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ABSTRACT

Deep Neural Networks (DNNs) denote multilayer artificial neural
networks with more than one hidden layer and millions of free pa-
rameters. We propose a Generalized Discriminant Analysis (GerDA)
based on DNNs to learn discriminative features of low dimension
optimized with respect to a fast classification from a large set of
acoustic features for emotion recognition. On nine frequently used
emotional speech corpora, we compare the performance of GerDA
features and their subsequent linear classification with previously
reported benchmarks obtained using the same set of acoustic fea-
tures classified by Support Vector Machines (SVMs). Our results
impressively show that low-dimensional GerDA features capture hid-
den information from the acoustic features leading to a significantly
raised unweighted average recall and considerably raised weighted
average recall.

Index Terms— Deep Neural Networks, Generalized Discrimi-
nant Analysis, Affective Computing, Emotion Recognition

1. INTRODUCTION

While broadly acknowledged as major contributor to future human-
machine and -robot communication and multimedia retrieval systems,
it is also well known that computational assessment of human emo-
tion by acoustic properties is a demanding task. We quantified this
fact by benchmarks reported on nine frequently used datasets in
[7, 8]. To raise these and advance speech-based emotion recogni-
tion systems’ performance, we introduce a Generalized Discriminant
Analysis (GerDA) [13] that is a recently proposed machine learn-
ing tool based on Deep Neural Networks (DNNs) for discriminative
feature extraction from arbitrary distributed raw data. Even if the
dimensionality of the input data is extremely high, as in case of
emotion-data considered here, GerDA is able to learn very compact
discriminative features. Moreover, GerDA features are optimized for
a fast and simple linear classification which is an important require-
ment for real-time applications [13]. For example, in our experiments,
2D features were extracted from 6 552-dimensional acoustic feature
vectors and classified very fast using a simple minimum-distance
classifier with a performance superior to the frequently used SVMs.

In the remainder of this paper we introduce GerDA (Sec. 2), the
experimental setup (Sec. 3) including databases (Sec. 3.2) and the
acoustic feature set (Sec. 3.1), present experimental results (Sec. 4),
before concluding (Sec. 5).

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) under
under grant No. 211486 (SEMAINE). The responsibility lies with the authors.

2. GENERALIZED DISCRIMINANT ANALYSIS

Classical Linear Discriminant Analysis (LDA) seeks a linear trans-
form of arbitrary distributed data x ∈ R

d from C classes to Gaussian
class-conditionally distributed features h ∈ R

r . Due to its linear na-
ture, LDA often yields poor classifications on real world data. As gen-
eralization of LDA, GerDA maximizes a Fisher discriminant criterion
Qh(f) := trace{S−1

T SB} (ST : total scatter matrix, SB : between-
class scatter matrix) over a nonlinear function space F including
linear transformations as well. While F is defined by a DNN, i. e.,
the chosen topology, connections and activation functions, the chal-
lenge is to find an optimal mapping f∗ ∈ F , f∗ : Rd → R

r , r ≤ d,
represented by trained network parameters Θ∗. As is well-known,
training DNNs after random initialization almost always results in
bad local solutions. We circumvent this drawback by using Restricted
Boltzmann Machines (RBM) to pre-optimize the network parameters
in a stochastic fashion [6]. After semi-supervised pre-optimization,
GerDA DNNs are supervised fine-tuned using a back-propagation
algorithm adapted to maximize the criterion Qh in the feature space
explicitly. In the following, for the sake of coherency, we restate the
main ideas already proposed in [13] on semi-supervised training of
GerDA DNNs:

The pre-optimization of a GerDA DNN, which consists of L
layers lj with N j units (1 ≤ j ≤ L), is performed by first sub-
dividing the full network into pairs of successive layers {l1, l2},
{l2, l3}, . . . , {lL−1, lL}. Each pairing is then represented by a single
RBM (Figure 1). The RBM’s parameters Θi (1 ≤ i ≤ L − 2),
i. e., the weights and biases, are trained unsupervised via stochastic
gradient descent in the Kullback-Leibler divergence,

d(P 0||P∞;Θi) :=
∑
vi

P 0(vi) log

(
P 0(vi)

P∞(vi;Θi)

