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ABSTRACT

We consider the minimization of the average transmit power in a

block-fading broadcast channel with time division multiple access

under constraints on the average rates of all users. The globally

optimal solution of this problem would require noncausal channel

knowledge such that all blocks can be optimized jointly in advance,

which is of course impossible in a practical system. However, it

is possible to predict future channel realizations based on their sta-

tistical properties and on the observations of the current and past

realizations. Therefore, we study a receding horizon optimization,

where future fading blocks are incorporated into the optimization by

means of an MMSE channel prediction or by means of a rate pre-

diction method proposed in this paper. While the optimization based

on channel prediction does not lead to the desired reduction of the

average transmit power, the rate-prediction-based method is able to

achieve a notable reduction.

1. INTRODUCTION

In many practical scenarios, the future development of the channel

state of time-varying channels can be predicted accurately in the near

future based on past and current channel measurements (e.g., [1, 2],

and the references therein). A possible benefit of such a prediction is

that a delay caused by the necessity of feeding back the channel es-

timation to the transmitter can be compensated such that the use of

outdated channel state information is avoided [2]. In [3], schedul-

ing based on such a prediction of the channels in the upcoming

time block was studied for a multicarrier MIMO broadcast channel.

The authors distinguished between predictable and non-predictable

users, where the channels of the former were predicted with a para-

metric approach (such as ESPRIT, e.g., [4]) or a MMSE predictor

[1] while the rate achievable for the latter by means of omnidirec-

tional transmission was predicted using the a priori knowledge of

the statistical parameters of the channels.

In our work, we also apply an MMSE channel predictor as well

as a rate prediction, which is either performed based on a priori infor-

mation or conditioned on former observations. However, instead of

predicting the channel for the current block, for which a scheduling

decision is to be made, we focus on the exploitation of the prediction

of future blocks for scheduling purposes.

Including future blocks in the optimization of the current trans-

mit strategy has already been studied in [5–10]. However, the au-

thors of these works assumed that there exists a mechanism that al-

lows to predict the rate that will be supported by the physical layer

for a user in a certain time block in the future, and they concentrated

on the pure scheduling problem. By contrast, our work focuses on

the physical layer and studies how such a rate prediction can be per-

formed in a way that is beneficial for the considered optimization.

As in [5–9], we incorporate the predicted future rates into the

optimization by means of a so-called receding horizon approach, a

concept which is adopted from control theory (e.g., [11]). In the con-

text of predictive scheduling, the term receding horizon optimiza-

tion refers to the following procedure: the current step is optimized

jointly with a certain number of future steps, but the strategies ob-

tained for the future steps are discarded as they will be re-optimized

later when the respective step becomes the current step. A more de-

tailed description of this concept can be found in Section 3 after the

introduction of the system model in Section 2.

In this paper, predictive optimization is applied with the aim of

reducing the average transmit power needed to fulfill constraints on

the average rates of the users. The motivation behind such an opti-

mization are systems with elastic traffic, where the additional free-

dom (compared to inelastic traffic) can be exploited to reduce the

energy consumption of the transmitter. Note that this kind of opti-

mization implies that we allow a variable transmit power, which is

different from the proportional fair scheduling studied in [3,6–8] and

the throughput maximization in [5, 9, 10], where the transmit power

was fixed. The additional challenge of a variable transmit power is

that the prediction of the rate is no longer a certain value, but a func-

tion of the power, which itself is an optimization variable. Methods

to predict such rate functions will be discussed in Section 5. These

expected rate functions can then be plugged into the optimization

method discussed in Section 4. The potential of the various predic-

tion methods is evaluated in numerical simulations in Section 6.

Notation: We use •H for the conjugate transpose of a vector or

matrix, IM for the identity matrix of size M , E[•] for the expected

value, and ⊗ for the Kronecker product.

