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1. Introduction

1.1. Overview

The objective of this thesis is to contribute to the mathematical theory of hysteresis. Loosely
speaking hysteresis describes phenomena where the evolution of a system depends not only on
its current state but also on its past evolution. We are going to study both hysteresis operators,
which are the mathematical building brick of describing systems with hysteresis, as well as a
class of evolution system, in which hysteresis occurs as a part of the problem.

The mathematical description of hysteresis phenomena at least goes back to the beginning of
the 20th century. Among the first to work in this field were Prandtl [84], who described plastic
deformations using hysteresis, and Preisach [85], who studied magnetic effects. The systematic
mathematical study of hysteresis however was initiated only around 1970 by the group around
the Russian mathematician M.A. Krasnoselskii, see e.g. [51, 50]. Their efforts resulted in their
seminal monograph [52]. A key element of their studies which was to understand hysteresis as
an operator acting on functions defined over a time interval [0, T ]. We are going to use a refined
definition due to A. Visintin, see e.g. [105]. Let M(0, T ;X) be the set of all maps mapping the
time interval [0, T ] to a state space X . An operatorW : D(W) ⊂ M(0, T ;X) → M(0, T ;Y )
is called an hysteresis operator if

• W is rate-independent, i.e. for all f ∈ D(W) and all monotone increasing functions
φ : [0, T ]→ [0, T ] with φ([0, T ]) = [0, T ] it holds

W(f ◦ φ) =W(f) ◦ φ

• andW has the Volterra property, i.e. for all g, f ∈ D(W) and t ∈ [0, T ] it holds

g|[0,t] = f |[0,t] =⇒ W(g)(t) =W(f)(t) .

The latter property makesW a memory operator, as the current state is only determined by past
but not by the future. Rate-independence assures that the ’speed’ or rate of the input does af-
fect the output only insofar as it changes its rate in the same way. Hysteresis operators are the
basic building blocks of systems including hysteresis, of which one can find in nature many.
Apart from plasticity and magnetism, hysteresis occurs also in phase transitions, the modeling
of shape memory alloys or can be artificially added into a system in order to control it, as for
example using thermostats. These phenomena are described by ordinary or partial differential
equations in which the hysteresis operator is one element. Hysteresis operators and systems with
hysteresis have been the subject of quite some research. Following the book by Krasnoselskii
and Pokrovskii quite a number of monographs have been written. We would like to point out
those by Mayergoyz [68], P. Krejčı́ [54], A. Visintin [105], and M. Brokate and J. Sprekels [19].
They cover the main analytical aspects of dealing with hysteresis, namely the description and
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1. Introduction

modeling of hysteresis phenomena, the study of hysteresis operators and the analysis of evolu-
tion systems with hysteresis.

With the present thesis we would like to contribute to two of the three above topics, namely
we are going to study a special type of hysteresis operator, the quasivariational sweeping pro-
cess, and analyze evolution systems with hysteresis, the so called doubly nonlinear differential
inclusions. The methods we use are fairly different. For the former one we utilize what one
may call the classical toolbox of calculus, e.g. convex analysis, a Riemann type integral and
the Banach fixed point theorem. For the latter we employ more recent concepts, such as direct
methods from the calculus of variations and a fair amount of measure theory. The focus of our
study are situations where either due to the given data or degeneration effects the solution are
now longer continuous but allow for jumps. If solutions do have jumps the classical concepts of
solution fail. They often require at least absolute continuity. It is hence that new notions of what
constitutes a solution have to be developed. This is a field of active and ongoing discussion. In
the following we give a short introduction to the problems we are going to address. It is more
intended to give a short impression of the problem than to properly present the problem and our
main results. We will postpone this to the first chapter of the corresponding parts of this thesis.

1.2. Structure of the thesis

This thesis is split into into three parts. First we introduce mathematical preliminaries needed in
the sequel. The second part is devoted to the study of the quasivariational sweeping process. In
the final part we are going to apply variational methods to analyze doubly nonlinear differential
inclusions. Notice that Part II and III are independent from each other.

1.2.1. Part I - Mathematical preliminaries

The mathematical preliminaries address four topics. First we are going to dwell on convex anal-
ysis. After recalling some elementary definitions and properties of convex sets we consider the
projection in Hilbert spaces. We then spend a section on convex functions and their properties.
We finish the chapter with basics on maximal monotone operators. The second chapter is re-
served for the theory of classical function spaces. We start by recalling the definitions of spaces
such as functions of bounded variation and the space of regulated function and their properties.
Subsequently we introduce the Kurzweil integral, a Riemann-Stieltjes type integral which allows
for the integration of a BV function against a non-continuous function. The next chapter is con-
cerned with measure theory especially with regard to Banach spaces. We are going to introduce
vector valued measures and subsequently talk about the measurability of Banach space valued
functions. There we are going to present apart from the usual Radon-Nikodym theorem on re-
flexive Banach spaces also a weaker version which is suited to the duals of separable spaces.
Finally we are going to talk about the extension of Young measure theory to Banach spaces. In
the short last chapter we are going to recall Gronwalls Lemma and prove two discrete analogues.
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1.2. Structure of the thesis

1.2.2. Part II - Quasivariational sweeping processes on functions of
bounded variation

The sweeping process was introduced by J. J. Moreau [78, 79] in the 1970s. Given a time
dependent convex set K(t) in a Hilbert space X and an initial value ξ0 ∈ K(0) it seeks for a
solution to the problem

−ξ̇(t) ∈ NK(t) (ξ(t)) , ξ(0) = ξ0 .

Here NK(x) is the normal cone of K in the point x. To better visualize the problem, imagine the
following: You put a raisin on a table, turn a cake form upside down and put it over the raisin.
Where does the raisin go, when the cake form is moved? This is what the sweeping process
describes. The interest in the sweeping process comes from two angles. First it is an interesting
mathematical problem, being a special and extremal case of

−u̇(t) ∈ A(t)u(t)

for a family of maximal monotone operators A(t). It can hence serve as a first approach to solve
the more general inclusion problem. Second it is of interest in applications, as it is a build-
ing brick to describing more complex problems, such as elastoplasticity. In the special case of
K(t) = u(t)− Z the sweeping process is equivalent to the play operator, one of the basic oper-
ators of the theory of hysteresis.

The quasivariational sweeping process is an extension of the sweeping process. It allows for
the shape of the convex set to depend not only on time but also on the current state ξ(t). In other
words we are looking for solutions satisfying

−ξ̇(t) ∈ NK(t,ξ(t)) (ξ(t)) , ξ(0) = ξ0 .

This problem was originally posed by M. Kunze and M. D. P. Monteiro-Marquez in [64].In the
above picture replace the cake form by a modern, silicone one. Also, exchange the raisin with
a small stone. Then when moving the cake form around it shape will change, when it hits the
stone. Already in the original paper existence of a solution has been proven. Uniqueness however
is more involved and to our knowledge the first result was proven by M. Brokate, P. Krejčı́ and
H. Schnabel in [18] six years later. Further results in this direction are to be found in [71, 95, 100].

We are going to study the problem, when the convex set K(·, ξ) may jump. Then one can
no longer expect that the solution is smooth, but has to assume that it jumps as well. When
developing a concept of solution which allows for that the essential degree of freedom one has is
to decide what happens at the jump points. Below the notion of Kurzweil solutions is employed.
Loosely speaking at jump points this concept determines the solution by projecting the state
before the jump onto the convex set after the jump. It turns out that proving uniqueness depends
strongly on the geometry of the convex set. We treat two different settings, one where K is a
polyhedron with moving faces and two where K is a convex set with smooth boundaries.
The blueprint of our approach is roughly the following. Using time discretization and a limiting
procedure we show a continuity result for the map v 7→ η, where η is the solution of the sweeping
process with input K(t, v(t)). Employing these results with Banach’s fixed point theorem to
deduce existence and uniqueness for the quasivariational case. The main tool for our analysis is
besides limiting theorems, a good understanding of the projection.
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1. Introduction

1.2.3. Part III - Variational approach to doubly nonlinear differential
inclusions

The term doubly nonlinear differential inclusion was coined by P. Colli and A. Visintin in their
paper [21]. It stands for the following class of evolution problems. Let X be a Banach space and
X∗ its dual. Given two maximal monotone operators A,B : X ⇒ X∗, a load f : [0, T ] → X∗

and an initial value u0 ∈ X we seek for a solution u : [0, T ]→ X such that

Au̇(t) +Bu(t) 3 f(t) , u(0) = u0 .

Existence of a solution has been proven, in case one of both operators is cyclic, i.e. the subdif-
ferential of a convex function. If A = ∂Ψ for some 1-homogeneous function Ψ, then the above
problem implicitly includes a hysteresis operator (see Section 9.1). Doubly nonlinear differential
inclusions are used to model phenomena such as elastoplasticity or fracture. Hence they attracted
quite a bit of attention. Most generalizations consider problems of the type

∂Ψ (u̇(t)) +∇Et(u(t)) 3 0 , (1.1)

where Ψ is a convex function, often called the dissipation functional, and E is a time dependent,
possibly non-convex energy function. Especially in the case when Ψ is 1-homogeneous one can
not necessarily expect the solution to be continuous. A method to solve these problems is the
vanishing viscosity approach. Roughly speaking one adds to the left hand side a term of the type
ε∂Ψ̃ (u̇), where Ψ̃ convex function satisfying sufficient growth conditions. These systems are
easier to solve and one tries to obtain the solution to the original problem by taking the limit
ε→ 0.

It is this procedure that gave rise to the problem we are going to study. The question we are
going to ask is: given a family of maximal monotone operators (αn)n∈N and an energy functional
E . Let un be the solutions of

αn (u̇n(t)) +∇Et (un(t)) 3 0 .

If αn → α, do the limit points u of the sequence (un) solve the limit problem

α (u̇(t)) +∇Et (u(t)) 3 0 .

in some sense? We will show below that this indeed is the case if αn → α in the sense of graph
convergence. In the case the space X is reflexive Banach we will be able to allow for general
maximal monotone operators. If the X however is not reflexive we need to restrict ourselves to
αn which are the subdifferential of a convex function. A rather obvious generalization is to allow
for a sequence of energy functionals (En) converging to some E and now ask the same question.
It turns out that a convergence αn → α and En → E alone is not enough, instead there needs
to be an interplay between these two convergences. We will give a sufficient condition on how
they need to interact, such that limit points of the sequence of solutions, indeed solve the limit
problem.

In order to prove our results we take an approach that is maybe somewhat surprising. We rein-
terpret the evolution problem as a minimization problem on the space of functions f : [0, T ] →

6



1.2. Structure of the thesis

X . This is possible due to the structure of the problem. We thereby enter the realm of the cal-
culus of variations. Our question now translates to: assume there is a sequence of functionals,
are limit points of their minimizers, also minimizers of the limiting functional? This problem
has already been intensively studied and we will make use of the toolbox developed during these
studies to solve our question.
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Part I.

Mathematical preliminaries
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Introductory remarks, notation and a guide
through theses preliminaries

The present part of this thesis aims to provide the mathematical framework for the sequel studies.
Many concepts and results we present here are well known. Others are small extensions of
already established results which however are necessary for our considerations. And some are
new but fit better into the context of the preliminaries than in the following parts. This is why
they are located here.

Notation

In general we follow current conventions with regards to our notation. Especially we denote by
Lp(Ω) the (equivalence class of) p-integrable functions on a set Ω. W k,p(Ω) denotes the Sobolev
space of all k-times weakly differentiable p-integrable functions whose weak derivatives up to
order k are also elements of Lp(Ω).
For any Banach space Y we denote by Y∗ its dual. Moreover the dual pairing is denoted by
〈·, ·〉Y∗,Y . The respective norms will be denoted by |·|Y and |·|Y∗ . If no confusion can arise the
indices may be left out. If H is a Hilbert space we denote the inner product simply by 〈·, ·〉. The
norm on H is then given by |h| = 〈h, h〉1/2.
For any n ∈ N we will write [n] to indicate the set {1, 2, ...n}. Moreover let I be an index set.
We shall at times sloppily write (xi)i∈I ⊂ Z when we mean that (xi)i∈I is a family of elements
indexed by i ∈ I and xi ∈ Z for all i ∈ I .
The remaining notation will be introduced in the sequel chapters.

A short guide through the preliminaries

If the reader is only interested in certain parts of this thesis and wishes to read only the necessary
preliminaries we offer a short guide.

Part II. The necessary mathematical tools for the second part of this thesis will be provided in
the sections 2.1-2.3 which contains some basics in convex analysis, chapter 3 which introduces
’classical’ function space theory and a special Riemann-type integral. In chapter 5 some useful
discrete analogous of Gronwalls inequality are proven.

Part III. For the third part we suggest to read the following: Sections 2.3-2.4 provide ba-
sic knowledge on convex functions and maximal monotone operators and chapter 4 contains a
number of useful results concerning measure theory on Banach spaces.
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2. Convex analysis

This chapter is dedicated to an introduction of concepts and methods of convex analysis. We do
this with a certain depth which might seem a little exceptional for these preliminaries. However
as these tools and methods of convex analysis will come into play throughout the whole thesis
and are at points at the very core of our study we feel that this is appropriate. Convex analysis is
the subject of many textbooks and most if not all the results presented here can be found in one
of them. We would like to point out the monographs [92, 34, 47] and the lecture notes [17] as our
main references. Many results are presented without proof and we will indicate the appropriate
reference instead.
Throughout this chapter Y is a real Banach space and Y∗ its dual. We indicate their dual pairing
by 〈·, ·〉Y∗,Y . The respective norms are denoted by | · |Y and | · |Y∗ . Furthermore we set X to be

a Hilbert space with scalar product 〈·, ·〉 and norm |x| = 〈x, x〉1/2.

2.1. Convex sets

Definition 2.1 (Convex sets). A set Z ⊂ Y is called convex if

∀x, y ∈ Z, ∀λ ∈ (0, 1) : λx+ (1− λ)y ∈ Z .

In other words, a set Z is convex if the line segment between two points of Z lies entirely in
Z. Therefore the whole space Y as well as any affine subspace of Y are convex. The empty set is
convex, too. Another example for convex sets are polyhedra. They are the intersection of finitely
many subspaces. To be precise we shall give the definition.

Definition 2.2. A set P ⊂ Y is called a polyhedron if there exist n ∈ N, (ai)
n
i=1 ⊂ Y∗ and

β ∈ Rn such that

P =
{
y ∈ Y : 〈ai, y〉Y∗,Y ≤ βi

}
. (2.1)

Definition 2.3. Let y ∈ Y and Z ⊂ Y be a convex set. Then we define the distance between y
and Z by

d(y, Z) := min {|y − z| : z ∈ Z} . (2.2)

There are several ways to define the distance between two convex sets. Throughout this thesis
we are going to use the Hausdorff distance.

Definition 2.4 (Hausdorff distance of convex sets). Let Z1, Z2 be two convex sets. Then the
Hausdorff distance between Z1 and Z2 is defined as

dH(Z1, Z2) = max

{
sup
z1∈Z1

d(z1, Z2), sup
z2∈Z2

d(z2, Z1)

}
. (2.3)
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2.1. Convex sets

Notice that the Hausdorff distance is always well defined in [0,+∞] and symmetric. We just
mention that another common notion of distance is the so called Minkowski distance. It will
however not be used in the present thesis.

Definition 2.5 (Polar set). To each Z ⊂ Y we associate its polar set Z∗ ⊂ Y∗ which is defined
by

Z∗ :=
{
y′ ∈ Y∗ :

〈
y′, y

〉
Y∗,Y ≤ 1 ∀y ∈ Z

}
. (2.4)

For any Z the set Z∗ is non-empty, convex and closed with respect to the norm on Y∗. For
example the polar set of the closed ball with radius c > 0 and centered in the origin

Bc(0) := {y ∈ Y : |y|Y ≤ 1}

is the closed ball with radius c−1 and center 0 in Y∗.

Definition 2.6 (Normal cone). Let ∅ 6= Z ⊂ X be convex. Then the normal cone of Z in a point
z ∈ Z is defined by

NZ(x) := {y ∈ X : 〈y, x− z〉 ≤ 0 ∀x ∈ Z} . (2.5)

As the name already indicates, the normal cone is indeed a cone, that is a set C ⊂ Y such that

∀y ∈ C,∀λ ≥ 0 : λy ∈ C .

From the definition one directly obtains that the normal cone of a point x ∈ int(Z) is in fact {0}.
For c > 0 and |x| = c we have NBc(0)(x) = {λx : λ > 0}. One can also explicitly calculate the
normal cone of a polyhedron.

Lemma 2.7. Let ∅ 6= P ⊂ X be a polyhedron. For z ∈ P we denote by

ΓP (z) = {i ∈ [n] : 〈ai, z〉 = βi} (2.6)

the set of active constraints. Then

NP (z) =

w =
∑
k∈ΓP

αknk : αk ≥ 0

 . (2.7)

This result is due to V. Lovicar and has been published in [55, Lemma 7.3].

Definition 2.8 (Recession cone). Let Z ⊂ Y be convex. Then the recession cone of Z is the set

rec(Z) := {y ∈ Y : [∃z ∈ Z : z + λy ∈ Z ∀λ > 0]} .

As one can easily see, the recession cone is indeed a cone. One can show that y ∈ rec(Z) if
and only if z + λy ∈ Z for all λ > 0 and all z ∈ Z. Therefore the recession cone is the set of
all directions in which Z is unbounded. Consequently the recession cone of a bounded set is the
empty set.

Proposition 2.9. Let Z ⊂ Y be convex and non-empty. Then if Z is closed then so is rec(Z).
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2. Convex analysis

2.2. Projection onto convex sets in Hilbert spaces

Definition 2.10 (Orthogonal projection). Let ∅ 6= Z ⊂ X be a closed convex set and u ∈ X .
The point x ∈ Z which satisfies

∀z ∈ Z : |u− x| ≤ |u− z|

is called the orthogonal projection of u onto Z. We shall denote it by QZ(u) := x.

The following result is well known.

Proposition 2.11. For any closed convex set ∅ 6= Z ⊂ X and any u ∈ X the orthogonal
projection QZ(u) exists and is unique. Furthermore it satisfies the variational inequality

〈u−QZ(u), QZ(u)− z〉 ≥ 0 ∀z ∈ Z . (2.8)

We furthermore define the complementary map PZ by

PZ := IdX −QZ . (2.9)

We are aware that it might appear unintuitive to denote the projection by Q and its complement
by P . It is however consistent with the notation in the study of hysteresis and especially the
play operator, see e.g. [55, 58]. Our work here is in that context. It even more relies on the
aforementioned articles. We hence decided to follow this notation.
Due to Proposition 2.11 we see that PZ(u) ∈ NZ (QZ(u)). A number of further properties of
the projection and its complement are part of the upcoming Lemma.

Lemma 2.12. Let ∅ 6= Z ⊂ X be closed and convex. It holds

(i) QZ is Lipschitz continuous with constant 1, that is

∀u, v ∈ X : |QZ(u)−QZ(v)| ≤ |u− v| ,

(ii) 〈PZx− PZy,QZx−QZy〉 ≥ 0,

(iii) QZ(QZx+ λPZx) = QZx ∀λ ≥ 0,

(iv) (x ∈ Z , 〈y, x− z〉 ≥ 0 ∀z ∈ Z) ⇐⇒ (x = QZ(x+ y) , y = PZ(x+ y)).

The proof of the above assertions heavily relies on the characterization (2.8). In the special
case of a projection onto a linear subspace of X we obtain a few additional properties.

Proposition 2.13. Let X ′′ ⊂ X ′ be a linear subspaces of X . Then the following holds true:

(i) ∀x ∈ X : QX′′(QX′x) = QX′′(x) = QX′(QX′′x)

(ii) ∀x ∈ X : |PX′x|2 = |x|2 − |QX′x|2

(iii) ∀λ ∈ R, x ∈ X : QX′(λx) = λQX′x

(iv) ∀x ∈ X, v ∈ X ′ : QX′(x+ v) = QX′(x) + v

12



2.3. Convex functions

(v) ∀x ∈ X, z ∈ X ′ : 〈z, x〉 = 〈z,QX′x〉

(vi) ∀x ∈ X, z ∈ X ′, |z| = 1 : |〈z, x〉| ≤ |QX′x| ≤ |x|

Proof. Since we were not able to find a reference for the above assertions, we prove them here.

ad (i): The second equality is trivial since QX′′(x) ∈ X ′′ ⊂ X ′. For the sake of notational
simplicity we set z := QX′x and z′ := QX′′ (QX′x). For any y ∈ X ′′ we have y+ z− z′ ∈ X ′.
Hence we have 〈

x− z, z′ − y
〉
≥ 0 and

〈
z − z′, z′ − y

〉
≥ 0 .

Adding both inequalities leads to 〈x− z′, z′ − y〉 ≥ 0 for all y ∈ X ′′ and therefore z′ = QX′′x.

ad (ii): It suffices to show that 〈PX′x,QX′x〉 = 0. To this end notice that X ′ is a linear space
and therefore 0 and −2QX′x are in X ′. Applying (2.8) to both points implies the claim.

ad (iii): For λ = 0 we notice that QX′(0) = 0 and the assertion is proven. For λ 6= 0 and
y ∈ X ′ we have that λ−1y ∈ X ′ and due to (2.8) we obtain

0 ≤ λ2
〈
x−QX′(x), QX′x− λ−1y

〉
= 〈λx− λQX′x, λQX′x− y〉 .

This directly implies that QX′(λx) = λQX′x.

ad (iv): For any z ∈ X ′ also z − v ∈ X ′. Hence

0 ≤ 〈x−QX′x,QX′x− z〉 = 〈x+ v − (QX′x+ v) , QX′x+ v − z)〉 ∀z ∈ X ′ .

ad (v): Notice that x = QX′x+ PX′x and 〈PX′x, z〉 = 0 for all z ∈ X ′.

ad (vi): The first inequality is a consequence of (v) and the second inequality of (ii).

2.3. Convex functions

Definition 2.14 (Convex functions). A function f : Y → (−∞,∞] is called convex if

∀x, y ∈ Z, ∀λ ∈ (0, 1) : f (λx+ (1− λ) y) ≤ λf(x) + (1− λ) f(y) .

The connection between convex sets and convex functions becomes apparent in the following
well known result, see e.g. [34, Proposition 2.1].

Proposition 2.15. A function f : Y → (−∞,∞] is convex if and only if the epigraph

epi(f) := {(x, y) ∈ Y × R : f(x) ≤ y}

is a convex subset of Y × R.

The following result can be found in [37, Proposition 4.34].

13



2. Convex analysis

Proposition 2.16. Let J ⊂ R be an interval and g : J → (−∞,+∞]. Then g is convex if for
every t0 ∈ J with g(t0) < +∞ the difference quotient

t 7→ g(t)− g(t0)

t− t0

is nondecreasing in J \ {t0}.

A simple example for a convex function is the so called indicator function.

Example 2.17. Let Z ⊂ Y and define its indicator function IZ by

IZ(y) :=

{
0 if y ∈ Y
+∞ else.

Then IZ is convex if and only if Z is convex. The function IZ is indeed not the only function
that goes under the name of indicator function. Also the function χZ(x), which is 1 if x ∈ Z
and 0 else, is known as an indicator function. For clarity of notation whenever we shall use one
of these letters we will mean the respective function defined above.

Definition 2.18. Let Y be a Banach space. We say a function f : Y → (−∞,∞] is lower
semicontinuous with respect to the strong (weak / weak-*) topology on Y , if for any sequence
(yn)n∈N ⊂ Y with

yn → y (yn ⇀ y/yn
∗
⇀ y)

it holds
lim inf
n→∞

f(yn) ≥ f(y) .

Proposition 2.19. A convex function f : Y → (−∞,+∞] is lower semicontinuous if and only
if epi(f) is closed in the strong topology of Y × R.

Definition 2.20. For f : Y → (−∞,∞] we define its effective domain by

dom(f) := {y ∈ Y : f(y) < +∞} .

A function f is called proper if dom(f) 6= ∅.

For example the indicator function IZ is proper if and only if Z is nonempty. Its effective
domain is Z.

Definition 2.21. Let 0 ∈ Z ⊂ Y be a convex set. The function MZ : Y → (−∞,∞], defined
by

MZ(y) := inf
{
t > 0 : t−1y ∈ Z

}
(2.10)

is called the Minkowski functional of Z. By convention the infimum of the empty set is +∞.

Example 2.22. The Minkowski functional of the unit ball B1(0) = {y ∈ Y : |y|Y ≤ 1} is
exactly the norm on Y , in formula

MB1(0)(y) = |y|Y .

The following results are well known.
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Proposition 2.23. For any Z ⊂ Y convex with 0 ∈ Z the Minkowski functional MZ is well
defined. It is a proper, convex function and has the following properties:

(i) If MZ(y) < 1 then y ∈ Z. If MZ(y) > 1 then y /∈ Z.

(ii) If Z is closed, then MZ(y) ≤ 1⇔ y ∈ Z.

(iii) MZ is 1-homogeneous, i.e. ∀λ > 0 and y ∈ Y it holds MZ(λy) = λMZ(y).

Definition 2.24 (Legendre-Fenchel conjugate). Let f : Y → (−∞,∞] be a proper function.
The function f∗ : Y∗ → (−∞,∞] defined by

f∗(y′) := sup{
〈
y′, y

〉
Y∗,Y − f(y) : y ∈ Y}

is called the (Legendre-Fenchel) conjugate of f .

Proposition 2.25. Let f : Y → (−∞,∞] be a proper function. Then the conjugate f∗ is well
defined, convex and lower semicontinuous.

For a proof of this result see [17, Lemma 6.4]. Notice that due to the definition of the conjugate
function we have

∀y ∈ Y, y′ ∈ Y∗ : f(y) + f∗
(
y′
)
≥
〈
y′, y

〉
Y∗,Y . (2.11)

Example 2.26. The indicator function and the Minkowski functional are related through the
concept of conjugate functions. Indeed it holds that

(i) for 0 ∈ Z ⊂ Y convex (MZ)∗ = IZ∗ and

(ii) for Z ⊂ Y convex (IZ)∗ = MZ∗ .

Proposition 2.27. Let Y be a reflexive Banach space, and f : Y → (−∞,∞]. Let f∗∗ be the
conjugate function of f∗. Then the following assertions hold

(i) f∗∗ ≤ f

(ii) If f is proper, convex and lower semicontinuous then f∗∗ = f∗.

Corollary 2.28. Let Y be a reflexive Banach space and f : Y → (−∞,+∞] be a proper, convex
and lower semicontinuous function. Then

f(y) = sup
y′∈Y∗

{〈
y′, y

〉
Y∗,Y − f

∗(y′)
}
.

Definition 2.29 (Subgradient and subdifferential). Let f : Y → (−∞,∞] be a proper convex
function and let x ∈ Y . A vector y′ ∈ Y∗ is called subgradient of f in x if

∀y ∈ Y :
〈
y′, y − x

〉
Y∗,Y ≤ f(y)− f(x) . (2.12)

The set of all subgradients in x is the subdifferential of f in x. It is denoted by ∂f(x). The
domain of ∂f is defined as

dom (∂f) = {x ∈ Y : ∂f(x) 6= ∅} .

15



2. Convex analysis

As a direct consequence from the definition we see that for any x ∈ Y with f(x) = +∞ we
have ∂f(x) = ∅, hence dom(∂f) ⊂ dom(f). If f is differentiable in y ∈ Y then ∂f(y) =
{∇f(y)}. The connection between the subdifferential and the conjugate function is part of the
following theorem, see also [17, Theorem 7.6].

Theorem 2.30. Let f : Y → (−∞,∞] and y ∈ Y . Then

y′ ∈ ∂f(y) ⇐⇒ f(y) + f∗
(
y′
)

=
〈
y′, y

〉
Y∗,Y . (2.13)

Remark 2.31. In light of (2.11) we also have that

y′ ∈ ∂f(y) ⇐⇒ f(y) + f∗
(
y′
)
≤
〈
y′, y

〉
Y∗,Y . (2.14)

Example 2.32. Let ∅ 6= Z ⊂ X be a convex set. Then the subdifferential of the indicator
function of Z in x is identical to the normal cone of Z in x, in formula

∂IZ(x) = NZ(x) .

Definition 2.33 (Recession function). Let f : Y → (−∞,∞] be a proper convex function. The
recession function of f is defined by

f∞ : Y → [−∞,∞], z 7→ sup {f(w + z)− f(w) : w ∈ dom(f)} .

The following theorem shows the connection between the recession function and the recession
cone defined above. Indeed it holds that the recession cone of the epigraph coincides with the
epigraph of the recession function.

Theorem 2.34. Let f : Y → (−∞,∞] be a proper convex function. Then its recession function
f∞ is a positively 1-homogeneous, proper convex function and

epi (f∞) = rec (epif) .

Moreover if f is lower semicontinious, then so is f∞ and

f∞(z) = sup
t>0

f(w + tz)− f(w)

t
= lim

t→∞

f(w + tz)− f(w)

t
∀w ∈ dom(f) . (2.15)

A proof for the case Y = Rm can be found in [37, Theorem 4.70]. However we could not
find a proof for Banach spaces, and thus shall present it below. It relies heavily on the afore
mentioned proof due to Fonseca and Leoni.

Proof. Observe that f∞ is convex as a point wise supremum of a family of convex functions.
Therefore epi (f∞) is convex as well. It then holds that

(z, t) ∈ rec (epif) ⇔ ∀(w, s) ∈ epif : (w, s) + (z, t) ∈ epif

⇔ ∀w ∈ dom(f), s ≥ f(w) : f(w + z) ≤ s+ t

⇔ ∀w ∈ domf : f(w + z) ≤ f(w) + t

⇔ f∞(z) ≤ t
⇔ (z, t) ∈ epi (f∞)
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Since f∞(z) ≥ f(w + z) − f(w) the function f∞ does never attain the value −∞. Moreover
since f∞(0) = 0 it is also a proper function. For positive 1-homogeneity notice that for any
(z, f∞(z)) ∈ epi (f∞) and t > 0 we have that also epi(f) + t (z, f∞(z)) ∈ epi(f) because of
the definition of a recession cone . Therefore for any w ∈ dom(f) we have

f(w + tz) ≤ f(w) + tf∞(z) (2.16)

and hence f∞(tz) ≤ tf∞(z). For the reverse inequality it suffices to replace z and t with tz and
1
t respectively.
As for the lower semicontinuity of f∞ we first remark that due to Proposition 2.19 epi(f) is
closed if f is lower semicontinuous. Using Proposition 2.9 then also rec (epif) is closed and
therefore f∞ is lower semicontinuous.
It remains to prove (2.15).Following Proposition 2.16 it suffices to show that

f∞(z) = sup
t>0

f(w + tz)− f(w)

t

for all w ∈ dom(f) and z ∈ Y . To this end first notice that due to formula (2.16) we have

sup
t>0

f(w + tz)− f(w)

t
≤ f∞(z) .

For the reverse inequality observe that if

sup
t>0

f(w + tz)− f(w)

t
= +∞

then there is nothing to prove. Hence we may assume that

sup
t>0

f(w + tz)− f(w)

t
≤ s

for some s ∈ R. Consequently for all t > 0 we have f(w + tz) ≤ f(w) + s · t and we obtain

(w + tz, f(w) + s · t) ∈ epif .

Therefore (z, s) ∈ rec (epif) which readily implies f∞(z) ≤ s. As the choice of s was arbitrary
we have shown that

f∞(z) ≤ sup
t>0

f(w + tz)− f(w)

t

which completes our proof.

Corollary 2.35. Let f : Y → (−∞,∞] be a proper, convex and 1-homogeneous function. Then
f∞ = f .

Proof. Let (x, y) ∈ epi(f), that is f(x) ≤ y. Due to the 1-homogeneity we have for all λ > 0 :
f(λx) = λf(x) ≤ λy. Hence (λx, λy) ∈ epi(f). Therefore we obtain epi (f) ⊂ rec (epif).
Since f is 1-homogeneous f(0) = 0. Hence for any (x, y) ∈ rec(epif) it holds (0, 0) + (x, y) ∈
epi(f), i.e. (x, y) ∈ epi(f). Therefore epi (f) = rec (epif) and Theorem 2.34 implies the
claim.
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2.4. Maximal monotone operators and variational notions of
convergence

In this short section we shall give a few basic facts about maximal monotone operators and some
related notions of convergence. For a more thorough introduction of the topics we discuss below
we refer to the monographs [10] and [4] and references therein. An operator α : Y ⇒ Y∗ is a set
valued map which to each y ∈ Y associates a set α(y) ⊂ Y∗ we denote the graph of α by the set

gα :=
{

(y, y′) ∈ Y × Y∗ : y′ ∈ α(y)
}
. (2.17)

There is of course a one-to-one connection between each operator and its graph. Hence we will
denote both by α and when we write (x, y) ∈ α we mean (x, y) ∈ gα. For any α we denote its
domain by

D(α) = {y ∈ Y∗ : α(y) 6= ∅} . (2.18)

Definition 2.36. A operator α : Y ⇒ Y∗ is said to be monotone if

∀(x, y) ∈ α :
[
〈y − y0, x− x0〉Y∗,Y ≥ 0 ∀(x0, y0) ∈ α

]
. (2.19)

α is said to be maximal monotone if it is monotone and there exists no monotone operator β such
that

gα ⊂ gβ . (2.20)

Let f : Y → (−∞,∞] be a convex, proper and lower semicontinuous function. Then the map
∂f : Y → Y∗ is a maximal monotone operator. The set of all maximal monotone operators of
the type ∂f can be characterized.

Definition 2.37. Let α : Y ⇒ Y∗ be a maximal monotone operator. Then α is called cyclic
monotone if for all families (yi, y

′
i)
n
i=0 with (yi, y

′
i) ∈ α it holds

n−1∑
i=0

〈
y′i, yi − yi+1

〉
Y∗,Y +

〈
y′n, yn − y0

〉
X∗,X

≥ 0 . (2.21)

Theorem 2.38 (Rockafeller [91]). Let α : Y ⇒ Y∗ be a maximal monotone operator. Then
α is cyclically monotone if and only if there exists a convex, lower semicontinuous function
f : Y → (−∞,∞] such that

α = ∂f . (2.22)

Moreover for a given maximal monotone and cyclic α the function f is uniquely determined up
to a constant.

We also define the inverse of an maximal monotone operator α.

Definition 2.39. Let Y be a reflexive Banach space and α : Y ⇒ Y∗ be a maximal monotone
operator. Then the inverse of α is denoted by α−1 : Y∗ ⇒ Y and defined by

(y′, y) ∈ α−1 ⇐⇒ (y, y′) ∈ α (2.23)
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It is simple to see that α−1 is also a maximal monotone operator.
We shall finish this chapter by introducing a few notions of convergences that are important in

the sequel. The first is a notion of convergence for convex sets and convex functions.

Definition 2.40 (Mosco convergence ([80])). Let (Cn)n∈N be a family of sets Cn ⊂ Y . We say

that Cn converges to a set C ⊂ Y in the sense of Mosco convergence, in formula Cn
M−→ C if

(i) for all families (yn)n∈N ⊂ Y , yn ∈ Cn, yn ⇀ y it holds y ∈ C and

(ii) for all y ∈ C there exists a family (yn)n∈N ⊂ Y , yn ∈ Cn such that yn → y.

Let (fn)n∈N be a family of functions fn : Y → (−∞,∞]. We say fn converges to f : Y →
(−∞,∞] in the sense of Mosco convergence, in formula fn

M−→ f if the following two condi-
tions are met

(i) (lim inf-inequality). For all sequences (yn)n∈N ⊂ Y , yn ⇀ y it holds

lim inf
n→∞

fn (yn) ≥ f(y) . (2.24)

(ii) (Existence of a strong recovery sequence). For all y ∈ Y there exists a sequence
(yn)n∈N ⊂ Y , yn → y such that

lim sup
n→∞

fn (yn) ≤ f(y) . (2.25)

The notion of Mosco convergence has been developed by Umberto Mosco in the late 60s
in order to study variational inequalities. We will list a number of well known and important
properties of this notion of convergence.

Proposition 2.41. Let (fn)n∈N be a family of convex functions fn : Y → (−∞,∞]. Then it
holds

fn
M−→ f ⇐⇒ epi(fn)

M−→ epi(f) .

On reflexive Banach spaces Mosco convergence of a sequence of functions carries over to its
convex conjugate functions.

Theorem 2.42 ([4, Theorem III.3.18]). Let Y be a reflexive Banach space and (fn)n∈N be a
family of proper, convex and lower semicontinuous functions fn : Y → (−∞,∞]. Then it holds

fn
M−→ f ⇐⇒ f∗n

M−→ f∗ .

A related notion of convergence for maximal monotone operators is the so-called graph con-
vergence.

Definition 2.43 (Graph convergence). Let Y be a reflexive Banach space. Let (αn)n∈N be a
family of maximal monotone operators αn : Y ⇒ Y∗. We say that αn converges to a maximal
monotone operator α in the sense of graph convergence, αn

g−→ α, if for all (y, y′) ∈ α there
exists a family (yn, y

′
n)n∈N, (yn, y

′
n) ∈ αn such that

yn → y ∧ y′n → y′ . (2.26)
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Notice that by its very definition if αn
g−→ α then also α−1

n
g−→ α−1.

Proposition 2.44 ([4, Proposition III.3.59]). Let Y be a reflexive Banach space and (αn)n∈N
be a family of maximal monotone operators αn : Y ⇒ Y∗. Assume αn

g−→ α. Then for any
sequence (yn, y

′
n)n∈N, (yn, y

′
n) ∈ αn with either

yn → y ∧ y′n ⇀ y′ or

yn ⇀ y ∧ y′n → y′

it holds (y, y′) ∈ α.

The connection from graph convergence and Mosco convergence is the following.

Theorem 2.45 ([4, Theorem III.3.66]). Let Y be a reflexive Banach space and (fn)n∈N be a
family of proper, convex and lower semicontinuous functions fn : Y → (−∞,∞]. Then the
following two are equivalent:

(i) fn
M−→ f

(ii) ∂fn
g−→ ∂f and there is (y.y′), y′ ∈ ∂f(y) for which a family (yn, y

′
n)n∈N, (yn, y

′
n) ∈ ∂n

exists such that
yn → y ∧ y′n → y′ ∧ fn (yn)→ f(y) .
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We are going to introduce ’classical’ notions of function spaces and corresponding notions of
integration. The concepts we are going to present here are used in Part II of the this thesis.

3.1. Classical function spaces: BV , G and S

In this section we are going to introduce the spaces of functions of (essentially) bounded variation
BV (BV), of regulated functions G and of step functions S. For a thorough investigation of
these spaces and many of the proofs we omit in the sequel we refer to the book by Aumann
[5]. Throughout this section we will assume that −∞ < r < s < ∞ and Y is a Banach space
equipped with norm | · |.

Definition 3.1 (One sided limits). Let f : [r, s] → Y . For t ∈ [r, s) assume that an f+
t ∈ Y

exists such that for any sequence (hn)n∈N, hn → 0 with hn > 0 and t+ hn ≤ s for all n ∈ N it
holds

f+
t = lim

n→∞
f (t+ hn) . (3.1)

If such an f+
t exists we call it the right side limit of f at t and shortly write f(t+). Analogously

we define for any t ∈ (r, s] the left side limit f(t−) if it exits.

By convention we will set f(s+) = f(s) and f(r−) = f(r).

Definition 3.2 (Regulated functions). A function f : [r, s] → Y is called regulated if for all
t ∈ (r, s] the left hand side limit f(t−) and for all t ∈ [r, s) the right hand side limit f(t+)
exists. Furthermore we denote the space of all regulated functions on [r, s] with valued in Y by
G(r, s;Y).

Of course, if we are to work with this function space, we will need a suitable norm on it. To
this end we choose the well known supremum norm. Just to remind ourselves: For f : [r, s]→ Y
we denote by

‖f‖∞ := sup {|f(t)| : t ∈ [r, s]} (3.2)

the sup-norm of f . We say that f is bounded with respect to ‖ · ‖∞ if ‖f‖∞ <∞. If we at times
laxly state that ’f is bounded’ then we imply that it is bounded with respect to this norm.

Proposition 3.3. For any f ∈ G(r, s;Y) it holds ‖f‖∞ <∞. Furthermore ‖ · ‖∞ is a norm on
G(r, s;Y) and (G(r, s;Y), ‖ · ‖∞) is a Banach space.

Definition 3.4. For −∞ < r < s <∞ we denote the set of all finite partitions of [r, s] by

P[r,s] = {(tk)nk=0 : n ∈ N, t0 = r, tn = s ∧ (∀k ∈ [n] : tk−1 < tk)} .

We will write P for P[0,T ].
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Definition 3.5 (Step function). A function f : [r, s] → Y is called a step function, in formula
S(r, s;Y), if there exists a partition (tk)

n
k=0 ∈ P[r,s] and (fk)

n
k=1 , (f̂k)

n
k=0 such that

f(t) =
n∑
k=1

χ(tk−1,tk)(t)fk +
n∑
k=0

χ{tk}(t)f̂k . (3.3)

Lemma 3.6. For any regulated function f ∈ G(r, s;Y) and any ε > 0 there exists a partition
(tk)

n
k=0 ⊂ P[r,s] such that

∀k ∈ [n] : ∀t, s ∈ (tk−1, tk) : |f(t)− f(s)| ≤ ε . (3.4)

Especially the set of step functions S(r, s;Y) is dense in G(r, s;Y) with respect to ‖ · ‖∞.

A proof of this Lemma can be found in [5, p. 237f].

Definition 3.7 (Variation and Essential Variation). For f : [r, s]→ Y its variation is defined by

Var(f, [r, s]) := sup

{
n∑
k=0

|f (tk)− f (tk−1)| : (tk)
n
k=0 ∈ P[r,s]

}
. (3.5)

If f ∈ G(r, s;Y) then we define its essential variation by

Var(f, [r, s]) := sup

{
n∑
k=0

|f (tk−)− f (tk−1+)| : (tk)
n
k=0 ∈ P[r,s]

}
. (3.6)

Notice that whereas the variation can be defined for any f : [r, s]→ Y the essential variation
does only make sense if f ∈ G(r, s;Y). Once again if [r, s] = [0, T ] we shall just write Var(f)
and Var(f) respectively. A useful property of the variation is the following

Proposition 3.8. Let (fn)n∈N be a sequence of functions fn : [r, s]→ Y such that fn → f with
respect to ‖ · ‖∞. It then holds that

Var(f, [r, s]) ≤ lim inf
n→∞

Var(fn, [r, s]) . (3.7)

Definition 3.9 (Functions of (essentially) bounded variation). We define the space of functions
of bounded variation to be

BV(r, s;Y) = {f : [r, s]→ Y : Var(f, [r, s]) <∞} (3.8)

and the space of functions of essentially bounded variation as

BV(r, s;Y) =
{
f ∈ G(r, s;Y) : Var(f, [r, s]) <∞

}
. (3.9)

The relation between all the spaces introduced so far is content of the following theorem.

