the metabolite-metabolite interactions in fasting state to be conserved throughout all
humans, we could use the KORA population GGM to functionally analyze statistical results
from a different study cohort (e.g. a challenging study with only few participants). The valid-
ity of this conservation assumption will soon be evaluated on independent population cohorts
measured using the same metabolomics platforms (e.g. the TwinsUK study [232]).

Extensions and future directions

There are a variety of possible extensions to both the GGM calculation as well as the evaluation

methods. These will be discussed in the following.

First, we will include further layers of molecular information in addition to mass-flow metabolic
reaction networks. This primarily includes gene regulatory processes and the corresponding
proteomics and transcriptomics data. Second, the simulated reaction systems should also be
extended by a regulatory layer, again to check what we can expect from a GGM reconstruction
and what might not be revealed. In Chapter 6 we also included SNP genotyping data in a rather
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pragmatic and functionally-oriented fashion (through a GWAS). Such variation might also be
subject to more specific modeling, however only for genetic variants where the causal effect on

the respective gene products is known.

Methodologically, there are several ways to improve and extend the GGM estimation procedure.
First, an important issue is the presence of outliers in the data, which might substantially falsify
correlation estimators. In principle, there are two possible ways of dealing with data outliers.
On the one hand, one might attempt to detect outliers, e.g. using the coefficient of variation,
and subsequently filter them out from the data as a preprocessing step before the actual anal-
ysis. Examples for this simple approach can be found in virtually any present metabolomics
study (e.g. [18, 29]). A more involved approach is to incorporate robust estimation into the
GGM calculation process. An example can be found in Miyamura and Kano [90], who intro-
duced a robust maximum likelihood method of covariance estimation. Furthermore, rank-based
correlation approaches like Spearman correlation [72] could be used. This approach has the ad-
ditional advantage of circumventing the need for Gaussianity of the measured compounds and
linearity of associations. Spearman correlations will detect arbitrary monotonic relationships.
Any method correcting for data outliers could then simply replace the standard GGM estimation

procedure in the data analysis workflow.

In this thesis, we mainly calculated GGMs by simple inversion of the covariance matrix. For
most metabolomics studies today, however, we cannot expect the number of samples to be
larger than the number of measured metabolites, as for the KORA data. Therefore, the ‘small
n, large p’ approaches introduced in Chapter 3.5 will play an important role in future applica-
tions of the metabolomics GGM approach. Methods that allow for an inversion of the covari-
ance matrix despite small sample sizes are suitable tools for the quick generation of GGMs for
any type of dataset. Moreover, methods that directly work with the Markov properties from
graphical modeling theory might be even more promising. For example, we have seen that two
uncorrelated variables might become strongly negatively correlated when conditioning against
further variables. Specialized algorithms specifically reconstructing the graph neighborhood
(the Markov boundary) of a given variable might be more suitable for such scenarios [55, 79].
Furthermore, such correlation scenarios can be used to introduce directionality into the GGM
calculation, see below. A particularly important pre-analysis for the application of ‘small n,
large p’ approaches will be a systematic assessment of their reconstruction capabilities (similar

to Chapters 4 and 5) as well as a direct comparison between the different GGM approaches.

GGM per se only reconstruct undirected effects from the data. Real biochemical networks,

however, often contain a directionality of the effect (e.g. in an irreversible reaction). In future
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projects, we will employ algorithms that recover directed edges in a network. Our toy model
framework (Chapter 4) is ideally fit to generate evaluation data for such algorithms, since we
can specifically control the directionality of information flow in the underlying network. A
popular example for a directed graphical model used in biomedical research are Bayesian net-
works [74], which encode a (simplified) factorization of the joint probability of all variables.
For partial correlations, several approaches have been proposed to include directionality of the
edges. For example, Freudenberg et al. [59] used the concept of d-separation to rule out di-
rected connectivities which are not supported by the data. Again, this approach elucidates the
conditional and marginal independence relations between variables. Opgen-Rhein and Strim-
mer [233] focused on the connection between linear regression models, partial correlation and
partial variances (the variance left after regression). Briefly, if two variable are (undirectedly)
connected in the GGM, but the variables show a significantly different reduction in variance
due to the regression against all other variables, then the edge points from the variable with the
higher partial variance to the variable with the lower partial variance. The authors demonstrate
that in such a case the regression coefficient (after scale normalization) will be asymmetric, i.e.
the mutual effect of the variable onto each other is not equal. In a third study, Yuan et al. [234]
investigated the change of partial correlations of a variable X; when including or not including
a specific effector variable X ;. The authors argue that if the partial correlations with all other
variables change significantly, the effector variable X; does have a directed influence on the
prediction of X;. Importantly, however, fitting a model with unidirectional influences must still
not be confused with causality (although many authors claim so). The direction of an edge in
the model tells us that the dataset can be fitted best using this edge in the model; there is no

guarantee that this direction also holds true in biological reality.