2. SYSTEMMODEL AND PROBLEM FORMULATION

We consider a time-varying broadcast channel with an M -antenna

base station and K single-antenna receivers, where the channel of

each user is characterized by a noise power σ2
n,k(t) and a complex

channel vector hH
k (t) ∈ C

1×M . Without loss of generality, we as-

sume that σ2
n,k(t) = 1 for all k and t since any other value could be

treated by introducing an effective channel h̃H
k (t) = σ−1

n,k(t)h
H
k (t).

Throughout the paper, we assume correlated block-fading chan-

nels, where the channel coefficients remain constant during intervals

of length T , i.e.,

h
H
k (t) = h

H
k [n] for t ∈ [(n− 1)T, nT [ (1)

while the vectors hH
k [n] in neighboring blocks are correlated. How-

ever, the channel coefficients belonging to different antennas or dif-

ferent users are assumed to be independent. Furthermore, we as-

sume the channels to form a stationary random sequence, and we

assume that the temporal correlations are the same for all antennas
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of a user. As a result, the channels have a separable crosscovariance

according to the definition in [1], and, assuming the coefficients to

be circularly symmetric Gaussian with zero mean and unit variance,

the joint distribution of the channel vectors in a group of N blocks

xk[N ] = [hH
k [1], . . . ,h

H
k [N ]]H can be described by

xk[N ] ∼ CN (0,Ck[N ]⊗ IM ). (2)

The element of Ck[N ] in the mth column and nth row equals the

correlation of the channel coefficients in the mth and nth block, i.e.,

E[hk,ℓ[m]hk,ℓ[n]
∗] = [Ck[N ]]m,n = ck[m,n] for all ℓ, where

hk,ℓ[n] is the ℓth component of hk[n]. Note that due to stationar-

ity, Ck[N ] is a Toeplitz matrix, and Ck[N ]⊗ IM is a block Toeplitz

matrix.

At some points in this paper, we will make use of the condi-

tional distribution of the channel vector hk[i] of user k in block i
conditioned on the realizations of the vectors in the blocks 1, . . . , n,

which is a Gaussian distribution described by the conditional mean

µk[i|n] = (cHk [n, i]⊗ IM ) (Ck[n]⊗ IM )−1
xk[n]

=
(

(cHk [n, i]C
−1
k [n])⊗ IM

)

xk[n] (3)

and the conditional covariance

Ck[i|n] = IM−(cHk [n, i]⊗IM ) (Ck[n]⊗IM )−1 (ck[n, i]⊗IM )

= (1− c
H
k [n, i]C

−1
k [n] ck[n, i])

︸ ︷︷ ︸

σ2

k
[i|n]

IM (4)

with ck[n, i] = [ck[1, i], . . . , ck[n, i]]
T.

The aim of our studies is to minimize the average transmit power

subject to the constraint that a certain average per-user rate ρk is

achieved for each user. To avoid long delays, we enforce the average

rate constraints of all users to be fulfilled after a group of N blocks.

Afterwards, the same optimization can be performed for the next N
blocks. To keep the stochastic expressions simple, such that they can

be evaluated analytically, we restrict ourselves to the case of time

division multiple access (TDMA), i.e., at each time instant, only one

user is served. The method could, however, be extended to the case

of spatial multiplexing (e.g., using MMSE or ZF beamforming) by

deriving a method to evaluate the expectations in Section 5 for the

case of spatial multiplexing and by replacing the inner optimization

in Section 4 with a monotonic optimization as in [12] or by using a

heuristic optimization method.

Note that we allow each block n to be arbitrarily subdivided into

K subintervals where a certain user k is served in each subinterval.

Thus, the overall optimization reads as

min
(Lk[n]≥0, pk[n]≥0)∀n,∀k

1

N

N∑

n=1

K∑

k=1

Lk[n] pk[n] (5)

s.t.
1

N

N∑

n=1

Lk[n] rk[n](pk[n]) ≥ ρk ∀k

and

K∑

k=1

Lk[n] = 1 ∀n

where TLk[n] is the length of the subinterval reserved for user k in

block n, and rk[n](pk[n]) is the achievable rate for user k during the

corresponding subinterval of block n given by

rk[n](pk[n]) = log2(1 + pk[n] ‖hk[n]‖22) (6)

which is achievable with transmit beamforming (e.g., [13]).