Theorem 3.10. It holds

S(r, s;Y) ⊂ BV(r, s;Y) ⊂ BV(r, s;Y) ⊂ G(r, s;Y) (3.10)

where each injection is dense with respect to the sup-norm.

22
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The classical way to equip BV with a norm and make it a Banach space is the following.

Proposition 3.11. For any f ∈ BV(r, s;Y) we define

‖f‖BV = |f(0)|+ Var(f, [r, s]) . (3.11)

Then ‖ · ‖BV is a norm on BV and (BV(r, s;Y), ‖ · ‖BV) is a Banach space. Moreover there
exists an C > 0 such that for any f ∈ BV(r, s;Y)

‖f‖∞ ≤ C‖f‖BV . (3.12)

We are also going to make use of a norm on BV , which is defined in terms of a ‘weighted
total variation’.

Definition 3.12 (Weighted total variation). Let w : [0, T ] → R>0 be monotone decreasing. We
call

Varw(y) := sup

{
N∑
k=1

[
|y(tk−1)− y(tk)|w(tk)

]
: (tk)

N
k=0 ∈ D

}
(3.13)

a weighted variation on [0, T ] with weight w.

One can generalize this definition to positive functions w which are bounded away from zero.
However in our subsequent analysis we only employ this notion with monotone decreasing func-
tions. Hence we restrict ourselves to this case and avoid some technical difficulties in the up-
coming proofs.

Proposition 3.13. Let w : [0, T ]→ R>0 be monotone decreasing. Then

|y|w := |y(0)|+ Varw(y) (3.14)

is a norm on BV (0, T ;X) which is equivalent to | · |BV , i.e.

min{1, w(T )}|y|BV ≤ |y|w ≤ max{w(0), 1}|y|BV . (3.15)

We call | · |w a weighted norm with weight w.

We omit the proof; it is straightforward. Let us point out that any space closed with respect to
| · |BV is also closed with respect to | · |w. We need the following (lower semi-) continuity results
for the dependence of | · |w on its weight.

Proposition 3.14. Let (wn)n∈N, w be a (sequence of) monotone decreasing functions

wn, w : [0, T ]→ R>0 . (3.16)

Assume wn → w with respect to ‖ · ‖∞. Then for all y ∈ BV (0, T ;Y)

Varwn(y)→ Varw(y) . (3.17)

Furthermore assume (yn)n∈N ⊂ BV (0, T ;Y) with Var(yn) ≤ C for some C independent of n
and yn → y w.r.t. ‖ · ‖∞, then

Varw(y) ≤ lim inf
n→∞

Varwn(yn) . (3.18)
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Proof. Let y ∈ BV (0, T ;Y). Note that

Var(y)‖wn − w‖∞

≥
N∑
k=1

[
|y(tk−1)− y(tk)|wn(tk)

]
−

N∑
k=1

[
|y(tk−1)− y(tk)|w(tk)

]
for all (tk) ∈ D. Thus

Var(y)‖wn − w‖∞ ≥ Varwn(y)− Varw(y) (3.19)

and by the same method we derive

− Var(y)‖wn − w‖∞ ≤ Varwn(y)− Varw(y) . (3.20)

Both together imply the first statement via

|Varwn(y)− Varw(y)| ≤ Var(y)‖wn − w‖∞ . (3.21)

For the second claim notice that Varw is lower semicontinuous with respect to the ‖ · ‖∞. There-
fore we have

lim inf
n→∞

Varwn(yn) ≥ lim inf
n→∞

(Varw(yn)− C‖wn − w‖∞) ≥ Varw(y) . (3.22)

For any of the spaces introduced above we indicate its subspace of left continuous functions,
i.e. functions f : [r, s] → Y such that f(t−) = f(t) for all t ∈ (r, s], by the index L. A
subspace which will play an important role in the sequel is the space of left continuous functions
of bounded variation, whose size of discontinuities is bounded.

Definition 3.15 (BV functions with small jumps). Let c ≥ 0, r < s. Then we denote by

BVc
L(r, s;Y) := {f ∈ BVL(r, s;Y) : ∀t ∈ [r, s) : |f(t)− f(t+)| ≤ c} (3.23)

the space of all left continuous functions of bounded variation such that the size of every discon-
tinuity is less than c.

If c = 0 then any function in BVc
L is continuous, that is BVc

L = CBV . As this space is
of some importance in the sequel we shall spent some time analyzing it. For convenience we
therefore shall set [r, s] = [0, T ]. However the results we are going to show can be derived for
arbitrary [r, s] by a straightforward transfer of arguments.

Proposition 3.16 (Closedness of BV c
L). Let c ≥ 0 and (un)n∈N ⊂ BVc

L(0, T ;Y) with either

un
‖·‖BV−→ u or (3.24)

Var(un) ≤ C and un
‖·‖∞−→ u (3.25)

then u ∈ BVc
L(0, T ;Y).
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Proof. If un
‖·‖BV−→ u then Var(un) is bounded and un

‖·‖∞−→ u. Thus it suffices to prove the second
assertion. First of all u ∈ BV(0, T ;Y) since

Var(u) ≤ lim inf
n→∞

Var(un) ≤ C . (3.26)

Now choose t ∈ (0, T ] arbitrary. For each ε > 0 there exists some δn > 0 such that

∀s ≤ t : |t− s| ≤ δn : |un(t)− un(s)| ≤ ε

3
. (3.27)

Furthermore choose N ∈ N large enough such that

‖un − u‖∞ ≤
ε

3
∀n ≥ N . (3.28)

Thus for all s < t with |t− s| ≤ δN we have

|u(t)− u(s)| ≤ ε (3.29)

and we infer that u is left continuous. It remains to show that the jump size is bounded by c.
Since u, un ∈ BVL we know that un and u admit a right hand side limits at every point. For
t ∈ [0, T ) therefore there exist δ, δn > 0 such that

|un(t+)− un(s)| ≤ ε

3
∀s > t : |t− s| ≤ δn and

|u(t+)− u(s)| ≤ ε

3
∀s > t : |t− s| ≤ δ .

Choose N as above and set δ′n := min{δn, δ}. Then for all n ≥ N and s > t with |s− t| ≤ δ′n
we have

|u(t+)− un(t+)| ≤ |u(t+)− u(s)|+ |un(t+)− un(s)|+ |un(s)− u(s)| ≤ ε . (3.30)

Therefore un(t+)→ u(t+) for all t ∈ [0, T ] and we obtain

|u(t)− u(t+)| ≤ lim inf
n→∞

|un(t)− un(t+)| ≤ c (3.31)

to complete the proof.

Lemma 3.17. For any u ∈ BV c
L(0, T ;Y) and any ε > 0 there exists a partition (tn)Nn=0 ∈ P

and values (ûn)Nn=0 ⊂ Y such that for

û(t) = û0χ{0}(t) +
N∑
n=1

ûnχ(tn−1,tn](t) (3.32)

the following conditions are satisfied:

‖û− u‖∞ ≤ ε , Var(û) ≤ Var(u) and (3.33)

∀t ∈ [0, T ] : Var(u, [0, t]) + ε ≥ Var(û, [0, t]) ≥ Var(u, [0, t])− 2ε . (3.34)
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Proof. The idea of the proof is based on a classical proof by Aumann [5, p. 257f]. It relies on
two facts: There exists a sequence (sn)N1

n=0 ∈ P such that

N1∑
n=1

|u(sn)− u(sn−1)| ≥ Var(u)− ε (3.35)

and for every u ∈ BVL(0, T ;Y) and for every ε > 0 there exists a partition (rn)N2
n=0 ∈ P , with

r0 = 0 and rN2 = T such that

∀n ∈ [N2] : ∀s, t ∈ (rn−1, rn] : |u(s)− u(t)| ≤ ε . (3.36)

The first fact is plainly due to the definition of the variation whereas the second fact can be
derived from Lemma 3.6. The choice of the half-open interval (rn−1, rn] is due to the left-
continuity of u.
Let (tn)Nn=1 ∈ P such that {tn : n ∈ [N ]} ⊃ {sn : n ∈ [N1]} ∪ {rn : n ∈ [N2]} and define

û(t) := u(0)χ{0}(t) +

N∑
n=1

(
u(tn−1+)χ(

tn−1,
tn−1+tn

2

](t) + u(tn)χ( tn−1+tn
2

,tn
](t)) .

It is easy to see that û ∈ BV
c/δ
L (0, T ;X) and ‖û − u‖∞ ≤ ε. For each n ∈ [N ] choose a

sequence τkn ↓ tn−1 as k →∞ with tn−1 < τkn ≤ tn. Then

N∑
n=0

(
|u(tn−1)− u(τkn)|+ |u(τkn)− u(tn)|

)
≤ Var(u) (3.37)

and the lower semicontinuity of the norm gives (3.33). For t = 0 and t = T (3.34) is straight-
forward; for the latter use the choice of sn. For t ∈ (0, T ) there exists some n ∈ [N ] such that
t ∈ (tn−1, tn] and we have

Var(û, [0, t]) =

n∑
k=1

|u(tk−1+)− u(tk−1)|+ |u(tk−1+)− u(tk)| ≤ Var(u, [0, s]) + ε

for any s ∈ (tn−1, t]. Here we use |u(tk−1+) − u(tk)| ≤ ε and a limit argument similar as for
(3.37). It remains to proof the second inequality. Once again let t ∈ (0, T ) and choose n ∈ [N ]
such that t ∈ (tn−1, tn]. For t = tn we get

Var(û, [0, tn]) ≥ Var(u, [0, T ])− ε− Var(û, [tn, T ]) . (3.38)

Using Var(u, [0, T ]) = Var(u, [0, t])+Var(u, [t, T ]) and the definition of ûwe see that Var(û, [tn, T ]) ≤
Var(u, [tn, T ]). Therefore

Var(û, [0, tn]) ≥ Var(u, [0, tn])− ε . (3.39)

For t ∈ (tn−1, tn) use the above equation,

Var(û, [0, t]) ≥ Var(û, [0, tk])− ε and Var(u, [0, t]) ≤ Var(u, [0, tk]) (3.40)

to obtain the desired inequality.
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Remark 3.18. As a direct consequence of (3.34) we have that for any [r, s] ⊂ [0, T ]

Var(u, [r, s]) + 3ε ≥ Var(û, [r, s]) ≥ Var(u, [r, s])− 3ε . (3.41)

Corollary 3.19 (Approximation with step functions). For any c ≥ 0 and u ∈ BV c
L(0, T ;Y)

there exists either a sequence

(un)n∈N ⊂ S(0, T ;Y) ∩BV c
L(0, T ;Y) if c > 0 or (3.42)

(un)n∈N ⊂ S(0, T ;Y) ∩BV δ
L(0, T ;Y) if c = 0 (3.43)

with δ > 0 arbitrary such that

Var(un) ≤ Var(u) and un
‖·‖∞→ u . (3.44)

In both cases (un)n∈N can be chosen such that Var(un, [0, t])→Var(u, [0, t]) uniformly in [0, T ].

Proof. For u ∈ BV c
L(0, T ;X) and n ∈ N construct un as in Lemma 3.17 with ε = min{1/n, c}

if c > 0 and ε = min{1/n, δ} if c = 0.

3.2. Kurzweil-Henstock Integral

The Kurzweil-Henstock integral (or Henstock / Henstock-Kurzweil / Kurzweil integral) is a
Riemann(-Stieltjes) type of integral which allows the integration of non necessarily continu-
ous functions with respect to a BV function. It has been introduced independently by the Czech
mathematician Jarsolav Kurzweil in [65] and shortly afterwards by the English mathematician
Ralph Henstock in [42]. Whereas for the former it was a means to an end, namely the study of
parameter dependent ordinary differential equations, the latter developed a thorough theory for
this notion of integration, see e.g. [43, 44, 45]. In so far as we do not show new results, our
presentation here is based on the article [59] by Pavel Krejčı́.

Before we can formally define the Kurzweil-Henstock integral, we shortly need to introduce
some concepts and notation. First let −∞ < a < b < +∞. Then we set

Γ(a, b) := {δ : [a, b]→ R : δ(t) > 0 ∀t ∈ [a, b]} (3.45)

the set of gauge functions. Furthermore for a gauge δ ∈ Γ(a, b) and t ∈ [a, b] we write

Iδ(t) := (t− δ(t), t+ δ(t)) . (3.46)

Using this notions we shall define the set of δ-fine partitions. Note that there is a little ambiguity
with the concept of partitions as a δ-fine partition indeed is not a partition, but in fact based on
two partitions.

Definition 3.20 (δ-fine partitions). Let (ti)
n
i=0 ∈ P[a,b] be a partition and δ ∈ Γ(a, b) a gauge.

We say that the family
D = (τi, [ti−1, ti])

n
i=1 (3.47)

is a δ-fine partition if

∀i ∈ [n] : τi ∈ [ti−1, ti] and∀i ∈ [n] : [ti−1, ti] ∈ Iδτi . (3.48)

The set of all δ-fine partitions D is denoted by F(a, b, δ).
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For a given δ-fine partition D = (τi, [ti−1, ti])
n
i=1 we define the following shorthand for the

’Kurzweil sum’

KD(f, g) :=
n∑
i=1

〈f(τi), g(ti)− g(ti−1)〉Y∗,Y . (3.49)

We are now able to introduce the Kurzweil-Henstock integral.

Definition 3.21 (Kurzweil-Henstock integral). Let f : [a, b] → Y∗ and g : [a, b] → Y be given.
A value J ∈ R is said to be the Kurzweil-Henstock integral of f with respect to g over [a, b], in
formula

J = (K)

b∫
a

〈f(t), dg(t)〉Y∗,Y (3.50)

if for every ε > 0 there exits a gauge δ ∈ Γ(a, b) such that for any δ-fine partitionsD ∈ F(a, b, δ)
it holds

|KD(f, g)− J | ≤ ε . (3.51)

Notice that due to Cousin’s theorem ([22, p. 22], [46, p. 425]) for any gauge δ there exists a
δ-fine partition. Hence the last condition indeed is sensible.

The following existence result can be found in [61, Theorem 1.9].

Theorem 3.22. Let either f ∈ G(a, b,Y∗) and g ∈ BV (a, b;Y) or f ∈ BV (a, b,Y∗) and
g ∈ G(a, b;Y) then the Kurzweil-Henstock integral

(K)

b∫
a

〈f(t), dg(t)〉Y∗,Y

exists and the satisfies the inequality

(K)

b∫
a

〈f(t), dg(t)〉Y∗,Y ≤ min {‖f‖∞Var(g, [a, b]), (|f(a)|Y + |f(b)|Y + Var(f, [a, b])) |g|∞} .

Unlike for the Riemann-Stieltjes integral the Kurzweil-Henstock integral allows for the inte-
gration of non-continuous functions with respect to a BV -function. This is a key feature needed
in our subsequent study of sweeping processes and therefore is the reason why we use this notion
of integration.
Until we say otherwise we shall denote the Kurzweil-Henstock integral by

∫ b
a 〈f(t), dg(t)〉Y∗,Y .

However we point out that later on in this section we have to go back the original notation as
we introduce a further notion of integration. The Kurzweil-Henstock integral enjoys the usual
linearity properties [61, Proposition 1.3 & 1.4].

Proposition 3.23. Let f, f1, f2 : [a, b] → Y∗ and g, g1, g2 : [a, b] → Y . Furthermore let
s ∈ (a, b) and λ > 0. Then the following assertions hold:
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(i) If
∫ b
a 〈f1(t), dg(t)〉Y∗,Y and

∫ b
a 〈f2(t), dg(t)〉Y∗,Y exist then also

∫ b
a 〈f1(t) + f2(t), dg(t)〉Y∗,Y

exists and it holds

b∫
a

〈f1(t) + f2(t), dg(t)〉Y∗,Y =

b∫
a

〈f1(t), dg(t)〉Y∗,Y +

b∫
a

〈f2(t), dg(t)〉Y∗,Y (3.52)

(ii) If
∫ b
a 〈f(t), dg1(t)〉Y∗,Y and

∫ b
a 〈f(t), dg2(t)〉Y∗,Y exist, then

∫ b
a 〈f(t), d (g1 + g2) (t)〉Y∗,Y

exists as well and it holds

b∫
a

〈f(t), d (g1 + g2) (t)〉Y∗,Y =

b∫
a

〈f(t), dg1(t)〉Y∗,Y +

b∫
a

〈f(t), dg2(t)〉Y∗,Y (3.53)

(iii) If
∫ b
a 〈f(t), dg(t)〉Y∗,Y exists, then so do

∫ b
a 〈λf(t), dg(t)〉Y∗,Y and

∫ b
a 〈f(t), dλg(t)〉Y∗,Y .

Furthermore it holds

λ

∫ b

a
〈f(t), dg(t)〉Y∗,Y =

∫ b

a
〈λf(t), dg(t)〉Y∗,Y =

∫ b

a
〈f(t), dλg(t)〉Y∗,Y (3.54)

(iv) If
∫ b
a 〈f(t), dg(t)〉Y∗,Y exists, then

∫ s
a 〈f(t), dg(t)〉Y∗,Y and

∫ b
s 〈f(t), dg(t)〉Y∗,Y do as

well.

(v) If
∫ s
a 〈f(t), dg(t)〉Y∗,Y and

∫ b
s 〈f(t), dg(t)〉Y∗,Y exist, then also

∫ b
a 〈f(t), dg(t)〉Y∗,Y ex-

ists. It holds∫ b

a
〈f(t), dg(t)〉Y∗,Y =

∫ s

a
〈f(t), dg(t)〉Y∗,Y +

∫ b

s
〈f(t), dg(t)〉Y∗,Y (3.55)

In order to obtain some consistency in the extremal case s = a and s = b we set∫ s

s
〈f(t), dg(t)〉Y∗,Y = 0 (3.56)

for all f : [a, b] → Y∗ and g : [a, b] → Y . Furthermore the Kurzweil-Henstock integral has
following continuity property [61, Proposition 1.11].

Proposition 3.24. Let (fn)n∈N ⊂ G(a, b;Y∗), f ∈ G(a, b;Y∗), (gn)n∈N ⊂ BV (a, b;Y) and
g ∈ BV (a, b;Y). If

‖fn − f‖∞ → 0 ∧ [∃C > 0 : ∀n ∈ N : Var(gn) ≤ C] ∧ ‖gn − g‖∞ → 0 (3.57)

then

lim
n→∞

b∫
a

〈fn, dgn(t)〉Y∗,Y =

b∫
a

〈f, dg(t)〉Y∗,Y . (3.58)

Furthermore the following rules (see [61, Proposition 1.5]) help calculating the Kurzweil-
Henstock integral in some concrete cases.
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Proposition 3.25. For every g : [a, b]→ Y , a ≤ r ≤ s ≤ b and y′ ∈ Y∗ it holds

b∫
a

〈
y′χ{s}(t), dg(t)

〉
Y∗,Y = 〈v, g〉Y∗,Y (s+)− 〈v, g〉Y∗,Y (s−) and (3.59)

b∫
a

〈
y′χ(r,s)(t), dg(t)

〉
Y∗,Y = 〈v, g〉Y∗,Y (s−)− 〈v, g〉Y∗,Y (r+) (3.60)

provided the limits on the right-hand sides exist, using the convention that

〈v, g〉Y∗,Y (a−) = 〈v, g〉Y∗,Y (a) and 〈v, g〉Y∗,Y (b+) = 〈v, g〉Y∗,Y (b) .

Corollary 3.26. Let f ∈ S(a, b;Y∗) be a step function and choose (tn)Nn=0 ∈ P[a,b] such that

f(t) =
N∑
n=1

fnχ(tn−1,tn)(t) +
N∑
n=0

f̂nχ{tn}(t) . (3.61)

Furthermore let g ∈ G(a, b;Y). Then one can evaluate the Kurzweil-Henstock integral as

b∫
a

〈f(t), dg(t)〉Y∗,Y = (3.62)

N∑
n=1

〈fn, g (tn−)− g (tn−1+)〉Y∗,Y +

N∑
n=0

〈
f̂n, g (tn+)− g (tn−)

〉
Y∗,Y

.

Proof. This is a consequence of coupling Proposition 3.23 (i) with Proposition 3.25.

The following decomposition result will be of some interest in the sequel. It has been proven
by the author in [88, Appendix B].

Lemma 3.27. Let u ∈ G(0, T ;Y∗), ξ ∈ BV (0, T ;Y) and [r, s] ⊂ [0, T ] with r < s. Define

ξ̂ : [r, s]→ Y, t 7→


ξ(r+) if t = r
ξ(t) if t ∈ (r, s)
ξ(s−) if t = s .

(3.63)

Then
T∫

0

〈
u(t)χ(r,s)(t), dξ(t)

〉
Y∗,Y =

s∫
r

〈
u(t), dξ̂(t)

〉
. (3.64)

Proof. It suffices to prove the above for step functions u ∈ S(0, T ;Y∗). In that case there exists
a partition (tn)Nn=0 ∈ D[0,T ], t0 = r, tN = s such that

u(t)χ(r,s)(t) =
∑
n∈[N ]

unχ(tn−1,tn)(t) +
∑

n∈[N−1]

unχ{tn}(t) (3.65)
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3.2. Kurzweil-Henstock Integral

for some (un)Nn=1, (u
n)N−1
n=1 ⊂ Y∗. Then we have for the left hand side integral

T∫
0

〈
u(t)χ(r,s)(t), dξ(t)

〉
Y∗,Y (3.66)

=
∑
n∈[N ]

〈un, ξ(tn−)− ξ(tn−1+)〉Y∗,Y +
∑

n∈[N−1]

〈un, ξ(tn+)− ξ(tn−)〉Y∗,Y .

For the right hand side we get
s∫
r

〈
u(t), dξ̂(t)

〉
Y∗,Y

(3.67)

=
∑
n∈[N ]

〈
un, ξ̂(tn−)− ξ̂(tn−1+)

〉
Y∗,Y

+
∑

n∈[N−1]

〈
un, ξ̂(tn+)− ξ̂(tn−)

〉
Y∗,Y

+
〈
u(r), ξ̂(r+)− ξ̂(r)

〉
Y∗,Y

+
〈
u(s), ξ̂(s)− ξ̂(s−)

〉
Y∗,Y

.

Due to the definition of ξ̂ the last two terms are zero and the former sums agree with the ones
above. Thus for all u ∈ S(0, T ;Y) equation (3.64) holds. Now let u be inG(0, T ;Y). Then there
exists a sequence of step functions (un)n∈N such that un → u w.r.t. ‖ · ‖∞ and the continuity of
the Kurzweil integral grants the statement.

Proposition 3.28. Let f : [a, b]→ Y∗ and y ∈ Y . For any s ∈ [a, b] it holds

∫ 〈
f(t), d

(
yχ{s}(t)

)〉
Y∗,Y =


0 if s ∈ (a, b)
−〈f(a), y〉Y∗,Y if s = a

〈f(b), y〉Y∗,Y if s = b .
(3.68)

Moreover for a ≤ r < s ≤ b it holds∫ 〈
f(t), d

(
yχ(r,s)(t)

)〉
Y∗,Y = 〈f(s)− f(r), y〉Y∗,Y . (3.69)

The Kurzweil-Henstock integral in its original form however suffers one essential shortcom-
ing: It has been shown by J. Kurzweil and P. Krejčı́ in [56] that it is not possible to integrate any
regulated function with respect to any function of bounded variation. This however is a property
which is indeed needed for our study. It for example is satisfied by the Young integral. To over-
come this problem for the Kurzweil-Henstock integral P. Krejčı́ proposed in [59] a modification,
which we shall now present.

Definition 3.29 (Negligible sets). Let −∞ < a < b < ∞. N ⊂ 2[a,b] is called a system of
negligible sets of the interval [a, b] if

∀A ∈ N : [a, b] \A = [a, b] (3.70)

∀A,B ∈ N : A ∪B ∈ N . (3.71)

Examples for systems of negligible sets are the set of all Lebesgue measurable subsets of [a, b]
with measure zero or the set of all countable subsets of [a, b]. With the notion of negligible sets
we may now introduce (δ, A)-fine partitions.
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3. Classical function spaces and integration theory

Definition 3.30 ((δ, A)-fine partitions). Let N be a system of negligible sets and A ∈ N . A
delta fine partition D is called (δ, A)-fine, in formula D ∈ F(a, b, δ, A), if

∀j ∈ [n− 1] \ {1} : τj ∈ (tj−1, tj)
τj = tj−1 ⇒ j = 1 ∧ τj = tj ⇒ j = n

}
(3.72)

∀j ∈ [n− 1] : tj ∈ [a, b] \A . (3.73)

Now we have assembled all necessary preparations to introduce the extension of the Kurzweil-
Henstock integral.

Definition 3.31 (Kurzweil-Henstock integral with exclusion of negligible sets). Let N be a sys-
tem of negligible sets. Let furthermore f : [a, b] → Y and g : [a, b] → Y∗ be given. A value
J ∈ R is said to be the Kurzweil-Henstock integral with exclusion of negligible sets, or as a
shorthand (KN)-integral of f with respect to g over [a, b], in formula

J = (KN)

b∫
a

〈f(t), dg(t)〉Y∗,Y (3.74)

if for every ε > 0 there exits a gauge δ ∈ Γ(a, b) and A ∈ N such that for any (δ, A)-fine
partitions D ∈ F(a, b, δ, A) it holds

|KD(f, g)− J | ≤ ε . (3.75)

The Kurzweil-Henstock integral with exclusion of negligible sets indeed is a generalization of
the usual Kurzweil-Henstock integral, as the following simple proposition shows.

Proposition 3.32. Let N be a system of negligible sets and f : [a, b] → Y and g : [a, b] → Y∗
be given. Assume that the Kurzweil-Henstock integral

(K)

b∫
a

〈f(t), dg(t)〉Y∗,Y

exists. Then also the (KN)-integral of f with respect to g exists and

(KN)

b∫
a

〈f(t), dg(t)〉Y∗,Y = (K)

b∫
a

〈f(t), dg(t)〉Y∗,Y . (3.76)

Proof. For any A ∈ N and δ ∈ Γ(a, b) the inclusion F(a, b, δ, A) ⊂ F(a, b, δ) holds. By
definition of the Kurzweil integral for any ε > 0 there exists an δ ∈ Γ(a, b) such that for any
D ∈ F(a, b, δ) we have ∣∣∣∣∣∣KD(f, g)− (K)

b∫
a

〈f(t), dg(t)〉Y∗,Y

∣∣∣∣∣∣ ≤ ε . (3.77)

Consequently this inequality also holds for any D ∈ F(a, b, δ, A) and the proof is complete.
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Due to the above proposition all results which were established for the Kurzweil-Henstock
integral also hold for the (KN)-integral. Throughout this thesis we will always assume that the
system of negligible sets N is equal to the set of all countable subsets of [a, b]. The following
existence results justifies the introduction of this new concept of integration.

Theorem 3.33. Let f ∈ G(a, b;Y∗) and g ∈ BV(a, b,Y). Then

(KN)

∫ b

a
〈f(t), dg(t)〉Y∗,Y

exists and it holds ∣∣∣∣(KN)

∫ b

a
〈f(t), dg(t)〉Y∗,Y

∣∣∣∣ ≤ ‖f‖∞Var(g, [a, b]) . (3.78)

This result has been proven in [58, Corollary 2.6] in the special case ofY being a Hilbert space.
The proof in the present case works essentially in the same way. For the sake of completeness we
will present it below. To this end we introduce the following Lemma which contains the essential
ingredient of our proof.

Lemma 3.34. Let (fn), f : [a, b] → Y∗ such that ‖fn − f‖∞ → 0 and g ∈ BV(a, b;Y). If for
all n ∈ N the integral (KN)

∫ b
a 〈fn(t), dg(t)〉Y∗,Y exists then (KN)

∫ b
a 〈f(t), dg(t)〉Y∗,Y exists

and it holds

(KN)

b∫
a

〈f(t), dg(t)〉Y∗,Y = lim
n→∞

(KN)

b∫
a

〈fn(t), dg(t)〉Y∗,Y . (3.79)

A one-dimensional version of this Lemma has been proven in [58, Theorem 2.5].

Proof. Define

Jn := (KN)

b∫
a

〈fn(t), dg(t)〉Y∗,Y ∀n ∈ N . (3.80)

Our first aim is to show that (Jn)n∈N is a Cauchy sequence. Let A be the set of all points of
discontinuity of g. Since g ∈ BV(a, b,Y), A is countable and hence contained in N . Now for
any n ∈ N there exists a δn ∈ Γ(a, b) and A ⊂ An ∈ N such that for all D ∈ F(a, b, δn, An)

|KD(fn, g)− Jn| ≤
1

n
. (3.81)

For any m,n ∈ N set δm,n(t) := min {δm(t), δn(t)}. Then δm,n ∈ Γ(a, b). Furthermore set
Am,n := Am ∪ An ∈ N . Then any F(a, b, δm,n, Am,n) ⊂ F(a, b, δn, An) ∩ F(a, b, δm, Am).
Hence for all D ∈ F(a, b, δm,n, Am,n) it holds

|KD(fn, g)− Jn| ≤
1

n
and |KD(fm, g)− Jm| ≤

1

m
. (3.82)

We then can estimate

|Jn − Jm| ≤ |Jn −KD(fn, g)|+ |Jm −KD(fm, g)|+ |KD(fn − fm, g)|

≤ 1

n
+

1

m
+ ‖fn − fm‖∞Var(g, [a, b]) .
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3. Classical function spaces and integration theory

This implies that (Jn)n∈N is a Cauchy sequence. We set J := lim
n→∞

Jn. Moreover we now can

estimate for any D ∈ F(a, b, δn, An) that

|KD(f, g)− J | ≤ |KD(f − fn, g)|+ |KD(fn, g)− Jn|+ |Jn − J |

≤ ‖fn − f‖∞Var(g, [a, b]) +
1

n
+ |Jn − J | .

Therefore for any ε > 0 we may choose n such that ‖fn − f‖∞Var(g, [a, b]) ≤ ε
3 , 1

n ≤
ε
3 and

|Jn − J | ≤ ε
3 . Setting δ̂ := δn and Â := An we then obtain that for all D ∈ F(a, b, δ̂, Â) the

estimate |KD(f, g)− J | ≤ ε holds. Therefore J = (KN)
∫ b
a 〈f(t), dg(t)〉Y∗,Y .

Proof of Theorem 3.33. Using Theorem 3.10 we approximate the function f uniformly with step
functions fn ∈ S(a, b;Y∗). Then due to Corollary 3.26 the integral (K)

∫ b
a 〈fn(t), dg(t)〉Y∗,Y

exists and by virtue of Proposition so does 3.32 (KN)
∫ b
a 〈fn(t), dg(t)〉Y∗,Y . Applying Lemma

3.34 we then know that (KN)
∫ b
a 〈f(t), dg(t)〉Y∗,Y exists. Due to formula (3.62) we can estimate

that ∣∣∣∣(KN)

∫ b

a
〈fn(t), dg(t)〉Y∗,Y

∣∣∣∣ ≤ ‖fn‖∞Var(g, [a, b]) . (3.83)

We then obtain (3.78) by applying the convergence result (3.79).

Lemma 3.35. Let f ∈ BV(a, b;Y∗) and g, gn : [a, b]→ Y such that lim ‖gn − g‖∞ = 0. If the
integral (KN)

∫ b
a 〈f(t), dgn(t)〉Y∗,Y exists for all n ∈ N, then (KN)

∫ b
a 〈f(t), dg(t)〉Y∗,Y exists

as well and it holds

(KN)

b∫
a

〈f(t), dg(t)〉Y∗,Y = lim
n→∞

b∫
a

〈f(t), dgn(t)〉Y∗,Y . (3.84)

For real valued functions this result has been shown in the second part of [58, Theorem 2.5].

Proof. The proof is similar to the proof of Lemma 3.34. First set

Jn := (KN)

b∫
a

〈f(t), dgn(t)〉Y∗,Y . (3.85)

Then for each n ∈ N there exists a gauge δn ∈ Γ(a, b) and a negligible set An ∈ N such that for
any D ∈ F(a, b, δn, An)

|KD(f, gn)− Jn| <
1

n
.

For m,n ∈ N choose δm,n and Am,n as above. Then for any D ∈ F(a, b, δm,n, Am,n) it holds

|Jn − Jm| ≤ |Jn −KD(f, gn)|+ |Jm −KD(f, gm)|+ |KD(f, gn − gm)|

≤ 1

n
+

1

m
+ (|f(a)|+ |f(b)|+ Var(f, [a, b])) ‖gn − gm‖∞ .
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3.2. Kurzweil-Henstock Integral

Thus the sequence (Jn)n∈N is a Cauchy sequence and we shall denote its limit by J . We then
can estimate that for any D ∈ F(a, b, δn, An)

|KD(f, g)− J | ≤ |KD(f, g − gn)|+ |KD(f, gn)− Jn|+ |Jn − J |

≤ (|f(a)|+ |f(b)|+ Var(f, [a, b])) ‖gn − g‖∞ +
1

n
+ |Jn − J |

and we deduce the desired result arguing as in the last part of Lemma 3.34.

The following theorem is a generalization of Proposition 3.24 to the (KN) integral. A version
for real valued function is to be found in [58, Proposition 2.10].

Theorem 3.36. Let fn, f ∈ G(a, b;Y∗) and gn, g ∈ BV(a, b;Y). If

‖fn − f‖∞ → 0 ∧ [∃C > 0 : ∀n ∈ N : Var(gn, [a, b]) ≤ C] ∧ ‖gn − g‖∞ → 0

then

(KN)

b∫
a

〈fn(t), dgn(t)〉Y∗,Y → (KN)

b∫
a

〈f(t), dg(t)〉Y∗,Y .

Proof. Choose any w ∈ S(a, b;Y∗). Then∣∣∣∣∣∣(KN)

b∫
a

〈fn(t), dgn(t)〉Y∗,Y − (KN)

b∫
a

〈f(t), dg(t)〉Y∗,Y

∣∣∣∣∣∣
≤

∣∣∣∣∣∣(KN)

b∫
a

〈fn(t)− f(t), dgn(t)〉Y∗,Y

∣∣∣∣∣∣+

∣∣∣∣∣∣(KN)

b∫
a

〈f(t)− w(t), d(g − gn)(t)〉Y∗,Y

∣∣∣∣∣∣
+

∣∣∣∣∣∣(KN)

b∫
a

〈w(t), d(g − gn)(t)〉Y∗,Y

∣∣∣∣∣∣ .
Due to (3.78) we can estimate the first two terms by C‖fn − f‖∞ and 2C‖f − w‖∞ respec-
tively. The third term can be estimated by using both Proposition 3.32 and Theorem 3.22 by
(2‖w‖∞ + Var(w, [a, b])) ‖gn − g‖∞. Letting n go to infinity we deduce that for any w ∈
S(a, b;Y) it holds

lim
n→∞

∣∣∣∣∣∣(KN)

b∫
a

〈fn(t), dgn(t)〉Y∗,Y − (KN)

b∫
a

〈f(t), dg(t)〉Y∗,Y

∣∣∣∣∣∣ ≤ 2C‖w − f‖∞ . (3.86)

Thus by applying Theorem 3.10 we conclude the proof.
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4. Measure theory for Banach spaces

As a standard notation for a topological (Ω, τ) we use B(Ω) to denote the Borel sets of Ω w.r.t.
to the topology τ .

4.1. Vector measures

A rather straightforward generalization of the concept of signed measures are measures with
values in Rn: Just take a vector of n signed measures. To define a measure on a Banach space
Y is however more involved. We introduce measures with values in Banach spaces and present
some of their properties. We aim to provide some tools which are necessary in the analysis we
plan on doing in Part III of the present thesis. For a thorough introduction and deeper insight into
these topics we point out the monograph [32] and references therein.

Definition 4.1 (Vector measure). Let (Ω,Σ) be a measurable space and Y be a Banach space. A
function µ : Σ→ Y is called a (Banach space valued) vector measure, if

∀ (Ai)i∈N , Ai ∈ Σ, [i 6= j ⇒ Ai ∩Aj = ∅] it holds µ

(⋃
i∈N

Ai

)
=

∞∑
i=1

µ (Ai) . (4.1)

Here the convergence of the series on the right hand side has to be understood in terms of the
norm of Y .

Notice that unlike in [32] we require a vector measure to be σ-additive instead of only finitely
additive. Though the latter setting is more general it suffices for our purposes to use this more
restricted setting. We shortly assemble basic properties of vector measures.

Proposition 4.2. Let µ be a vector measure on a measure space (Ω,Σ). Then µ(∅) = 0 and

∀A,B ∈ Σ, A ∩B = ∅ : µ(A ∪B) = µ(A) + µ(B) . (4.2)

Moreover for all A,B ∈ Σ the identity µ(A) = µ(A \B) + µ(A ∩B) as well as the inclusion,
exclusion formula

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B)

hold.

To deduce µ(∅) = 0 just take Ai = 0 for all i ∈ N in (4.1). Finite additivity then follows from
σ additivity by setting Ai = ∅ ∈ Σ for i > 2. The remainder assertions are a consequence of
(4.2).

Definition 4.3 (Variation of a measure). Let (Ω,Σ) be a measurable space, Y a Banach space
and µ : Σ → Y a vector measure. Then the variation of µ, denoted by ‖µ‖ : Σ → [0,∞], is
given by

‖µ‖(A) := sup

{ ∞∑
i=1

|µ(Ai)|Y : (Ai)i∈N ⊂ Σ ,
⋃
i∈N

Ai = A , ∀i 6= j : Ai ∩Aj = ∅

}
(4.3)
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4.2. Measurability of Banach space valued functions

for all A ∈ Σ. If ‖µ‖(Ω) <∞ then we say µ is of bounded variation.

Indeed ‖µ‖ is a measure on (Ω,Σ), see [32, Proposition I.1.9]. We remind ourselves of the
definition of absolute continuity of two measures.

Definition 4.4 (Absolute continuity and singularity of measures). Let (Ω,Σ) be a measurable
space and µ : Σ → Y be a vector measure and ν : Σ → [0,∞] be a (real valued, positive)
measures. We say that µ is absolutely continuous w.r.t. to ν, in formula µ� ν if

∀A ∈ Σ :
[
ν(A) = 0 =⇒ µ(A) = 0

]
. (4.4)

Two (real valued, positive) measures µ and ν are singular, in formulas µ ⊥ ν if there exist
B1, B2 ∈ Σ with B1 ∪B2 = Ω and B1 ∩B2 = ∅ such that

∀A ∈ Σ : µ(A) = µ (A ∩B1) ∧ ν(A) = ν (A ∩B2) . (4.5)

It is easy to see that µ � ‖µ‖. The following generalization of the Lebesgue decomposition
theorem has been proven in [32, Theorem I.5.9].

Theorem 4.5 (Lebesgue decomposition theorem). Let (Ω,Σ) be a measure space, µ be a Banach
space valued measure of bounded variation and λ a real valued, positive measure. Then there
exists two unique vector measures µac, µs on (Ω,Σ), which are of bounded variation, such that

‖µac‖ � λ , ‖µs‖ ⊥ λ and µ = µac + µs . (4.6)

4.2. Measurability of Banach space valued functions

We introduce several concept of measurability for functions with values in Banach spaces.

Definition 4.6 (Weak and weak star measurability). Let (Ω,Σ) be a measure space, Y a Banach
space and Y∗ its dual. A function f : Ω→ Y is weakly measurable if the map

Ω 3 ω 7→
〈
y′, f(ω)

〉
Y∗,Y is measurable for all y′ ∈ Y∗. (4.7)

Moreover we say that a function g : Ω→ Y∗ is weakly star measurable if the map

Ω 3 ω 7→ 〈g(ω), y〉Y∗,Y is measurable for all y ∈ Y. (4.8)

In both cases measurability has to be understood as the measurability with respect to (R,B(R)).

Definition 4.7 (Simple functions and strong µ-measurability). Let (Ω,Σ) be a measurable space
and Y a Banach space. A function f : Ω→ Y is called simple, if

∃(Ai)ni=1, Ai ∈ Σ, (yi)
n
i=1, yi ∈ Y : f(ω) =

n∑
i=1

χAi(ω)yi .

Let (Ω,Σ, µ) be a measure space. Then a function f : Ω→ Y is called strongly µ-measurable if
there exists a sequence fn : Ω→ Y simple such that

fn(ω)→ f(ω) for µ− almost every ω ∈ Ω .
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Definition 4.8. Let (Ω,Σ, µ) be a measure space and f : Ω→ Y . f is called µ-almost separable
if there exists a set N ∈ Σ with µ(N ) = 0 such that the range f(Ω \ N ) = 0.

Now strong µ-measurability can be characterized in terms of almost separability and weak
measurability.

Theorem 4.9 (Pettis theorem [82, Theorem 1.1]). Let (Ω,Σ, µ) be a measure space, Y a Banach
space and f : Ω → Y . Then f is strongly µ-measurable if and only if f is µ-almost separable
and weakly measurable.

Due to the above theorem in separable Banach spaces weak measurability is equivalent to
strong measurability. If the space moreover is reflexive then also weak star measurability is
equivalent to strong measurability.

Notice that if fn is a sequence of simple functions such that fn → f µ almost everywhere.
Then the function ω 7→ |fn(ω)− f(ω)|Y is measurable. Thus we can define the Bochner inte-
gral for Banach space valued functions. This notion of integration was introduced by Salomon
Bochner in his article [12].