Furthermore, the inclusion of higher-order interactions into the graphical modeling context
might be extended in future projects. In Chapter 7.4 we have introduced a variant of metabolite-
metabolite networks that include genotyping data. The ternary edges induced by the ratio of two
metabolites with a genetic locus provide more biological information than interactions between
metabolites alone. From a methodological point-of-view, higher-order statistical dependencies
should be included into our models. The independent component analysis in Chapter 8§ demon-
strated a first attempt to introduce such dependencies in the analysis of metabolomics data.
Moreover, there are specific graphical modeling approach that encode information beyond the
conditional independence between variables. For example, ‘Vines’ [235] include specific condi-
tional dependence information (e.g. non-zero partial correlations) between two variables given

a set of conditioning variables.
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A particular problem that should be addressed in future applications of correlation coefficients
is the reasonability of significance cutoffs. Throughout all analyses, we followed a straight-
forward, statistically sound approach: We used established statistical models which test for
non-zero correlation coefficients, corrected for multiple hypothesis testing and applied a stan-
dard significance level « (of 0.05, 0.01 or 0.001). However, it is doubtful whether checking for
a non-zero correlation coefficient always represents the biologically relevant question. For ex-
ample, assume we obtained a correlation of 0.1 between two metabolites in a sample of n=1000
study participants. This correlation yields a p-value of p=1.53 - 1073, When increasing the
number of samples to n=2000 participants, the correlation coefficient will most likely be the
same (we get a reasonably good estimate with 1000 samples already), but the p-value drops to
p=7.33-1075. The situation also holds true for partial correlation coefficients, where some cor-
relation might remain due to dependencies that cannot be entirely partialized out. Whether or
not an edge will be present in the GGM is thus not only determined by the actual association be-
tween compounds, but also by the number of samples in the dataset. This obviously should not
be the case and must be considered in future analyses. One approach to solve this issue would
be to apply a constant correlation cutoff (cf. Chapter 7.1). Although the problem is then shifted
to determining a proper value for this correlation cutoff, this approach would not dependent on

the actual sample size for stably estimated correlation coefficients.

The above-mentioned extensions concerned graphical model estimation as such. There are nu-
merous possibilities to extend the biological evaluation of our statistical results. As discussed
above, the false positive GGM edges identified in Chapter 5 cannot be considered false in bi-
ological sense, but rather represent findings that are not in accordance with current pathway
knowledge. The list of GGM edges that have no evidence in the public reaction databases rep-

resent suitable candidates for subsequent deeper analyses and possibly experimental testing.

Moreover, several approaches to improve the analysis of a certain phenotype in the light of
GGMs can be imagined. (1) Our differential analysis presented in Chapter 7.2 merely repre-
sented an ad-hoc approach to find changed partial correlations between different conditions. A
recent statistics master thesis conducted in our group investigated hypothesis testing for dif-
ferential correlation values both in computer-simulated systems and metabolomics data. This
approach will be used to soundly assess the significance of changed correlations between two
groups in the data, rather than comparing ‘present’ and ‘absent’ edges in two distinct GGMs.
(2) The analysis of colored GGMs (‘effect networks’, Chapter 7.1) can be complemented by
the algorithmic detection of regions in the graph with a strong signal. Computationally, this
requires algorithms similar to clustering, which find regions of enriched signals in a weighted

graph. Rather than manually finding highly colored regions by visual inspection, we could then
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recover regions with strong signals automatically. Such approaches will be particularly useful
for analyses where only very few significant metabolite associations are detected. (3) In ad-
dition to projecting statistical results to the data-driven GGMs, real metabolic pathways from
public databases should also be used. An example for this idea was published by Chuang et al.
[236], who projected the results of a metastatic/non-metastatic differential proteomics analysis
to publically available protein-protein interaction networks. This data combination then allowed
the identification of specific, metastasis-related protein subnetworks. Interestingly, the concept
of differential network biology, i.e. differential calculation of networks or coloring of networks
with statistical results, has recently been announced to become a major tool for future ‘omics’
analyses (Ideker and Krogan [161]).

Addressing the above-mentioned issues will be a challenge for future GGM-based projects, but

will allow us to gain further insights into the biochemical interplay of metabolites.

Conclusion

In this thesis, we presented Gaussian graphical models as a valuable tool for the recovery of bio-
chemical reactions from high-throughput targeted metabolomics data. Using techniques from
mathematical modeling and bioinformatics, we could proof the validity of the approach by com-
puter simulations and systematic comparisons against public databases. Furthermore, several
approaches of how to investigate specific phenotypic groups in the study samples have been pro-
posed. Independent component analysis (ICA) was introduced as an extension of correlation-
based approaches, which provides particular insights into the interplay of metabolite groups.
Concluding, we suggest to use GGMs and ICA as standard tools of investigation in future meta-
bolomics studies, utilizing the upcoming wealth of metabolic profiling data to form a more

comprehensive picture of metabolic pathways.
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