3. RECEDING HORIZON OPTIMIZATION

The main issue of the optimization in (5) is that in a practical imple-

mentation, the channels hH
k [i] of blocks i > n are not known when

a decision has to be made for the strategy to be applied in block n.

On the other hand, in order to not deal with channel estimation and

to concentrate on the issues of prediction, we assume that a perfect

estimation of the channels in block i = n is available when the final

decision for the strategy for block n is made. The same assumption

was made, e.g., in [5].

To deal with the lack of knowledge about future channels, we

replace the rate rk[i](pk[i]) for i > n by a prediction r̂k[i|n](pk[i])
based on the knowledge available in block n. In Section 5, we will

discuss various realistic as well as idealized prediction methods, and

we will compare their performance in Section 6.

Assuming that a prediction r̂k[i|n](pk[i]) is available for i ∈
{n + 1, . . . , n + Nh}, we can optimize the system in a receding

horizon fashion as in [5–9]. To this end, we have to solve the follow-

ing optimization in order to decide for a strategy for block n:

min
(Lk[i]≥0, pk[i]≥0)i∈{n,...,ñ},∀k

ñ∑

i=n

K∑

k=1

Lk[i] pk[i] (7)

s.t.

ñ∑

i=n

Lk[i] r̂k[i|n](pk[i]) ≥ ρ̃k[n] ∀k

and

K∑

k=1

Lk[i] = 1 for i ∈ {n, . . . , ñ}

with ñ = min{n + Nh, N}, r̂k[n|n](pk[n]) = rk[n](pk[n]), and

ρ̃k[n] = ñρk −
∑n−1

j=1 Lk[j] rk[j]. Note that the subinterval lengths

Lk[j] and the rates rk[j] for blocks j < n can no longer be changed

when the strategy for block n is optimized, i.e., they are constants.

On the other hand, the strategies for blocks i > n, which are part

of the optimization in (7), have to be considered as virtual strate-

gies, which can still be changed later on. They are only a vehicle

to optimize the transmission in the current block and not an actual

scheduling decision. Due to the assumption of perfect estimation

of the channels in the current block, the overall rate constraints are

surely fulfilled after the N th block.

Following the nomenclature of [7,9], we will call Nh the predic-

tion horizon. The same quantity was called look-ahead in [5], maxi-

mum scheduling range in [6], and prediction window in [8]. The case

Nh = 0 corresponds to the straightforward approach where only the

current block is optimized and no prediction is needed at all.

4. OPTIMIZATION METHOD

As in [12], the optimization in (7) can be solved by the dual decom-

position approach

max
(λk)∀k

min
(pk[i]≥0)i∈{n,...,ñ},∀k

(8)

ñ∑

i=n

K∑

k=1

(pk[i]− λk r̂k[i|n](pk[i])) +
K∑

k=1

λkρ̃k[n]

s.t. pk[i]pℓ[i] = 0 for ℓ 6= k, ∀i

where λk is the dual variable for the rate constraint of user k. The

optimal subinterval lengths Lk[i] can then be obtained from the pri-

mal recovery (cf., e.g., [12]), and the constraint in the last line of (8)

ensures that only one user is active in each subinterval.



The outer problem can be solved, e.g., using the cutting plane

algorithm (e.g., [14]) as was done in [12]. In the following, we will

discuss the solution of the inner problem, which can be solved inde-

pendently for each i.
Due to the constraint pk[i]pℓ[i] = 0 for ℓ 6= k, only one user

can be active, and we can rewrite the inner problem for block i as

min
k∈{1,...,K}

min
P≥0

P − λk r̂k[i|n](P ) (9)

which is a scalar program in P combined with a linear search for the

optimal k. As r̂k[i|n](P ) is concave for the prediction methods pre-

sented in Section 5, the optimization over P is a convex program and

can be, e.g., solved by means of the interval of uncertainty approach

described in [14, Section 8.1].

To extend the method studied in this paper to the case of spa-

tial multiplexing, i.e., to allow simultaneous transmission to multi-

ple users, the inner optimization could be replaced by a monotonic

optimization as in [12].