Definition 4.10 (Bochner integral). Let (Ω,Σ, µ) be a measure space with µ(Ω) < ∞ and Y
be a Banach space. For a simple function f : Ω → Y , i.e. f(ω) =

n∑
i=1

χAi(ω)yi the Bochner

integral of f w.r.t. µ is defined by∫
Ω

f(ω) dµ(ω) :=

n∑
i=1

yi · µ(Ai) . (4.9)

Let f : Ω → Y be strongly µ-measurable, such that there exists a sequence of simple functions
(fn)n∈N with

fn → f µ− a.e. and
∫
Ω

|fn − f |Y dµ→ 0 (4.10)

then f is Bochner-integrable w.r.t µ and the Bochner-integral of f is defined by∫
Ω

f(ω) dµ(ω) := lim
n→∞

∫
Ω

fn(ω) dµ(ω) . (4.11)

Notice that a function f is integrable if and only if it is strongly measurable and ω 7→ |f(ω)|Y
is integrable. We just state a few of the properties the Bochner integral has.

Proposition 4.11. Let (Ω,Σ, µ) be a measure space, then it holds

f 7→
∫
Ω

f(ω) dµ(ω) is linear on the space of µ− Bochner-integrable functions. (4.12)

Moreover if f is µ-Bochner integrable then∣∣∣∣∣∣
∫
Ω

f(ω) dµ(ω)

∣∣∣∣∣∣
Y

≤
∫
Ω

|f(ω)|Y dµ(ω) . (4.13)
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Let X be a Banach space and T : Y → X be a bounded linear operator. If f : Ω → Y is
µ-Bochner integrable then so is Tf : Ω→ X and it holds∫

Ω

Tf(ω) dµ(ω) = T

∫
Ω

f(ω) dµ(ω) . (4.14)

Remember that the essential supremum of a function f : Ω → R with respect to a measure µ
is defined via

ess supµ(f) := inf {a ∈ R : µ ({ω ∈ Ω : f(ω) > a}) = 0} . (4.15)

We now can define Lp spaces of Banach space valued functions.

Definition 4.12. Let (Ω,Σ, µ) be a finite measure space and Y a Banach space. For 1 ≤ p <∞
we define

Lpµ(Ω;Y) :=

f : Ω→ Y : f is strongly µ−measurable and
∫
Ω

|f |pY dµ <∞

 . (4.16)

Furthermore we define

L∞µ (Ω;Y) :=
{
f : Ω→ Y : f is strongly µ−measurable and ess supµ (|f |Y) <∞

}
. (4.17)

The Lp spaces are Banach spaces with respect to the usual norms

‖f‖Lpµ(Ω;Y) :=


(∫

Ω

|f |pY dµ

) 1
p

1 ≤ p <∞ ,

ess supµ (|f |Y) p =∞ .

If Ω = (0, T ), Σ = B((0, T )) and µ is the Lebesgue measure on (0, T ) we simply denote the
space of p-Bochner integrable functions by Lp(0, T ;Y). A further helpful result is a generaliza-
tion of Lebesgue’s differentiation theorem to Banach space valued functions. In order to be able
to state it we remind ourselves of the following definition.

Definition 4.13. Let Ω be a topological space and (Ω,Σ, µ) a measure space. If

B(Ω) ⊂ Σ , µ(K) <∞ for all K ⊂ Ω compact
∀A ⊂ Ω open : µ(A) = sup {µ(K) : K ⊂ A compact} and
∀A ∈ Σ : µ(E) = inf {µ(A) : A ⊃ E open}

then µ is called a Radon measure.

Theorem 4.14 (Generalized Lebesgue differentiation theorem [35, Theorem 2.9.9]). Let µ be a
Radon measure on ((0, T ), σL(0, T )) where σL(0, T ) is the σ-algebra of all Lebesgue measur-
able subsets of (0, T ). Furthermore let f ∈ L1

µ(0, T ;Y). Then for µ almost every t0 ∈ (0, T )

lim
ε→0

1

µ(B(t0, ε) ∩ (0, T ))

∫
µ(B(t0,ε)∩(0,T ))

|f(t0)− f(t)|dt = 0 . (4.18)
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We also introduce the concept of weak derivatives and Sobolev spaces for Banach space valued
functions.

Definition 4.15.

(i) Let Y,X be Banach spaces and Y ↪→ X . Let f ∈ L1(0, T ;Y) and v ∈ L1(0, T ;X ). Then
v is called a weak derivative of f if for all φ ∈ C∞0 (0, T ) the identity

T∫
0

f(t)φ̇(t) dt = −
T∫

0

v(t)φ(t) dt holds.

Here the identity has to be understood in such a way that the left hand side is embedded
into the space X . We denote the weak derivative of f by ḟ .

(ii) For 1 ≤ p ≤ ∞ we denote by W 1,p(0, T ;Y) the space of all p-integrable functions who
possess a weak derivative, which is also p-integrable, that is

W 1,p(0, T ;Y) :=
{
f ∈ Lp(0, T ;Y) : ḟ exists and ḟ ∈ Lp(0, T ;Y)

}
.

It is easy to see that if a weak derivative exists it is unique. Moreover for any 1 ≤ p ≤ ∞
space W 1,p(0, T ;Y) is a Banach space when equipped with the norm

‖f‖W 1,p(0,T ;Y) :=


(∫

Ω

|f |pY + |ḟ |pY dt

) 1
p

1 ≤ p <∞

ess sup
(
|f |Y + |ḟ |Y

)
p =∞

Remember that a function f : [0, T ]→ Y is absolutely continuous if for every ε > 0 there exists
a δ > 0 such that for all sequences [xk, yk]

∞
k=1 of pairwise disjoint integrals with

∞∑
k=1

|yk − xk| it holds
∞∑
k=1

|f(yk)− f(xk)|Y < ε .

Unlike it is the case in finite dimensions for Banach space valued functions f absolute continuity
does in general not imply f ∈ W 1,1(0, T ;Y). Banach spaces Y for which this assertion is true
are called Banach spaces with Radon-Nikodym property.

Definition 4.16 (Radon-Nykodym property [32, Definition III.1.3]). A Banach space Y has the
Radon-Nykodym property if for every finite measure space (Ω,Σ, µ) and every vector measure
ν � µ there exists a function f ∈ L1

µ(Ω,Y) such that for all E ∈ Σ

ν(E) =

∫
E

f(ω) dµ(ω) . (4.19)

The function f is then called the Radon-Nykodym derivative of ν with respect to µ and denoted
by dν

dµ .
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4.2. Measurability of Banach space valued functions

Banach spaces which possess the Radon-Nykodym property are for example separable dual
spaces Y∗ (Dunford-Pettis theorem [32, Theorem III.3.1]) and all reflexive Banach spaces ([32,
Corollary III.2.13]). Prominent examples for spaces which do not have the Radon-Nykodym
property are L1(Ω) and L∞(Ω) for open and bounded Ω ⊂ Rn. A way we use to overcome this
problem are weak star derivatives. To this end we use the following result, see [32, p. 84].

Theorem 4.17 (Weak-star representation theorem). Let Y be a Banach space and Y∗ be its
dual. Let (Ω,Σ, µ) be a finite measure space and T : L1

µ(Ω)→ Y∗ be bounded linear operator.
Then there exists a weak star measurable function g : Ω → Y∗ such that for each y ∈ Y and
f ∈ L1

µ(Ω) it holds

〈T (f), y〉Y∗,Y :=

∫
Ω

f(ω) 〈g(ω), y〉Y∗,Y dµ(ω) . (4.20)

This result makes it possible to deduce a weaker version of the Radon-Nykodym theorem
which holds for all dual spaces.

Theorem 4.18 (Weak star densities). Let (Ω,Σ, µ) be a finite measure space, Y a Banach space
and Y∗ it’s dual. Then for every Y∗ valued measure ν of bounded variation with ν � µ there
exists a weak star measurable function g : Ω→ Y∗ such that for all y ∈ Y and all E ∈ Σ

〈ν(E), y〉Y∗,Y =

∫
E

〈g(ω), y〉Y∗,Y dµ(ω) . (4.21)

We call g the weak star density of ν with respect to µ. Notice that ω 7→ 〈g(ω), y〉Y∗,Y is in
L∞µ (Ω).

This result is obtained by following the proof of [32, Theorem III.1.5] and employing Theorem
4.17.

Proof. The idea is to show that a Radon measure generates a bounded linear operator acting on
L1
µ(Ω) with values in Y∗. To this end remember that the variation ‖ν‖ is a positive measure on

(Ω,Σ). Moreover ‖ν‖ vanishes on µ null sets and therefore we obtain that ‖ν‖ � µ. Due to
the Radon-Nykodym theorem for real valued measures (see e.g. [15, Theorem 2]) there exists a
function h ∈ L1

µ(Ω) such that

‖ν‖(E) =

∫
E

h(ω) dµ(Ω) for all E ∈ Σ .

Define for n ∈ N the set En := {ω ∈ Ω : n− 1 ≤ h(ω) < n} ∈ Σ. Since both ‖ν‖ and µ are
positive measures it holds h ≥ 0 µ-almost everywhere. Moreover En ∩ Em = ∅ for n 6= m and⋃
n∈N

En = Ω. For any n and any simple function f =
k∑
i=1

aiχAi , Ai ∈ Σ, Ai ∩ Aj = ∅ if i 6= j

we define

Tn(f) =
k∑
i=1

αiν(En ∩Ai) . (4.22)
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4. Measure theory for Banach spaces

We then can estimate that

|Tn(f)|Y ≤
k∑
i=1

|αi| |ν(En ∩Ai)|Y∗ ≤
n∑
k=1

|αi|‖ν‖(En ∩Ai) ≤ n‖f‖L1
µ(Ω) . (4.23)

Hence Tn can be extended to a bounded linear operator from L1
µ(Ω) to Y∗. Due to Theorem

4.17 there exists a weak-star measurable function gn : Ω → Y∗ such that for all y ∈ Y and
f ∈ L1

µ(Ω)

〈Tn(f), y〉Y∗,Y =

∫
Ω

f(ω) 〈gn(ω), y〉Y∗,Y dµ(ω) (4.24)

and especially for all E ∈ Σ

〈ν(E ∩ En), y〉Y∗,Y =

∫
E

〈gn(ω), y〉Y∗,Y dµ(ω) . (4.25)

We define the function g : Ω → Y∗ by g(ω) = gn(ω) for all ω ∈ En. Then for any y ∈ Y we
have ∫

m⋃
n=1

En

| 〈g(ω, y)〉Y∗,Y |dµ(ω) ≤ ‖ν(Ω‖|y|Y (4.26)

and hence ω 7→ 〈g(ω, y)〉Y∗,Y is in L1
µ(Ω). Moreover since ν is σ-additive we have for allE ∈ Σ

〈ν(E), y〉Y∗,Y = lim
m→∞

〈
ν

(
E
⋂(

m⋃
n=1

En

))
, y

〉
Y∗,Y

= lim
m→∞

∫
E
⋂

(
m⋃
n=1

En)

〈g(ω, y)〉Y∗,Y dµ(ω) =

∫
E

〈g(ω, y)〉Y∗,Y dµ(ω)

where the last equality is due to the dominated convergence theorem.

4.3. Young-measure theory in Banach spaces

The concept of Young measures was introduced by L. C. Young [106, 107, 108] in order to pro-
vide existence results in optimal control theory. Subsequently it was successfully applied to a
vast number of problems in the calculus of variations, such as the analysis of micro structures in
continuum mechanics, see [81] and references therein.

Given a set Ω and a family of measurable functions uk : Ω → Rd the Young measure ν
generated by the sequence (uk) is a family ν = (νx)x∈Ω of (sub-)probability measures which
give insight in the limiting behavior of uk as k → ∞. Roughly speaking for some x0 ∈ Ω and
A ⊂ Rd measurable νx0(A) is the probability of limuk(x) ∈ A for ’x close to x0’ ([97, Section
5.6]). This is formulated in a precise way in the fundamental theorem of Young measures.
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4.3. Young-measure theory in Banach spaces

Theorem 4.19 (Fundamental theorem of Young measures [81, Theorem 3.1]). Let Ω ⊂ Rn
be a measurable set with finite measure and (un)n∈N be a sequence of measurable functions
un : Ω→ Rd. Then there exists a subsequence (nk)k∈N and a weak-*-measurable map ν : Ω→
M(Rd) such that

(i) νx ≥ 0 and νx(Rd) ≤ 1 for almost every x ∈ Ω,

(ii) for all f ∈ C0(Rd) it holds
f(unk)

∗
⇀ f in L∞(Ω)

where
f(x) =

∫
Rd

f(z) dνx(z) , (4.27)

(iii) if K ⊂ Rd is compact, then

dist(unk ,K)→ 0 in measure ⇒ supp{νx} ⊂ K , (4.28)

(iv) νx(Rd) = 1 for almost all x ∈ Ω if and only if

lim
M→∞

sup
k∈N
|{x : ‖unk(x)‖ > M}| = 0 , (4.29)

(v) if (4.29) holds, if A ⊂ Ω is measurable, if f ∈ C(Rd) and if

f(unk) is relatively weakly compact in L1(A) , (4.30)

then
f(unk) ⇀ f (4.31)

where f is defined as above,

(vi) if (4.29) holds then (iii) is in fact an equivalence.

Condition (4.29) is for example satisfied if unk is bounded in Lp(Ω,Rd) for some p ≥ 1.
From a mathematical point of view especially properties (ii) and (v) are very interesting as they
characterize weak (-star) limits of nonlinear functions of unk . Remember that even if a weak(-
star) limit of a sequence (unk) exists it provides no information of the weak (-star) limit of the
sequence f(unk) if f is nonlinear.

It is apparent that such a tool would also be helpful in the study of evolution equations. A
typical framework for these problems would contain a family functions (un) mapping a (finite)
time interval [0, T ] into a Banach space Y . The first result obtained in this direction has been
obtained by E. Balder [8], who proved a fundamental theorem of Young measure in a very general
setting. We also point out the lecture notes [104, 9] for a comprehensive introduction to this
topic. However, these results have been proven for spaces endowed with a metrizable topology
and can therefore not directly be applied to Banach spaces endowed with their weak topologies.
This problem has been overcome by R. Rossi and G. Savaré in [94, Theorem 3.2] who proved
a fundamental theorem of Young measures for weak topologies in separable Hilbert spaces. We
shall go a small step further and provide this result for the topology induced by the weak-star
convergence in the dual of a separable normed space. Before we start, a short definition is needed.
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4. Measure theory for Banach spaces

Definition 4.20. A L × B (Y∗)-measurable function h : (0, T ) × Y∗ → (−∞,∞] is called a
weakly-star normal integrand if the map

Y∗ 3 y′ → h(t, y′) is weakly-star lower semicontinuous for a.e. t ∈ [0, T ].

A sequence (y′n)n∈N ⊂ L1(0, T ;Y) is called weakly-star tight, if there exists a non-negative
normal integrand h : (0, T )× Y∗ → [0,∞) such that

lim
|y′|→∞

h(t, y′) = +∞ for a.e. t ∈ [0, T ] and

sup
n∈N

T∫
0

h(t, un(t)) dt <∞

Theorem 4.21 (Fundamental theorem for weak-star topologies). Let Y be separable normed
space and Y∗ be its dual. Then for any weakly-star tight sequence (y′n)n∈N in L1(0, T ;Y∗)
there exists a subsequence

(
y′nk
)
k∈N and a family of parametrized measures ν = (νt)t∈(0,T ),

νt ∈M(Y∗) such that for almost all t ∈ (0, T ) it holds

νt(Y∗) = 1 , lim sup
k↑∞

∣∣y′nk(t)
∣∣
Y∗ <∞ and supp(νt) ⊂

∞⋂
j=1

{
y′nk(t) : k ≥ j

}w∗
. (4.32)

Moreover for every weakly-star normal integrand h : [0, T ] × Y∗ → (−∞,∞] such that
h−
(
·, y′nk(·)

)
is uniformly integrable it holds

lim inf
k→∞

T∫
0

h
(
t, y′nk(t)

)
dt ≥

T∫
0

∗∫
Y

h
(
t, y′

)
dνt(y

′) dt . (4.33)

The proof follows the lines of [94, Theorem 3.2].

Proof. Since Y is separable there exists a sequence y = (yn)n∈N ⊂ Y with |yn| = 1 for all
n ∈ N such that

Y = span{yn : n ∈ N} . (4.34)

We now define the ‖·‖y via

∥∥y′∥∥
y

:=
∞∑
n=1

2−n
∣∣∣〈y′, yn〉Y∗,Y ∣∣∣ . (4.35)

Then ‖·‖y is a norm with ‖y′‖y ≤ |y′|Y∗ and for any sequence (y′n)n∈N bounded with respect to

| · |Y∗ it holds y′n
∗
⇀ y′ if and only if ‖y′n − y′‖y → 0 ([13, Theorem 1]). Therefore any bounded

ball {y′ ∈ Y∗ : |y|Y∗ ≤ c} ⊂ Y∗ is compact with respect to ‖·‖y. Because of [33, Theorem
I.6.15] any bounded ball is therefore separable with respect to ‖·‖y. 1 Now define the space

E :=
{

(y′, w) ∈ Y∗ × R : |y′|Y∗ ≤ w
}
⊂ Y∗ × R (4.36)

1Note that on bounded subsets the weak star topology of Y∗ is the same as the topology induced by ‖·‖y . We would
like to point out a small peculiarity: The separability of Y∗ w.r.t. the weak-star topology does not guarantee the
separability of a bounded ball in Y∗ w.r.t. the same topology, see [27].
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4.3. Young-measure theory in Banach spaces

and the function

d : E × E → [0,∞) ,
(
(y′1, w1), (y′2, w2)

)
7→
∥∥y′1 − y′2∥∥y + |w1 − w2| . (4.37)

Following our above considerations d is a metric on E and it holds that

∀(y′n, wn)n∈N ⊂ E :
[
(y′n, wn)

d−→ (y′, w)⇔ y′n
∗
⇀ y′ ∧ wn → w

]
. (4.38)

Therefore E is complete and separable with respect to the metric d and bounded weakly-star
closed subsets of E are compact with respect to d. Moreover for any closed ball B ⊂ Y∗ × R it
holds B ∩ E is a Borel set of E. This implies that

B ⊂ B (Y∗ × R)⇒ B ∩ E ∈ B(E) (4.39)

and hence any Borel measure on E can be trivially extended to a Borel measure on Y∗ × R.

We now may apply Balder’s theorem [8, Theorem 3] to the sequence (un)n = (y′n, |y′n|Y∗)n ⊂
E. It grants the existence of a subsequence (unk)k and a family of parameterized measure
µ = (µt)t∈[0,T ] such that for almost all t ∈ [0, T ]

supp(µt) ⊂
∞⋂
j=1

{unk(t) : k ≥ j}d . (4.40)

Moreover for anyE-normal integrand g for which g− (·, unk(·), |unk(·)|) is uniformly integrable
the inequality

lim inf
k→0

T∫
0

g (t, unk(t), |unk(t)|Y∗) dt ≥
T∫

0

∫
E

g(t, y′, w) dµt(y
′, w)

 dt (4.41)

holds. Defining the parametrized measure ν = (νt)t∈[0,T ] via

νt(B) = µt (B × [0,∞)) ∀B ∈ B(Y∗) (4.42)

we see that ν fulfills (4.32) and (4.33).

In applications it might also be of interest to generalize a result due to U. Stefanelli [101,
Theorem 4.3] who provided a lim inf-inequality in terms of Young measures for the Γ− lim inf
of a sequence of functionals.

Theorem 4.22 (Γ − lim inf result in weak star topologies). Let Y be separable normed space
and Y∗ be its dual. Furthermore let (y′n)n∈N be a weakly-star tight sequence in L1(0, T ;Y∗)
and gn, g : [0, T ]× Y∗ → (−∞,∞] be weakly star normal integrands such that for all y′ ∈ Y∗
and almost all t ∈ [0, T ]

g(t, y′) ≤ inf
{

lim inf
n→∞

gn(t, y′n) : y′n
∗
⇀ y′ in Y∗

}
. (4.43)

45



4. Measure theory for Banach spaces

Then there exists a subsequence (nk)k∈N and a family of parametrized measures ν = (νt)t∈(0,T ),
νt ∈M(Y∗) such that for almost all t ∈ (0, T )

νt(Y∗) = 1 , lim sup
k↑∞

∣∣y′nk(t)
∣∣
Y∗ <∞ and supp(νt) ⊂

∞⋂
j=1

{
y′nk(t) : k ≥ j

}w∗
. (4.44)

and if the sequence g−nk
(
·, y′nk(·)

)
is uniformly integrable it holds

lim inf
k→∞

T∫
0

gnk
(
t, y′nk(t)

)
dt ≥

T∫
0

∗∫
Y

g
(
t, y′

)
dνt(y

′) dt . (4.45)

The proof is just a straightforward adaption of the proof of [101, Theorem 4.3], just make
use of the norm ‖·‖y, and shall therefore be omitted here. Notice that condition (4.43) says that
g(t, ·) is for almost every t ∈ [0, T ] less or equal than the Γ− lim inf of the sequence gn(t, ·).

The results stated here contain the previous mentioned results [94, Theorem 3.2] and [101,
Theorem 4.3]. These have been proven in the setting of weak topologies of either separable
Hilbert spaces or separable and reflexive Banach spaces. To see this just remember that the weak
star topology of a reflexive Banach space is just the same as the weak topology and that if a
reflexive Banach space is separable so is its dual.
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5. Gronwall’s inequality

In the vast toolbox for the study of evolution equation Gronwall’s inequality certainly takes a
prominent role. Proven in [39] more than 90 years ago it is nowadays still an indispensable and
widely used instrument. Today quite a big number of variants of this inequality are in common
usage. We shall state it in its original form here.

Lemma 5.1 (Gronwall’s Lemma). When, for x0 ≤ x ≤ x0+h, the continuous function z = z(x)
satisfies the inequalities

0 ≤ z ≤
x∫

x0

Mz +Adx

where the constants M and A are positive or zero, then

0 ≤ z ≤ AheMh, x0 ≤ x ≤ x0 + h .

The proof of this Lemma is well known and shall be omitted here. Instead we are going to
present two discrete analoga of this results, which are needed in the sequel. The first one has
been proven in a joint work with P. Krejčı́ [62, Lemma A.1].

Lemma 5.2. Let N ∈ N, (δk)
N
k=0, (ck)

N
k=1, (ak)

N
k=1 ⊂ R+ be given sequences. Assume that

δk − δk−1 ≤ ck + akδk−1 ∀k ∈ [N ] . (5.1)

Then for all n ∈ [N ] it holds

δn ≤ exp

(
n∑
k=1

ak

)(
δ0 +

n∑
k=1

ck

)
(5.2)

Proof. We have by hypothesis

δk∏k
i=1(1 + ai)

− δk−1∏k−1
i=1 (1 + ai)

≤ ck∏k
i=1(1 + ai)

≤ ck ∀k ∈ [N ] . (5.3)

Summing up over k ∈ [n] we obtain

δn ≤
n∏
i=1

(1 + ai)

(
δ0 +

n∑
k=1

ck

)
,

and the inequality 1 + ai ≤ exp(ai) completes the proof.

The second discrete version of Gronwall’s inequality has been proven by the author in [90,
Lemma A.1]. It is adapted to the framework, in which it shall be applied in the sequel, and
might, at first glance, appear to have little in common with the original inequality. However it is
little more than yet another variation of Lemma 5.1.
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5. Gronwall’s inequality

Lemma 5.3. Let N ∈ N, (ξk)
N
k=0, (ηk)

N
k=0 ⊂ X , (bk)

N
k=0, (ak)

N
k=0 ⊂ R≥0 with

|∆kξ|+ ∆kb ≤ ak (|ξk−1|+ |ηk−1|) + δ|∆kη| ∀k ∈ [N ] (5.4)

for some 0 ≤ δ < 1. Here ∆kf indicates the difference fk − fk−1 for all k ∈ [N ] and
f ∈ {ξ, η, b, a}. Assume furthermore that b0 = 0 and ξ0 = η0 = 0. Then there exists ε ≥ 0 and
0 ≤ ρ < 1 such that for

wk = exp{−1

ε

k∑
i=1

ak} ∀k ∈ [N ] (5.5)

it holds
N∑
k=1

|∆kξ|wk ≤ ρ
N∑
k=1

|∆kη|wk . (5.6)

Proof. Choose any ε < (1− δ)/2 and set

ρ :=
δ + ε

1− ε
< 1 . (5.7)

We multiply both sides of (5.4) by wk. Since wk is a decreasing sequence and b0 = 0 we have
N∑
k=1

(∆kb)wk = bNwN +
N−1∑
k=1

bk(wk − wk+1)− b0w1 ≥ 0 . (5.8)

Therefore we obtain
N∑
k=1

|∆kξ|wk ≤
N∑
k=1

akwk (|ξk−1|+ |ηk−1|) + δ
N∑
k=1

|∆kη|wk . (5.9)

We estimate the first term on the right hand side via

N∑
k=1

akwk|ξk−1|
ξ0=0
≤ ε

N∑
k=2

1

ε
akwk

k−1∑
j=1

|∆jξ|


= ε

N−1∑
j=1

|∆jξ|

 N∑
k=j+1

1

ε
akwk

 .

Furthermore we can calculate

N∑
k=j+1

1

ε
akwk ≤

1
ε

N∑
k=1

ak∫
1
ε

j∑
k=1

ak

exp(−x) dx ≤ exp

{
−1

ε

j∑
k=1

ak

}
= wj (5.10)

by interpreting the left hand side as a Riemann sum. Proceeding in exactly the same way for∑
akwk|ηk−1| we obtain

N∑
k=1

|∆kξ|wk ≤ ε
N∑
k=1

(|∆kξ|+ |∆kη|)wk + δ

N∑
k=1

|∆kη|wk . (5.11)

This completes the proof.
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Part II.

Quasivariational sweeping processes on
functions of bounded variation
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6. Introduction and main results

We establish existence and uniqueness results of quasivariational (or implicit) sweeping pro-
cesses on functions of bounded variation on a separable Hilbert spaceX . To extend the sweeping
process to BV we make use of the so-called Kurzweil formulation. The results we are able to
prove depend on the shape of the involved convex sets. If the convex sets is a polyhedron, we
prove - under suitable conditions - existence and uniqueness on the whole space of functions of
essentially bounded variation. If the convex sets are smooth we are able to establish this result
for functions of bounded variation with small jumps. Indeed in the latter case we provide a coun-
terexample to uniqueness in case the jumps are too big.

6.1. The sweeping process

The sweeping process has been introduced by J. J. Moreau in two seminal articles [78, 79] in the
1970s. He proposed the following evolution problem:
Given a moving convex set K(t) and a point ξ(t) we assume that the evolution of the point ξ(t)
is governed by the evolution of K(t) through two rules. First ξ(t) has to stay within K(t). And
second if ξ(t) moves then it moves only in the opposite direction of the normal cone of K(t) at
point ξ(t). Especially if ξ(t) is in the interior ofK(t) then it does not move. The question we are
going to ask is: Does there exist an unique solution to this problem? Or to write it down more
precisely:

Problem 6.1 (Sweeping process). Given a time dependent convex set K(t) ⊂ X and an initial
value ξ0 ∈ K(0), does there exist an absolutely continuous function ξ such that ξ(0) = ξ0 and

− ξ̇(t) ∈ ∂IK(t)(ξ) a.e. in [0, T ] (6.1)

hold?

Moreau provided an existence and uniqueness result for this problem in [79] under suitable
conditions on the convex set. Laxly formulated the condition is that the convex set K(t) does
evolve with absolutely continuous speed. One might wonder whether solutions of (6.1) are dif-
ferentiable. In general this not the case. To illustrate this fact consider a simple example.

Example 6.2. LetX = R, K(t) = [−1+ t, 1+ t] and ξ0 = 0. Then the solution to the sweeping
process is given by

ξ(t) =

{
0 if t ≤ 1
t− 1 if t > 1

which is clearly not differentiable in t = 1.
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6.2. Extending the sweeping process to BV

As in [18] we shall slightly rewrite the problem: Let Z(r) be a family of convex sets indexed
by elements r of an reflexive Banach space R, u ∈ W 1,1(0, T ;X) and r ∈ W 1,1(0, T ;R). We
look for absolutely continuous functions ξ such that ξ(0) = ξ0 and

u(t)− ξ(t) ∈ Z(r(t)) ∀t ∈ [0, T ] and〈
ξ̇(t), u(t)− ξ(t)− y

〉
≥ 0 ∀y ∈ Z(r(t)) for a.e. t ∈ [0, T ] .

(6.2)

This is nothing but a reformulation of (6.1) where K(t) takes the form K(t) = u(t)− Z (r(t)).
Note that every problem formulated in terms of u, r and Z can be formulated in terms of K(t)
and vice versa. One direction we have just shown and for the other direction setR = R, Z(t) =
−K(t), u = 0 and r(t) = t. The use of (6.2) is motivated by applications where it often
appears in a natural way. In the special case of Z(r) = Z the map u 7→ ξ which maps the
input u to the solution of the sweeping process ξ is exactly the play operator from the theory of
hysteresis. This theory has been developed from the late 1960s by the Russian school around
M. A. Krasnosel’skiı̆ (see e.g. [51, 50]). Their efforts culminated in the seminal monograph
[52] which opened the path to a rigorous mathematical treatment of hysteresis. Indeed we will
make use of many methods developed for the study of multidimensional play operators. For an
extensive study of these we refer to [55] and references therein. For the study of one dimensional
hysteresis operators and especially the one dimensional play, which exhibits a few additional
interesting properties, we refer to the book [19].

6.2. Extending the sweeping process to BV

When extending the sweeping process to functions of (essentially) bounded variation, i.e. allow-
ing u and r and consequently also the solution ξ to be in this space, one encounters a difficulty:
The formulation of (6.1) or (6.2) can no longer be applied as ξ might no longer have a weak
derivative. Therefore one must come up with a different formulation. It is then natural to ask for
two conditions to be satisfied:

1. If the input functions u and r are absolutely continuous, then the solution ξ of the new
formulation must also solve the original problem.

2. The formulation may only contain concepts which have a meaning on BV .

However this does not uniquely determine a way to extend the sweeping process to functions
of bounded variation. The degree of freedom one essentially has, is to decide what happens at
points where the functions jump. This has been solved in different ways. The first concept is
already due to J. J. Moreau [79] who proposed to use the weak derivative with respect to the
underlying Radon measure of the function ξ.

For the study of play operators two other approaches have been developed. P. Krejčı́ and
Ph. Laurençot proposed to use an integral formulation of the variational inequality (6.2). This
approach was later on extended to sweeping processes in [61]. A different proposal is due to
V. Recupero [86, 87, 88]. Here the evolution at the jump points is determined by, roughly speak-
ing, ’filling in’ the jump with a function that connects the starting point with the end point of
the jump. The solution is then determined by letting the evolution run on the ’filled in’ function.
We however will follow the concept of P. Krejčı́ and Ph. Laurençot, which is nowadays known
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as the Kurzweil formulation. It is named after the Czech mathematician Jaroslav Kurzweil, who
developed the integral which plays a crucial role in this formulation (see Chapter 3.2). We will
now shortly introduce the idea behind this approach. For simplicity we restrict ourselves to the
play operator. Afterwards we state the sweeping process in its Kurzweil formulation and prove
the existence of a unique solution.

Before we proceed a short remark on our wording is in order: We will talk about a ’sweeping
process on BV ’ when we want to say that the input and output functions are allowed to be in
BV . One might argue this to be an odd wording, as it might appear more natural to talk about a
’sweeping process on X’ as X is the space in which the convex set moves. However, as we have
now stated what we mean by our choice of words, we hope that it is acceptable.

By definition ξ is the output of the play operator if u(t)− ξ(t) ∈ Z and〈
ξ̇(t), u(t)− ξ(t)− y

〉
≥ 0 ∀y ∈ Z, for a.e. t ∈ [0, T ] .

In [55] it has been shown that this condition is equivalent to an integral inequality, namely

T∫
0

〈
u(t)− ξ(t)− y(t), ξ̇(t)

〉
≥ 0 ∀y ∈ C(0, T ;Z) .

The idea now is to substitute the above integral by an integral where the right side of the inner
product is a generalized derivative of a BV function. Probably the first integral that comes into
ones mind is the well known Riemann-Stieltjes integral. However it is not the right choice here
as it asks for the left side to be continuous, which in general will not be the case. Still one can
stay in the realm of ’classical theory’ and does not have use integrals based on measures - this of
course is also a possible path. Our choice is to employ the Kurzweil-Henstock integral (Chapter
3.2). Additionally we extend the space of admissible test functions to all regulated functions,
that is functions which allow left and right side limits at every point, with values in Z. One now
might be tempted to ask for functions ξ ∈ BV(0, T ;X) satisfying u(t)− ξ(t) ∈ Z and

T∫
0

〈u(t)− ξ(t)− y(t), dξ(t)〉 ≥ 0 ∀y ∈ G(0, T ;Z) . (6.3)

This however is a bad choice. Indeed in general there will be no function ξ which can satisfy this
inequality, as the following example shows.

Example 6.3. Choose Z = [−1, 1], x0 = 0 and define

u(t) =

{
0 t = 0
2 t > 0

.

Assume ξ is satisfies (6.3). Then it holds that ξ(0) = 0. We choose the test function y to be
defined as

y(t) =

{
z t = 0
u(t)− ξ(t) t > 0
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with z ∈ [−1, 1]. By plugging this into (6.3) we obtain 〈−z, ξ(0+)− ξ(0)〉 ≥ 0 for every
z ∈ [−1, 1], which can only be satisfied if ξ(0+) = ξ(0) = 0. However, since ξ is a solution we
especially have ξ(t) − u(t) ∈ Z. By choice of u this means ξ(t) ≥ 1 for all t > 0, which is a
contradiction.

As this is an unsatisfying state, it is necessary to tweak (6.3) in order to obtain a better suited
condition. Indeed the correct condition reads

T∫
0

〈u(t+)− ξ(t+)− y(t), dξ(t)〉 ≥ 0 ∀y ∈ G(0, T ;Z) . (6.4)

Assume that ξ has a jump at any point s ∈ [0, T ]. We choose the testfunction y as y(t) =
u(t)− ξ(t) if t 6= s and y(s) = z ∈ Z. Then the integral inequality reduces to

〈u(s+)− ξ(s+)− z, ξ(s+)− ξ(s−)〉 ≥ 0 .

This inequality can be fulfilled namely by setting ξ(s+) = QZ (u(s+) + ξ(s−)). Indeed this
formulation can be generalized to sweeping processes and it then reads as follows:

Problem 6.4 (Sweeping process). For given input functions u ∈ BV(0, T ;X), r ∈ BV(0, T ;R)
and initial condition x0 ∈ Z(r(0)), we look for a function ξ ∈ BV(0, T ;X) such that

x(t) := u(t)− ξ(t) ∈ Z(r(t)) ∀t ∈ [0, T ] , (6.5)

x(0) = x0 , (6.6)∫ s

0
〈x(t+)− y(t), dξ(t)〉 ≥ 0 (6.7)

for all s ∈ [0, T ] and every y ∈ G(0, s;X) such that y(t) ∈ Z(r(t+)) for every t ∈ [0, s].

Of course the question arises whether and under which condition a solution to this problem
exists. We settle this question with, at least for our purposes, sufficient generality in the following
theorem.

Theorem 6.5. Let Z(r) be a family of closed convex sets indexed by a parameter r ∈ R. Assume
that

dH (Z(r), Z(s)) ≤ L‖r − s‖R .
Then for every u ∈ BV(0, T ;X), r ∈ BV(0, T ;R) and x0 ∈ Z(r(0)) there exists a unique
solution ξ ∈ BV(0, T ;X) to Problem 6.4 and

Var(ξ) ≤ Var(u) + LVar(r) . (6.8)

Furthermore the sweeping process is locally 1
2 -Hölder continuous with respect to ‖ · ‖∞.

Up to our knowledge this result has not been proven or at least published under these precise
assumptions. However there are a number of related results: For the play operator existence and
uniqueness of a solution has been shown in [60]. Unique solvability of a slightly more general
problem was shown in [61], however only for left-continuous functions of bounded variation. A
closely related result has been shown in the lecture notes [58] for right continuous functions. Our
proof relies on the methods developed in these articles and is written down mainly for the sake
of completeness.
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Proof. We proceed in three steps. We first establish a continuity result which will also imply
the uniqueness of a solution. We then explicitly calculate solutions for stepfunctions and thus
establish the existence. Finally we expand the result to the whole space BV.

Step 1 - Hölder continuity: Let u, v ∈ BV(0, T ;X), r, s ∈ BV(0, T ;R), x0 ∈ Z(r(0)) and
y0 ∈ Z(s(0)). Assume that ξ ∈ BV(0, T ;X) and η ∈ BV(0, T ;X) are both solutions to the
sweeping process with data u, r, x0 and v, s, y0 respectively. Let t0 ∈ [0, T ] and define

z(t) :=

{
QZ(r(t+)(v(t+)− η(t+)) t < t0
QZ(r(t0)(v(t0)− η(t0)) t = t0

and

ẑ(t) :=

{
QZ(s(t+)(u(t+)− ξ(t+)) t < t0
QZ(s(t0)(u(t0)− η(t0)) t = t0

Notice that z and ẑ are admissible test functions for (6.7) for ξ and η respectively. Indeed
z(t) ∈ Z(r(t+)) for all t ∈ [0, t0] by construction. Furthermore notice that for any sequences
zn → z, rn → r it holds QZ(rn)(z

n) → QZ(r)(z). Hence z is a regulated function. Analogous
arguments can be applied to ẑ. By testing (6.7) with these two functions we obtain

t0∫
0

〈u(t+)− ξ(t+)− ẑ(t), dξ(t)〉 ≥ 0 and

t0∫
0

〈v(t+)− η(t+)− z(t), dη(t)〉 ≥ 0 .

Therefore we can deduce

t0∫
0

〈ξ(t+)− η(t+), d(ξ − η)(t)〉

≤
t0∫

0

〈u(t+)− v(t+), dξ(t)〉+

t0∫
0

〈v(t+)− η(t+)− ẑ(t), dξ(t)〉

+

t0∫
0

〈v(t+)− u(t+), dη(t)〉+

t0∫
0

〈z(t)− (u(t+)− ξ(t+)) , dη(t)〉

≤
(
Var(ξ) + Var(η)

)(
‖u− v‖∞ + sup

t∈[0,t0]
dH (Z(r(t), Z(s(t)))

)
≤

(
Var(ξ) + Var(η)

)
(‖u− v‖∞ + L ‖r − s‖∞)

We hence have

1

2
‖ξ − η‖2∞ ≤

(
Var(ξ) + Var(η)

)
(‖u− v‖∞ + L ‖r − s‖∞) + |x0 − y0|+ |u(0)− v(0)| .

This indeed proves local Hölder continuity of the sweeping process - and thereby uniqueness -
should a solution exist.

Step 2 - Existence of a solution for stepfunctions: Let u ∈ S(0, T ;X) and r ∈ S(0, T ;X)
be stepfunctions with respect to the same partition (ti))

n
i=0, i.e. there exist (ui)

n
i=1 ⊂ X ,
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(ûi)
n
i=0 ⊂ X and (ri)

n
i=1 ⊂ R, (r̂i)

n
i=0 ⊂ R respectively such that

u(t) =

N∑
i=0

ûiχ{ti}(t) +

N∑
i=1

uiχ(ti−1,ti)(t) and

r(t) =
N∑
i=0

r̂iχ{ti}(t) +
N∑
i=1

riχ(ti−1,ti)(t) .

Then the unique solution to the sweeping process is also of the form

ξ(t) =
N∑
i=0

ξ̂iχ{ti}(t) +
N∑
i=1

ξiχ(ti−1,ti)(t)

where ξ̂0 = û0 − x0 and

u1 − ξ1 = QZ(r1)

(
u1 − ξ̂0

)
∧ ξ1 − ξ̂0 = PZ(r1)

(
u1 − ξ̂0

)
∀1 < k ≤ n : uk − ξk = QZ(rk) (uk − ξk−1) ∧ ξk − ξk−1 = PZ(rk) (uk − ξk−1)

∀1 ≤ k ≤ n : ûk − ξ̂k = QZ(r̂k) (ûk − ξk) ∧ ξ̂k − ξk = PZ(r̂k) (ûk − ξk)


(6.9)

Indeed let s ∈ (0, T ] and y ∈ G(0, T ;X) such that y(t) ∈ Z(r(t+)). Remember that by
convention for t = s this implies y(s) ∈ Z(r(s)). By applying the calculus of the Kurzweil
integral we obtain that

s∫
0

〈u(t+)− ξ(t+)− y(t), dξ(t)〉

=
〈
u1 − ξ1 − y(0+), ξ1 − ξ̂0

〉
+

∑
k∈[n]:tk<t

〈uk+1 − ξk+1 − y(tk+), ξk+1 − ξk〉

+ 〈u(s)− ξ(s)− y(s), ξ(s)− ξ(s−)〉

The first two terms are greater or equal zero due to (6.9). If s 6= tk for all k ∈ [n], then the last
term is zero, since ξ(s) = ξ(s−). Otherwise if there exists an k ∈ [n] such that s = tk then we
obtain

〈u(s)− ξ(s)− y(s), ξ(s)− ξ(s−)〉 =
〈
ûk − ξ̂k − y(tk), ξ̂k − ξk

〉
which is also non negative. Therefore ξ is the, by the first step, unique solution to the sweeping
process with input u and r. Now one can easily calculate that

|ξk − ξk−1| ≤ |uk − uk−1|+dH (Z(rk), Z(rk−1)) ≤ 2 |uk − uk−1|+L ‖rk − rk−1‖R (6.10)

We therefore can estimate

Var(ξ) =

n∑
k=2

|ξk − ξk−1| ≤ Var(u) + LVar(r) . (6.11)

Step 3 - Existence on BV: Let u ∈ BV(0, T ;X), r ∈ BV(0, T ;R) and x0 ∈ Z(r(0)). Then
due to Theorem 3.10 there exist sequence (un)n∈N ⊂ S(0, T ;X) and (rn)n∈N ⊂ S(0, T ;R)
such that

Var(fn) ≤ Var(f) and ‖fn − f‖∞ → 0 ,
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for f ∈ {r, s}. Without loss of generality we may assume that rn(0) = r(0) and un(0) = u(0).
Let ξn be the solution of the sweeping process with data un, rn, x0. Then we know that

Var(ξn) ≤ Var(un) + CVar(rn) ≤ Var(u) + CVar(r) . (6.12)

Since (rn)n∈N and (un)n∈N are Cauchy sequences with respect to ‖ · ‖∞. Due to the first step
so is (ξn)n∈N. Hence there exists a function ξ such that ‖ξn − ξ‖n∈N → 0. In view of (6.12)
we obtain that ξ ∈ BV(0, T ;X) and ξ satisfies (6.11). Notice that un(t) − ξn(t) ∈ Z(rn(t))
and the strong convergence of ξn(t), un(t) and rn(t) implies u(t)− ξ(t) ∈ Z(r(t)). It remains
to show that the variational inequality (6.7) is satisfied. Therefore let s ∈ [0, T ] and choose
y ∈ G(0, s;X) such that for all t ∈ [0, s) it holds y(t) ∈ Z(r(t+)) and y(s) ∈ Z(r(s)). Define
test functions yn by

yn(t) :=

{
QZ(rn(t+))(y(t)) t < s

QZ(rn(s))(y(s)) t = s .