)
, (1)

where P 0(vi) denotes an empirical training data distribution and
P∞(vi;Θi) is defined as Boltzmann distribution. Binary data
vi(xn) (1 ≤ n ≤ N ) for training each RBM i is generated by the
hidden-layer units of the already trained predecessor RBM i− 1, i. e.,
vi(xn) = hi−1(xn). Except the first RBM’s, inputs are the original
training data, i. e., v1(xn) = xn. In this way, a stack of RBMs is
trained layer-wisely until the top RBM is processed. Because training
of RBMs is slow, a so-called Contrastive Divergence (CD) heuristics
is used to speed up. Unlike [6], an extended semi-supervised archi-
tecture is implemented to effectively pre-optimize GerDA DNNs
with respect to a discriminant criterion Qh: The first RBM is adapted
to facilitate real-valued inputs, which is an important requirement
for many applications. The last RBM in the stack is extended by
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Fig. 1. A GerDA achitecture consisting of multiple layers (filled boxes) connected with weights and biases. Each pairing of layers is represented
by a single RBM. The full RBM stack is pre-optimized partly unsupervised and supervised in a layer-wise manner. The resulting network
parameters are then used to initialize the GerDA architecture followed by a supervised fine-tuning with respect to a discriminant criterion.

real-valued output units to supervised learn specific targets codes
t(xn) ∈ R

C that can be shown to be equivalent (asymptotically) to
an implicit maximization of Qh in the space spanned by hL ∈ R

r .
As the objective is to extract real-valued features, we modeled the
hidden units hL of the extraction layer real-valued, too. In the
end, the topmost RBM’s output units are discarded again, and the
remaining parameters (b1, . . . , bL−1,W1, . . . ,WL−1) serve as
starting point for the fine-tuning via back-propagation adapted to
maximize the discriminant criterion Qh in the feature space directly.

3. EXPERIMENTAL SETUP

For the following investigations, the same setup as introduced in
[8] is used facing GerDA with different emotion groups as well as
two binary meta-groups. Static acoustic features from time-varying
speech signals are obtained from a broad range of emotional speech
databases by a specific pre-processing. The acoustic features are then
used to compute GerDA features subsequently classified by a Ma-
halanobis minimum-distance classifier. The resulting performances
are compared with a pair-wise multiclass SVM using a polynomial
kernel on the acoustic features.

3.1. Acoustic Features

For each considered emotion recognition task, acoustic feature vectors
of 6 552 dimensions were extracted using the openEAR toolkit [3]
as 39 functionals of 56 acoustic Low-Level Descriptors (LLDs) in-
cluding first and second order delta regression coefficients. Table 2
summarizes the statistical functionals which were applied to the LLDs
shown in Table 1 to map a time series of variable length onto a static
feature vector. Additionally, speaker (group) standardization was
carried out.

3.2. Emotional Speech Databases

As benchmark databases, we chose nine among the most frequently
used that range from acted over induced to spontaneous affect por-
trayal. For better comparability of obtained performances among
corpora, we additionally map the diverse emotion groups onto the
two most popular axes in the dimensional emotion model as in [7, 8]:
arousal (i. e., passive (“-”) vs. active (“+”)) and valence (i. e., negative
(“-”) vs. positive (“+”)). These mappings are not straight forward—
we favor better balance among target classes. We further discretized

Table 1. 33 Low-Level Descriptors (LLD) used.

Feature Group Features in Group
Raw Signal Zero-crossing-rate
Signal energy Logarithmic
Pitch Fundamental frequency F0 in Hz via

Cepstrum and Autocorrelation (ACF).
Exponentially smoothed F0 envelope.

Voice Quality Probability of voicing (
ACF (T0)
ACF (0)

)

Spectral Energy in bands 0–250 Hz, 0–650 Hz,
250–650 Hz, 1–4 kHz
25 %, 50 %, 75 %, 90 % roll-off point,
centroid, flux, and rel. pos. max. / min.

Mel-spectrum Band 1–26
Cepstral MFCC 0–12

Table 2. 39 functionals applied to LLD contours.

Functionals #
Respective rel. position of max./min. value 2
Range (max.-min.) 1
Max. and min. value - arithmetic mean 2
Arithmetic mean, Quadratic mean, Centroid 3
Number of non-zero values 1
Geometric, and quadratic mean of non-zero values 2
Mean of absolute values, Mean of non-zero abs. values 2
Quartiles and inter-quartile ranges 6
95 % and 98 % percentile 2
Std. deviation, variance, kurtosis, skewness 4
Zero-crossing rate 1
# of peaks, mean dist. btwn. peaks, arth. mean of peaks,
arth. mean of peaks - overall arth. mean

4

Linear regression coefficients and error 4
Quadratic regression coefficients and error 5

into the four quadrants (q) 1–4 of the arousal-valence plane for contin-
uous labeled corpora. In the following, each set is shortly introduced
including the mapping to binary arousal/valence by “+” and “-” per
emotion and its number of instances.

The Danish Emotional Speech (DES) database [2] contains pro-
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Table 3. Overview of the selected emotion corpora (Lab: labelers, Rec: recording environment, f/m: (fe-)male subjects).