5. PREDICTION METHODS

We will now study various choices for the predicted rate r̂k[i|n] as

a function of the transmit power pk[i] for n < i ≤ ñ. As already

stated in Section 4, all prediction functions presented in this section

are concave functions of pk[i]. This can be easily verified for the

approaches considered in Subsections 5.1 and 5.2 and will be shown

for the approaches proposed in Subsections 5.3 and 5.4.

5.1. Genie-Aided Prediction

As a benchmark for the other methods, we will, first of all, in-

troduce a so-called genie-aided prediction, where perfect predic-

tion is assumed for all channels in blocks i within the prediction

horizon i ≤ ñ with ñ = min{n + Nh, N}. In this case, we

have r̂k[i|n](pk[i]) = rk[i](pk[i]) not only for i = n, but for all

i ∈ {n, . . . , ñ}.

Note that for Nh = N−1 the receding horizon optimization (7)

with the genie-aided predictor becomes equivalent to the optimiza-

tion in (5). This can be used to compute the ultimate minimum of

the average transmit power for TDMA with average rate constraints,

which is a benchmark for any realistic scheduler.

5.2. MMSE Channel Prediction

According to [1], the optimal prediction of the channel hk[i] of user

k in block i in the MMSE sense based on information available in

block n is given by µk[i|n] from (3). Using this result, a possible

prediction of the rate of user k in block i is obtained by plugging this

predicted channel into the rate equation (6), which yields

r̂k[i|n](pk[i]) = log2(1 + pk[i] ‖µk[i|n]‖22). (10)

However, due to the nonlinearity of the rate equation, this does

not lead to an accurate prediction of the achievable rate since

E[log2(1 + pk[i] ‖hk[i]‖22)] 6= log2(1 + pk[i] ‖E[hk[i]]‖22). (11)

As a result, the rate is in most cases underestimated, as can be ex-

emplarily observed for the extreme case of vanishing correlation,

where the conditional expectation tends towards the a priori expec-

tation, i.e., µk[i|n] → E[hk[i]]. Since E[hk[i]] = 0, this yields

r̂k[i|n](pk[i]) → 0 for any pk[i], which is obviously not a sensible

prediction of the achievable rate.

As will turn out in the numerical simulations in Section 6, this

kind of prediction is indeed not helpful to reduce the average trans-

mit power in the considered system.

5.3. A Priori Rate Prediction

To overcome the problem observed above, we propose to use the

expected value of the rate as rate prediction. We will first discuss the

a priori expectation, i.e.,

r̂k[i|n](pk[i]) = E
[
log2(1 + pk[i] ‖hk[i]‖22)

]
(12)

which does not rely on the current and past observations. In the

next subsection, we will then extend the method to the conditional

expectation based on the knowledge available in block n.

Due to the linearity of the expectation and of the differential

operator, we have

∂2

∂P 2
r̂k[i|n](P ) =

∂2

∂P 2
E
[
log2(1 + P ‖hk[i]‖22)

]
(13)

= E

[

∂2

∂P 2
log2(1 + P ‖hk[i]‖22)

︸ ︷︷ ︸

<0

]

< 0

which shows that the function r̂k[i|n](pk[i]) is concave.

To evaluate the expected value, we note that the random variable

X = 2‖hk[i]‖22 is central χ2
2M distributed since the real and imagi-

nary parts of all components of
√
2hk[i] are independent Gaussians

with zero mean and unit variance. Consequently, we have

r̂k[i|n](P ) = E

[

log2

(

1 +
PX

2

)]

(14)

=

∫ ∞

0

fX(x) log2

(

1 +
Px

2

)

dx

where

fX(x) =

{
1

2MΓ (M)
xM−1 e−

x
2 if x ≥ 0,

0 otherwise
(15)

is the probability density function of the χ2
2M distribution, and Γ (•)

is the gamma function [15]. The integral has to be evaluated nu-

merically. For the special case M = 1, we get r̂k[i|n](P ) =

− 1
ln 2

e
1

P Ei(− 1
P
) where Ei(•) is the exponential integral [15].