For all t ∈ [0, s) we can estimate

|yn(t)− y(t)| ≤ dH (Z (rn(t+)) , Z (r(t+))) ≤ C‖rn − r‖∞ .

A similar estimate can be made for t = s. We therefore obtain ‖yn − y‖∞ → 0. Arguing as in
Step 1 we furthermore obtain yn ∈ G(0, T ;X). Hence yn is an admissible testfunction and (6.7)
holds with un, ξn and rn. Due to the continuity properties of the Kurzweil integral, see Theorem
3.36 , we may pass to the limit and obtain that (6.7) also holds true for y, u, ξ and r. Hence ξ is
an admissible solution to Problem 6.4.

Remark 6.6. In case we allow for u, r and ξ to be left (or right) continuous only condition (6.7)
can be simplified. It is then equivalent to ask for the inequality to hold for s = T .

6.3. Quasivariational sweeping processes

Quasivariational sweeping processes extend the sweeping processes in the following way. The
shape of the convex set K does now no longer depend only on time t but also on the current state
ξ(t). Figuratively spoken: Put a small stone on a table, turn a cake form upside down and put it
over the stone. Then if the cake form is moved, the stone is moving as well. This is the sweeping
process. Now for a quasivariational sweeping process the cake form is no longer a classical one
but made out of silicon. Then if the stone is heavy enough the shape of the silicon cake form
depends on where the stone is. Formally the problem can be written as follows

Problem 6.7 (Quasivariational sweeping process). LetK : (t, ξ) 7→ K(t, ξ) ⊂ X whereK(t, ξ)
is convex for all (t, ξ) ∈ [0, T ] × X . For an initial value ξ0 ∈ K(0, ξ0), does there exist an
absolutely continuous function ξ such that ξ(0) = ξ0 and

−ξ̇(t) ∈ ∂IK(t,ξ(t)))(ξ) a.e. in [0, T ] holds?

This problem was first proposed by M. Kunze and M. D. P. Monteiro Marquez in [64]. Therein
they also provided a first prove of existence of a solution under fairly general assumptions.
Uniqueness of the solution however is more involved. Here the first results are due to M. Brokate,
P. Krejčı́ and H. Schnabel in [18] in the case of smooth and bounded convex sets. Here smooth
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has to be understood in such a way that roughly speaking the outer normals depend Lipschitz
continuous on both the position and the current state. This result was later on generalized to
smooth and unbounded convex sets by A. Mielke and R. Rossi [71]. Also due to R. Rossi and
U. Stefanelli are uniqueness results which do not make use of the smoothness of a solution. In-
stead in [95, 100] a certain order principle for the convex sets was assumed. In the former of the
two papers up to the authors knowledge the term ’quasivariational sweeping process’ was used
for the first time. It is probably derived from the seminal book [7] where the term ’quasivaria-
tional inequality’ was coined to describe problems of the type

find u such that 〈u, v〉 ≤ f(v) for all v ∈ K(u) .

As in the case of the sweeping process there are several possibilities to extend the quasivaria-
tional sweeping process to functions of (essentially) bounded variation. We are going to employ
the Kurzweil formulation. To make this precise let us shortly formulate the problem in the setting
we want to analyze it.

Problem 6.8 (Quasivariational sweeping process on BV). Consider a family Z(r) ⊂ X of
closed convex sets parameterized by elements r of a reflexive Banach space R. Assume that
u ∈ BV(0, T ;X), g ∈ BV(0, T ;C1(X × X;R)) and x0 ∈ Z(g(0, u(0), x(0) − u(0))) are
given. We look for a function ξ ∈ BV(0, T ;X) such that

x(t) := u(t)− ξ(t) ∈ Z(g(t, u(t), ξ(t))) ∀t ∈ [0, T ] , (6.13)

x(0) = x0 , (6.14)∫ T

0
〈x(t+)− y(t), dξ(t)〉 ≥ 0 for every y ∈ T (ξ) , (6.15)

where
T (ξ) := {y ∈ G(0, T ;X) : y(t) ∈ Z(g(t+, u(t+), ξ(t+))) ∀t ∈ [0, T ]}

is the set of all admissible testfunctions.

Our aim is to prove existence and uniqueness of a solution to the above problem. However we
are not able to treat any family Z(r) of convex sets. Therefore we have to restrict ourselves to
two cases. In the upcoming Chapter 7 we are going to study the case where the convex set Z(r)
is a polyhedron. Chapter 8 is dedicated to the analysis of Problem 6.8 where Z(r) is assumed to
be smooth. The precise conditions are going to be stated below.

In both cases we are able to prove existence and uniqueness of a solution (under some restric-
tions). Indeed the rough strategy is the same, we make use of Banach’s contraction principle.
However the techniques employed to deduce the desired estimates are different and depend very
much on the shape of the convex sets.
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In this chapter we consider quasivariational sweeping processes where the convex sets Z(r) are
polyhedra. Remember that a polyhedron is the intersection of finitely many subspaces. In other
words P is a polyhedron, if there exist m ∈ N, (ai)

m
i=1 ⊂ X and β ∈ Rm such that

P = {x ∈ X : 〈ai, x〉 ≤ βi} .

One reason to study quasivariational sweeping processes with polyhedral characteristics is that
the play operator with polyhedral characteristics enjoys remarkably good continuity properties.
It is globally Lipschitz continuous with respect to both the norm on W 1,1 and the ‖ · ‖∞ (see
[83, 55, 31]). Also the Skokhorod process, a generalization of the sweeping process, has been
studied for polyhedra and global Lipschitz continuity again with respect to both the above norms
has been obtained [57, 53]. In this case however the dependence of the convex set on the pa-
rameter r is of a very special type. The faces of the convex sets are only allowed to move along
their normal direction but may not be rotated. We also will stick to this assumption and provide
existence of a unique solution to the quasivariational sweeping process. However we will not
use the methods introduced in the latter paper. Instead we will use the approach due to I. Picek
[83] for the play operator and generalize it in order to show global Lipschitz continuity of the
sweeping process. We shall then use this result to provide existence and uniqueness of a solution
by a contraction argument.

This chapter is organized as follows. We are first going to fix notation and assumptions and
introduce the main results in the upcoming section. Section 7.2 will be dedicated to proving
the global Lipschitz continuity of the sweeping process. Thereafter we are going to prove ex-
istence and uniqueness of the quasivariational sweeping process in Section 7.3. We shall also
demonstrate the sharpness of our conditions in dimensions less or equal then two.

7.1. Main result

Let us start by fixing our assumptions on the convex set.

Hypothesis 7.1. There exist m ∈ N, (ai)
m
i=1 ⊂ X with |ai| = 1 for all i ∈ [m] and a map

β : R → Rm such that for all r ∈ R

Z(r) = {x ∈ X : 〈ai, x〉 ≤ βi(r)} . (7.1)

Furthermore we assume that X = span{ai : i ∈ [m]}.

As indicated before this assumption implies that the faces of the polyhedron can move only
along their normal directions but are not allowed to rotate. The last assumption, namely that
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we require that the outer normals are a generating system of X , seems to be very restrictive. It
appears as if we were only able to handle finite dimensional Hilbert spaces. However this is not
the case. If X 6= span{ai : i ∈ [m]} we decompose X = Y ⊕ Y ⊥, where Y = span{ai : i ∈
[m]}. Then for x ∈ X there exist unique x̂, x̂⊥ ∈ X such that

x̂ ∈ Y, x̂⊥ ∈ Y ⊥ : x = x̂+ x̂⊥.

It is then immediate that if ξ is a solution to the sweeping process
(
ξ̂(t)

)⊥
≡ ξ̂⊥0 . Assuming

that ξ solves the quasivariational sweeping process. By definition it solves the sweeping process
with r(t) = g(t, u(t), ξ(t)). Hence by rewriting

g
(
t, u(t), ξ(t)

)
= g̃

(
t, û(t), û⊥(t), ξ̂(t), ξ̂⊥(t)

)
= ĝ

(
t, û(t), ξ̂(t)

)
we reduce the problem to solving the quasivariational sweeping process for ξ̂ with input data ĝ, û
and ξ̂0 on Y . In general, if conditions are imposed on ĝ, we subsequently need to check whether
any conditions on û⊥ and eventually on u need to be made. As we will see below, in the present
case, we do not need to do so. Before we are able to start we need a further definition.

Definition 7.2. Assume Hypothesis 7.1 holds. Set N = dim(X) and A0 = {{0}} ⊂ 2X . For
k ∈ [N ] we define Ak ⊂ 2X by

Ak :=
{
X ′ = span{aij : j ∈ [n]} : n ∈ N, ∀j ∈ [r] : ij ∈ [m], dim(X ′) = k

}
(7.2)

Here m is the number of normal vectors defining Z(r), see Hypothesis 7.1. Ak in other words
is the set of all k dimensional planes in X , which can be generated from the family of normal
vectors (ai)

m
i=1. Furthermore set M0 := 0 and define for all k ∈ [N ]

εk := max{|QX′aj | : X ′ ∈ Ak, aj /∈ X ′} (7.3)

and

Mk :=

(
1

1− ε2
k−1

(
1 +M2

k−1 + 2εk−1Mk−1

))1/2

. (7.4)

Now everything is in place to state the main result of this chapter.

Theorem 7.3 (Existence and uniqueness). Let Hypothesis 7.1 hold and let MN be defined as in
Definition 7.2. Assume that β : R → Rm is Lipschitz continuous with Lipschitz constant C. Let
g ∈ BV(0, T ;C0,1

µ,λ(X ×X;Rm≥0)), u ∈ BV(0, T ;X) and x0 ∈ Z(g(0, u(0), u(0)− x0)) with

CMNλ =: δ < 1 . (7.5)

Then there exists a unique solution ξ of Problem 6.8.

We will show that (7.5) is sharp for dim(X) ≤ 2. The main tools of the proof are Banach’s
contraction principle and the global Lipschitz continuity of the sweeping process.
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Theorem 7.4 (Global Lipschitz continuity). Let Hypothesis 7.1 hold and let MN be defined as
in Definition 7.2. Assume that β : R → Rm is Lipschitz continuous in the sense that

|β(r)− β(s)|∞ ≤ C‖r − s‖R . (7.6)

Then for all r ∈ BV(0, T ;R), u ∈ BV(0, T ;X) and x0 ∈ Z(r(0)) there exists a unique
solution ξ ∈ BV(0, T ;X) to the sweeping process. Furthermore let r, s ∈ BV(0, T ;R), u, v ∈
BV(0, T ;X), x0 ∈ Z(r(0)) and y0 ∈ Z(s(0)). Let ξ, η ∈ BV(0, T ;X) be solutions to the
sweeping process with input u, r, x0 and v, s, y0 respectively. Then

‖ξ − η‖∞ ≤MN (‖u− v‖∞ + C‖r − s‖∞ + |x0 − y0|) . (7.7)

The fact that the sweeping process is globally Lipschitz continuous is not new. It has already
been shown for an even more general problem in [57, 53]. However there the Lipschitz constant
could not be explicitly calculated which we can do here by using Definition 7.2.

7.2. Global Lipschitz continuity of the polyhedral sweeping
process

Let Z(r) satisfy Hypothesis 7.1. Let us just shortly remember that as in Lemma 2.7 we define
the set of all active constraints at some point x ∈ Z(r) by

ΓZ(r)(x) :=
{
i ∈ [m] : 〈ai, x〉X∗,X = βi(r)

}
.

We start our path to proving Theorem 7.4 by making a simple observation.

Proposition 7.5. Let the assumption of Theorem 7.4 hold. For all r, s ∈ R, x = u − ξ ∈ Z(r)
and y = v − η ∈ Z(s) it holds that

∀i ∈ ΓZ(r)(x) : 〈ai, ξ − η〉 ≤ |u− v|+ C‖r − s‖R (7.8)

Proof. Notice that y ∈ Z(s) directly implies 〈y − (βi(r)− βi(s))ai, ai〉 ≤ βi(r). Therefore

〈x− (y − (βi(r)− βi(s))ai) , ai〉 ≥ 0⇒ 〈ξ − η, ai〉 ≤ 〈u− v, ai〉+ βi(r)− βi(s) .

The proof is completed by remembering that |ai| = 1 and β is Lipschitz continuous with constant
C.

Now let u, v, r, s be step functions on the same partition (tk)
n
k=0 ∈ D[0,T ]. In other words we

assume that for there exist (uk)
n
k=1 , (vk)

n
k=1 ⊂ X , (rk)

n
k=1 , (sk)

n
k=1 ⊂ R and (ûk)

n
k=0 , (v̂k)

n
k=0 ⊂

X , (r̂k)
n
k=0 , (ŝk)

n
k=0 ⊂ R such that

f(t) =
n∑
k=1

fkχ(tk−1,tk)(t) +
n∑
k=0

f̂kχ{tk}(t) , (7.9)
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7.2. Global Lipschitz continuity of the polyhedral sweeping process

where f stands for u, v, r, s. Let ξ, η be solutions to the sweeping process with input u, r, x0

and v, s, y0 respectively. Then also ξ and η are step functions with respect to the same partition
(tk)

n
k=0 and can be denoted in the fashion of (7.9). Furthermore it holds that ξ̂0 = û0 − x0 and

u1 − ξ1 = QZ(r1)

(
u1 − ξ̂0

)
∧ ξ1 − ξ̂0 = PZ(r1)

(
u1 − ξ̂0

)
∀1 < k ≤ n : uk − ξk = QZ(rk) (uk − ξk−1) ∧ ξk − ξk−1 = PZ(rk) (uk − ξk−1)

∀1 ≤ k ≤ n : ûk − ξ̂k = QZ(r̂k) (ûk − ξk) ∧ ξ̂k − ξk = PZ(r̂k) (ûk − ξk)


(7.10)

Respective equations hold for η. We now introduce the key element of our proof.

Definition 7.6. For any c > ‖u− v‖∞ + C‖r − s‖∞ + |x0 − y0| we define

Vc(g) := max
{
M2
k c

2 + |PX′(g)| : X ′ ∈ Ak, k ∈ [N ] ∪ {0}
}

(7.11)

where Mk and Ak are defined in Definition 7.2.

Notice that due to Proposition 2.13, we have Vc(−g) = Vc(g). In a certain sense the function
Vc shall play the role of a Lyapunov function for the difference ξ−η. However we cannot assure
that Vc is monotonic decreasing at all points but need to use a more subtle notion. We will make
this precise in the following Lemma, whose proof is the main effort in providing the Lipschitz
continuity result.

Lemma 7.7. For any c > ‖u−v‖∞+C‖r−s‖∞+ |x0−y0| the function Vc(ξ−η) is monotonic
decreasing in the sense that for g = ξ − η it holds that Vc (g1) ≤ Vc (ĝ0) and

∀i ∈ [n] : Vc (gi) ≤ Vc (gi−1) ∧ Vc (ĝi) ≤ Vc (gi) .

Proof. The proof heavily relies on the properties of the projection onto linear subspaces, which
were assembled in Proposition 2.13. Our strategy is a proof by contradiction. If the assertion is
wrong then there exists c > ‖u− v‖∞ +C‖r − s‖∞ + |x0 − y0| such that Vc (g1) > Vc (ĝ0) or

∃i ∈ [n] : Vc (gi) > Vc (gi−1) ∨ Vc (ĝi) > Vc (gi) .

We will assume that
Vc (gi) > Vc (gi−1) . (7.12)

For the other cases the proof works analogously. To simplify the notation we will drop the index c
and just write V . Furthermore we shall denote by ∆f the term fi−fi−1 whenever feasible. Now
remember thatAN = {X} and PX = 0. Hence V (gi−1) ≥M2

Nc
2 and V (gi) = M2

k c
2+|PX′′gi|

for some k ∈ [N−1]∪{0} andX ′′ ∈ Ak. Especially for gi the maximum in (7.11) is not attained
for k = N . Furthermore |PX′′ (gi)| > |PX′′ (gi−1)|. Our aim now is to show that

M2
k c

2 + |PX′′ (gi)| < M2
0 c

2 +
∣∣P{0} (gi)

∣∣2 holds. (7.13)

This constitutes a contradiction. Indeed it is plainly impossible for k = 0. However if k 6= 0
then V (gi) < M2

0 c
2 + |P0 (gi)|2, which cannot be due to (7.11). To start we observe that

〈∆g, gi〉 ≥ |gi|2 − |gi| |gi−1| ≥
1

2

(
|gi|2 − |gi−1|2

)
. (7.14)
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7. Quasivariational sweeping processes with polyhedral characteristics

Furthermore remember thatX ′′ is a linear subspace and therefore also−QX′′ (gi) ,−QX′′ (gi−1)
and their linear combinations are elements of X ′′. Therefore by definition of the projection we
obtain

0 ≥ 〈PX′′ (gi) , QX′′ (gi)− 2QX′′ (gi)〉 and

0 ≥ 〈PX′′ (gi−1) , QX′′ (gi−1)− (QX′′ (gi−1) +QX′′ (gi))〉 .

Adding both inequalities we have

〈PX′′ (gi)− PX′′ (gi−1) ,−QX′′ (gi)〉 ≥ 0 .

Using PX′′ = Id−QX′′ we conclude

〈∆g,−QX′′ (gi)〉 ≥
1

2

(
|QX′′ (gi)|2 − |QX′′ (gi−1)|2

)
. (7.15)

Combining this equation with (7.14) we obtain, by using Proposition 2.13 (ii), that

〈∆g, PX′′ (gi)〉 ≥
1

2

(
|PX′′ (gi)|2 − |PX′′ (gi−1)|2

)
> 0 . (7.16)

We now claim that either 〈∆ξ, PX′′ (gi)〉 > 0 or 〈∆η, PX′′ (−gi)〉 > 0. Assume that the
second assertion is wrong that is 0 ≥ 〈∆η, PX′′ (−gi)〉 = 〈−∆η, PX′′ (gi)〉. Applying this to
(7.16) we obtain that 〈∆ξ, PX′′ (gi)〉 > 0.

Without loss of generality we shall assume that 〈∆ξ, PX′′ (gi)〉 > 0. For the other case it
suffices to interchange ξ and η. Remember that ∆ξ = PZ(ri) (ξi−1 + ui) and consequently
∆ξ ∈ ∂IZ(ri) (xi), where x once again denotes the term u − ξ. Due to Lemma 2.7 there exists
for every l ∈ ΓZ(ri)(x) some λl ≥ 0 such that

∆ξ =
∑

l∈ΓZ(ri)
(x)

λlal .

Therefore we have that ∑
l∈ΓZ(ri)

(x)

λl 〈al, PX′′ (gi)〉 > 0

and thus there exists at least one j ∈ ΓZ(ri)(x) such that 〈aj , PX′′ (gi)〉 > 0.

Notice that aj /∈ X ′′ since if aj ∈ X ′′ then also QX′′ (gi)± nj ∈ X ′′. Testing the variational
inequality defining the projection with both leads to 〈aj , PX′′ (gi)〉 = 0, a contradiction. We
define X ′ := X ′′ ⊕ span{aj}. There exist ρ, η ∈ R and v ∈ X ′′ such that |v| = 1 and

QX′ (gi) = ρv + νaj . (7.17)

Employing Proposition 2.13 (i) we have

|QX′′ (gi)| = |QX′′ (QX′ (gi))| ≥ |〈QX′ (gi) , v〉| = |aε+ b| , (7.18)

where ε = 〈v, nj〉. Due to (7.3) we furthermore know that |ε| ≤ εk. Moreover due to Proposition
7.5 we have

c > 〈aj , gi〉 = 〈aj , QX′ (gi)〉 = ρ+ νε . (7.19)
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7.2. Global Lipschitz continuity of the polyhedral sweeping process

Here the first equality is due to the fact that aj ∈ X ′ and Proposition 2.13 (v), whereas the second
is owed to (7.17). On the other hand by assumption we have

〈aj , gi〉 > 〈aj , QX′′ (gi)〉 = 〈aj , QX′′ (QX′ (gi))〉 = ρ 〈aj , QX′′ (aj)〉+ νε, (7.20)

which by combination with the previous equation implies that ρ 〈aj , aj −QX′′ (aj)〉 > 0. Since

〈aj , aj −QX′′ (aj)〉 ≥
(
|aj |2 − |QX′′ (aj)|2

)
/2 > 0 we derive that ρ > 0. We now employ

(7.18) and (7.19) to obtain

ρ− ρε2 < c− νε− ρε2 ≤ c+ |ε||b+ aε| ≤ c+ |ε| |QX′′ (gm)| . (7.21)

By assumption and using Proposition 2.13 (ii) we deduce

M2
k+1c

2 − |QX′ (gi)| ≤M2
k c

2 − |QX′′ (gi)| .

Furthermore we can estimate that

|QX′ (gi)| = ρ2 + 2ρνε+ ν2

= (ρε+ ν)2 + ρ2
(
1− ε2

)
≤ |QX′′ (gi)|+ a (c+ |ε| |QX′′ (gm)|)

≤ |QX′′ (gi)|+
1

1− ε
(c+ |ε| |QX′′ (gm)|)2

=
1

1− ε

(
c2 + 2c|ε| |QX′′ (gm)|+ |QX′′ (gm)|2

)
≤ 1

1− εk

(
c2 + 2cεk |QX′′ (gm)|+ |QX′′ (gm)|2

)
.

By putting both above inequalities together we obtain

M2
k+1c

2 −M2
k c

2 + |QX′′ (gi)| ≤
1

1− εk

(
c2 + 2cεk |QX′′ (gm)|+ |QX′′ (gm)|2

)
. (7.22)

Applying the definition of Mk+1 we see that

ε2
kM

2
k c

2 + 2εkMkc
2 − ε2

k |QX′′ (gi)|
2 ≤ 2cεk |QX′′ (gi)| .

By regrouping the terms and multiplying with ε−1
k we then derive

εk

(
M2
k c

2 − |QX′′ (gi)|2
)

+ c (Mkr − |QX′′ (gi)|) < 0 . (7.23)

Since both εk and c are positive this can only be satisfied if Mkc < |QX′′ (gi)| and consequently(
M2
k c

2 − |QX′′ (gi)|2
)
< 0. Employing Proposition 2.13 (ii) for a last time gives us

0 > M2
k c

2 − |QX′′ (gi)|2

= M2
k c

2 + |PX′′ (gi)|2 −
(
M2

0 c
2 −

∣∣P{0} (gi)
∣∣2) ,

where last equality is due to the fact that P{0} = Id and M0 = 0. As explained at the beginning
this is a contradiction. Hence our assumption is wrong and consequently V (gi) ≤ V (gi−1).
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7. Quasivariational sweeping processes with polyhedral characteristics

We are now able to show our main result of this section.

Proof of Theorem 7.4. The proof is divided into three parts. We first use the Lemma 7.7 to es-
tablish global Lipschitz continuity for step functions. We then show existence and uniqueness
of a solution on the whole space BV by applying Theorem 6.5. Finally we extend the Lipschitz
continuity result to the whole space of functions of essentially bounded variation by a density
argument.

Step 1 - Lipschitz estimate for step functions: Let u, v ∈ S(0, T ;X), r, s ∈ S(0, T ;R),
x0 ∈ Z(r(0)) and y0 ∈ Z(s(0)). Furthermore let ξ ∈ S(0, T ;X) be the solution of the sweeping
process with input u, r, x0 and η the solution with input v, s, y0. Without loss of generality we
can assume that there exists a partition (tn)Nn=0 such that all functions can be written in the
fashion of (7.9) by using the union of all partitions of the input functions. Now due to Lemma
7.7 we know that for every t ∈ [0, T ] and every c > ‖u − v‖∞ + C‖r − s‖∞ + |x0 − y0| we
have

Vr (ξ(t)− η(t)) ≤ Vc (ξ(0)− η(0)) .

From (7.11) we derive that |ξ(t)− η(t)|2 ≤ Vc (ξ(t)− η(t)); set k = 0. On the other hand since
|ξ(0)− η(0)| ≤ |u(0)− v(0)|+ |x0 − y0| < c we have that for all k ∈ [N − 1] and X ′ ∈ Ak

M2
k c

2 + |PX′ (ξ(0)− η(0))| ≤
(
M2
k + 1

)
c2 < M2

k+1c
2 .

Hence Vc(ξ(0)− η(0)) = M2
Nc

2 and we therefore obtain

|ξ(t)− η(t)| ≤MNc .

Since this holds for all t ∈ [0, T ] and c > ‖u − v‖∞ + C‖r − s‖∞ + |x0 − y0| can be chosen
arbitrarily Theorem 7.4 is proven for all step functions.

Step 2 - Existence and uniqueness on BV: We apply Theorem 6.5 to show existence and
uniqueness of a solution. In order to do so, we need to ensure that (6.5) holds. Indeed for
r, s ∈ R we have

dH (Z(r), Z(s)) ≤MNC‖r − s‖R . (7.24)

One easy way to see this, is using the result from the first step: Let r, s ∈ R and x0 ∈ Z(r).
Define on the interval [0, 1] the functions u ≡ 0, r1 ≡ r and r2(t) = rχ[0,1/2](t) + sχ(1/2,1](t).
Let ξ1 and ξ2 be the solutions associated to u, r1, x0 and u, r2, x0 respectively. From the first
step we deduce that ‖ξ1− ξ2‖ ≤MNC‖r−s‖R. Remembering (7.10) this inequality and u ≡ 0
lead to dist(x0, Z(s)) = ‖QZ(s)(x0) − x0‖ ≤ MNC‖r − s‖R. The same argument can also
be applied to y0 ∈ Z(s). Taking the supremum over all x0 ∈ Z(r) and y0 ∈ Z(s) implies (7.24) .

Step 3 - Lipschitz estimate on BV: Now let u, v ∈ BV(0, T ;X), r, s ∈ BV(0, T ;R), x0 ∈
Z(r(0)) and y0 ∈ Z(s(0)). Then there exist sequences of step functions (un)n∈N , (v

n)n∈N ⊂
S(0, T ;X) and (rn)n∈N , (s

n)n∈N ⊂ S(0, T ;R) such that

[∀n ∈ N : fn(0) = f(0) ∧ Var(fn) ≤ Var(f)] ∧ ‖fn − f‖∞ → 0 (7.25)

where f is subsequently replaced by u, v, r, s. Let ξn, ηn and ξ,η be the associated solutions.
Due to Theorem 6.5 we furthermore have ‖ξn − ξ‖∞ → 0 and ‖ηn − η‖∞ → 0. Due to our
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7.3. Uniqueness and non-uniqueness of the quasivariational sweeping process

above argument we know that for every n ∈ N

‖ξn − ηn‖∞ ≤MN (‖un − vn‖∞ + C‖rn − sn‖∞ + |x0 − y0|)

holds. Passing to the limit n→∞ completes the proof.

7.3. Uniqueness and non-uniqueness of the quasivariational
sweeping process

Due to our preparations in the previous section proving Theorem 7.3 is only little work.

Proof of Theorem 7.3. Let u ∈ BV(0, T ;X), g ∈ BV
(

0, T ;C0,1
µ,λ(X ×X;R)

)
and x0 ∈

Z(g(0, u(0), x0 − u(0))). Define the set Ω ⊂ BV(0, T ;X) by

Ω :=

{
η ∈ BV(0, T ;X) :

η(0) = x0 − u(0) ∧
Var(η) ≤ MNC

1−δ

(
Var(g) +

(
1

MNC
+ µ

)
Var(u)

) } .
Notice that due to Ω is closed with respect to the topology induced by the ‖ · ‖∞-norm. Define
S : Ω → BV(0, T ;X) as the map S : η 7→ ξ where ξ is the solution to the sweeping process
with inputs u, x0 and r(t) = g(t, u(t), η(t)). We claim that S is a contraction on Ω. We first
show that S(Ω) ⊂ Ω. To this end let r be defined as above. First notice that since ξ is a solution
we have ξ(0) = u(0)− x0. Furthermore it is easy to see that

Var(r) ≤ Var(g) + µVar(u) + λVar(η) . (7.26)

Applying this to (6.8) with L = MNC (due to step 2 of the above proof) we obtain that

Var(ξ) ≤ Var(u) +MNC
(
Var(g) + µVar(u) + λVar(η)

)
≤ MNC

(
δ

1− δ
+ 1

)
Var(g)

+ (1 +MNCµ) Var(u) +MNC
δ

1− δ

(
1

MNC
+ µ

)
Var(u)

=
MNC

1− δ
(
Var(g) + (1 + µ)Var(u)

)
.

Indeed if ξ is a solution to the implicit sweeping process then we can simply calculate

Var(ξ) ≤ Var(u) +MNC
(
Var(g) + µVar(u) + λVar(ξ)

)
and obtain that ξ ∈ Ω. For η1, η2 ∈ Ω we define ri(t) = g(t, u(t), ηi(t)) for i ∈ [2]. Then
‖r1 − r1‖∞ ≤ λ‖η1 − η2‖∞ and by applying Theorem 7.4 we get∥∥S (η1

)
− S

(
η2
)∥∥
∞ ≤ δ

∥∥η1 − η2
∥∥
∞ .

This is the contraction property and Banach’s fixed point theorem yields the existence of a unique
ξ ∈ Ω such that S(ξ) = ξ. Thereby ξ is a solution to Problem 6.8. Furthermore, since any
solution needs to be in Ω, it is also unique.
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7. Quasivariational sweeping processes with polyhedral characteristics

We will now show that condition (7.5) is sharp in dimension less or equal two. This implies
that the Lipschitz constant in Theorem 7.4 is sharp with respect to ‖r−s‖∞ in these dimensions.
We thereby complement results for the play operator (see [55]), which imply that the Lipschitz
constant is also sharp with respect to ‖u − v‖∞ in dimension less or equal to two. There are
no results for dimensions greater than two. Indeed even for the play operator it is not known
whether the Lipschitz bound is sharp for dimension three or higher.

We treat each dimension in a separate example. As can be expected the case dim(X) = 1 is
the simplest one and therefore we shall start with it.

Example 7.8. For N = dim(X) = 1 we can without loss of generality assume that X = R. For
simplicity also assume thatR = R and define Z(r) by

Z(r) = {x ∈ R : x ≤ r} .

This indeed is a polyhedron and we can denote it in terms of (7.1) by writing x = x · 1 and
β(r) = r. We hence obtain C = 1 and by definition MN = M1 = 1. We choose

gλ(t, u, ξ) = λ (u− ξ) , u(t) = t and x0 = 0 .

For λ < 1 Theorem 7.3 grants the existence of a unique solution, namely ξλ(t) = t. In contrast
for λ = 1 uniqueness is lost. Indeed both

ξ1(t) = t and ξ2 ≡ 0

are solutions to Problem (6.8). Since both functions are differentiable it suffices to show that
u(t)− ξi(t) ∈ Z(g1(t, u, ξi(t)) and ξ̇i(t) ∈ ∂IZ(g1(t,u(t),ξi(t)))(u(t)− ξi(t)) for both i ∈ [2]. The
first condition is simple; it is readily granted by the definition of Z(r) and g1. For ξ2 the second
condition is trivial as well. For any closed convex set K and any x ∈ K, it holds 0 ∈ ∂IK(x).
For ξ1 notice that ξ̇1 ≡ 1, ∂IZ(r)(x) = 0 for x 6= r and ∂IZ(r)(x) = (−∞, 0] for x = r.

Remark 7.9. In the above example one can even show that for λ = 1 any non decreasing function
ξ with ξ(t) ≤ t is a solution to the implicit sweeping process.

For dim(X) = 2 the example is slightly more elaborate. The bigger Lipschitz constant is
owed to the possibility of the interplay of two faces, which we will make use of in our example.
Let us choose X = R2 = R. Note that we have to choose a norm for R, which can be more or
less arbitrary, as long at it is a norm. X , which has to be a Hilbert space, has to be equipped with
an Euclidean norm. We decide in both cases for the standard 2-norm. Let a1, a2 ∈ R2 such that
| 〈a1, a2〉 | 6= 1, or in other words choosing a1, a2 linearly independent, we define the set Z(r)
by

Z(r) :=
{
x ∈ R2 : 〈ai, x〉 ≤ ri

}
. (7.27)

In other words we once again we set β : r 7→ r. We can explicitly calculate the value of M2 and
obtain

M2 =

√
2

1− |〈a1, a2〉|
. (7.28)

Notice that the above term is finite by assumption. The way we need to exploit the interplay of
the two faces depends on the sign of 〈a1, a2〉. Roughly speaking, if it is positive then the faces
should move in the same direction, if it is negative they shall move in opposite direction. We
shall treat the cases in two separate examples.
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7.3. Uniqueness and non-uniqueness of the quasivariational sweeping process

Example 7.10. We set R = X = R2. We equip R with the ‖ · ‖∞ norm whereas we equip X
as an Hilbert space with the usual inner product. Due to our choice of norm we have C = 1.
Assume that Z(r) is of form (7.27) and 〈a1, a2〉 ≤ 0. Define the vector

v :=
a1 + a2

|a1 + a2|
.

For the initial value we choose x0 = 0 ∈ R2. We choose the function g once again independent
of t as

g(u, ξ) :=
1

M2
〈u− ξ, v〉

(
1
1

)
.

Therefore to make notation simpler we drop the dependence of g on time as it obviously does
not depend on time. It is now a straightforward computation to see that

|g(u, ξ)− g(w, η)|∞ ≤
1

M2
(|u− w| − |ξ − η|) .

Thus we are once again in the critical case δ = 1. Finally we choose the function u to be

u(t) = t · v .

It is easy to see that ξ1 ≡ u is a solution of the quasivariational sweeping process. It is clear
that ξ1 − u ≡ 0 is an element of Z(g(u(t), ξ1(t))). Also ξ̇1(t) ≡ v ∈ ∂IZ(g(u(t),ξ1(t)))(0) due to
Lemma 2.7. On the other hand also ξ2 ≡ 0 is a solution to the problem. Indeed on the one hand
we have that

g(u(t), ξ2(t)) =
t

M2

√
2

(
1
1

)
= t

√
1 + 〈a1, a2〉

2

(
1
1

)
and on the other hand we can calculate

〈a1, u2(t)− ξ2(t)〉 = t

〈
a1,

a1 + a2

|a1 + a2|

〉
= t

√
1 + 〈a1, a2〉

2
= 〈a2, u2(t)− ξ2(t)〉 .

Therefore u(t) − ξ2(t) ∈ Z (g (u(t), ξ2(t))). Since ξ̇2(t) ≡ 0 the differential inclusion is also
satisfied.

In the case 〈a1, a2〉 ≥ 0 set

v :=
a1 − a2

|a1 − a2|
(7.29)

and define g as above. Define u(t) = t·a1 and choose x0 = 0 ∈ R2. Then on the one hand ξ1 ≡ u
is a solution, since both ξ1(t)−u(t) = 0 ∈ Z (g(u(t), ξ1(t))) and also a1 ∈ ∂IZ(g(u(t),ξ1(t)))(0).
Moreover

ξ2(t) := t · a2 (7.30)

is a solution. It is an easy computation to check that

u(t)− ξ2(t) = t(a1 − a2) ∈ Z(g(t · a1, t · a2)) . (7.31)

Indeed it turns out that ΓZ(g(t·a1,t·a2))

(
t (a1 − a2)

)
= {1, 2} and hence also

ξ̇2(t) ∈ ∂IZ(g(u(t),ξ2(t)))(u(t)− ξ2(t)) .
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8. Quasivariational sweeping processes with
smooth characteristics

The aim of this chapter is to prove existence and uniqueness of a quasivariational sweeping
process for smooth characteristics on (left continuous) functions of bounded variations. This
generalizes a previous result due to M. Brokate, P. Krejčı́ and H. Schnabel [18] who studied
this problem for absolutely continuous functions. In the previous chapter the conditions which
were needed to establish the existence of a unique solution were the same both for functions of
bounded variation and for absolutely continuous functions. Here however things are different.
We cannot straightforwardly transfer the arguments of [18]. It turns out that we pay for allowing
BV functions by the need to employ additional structural assumptions. This is due to the fact
that at every point the solution jumps it has to satisfy a static quasivariational inequality, that is a
variational problem of the form

find ξ such that 〈u− ξ, ξ − y〉 ≥ 0 ∀y ∈ Z(ξ) .

We will show that the assumption of [18] do not suffice to guarantee the existence of an unique
solution for this problem. Therefore throughout the main part of our exposition we will limit
the size of the jumps. At the end we however will give examples for stricter conditions on the
convex sets that in exchange allow for arbitrary large jumps.

The idea of our proof here is the following: The BV functions are decomposed into intervals
in which only very small jumps occur and a finite number of larger jumps. We solve each part by
a contraction argument. For the first part a method similar to [18] is used to show the existence of
a solution. This part is indeed quite technical as we have to use differences instead of derivatives
which allows a shorter and more elegant proof. For the larger jumps it suffices to analyze the
static quasivariational inequality. Here existence and uniqueness can only be guaranteed if the
additional structural condition is satisfied, e.g. when the size of the jumps is not too big. The
solution to the static problem gives the starting point for the evolution problem on the new time
interval. Since we are in BV , only a finite number of restarts have to be considered. The frame-
work of the Kurzweil solution is very suitable for this procedure as it easily allows to “glue” the
solutions of the different parts together.

Let us give a short overview over this chapter: In the following Section 8.1 we are going to
accurately introduce our main result. Section 8.2 is devoted to the analysis of the static quasi-
variational inequality. We would especially like to point out Proposition 8.9, which studies the
distance of the projections of a point onto two different convex sets under fairly general assump-
tions. We believe this result to be new and it might be of interest also outside the context of
this study. Afterwards, we are going to establish existence and uniqueness of a solution under
the assumption that the involved functions have only very small jumps. There, we will slightly
deviate from our main course and prove local Lipschitz continuity of the sweeping process on
BV . This might be of interest in applications. The proof of the main theorem is the content
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of Section 8.4. In the final Section 8.5 we are first going to show that a condition on the jump
size is needed. We will then give examples how this can be overcome by additional structural
assumption on the convex sets.

The results we present here have been obtained and published in a joint work with P. Krejčı́
[62] and the article [90].

8.1. Introduction of the main result

We start by precisely formulating the assumptions on the convex sets imposed throughout this
chapter. Throughout this chapter we will write

M(r, x) := MZ(r)(x)

where MZ(x) is the Minkowski functional of Z evaluated in point x, see Definition 2.21.

Hypothesis 8.1. There exists C > 0 such that 0 ∈ Z(r) ⊂ BC(0) for all r ∈ R. Furthermore
the partial Fréchet derivatives ∂rM(r, x) ∈ R∗ and ∂xM(r, x) ∈ X exist for every r ∈ R and
every x ∈ X \ {0}. We denote B(r, x) = 1

2M
2(r, x). The maps

J(r, x) = ∂xB(r, x) = M(r, x)∂xM(r, x) : X ×R → X ,

K(r, x) = ∂rB(r, x) = M(r, x)∂rM(r, x) : X ×R → R∗

allow continuous extensions to x = 0. Furthermore, there exist constants K0, CJ , CK such that
for all x, y ∈ BC(0), r, s ∈ R it holds

‖K(r, x)‖R∗ ≤ K0 ,

|J(r, x)− J(s, y)| ≤ CJ (|x− y|+ ‖r − s‖R) ,

‖K(r, x)−K(s, y)‖R∗ ≤ CK (|x− y|+ ‖r − s‖R) .

In [18] it was additionally assumed that all sets Z(r) contain a ball centered at 0 with some
radius c > 0. However this is already a consequence of the other assumptions:

Lemma 8.2. If Hypothesis 8.1 holds, then CJC2 > 1. Furthermore for c := C
−1/2
J we have

Bc(0) ∈ Z(r) for all r ∈ R.

Proof. For all x ∈ X and r ∈ R we have M2(r, x) = 〈J(r, x), x〉 and J(r, 0) = 0. Hypothesis
8.1 then yields M2(r, x) ≤ CJ |x|2. Using the implications |x| > C ⇒ M(r, x) > 1 and
|x| < C

−1/2
J ⇒M(r, x) < 1, we obtain the assertion.

The assumptions we impose might be hard to understand in a geometrical context at first
glance. What we essentially ask for is that at every point x ∈ ∂Z(r) there exists a unique outer
normal vector n(r, x). Furthermore we want this vector to depend globally Lipschitz continuous
on both x and r. We shall present a prototypical convex set that satisfies these assumptions below
in Example 8.5.

We denote by C1
ω,γ(X ×X;R) the space of functions f ∈ C1(X ×X;R), (u, ξ) 7→ f(u, ξ)

such that ‖∂uf‖∞ ≤ ω and ‖∂ξf‖∞ ≤ γ. The main result of this chapter reads:
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8. Quasivariational sweeping processes with smooth characteristics

Theorem 8.3 (Existence and uniqueness). Let u ∈ BV cu
L (0, T ;X), g ∈ BV cg

L (0, T ;C1
ω,γ(X ×

X;R)) and x0 ∈ Z(g(0, u(0), u(0)− x0)). Assume that Hypothesis 8.1,

δ := CK0γ < 1 and (8.1)

CK0cg + (1 + CK0ω)cu <
(1− δ)2

CJC(1 + δ)
(8.2)

hold. Then there exists a unique solution to Problem 6.8.

Remember that BV c
L is the set of left-continuous functions of bounded variation whose jumps

are smaller than c. For a more thorough discussion of these functions we refer to Definition 3.15
and the analysis thereafter.