Corpus Language Speech Emotion # Arousal # Valence # All h:mm # m # f # Lab Rec kHz
- + - +

ABC German fixed acted 104 326 213 217 430 1:15 4 4 3 studio 16
AVIC English free natural 553 2449 553 2449 3002 1:47 11 10 4 studio 44
DES Danish fixed acted 169 250 169 250 419 0:28 2 2 – studio 20
EMOD German fixed acted 248 246 352 142 494 0:22 5 5 – studio 16
eNTER English fixed induced 425 852 855 422 1277 1:00 34 8 2 studio 16
SAL English free natural 884 808 917 779 1692 1:41 2 2 4 studio 16
Smart German free natural 3088 735 381 3442 3823 7:08 32 47 3 noisy 16
SUSAS English fixed natural 701 2892 1616 1977 3593 1:01 4 3 – noisy 8
VAM German free natural 501 445 875 71 946 0:47 15 32 6/17 noisy 16

fessionally acted nine Danish sentences, two words, and chunks that
are located between two silent segments of two passages of fluent
text. Emotions contain angry (+/-, 85), happy (+/+, 86), neutral (-/+,
85), sadness (-/-, 84), and surprise (+/+, 79). The Berlin Emotional
Speech Database (EMOD) [1] features professional actors speaking
ten emotionally undefined sentences. 494 phrases are commonly
used: angry (+/-, 127), boredom (-/-, 79), disgust (-/-, 38), fear (+/-,
55), happy (+/+, 64), neutral (-/+, 78), and sadness (-/-, 53). The
eNTERFACE (eNTER) [14] corpus consists of recordings of naive
subjects from 14 nations speaking pre-defined spoken content in En-
glish. The subjects listened to six successive short stories eliciting
a particular emotion out of angry (+/-, 215), disgust (-/-, 215), fear
(+/-, 215), happy (+/+, 207), sadness (-/-, 210), and surprise (+/+,
215). The Airplane Behaviour Corpus (ABC) [10] is based on in-
duced mood by pre-recorded announcements of a vacation (return)
flight, consisting of 13 and 10 scenes. It contains aggressive (+/-, 95),
cheerful (+/+, 105), intoxicated (+/-, 33), nervous (+/-, 93), neutral
(-/+, 79), and tired (-/-, 25) speech. The Speech Under Simulated
and Actual Stress (SUSAS) database [5] serves as a first reference
for spontaneous recordings. Speech is additionally partly masked
by field noise in the chosen actual stress speech samples recorded in
subject motion fear and stress tasks. SUSAS content is restricted to
35 English air-commands in the speaker states high stress (+/-, 1 202),
medium stress (+/-, 1 276), neutral (-/+, 701), and scream (+/-, 414).
The Audiovisual Interest Corpus (AVIC) [9] consists of spontaneous
speech and natural emotion. In its scenario setup, a product presenter
leads subjects through a commercial presentation. AVIC is labelled
in “level of interest” (loi) 1–3 having loi1 (-/-, 553), loi2 (+/+, 2279),
and loi3 (+/+, 170). The Belfast Sensitive Artificial Listener (SAL)
data is part of the final HUMAINE database. We consider the subset
used, e. g., in [15] with an average length of 20 minutes per speaker
of natural human-SAL conversations. The data has been labeled con-
tinuously in real time with respect to valence and activation using a
system based on FEELtrace. The annotations were normalized to zero
mean globally and scaled so that 98 % of all values are in the range
from -1 to +1. The 25 recordings have been split into turns using an
energy based Voice Activity Detection. Labels for each obtained turn
are computed by averaging over the complete turn. Per quadrant the
samples are: q1 (+/+, 459), q2 (-/+, 320), q3 (-/-, 564), and q4 (+/-,
349). The SmartKom (Smart) [12] corpus consists of Wizard-Of-Oz
dialogs. For our evaluations we use dialogs recorded during a public
environment technical scenario. It is structured into sessions which
contain one recording of approximately 4.5 min length with one per-
son and labelled as anger/irritation (+/-, 220), helplessness (+/-, 161),
joy/gratification (+/+, 284), neutral (-/+, 2179), pondering/reflection

(-/+, 643), surprise (+/+, 70), and unidentifiable episodes (-/+, 266).
Finally, the Vera-Am-Mittag (VAM) corpus [4] consists of recordings
taken from a German TV talk show. The audio recordings were
manually segmented to the utterance level, whereas each utterance
contained at least one phrase. The labeling bases on a discrete five
point scale for valence, activation, and dominance. Samples among
quadrants are q1 (+/+, 21), q2 (-/+, 50), q3 (-/-, 451), and q4 (+/-,
424). Further details on the corpora are summarized in Table 3 and
found in [8]. Note that in the ongoing, balancing of the training
partition is used.

low arousal
high arousal
missclassified

positive valence
negative valence
missclassified

Fig. 2. Classification of 2D GerDA features of EMOD arousal,
speaker 4 (top) and AVIC valence, speaker group 2 (bottom).