Note that the a priori rate prediction does not depend on the

block index i. Thus, the optimization in (9) does not have to be

performed for each block i, but it suffices to perform the optimiza-

tion once for each given dual variable λk and to use the result for all

i ∈ {n+ 1, . . . , ñ}, which reduces the computational complexity.

5.4. Conditional Rate Prediction

The derivation of the conditional expected rate

r̂k[i|n](pk[i]) = E
[
log2(1 + pk[i] ‖hk[i]‖22)

∣
∣ n

]
(16)

where E [• |n] is used to denote conditioning on all knowledge avail-

able in block n, is more involved since the conditional distribution of

the channel vector hk[i] has nonzero mean [cf. (3)] so that the con-

ditional distribution of 2‖hk[i]‖22 is not a centered χ2
2M distribution.

Instead of deriving the expression for the expected value, we

show that the desired expectation is equivalent to a special case of

the expression for the mean of the mutual information of MIMO



Rician channels derived in [16]. Just like the conditional distribution

under consideration, the channels of the Rician model used in [16]

have nonzero mean and a scaled identity as covariance matrix. The

difference is, however, that due to the assumption of lacking channel

state information at the transmitter, the results from [16] are based

on the assumption that the transmit covariance matrix is a scaled

identity while we have assumed that the base station obtains perfect

channel state information before the actual transmission is started

and can, thus, perform transmit beamforming.

To overcome this model mismatch, we switch to a dual uplink

formulation, where the user transmits data to the base station with

the same power and rate as in the downlink. Due to the assump-

tion of single-antenna user terminals, the transmit covariance is then

a scalar, which is nothing but a special case of the scaled identity

matrix from [16].

Thus, (16) can be evaluated using the expression for the mean

of the mutual information in [16], by setting the number of transmit

antennas to one, the number of receive antennas to M , the mean of

the channel vector to µk[i|n] from (3), and the covariance matrix to

Ck[i|n] = σ2
k[i|n] IM from (4):

r̂k[i|n](P ) =
e−γk[i|n]

Γ (M)
· (17)

∫ ∞

0

x
M−1 log2(1 + Pσ

2
k[i|n]x)e−x

F0 1(M,xγk[i|n])dx

with γk[i|n] = σ−2
k [i|n] ‖µk[i|n]‖22. The integral has to be eval-

uated numerically again, and F0 1(•, •) is a generalized hypergeo-

metric function [15]. Note that the method from Subsection 5.3 is

equivalent to plugging zero mean and unit variance into (17), i.e.,

setting γk[i|n] = 0 and σ2
k[i|n] = 1.

To show concavity of r̂k[i|n](pk[i]) from (16), the same rea-

soning as in (13) can be applied. Thus, (9) is again a convex op-

timization problem. However, unlike for the a priori rate predic-

tion, the optimization now has to be explicitly performed for each

i ∈ {n+1, . . . , ñ} since the prediction now depends on the index i.

5.5. Extension to Spatial Multiplexing

In the case of spatial multiplexing, the methods from this paper could

be applied to optimize the system in the dual uplink if a rate pre-

diction r̂k[i|n](q1[i], . . . , qK [i]) as a function of the uplink powers

q1[i], . . . , qK [i] is available.

The predictions discussed in Subsections 5.1 and 5.2 can be eas-

ily extended to this case by replacing (6) by an appropriate rate equa-

tion. However, it is not obvious how to efficiently evaluate the ex-

pectations from Subsections 5.3 and 5.4 in the case of spatial multi-

plexing. One way to apply the methods from this paper would be to

numerically evaluate the expectations by sampling channel realiza-

tions from the a priori distribution or from the conditional distribu-

tion, respectively.

However, especially in combination with the optimization from

Section 4, which would also become more involved for the spatial

multiplexing case, such a sampling would lead to a very high compu-

tational complexity. Therefore, finding easy ways to compute these

expectations in the case of spatial multiplexing or finding appropriate

approximations would be an interesting question for future research.