Remark 8.4. When allowing for absolutely continuous functions only, existence and uniqueness
has been shown in [18] if (8.1) holds. Our result covers this case: Absolutely continuous func-
tions have no jumps, i.e. discontinuities, and hence (8.2) is always satisfied. It turns out that
(8.2) is owed to the vectorial nature of our problem. For X = R it is superfluous, as we shall see
in Section 8.5.

To verify that a given problem does indeed satisfy the above assumptions amounts in general
to tedious calculations. It has been done for the Gurson model with absolutely continuous func-
tions in [98]. That model, introduced in [40], describes the nucleation of voids in elastic and
ideally plastic materials. Here the convex sets are ellipsoids in the space of stress tensors, that is
symmetric tensors on R3, namely

Z(r) =
{
σ ∈ R3×3

symm : a‖d(σ)‖2 + r
(
2cosh

(
b · tr(σ)

)
− 1
)
≤ (1− r)2

}
,

where tr(σ) denotes the trace of σ and d(σ) the trace free deviator d(σ) = σ − 1
3 tr(σ)Id.

In order to develop a feeling for what this theorem is able to do and to understand its limitations
we shall give an example of a problem we are able to handle with this result. The probably most
simple examples which do not reduce to a problem on the real line appear to be ellipsoids in R2.
This will also be the form of the convex set here.

Example 8.5. Choose X = R2 andR = R. Furthermore let the set Z(r) be of the form

Z(r) =
{
x ∈ R2 : x2

1 + 2x2
2 ≤ f(r)2

}
with f : R→ (0,∞). First we need to ensure that the conditions of Hypothesis 8.1 are satisfied.
First we compute M(x, r) =

(
x2

1 + 2x2
2

)+1/2
/f(r). To give a concrete example let us assume

that
f(r) =

3

4
+

1

4
sin(r) .

Then it is easy to see that Z(r) ⊂ B1(0). Furthermore

J(x, r) =

(
3

4
+

1

4
sin(r)

)−1(
x1

2x2

)
and

K(x, r) =
x2

1 + 2x2
2

4
(

3
4 + 1

4 sin(r)
)3 cos(r) .
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It is possible to chooseK0 = 4, CJ = 4 and CK = 28. Here the choice of CK is rough, however
as it does not appear in (8.1) and (8.2), its mere existence suffices. Due to the above estimates
we need γ < 1

4 in order to be able to apply our theorem. Assuming that g does only depend on
ξ, e.g.

g(t, u, ξ) = γξ1(t) ,

the jump size of u needs to be bounded by (1−4γ)2

4(1+γ) .

8.2. The static quasivariational inequality

When trying to analyze a time-dependent problem, it is natural to consider the underlying static
problem first - in our case the quasivariational inequality. Apart from that being folklore wisdom
we have even more reason to do so: Let ξ be a solution of Problem 6.8 that jumps at some time
τ ∈ [0, T ). Choosing the testfunction z in (6.15) by z(t) = u(t+) − ξ(t+) for t 6= τ and
z(τ) = y for some y ∈ Z(g(τ+, u(τ+), ξ(τ+))) leads to

〈u(τ+)− ξ(τ+)− y, ξ(τ+)− ξ(τ)〉 ≥ 0 . (8.3)

Therefore at any time τ where ξ jumps it has to satisfy a quasivariational inequality. A short
study of it will be the subject of this section. Indeed this analysis is crucial in understanding the
jump size condition. Let us start by precisely formulating the problem we want to solve.

Problem 8.6. Let gi ∈ Lipω,γ(X × X;R), ui ∈ X i ∈ {0, 1} and ξ0 ∈ X such that x0 =
u0 − ξ0 ∈ Z(g0(x0, u0)). Find ξ1 such that

∀y ∈ Z(g1(u1, ξ1)) : 〈u1 − ξ1 − y, ξ1 − ξ0〉 ≥ 0 . (8.4)

The above problem is called a quasivariational inequality. The set of admissible vectors to
test against depends on the state that is tested. These problems have been intensively studied
by C. Baiocchi and A. Capelo in their seminal monograph [7]. They established existence and
uniqueness of solutions by employing order methods. However these results are not applicable
to our case. We proceed in a different way and try to establish existence and uniqueness of a
solution to Problem 8.6 by applying Banach’s contraction principle. To this end we rewrite the
(8.4) as find x1 ∈ X such that

u1 − ξ1 = QZ(g(u1,ξ1))(x0 + ∆u) , (8.5)

where ∆f = f1 − f0 for any f ∈ {u, g, ξ, x}. Here and for the remainder of this chapter we
denote by x(i) the term ξ(i) − u(i). We point out that QZ is the projection onto Z as defined in
Section 2.2. Our aim is to show that the map{

X → X
η 7→ u1 −QZ(g1(u1,η)) (x0 + ∆u)

is a contraction. Hence our task is clear: Estimate the difference of the two projections

QZ(g1(u1,η1)) (x0 + ∆u)−QZ(g1(u1,η2)) (x0 + ∆u) .

It is perhaps surprising, that the difference does not only depends on the distance of the convex
sets and therefore on η1 − η2 but also on the length of the projection which means in the end it
depends on ∆g and ∆u.
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8. Quasivariational sweeping processes with smooth characteristics

8.2.1. The difference of projections onto two convex sets

We first establish an estimate on the difference of two projections (Proposition 8.9) under rather
general assumptions on the convex sets. We believe this result to be of interest in its own right. It
has been originally obtained in joint work with Pavel Krejčı́ [62]. We will then use the assump-
tions of Hypothesis 8.1 to derive the result adapted to our purposes in Corollary 8.13.

Hypothesis 8.7. AssumeZ : R → 2X satisfies the following conditions: Z(r) ⊂ X is nonempty,
closed and convex for all r ∈ R and there exist functions j : R×R → R, ψ : [0,∞)→ [0,∞)
such that

|nr − ns| ≤ j(r, s) + ψ(|x− y|)
for all x ∈ ∂Z(r), y ∈ ∂Z(s) and nr ∈ ∂IZ(r)(x), ns ∈ ∂IZ(s)(y), |nr| = |ns| = 1.

Notice that the outer unit normal does not need to be unique, i.e. ψ(0) = 0 is not required.
However ψ can be interpreted as a (generalized) modulus of continuity whereas j does not nec-
essarily need to be one.
Remark 8.8. As a shorthand we shall from now on write dH(r, s) instead of dH(Z(r), Z(s)) and
Pr for PZ(r).

Our aim here is to prove the following result.

Proposition 8.9. Let Hypothesis 8.7 hold and let u ∈ X be given. Then

|Qr(u)−Qs(u)| ≤ dH(r, s) + |Pru|(j(r, s) + ψ(dH(r, s)))

To prepare the proof of this statement we establish some helpful results.

Lemma 8.10. Let Z be a convex set and QZ , PZ be as in Section 2.2. Let x, e ∈ X , |e| = 1 be
fixed and Λ ⊂ R be the set

Λ = {λ ∈ R : x+ λe /∈ Z} .
For λ ∈ Λ define

bλ := PZ(x+ λe), f(λ) =

〈
e,
PZ(x+ λe)

|PZ(x+ λe)|

〉
.

Then for all µ, λ ∈ Λ it holds that

0 ≤ |bλ|+ |bµ|
2

∣∣∣∣ bλ|bλ| − bµ
|bµ|

∣∣∣∣2 ≤ (λ− µ)(f(λ)− f(µ)) . (8.6)

Especially, the function f is nondecreasing in Λ.

Proof. By Lemma 2.12, we have for every λ, µ ∈ Λ that〈
PZ(x+ λe)

|PZ(x+ λe)|
, QZ(x+ λe)−QZ(x+ µe)

〉
≥ 0 ,

〈
PZ(x+ µe)

|PZ(x+ µe)|
, QZ(x+ µe)−QZ(x+ λe)

〉
≥ 0 .

Summing up the two inequalities we obtain〈
bλ
|bλ|
− bµ
|bµ|

, bλ − bµ
〉
≤ (λ− µ)

〈
e,
bλ
|bλ|
− bµ
|bµ|

〉
,

which is precisely (8.6).
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8.2. The static quasivariational inequality

Lemma 8.11. Under the assumptions of Proposition 8.9, we have∣∣|Pr(u)| − |Ps(u)|
∣∣ ≤ dH(r, s) .

Proof. We have

|Pr(u)| ≤ |u−Qr(Qs(u))| ≤ |u−Qs(u)|+ |Pr(Qs(u))| ≤ |Ps(u)|+ dH(r, s)

Interchanging the roles of r and s, we obtain the assertion.

Now everything is in place to move to the main proof.

Proof of Proposition 8.9. If u ∈ Z(r)∪Z(s) orQr(u) = Qs(u) the assertion is straightforward.
Thus set xr = Qr(u), xs = Qs(u) and assume that

xr 6= xs , u /∈ Z(r) ∪ Z(s) , |Pr(u)| ≤ |Ps(u)| . (8.7)

Set

nr =
Pr(u)

|Pr(u)|
, ns =

Ps(u)

|Ps(u)|
. (8.8)

Then nr, ns are unit vectors belonging to ∂IZ(r)(xr), ∂IZ(s)(xs), respectively, and we have

|xr − xs| = |Pr(u)− Ps(u)| = ||Pr(u)|nr − |Ps(u)|ns|
≤ ||Pr(u)| − |Ps(u)|| |ns|+ |Pr(u)| (|nr − ns|)
≤ dH(r, s) + |Pr(u)| (|nr − ns|) . (8.9)

In the last step we employed the result of Lemma 8.11. Put e := nr and

xs(λ) := Qs(xr + λe) , xr(λ) = Qr(xr + λe)

for λ ≥ 0. We have
|xs(0)− xr(0)| = |Qs(xr)− xr| ≤ dH(r, s) .

Furthermore for all λ ≥ 0 we have by Lemma 2.12 (iii) that

Pr(xr + λe) = λe .

Assume that for some λ ∈ [0, |Pr(u)|] we have xr + λe ∈ Z(s). Then

〈Ps(u), xs − xr − λe〉 ≥ 0 ,

hence

〈Ps(u), Pr(u)− Ps(u)〉 ≥ λ
〈
Ps(u),

Pr(u)

|Pr(u)|

〉
,

that is,

|Ps(u)|2 ≤ 〈Ps(u), Pr(u)〉
(

1− λ

|Pr(u)|

)
. (8.10)

By (8.7), we have |Pr(u)| ≤ |Ps(u)|. This is compatible with (8.10) only if λ = 0 and xr−xs =
Ps(u)− Pr(u) = 0, which contradicts (8.7). Hence we have that

[0, |Pr(u)|] ⊂ Λs = {λ ∈ R : xr + λe /∈ Z(s)} .
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8. Quasivariational sweeping processes with smooth characteristics

For λ ∈ [0, |Pr(u)|] set

nr(λ) =
Pr(xr + λe)

|Pr(xr + λe)|
= e , ns(λ) =

Ps(xr + λe)

|Ps(xr + λe)|
. (8.11)

We have for all λ ∈ [0, |Pr(u)|] that

nr(λ) ∈ ∂IZ(r)(xr(λ)) , ns(λ) ∈ ∂IZ(s)(xs(λ)), (8.12)

and

|nr(λ)− ns(λ)|2 = 2

(
1−

〈
e,
Ps(xr + λe)

|Ps(xr + λe)|

〉)
.

By Lemma 8.10 we have for λ > µ that

|nr(λ)− ns(λ)|2 − |nr(µ)− ns(µ)|2

≤ −|Ps(xr + µe)|+ |Ps(xr + λe)|
λ− µ

∣∣∣∣ Ps(xr + µe)

|Ps(xr + µe)|
− Ps(xr + λe)

|Ps(xr + λe)|

∣∣∣∣2 . (8.13)

Note that in agreement with (8.8), for λ = |Pr(u)| we have ns(λ) = ns, and for µ → 0 we get
|nr(µ)− ns(µ)| → |e− ns(0)|. Using |Pr(u)| ≤ |Ps(u)| we get

|nr − ns|2 ≤ |e− ns(0)|2 − |ns − ns(0))|2 .

Especially we have

|nr − ns| ≤ |e− ns(0)| ≤ j(r, s) + ψ(dH(r, s)) ,

where the latter inequality is due to (8.2.1), (8.12), and Hypothesis 8.7. To complete the proof, it
suffices to refer to (8.9).

In order to apply Proposition 8.9 to our problem we need some results, which have been proven
in [18, Section 3].

Proposition 8.12. Let Hypothesis 8.1 hold, let c be as in Lemma 8.2. Then

|x|
C
≤M(r, x) ≤ |x|

c
∀(r, x) ∈ R×X , (8.14)

1

C
≤ |J(r, x)| ≤ 1

c
∀r ∈ R ∀x ∈ ∂Z(r) , (8.15)

n(r, x) =
J(r, x)

|J(r, x)|
∀r ∈ R ∀x ∈ ∂Z(r) . (8.16)

We now can derive the following assertions.

Corollary 8.13. Let Hypothesis 8.1 hold. Then

dH(r, s) ≤ CK0‖r − s‖R ∀r, s ∈ R , (8.17)

|n(r, x)− n(s, y)| ≤ CJC(|x− y|+ ‖r − s‖R) (8.18)

∀r, s ∈ R ∀x ∈ ∂Z(r) ∀y ∈ ∂Z(s) ,

|Qr(u)−Qs(u)| ≤ (CK0 + CJC(1 + CK0)|Pr(u)|) ‖r − s‖R (8.19)

∀r, s ∈ R ∀u ∈ X .
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Proof. Let x ∈ Z(r) be arbitrary and assume that x /∈ Z(s). Then M(s, x) ≥ 1, M(r, x) ≤ 1,
and

dist(x, Z(s)) ≤
∣∣∣∣x− x

M(s, x)

∣∣∣∣ =
|x|

M(s, x)(1 +M(s, x))
(M2(s, x)− 1)

≤ C

(
1

2
M2(s, x)− 1

2
M2(r, x)

)
≤ CK0‖r − s‖R .

Interchanging the roles of r and s, we obtain (8.17). Using Proposition 8.12, it is easy to check
that (8.18) holds. Indeed, for all r, s ∈ R, x ∈ ∂Z(r), and y ∈ ∂Z(s), we have

|n(r, x)− n(s, y)| ≤ |J(r, x)− J(s, y)|√
|J(r, x)| |J(s, y)|

≤ C|J(r, x)− J(s, y)| ,

and the assertion follows from Hypothesis 8.1. Hypothesis 8.7 is thus fulfilled with j(r, s) =
CJC‖r − s‖R, ψ(p) = CJCp, and (8.19) follows from Proposition 8.9.

8.2.2. Existence and uniqueness for the static quasivariational inequality

Let us start with a simple proposition.

Proposition 8.14. Assume x0 ∈ Z(s) and ξ1 − u1 = QZ(r)(x0 + ∆u), then

|∆ξ| ≤ |∆u|+ dH(r, s) .

Proof. First note that ∆ξ = x0 + ∆u− x1. We therefore estimate

|∆ξ| ≤ |PZ(r)(x0 + ∆u)| ≤ |PZ(r)(x0 + ∆u)− PZ(r)(x0)|+ |PZ(r)(x0)| .

Due to Proposition 2.12 (ii) the first term is less than |∆u| and the second is by definition less
than dH(r, s).

Using the above calculation we can estimate the ’jump size’ |∆ξ| of the solution.

Corollary 8.15. If Hypothesis 8.1 holds and ξ1 is a solution to Problem 8.6, then

|∆ξ| ≤ |∆u|+ CK0(|∆g|+ γ|∆ξ|+ ω|∆u|) (8.20)

Proof. Using 8.14 with s = g0(u0, ξ0) and r = g1(u1, ξ1) leads to

|∆ξ| ≤ |∆u|+ CK0‖r − s‖R .

It remains to estimate ‖r − s‖R, which is done in the usual way

‖g1(u1, ξ1)− g0(u0, ξ0)‖R ≤ ‖g1(u1, ξ1)− g1(u0, ξ0)‖R + ‖g1(u0, ξ0)− g0(u0, ξ0)‖R

and the proof is complete.

As in [18] we assume that CK0γ =: δ < 1. No matter how small the size of the jumps is this
condition is indeed necessary to obtain uniqueness as the following example demonstrates.
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8. Quasivariational sweeping processes with smooth characteristics

Example 8.16. Let X = R = R and 0 < c < 1 <∞. Choose

Z(r) = [−1,max{min{1, r}, c}]

and gi(u, ξ) = u− ξ for i ∈ [2]. Then C = K0 = γ = 1. For x0 = ξ0 = c and u0 = 1. Choose
u1 = ε ≥ 0. Then any ξ1 ∈ [max{0, u1−1},min{ε, u1−c}] is a solution to the quasivariational
inequality.

Proposition 8.17. Let Hypothesis 8.1 and CK0γ =: δ < 1 hold. If ξ1 is a solution to Problem
8.6, then

|∆ξ| ≤ 1

1− δ
(CK0|∆g|+ (1 + CK0ω)|∆u|) =: S(|∆g|, |∆u|) . (8.21)

Furthermore

∀η ∈ BS(|∆g|,|∆u|)(x0) : QZ(g(η,u1))(x0 + ∆u) ∈ BS(|∆g|,|∆u|)(x0) .

Obtaining the assertion is just a simple calculation. Finally we are now able to prove the
following

Proposition 8.18. Assume Hypothesis 8.1 holds and CK0γ =: δ < 1. Furthermore let |∆g|
and |∆u| be chosen small enough such that

CK0|∆g|+ (1 + CK0ω)|∆u| ≤ (1− δ)2

CJC(1 + δ)
. (8.22)

Then there exists a unique solution ξ1 to Problem 8.6 with x1 = u1 − ξ1 ∈ BS(|∆g|,|∆u|).

Proof. By Corollary 8.13 we have for all η, ξ ∈ BS(|∆g|,|∆u|)(x0) that

|QZ(g(ξ,u1))(x0 + ∆u)−QZ(g(η,u1))(x0 + ∆u)|
≤ (CK0γ + S(|∆g|, |∆u|)CJC(1 + CK0γ)) |ξ − η|
≤ (δ + S(|∆g|, |∆u|)CJC(1 + δ)) |ξ − η| .

Then (8.22) implies that

δ + S(|∆g|, |∆u|)CJC(1 + δ) =: δ′ < 1

and we can apply the Banach’s contraction principle.

Note that the condition imposed in Proposition 8.18 correspond to those imposed in Theorem
8.3. If they hold, then we denote the solution operator of the quasivariational inequality by

ξ1 =: E(ξ0, u0, g0, u1, g1) . (8.23)
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8.3. Existence and uniqueness of a solution for very small
jumps

In this section we establish the existence and uniqueness of a solution to Problem 6.8 if the size of
the jumps is very small. The method of the proof is similar to the method used in [18]. However
we cannot use weak derivatives, but approximate the BV functions by step functions. This turns
out to contain some quite technical and lengthy computations. The main result we want to prove
here reads as follows.

Theorem 8.19 (Existence and uniqueness for very small jumps). Assume that Hypothesis 8.1
holds. Furthermore let

δ := CK0γ < 1 (8.24)

and u ∈ BV cu
L (0, T ;X), g ∈ BV cg

L (0, T ;C1
ω,γ(X×X;R)) and x0 ∈ Z(g(0, u(0), x0−u(0))).

Then there exists some ν > 0 such that there exits a unique solution to Problem 6.8 if cg, cu ≤ ν.

We start by studying the sweeping process on step functions. What we essentially do is trying
to transfer the results of [18, Section 5] to our case by replacing the derivatives by differences.
This is however not always possible and additional terms occur which mainly involve jump sizes.
These are the main reason, why we can only handle very small jumps with this approach. On the
way to the main prove we make a small deviation and prove that the sweeping process is locally
Lipschitz continuous with respect to the BV -norm (Section 8.3.2). A reader not interested in
this result and its proof may skip the Section. However we recommend it as it is quite short and
instructive for the main proof which we finish in Section 8.3.3.

8.3.1. One step estimates

Assume that u, v, r, s are step functions on the same division (tk)
n
k=0 ∈ P . More specifically,

assume that elements uk, vk ∈ X , rk, sk ∈ R for k = 0, . . . , n are given, and that

f(t) = f0χ{0}(t) +
n∑
k=1

fkχ(tk−1,tk](t) , (8.25)

where f stands for u, v, r, s. The solutions ξ, x corresponding to u, r and initial condition x0,
and η, y corresponding to v, s and initial condition y0, are given by formula (8.25) as well, with
f replaced successively by ξ, η, x, y, where ξ0 = u0 − x0, η0 = v0 − y0, and

xk = Qrk(xk−1 + ∆ku) , ξk = ξk−1 + Prk(uk − ξk−1) , (8.26)

and similarly
yk = Qsk(yk−1 + ∆kv) , ηk = ηk−1 + Psk(vk − ηk−1) , (8.27)

for k ∈ [n], where we denote ∆kf := fk − fk−1 for all k ∈ [n].

Lemma 8.20. For k ∈ [n] set

Ak[r, u] = 〈J(rk, xk),∆kξ〉 .

Then Ak[r, u] ≥ 0 for all k ∈ [n]. If moreover ∆kξ 6= 0, then

∆kξ =
Ak[r, u]

|J(rk, xk)|2
J(rk, xk) . (8.28)

77



8. Quasivariational sweeping processes with smooth characteristics

Proof. If ∆kξ = 0, the inequality is trivially fulfilled. Let ∆kξ 6= 0. It follows from (8.8),
(8.16), and (8.26) that

∆kξ = n(rk, xk)|∆kξ| =
|∆kξ|

|J(rk, xk)|
J(rk, xk) ,

hence

Ak[r, u] = |∆kξ| |J(rk, xk)| ≥ 0 ,

and formula (8.28) holds.

We now define B(rk, xk) := 1
2M(rk, xk)

2, and similarly B(sk, yk) for s, y.

Lemma 8.21. Let Hypothesis 8.1 hold. Then for every k ∈ [n] we have

|∆k(ξ − η)| ≤ C|∆kξ||J(rk, xk)− J(sk, yk)|+ C|Ak[r, u]−Ak[s, v]| , (8.29)

and

∆k|B(r, x)−B(s, y)|+ |Ak[r, u]−Ak[s, v]| (8.30)

≤ (CJ |∆ku|+ CK ‖∆kr‖R + 2CJ |∆kξ|) max
i∈{k,k−1}

‖ri − si‖R

+ (CK ‖∆kr‖R + 2CJ (|∆ku|+ ‖∆ks‖R + |∆ky|+ |∆kξ|)) max
i∈{k,k−1}

|xi − yi|

+2CJ (‖∆ks‖R + |∆ky|) max
i∈{k,k−1}

|ui − vi|

+K0 ‖∆k(r − s)‖R +
1

c
|∆k(u− v)| .

Proof. At the heart of this proof lies a careful case analysis.
Case 1 - ∆kξ = 0 = ∆kη: The first inequality is trivial. Furthermore we have Ak[r, u] = 0 =
Ak[s, v]. By the mean value theorem, there exists some λ ∈ [0, 1] such that for

xλ
rλ
yλ
sλ

 = (1− λ)


xk
rk
yk
sk

+ λ


xk−1

rk−1

yk−1

sk−1


it holds (note that ∆kx = ∆ku, ∆ky = ∆kv)(

B(rk, xk)−B(sk, yk)
)
−
(
B(rk−1, xk−1)−B(sk−1, yk−1)

)
(8.31)

= 〈J (rλ, xλ) ,∆ku〉+ 〈K (rλ, xλ) ,∆kr〉R′,R −
(
〈J (sλ, yλ) ,∆kv〉

+ 〈K (sλ, yλ) ,∆ks〉R′,R
)
.

Taking the norm on both sides and using the notation introduced above and estimates from Propo-
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sition 8.12 we derive

|B(rk, xk)−B(sk, yk)| (8.32)

≤ | 〈J(rλ, xλ)− J(sλ, yλ),∆ku〉 |+ | 〈J (sλ, yλ) ,∆ku−∆kv〉 |
+| 〈K (rλ, xλ)−K (sλ, yλ) ,∆kr〉R′,R |+ | 〈K (sλ, yλ) ,∆kr −∆ks〉R′,R |
+|B(rk−1, xk−1)−B(sk−1, yk−1)|

≤ CJ |∆ku| (‖rλ − sλ‖R + |xλ − yλ|) + |J (sλ, yλ) ||∆k(u− v)|
+ CK‖∆kr‖R (‖rλ − sλ‖R + |xλ − yλ|) + ‖K (sλ, yλ) ‖R∗ ‖∆k(r − s)‖R
+|B(rk−1, xk−1)−B(sk−1, yk−1)|

≤ CJ |∆ku| (‖rλ − sλ‖R + |xλ − yλ|) +
1

c
|∆k(u− v)|

+ CK‖∆kr‖R (‖rλ − sλ‖R + |xλ − yλ|) +K0 ‖∆k(r − s)‖R
+ |B(rk−1, xk−1)−B(sk−1, yk−1)| .

Then by definition of xλ, rλ, yλ, sλ we have

|B(rk, xk)−B(sk, yk)| (8.33)

≤ (CJ |∆ku|+ CK ‖∆kr‖R)

(
max

i∈{k,k−1}
‖ri − si‖R + max

i∈{k,k−1}
|xi − yi|

)
+ K0 ‖∆k(r − s)‖R +

1

c
|∆k(u− v)|

+ |B(rk−1, xk−1)−B(sk−1, yk−1)| .

This implies the desired inequality (8.30).

Case 2 - ∆kξ 6= 0 = ∆kη: Then xk ∈ ∂Z(rk). By (8.28) and the inequality |J(rk, xk)| ≥ 1
C

we have

|∆kξ| =
|Ak[r, u]|
|J(rk, xk)|

≤ C|Ak[r, u]|

and the first inequality is proven. The second inequality is slightly more involved. First we notice
that B(rk, xk) = 1

2 ≥ B(sk, yk). As above we can write(
B(rk, xk)−B(sk, yk)

)
−
(
B(rk−1, xk−1)−B(sk−1, yk−1)

)
(8.34)

= 〈J (rλ, xλ) ,∆kx〉+ 〈K (rλ, xλ) ,∆kr〉R′,R −
(
〈J (sλ, yλ) ,∆ky〉

+ 〈K (sλ, yλ) ,∆ks〉R′,R
)

=
(
〈J (rλ, xλ) ,∆ku〉 − 〈J (sλ, yλ) ,∆kv〉

)
+
(
〈K (rλ, xλ) ,∆kr〉R′,R

−〈K (sλ, yλ) ,∆ks〉R′,R
)
−
(
〈J (rλ, xλ) ,∆kξ〉 − 〈J (sλ, yλ) ,∆kη〉

)
We add Ak[r, u] − Ak[s, v] on both sides of this identity. Apart from the same term that we
already estimated on the right hand side of (8.31), it remains to estimate on the right hand side
of (8.34) the term

(Ak[r, u]−Ak[s, v])− (〈J (rλ, xλ) ,∆kξ〉 − 〈J (sλ, yλ) ,∆kη〉) . (8.35)
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8. Quasivariational sweeping processes with smooth characteristics

Though Ak[s, v] = 0 = 〈J (sλ, yλ) ,∆kη〉, we decide to work with this term as well to have the
estimate at hand for the general case.

First we rewrite (8.35) as

〈J (rk, xk)− J (sk, yk)− J (rλ, xλ) + J (sλ, yλ) ,∆kξ〉 (8.36)

+ 〈J (sk, yk)− J (sλ, yλ) ,∆k(ξ − η)〉 .

From the triangle inequality it follows

|〈J (rk, xk)− J (sk, yk)− J (rλ, xλ) + J (sλ, yλ) ,∆kξ〉|

≤ 2CJ

(
max

i∈{k,k−1}
‖ri − si‖R + max

i∈{k,k−1}
|xi − yi|

)
|∆kξ| ,

and

|〈J (sk, yk)− J (sλ, yλ) ,∆k(ξ − η)〉| ≤ CJ (‖∆ks‖R + |∆ky|) |∆k(ξ − η)| .

Furthermore we make use of the following simple inequality

|∆k(ξ − η)| ≤ 2

(
max

i∈{k,k−1}
|xi − yi|+ max

i∈{k,k−1}
|ui − vi|

)
Thus by putting the identity

|B(rk, xk)−B(sk, yk) +Ak[r, u]−Ak[s, v]| = B(rk, xk)−B(sk, yk) +Ak[r, u]

= |B(rk, xk)−B(sk, yk)|+ |Ak[r, u]−Ak[s, v]|

in what we calculated above we have

|B(rk, xk)−B(sk, yk)|+ |Ak[r, u]−Ak[s, v]|
≤ (CJ |∆ku|+ CK ‖∆kr‖R + 2CJ |∆kξ|) max

i∈{k,k−1}
‖ri − si‖R

+ (CK ‖∆kr‖R + 2CJ (|∆ku|+ ‖∆ks‖R + |∆ky|+ |∆kξ|)) max
i∈{k,k−1}

|xi − yi|

+2CJ (‖∆ks‖R + |∆ky|) max
i∈{k,k−1}

|ui − vi|

+K0 ‖∆k(r − s)‖R +
1

c
|∆k(u− v)|

+ |B(rk−1, uk−1)−B(sk−1, vk−1)| ,

which is precisely (8.30).

Case 3 - ∆kξ = 0 6= ∆kη: This case is analogous to case 2.

Case 4 - ∆kξ 6= 0 6= ∆kη: For the first inequality we proceed as in the proof of [18, Lemma
5.3]:

|∆k(ξ − η)| =
∣∣∣∣ Ak[r, u]

|J(rk, xk)|2
J(rk, xk)−

Ak[s, v]

|J(sk, yk)|2
J(sk, yk)

∣∣∣∣
≤ Ak[r, u]

∣∣∣∣ J(rk, xk)

|J(rk, xk)|2
− J(sk, yk)

|J(sk, yk)|2

∣∣∣∣+
1

|J(rk, xk)|
|Ak[r, u]−Ak[s, v]|

≤ |∆kξ|
|J(sk, yk)|

|J(rk, xk)− J(sk, yk)|+
1

|J(rk, xk)|
|Ak[r, u]−Ak[s, v]|

≤ C|∆kξ||J(rk, xk)− J(sk, yk)|+ C|Ak[r, u]−Ak[s, v]| .
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We derive the second inequality exactly as in the cases before, having in mind that B(rk, xk) =
1
2 = B(sk, yk). Lemma 8.21 is proved.

As a direct consequence of Lemma 8.21, we get the following result. For simplicity, we use
in the formulas below suitable positive constants α1, α2, . . . depending only on C,CK , CJ ,K0,
and denote

Vk := ‖∆kr‖R + ‖∆ks‖R + |∆ku|+ |∆kv| . (8.37)

Corollary 8.22. Under the conditions of Lemma 8.21 it holds for every k ∈ [n]

|∆k(ξ − η)|+ C∆k|B(r, x)−B(s, y)|

≤ CK0 ‖∆k(r − s)‖R +
C

c
|∆k(u− v)|+ α1Vk |xk−1 − yk−1|

+α2Vk

(
max

i∈{k,k−1}
|ui − vi|+ (1 + Vk) max

i∈{k,k−1}
‖ri − si‖R

)
.

Proof. By multiplying the second inequality of Lemma 8.21 with C and adding it to the first
inequality we derive the estimate

|∆k(ξ − η)|+ C∆k|B(r, x)−B(s, y)|

≤ α3Vk

(
max

i∈{k,k−1}
‖ri − si‖R + max

i∈{k,k−1}
|xi − yi|+ max

i∈{k,k−1}
|ui − vi|

)
+CK0 ‖∆k(r − s)‖R +

C

c
|∆k(u− v)| .

Furthermore, due to Proposition 8.13, we have

|xk − yk| = |Qrk(xk−1 + ∆ku)−Qsk(yk−1 + ∆kv)|
≤ |xk−1 − yk−1|+ |∆k(u− v)|+ α4(1 + |∆kξ|)‖rk − sk‖R
≤ |xk−1 − yk−1|+ 2 max

i∈{k,k−1}
|ui − vi|+ α4(1 + |∆kξ|)‖rk − sk‖R ,

and we thus obtain the desired inequality.

8.3.2. Excursion: Local Lipschitz continuity of the sweeping process

It is at this stage only a small step to show that the sweeping process depends locally Lipschitz
continuous on the input data. We hence do not want to deprive the reader from the proof. First be-
cause this result might be of interest of itself in applications. And second because of the method
of the proof. To show the result we first establish the assertion for stepfunctions by employing
a variant of Gronwall’s Lemma. We then extend it to the whole space of functions of bounded
variation by a density argument. In a certain sense this is a technically much more simple proto-
type of the proof of Theorem 8.19 and might therefore be instructive to read. However, as it is
not needed in the sequel, it may also be skipped.

Theorem 8.23. Let Hypothesis 8.1 hold. Then there exist constants α, β, γ > 0 depending only
on C,CJ , CK ,K0 such that for all u, v ∈ BVL(0, T ;X), r, s ∈ BVL(0, T ;R), x0 ∈ Z(r(0)),
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8. Quasivariational sweeping processes with smooth characteristics

y0 ∈ Z(s(0)), the solutions ξ, η corresponding to (u, r, x0), (v, s, y0), respectively, satisfy the
inequality

Var(ξ − η) + C|B(r(T ), x(T ))−B(s(T ), y(T ))| (8.38)

≤ α exp(βV ) (Var(r − s) + Var(u− v))

+ γ exp(βV )(1 + V ) (|x0 − y0|+ ‖u− v‖∞ + (1 +W )‖r − s‖∞) ,

where ‖ · ‖∞ denotes the sup-norm, and

V = V (r, s, u, v) := Var(r) + Var(s) + Var(u) + Var(v) ,

W = W (r, s, u, v) := ‖r‖∞ + ‖s‖∞ + ‖u‖∞ + ‖v‖∞ .

Proof. Corollary 8.22 yields

|∆k(x− y)|+ C∆k|B(r, x)−B(s, y)|

≤ CK0 ‖∆k(r − s)‖R +

(
1 +

C

c

)
|∆k(u− v)|+ α1Vk |xk−1 − yk−1|

+α2Vk

(
max

i∈{k,k−1}
|ui − vi|+ (1 + Vk) max

i∈{k,k−1}
‖ri − si‖R

)
.

Using the inequality |xk−1 − yk−1| ≤ |x0 − y0|+
∑k−1

i=1 |∆i(x− y)|, we are in the situation of
Lemma 5.2 with

ak = α1Vk ,

δk =
k∑
i=1

|∆i(x− y)|+ C|B(rk, xk)−B(sk, yk)| ,

ck = CK0 ‖∆k(r − s)‖R +

(
1 +

C

c

)
|∆k(u− v)|+ α1Vk|x0 − y0|

+α2Vk

(
max

i∈{k,k−1}
|ui − vi|+ (1 + Vk) max

i∈{k,k−1}
‖ri − si‖R

)
.

Therefore we have

n∑
k=1

ak = α1V ,

δ0 = C|B(r0, x0)−B(s0, y0)| ≤ α5(‖r(0)− s(0)‖R + |x0 − y0|) ,
n∑
k=1

ck ≤ CK0Var(r − s) +

(
1 +

C

c

)
Var(u− v)

+α6V (‖u− v‖∞ + (1 +W ) ‖ri − si‖∞ + |x0 − y0|) .

Inequality (8.38) thus holds for all step functions u, v, r, s.
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Now let u, v ∈ BVL(0, T ;X), r, s ∈ BVL(0, T ;R) be arbitrary. Choose (un)∞n=1, (vn)∞n=1 ⊂
SL(0, T ;X), (rn)∞n=1, (s

n)∞n=1 ⊂ SL(0, T ;R) such that {fn(t) : t ∈ [0, T ]} ⊂ {f(t) : t ∈
[0, T ]}, fn(0) = f(0), and(

Var(fn) ≤ Var(f)
)
∧
(
‖fn − f‖∞

n→∞→ 0
)
,

where f stands successively for u, v, r, s. Moreover following the construction of [5, p. 237f] it
is possible to choose (un, vn, rn, sn)n∈N such that Var(un−vn) ≤ Var(u−v) and Var(rn−sn) ≤
Var(r − s). Let ξn, ηn be the respective solutions associated with (un, rn, x0) and (vn, sn, y0).
Then, according to [61], Var(ξn),Var(ηn) are bounded independently of n, and

‖ξn − ξ‖∞
n→∞→ 0 , ‖ηn − η‖∞

n→∞→ 0 ,

where ξ, η are the solutions corresponding to the data (u, r, x0), (v, s, y0), respectively. Inequal-
ity (8.38) holds for all elements of the sequence. Now notice on the one hand that Var(.) is lower
semicontinuous with respect to the norm ‖ · ‖∞; on the other hand, ‖un − vn‖∞ → ‖u− v‖∞,
‖rn − sn‖∞ → ‖r− s‖∞ and Var(un − vn) ≤ Var(u− v), Var(rn − sn) ≤ Var(r− s). Hence,
we may pass to the limit in (8.38) as n→∞ to finish the proof.

8.3.3. Proof of Theorem 8.19

Assume that there exist stepfunctions ui, ηi ∈ S(0, T ;X), i ∈ [2] and g ∈ S(0, T ;C1
ω,γ(X ×

X;R)) are stepfunctions with respect to the same subdivision such that they can be written in
the form of (8.25). Let u1 = u2 := u and x1

0 = x2
0 := x0 and set

ri : [0, T ]→ R , t 7→ g(t, u(t), ηi(t)) . (8.39)

Then both ri’s are step functions which also can be denoted in the fashion of (8.25). We set ξi to
be the solutions of the sweeping process associated with inputs u, ri and xi0.

Corollary 8.24. Assume that Hypothesis 8.1 holds, let c be as derived in Proposition 8.2 and
denote

Vk := ‖∆kg‖R +
∣∣∆kη

1
∣∣+
∣∣∆kη

2
∣∣+ |∆ku| . (8.40)

Then there exist constants β1, β2 depending only on C, CK , CJ , K0, and γ such that for every
k ∈ [n] ∣∣∆k(ξ

1 − ξ2)
∣∣+ C∆k|B(r1, x1)−B(r2, x2)|

≤ CK0γ
∣∣∆k(η

1 − η2)
∣∣+ β1Vk

∣∣ξ1
k−1 − ξ2

k−1

∣∣
+β2Vk (1 + Vk)

(∣∣η1
i−1 − η2

i−1

∣∣+
∣∣∆k(η

1 − η2)
∣∣) .

Proof. Note that since u1 = u2 all terms concerning u cancel and especially x1
k−x2

k = ξ2
k − ξ1

k .
Note furthermore that

max
i∈{k,k−1}

‖r1
i − r2

i ‖R ≤
∥∥r1
i−1 − r2

i−1

∥∥
R +

∥∥∆i(r
1 − r2)

∥∥
R .

Applying the definition of ri we can simply estimate the first term of the right hand side by∥∥r1
i−1 − r2

i−1

∥∥
R ≤

∥∥gi−1(ui−1, η
1
i−1)− gi−1(ui−1, η

2
i−1)

∥∥
R ≤ γ

∣∣η1
i−1 − η2

i−1

∣∣ .
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It remains to derive an estimate for
∥∥∆i(r

1 − r2)
∥∥
R. This is easily done by∥∥∆i(r

1 − r2)
∥∥
R

=
∥∥gi(ui, η1

i )− gi(ui, η2
i )− gi−1(ui−1, η

1
i−1) + gi−1(ui−1, η

2
i−1)

∥∥
R

≤ γ
(∣∣η1

i − η2
i

∣∣+
∣∣η1
i−1 − η2

i−1

∣∣)
≤ γ

∣∣∆i(η
1 − η2)

∣∣+ 2γ
∣∣η1
i−1 − η2

i−1

∣∣ .
Now plugging all of this into Corollary 8.22 we obtain the estimate.

Now everything is at hand to proceed to the main proof.

Proof of Theorem 8.19. If ξ ∈ BVL(0, T ;X) is a solution of the quasivariational sweeping pro-
cess then

∀[r, s] ⊂ [0, T ] : Var(ξ, [r, s]) ≤ S
(
Var(g, [r, s]),Var(u, [r, s])

)
. (8.41)

Here S is the function defined in (8.21). Therefore let us define

Ω := {ξ ∈ BV c
L(0, T ;X) : ξ(0) = u(0)− x0 and (8.41) holds} .

It is yet another straightforward proof to show that Ω is closed with respect to the BV -norm.
Furthermore for any η ∈ Ω and t ∈ [0, T ] it holds that

|η(t+)− η(t)| ≤ 1

1− δ
(CK0‖g(t+)− g(t)‖+ (1 + CK0ω)|u(t+)− u(t)|) .

We define the operator A : Ω → BVL, A : η 7→ ξ, which maps any η to the solution of the
sweeping process with input u, g(·, u(·), η(·)) and x0. Our aim is to prove thatA is a contraction
on Ω with respect to a weighted BV -norm. First note that A(Ω) ⊂ Ω. Now choose η1, η2 ∈ Ω

and ε > 0. Let (tfn)
Nf
n=0 be the corresponding approximating partition as constructed in Lemma

3.17 of f ∈ {u, g}. Furthermore choose a partition of (ti)Nin=1 be a partition of [0, T ] such that
t0 = 0, tn = N and

∀n ∈ [Ni] : ∀s, t ∈ (tin−1, t
i
n] : |ηi(s)− ηi(t)| ≤ ε .

Let (t̂n)N̂n=0 ∈ P contain all above partitions, that is

{t̂n : n ∈ [N̂ ] ∪ {0}} ⊃ {trn : r ∈ {f, g, 1, 2} ∧ n ∈ [Nr] ∪ {0}} .

We now construct the approximating step functions f̂ for f ∈ {u, g, η1, η2}. To not overload the
notation we drop the dependence on ε. We choose the sequence (tn)Nn=1 such that N := 2N̂ and

tn = t̂n/2 for n even and tn =
1

2

(
t̂(n−1)/2 + t̂(n+1)/2

)
for n odd.