4. EXPERIMENTAL RESULTS

For all databases, test-runs are carried out in Leave-One-Speaker-
Out (LOSO) or Leave-One-Speakers-Group-Out (LOSGO) manner
to face speaker independence, as required by most applications. In
the case of 10 or fewer speakers in one corpus we apply the LOSO
strategy; otherwise, namely for AVIC, eNTERFACE, SmartKom,
and VAM, we select 5 speaker groups with utmost equal number
of male and female speakers and samples per group for LOSGO
evaluation. As evaluation measures, we employ the Weighted (WA)

5690



Table 4. Unweighted (UA) and Weighted (WA) Accuracy of the
SVM (upper line, each) and GerDA (lower line, each) based acoustic
emotion recognition. Raised benchmarks using GerDA with a simple
minimum-distance classification are bold typed.

Corpus All Arousal Valence
[%] UA WA UA WA UA WA

ABC SVM 55.5 61.4 61.1 70.2 70.0 70.0
GerDA 56.1 61.5 69.3 80.6 79.6 79.0

AVIC SVM 56.5 68.6 66.4 76.2 66.4 76.2
GerDA 59.9 79.1 75.6 85.3 75.2 85.5

DES SVM 59.9 60.1 87.0 87.4 70.6 72.6
GerDA 56.7 56.6 90.0 90.3 71.7 73.7

EMOD SVM 84.6 85.6 96.8 96.8 87.0 88.1
GerDA 79.1 81.9 97.6 97.4 82.2 87.5

eNTER SVM 72.5 72.4 78.1 79.3 78.6 80.2
GerDA 61.1 61.1 77.0 80.8 74.4 79.7

SAL SVM 29.9 30.6 55.0 55.0 50.0 49.9
GerDA 35.9 34.3 65.1 66.4 57.7 53.0

Smart SVM 23.5 39.0 59.1 64.1 53.1 75.6
GerDA 25.0 59.5 55.2 79.2 52.2 89.4

SUSAS SVM 61.4 56.5 63.7 77.3 67.7 68.3
GerDA 58.7 53.6 68.2 83.3 74.4 75.0

VAM SVM 37.6 65.0 72.4 72.4 48.1 85.4
GerDA 39.3 68.0 78.4 77.1 52.4 92.3

Mean SVM 53.5 59.9 71.1 75.4 64.5 68.3
GerDA 52.5 61.7 75.2 82.3 68.9 79.5

and Unweighted (UA) Accuracy as demanded in [11]. The latter
measure better reflects unbalance among classes. The results using
GerDA features in a Mahalanobis minimum-distance classifier and
acoustic features in a polynomial SVM are given in Table 4 for all
emotion classes contained per database and for the clustered two-class
arousal/valence binary cover-classes tasks. As an example, in Figure
2, 2D GerDA features of speaker 4 of the EMOD binary arousal
task (top) and of speaker group 2 of the binary valence AVIC task
as well as the resulting classification boundaries are plotted. The
increased difficulty in the spontaneous valence task is clearly visible
in comparison to the commonly known to be easier acted and arousal
task.

5. CONCLUSIONS

In this paper we introduced Generalized Discriminant Analysis
(GerDA) based on Deep Neural Networks (DNNs) for the task of
acoustic emotion recognition. Overall, the results averaged over nine
databases and a total of 15 680 test instances show a highly significant
improvement over the previously reported baselines by SVMs: In a
one-tailed test considering weighted accuracy, GerDA outperforms
the SVM for all classes at a level of 0.05, for the two-class arousal
and valence tasks using 2D GerDA features, the level is � 10−3.
The breakdown in the All-tasks of EMOD and eNTERFACE may be
due to the high number of classes and the relatively small number of
available examples. Because GerDA is a data-driven tool, a sufficient
amount of information must be provided to obtain highly compact
and discriminative features.

In future work we aim at comparison with further neural network
approaches, such as long short term memory architectures and hierar-
chical architectures to better cope with the decreased gain of GerDA

in multi-class settings with little available training data.
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[15] M. Wöllmer, F. Eyben, S. Reiter, B. Schuller, C. Cox,
E. Douglas-Cowie, and R. Cowie, “Abandoning emotion classes
- towards continuous emotion recognition with modelling of
long-range dependencies,” in Proc. 9th Interspeech 2008, Bris-
bane, Australia, 2008, pp. 597–600, ISCA.

5691