6. NUMERICAL RESULTS AND DISCUSSION

To evaluate the potential of the prediction methods discussed in the

last section, we have performed numerical simulations with a so-
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Fig. 1. Average power achieved by receding horizon optimization.

called AR1 correlation model (e.g., [17]) with ck[i, j] = e−α|i−j|

for some value of α and a Jakes correlation model (e.g., [17]) with

ck[i, j] = J0(2πβ|i − j|) for some β, where J0(•) is the Bessel

function of first kind and order zero [15]. All simulation results are

averaged over 200 realizations in the dB domain.

For the simulations in Fig. 1, we have considered a system with

K = 4 users with average rate requirement ρk = 1 bit for all k and a

total number of N = 20 time blocks. For simplicity, we have consid-

ered a single-antenna system with M = 1. For the channels, we have

used the AR1 correlation model with α = 0.5. The two dotted lines

in the plot correspond to the straightforward approach without pre-

diction (Nh = 0) and to the global optimum with perfect noncausal

channel knowledge (genie-aided prediction with Nh = 19), respec-

tively. It can be seen that optimization with the genie-aided predic-

tor leads to a significant decrease of the average transmit power even

for short prediction horizons Nh, which suggests that receding hori-

zon optimization can be beneficial in block-fading channels. How-

ever, when replacing the unrealistic perfect prediction by the MMSE

channel prediction discussed in Subsection 5.2, the average transmit

power is increased instead of decreased. The reason for this is that

plugging a channel prediction into the nonlinear rate equation does

not deliver an accurate prediction of the expected rate as discussed

in Section 5.2. As the future rate is mostly underestimated, too much

power is invested in early blocks. This shows that the predictive op-

timization is very sensitive to the quality of the prediction. On the

other hand, it can be seen that the a priori rate prediction and the

conditional rate prediction are precise enough to achieve a signifi-

cant fraction of the possible gain even for short prediction horizons.

Due to the weak correlation of the channels, conditional rate predic-

tion does not have an advantage compared to a priori rate prediction.

In Fig. 2, we have considered the same system, but we have used

stronger correlations with α = 0.05. For higher correlations, knowl-

edge of the current realizations delivers more information about the

future ones. Therefore, we can now observe a difference between

a priori rate prediction and conditional rate prediction, and the dis-

advantage of the optimization based on channel prediction is less

pronounced (though still observable). However, for some channel

realizations, it now happens that the a priori rate prediction (and in

very few cases also the conditional rate prediction) leads to a trans-

mit power much higher than the basic solution (note that the plot

only shows the average performance). The reason is that in case of

a bad channel in a certain block n, the algorithm might decide to

schedule low rates in that block and high rates in the future since the
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prediction (especially the a priori rate prediction) suggests that the

channel will become better in the future. However, as channels with

high temporal correlations change slowly, it might happen that this

improvement does not occur before the limit of N blocks is reached.

In this case, a very high power is needed in the N th block. There-

fore, for a practical implementation, it might be sensible to loosen

the constraint that the average rates have to match the given mini-

mum exactly after N steps whenever such a situation occurs.

Simulation results for a single-user multiantenna system with

M = 2 transmit antennas, N = 10 blocks, average rate requirement

ρ1 = 1 bit, and a Jakes correlation model with weak correlations

specified by β = 0.5 are shown in Fig. 3. The results are qualita-

tively the same as in the multiuser system with AR1 channel model.

7. CONCLUSION

We have demonstrated that a notable reduction of the transmit power

can be achieved in a block-fading broadcast channel with elastic traf-

fic if a prediction of the future rates is exploited for the optimization

of the current block in a receding horizon style. However, we have

also observed that imperfect predictions might lead to a worsening

instead of an improvement. In particular, predicting the rate based

on MMSE channel predictions turned out to not be a sensible strat-

egy. The high potential of predictive optimization revealed in this

paper by also considering an idealized perfect estimation motivates

research on finding prediction methods that come close the idealized

solution in the considered system as well as under different system

assumption such as, e.g., spatial multiplexing.
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