Now define f̂ by

f̂k =

{
f(t̂k/2) for k even
f(t̂(k−1)/2+) for k odd .
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Let ξ̂i be the corresponding solutions of the sweeping process with input functions ĝ, û, η̂i.
Due to Corollary 8.24 we have∣∣∣∆k(ξ̂

1 − ξ̂2)
∣∣∣+ C∆k|B(r̂1, x̂1)−B(r̂2, x̂2)|

≤ (CK0γ + β2Vk (1 + Vk))
∣∣∆k(η̂

1 + η̂2)
∣∣

+β1Vk

∣∣∣ξ̂1
k−1 − ξ̂2

k−1

∣∣∣+ β2Vk (1 + Vk)
∣∣η̂1
i−1 − η̂2

i−1

∣∣ .
where Vk = |∆kû|+ |∆kĝ|+ |∆kη̂

1|+ |∆kη̂
2|. For k ≥ 1 odd we get

|∆kη̂
i| = |ηi(t̂(k−1)/2)− ηi(t̂(k−1)/2+)|

≤ S
(∣∣g(t̂(k−1)/2+)− g(t̂(k−1)/2)

∣∣ , ∣∣u(t̂(k−1)/2+)− u(t̂(k−1)/2)
∣∣)

≤ S(cg, cu) .

If k is even we have

|∆kη̂
i| = |ηi(t̂k/2)− ηi(t̂(k−1)/2+)|

≤ S
(
Var(g, (t(k−1)/2, tk/2]),Var(u, (t(k−1)/2, tk/2]))

)
.

Thus we estimate Vk ≤ Ṽk with

Ṽk = |∇kĝ|+ |∇kû|+


S
(
|g(t̂(k−1)/2+)− g(t̂(k−1)/2)|,
|u(t̂(k−1)/2+)− u(t̂(k−1)/2)|

) for k odd

S
(
Var(g, (t(k−1)/2, tk/2]),

Var(u, (t(k−1)/2, tk/2]))
) for k even .

Assume that cg, cu ≤ ν and choose ε ≤ 1
4ν. Then by means of (3.41) we have

Var(g, (t(k−1)/2, tk/2]) ≤ ν and Var(u, (t(k−1)/2, tk/2])) ≤ ν .

Now we choose ν such that

δ + β22 (ν + S(ν, ν)) (1 + 2 (ν + S(ν, ν))) =: δ′ < 1 . (8.42)

Then
(
CK0γ + β2Ṽk

(
1 + Ṽk

))
≤ δ′ and applying Lemma 5.3 we get

N∑
k=1

|∆k(ξ̂
1 − ξ̂2)|wk ≤ ρ

N∑
k=1

|∆k(η̂
1 − η̂2)|wk . (8.43)

for some ρ < 1 and

wk = exp

{
− 1

ϑ

k∑
i=1

Ṽi

}
.

with ϑ small enough. For the given ε and (tk)
N
k=1 define V ε

f : [0, T ]→ R by

V ε
f : t 7→

{
Var (f, [0, tk−1]) + |f(tk−1)− f(tk−1+)| for t ∈ (tk−1, tk], k odd
Var (f, [0, tk]) for t ∈ (tk−1, tk], k even .
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8. Quasivariational sweeping processes with smooth characteristics

Then (8.43) can be rewritten into

Varŵ(ξ̂1 − ξ̂2) ≤ ρVarŵ(η̂1 − η̂2)

where ŵ := exp (−(1/δ)Ṽ (t)) and Ṽ : [0, T ]→ R+
>0 is defined by

Ṽ (t) = Var(ĝ, [0, t]) + Var(û, [0, t]) + S
(
V ε
g (t), V ε

u (t)
)
.

Letting ε→ 0 we have

η̂i
‖·‖∞→ ηi, ĝ

‖·‖∞→ g and û
‖·‖∞→ u

and consequently also ξ̂i
‖·‖∞→ ξ. We now prove that

Ṽ
‖·‖∞→ V (8.44)

where V is defined by

V (t) = Var(g, [0, t]) + Var(u, [0, t]) + S
(
Var(g, [0, t]),Var(u, [0, t])

)
.

First remember that Var(f̂ , [0, ·]) ‖·‖∞→ Var(f, [0, ·]) for f ∈ {g, u} by the choice of the approx-
imating sequence. Due to the construction of f̂ we have for t ∈ (tk−1, tk) that Var(f̂ , [0, t]) =
Var(f̂ , [0, tk]) if k is odd and Var(f̂ , [0, t]) = Var(f̂ , [0, tk−1]) + |f(tk−1+) − f(tk−1)| for k
even. Hence we can estimate

‖Var(f̂ , [0, t])− V ε
f (t)‖∞ ≤ 2ε

and deduce V ε
f

‖·‖∞→ Var(f, [0, ·)). Since S(·, ·) is nothing but a sum of two linear terms this
implies (8.44). Therefore we have

ŵ
‖·‖∞→ w = exp {−(1/δ)V (t)}

and due to Proposition 3.14 we obtain

Varw(ξ1 − ξ2) ≤ lim inf
ε

Varŵ(ξ̂1 − ξ̂2) .

To estimate the right hand side we use

lim sup
ε

(Varŵ(η̂1 − η̂2)− Varw(η1 − η2))

≤ lim sup
ε

(Varw(η̂1 − η̂2)− Varw(η1 − η2))

+ lim sup
ε

(Varŵ(η̂1 − η̂2)− Varw(η̂1 − η̂2)) .

The second term tends to zero as a consequence of (3.21). Due to the choice of η̂i we can
calculate

Varw(η̂1 − η̂2) =
N∑
k=1

w(tk−1+)
∣∣η̂1(tk)− η̂2(tk)−

(
η̂1(tk−1)− η̂2(tk−1)

)∣∣ .
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For the sake of readability let us denote η1 − η2 by δη. If k is odd we have∣∣η̂1(tk)− η̂2(tk)−
(
η̂1(tk−1)− η̂2(tk−1)

)∣∣ =
∣∣δη(tk−1+)− δη2(tk−1)

∣∣
and if k is even we can evaluate that term to∣∣η̂1(tk)− η̂2(tk)−

(
η̂1(tk−1)− η̂2(tk−1)

)∣∣ = |δη(tk)− δη(tk−2+)| .

Furthermore we can bound the weighted total variation of ξ1 − ξ2 from below by

Varw(ξ1 − ξ2)

≥
∑

{k∈[N ]:k=2r−1,r∈N}

w(tk−1+) |δη(tk−1+)− δη(tk−1)|

+
∑

{k∈[N ]:k=2r,r∈N}

w(tk−1+) |δη(tk−2+)− δη(tk−1+)|

+
∑

{k∈[N ]:k=2r,r∈N}

w(tk) |δη(tk−1+)− δη(tk)| .

Therefore we can estimate

Varw(η̂1 − η̂2)− Varw(η1 − η2)

≤
∑

{k∈[N ]:k=2r,r∈N}

(w(tk−1+)− w(tk)) |δη(tk−1+)− δη(tk)|

≤ ε (w(T )− w(0)) .

and finally obtain
Varw(ξ1 − ξ2) ≤ ρVarw(η1 − η2) .

This indeed is the contraction property and the Banach fixed point theorem grants the existence
of a unique solution to Problem 6.8 within the set Ω.

By simple translation one can proof Theorem 8.19 on any time interval [r, s] with −∞ < r <
s <∞. Under the above conditions we denote the corresponding solution operator S, that is

S(x0 − u(r), u, g, [r, s]) = ξ (8.45)

where ξ is the unique solution of the quasivariational sweeping process with initial value x0 and
input u, g on the time interval [r, s].

8.4. Proof of Theorem 8.3

We finally prove the main theorem (Theorem 8.3) of this chapter. We divide this task into the
classical two parts. First we show the existence of a solution (Proposition 8.26) and afterwards
prove its uniqueness (Proposition 8.28). We start by remembering the following simple property.

Proposition 8.25. Let u ∈ BVL(0, T ;X) then for each ε > 0 there exists anN = N(ε,Var(u)) ∈
N such that

#{t ∈ [0, T ) : |u(t)− u(t+)| ≥ ε} ≤ N .

87



8. Quasivariational sweeping processes with smooth characteristics

For proving the existence of a solution to Problem 6.8 we are now going to explicitly construct
it.

Proposition 8.26. Assume that Hypothesis 8.1, (8.1) and (8.2) are satisfied. Then there exists a
solution to the quasivariational sweeping process.

Proof. Choose ν such that (8.42) is satisfied. By Proposition 8.25 we can choose (tn)Nn=0 ∈
D[0,T ] such that t0 = 0, tN = T and

∀n ∈ [N ] : ∀t ∈ (tn−1, tn) : |u(t)− u(t+)| ≤ ν ∧ |g(t)− g(t+)| ≤ ν . (8.46)

For any f ∈ G(0, T ;X) and each n ∈ [N ] we denote by

f̂n :


[tn−1, tn] → Y

t 7→
{
f(t) for t ∈ (tn−1, tn]
f(tn−1+) for t = tn−1

a restriction of f to [tn−1, tn] with no jump at its initial time. We set ξ0 = u(0)− x0 and k = 1.
While k ≤ N do

1. ξk−1 := E(ξk−1, u(tk−1), g(tk−1), u(tk−1+), g(tk−1+))

2. ξ̂k := S(ξk−1, û
k, ĝk, [tk−1, tk])

3. ξk := ξ̂k(tk), k := k + 1

We define ξ : [0, T ]→ X by

ξ(t) :=

{
ξ0 if t = 0

ξ̂n(t) if t ∈ (tn−1, tn]
.

It remains to prove that ξ is a solution to Problem 6.8. First we note that ξ ∈ BVL(0, T ;X).
This is due to

Var(ξ) ≤
N∑
k=1

(
Var
(
ξ̂k, [tk−1, tk]

)
+ |ξk−1 − ξk−1|

)
and the left-continuity of ξ̂k. Due to (8.20) we have for all n ∈ [N ]

ξ(tn−1+) = ξ̂n(tn−1+) = ξ̂n(tn−1) = ξn−1 . (8.47)

For z ∈ T (ξ) we compute

T∫
0

〈u(t+)− ξ(t+)− z(t), dξ(t)〉

=

N∑
n=1

( T∫
0

〈
(u(t+)− ξ(t+)− z(t))χ{tn−1}(t), dξ(t)

〉

+

T∫
0

〈
(u(t+)− ξ(t+)− z(t))χ(tn−1,tn)(t), dξ(t)

〉)
.
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8.4. Proof of Theorem 8.3

The first term within can be evaluated by

T∫
0

〈
(u(t+)− ξ(t+)− z(t))χ{tn−1}(t), dξ(t)

〉
= 〈u(tn−1+)− ξ(tn−1+)− z(tn−1), ξ(tn−1+)− ξ(tn−1)〉
≥ 0 .

Remember that z(tn−1) ∈ Z(g(tn−1+, u(tn−1+), ξ(tn−1+))). The inequality is due to (8.47)
and the definition of ξn−1. For the second term we make use of Lemma 3.27 to see that

T∫
0

〈
(u(t+)− ξ(t+)− z(t))χ(tn−1,tn)(t), dξ(t)

〉

=

tn∫
tn−1

〈(
ûn(t+)− ξ̂n(t+)− z(t)

)
χ(tn−1,tn)(t), dξ̂

n(t)
〉

≥ 0 .

Here the inequality is a consequence of the fact that ξ̂n is, by definition, a solution of the quasi-
variational sweeping process on the interval [tn−1, tn]. Thus we have for any z ∈ T (ξ) that

T∫
0

〈u(t+)− ξ(t+)− z(t), dξ(t)〉 ≥ 0

and the proof is complete.

We now show that the solution constructed above is indeed a unique solution. Before we can
do that we need another tool.

Lemma 8.27. Let ξ ∈ BVL(0, T ;X) be a solution of the quasivariational sweeping process on
[0, T ]. Choose any [r, s] ⊂ [0, T ] and define for f ∈ {g, u, ξ} f̂ : [r, s] → Y (where Y is the
appropriate space) by

f̂ : t 7→
{
f(r+) if t = r
f(t) else

Then ξ̂ solves the quasivariational sweeping process on [r, s] with input functions ĝ, û and initial
value ξ(r+).

Proof. Obviously ξ̂(t) has the desired initial value. Choose any ẑ ∈ G(r, s;X) such that ẑ(t) ∈
Z(g(t+, u(t+), ξ(t+))). Define

z(t) := (u(t+)− ξ(t+))χ[0,T ]\(r,s)(t) + ẑ(t)χ(r,s)(t)

Then due to Lemma 3.27 - note that ξ is left continuous - we have

0 ≤
T∫

0

〈u(t+)− ξ(t+)− z(t), dξ(t)〉 =

s∫
r

〈
u(t+)− ξ̂(t+)− ẑ(t), dẑ(t)

〉
.

Thus ξ̂ satisfies the quasi-variational inequality and the proof is complete.
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8. Quasivariational sweeping processes with smooth characteristics

Proposition 8.28. Assume that Hypothesis 8.1 holds. Furthermore let (8.1) and (8.2) be fulfilled.
Then the solution to Problem 6.8 is unique.

Proof. Let (tn)Nn=0 be the partition of [0, T ] corresponding to (8.46). Assume that ξ, η ∈
BVL(0, T ;X) solve Problem 6.8 with η 6= ξ, that is there exists some t ∈ [0, T ] such that
ξ(t) 6= η(t). Let

τ := inf{t ∈ [0, T ] : ξ(t) 6= η(t)} .
We make the convention that τ = T if ξ ≡ η. This is motivated by the fact that ξ(τ) = η(τ).
If τ = 0 it is immediate, otherwise it is a consequence of the left continuity. We first show that
if τ ∈ (tn−1, tn], then τ = tn. First notice ξ(t) = η(t) for all t ∈ (tn−1, τ ] and especially
ξ(tn−1+) = η(tn−1+). Due to Lemma 8.27 both ξ̂n and η̂n solve the quasivariational evolution
equation with initial value ξ(tn−1+). By Theorem 8.19 we know the solution to be unique, in
other words

ξ̂n = S(ξ(tn−1+), ûn, ĝn, [tn−1, tn]) = η̂n .

Therefore ξ(t) = η(t) for all t ∈ (tn−1, tn] and we can safely assume that τ = tn for some
n ∈ [N ] ∪ 0. If n = N we already have ξ ≡ η. Otherwise by testing inequality (6.15) with

z(t) = (u(t+)− ξ(t+))χ[0,T ]\{tn}(t) + yχ{tn}(t)

for any y ∈ Z(g(tn+, u(tn+), g(tn+))) and the respective function for η we derive that

ξ(tn+) = E(ξ(tn), u(tn), g(tn), u(tn+), g(tn+)) = η(tn+) .

Due to Lemma 8.27 we know that ξ̂n+1 and η̂n+1 solve the quasivariational evolution equation
on [tn, tn+1] with initial value ξ(tn+). Since its solution is unique we know that ξ(t) = η(t) for
all t ≤ tn+1, hence τ ≥ tn+1 - a contradiction. Therefore τ = tN = T and ξ ≡ η.

8.5. On the jump condition

In this section we discuss condition (8.1) restricting the jump size in Theorem 8.3 and whether
it is necessary. We start by showing that (8.1) alone is not sufficient to guarantee uniqueness.
However in some cases (8.2) can be replaced by different structural conditions for which we will
give two examples. As we see from the above proof it suffices to consider Problem 8.6 which is
the critical part. If we can guarantee a unique solution for it, we can guarantee a unique solution
for Problem 6.8 as well.

We give an example of non uniqueness of the quasivariational inequality for CK0γ arbitrarily
small. Thus condition (8.1) is not sufficient and an additional one has to be chosen.

Example 8.29. Choose f ∈ C∞(R) such f(x) = x in [−1/2, 1/2], ‖f‖∞ ≤ 1 and ‖f ′‖∞ ≤ 1.
We furthermore choose the spaces X = R2 with R = R. Consider polyhedra of the following
type

Z(r) =
{
x ∈ R2 : A(r)x ≤ w(r)

}
with

A(r) =


1 0
−1 0

0 −1
f(r) l

 , w(r) =


1
1
1

1− f(r)2

 .
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8.5. On the jump condition

The real number l > 1 remains to be chosen. Note that for l > 1 we have 0 ∈ Z(r) and we
can calculate the Minkowski functional of Z(r) by

M(r, x) = max

{
ai · x
wi

, i ∈ [4]

}
.

Here ai denotes the i-th row of A. Therefore it is easy to compute that

∂rM(r, x) =

〈(
f ′(r)

0

)
, x

〉
(l − f(r)2)

− 2

〈(
f(r)
l

)
, x

〉
f(r)f ′(r)

(l − f(r)2)2

if 4 ∈ argmax
{
ai·x
wi
, i ∈ [4]

}
and 0 otherwise. For l ≥ 2 we have

1/4|a4(r)|2 = 1/4f(r)2 + 1/4l2 ≤ 1/2l2 ≤
(
l − f(r)2

)2
and therefore B1/2(0) ⊂ K(r). Moreover we see that B2(0) ⊃ K(r). Thus we can set C = 2.
Using Lemma 3.1 of [18] we have M(r, x) ≤ 2|x| for any x ∈ R2 and therefore M(r, x) ≤ 4
for all x ∈ BC(0). Therefore and by our above calculations we can estimate

|K(r, x)| ≤ c 1

l − 1

where c is a suitable constant. Setting g : R2 × R2 → R, (u, ξ) 7→ u − ξ we have γ = 1. Thus
we finally obtain

δ = CK0γ ≤ c
1

l − 1
.

Choosing l arbitrary large we can make δ arbitrary small. However setting x0 = (0, 1), u0 =
(0, 0), u1 = (0, l) we have that any x1 = (z, 1) with z ∈ [−1/2, 1/2] is a solution to

x1 = QZ(g(u1,u1−x1))(x
0 + ∆u) .

Note that the set Z(r) a polyhedron and thus does not satisfy Hypothesis 8.1. However by
smoothing the edges (let’s say for |x1| > 3/4) there is no essential change in the behavior and
the aforementioned conditions are satisfied.

As the above example shows a condition on the jump size is in general necessary. This however
may in certain applications be unpleasant. Therefore we will present two examples where this
condition can be replaced or dismissed if stronger assumptions on the convex sets Z(r) are made.
The perhaps the simplest possible example is the restriction

Z(r) = B|r|(0) .

where B|r|(0) = {x ∈ X : |x| ≤ |r|} is the closed ball with radius |r|. Furthermore we set

g : X → R+ : |g(x)− g(y)| < |x− y| ∀x, y ∈ X,x 6= y .

Proposition 8.30. For any y ∈ X there exists a unique solution to the problem: Find ξ such that

ξ = QZ(g(ξ))(y) . (8.48)
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8. Quasivariational sweeping processes with smooth characteristics

Proof. For uniqueness assume that both ξ,η solve the above problem. Without loss of generality
let |ξ| ≤ |η|. It is straightforward to see that

ξ =
y

|y|
|ξ| and η =

y

|y|
|η|

with |ξ|, |η| ≤ |y|. Therefore if ξ 6= η, then |ξ| < |η| ≤ |y|. In this case QK(g(ξ))(y) 6= y and we
immediately derive |ξ| = g(ξ). Furthermore by definition |η| ≤ g(η). We then derive

|ξ − η| ≤ |η| − |ξ| ≤ g(η)− g(ξ) < |η − ξ| ,

a contradiction. To prove existence, denote by Y = {λy : 1 ≥ λ ≥ 0} the line between 0 and y.
Let A : X → Y be the continuous operator which maps z 7→ QZ(g(z))(y). Since Y is compact
by the Schauder fixed point theorem A has a fixed point ξ ∈ Y , which solves (8.48).

Things work out so smoothly since the problem reduces to a problem on the real line. In fact
by a similar method one can show that the implicit sweeping process on the real line always
has a unique solution for BV input functions provided that CK0γ < 1. This should cause to
no surprise since every closed convex set on the real line is an interval and hence a polyhedron.
Therefore this case in fact is already covered by the results of Chapter 7.

However the above condition on Z(r) clearly is a toy example for which little application
comes in mind. We are going to present a condition, which allows for a greater variety of convex
sets. We assume that for all r ∈ R there exists some ϑ > 0 such that

|n(r, x)− n(r, y)| ≥ ϑ|x− y| ∀x, y ∈ ∂Z(r) . (8.49)

In other words what we are asking for is that the curvature of the boundary is uniformly bounded
from below for all r. With this we can sharpen the condition (8.1) such that a restriction on the
jump size is no longer necessary. It in a certain sense shows that the Example 8.29 is indeed
prototypical for all situations where the jump size plays a role as we made use of the fact that we
project onto a straight line segment of the convex set.

Proposition 8.31. Let Hypothesis 8.1 and (8.49) hold. If(
CK0 + ϑ−1CCJ(CK0 + 2)

)
γ < 1

then there exists a unique solution to Problem 8.6.

Proof. The proof relies on a careful examination of the proof of Proposition 8.9. For r, s ∈ R let
Qr/s denote the orthogonal projection onto Z(r) and Z(s) respectively. Our aim is to prove that

|Qr(x)−Qs(x)| ≤
(
CK0 + ϑ−1CCJ(CK0 + 2)

)
‖r − s‖R . (8.50)

If x ∈ Z(s), the left hand side can be estimated from above by the Hausdorff distance dH(r, s).
Lemma 8.13 then grants the claim. The same holds for x ∈ Z(r). If x /∈ Z(s) ∪ Z(s) we use
equation (8.13), where it was shown that

|n (r,Qr (x))− n (s,Qs (x))| ≤ |n (r,Qr (x))− n (s,Qs (Qr (x)))| .

Due to Proposition 8.13 we can estimate the right hand side from above by

|n (r,Qr (x))− n (s,Qs (Qr (x)))| ≤ CCJ(dH(r, s) + ‖r − s‖R) .
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8.5. On the jump condition

On the other hand the left hand side can be estimated from below by

|n (r,Qr (x))− n (s,Qs (x))|

≥
∣∣∣∣n(r,Qr (x))− J(r,Qs (x))

|J(r,Qs (x))|

∣∣∣∣− ∣∣∣∣ J(r,Qs (x))

|J(r,Qs (x))|
− J(s,Qs (x))

|J(s,Qs (x))|

∣∣∣∣ .
Note that the outer normal is only defined at the boundary, but the term J(r,·)

|J(r,·)| is defined ev-
erywhere in X , coincides with the outer normal on the boundary and is 0-homogeneous. For
ν = 1/M(r,Qs(x)) we have νQs(x) ∈ ∂Z(r). Therefore we can estimate∣∣∣∣n(r,Qr (x))− J(r,Qs (x))

|J(r,Qs (x))|

∣∣∣∣
= |n(r,Qr (x))− n(r, νQs (x))|

≥ ϑ |Qr(x)−Qs(x)| − ϑ |Qs(x)|
M(r,Qs(x))

|M(r,Qs(x))− 1|

Since x /∈ Z(s) we have Qs(x) ∈ ∂Z(s). Using [18, Lemma 3.1] we get M(r, Qs(x)
|Qs(x)|) ≥ C−1.

If M(r,Qs(x)) ≥ 1 then

M2(r,Qs(x))−M(s,Qs(x))2 ≥M(r,Qs(x))− 1 ≥ 0 ,

if M(r,Qs(x)) < 1 then

M2(r,Qs(x))−M2(s,Qs(x)) ≤M(r,Qs(x))− 1 ≤ 0 .

Thus we have

|M(r,Qs(x))− 1| ≤ |M2(r,Qs(x))−M(s,Qs(x))2| ≤ K0‖r − s‖R

and we finally obtain

|n (r,Qr (x))− n (s,Qs (x))|
≥ ϑ |Qr(x)−Qs(x)| − ϑCK0‖r − s‖R − CJC‖r − s‖R .

Putting all together we derive (8.50). An application of Banach’s fixed point theorem now grants
a unique solution to Problem 8.6.

Going through the computations we see that under the conditions of Proposition 8.31 there
exists a unique solution to Problem 6.8 for all u ∈ BVL(0, T ;X), g ∈ BVL(0, , T ;C1

ω,γ(X ×
X;R)) and x0 ∈ Z(g(0, u(0), u(0) − x0)). However we refrain from doing so here as this
would only result in more computations but at least in our opinion no new insight. Concluding
this section we see that, if we allow for functions of bounded variation instead of only absolutely
continuous functions, we pay by imposing a structural assumption in addition to the conditions
of [18]. These additional assumptions can be either on the involved functions, as in the main part
of our exposition, or on the convex sets, as we showed here.
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Part III.

Variational methods for doubly nonlinear
evolution equations
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9. Introduction

Let Y be a Banach space, α : Y ⇒ Y∗ a maximal monotone operator and E : [0, T ] × Y →
(−∞,∞] a lower semicontinuous energy functional. The topic of the present part is the study of
doubly nonlinear differential inclusions

α (u̇(t)) + ∂uEt (u(t)) 3 0 a.e. in [0, T ] . (9.1)

In fact we are interested in approximation or as one might say stability results for the above
evolution system. The question we are going to ask is what happens if the dissipation operator
α is approximated (in a sensible way) by a family (αn). If (un) is a family of corresponding
solutions, do the limit points solve the (9.1) in some sense?
We will give positive answers to these questions in two settings.

• If Y is a reflexive Banach space and (αn) a sequence of general maximal monotone opera-
tors converging the graph sense toα. Then all limit points of the sequence of corresponding
solutions un solves the limit equation.

• IfY is not reflexive we need to assume that (αn) is a sequence of cyclic maximal monotone
operators. This means that for each αn there exists a convex function Ψn such that αn =
∂Ψn. If Ψn converges to Ψ in the sense of Mosco convergence then we are able to prove
similar results. As Y is not necessarily reflexive quite a few useful properties are missing.
Therefore a number of technical points need to be addressed.

In the following we shall go into more detail about doubly nonlinear differential inclusions
and how they can be approached by variational methods. The precise statement of the results
will be part of the following two chapters. Part of the results presented here has been obtained in
joint work with Riccarda Rossi and Ulisse Stefanelli.

We would like to remark that the notation used here differs from the notation of the previous
part. The differences and reasons therefore are described in Section 9.4. For a reader only
looking at this part and used to the notation employed by e.g., Mielke, Rossi, Stefanelli, Visintin
and others in the context of rate-independent systems the notation will appear familiar.

9.1. Doubly nonlinear differential inclusions

The term doubly nonlinear differential inclusions goes back to the seminal article [21] by P. Colli
and A. Visintin. They studied equations of the form

Au̇(t) +Bu(t) 3 f(t) a.e. in [0, T ] , (9.2)

where both A and B are maximal monotone operators and at least one of them is cyclic, i.e. the
subdifferential of a convex function. Existence of a solution was shown provided both operators
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satisfied growth conditions of the form

∀(y, y′) ∈ B :
〈
y′, y

〉
Y∗,Y ≥ C|y|

2 − c and

∀(y, y′) ∈ A :
〈
y′, y

〉
Y∗,Y ≥ c1|y|p + c2|y′|q − c3

for some p, q > 1. A number of papers later on studied generalizations of the above equation.
The main attention focused on equations of the type

∂Ψ (u̇(t)) + ∂uEt(u(t)) 3 0 , for a.a. t ∈ [0, T ] (9.3)

where Ψ is a convex, lower semicontinuous functional and E a possibly non convex energy
function. The operator ∂u is meant to be a generalized, possibly set valued derivative with respect
to state of the time dependent energy function E . This focus was mainly driven by applications,
such as elastoplasticity [48, 89, 41, 25], fracture propagation [26, 49, 14], phase transitions in
shape memory alloys [77, 75, 6] and many others. On an abstract level it has recently been
proven by A. Mielke, R. Rossi and G. Savare [69] that if the potential Ψ has superlinear growth,
i.e.

lim
|x|→∞

Ψ(x)

|x|
= +∞ , (9.4)

the above differential inclusion has a solution under very general assumptions on the energy
functional E . Also the same authors studied an extension of doubly nonlinear inclusions to
metric spaces [93]. To define a rate independent evolution in a metric space they generalized the
framework of extending gradient flows to those spaces, see e.g. the recent monograph [3]. From
an applications point of view, the limiting case of convex, 1-homogeneous Ψ, i.e. potentials
satisfying

∀λ ≥ 0 : Ψ(λx) = λΨ(x) ,

is of strong interest. It corresponds to the case where the evolution is rate independent. Indeed let
u be sufficiently differentiable andϕ ∈ C1(0, T ) be a monotone increasing map withϕ([0, T ]) =
[0, T ]. Then assume u(t) satisfies (9.3) then also u ◦ ϕ satisfies the doubly nonlinear inclusion
with energy Eϕ(t). To see this remember that if Ψ is 1-homogeneous, then its subdifferential ∂Ψ
is 0-homogeneous, meaning that for all λ ≥ 0 it holds ∂Ψ (λx) ⊃ ∂Ψ(x). Hence for almost all
t ∈ [0, T ]

∂Ψ

(
d

dt
u (ϕ(t))

)
= ∂Ψ (u̇ (ϕ(t)) ϕ̇(t)) 3 ∂E(u(·)) ◦ ϕ(t) .

Notice moreover that
∂Eϕ(t) (u (ϕ(t))) = ∂uE(·)(u(·)) ◦ ϕ(t) .

Hence if (9.3) is satisfied it as well holds that

∂Ψ

(
d

dt
u (ϕ(t))

)
+ ∂uEϕ(t) (u (ϕ(t))) 3 0 , for a.a. t ∈ [0, T ]

A different interpretation is given by the following observation. Remember that

ξ ∈ ∂Ψ(u) ⇐⇒ u ∈ ∂Ψ∗(ξ) .
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Moreover if Ψ is lower semicontinuous, bounded from below and 1-homogeneous, then there
exists a closed convex set K ∈ X such that Ψ(x) = MK(x). Here MK is the Minkowski
functional of K. In other words equation (9.3) is equivalent to

u̇(t) ∈ IK∗ (−∂uEt(u(t))) . (9.5)

This resembles the sweeping process we discussed in the section before. It is indeed nothing but
the sweeping process in the case Et(u) = 1

2u
2 − f(t)u.

The 1-homogeneous case is however mathematically challenging. The reason is that in lack
of condition (9.4) the solution u may contain jumps, see e.g. [102]. Hence as (absolutely)
continuous solutions can no longer be expected, a new concept of solution is necessary to allow
for jumps. The first such notion we are aware of was proposed by A. Mielke and F. Theil in their
seminal article [76]. They proposed the so called energetic solution, which reads as follows. A
function u : [0, T ]→ X is called an energetic solution to (9.3) if and only if it satisfies

∀t ∈ [0, T ] : Et(u(t)) ≤ Et(z) + Ψ(z − u(t)) (9.6)

∀t ∈ [0, T ] : Et(u(t)) + DissΨ(u, [0, t)) = E0(u(0)) +

t∫
0

∂sEs(u(s)) ds . (9.7)

Here DissΨ is essentially the variation of u with respect to Ψ. The first condition is called the
stability condition. It states that at the the energy of the state u(t) has to be less than the energy
of any other state plus the amount of energy that would be dissipated by spontaneously jumping
to this state. The second condition is an energy equality. The energy of the system at time t
plus the energy dissipated until that point is equal to the initial energy plus the applied work.
This formulation does not include any time derivatives of u and thus allows for solutions with
jumps. It has been applied to a number of problems, see e.g. [63, 66, 96, 103]. However the
energetic formulation has some drawbacks. Assuming once more that Ψ = MK the stability
condition (9.6) implies that −∂uEt(u(t)) ∈ K∗ but the converse is not true - a counterexample
can be found in [102]. This enforces the system to jump early. Other notion of solutions have
been proposed, e.g. [72, 2, 73]. We start from a notion of solution for absolutely continuous
functions. In the passage to the limit we arrive at a BV function and conditions this function has
to satisfy. One may take these conditions to define a solution on BV .

9.2. Representative functions

The main theme of the calculus of variations is broadly speaking the study the existence and
properties of (local) minimizers of functionals I : Y → (−∞,∞]. The interest dates back to
Bernoulli . Since then a vast toolbox has been developed. We are interested in the so called di-
rect methods, which allow the direct study of the minimization problem, without the use of e.g.
Euler-Lagrange equations. Key elements of this theory are lower semicontinuity, different types
of convexity and coercivity. For a thorough introduction we refer to the monographs [23, 37].

In order to apply methods of the calculus of variations to the evolution problem (9.1) we need
to rewrite it as a minimization problem. To this end let us shortly assume that α is a cyclic
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operator. Then there exists a convex function ψ : Y → (−∞,∞] such that α = ∂ψ. Moreover
let ψ∗ be the usual convex conjugate. The following equivalence is well known (see Remark
2.31)

y ∈ ∂ψ(x)⇐⇒ ψ(x) + ψ∗(y) ≤ 〈y, x〉Y∗,Y . (9.8)

Moreover for any (x, y) ∈ Y × Y∗ it is true that ψ(x) + ψ∗(y) ≥ 〈y, x〉Y∗,Y . Therefore for any
given x the problem to find y ∈ Y∗ such that y ∈ α(x) is equivalent to find y ∈ Y∗ such that

I(y) := ψ(x) + ψ∗(y)− 〈y, x〉 ≤ I(z) ∀z ∈ Y∗ ∧ I(y) = 0 . (9.9)

In fact the differential inclusion y ∈ ∂ψ(x) is not equivalent to a pure minimization problem.
We also require that the minimizer of I takes value is 0. The concept of Fitzpatrick functions
provides a possibility to generalize the equivalence (9.8) to general maximal monotone operator.
In fact what we are looking for is a function f : Y × Y∗ → (−∞,∞] such that

f : Y × Y∗ → (−∞,∞]is convex and lower semicontinuous,
∀(x, y) ∈ Y × Y∗ : f(x, y) ≥ 〈y, x〉Y∗,Y and
y ∈ α(x)⇐⇒ f(x, y) = 〈y, x〉Y∗,Y .

 (9.10)

Definition 9.1. Let α : Y ⇒ Y∗ be a maximal monotone operator with D(α) 6= ∅. A function
f : Y × Y∗ → (−∞,∞] is called a representative function (of the operator α) if the conditions
(9.10) are met.

It was S. Fitzpatrick in his work [36] who - to the authors knowledge - first developed a
function which satisfied the above conditions. Its definition is as follows

Definition 9.2 (Fitzpatrick function). Let Y be a reflexive Banach space and Y∗ its dual. Let
α : Y ⇒ Y∗ be maximal monotone. The Fitzpatrick function fα : Y × Y∗ → (−∞,∞] of α is
defined by

f(x, y) := sup
{
〈y, x0〉Y∗,Y − 〈y0, x0 − x〉Y∗,Y : x0 ∈ D(α), y0 ∈ α (x0)

}
. (9.11)

Let us first remark that fα indeed satisfies the property (9.10). We shall in the following gather
basic properties of Fitzpatrick functions needed in this work.

Notice that in general the Fitzpatrick fα of a cyclic maximal monotone operator α = ∂ψ
does not coincide with ψ(ξ) + ψ∗(ξ∗). For example consider Y = R = Y∗ and set α to be the
subdifferential of ψ(x) = 1

2x
2. It is easy to see that ψ∗(y) = 1

2 (y)2. However the Fitzpatrick is

f∂ψ(x, y) =
1

4
x2 +

1

4
y2 +

1

2
xy . (9.12)

This clearly shows that for a given maximal monotone operator α the function f satisfying
(9.10) is not unique. Indeed there are a number of functions which satisfy these properties. One
prominent and important example are the so called Penot functions.

Definition 9.3 (Penot function). Let α : Y ⇒ Y∗ be maximal monotone. Then the Penot
function of α is defined by ρα : Y × Y∗ 7→ (−∞;∞] as

ρα :=
(
〈·, ·〉Y∗,Y + Iα(·, ·)

)∗∗
(9.13)

Here Iα is the indicator function of the graph of α.
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Remark 9.4. Among the representative functions the Fitzpatrick and the Penot are extremal, in
the sense that for any given α and any representative function f it holds

fα ≤ f ≤ ρα . (9.14)

Moreover both functions are dual in the sense that

f∗α = ρα−1 ∧ ρ∗α = fα−1 . (9.15)

Proposition 9.5. Let ψ : Y → (−∞,∞] be convex, lower-semicontinuous and 1-homogeneous,
i.e.

∀x ∈ D(ψ), λ > 0 : λx ∈ D(ψ) ∧ ψ(λx) = λψ(x) .

Then the Fitzpatrick of the subdifferential of ψ coincides with the sum of ψ and its convex conju-
gate, in formula

∀(ξ, ξ∗) ∈ Y × Y∗ : f∂ψ(ξ, ξ∗) = ψ(ξ) + ψ∗(ξ∗) .

Proof. For all ψ convex, lower-semicontinuous and 1-homogeneous there exists a closed convex
set 0 ∈ K ⊂ Y such that ψ(ξ) = MK(ξ). Therefore we know that ψ∗(ξ∗) = IK∗(ξ

∗). Notice
that if ξ∗ ∈ ∂MK(x) then

〈x, x∗〉Y∗,Y = MK(x) + IK∗(x) . (9.16)

By definition of the Fitzpatrick we obtain

f∂ψ(ξ, ξ∗) = sup{〈ξ∗, ξ0〉Y∗,Y −MK(ξ0)︸ ︷︷ ︸
≤IK∗ (ξ∗)

+ 〈ξ∗0 , ξ〉Y∗,Y − IK(ξ∗0)︸ ︷︷ ︸
≤MK(ξ)

: ξ∗0 ∈ ∂MK(ξ0)} (9.17)

This implies that f∂ψ(ξ, ξ∗) ≤ MK(ξ) + IK∗(ξ
∗). For the opposite inequality first assume

that ξ∗ /∈ K∗. Then there exists an ξ0 ∈ K such that 〈ξ∗, ξ0〉Y∗,Y > 1. Choose an arbitrary
ξ∗0 ∈ ∂MK(ξ) = ∂MK(λξ) for any positive λ > 0. Then

〈ξ∗, λξ0〉Y∗,Y −MKλξ0 + 〈ξ∗0 , ξ〉Y∗,Y − IKξ
∗
0

≥ λ
(
〈ξ∗, ξ0〉Y∗,Y − 1

)
+ 〈ξ∗0 , ξ〉Y∗,Y → +∞ (λ→∞)

Therefore f∂ψ(ξ, ξ∗) ≥ IK∗(ξ∗). On the other hand choosing ξ0 = 0 we obtain ∂MK(ξ0) = K∗

and deduce that

f∂ψ(ξ, ξ∗) ≥ sup
{
〈ξ∗0 , ξ〉Y∗,Y : ξ∗0 ∈ K∗

}
= MK(ξ) . (9.18)

In total we now obtain that f∂ψ(ξ, ξ∗) ≥MK(ξ) + IK∗(ξ
∗), which concludes the proof.

The use of representative functions for our approach will be elaborated in the following. First
we shall introduce another notion of variational convergence, the so called Γ-convergence. This
particular notion of convergence was introduced by by Ennio de Giorgi in the 70s [30, 29]. For a
thorough introduction to Γ-convergence and its applications we refer to the monographs [16, 24].
For our purposes we need the following definitions

Definition 9.6. Let Y be a Banach space. Let (fn)n∈N be a family of functions fn : Y →
(−∞,∞].
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• A function f is called the weak (strong) Γ− lim inf of the sequence (fn)n∈N, in formula

f = Γw − lim inf
n→∞

fn

(
f = Γs − lim inf

n→∞
fn

)
(9.19)

if it holds for all y ∈ Y

f(y) = inf
{

lim inf
n→∞

fn (yn) : (yn)n∈N ⊂ Y , yn ⇀ y
}

or

f(y) = inf
{

lim inf
n→∞

fn (yn) : (yn)n∈N ⊂ Y , yn → y
}

respectively.

• A function f is called the weak (strong) Γ-lim sup, in formula

f = Γw − lim sup
n→∞

fn

(
f = Γs − lim sup

n→∞
fn

)
(9.20)

if for all y ∈ Y it holds

f(y) = inf

{
lim sup
n→∞

fn (yn) : (yn)n∈N ⊂ Y , yn ⇀ y

}
or

f(y) = inf

{
lim sup
n→∞

fn (yn) : (yn)n∈N ⊂ Y , yn → y

}
respectively.

• f is called the Γ-limit of (fn) with respect to the weak (strong) topology on Y if

Γw − lim inf
n→∞

fn = f = Γw − lim sup
n→∞

fn or

Γs − lim inf
n→∞

fn = f = Γs − lim sup
n→∞

fn respectively.

Remark 9.7. Notice that if f = Γs − lim sup fn then it holds for all y ∈ Y that

f(y) = min

{
lim sup
n→∞

fn (yn) : (yn)n∈N ⊂ Y , yn → y

}
.

In other words the minimum is always attained. To this end let y ∈ Y such that f(y) < ∞. If
f(y) = ∞ the claim is trivial. Then for each k ∈ N there exists a sequence (yn,k)n∈N such that
yn,k → y as n→∞ and

lim sup
n→∞

fn (yn,k) ≤ f(y) + 2−k .

Showing that the minimum is always attained is now a simple diagonal sequence argument.

Theorem 9.8. Let Y be a reflexive Banach space and (αn)n∈N be a family of maximal monotone
operators αn : Y ⇒ Y∗. Let α : Y ⇒ Y∗ be also maximal monotone. Then the following are
equivalent

(1) αn
g−→ α

(2) fα ≤ Γw − lim inf
n→∞

fαn

(3) ρα ≥ Γs − lim sup
n→∞

ραn
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Here αn
g−→ α indicates graph convergence as introduced in Definition 2.43. Up to the

authors knowledge the above theorem is new. A similar result that may spring to mind is the
classical theorem that mosco convergence of a convex functions is equivalent to the graph con-
vergence of their derivative, see e.g. [4, Theorem 3.66]. For a special class of representative
functions (so called selfdual representatives) Ghossoub and coworkers moreover proved that Γ-
convergence to a selfdual function implies Graph convergence of the represented operators to a
maximal monotone operator [38].

Proof. Step 1. We first show that (1)⇒ (2). To this end let (yn, y
′
n)n∈N ⊂ Y × Y∗ be a family

such that
(yn, y

′
n) ⇀ (y, y′) in Y × Y∗ . (9.21)

This is equivalent to yn ⇀ y and y′n,⇀ y. Moreover choose (x, x′) ∈ α. Then as αn
g−→ α

there exists a sequence (xn, x
′
n)n∈N, (xn, x

′
n) ∈ αn such that xn → x and x′n → x′. We hence

can deduce that

lim inf
n→∞

fαn
(
yn, y

′
n

)
≥ lim inf

n→∞

(〈
y′n, xn

〉
Y∗,Y −

〈
x′n, xn − yn

〉
Y∗,Y

)
=

〈
y′, x

〉
Y∗,Y −

〈
x′, x− y

〉
Y∗,Y .

Taking the sup over all (x, x′) ∈ α we deduce that (2) holds.

Step 2. To prove that (1) ⇒ (3) we use a little trick. First notice that αn
g−→ α implies

α−1
n

g−→ α−1. Hence we deduce from the prior step that

Γw − lim inf
n→∞

fα−1
n
≥ fα−1 .

Furthermore notice that as Y×Y∗ is reflexive we can simply take the convex conjugate to obtain
that

ρα ≥
(

Γw − lim inf
n→∞

fα−1
n

)∗
It then follows from [4, Theorem III.3.7] that

ρα ≥ Γs − lim sup
n→∞

ραn

Step 3. We will now show that (3) ⇒ (1). To this end fix (y, y′) ∈ α. Then there exists a
sequence (yn, y

′
n)n∈N ⊂ Y × Y∗ such that yn → y, y′n → y′ and

lim sup
n→∞

ραn(y′n, yn) ≤ ρα(y, y′) =
〈
y′, y

〉
Y∗,Y . (9.22)

Such a sequence exists due to the prior remark. In particular there exists a sequence (εn)n∈N ⊂
[0,∞), εn → 0 such that

ραn(y′n, yn) ≤
〈
y′, y

〉
Y∗,Y + εn (9.23)

Now notice that for all n ∈ N it holds ρ∗αn = fα−1
n

and thus

ρ∗αn(y, y′) ≥
〈
y′, y

〉
Y∗,Y ∧ fα−1

n
(y′, y) ≥

〈
y, y′

〉
Y,Y∗ . (9.24)

101



9. Introduction

A generalization of the Bronstedt-Rockafellar approximation Lemma due to M. Marques Alves
and B. F. Svaiter [67, Theorem 3.4] now grants that for all n ∈ N there exists (xn, x

′
n) ∈ αn

such that
|xn − yn| ≤

√
εn ∧ |x′n − y′n| ≤

√
εn . (9.25)

Then one can easily see that xn → y and x′n → y′ which completes the proof.

Step 4. It remains to show that (2)⇒ (1). Here we once again use the little trick from before.
Indeed by a similar argument as we used in Step 2 we know that (2) implies

ρα−1 ≥ Γs − lim sup
n→∞

ρα−1
n

(9.26)

and we thus obtain from our most recent step that α−1
n

g−→ α−1. This however already implies
αn

g−→ α.

9.3. Doubly nonlinear evolution equations as minimizations
problems

The idea to write doubly nonlinear evolution equations as minimization problems is not new. It
has been done for rate independent evolutions e.g. by U. Stefanelli [101] as a generalization of
the Brezis-Ekeland principle. We will illustrate the idea behind this in a simplified example.

Let E ∈ C1([0, T ] × Y) and α : Y ⇒ Y∗ be maximal monotone. Assume furthermore that
u ∈W 1,1(0, T ;Y). Then by the properties of the Fitzpatrick function

α (u̇(t)) 3 −∇Et(u(t)) ⇐⇒ fα (u̇(t),−∇Et(u(t))) ≤ 〈−∇Et(u(t)), u̇(t)〉Y∗,Y

Then as for all (y, y′) ∈ Y it holds fα(y, y′)− 〈y′, y〉Y∗,Y ≥ 0 we obtain that

fα (u̇(t),−∇Et(u(t))) ≤ 〈−∇Et(u(t)), u̇(t)〉Y∗,Y a.e. in [0, T ]

⇐⇒
T∫

0

fα (u̇(t),−∇Et(u(t))) + 〈∇Et(u(t)), u̇(t)〉Y∗,Y dt ≤ 0 .

Finally the integrating over 〈∇Et(u(t)), u̇(t)〉Y∗,Y we deduce that u solves (9.1) if and only if

ET (u(T )) +

T∫
0

fα (u̇(t),−∇Et(u(t))) dt− E0(u(0))−
T∫

0

∂tEt(u(t)) dt ≤ 0 .

Moreover it holds for all v ∈W 1,1(0, T ;Y) that

ET (v(T )) +

T∫
0

fα (v̇(t),−∇Et(v(t))) dt− E0(u(0))−
T∫

0

∂tEt(v(t)) dt ≥ 0 .
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Now we can define the functional I : W 1,1(0, T ;Y)→ [0,∞] by

I : v 7→ ET (v(T )) +

T∫
0

fα (v̇(t),−∇Et(v(t))) dt− E0(u(0))−
T∫

0

∂tEt(v(t)) dt .

Then finding a solution to (9.1) is equivalent to searching for a minimizer of I with the additional
condition that the minimizer has to attain the value 0.

9.4. Remark on notation

An avid reader will notice that there is a change of notation in this part compared to the previous
part. Whereas in the previous part the external load was described by the variable u(t) and the
state of the system by ξ(t) in this part it is different. Here the state of the system is denoted by
u(t) and the adjoint state by ξ(t). It is certainly uncommon to change the notation between two
parts of the same work. So why has it been done here?

The main reason for this choice is to adhere to the conventions of the respective research areas.
Though both parts are discussing rate independent processes the former part concerning ’clas-
sical’ approaches is mainly investigate by the group around Pavel Krejčı́ and Martin Brokate.
The approach in the present part using variational techniques has been shaped by the Alexander
Mielke and coworkers. Thus slightly different notations arose. Most readers are - at least in the
authors mind - probably only interested in one part. In order to make it easier for those readers
to follow this thesis we decided for the change in notation.

To summarize, in the following the unknown state of the system will be denoted by u(t). By
ξ(t) we will denote an element of the (generalized) subdifferential of Et(u(t)) with respect to the
state u.
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10. Approximation of maximal monotone
operators on reflexive Banach spaces

Throughout this section we assume that Y is a separable, reflexive Banach space. Our aim is
to give a very general setting of assumptions. Let E : [0, T ] × Y → (−∞,∞] be an energy
function, F : [0, T ] × Y → Y∗ and P : [0, T ] × Y → R be its generalized state and time
derivatives respectively. We are going to study

α (u̇(t)) + Ft(u(t)) 3 0 a.e. in [0, T ] (10.1)

In the next section we will provide the framework in which we want to study the problem. Espe-
cially we are going to define what precisely is considered to be a solution of the above inclusion.
We will then state the main result of this chapter. Roughly speaking it states that if (αn)n∈N is a
family of maximal monotone operators with αn

g−→ α and (un)n∈N is a corresponding family of
solutions, then every limit point u will solve the limit equation. Before this result can be shown
some preparations have to be done. This will be content of the third section. We will conclude
this chapter by proving the main theorem.

10.1. Basic assumptions

For any function g : [0, T ]×X → Y where spaces X,Y are some spaces we are going to write
gt(·) when we are referring to g(t, ·). Let us start by introducing the setting in which we are
going to study the problem. We first formulate our precise assumptions on the energy functional.

Assumption 10.1 (Assumptions on the energy). Define G(u) := sup {Et(u) : t ∈ [0, T ]}. The
triple (E , F, P ) has the following properties:

Non degeneracy and lower semi continuity: The domain of E is of the formD(E) = [0, T ]×D
and F : [0, T ]×D ⇒ Y∗ for some Borel set D. Furthermore we assume

u 7→ Et(u) is l.s.c. for all t ∈ [0, T ],
∃C0 > 0 : ∀(t, u) ∈ [0, T ]×D : Et(u) ≥ −C0 and

graph(F ) is a Borel set of [0, T ]× Y × Y∗ .
(10.E0)

Coercivity: For all t ∈ [0, T ] it holds

u 7→ Et(u) has compact sublevels (10.E1)

Lipschitz continuity: There exists C1 > 0 such that for all u ∈ D and s, t ∈ [0, T ] it holds

|Et(u)− Es(u)| ≤ C1Et(u)|t− s| . (10.E2)
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Conditioned one-sided time-differentiability: There exists a function P : graph(F )→ R and
a constant C2 > 0 such that

∀(t, u, ξ) ∈ graph(F ) : lim inf
h↓0

Et+h(u)− Et(u)

h
≤ Pt(u, ξ) ≤ C2G(u) (10.E3)

Chain rule inequality: Let u ∈ BV(0, T ;Y) and ξ ∈ L1(0, T ;Y∗) such that

sup
t∈[0,T ]

Et(u(t)) <∞ and ξ(t) ∈ Ft(u(t)) for a.a. t ∈ [0, T ] . (10.2)

Then the map e : t 7→ Et(u(t)) is of bounded variation. Furthermore let du denote the Radon
measure induced by u and de the Radon measure induced by e then

de� du+ L|[0,T ] (10.E4)

Moreover for almost all Lebesgue points t0 of u̇ac and ėac it holds

ėac(t0) ≥ 〈ξ(t0), u̇ac(t0)〉Y∗,Y + Pt0 (u(t0), ξ(t0)) (10.E5)

Weak closedness: For all t ∈ [0, T ] and for all sequences (un)n∈N ⊂ Y , ξn ∈ Ft(un), En =
Et(un) and pn = Pt(un, ξn) with

un → u in Y, ξn ⇀ ξ in Y∗, pn → p and En → E in R (10.3)

it holds
(t, u) ∈ D(F ), ξ ∈ Ft(u), p ≤ Pt(u, ξ) and E = Et(u) . (10.E6)

Remark 10.2. We should take notice of the following facts

• There exists C > 0 such that for all (t, u) ∈ [0, T ]×D it holds G(u) ≤ CEt(u).

• Moreover there exists comeC > 0 such that for all (t, u, ξ) ∈ graph(F ) it holdsPt(u, ξ) ≤
CG(u). To prove this it suffices to show that there exists C ∈ R such that Pt(u, ξ) ≥
C|G(u)|. This however is a direct consequence of combining (10.E2) and (10.E3).

• The set of all Lebesgue points of both u̇ac and ėac has full measure.

• The above set of assumptions implies the assumptions of [69, Section 4.1] bar the varia-
tional sum rule. Indeed it needs to be shown that the chain rule inequality (4.E5) of the
aforementioned paper holds. To this end let u ∈ W 1,1(0, T ;Y) and ξ ∈ L1(0, T ;Y∗)
such that (10.2) is satisfied. Then due to (10.E4) the map t 7→ Et(u(t)) is absolutely con-
tinuous. The set of Lebesgue points of both u̇ac and ėac has full measure and especially
the weak derivatives d

dtu(t) and d
dtEt(u(t)) coincide almost everywhere with u̇ac and ėac

respectively. Therefore (10.E5) implies the chain rule inequality of [69].

At some points stronger results can be shown if the chain rule inequality (10.E5) is replaced
by the stricter chain rule equality

ėac(t0) = 〈ξ(t0), u̇ac(t0)〉Y∗,Y + Pt0 (u(t0), ξ(t0)) (10.E∗5 )

We will now precisely define what we understand to be a solution of the doubly nonlinear
differential inclusion.
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Definition 10.3. Let (E , F, T ) satisfy Hypothesis 10.1 and assume that α : Y ⇒ Y∗ is a maximal
monotone operator. Choose u0 ∈ D. A function tuple (u, ξ) ∈W 1,1(0, T ;Y)× L1(0, T ;Y∗) is
called a solution to the Cauchy problem

α (u̇(t)) + Ft(u(t)) 3 0, u(0) = u0

if and only if it satisfies u(0) = u0, ξ(t) ∈ Ft(u(t)) for almost all t ∈ [0, T ] and the energy
identity

Et(u(t)) +

t∫
0

fα (u̇(s),−ξ(s)) ds = E0(u(0)) +

t∫
0

Ps(u(s), ξ(s)) ds (10.4)

holds for all t ∈ [0, T ].

Proposition 10.4. If the tuple (u, ξ) ∈ W 1,1(0, T ;Y)× L1(0, T ;Y∗) satisfies the above defini-
tion then for almost every t ∈ [0, T ] it holds

α (u̇(t)) 3 −ξ(t) . (10.5)

Proof. First notice that since u ∈ W 1,1 due to (10.E4) the map t 7→ Et(u(t)) is absolutely
continuous as well. By definition we know that

T∫
0

fα (u̇(t),−ξ(t)) dt

≤ E0 (u(0))− ET (u(T )) +

T∫
0

Pt (u(t), ξ(t)) dt ≤
T∫

0

〈−ξ(t), u̇(t)〉Y∗,Y dt .

The last inequality is a result of (10.E5). Hence due to (9.10) it holds that for almost all t ∈ [0, T ]
we have

fα (u̇(t),−ξ(t)) = 〈−ξ(t), u̇(t)〉Y∗,Y
which is equivalent to our assertion.

The above result can be strengthened if one uses a stronger assumption on the chain rule.

Proposition 10.5. If the tuple (E , F, P ) satisfies Assumption 10.1 where (10.E5) is replaced by
(10.E∗5 ) then a tuple (u, ξ) ∈W 1,1(0, T ;Y)×L1(0, T ;Y∗) is a solution in the sense of Definition
10.3 if and only if

ξ(t) ∈ −α (u̇(t)) ∩ Ft(u(t)) for a.e. t ∈ [0, T ] .

Proof. One direction of the proof can be directly taken from above. The other direction uses the
fact that now indeed

t∫
0

fα (u̇(s),−ξ(s)) ds =

t∫
0

〈−ξ(s), u̇(s)〉Y∗,Y ds

= E0(u(0))− Et(u(t)) +

t∫
0

Ps (u(s), ξ(s)) ds
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The second equality is due to (10.E∗5 ). This implies that (u, ξ) satisfies the conditions of Defini-
tion 10.3.

Remark 10.6. Definition 10.3 can be understood as a minimization problem. Indeed it holds for
all (v, η) ∈W 1,1(0, T ;Y)× L1(0, T ;Y∗) that

Et(v(t)) +

t∫
0

fα (v̇(s),−η(s)) ds ≥ E0(v(0)) +

t∫
0

Ps(v(s), η(s)) ds

Hence when we subtract the right hand side, Definition 10.3 can be interpreted as a 0-minimization
problem.

10.2. Main result

As a last prerequisite before stating the main theorem of this chapter we need to state our as-
sumptions on the family of maximal monotone operators (αn).

Assumption 10.7. Let (αn)n∈N, αn : Y → Y∗ be a maximal monotone operator with 0 ∈ αn(0)
for all n ∈ N. Then we assume there exists c1, c2, c3 > 0, p ≥ 1 and q > 1 independent of n ∈ N
such that

∀n ∈ N : ∀x ∈ D (αn) , y ∈ αn(x) : 〈y, x〉Y∗,Y ≥ c1|x|p + c2|y|q − c3 . (10.α0)

Let us shortly make the following remark: If the family (αn) complies with Assumption 10.7
and αn

g−→ α than also α satisfies the growth condition

∀x ∈ D (α) , y ∈ α(x) : 〈y, x〉Y∗,Y ≥ c1|x|p + c2|y|q − c3 . (10.6)

Our main result reads as follows.

Theorem 10.8. Let the triplet (E , F, P ) comply with Assumption 10.1. Furthermore let (αn)n∈N
be a sequence of maximal monotone operators such that Assumption 10.7 is satisfied. Let
(un, ξn)n∈N ⊂ W 1,1(0, T ;Y) × L1(0, T ;Y) be a family of functions such that (un, ξn) solves
the differential inclusion

αn(u̇n(t)) + Ft(un(t)) 3 0, un(0) = u0 (10.7)

in the sense of Definition 10.3. Assume that αn
g−→ α. Then there exists a pair of functions

u ∈ BV(0, T ;Y) and ξ ∈ L1(0, T ;Y∗) with u(0) = u0, ξ(t) ∈ Ft(u(t)) for almost all t ∈ [0, T ]
such that up to a subsequence

un(t)→ u(t) ∀t ∈ [0, T ] , u̇n · L|[0,T ]
∗
⇀ du ∈M(0, T ;Y∗) (10.8)

Notice that the generalized derivative du is a Banach space valued measure. The pair (u, ξ)
satisfies for almost all t ∈ [0, T ] the energy inequality

Et(u(t)) +

∫ t

0
fα (u̇ac(τ),−ξ(τ)) dτ +

∫ t

0
f∞α (u̇s(τ), 0) ‖( du̇)s‖(τ)

≤ E0(u(0)) +

t∫
0

Pτ (u(τ), ξ(τ)) dτ . (10.9)

Here (du̇)s is the singular component of the Radon measure induced by u.
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Notice that since f∞α is 1-homogeneous (see Theorem 2.34) the result holds irrespective of the
parametrization of the measure ( du̇)s. One can replace u̇s and ‖( du̇)s‖ by v : [0, T ] → Y and
ν ∈M(0, T ) respectively as long as ( du̇)s � ν and ( du̇)s = v · ν.

Remark 10.9. Notice that we do not state any existence results for solutions to (9.1). This is not
in the scope of our analysis. The author is aware of only two existence results which extend the
original setting by Colli and Visintin [21] for general maximal monotone operators. Those are
due to A. Segatti [99] and G. Akagi [1].

10.3. A selection argument on Young measures

Before we can proceed to the proof of Theorem 10.8 we need to introduce two Lemmas. First
we present a small variation of Theorem B.1 from [69].

Lemma 10.10. Let u ∈ BV(0, T ;Y) satisfy

sup
t∈[0,T ]

Et(u(t)) <∞ , (t, u(t)) ∈ dom(F ) for a.a. t ∈ (0, T ) (10.10)

Moreover let (σt)t∈[0,T ] ⊂M(Y∗ × R) be a family Young measures such that

for a.a. t ∈ [0, T ] ∀(ξ, p) ∈ supp(σt) : ξ ∈ Ft(u(t)) , p ≤ Pt(u(t), ξ(t)) (10.11)
T∫
0

∫
Y∗×R

fα(u̇ac(s),−ζ) dσ(ζ, p)ds ≤ ∞ (10.12)

Then the map e : t 7→ Et(u(t)) has bounded variation and it holds for almost all t ∈ [0, T ] that
t is Lebesgue point of ėac and u̇ac and it holds

ėac(t) ≥
∫
Y∗×R

〈ζ, u̇ac(t0)〉Y∗,Y + p dσt(ζ, p) . (10.13)

Proof. Let K(t, u(t)) ⊂ Y × R be the set of all (ξ, p) ∈ Y × R such that ξ ∈ Ft(u(t)) and
p ≤ Pt(u(t), ξ(t)). Then there exists a family ξn, pn of strongly measurable functions such that
for almost all t ∈ [0, T ] it holds

{ξn(t), pn(t)} ⊂ K(t, u(t)) ⊂ {ξn(t), pn(t)} . (10.14)

This has been shown in the first step of the proof of [69, Theorem B.1]. Furthermore it can be
shown that the family (ξn, pn) can be chosen such that

∀n ∈ N : ξn ∈ L1(0, T ;Y∗) and sup
n∈N

∫ T

0
fα(u̇ac(t),−ξn(t)) dt <∞ . (10.15)

To this end we define the function

g(t) := inf{fα(u̇ac(t),−ζ) : (ζ, p) ∈ K(t, u(t))} for almost all t ∈ [0, T ] (10.16)

Notice that due to (10.14) it holds

g(t) := inf
n∈N
{fα(u̇ac(t),−ξn(t))} for a.a. t ∈ [0, T ] (10.17)
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and hence g is measurable. Moreover

T∫
0

g(t) dt ≤
T∫

0

∫
Y×R

fα(u̇ac(t),−ζ) dσt(ζ, p) dt <∞. (10.18)

Following the argument of [69, Theorem B.1] and [94, Lemma 3.4] we obtain (10.15). From
there we deduce by using the chain rule inequality that the map e : t 7→ Et(u(t)) is of bounded
variation. Now there exists a set Tn of full measure such that

ėac(t) ≥ 〈ξn(t), u̇ac(t)〉Y∗,Y + pn(t) . (10.19)

Setting T =
⋂
n∈N Tn, which still has full measure, we deduce by density and convexity that for

any t ∈ T
ėac(t) ≥ 〈ζ, u̇ac(t)〉Y∗,Y + p (10.20)

for all (ζ, p) ∈ conv K(t, u(t)) which readily implies (10.13).

The following lemma is a variation of [69, Lemma B.2]

Lemma 10.11. Let the triplet (E , F, P ) comply with Assumptions 10.1 and the dissipation op-
erator α satisfy the growth condition (10.6). Furthermore let u ∈ BV(0, T ;Y) such that (10.10)
holds. Suppose that the set

S (t, u(t), u̇ac(t)) := {(ζ, p) ∈ Y∗ × R : ζ ∈ Ft(u(t)) , −ζ ∈ α(u̇ac(t)) , p ≤ Pt(u(t), ζ)}
(10.21)

is nonempty for almost all t ∈ (0, T ). Then there exist measurable functions ξ : (0, T ) → Y∗
and p : (0, T )→ R such that for almost all t ∈ [0, T ]

(ξ(t), p(t)) ∈ argmin {fα(u̇ac(t),−ζ)− p : (ζ, p) ∈ S (t, u(t), u̇ac(t))} . (10.22)

Proof. The proof follows closely the lines of the proof of Lemma B.2 in [69] and only takes
small deviations in order to account for the fact that α is not a cyclic operator. We shall first
show that

argmin {fα(u̇ac(t),−ζ)− p : (ζ, p) ∈ S (t, u(t), u̇ac(t))} 6= ∅ for a.a. t ∈ [0, T ] (10.23)

To this end choose (ζn, pn)n∈N ⊂ S (t, u(t), u̇ac(t)) such that

lim
n→∞

fα(u̇ac(t),−ζn)− pn = inf {fα(u̇ac(t),−ζ)− p : (ζ, p) ∈ S (t, u(t), u̇ac(t))} (10.24)

Then there exist some constants C,C ′ ≥ 0 such that

fα(u̇ac(t),−ζn) ≤ C + pn ≤ C + Pt (u(t), ζn) ≤ C ′ (10.25)

The first inequality is due to the definition of (ζn, pn), the second follows from the fact that
(ζn, pn) ∈ S(t, u(t), u̇ac(t)). To see the last inequality notice that due to (10.E3) it holds
Pt (u(t), ζn) ≤ C2G(u(t)). As Et(u(t)) < ∞ we can apply (10.E2) in order to see that
G(u(t)) <∞. Applying the growth condition (10.6) we can now deduce that the family (ζn)n∈N
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is uniformly bounded in Y∗. Also the family (pn)n∈N is bounded in R as one easily obtains from
(10.25) that

−C ≤ pn ≤ C ′ − C .

Hence there exists a (non relabeled) subsequence (ζn, pn)n∈N and
(
ζ, p
)
∈ Y∗ × R such that

ζn ⇀ ζ and pn → p. Notice that due to the weak closedness condition (10.E6) it holds ζ ∈
Ft(u(t)) and p ≤ Pt (u(t), ζ). Moreover −ζ ∈ α (u̇ac(t)) as the graph of a maximal monotone
operator is strongly-weakly closed. Hence we obtain that

(
ζ, p
)
∈ S (t, u(t), u̇ac(t)). As the

function fα is weakly lower semicontinuous we deduce that

fα
(
u̇ac(t),−ζ

)
− p ≤ lim

n→∞
fα(u̇ac(t),−ζn)− pn

Hence we obtain that(
ζ, p
)
∈ argmin {fα(u̇ac(t),−ζ)− p : (ζ, p) ∈ S (t, u(t), u̇ac(t))} (10.26)

Moreover notice that the set

S := {(t, u, v, ζ, p) ∈ [0, T ]× Y × Y × Y∗ × R : ζ ∈ Ft(u) ∩ (−α(v)) , p ≤ Pt(u, ζ)}
(10.27)

is a Borel set of [0, T ] × Y × Y × Y∗ × R. This is due to the fact that both graph(F ) and
α are Borel sets of [0, T ] × Y × Y∗ and Y × Y∗ respectively and P : graph(F ) → R is
a Borel function. Moreover by assumption there exists a set T ⊂ [0, T ] with full measure
such that S(t, u(t), u̇ac(t)) 6= ∅. We define the graph of the multivalued function t ∈ T 7→
S (t, u(t), u̇ac(t)) ⊂ Y∗ × R by

S := {(t, ζ, p) ∈ T × Y∗ × R : (ζ, p) ∈ S (t, u(t), u̇ac(t))} . (10.28)

Using the definition of S from above we can see that the following identity holds

S = {(t, ζ, p) ∈ T × Y∗ × R : (t, u(t), u̇ac(t)ζ, p) ∈ S} . (10.29)

Moreover notice that the function u : (0, T ) → Y and u̇ac : (0, T ) → Y∗ are Borelian up
to choosing a suitable representative in the equivalence class of u̇ac. Then the existence of a
measurable selection (ξ, p) as defined in (10.22) is a consequence of [20, Theorem III.6 and
Corollary III.3].

10.4. Proof of the main result

The proof of Theorem 10.8 combines ideas of the finite dimensional lower semicontinuity the-
orem [37, Theorem 5.27] and selection arguments from the proof of Theorem 4.4 in [69]. As
usual we are going to use a constant C which may change from line to line but is independent of
n.

Proof of Theorem 10.8. Step 1 - A priori estimates and compactness: Due to the assumption
that 0 ∈ αn(0) it holds for all n ∈ N that fαn ≥ 0. Writing En(t) = Et(un(t)) we hence obtain

En(t) ≤ E0(u0) +

t∫
0

C3En(s) ds ∀t ∈ [0, T ] .
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Employing Gronwall’s Lemma we get sup{En(t) : t ∈ [0, T ]} ≤ C. Using both assertions
from Remark 10.2 we obtain that ess sup{|Pt (un(t), ξ(t)) | : t ∈ [0, T ]} ≤ C. Moreover due to
(10.E0) and (10.α0) and the above estimates

T∫
0

c1|u̇n(s)|+ c2|ξn(s)|q ds ≤ E0(u0) +

T∫
0

C3En(t) + C0 + c3 .

Therefore it holds |u̇n|L1(0,T ;Y) + |ξn(s)|Lq(0,T ;Y∗) ≤ C. Using un(0) = u0 we deduce that
|un|BV(0,T ;V c) is bounded. For the sake of simplicity we set pn(s) := Ps (un(s), ξn(s)). Now
notice that

hn : t 7→ Et(un(t))−
t∫

0

pn(s) ds

is monotone decreasing. To see this choose 0 ≤ s < t ≤ T and subtract the energy identity
(10.4) for s from the energy equality for t. We then obtain

hn(t)− hn(s) = −
t∫
s

fαn(u̇n(τ),−ξn(τ)) dτ ≤ 0

Therefore we can easily compute

Var(hn) = E0(u0)− ET (un(T )) +

∫ T

0
pn(s) ds ≤ C .

Moreover since pn is uniformly bounded in L∞(0, T ) we know that ‖Et(un(t))‖BV ≤ C.

Applying the Helly principle we can choose a subsequence (nk)k∈N and u ∈ BV(0, T ;Y),
E ∈ BV(0, T ) such that

(unk , Et (unk(t)))→ (u(t), E(t)) in Y × R .

Passing to an additional (not relabeled) subsequence we know that there exists λ ∈ M(0, T ;Y)
such that

u̇nk · L
∗
⇀ λ . (10.30)

Here L denotes the Lebesgue measure on the interval [0, T ]. Due to a generalization of Lebesgue’s
decomposition theorem [32, Theorem 9] there exist λac, λs ∈M(0, T ;Y) such that

‖λac‖ � L ∧ ‖λs‖ ⊥ L ∧ λ = λac + λs . (10.31)

Since Y is reflexive it has the Radon-Nykodym property. We define the following Radon-
Nykodym derivatives

u̇ac :=
dλac
dL

, u̇s :=
dλs

d‖λs‖
.

Finally an additional (not relabeled) subsequence grants a Young measure (σt)t∈[0,T ], σt ∈
M(Y × R) such that for all t ∈ [0, T ] it holds that σt(Y × R) ≤ 1 and for almost all t ∈ [0, T ]
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it holds

σt(Y × R) = 1

supp (σt) ⊂
⋂
j∈N

cl ({(ξnk(t), pnk(t)) : k ≥ j}) .

Here cl is the closure with respect to the weak topology on Y∗ × R. Moreover it holds

ξnk(t) ⇀

∫
Y∗×R

ζ dσt(ζ, p) =: ξ̂(t) in Lq(0, T ;Y∗) and

∂tEt(un(t))
∗
⇀

∫
Y∗×R

p dσt(ζ, p) =: p̂(t) in L∞(0, T ) .

Step 2 - Existence of generalized derivatives: From now on, for the sake of simplicity, we shall
write instead of nk plainly k. Choose t such that uk(t)→ u(t), Et(uk(t))→ E(t) and

supp (σt) ⊂
⋂
j∈N

cl ({(ξnk(t), pnk(t)) : k ≥ j}) .

The set of all t ∈ [0, T ] violating any of the above conditions has Lebesgue measure 0. Choose
(ζ, p) ∈ supp (σt). Then there exists a further subsequence kj such that (ξkj (t), pkj (t)) ⇀ (ζ, p).
Due to (10.E6) we then obtain that for almost any t ∈ [0, T ] it holds

(t, u(t)) ∈ D(F )

Et(u(t)) = E(t)

supp (σt) ⊂ {(ζ, p) ∈ Y∗ × R : ζ ∈ Ft(u(t)) , p ≤ Pt(u(t), ζ)} .

Hence for almost all t ∈ [0, T ] it holds that

{(ζ, p) ∈ Y∗ × R : ζ ∈ Ft(u(t)) , p ≤ Pt(u(t), ζ)} 6= ∅ .

Step 3 - lim inf result for the Fitzpatrick: Notice that

t 7→ fαk (u̇k(t),−ξk(t))

is bounded in L1(0, T ). Therefore there exists a measure µ ∈ M(0, T ) such that (up to a
subsequence)

fαk (u̇k(·),−ξk(·)) · L
∗
⇀ µ inM(0, T )

Employing [37, Corollary 1.116] we obtain that there exist µac, µs, µ⊥ inM(0, T ) such that

µac � L , µs � ‖λs‖ , µ⊥ ⊥ L+ ‖λs‖ and
µ = µac + µs + µ⊥

Since fαk(u̇k(t),−ξk(t)) ≥ 0 we obtain µ⊥ ≥ 0. For any t ∈ [0, T ] we define

Q(t, ε) :=
(
t0 −

ε

2
, t0 +

ε

2

)
.
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Choose t0 ∈ (0, T ) such that σt0(Y∗ × R) = 1,

dµac
dL

(t0) = lim
ε→0

µ (Q(t0, ε))

L (Q(t0, ε) ∩ [0, T ])
<∞ ,

ξ̂(t0) = lim
ε→0

1

L (Q(t0, ε) ∩ [0, T ])

∫
Q(t0,ε)

ξ̂(t) dt and

u̇ac(t0) = lim
ε→0

λ (Q(t0, ε) ∩ [0, T ])

L (Q(t0, ε) ∩ [0, T ])
.

The set of t0 for which at least one of these condition fails is a Lebesgue null set. Since αk
g−→ α

also α−1
k

g−→ α−1 in the graph sense and we can apply Theorem 9.8 to obtain that for ρα−1
k

=

f∗αk the Γs − lim sup inequality holds as k → ∞. Therefore for any (x, x∗) ∈ Y × Y∗ there
exists a sequence (xk, x

∗
k)k∈N such that (xk, x

∗
k)→ (x, x∗) and

lim sup
n→∞

ρα−1
k

(xk, x
∗
k) ≤ ρα−1(x, x∗) . (10.32)

Choose a sequence εm such that for all m ∈ N

µ (∂Q(t0, ε) ∩ [0, T ]) = λ (∂Q(t0, ε) ∩ [0, T ]) = 0 . (10.33)

Also notice that
L (Q(t0, ε))

ε
→ 1

for all t0 ∈ (0, T ). Choose (x, x∗) ∈ Y × Y∗. Without loss of generality we assume that
ρα−1(x, x∗) <∞. Furthermore choose a sequence (xk, x

∗
k)k∈N ⊂ Y ×Y

∗ such that (xk, x
∗
k)→

(x, x∗) and (10.32) is satisfied. We now may compute

dµac
dL

(t0)

= lim
m→0

lim
k→∞

ε−1
m

∫
Q(t0,εm)∩[0,T ]

fαk(u̇k,−ξk(t)) dt

≥ lim inf
m→0

lim inf
k→∞

ε−1
m

∫
Q(t0,εm)∩[0,T ]

〈x∗k, u̇k〉X∗,X + 〈−ξk(t), xk〉X∗,X − ρα−1
k

(xk, x
∗
k) dt

From the weak star convergence (10.30) we get∫
Q(t0,εm)∩[0,T ]

〈x∗k, u̇k〉X∗,X →
∫

Q(t0,εm)∩[0,T ]

〈x∗, dλ(t)〉X∗,X . (10.34)

Since xk → x we also deduce∫
Q(t0,εm)∩[0,T ]

〈ξk(t), xk〉X∗,X dt→
∫

Q(εm)

〈
ξ̂(t), x

〉
X∗,X

dt
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10. Approximation of maximal monotone operators on reflexive Banach spaces

and thus obtain by using the definition of ξ̂ that

dµac
dL

(t0) ≥ 〈x∗, u̇ac(t0)〉X∗,X +

∫
Y∗×R

〈ζ, x〉X∗,X dσt0(ζ, p)− ρα−1(x, x∗)

for any (x, x∗) ∈ Y × Y∗. Therefore

dµac
dL

(t0) ≥
∫
Y∗×R

fα (u̇ac(t0),−ζ) dσt0(ζ, p) . (10.35)

Furthermore choose t0 ∈ [0, T ] such that it satisfies

dµs
d‖λs‖

(t0) = lim
ε→0

µ ([Q(t0, ε) ∩ [0, T ])

‖λs‖ (Q(t0, ε) ∩ [0, T ])
<∞ ,

us(t0) = lim
ε→0

λ (Q(t0, ε) ∩ [0, T ])

‖λs‖ (Q(t0, ε) ∩ [0, T ])
and

0 = lim
ε→0

L (Q(t0, ε) ∩ [0, T ])

‖λs‖ (Q(t0, ε) ∩ [0, T ])
.

The set of all t0 failing any of the above assumptions is a ‖λs‖-null set. As before we may choose
a vanishing sequence (εm)m∈N such that (10.33) is satisfied. Similarly choose (x, x∗) ∈ Y×Y∗.
Then there exists a sequence (xk, x

∗
k)k∈N ⊂ Y ×Y

∗ such that (xn, x
∗
n)→ (x, x∗) and (10.32) is

satisfied. We also can assume that ρα−1(x, x∗) <∞. We now compute that

dµs
d‖λs‖

(t0)

= lim
m→∞

lim
k→∞

(‖λs‖ (Q(t0, εm) ∩ [0, T ])))−1
∫

Q(t0,εm)∩[0,T ]

fαk(u̇k,−ξk(t))

≥ lim inf
m→∞

lim inf
k→∞

1

‖λs‖ (Q(t0, εm) ∩ [0, T ])
·

·

 ∫
Q(t0,εm)∩[0,T ]

〈x∗k, u̇k〉X∗,X + 〈ξk(t), xk〉X∗,X dt− L(Q(t0, εm) ∩ [0, T ])ρ∗αk(xk, x
∗
k)


Once again we can see that∫

Q(εm)

〈x∗k, u̇k〉X∗,X →
∫

Q(εm)

〈x∗, dλ(t)〉X∗,X and

∫
Q(εm)

〈ξk(t), xk〉X∗,X dt→
∫

Q(εm)

〈
ξ̂(t), x

〉
X∗,X

dt .
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By assumption we then know that

lim
m→∞

1

‖λs‖ (Q(t0, εm) ∩ [0, T ])

∫
Q(t0,εm)∩[0,T ]

〈x∗, dλ(t)〉X∗,X = 〈x∗, u̇s〉X∗,X ,

lim
m→∞

1

‖λs‖ (Q(t0, εm) ∩ [0, T ])

∫
Q(t0,εm)∩[0,T ]

〈
−ξ̂(t), x

〉
X∗,X

dt = 0 and

lim
m→∞

L(Q(t0, εm) ∩ [0, T ])

‖λs‖ (Q(t0, εm) ∩ [0, T ])
ρ∗α−1(x, x∗) = 0 .

Hence we obtain
dµs

d‖λs‖
(t0) ≥ 〈x∗, u̇s(t0)〉X∗,X

for all (x, x∗) such that ρ−1
A (x, x∗) <∞. Due to [37, Proposition 4.77] we then obtain

dµs
d‖λs‖

(t0) ≥ f∞α (u̇s(t0), 0) .

We hence may deduce that

lim inf
k→∞

∫ t

0
fαk (u̇k(s),−ξk(s)) ds

≥
∫ t

0

∫
Y∗×R

fα (u̇ac(s),−ζ) dσs(ζ, p) ds+

∫ t

0
f∞α (u̇s(s), 0) d‖λs‖ (10.36)

We thus have now proven that for almost all t ∈ [0, T ]

Et(u(t)) +

∫ t

0

∫
Y∗×R

fα (u̇ac(s),−ζ) dσs(ζ, p) ds+

∫ t

0
f∞α (u̇s(s), 0) d‖λs‖

≤ E0(u(0)) +

∫ t

0

∫
Y∗×R

p dσs(ζ, p) ds . (10.37)

Step 4 - Selection argument: We are now going to prove that for almost all t ∈ [0, T ] it holds

supp (σt) ⊂ {(ζ, p) ∈ Y∗ × R : ζ ∈ Ft(u(t)) ∧ −ζ ∈ α(u(t)) , p ≤ ∂tEt(u(t))} .

Especially we have to prove that −ζ ∈ α(u(t)) for almost every t ∈ [0, T ]. To this end notice
that for all 0 ≤ s < t ≤ T

E(t)− E(s) + µ([s, t]) =

s∫
0

p(s) ds . (10.38)

Notice that due to Lemma 10.10 t 7→ E(u(t)) is of bounded variation. For the sake of notational
simplicity set e : t 7→ Et(u(t)). Let T ⊂ [0, T ] be the set of all t0 such that t0 is a Lebesgue
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point of p,

dµac
dL

(t0) = lim
ε→0

µ ([t0 − ε, t0 + ε] ∩ [0, T ])

ε
<∞ ,

ξ(t0) = lim
ε→0

1

ε

t0+ε/2∫
t0−ε/2

ξ(t) dt ,

u̇ac(t0) = lim
ε→0

λ ([t0 − ε, t0 + ε] ∩ [0, T ])

ε
and

ėac(t0) = lim
ε→0

e
(
t+ ε

2

)
− e

(
t− ε

2

)
ε

.

Then T has full measure. Choose a sequence (εn), εn ↓ 0 such that (10.33) holds and Et0±εn/2(u(t0±
εn/2)) = E(t0±εn/2). Then from (10.38), (10.35) and Lemma 10.10 we obtain that for almost
any t0 ∈ T it holds∫

Y∗×R

fα(uac(t0),−ζ) dσt0(ζ, p)

≤ −ėac(t0) +

∫
Y∗×R

p dσt0(ζ, p) ≤
∫
Y∗×R

〈−ζ, u̇ac(t0))〉X∗,X dσt0(ζ, p)

and hence deduce that for almost any t0 ∈ T (and hence for almost any t0 ∈ (0, T )) it holds∫
Y∗×R

〈−ζ, u̇act0)〉X∗,X − fα(uac(t0),−ζ) dσt0(ζ, p) ≥ 0

This enables us to deduce that for almost all t ∈ (0, T )

supp (σt) ⊂ {(ζ, p) ∈ Y∗ × R : ζ ∈ Ft(u(t)) , −ζ ∈ α(u̇ac(t)) and p ≤ Pt(u(t), ζ)} .

Thus we meet the conditions of Lemma 10.11 and deduce that there exist measurable functions
ξ : (0, T )→ Y and p : (0, T )→ R such that for almost all t ∈ (0, T )

ξ(t) ∈ Ft(u(t)) ,−ξ(t) ∈ α(u̇ac(t)) and p(t) ≤ Pt(u(t), ξ(t)) .

such that (10.22) holds. From there we deduce that for almost all t ∈ [0, T ]

fα(u̇ac(t),−ξ(t))− p(t) ≤
∫
Y∗×R

fα(u̇ac(t),−ζ)− p dσt(ζ, p) .

Applying this result to (10.37) we then deduce that

Et(u(t)) +

∫ t

0
fα (u̇ac(s),−ξ(s)) ds+

∫ t

0
f∞α (u̇s(s), 0) d‖λs‖

≤ E0(u(0)) +

∫ t

0
p(s) ds ≤ E0(u(0)) +

t∫
0

Ps (u(s), ξ(s)) ds .

This completes the proof.
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10.4. Proof of the main result

Let us finish this chapter by making a few remarks. First, by a simple subsequence argument
for any limit point u of the family (un)n∈N there exists a function ξ ∈ Lq(0, T ;Y∗) such that
(10.9) is satisfied. Moreover if u is an absolutely continuous limit point of the family (un)n∈N
then there is a corresponding function ξ ∈ Lq(0, T ;Y) such that (u, ξ) solves (10.1) in the sense
of Definition 10.3.
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11. Approximation of dissipation potentials on
non-reflexive Banach spaces

In the case that Y is a possibly non-reflexive Banach space we are not able to provide results in
the full generality as above. The Fitzpatrick formalism is no longer valid. Therefore we need to
confine ourselves to the case of cyclic operators. That is we are going to study doubly nonlinear
differential inclusions of the type

∂Ψ (u̇(t)) + ∂uEt (u(t)) 3 0 . (11.1)

These types of equations are of considerable interest in applications as one will often find dissipa-
tion functionals of the type ‖·‖L1(Ω) for some open bounded set Ω. The prototypical application
we have in mind are approximations of the form 1

1+ε‖ · ‖
1+ε
L1+ε(Ω)

as ε→ 0. Whereas these func-
tionals can all be defined on the space L1(Ω) the natural spaces for their conjugates to be defined
on are L(1+ε)/ε(Ω). Another example would be considering the limit in ‖ · ‖L1(Ω) + ε‖ · ‖2L2(Ω).
For these functions the natural space the dual can be defined on would be the Hilbert space
L2(Ω). We will use these two examples as a means to test our assumptions for applicability.

In order to be able to deal with these types of problems, especially the fact that different ’state
spaces’ are required, we need to provide a more involved setting. This will be done in the first
section. However still a number of problems arise when we allow for non-reflexive Banach
spaces. Most notoriously among them is the loss of the Radon-Nikodym property. We shall
present a way how this problem can be overcome. To do so a relaxation of the state space is
needed and the concept of metric derivatives is introduced. Also useful properties of the Mosco
convergence are lost. We will address these obstacles in the third section. Based on our analysis
in these two sections we can then state our main result. Its proof will be part of the last section
of this chapter.

11.1. Basic setting of the problem

Our aim is to allow for solutions of the approximating equations to be in different spaces. There-
fore we start by defining what families of ’state spaces’ are deemed to be admissible for our
analysis.

Definition 11.1 (Admissible families of state spaces). Let H be a separable Hilbert space and
Y a separable Banach space. Moreover let (Yn)n∈N be a family of Banach spaces. The triple(
Y, H, (Yn)n∈N

)
is admissible if and only if

(i) For all n ∈ N it holds

H
in
↪→ Yn

jn
↪→ Y (11.2)

where each embedding is continuous.
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11.1. Basic setting of the problem

(ii) What is more, there exists a C > 0 such that for all n ∈ N it holds that

|jn(y)|Y ≤ C |y|Yn (11.3)

(iii) Moreover for all m,n ∈ N it holds

jn ◦ in = jm ◦ im . (11.4)

We denote the thus uniquely defined embedding H ↪→ Y by i and assume that i(H) is
strongly dense in Y .

Throughout this chapter we will identify an element y ∈ Yn with the corresponding element
jn(y) ∈ Y if no confusion can arise.

We will now present our assumptions on the energy functional. These assumptions are similar
to (10.1) but need to be refined in some points in order to account for the more general setting
introduced above.

Assumption 11.2 (Assumptions on the energy). Let E : [0, T ]×H → [−∞,∞] be and energy
functional, F : D(F ) → H be its generalized state derivative and P : D(P ) → R be its gener-
alized time derivative. For a function u : [0, T ] → H define G(u) := sup {Et(u) : t ∈ [0, T ]}.
The triple (E , F, P ) has the following properties:

Non degeneracy and lower semi continuity: The domain of E is of the formD(E) = [0, T ]×D
and F : [0, T ]×D ⇒ H for some Borel set D. Furthermore we assume

u 7→ Et(u) is l.s.c. for all t ∈ [0, T ],
∃C0 > 0 : ∀(t, u) ∈ [0, T ]×D : Et(u) ≥ −C0 and

graph(F ) is a Borel set of [0, T ]× Y × Y∗ .
(11.E0)

Coercivity: For all t ∈ [0, T ]

u 7→ Et(u) has compact sub-levels (11.E1)

Lipschitz continuity: There exists C1 > 0 such that for all u ∈ D and s, t ∈ [0, T ] it holds

|Et(u)− Es(u)| ≤ C1Et(u)|t− s| . (11.E2)

Conditioned one-sided time-differentiability: There exists a function P : graph(F )→ R and
a constant C2 > 0 such that

∀(t, u, ξ) ∈ graph(F ) : lim inf
h↓0

Et+h(u)− Et(u)

h
≤ Pt(u, ξ) ≤ C2G(u) (11.E3)

Chain rule inequality: Let Z be either Yn for some n ∈ N or Z = Y . Let u ∈ W 1,1(0, T ;Z)
and ξ ∈ L1(0, T ;Z∗) such that

sup
t∈[0,T ]

Et(u(t)) <∞ and ξ(t) ∈ Ft(u(t)) for a.a. t ∈ [0, T ] . (11.5)
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11. Approximation of dissipation potentials on non-reflexive Banach spaces

Then the map e 7→ Et(u(t)) is absolutely continuous and for almost all t ∈ [0, T ] it then holds

ė(t) ≥ 〈ξ(t), u̇ac(t)〉Y∗,Y + Pt (u(t), ξ(t)) (11.E5)

Weak closedness: For all t ∈ [0, T ] and for all sequences (un)n∈N ⊂ H , ξn ∈ Ft(un), En =
Et(un) and pn = Pt(un, ξn) with

un → u in Y, ξn ⇀ ξ in H, pn → p and En → E in R (11.6)

it holds
(t, u) ∈ D(F ), ξ ∈ Ft(u), p ≤ Pt(u, ξ) and E = Et(u) . (11.E6)

Similar to the prior chapter we also need to state what we precisely understand to be a solution
of a doubly nonlinear differential inclusion (11.1). Once again let Z be either Yn for some n ∈ N
or Z = Y .

Definition 11.3. Let (E , F, T ) satisfy Hypothesis 10.1 and assume that Ψ : Y → [0,+∞]
be a convex, lower semi-continuous function. Choose u0 ∈ D. A function tuple (u, ξ) ∈
W 1,1(0, T ;Z)× L1(0, T ;Z∗) is called a solution to the Cauchy problem

∂Ψ (u̇(t)) + Ft(u(t)) 3 0, u(0) = u0 (11.7)

if and only if it satisfies u(0) = u0, ξ(t) ∈ Ft(u(t)) and the energy identity

Et(u(t)) +

t∫
0

Ψ (u̇(s)) + Ψ∗ (−ξ(s)) ds = E0(u(0)) +

t∫
0

Ps(u(s), ξ(s)) ds (11.8)

holds for all t ∈ [0, T ].

Notice that if the space Z is reflexive any solution to (11.1) in the sense of the above definition
also solves (11.1) in the sense of Definition 10.3. We are also able to state an analogue to
Proposition 10.4 also in this setting it holds that

Proposition 11.4. If the tuple (u, ξ) ∈ W 1,1(0, T ;Z)× L1(0, T ;Z∗) satisfies the above defini-
tion then for almost every t ∈ [0, T ] it holds

∂Ψ (u̇(t)) 3 −ξ(t) . (11.9)

Moreover if (11.E5) holds with ’=’ then also the converse assertion is true.

We refrain from giving a proof here as it exactly follows the lines of the prior proof of Propo-
sition 10.4. Instead we will state the general conditions on the family of dissipation potentials
(Ψn)n∈N, that we are going to impose in the sequel. Once again the choice of our assumptions
is driven by the two model examples we have in mind.

Assumption 11.5. Let (Y, H, (Yn)) be an admissible triple. We assume that the family of dissi-
pation potentials (Ψn)n∈N satisfies the following conditions.

Non degeneracy. For all n ∈ N it holds

Ψn : Yn → [0,∞) is convex and lower semi-continuous. (11.10)
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Uniform growth. There exist c1, c2, c3 > 0, p ≥ 1 and q > 1 such that for all n ∈ N it holds

∀(x, x∗) ∈ Yn × Y∗n : Ψn(x) + Ψ∗n(x∗) ≥ c1 |jn(x)|pY + c2 |i∗n (x∗)|qH∗ − c3 (11.11)

Moreover we assume that Ψn(0) = 0.

Remark 11.6. Assume that we consider the family of potentials 1
pn
‖ · ‖pnLpn for some family

(pn) ∈ [1, 2] with pn ↓ 1. Then we can choose Y = L2, Yn = Lpn and H = L2 and
it is easy to see that the potentials satisfy the conditions of Assumption 11.5. If one chooses
Ψn(·) = ‖ · ‖L1 + 1

n‖ · ‖
2
L2 then a natural choice would be Y = L1 and H = Yn = L2 for all

n ∈ N.

Assume that (Ψn)n∈N was a family of convex, lower semi continuous functions on Y . If Y
were reflexive then

∂Ψn
g−→ ∂Ψ ⇐⇒ Ψn

M−→ Ψ ⇐⇒ Ψ∗n
M−→ Ψ∗ . (11.12)

A major part of the proof of Theorem 10.8 was to show that equation (10.36), a lim inf inequality
for the Fitzpatrick function, holds. A similar result will be needed in our context. One can easily
replace the Fitzpatrick of f∂Ψn by the sum Ψn + Ψ∗n. If Y was reflexive we would now aim to
prove that

lim inf
n→∞

T∫
0

Ψn (u̇n(t)) dt ≥
T∫

0

Ψ (u̇(t)) dt and (11.13)

lim inf
n→∞

T∫
0

Ψ∗n (−ξn(t)) dt ≥
T∫

0

Ψ∗ (−ξ(t)) dt . (11.14)

for any limit point (u, ξ) of the family of solutions (un.ξn)n∈N.Especially showing (11.13) gives
rise to some concern. The first obstacle is that even if u is absolutely continuous there need not
to exist a weak derivative of u in L1(0, T,Y). The second obstacle is the fact that the implication

Ψn
M−→ Ψ =⇒ Ψ∗n

M−→ Ψ∗ (11.15)

is in general no longer valid. In fact it has been shown by G. Beer and J. M. Borwein in [11] that
if the above implication holds for all families of convex and lower semi continuous functions,
then the underlying Banach space is reflexive. In order to overcome these problems a number of
preparations are needed. We start by stating our precise assumptions on the energy functional.
We will address these problems in the following two sections.

11.2. Embedding of the state space and metric derivatives

In order to overcome the lack of the Radon-Nikodym property one can embed the state space
into a larger space which has a weak version of the Radon-Nikodym property. The results in
this section are are due to be published in an forthcoming article by A. Mielke, R. Rossi and
G. Savaré [74]. However as at the time this thesis was written the result were not yet published
available we shall present proofs here for which we claim no originality whatsoever.
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11.2.1. An embedding result of reflexive Banach spaces

Proposition 11.7. Let Y be a separable Banach space. Then there exists a separable space
X ⊂ Y∗ and an isometric embedding j : Y ↪→ X∗ such that j (Y) is weakly - star dense in X∗.

Proof. As Y is separable there exists a countable subset {y′n : n ∈ N} ⊂ Y∗ such that

|y| = sup
{〈
y′n, y

〉
Y∗,Y : n ∈ N

}
. (11.16)

We then define X := span {y′n : n ∈ N}. Clearly X is a closed linear subspace of Y∗, moreover
X is separable. Define the embedding j : Y ↪→ X∗ by

〈j(y), x〉X∗,X = 〈x, y〉Y∗,Y ∀x ∈ X .

We will now show that j(Y) is weakly-star dense in X∗. Let X̂ be the weak-star closure of
j(Y). Notice that the set of all continuous linear functionals on X∗ with respect to its weak-star
topology is exactly X . Now assume that x′ /∈ X̂ then there exists some x ∈ X and α ∈ R such
that 〈

x′, x
〉
X∗,X

> α ≥ 〈x̂, x〉X∗,X x̂ ∈ X̂ .

As X̂ is a linear space we obtain that

〈x̂, x〉X∗,X ≤ 0 ∀x̂ ∈ X̂

Hence for all y ∈ Y it holds
〈x, y〉Y∗,Y = 0∀

and thus x = 0 which is a contradiction. Moreover the embedding j : Y ↪→ X∗ is isometric.
This is due to the choice of the subspace X , especially (11.16).

Why does this result help? As X∗ is the dual of a separable space, it possesses a weak-star
Radon Nikodym theorem, see Section 4.2. Hence if y : [0, T ] → Y is absolutely continuous
then also the map ŷ : t 7→ j (y(t)) is absolutely continuous. Hence it has a weak star derivative
d
dt ŷ ∈ L1(0, T ;X ′). To see where this leads to we need to introduce the so called metric
derivatives.

11.2.2. Metric derivatives

Metric derivatives can be used to extend certain differential equations to metric spaces. We refer
to the recent monograph by L. Ambrosio, N. Gigli and G. Savaré [3] for a thorough introduc-
tion into gradient flows in metric spaces. This book also provides a solid introduction into the
necessary concepts for such a study. We also point out two articles by A. Mielke, R. Rossi and
G. Savaré [93, 72] who studied doubly nonlinear differential inclusions and especially rate in-
dependent evolutions on metric spaces. These are topics of interest in their own right. Here
however the concept of metric derivatives serves ’merely’ as a technical tool allowing us to over-
come the problems at hand.
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11.2. Embedding of the state space and metric derivatives

For our study we require the possibility of non-symmetric distance functions. To this end let
us shortly define our assumptions. Let X be a set and d : X× X→ [0,∞]. We say that (X, d) is
a (possibly asymmetric) metric space if

∀u, v ∈ X : d(u, v) = 0⇐⇒ u = v (11.17)

∀u, v, w ∈ X : d(u,w) ≤ d(u, v) + d(u,w) . (11.18)

Definition 11.8 (Metric derivative). Let (X, d) be a metric space and v : [0, T ]→ X. The metric
derivative of v at a point t ∈ [0, T ] is given by

|v′|d(t) = lim
h→0

d (v(t), v(t+ h))

h
(11.19)

should this limit exist.

A function v : [0, T ] → X is called absolutely continuous if there exists a function m ∈
L1(0, T ) such that

∀0 ≤ s < t ≤ T : d(v(s), v(t)) ≤
t∫
s

m(τ) dτ . (11.20)

Theorem 11.9 ([3, Theorem 1.1.2], [93, Proposition 2.2]). Let v ∈ AC(0, T ;X). Then for al-
most every t ∈ [0, T ] the metric derivative |v′|d(t) exists. The function t 7→ |v′|d(t) is integrable
and

∀0 ≤ s < t ≤ T : d(v(s), v(t)) ≤
t∫
s

|v′|d(τ) dτ .

Moreover for any function m ∈ L1(0, T ) satisfying (11.20) it holds

|v′|d(t) ≤ m(t) for a.e. t ∈ [0, T ] .

To see how this relates to our problem let d be the metric induced by the norm on Y .

Proposition 11.10. Let Y be a reflexive space and X ⊂ Y∗ be the separable space constructed
in Proposition 11.7. Let y : [0, T ] → Y be absolutely continuous. Then the map t 7→ j (y(t)) is
in AC(0, T ;X∗). It thus has an weak-star derivative denoted by d

dt j (y(t)) and it holds∥∥∥∥ d

dt
ŷ(t)

∥∥∥∥
X′

=
∣∣y′∣∣

d
(t) for a.e. t ∈ [0, T ] .

Proof. Indeed let y : [0, T ]→ Y be absolutely continuous. Then as the embedding j : Y → X∗

is an isometry also t 7→ j (y(t)) is absolutely continuous. For all 0 ≤ s < t ≤ T it holds

|y(t)− y(s)|Y = ‖j (y(t))− j (y(s))‖X∗

= sup
{
〈j (y(t))− j (y(s)) , xn〉X∗,X : n ∈ N

}
,

where the family (xn)n∈N can be taken from the proof of Proposition 11.7. Notice that for every
n the set of all t ∈ [0, T ] such that

lim
h→0

1

h

t+h∫
t

〈
d

ds
ŷ(s), xn

〉
X∗,X

ds =

〈
d

ds
ŷ(t), xn

〉
X∗,X
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has full measure. Hence for almost all t ∈ [0, T ] it holds that

lim inf
h→0

1

h
|y(t+ h)− y(t)|Y ≥

∥∥∥∥ d

dt
ŷ(t)

∥∥∥∥
X′

At the same time it holds for any 0 ≤ r < s ≤ T that

s∫
r

∥∥∥∥ d

dt
ŷ(t)

∥∥∥∥
X′

dt ≥ ‖j(y(s))− j(y(r))‖X′ = |y(s)− y(r)|Y

This shows the claim.

Example 11.11. Assume that Y = L1(Ω) for some open, bounded set Ω. Then Y∗ = L∞(Ω).
A natural choice for X would be the set of all bounded continuous functions on Ω, Cb(Ω). The
corresponding dual is the set of all finite Radon measureM(Ω).

11.3. Mosco convergence in non-reflexive Banach spaces

Let us interpret u as a function on X∗ and denote by d
dtu its weak-star derivative. If we try to

prove an analogue of (11.13) we immediately run into the problem that Ψ is only defined on Y .
Hence one needs to find a way to extend this function to X∗. As we are trying to establish a
lim inf result it appears natural to relax Ψ to its lower semi continuous closure Ψrel : X∗ →
(−∞,∞] which is given by

Ψrel(x
′) = sup

{〈
x′, x

〉
X∗,X

−Ψ∗(x) : x ∈ X ⊂ Y∗
}
. (11.21)

We would then replace (11.13) by

lim inf
n→∞

T∫
0

Ψn (u̇n(t)) dt ≥
T∫

0

Ψrel

(
d

dt
(ju(t))

)
dt . (11.22)

To prove such an inequality an analogue of the liminf -inequality (2.24) with respect to Ψrel and
the weak star topology of X∗ is needed. To be precise we would desire that

∀(yn) ⊂ Y, j(xn)
∗
⇀ x′ in X∗ : lim inf

n→∞
Ψn(yn) ≥ Ψrel(x

′) . (11.23)

However even if Ψn
M−→ Ψ the above inequality does not need to hold, as the following example

will show. The idea behind this example is due to G. Beer and J. M. Borwein [11].

Example 11.12. Assume that Y = L1(−1, 1). Then Y∗ = L∞(−1, 1) and one may chooseX =
Cb(−1, 1) and consequently X∗ = M(−1, 1). Weierstrass theorem grants that X is separable
and it is simple to check that L1 ↪→ M(−1, 1) is weakly star dense. Choose g ∈ Cb(−1, 1) to
be g(x) = 1− |x|. Then for all f ∈ L1(−1, 1) with ‖f‖L1(−1,1) = 1 it holds

〈g, f〉Y∗,Y =

1∫
−1

f(x)g(x) dx < 1 . (11.24)
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The reason therefore is that an L1 function cannot concentrate its mass on one point. Now define
(An)n∈N by

An =

{
f ∈ L1(Ω) : ‖f‖L1(−1,1) = 1 , 〈g, f〉Y∗,Y ≥ 1− 1

n

}
.

Notice that due to (11.24) the intersection of all An is empty, i.e.⋂
n∈N

An = ∅ .

Furthermore we define the sets Cn by

Cn = co ({0} ∪An) .

Notice that An is closed and hence so is Cn. For n ∈ N we define the functional Ψn : X →
[0,+∞] by Ψn(x) := MCn(x). First notice that MCn

M−→M{0}. First Cn
M−→ {0} in the sense

of Mosco convergence of convex sets. First, as 0 ∈ Cn for all n ∈ N a strong recovery sequence
exits. Second let (xn)n∈N ⊂ X with xn ∈ Cn and xn ⇀ x. Then as (Cn)n∈N is a decreasing
sequence of closed convex sets, we obtain that x ∈ Cn for all n ∈ N. Due to [Borwein - Lemma
3.1] we obtain that x = 0. As Mosco convergence of a family of convex functions is equivalent
to Mosco convergence of their epigraphs we deduce that MCn

M−→M{0}.
Define the sequence (fn)n∈N ⊂ L1(−1, 1) by fn(x) = n

2χ(− 1
n
, 1
n) be a sequence of functions. It

is simple to see that ‖fn‖L1 ≡ 1 and

fn · L
∗
⇀ δ0 inM(−1, 1) ,

where δ0 is the Dirac measure on 0. Moreover for all n ∈ N it holds

1∫
−1

f(x)g(x) dx =

1/n∫
−1/n

n

2
− n

2
|x| dx = 1− 1

2n

Then as fn ∈ An it also holds fn ∈ Cn. Moreover for all n ∈ N and λ > 1 it holds λfn 6= Cn,
as ‖λfn‖L1 = λ > 1. Thus

Ψn (fn) ≡ 1 .

However as Ψ = M{0} we obtain that also Ψrel = M{0}, and hence Ψrel (δ0) = +∞. Therefore
the lim inf inequality is not satisfied.

Before we further discuss this topic note that for any y ∈ Y it holds that Ψrel(j(y)) ≤ Ψ(y).
However one can not be certain that also equality holds. This can be overcome by adapting the
choice of X .

Proposition 11.13. Let Y be a separable Banach space and Ψ : Y → [0,∞] be a proper, convex,
lower semi continuous function such that Ψ(x) = 0 iff x = 0 and

∀
(
y, y′

)
∈ Y × Y∗ : Ψ(y) + Ψ∗(y′) ≥ c1|y|pY + c2|y′|qY∗ − c3 . (11.25)

for some c1, c2, c3 > 0, p ≥ 1 and q > 1. Then there exists a separable subspace X ⊂ Y∗ and
an isometric embedding j : Y ↪→ X∗ such that j (Y) is weakly star dense in X∗ and

∀y ∈ Y : Ψ(y) = sup
{〈
y′, y

〉
Y∗,Y −Ψ∗(y′) : y′ ∈ X

}
. (11.26)
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Proof. Step 1 - Convex conjugate. First we are going to show that for all y ∈ Y there exists
some y′ ∈ Y∗ such that

Ψ(y) =
〈
y′, y

〉
Y∗,Y −Ψ∗(y′) .

To this end notice that as Ψ is proper, convex, and lower semi continuous it holds that

Ψ(y) = sup
{〈
y′, y

〉
Y∗,Y −Ψ∗(y′) : y′ ∈ Y∗

}
.

Let y ∈ Y∗ be fixed. Then for n ∈ N choose y′n ∈ Y∗ such that

Ψ(y) ≤
〈
y′n, y

〉
Y∗,Y −Ψ∗

(
y′n
)

+
1

n
.

The family (y′n)n∈N is uniformly bounded in Y∗ because〈
y′, y

〉
Y∗,Y −Ψ∗

(
y′
)
≤
∣∣y′∣∣ |y| − c2

∣∣y′∣∣q + c3 → −∞ as
∣∣y′∣∣→∞ .

Hence there exists a subsequence (nk)k∈N such that y′nk
∗
⇀ y′ for some y′ ∈ Y∗. As Ψ∗ is lower

semi continuous we obtain that

Ψ(y) ≤ lim sup
k→∞

〈
y′nk , y

〉
Y∗,Y −Ψ∗ (ynk) +

1

nk
≤
〈
y′, y

〉
Y∗,Y −Ψ∗

(
y′
)
≤ Ψ(y) .

Step 2 - Choice of subspace. We will now prove that there exists a separable subset X ⊂ Y∗
satisfying (11.26). To this end let (yn)n∈N be strongly dense in Y . For all n ∈ N choose y′n such
that

Ψ (yn) =
〈
y′n, yn

〉
Y∗,Y −Ψ∗

(
y′n
)
.

Moreover let (ŷ′n)n∈N be the sequence satisfying (11.16). We then define

X = span ({y′n : n ∈ N} ∪ {ŷ′n : n ∈ N})

Obviously X is a closed, linear and separable subspace of Y∗. Moreover for all y ∈ Y it holds
that

Ψ(y) ≥ sup
{
〈x, y〉Y∗,Y −Ψ∗(x) : x ∈ X

}
.

For any y ∈ Y there exists a subsequence (ynk)k∈N such that ynk → y. Let
(
y′nk
)
k

be the
corresponding sequence in X . Due to the lower semi continuity

Ψ(y) ≤ lim inf
k→∞

Ψ (ynk) ≤ lim inf
k→∞

〈
y′nk , ynk

〉
Y∗,Y −Ψ∗

(
y′nk
)
.

Notice that the family
(
y′nk
)
k

is uniformly bounded in Y . This is due to the observation that

0 ≤ Ψ (ynk) ≤ |ynk |
∣∣y′nk ∣∣− c2

∣∣y′nk ∣∣q + c3

and the fact that |ynk | < C for some C > 0. Hence there exists a subsequence
(
y′nkj

)
k

such
that

y′nkj
∗
⇀ y′ ∧ lim inf

k→∞

〈
y′nk , ynk

〉
Y∗,Y −Ψ∗

(
y′nk
)

= lim inf
j→∞

〈
y′nkj

, ynkj

〉
Y∗,Y

−Ψ∗
(
y′nkj

)
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Moreover we have that y′ ∈ X . Hence we can deduce that

Ψ(y) ≤
〈
y′, y

〉
Y∗,Y −Ψ∗

(
y′
)
≤ sup

{
〈x, y〉Y∗,Y −Ψ∗(x) : x ∈ X

}
.

Step 3 - Inclusion. We define inclusion j : Y ↪→ X∗ by

∀x ∈ X : 〈j(y), x〉X∗,X = 〈x, y〉Y∗,Y .

Showing that this inclusion is weakly star dense in X∗ has already been done in the proof of
Proposition 11.7. The space defined there is contained in the space constructed here. It also
follows that the embedding is isometric.

We are now going to show that asking for (11.23) is equivalent to requiring that for all elements
of X there exists a strong recovery sequence for Ψ∗.

Proposition 11.14. Let (Ψn)n∈N be a family of convex, uniformly proper and lower semi con-
tinuous functions Ψn : Y → [0,∞) such that Ψn(0) = 0. Let g : X → [0,∞) be convex, proper
and lower semi continuous. Then the following two are equivalent

i) For all (yn)n∈N ⊂ Y with j (yn)
∗
⇀ x′ in X∗ it holds

lim inf
n→∞

Ψn(yn) ≥ g∗(x′) . (11.27)

ii) For all x ∈ X there exists a sequence y′n ∈ Y∗ such that

y′n → x in Y∗ ∧ lim sup
n→∞

Ψ∗n
(
y′n
)
≤ g(x) (11.28)

Proof. ii)⇒ i). This direction is the easier one. Choose (yn)n∈N ⊂ Y such that j(yn)
∗
⇀ x′ for

some x′ ∈ X . Moreover choose x ∈ X and a corresponding sequence (y′n)n∈N ⊂ Y∗ such that
(11.28) is satisfied. Then

lim inf
n→∞

Ψn (yn) ≥ lim inf
n→∞

〈
y′n, yn

〉
Y∗,Y −Ψ∗n

(
y′n
)

Notice that by assumption

lim inf
n→∞

−Ψ∗n
(
y′n
)

= − lim sup
n→∞

Ψ∗n
(
y′n
)
≥ g(x) .

Moreover as j (yn)
∗
⇀ x′ in X∗ we have |j (yn)|X is uniformly bounded and as j is an isometry

so is |yn|Y . We furthermore obtain that∣∣∣〈y′n, yn〉Y∗,Y − 〈x′, x〉X∗,X ∣∣∣
≤

∣∣y′n − x∣∣ |yn|+ ∣∣∣〈j(yn)− x′, x
〉
X∗,X

∣∣∣→ 0 .

Hence we deduce that
lim inf
n→∞

Ψn (yn) ≥
〈
x′, x

〉
X∗,X

− g(x) .
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Taking the sup over all x ∈ X we obtain the claim.

i)⇒ ii). In order to establish this direction we follow an approach by A. De Acosta [28, Ap-
pendix B] who showed for separable, possibly non-reflexive Banach spaces that Ψ∗n

M−→ Ψ∗ ⇒
Ψn

M−→ Ψ. In fact he assumed that Ψn∗ was an increasing sequence. However following the
lines of his proof one can easily see that it already suffices to assume Mosco convergence.

For c > 0 we define Ψn,c by
Ψn,c(y) = Ψn(y) +

c

2
|y|2 .

Moreover we set gc : X → [0,∞) to be

gc(x) = sup
{〈
x′, x

〉
X∗,X

− g∗(x′)− c

2
|x′|2 : x′ ∈ X∗

}
.

Claim 1. It holds that
∀x ∈ X : lim sup

n→∞
Ψ∗n,c(x) ≤ gc(x) .

Without loss of generality we may assume that gc(x) < ∞. Moreover we choose nk to be the
subsequence such that lim sup Ψ∗n,c(x) = lim Ψ∗nk,c(x). We can also assume that

lim
k→∞

Ψ∗nk,c(x) > −∞ .

Otherwise the claim is trivially satisfied. Choose yn ∈ Y such that

0 ≤ Ψ∗nk,c(x) ≤ 〈x, ynk〉Y∗,Y −Ψn (ynk)− c

2
|ynk |

2 +
1

nk
≤ |x||ynk | −

c

2
|ynk |

2 +
1

nk
.

Hence we may deduce that
c

4
|ynk |

2 ≤ 1

c
|x|2 − 1

nk
≤ C ,

where the constant C is independent of k but depends on x and c. We therefore deduce that ynk
is uniformly bounded in Y and hence as well in X∗. Therefore there exists a x′ ∈ X∗ such that
up to a further subsequence ynk

∗
⇀ x′. Using the weak star lower semi continuity of the norm on

X∗ and the liminf inequality we hence deduce that

lim sup
n→∞

Ψ∗n,c(x) ≤ lim sup
k→∞

〈x, ynk〉Y∗,Y −Ψnk (ynk)− c

2
|ynk |

2 +
1

nk

≤
〈
x′, x

〉
X∗,X

− g∗(x′)− c

2
|x′|2 ≤ gc(x) .

Moreover it also holds that supc>0 gc(x) = g(x). Indeed

sup
c>0

gc(x) = sup
c>0

sup
x′∈X∗

〈
x′, x

〉
X∗,X

− g∗(x′)− c

2
|x′|2

= sup
x′∈X∗

sup
c>0

〈
x′, x

〉
X∗,X

− g∗(x′)− c

2
|x′|2 = g(x) .

The latter equality is due to the fact that for any Banach space X and any convex, proper, lower
semi continuous function g it holds g∗∗ = g. We hence obtain that

lim sup
c→0

lim
n→∞

Ψ∗n,c(x) ≤ g(x) .
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Using a diagonalization argument there exists a function c = c(n), c(n)→ 0 such that

lim sup
n→∞

Ψ∗n,c(n)(x) ≤ g(x) . (11.29)

Notice that for all n ∈ N there exists a y′n ∈ Y such that

Ψ∗n
(
y′n
)

+
1

2c(n)

∣∣y′n − x∣∣2 ≤ Ψ∗n,c(n)(x) +
1

n
. (11.30)

This readily implies that
lim sup
n→∞

Ψ∗n(yn) ≤ g(x) .

It remains to show that y′n → x. This is a direct consequence of (11.29) and (11.30) because
otherwise

lim sup
n→∞

(
Ψ∗n
(
y′n
)

+
1

2c(n)

∣∣y′n − x∣∣2) =∞

This concludes the proof.

If Ψ is a 1-homogeneous function then Ψ is a pseudo norm on Y . We also can define a possibly
non-symmetric metric on Y by

dΨ(u, v) = Ψ(v − u) ∀u, v ∈ Y . (11.31)

Now assume that the function y : [0, T ]→ Y is absolutely continuous w.r.t the norm on Y . Then
due to the isometry of j the map t 7→ j (y(t)) is absolutely continuous with respect to the norm
on X∗.

Proposition 11.15. Let d
dt j (y(t)) be the weak-star derivative of j (u(t)). Then it holds that

Ψrel

(
d

dt
j (y(t))

)
=
∣∣u′∣∣

Ψ
(t) for a.e. t ∈ [0, T ] . (11.32)

Here |u′|Ψ (t) denotes the metric derivative with respect to the metric dΨ.

Proof. Showing this is similar to before. If Ψ is 1-homogeneous then there exists some K ⊂ X
such that Ψ = MK . Define K̂ = K∗ ∩X and due to (11.26) it holds

Ψ(y) = sup
{
〈j(y), x〉X∗,X : x ∈ K̂

}
We hence obtain for all 0 ≤ t < t+ h ≤ T and x ∈ K̂ that

Ψ(y(t+ h)− y(t)) ≥ 〈j (y(t+ h))− j (y(t)) , x〉X∗,X =

t∫
t

+h

〈
d

ds
j(y(s)), x

〉
X∗,X

ds .

Taking the limit h→ 0 we deduce for almost every t ∈ [0, T ] that

lim inf
h↓0

Ψ(y(t+ h)− y(t))

h
≥ Ψrel

(
d

dt
j (y(t))

)
.

Moreover one has for 0 ≤ r ≤ s ≤ T that

Ψ (y(s)− y(r)) ≤
s∫
r

Ψrel

(
d

dt
j (y(t))

)
dt .

This suffices to conclude that (11.32) holds.
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11.4. Statement of the main result

We will now state our main result. We especially have to define which precise assumption we
have to make for the convergence Ψn → Ψ. We are not able to prove a result while assuming
only Mosco convergence. Because of the problems mentioned in the prior section, we instead
have to develop a stronger notion of convergence. To see that this notion is still feasible for
applications we are going to show that they are met for the two model examples we introduced
at the beginning. As a last preparation we will state our assumption on the limiting potential Ψ.

Assumption 11.16 (Assumption on the limit dissipation potential). We assume that the potential
Ψ : Y → [0,+∞) is a proper, convex and lower semi continuous function. Moreover it satisfies
Ψ(0) = 0 and there exist c1, c2, c3 ≥ 0, p ≥ 1 and q > 1 such that

∀
(
y, y′

)
∈ Y × Y∗ : Ψ(y) + Ψ∗(y′) ≥ c1|y|pY + c2|y′|qY∗ − c3 . (11.33)

Let us now state the main theorem of this chapter.

Theorem 11.17. Let
(
Y, (Yn)n∈N , H

)
be an admissible family of state spaces. Let the triplet

(E , F, P ) satisfy Assumption 11.2. Let (Ψn)n∈N be a family of convex, lower semi continuous
potentials Ψn : Y → [0,+∞] satisfying Assumption 11.5. Let (un, ξn)n∈N be a family of
functions (un, ξn) ∈W 1,1(0, T ;Yn)× L1(0, T,Y∗n) such that (un, ξn) is a solution to

∂Ψn (u̇n(t)) + Ft (un(t)) 3 0 , un(0) = u0

in the sense of Definition 11.3. Moreover choose Ψ such that Assumption 11.16 holds. Define
X ⊂ Y∗ such that the conditions of Proposition 11.14 are met. If

∀x′ ∈ X∗, (yn)n∈N ⊂ Y : j(yn)
∗
⇀ x : lim inf Ψn(yn) ≥ Ψrel(x) (11.34)

∀h ∈ H : ∃ (hn)n∈N ⊂ H, |hn − h|H → 0 : lim sup Ψn(hn) ≤ Ψ(h) (11.35)

then there exists a subsequence (nk)k∈N and a tuple (u, ξ) ∈ BVL(0, T ;Y)×Lq(0, T ;Y∗) such
that

unk(t)→ u(t) ∀t ∈ [0, T ] ∧ ξ(t) ∈ Ft(u(t)) a.e. in [0, T ] .

Moreover the tuple (u, ξ) satisfies u(0) = u0 and it holds for all t ∈ [0, T ] that

Et(u(t)) +
t∫

0

Ψrel

(
˙̂uac(τ)

)
dτ +

t∫
0

Ψ∞rel

(
˙̂us(τ)

)
d‖λs‖(τ) +

t∫
0

Ψ∗ (−ξ(τ)) dτ

≤ E0 (u(0)) +
t∫

0

Pτ (u(τ), ξ(τ)) dτ . (11.36)

Certainly a few remarks are in order to explain the convergence conditions (11.34) and (11.35).
First of all we shall point out that these two conditions imply that Ψn

M−→ Ψ. For the lim inf-
inequality just note that yn ⇀ y implies j(yn)

∗
⇀ j(y). For the existence of a strong recovery

sequence notice that D(Ψ) = Y . Hence Ψ is continuous on Y . Moreover H ↪→ Y is dense. For
any y ∈ Y choose a sequence (hn)n∈N such that

lim
n→∞

|hn − y|Y = 0 .
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For each hn there exists a sequence (hn,k)k∈N such that lim |hn,k − hn|H = 0 and the lim sup
inequality (11.35) is satisfied. Now remember that convergence with respect to the H-norm im-
plies convergence with respect to the Y-norm. A strong recovery sequence for y can hence be
obtained by extracting a diagonal sequence.

As the convergence conditions (11.34) and (11.35) are stronger than Mosco convergence one
may ask whether these are actually met in ’interesting’ cases. To argue in favor of these two
conditions let us shortly show that the two examples from above satisfy these conditions.

Proposition 11.18. Let Ω ⊂ Rn be an open, bounded and connected set. Define Y = L1(Ω) and
H = L2(Ω). Choose Ψ = ‖ · ‖L1(Ω). The set X = Cb(Ω) satisfies the condition of Proposition
11.14. For any sequence (εn)n∈N ⊂ (0, 1] such that εn → 0 it holds that both families

Ψ1
n(·) =

1

εn
‖ · ‖1+εn

L1+εn (Ω)
and Ψ2

n(·) = ‖ · ‖L1(Ω) + εn‖ · ‖2L2(Ω

satisfy the convergence conditions (11.34) and (11.35) with respect to Ψ.

Proof. ad Ψ1
n. To see that condition lim inf-condition holds choose a measure µ ∈ M(Ω) =

X∗. Take any family of function (yn)n∈N ⊂ L1(Ω) such that yn · L
∗
⇀ µ. If yn /∈ L1+εn(Ω)

then Ψ1
n(yn) = +∞. Otherwise

Ψ1
n(yn) =

1

1 + εn

∫
Ω

|yn(x)|1+εn dx ≥
∫
Ω

|yn(x)| dx− εn
1 + εn

L(Ω) .

This is a consequence of Hölders inequality. Notice that εn
1+εn
L(Ω) → 0 as n → ∞. Moreover

it holds that

‖yn‖L1(Ω) = ‖yn · L‖M(Ω) .

Then (11.34) is a consequence of the weak-star lower semi continuity of the norm onM(Ω). In
order to find a recovery sequence choose any h ∈ L2(Ω). Then Ψn(h) <∞. Moreover it holds
that

|h(x)|1+ε → |h(x)| for a.e. x ∈ Ω .

From the dominated convergence principle we then deduce that Ψn(h)→ Ψ(h).

ad Ψ2
n. The proof is similar. The liminf condition follows immediately from the fact that

Ψ2
n(yn) ≥ ‖yn‖L1(Ω) .

For the recovery sequence one may once more choose any h ∈ L2(Ω). Then

Ψ2
n(h) = ‖h‖L1(Ω) + εn ‖h‖L2(Ω) → ‖h‖L1(Ω) (as n→∞) .
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11.5. Proof of the main theorem

Before we can prove Theorem 11.17 we need to prove another selection principle.

Proposition 11.19. Assume (E , F, P ) satisfies the Assumption 11.2 and Ψ satisfies Assumption
11.16. Moreover let u ∈ BV (0, T ;Y) such that

for a.a. t ∈ [0, T ] : (t, u(t)) ∈ dom(F ) ∧ sup {Et (u(t)) : t ∈ [0, T ]} < +∞ . (11.37)

Assume that the set

S (t, u(t)) = {(ζ, p) ∈ H × R : ζ ∈ Ft(u(t)) , p ≤ Pt (u(t), ζ)} (11.38)

is non-empty for almost all t ∈ [0, T ]. Then there exist two measurable functions ξ : (0, T )→ H ,
p : (0, T )→ R such that

(ξ(t), p(t)) ∈ argmin {Ψ∗(ζ)− p : (ζ, p) ∈ S (t, u(t))} a.e. in [0, T ] (11.39)

This is in fact a simplification of [69, Lemma B.2]. Hence the proof is simpler. The reader
might be familiar with the structure of the proof also from Lemma 10.11.

Proof. We start by showing that

argmin {Ψ∗(ζ)− p : (ζ, p) ∈ S (t, u(t))} 6= ∅ for a.e. t ∈ [0, T ] (11.40)

Choose some t ∈ [0, T ] such that S(t, u(t)) 6= ∅. Without loss of generality we assume that

inf {Ψ∗(ζ)− p : (ζ, p) ∈ S (t, u(t))} < +∞ .

Otherwise the argmin coincides with the set S(t, u(t)). Now let (ζn, pn) be an infimizing se-
quence. Then analogous to (10.25) we obtain that both pn and Ψ∗(ζn) are uniformly bounded.
We hence obtain that ζn is uniformly bounded inY∗ and there exists a subsequence (ζnk , pnk)k∈N
such that

ζnk
∗
⇀ ζ and pnk → p .

Especially it holds that ζnk ⇀ ζ with respect to the weak topology in H as well. Thus due to
(11.E6) we have (ζ, p) ∈ S (t, u(t)) and also obtain that

(ζ, p) ∈ argmin {Ψ∗(ζ)− p : (ζ, p) ∈ S (t, u(t))}

Now showing that the existence of measurable selection follows the same lines as in the proof of
[69, Lemma B.2]. It is even simpler as there is no dependence on u̇(t). First we define the set

S := {(t, u, ζ, p) ∈ [0, T ]× Y ×H × R : ζ ∈ Ft(u) , p ≤ Pt(u, ζ)}

This is a Borel set as graph(F ) is a Borel set and the map t : 7→ Pt(u, ζ) is a Borel function. By
assumption there exists a set T ⊂ [0, T ] of full measure such that

S(t, u(t)) 6= ∅ ∀t ∈ T .

We then define the multivalued map t ∈ T 7→ S(t, u(t)). Using the fact that u is a Borel
function we then obtain once again from [20, Corollary III.3 and Theorem III.6] that there exists
a measurable selection which satisfies 11.39.
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We are now able to prove our main result.

Proof of Theorem 11.17. The steps we follow are similar to the proof of Theorem 10.8.

Step 1 - A priori estimates and compactness. For n ∈ N we define

En : [0, T ]→ R , t 7→ Et (un(t)) . (11.41)

As Ψn,Ψ
∗
n ≥ 0 we deduce that

En(t) ≤ C0 + C1

t∫
0

En(s) ds . (11.42)

Employing Gronwall’s Lemma we obtain sup{En(t) : t ∈ [0, T ]} ≤ C for some C independent
of n. Consequently we have

ess sup {|Pt(un(t), ξn(t))| : t ∈ [0, T ]} ≤ C . (11.43)

From this we get
T∫

0

Ψn (u̇n(t)) + Ψ∗n (−ξn(t)) dt ≤ C . (11.44)

The growth condition (11.11) now implies

T∫
0

c1 |u̇n(t)|Y + c2 |ξ(t)|H∗ dt ≤ C (11.45)

Therefore (un)n∈N and (ξn)n∈N are uniformly bounded in L1 (0, T ;Y) and Lq(0, T ;H) respec-
tively. Finally analogous to the proof of Theorem 10.8 we obtain that t 7→ En(t) is uniformly
bounded in BV (0, T ).
Hence passing to an appropriate subsequence (nk)k∈N we find functions E ∈ BV (0, T ), u ∈
BV (0, T ;Y) such that

(En(t), un(t))→ (E(t), u(t)) ∀t ∈ [0, T ] . (11.46)

Additionally there exists a family of Young measures (σt)t∈[0,T ], σt ∈ M (H × R) satisfying
Theorem 4.22. Especially we can deduce that ‖σt‖ = 1 almost everywhere and

supp (σt) ⊂
⋂
j∈N

cl {(ξnk(t), pnk(t)) : k ≥ j} (11.47)

where cl is meant to be the weak closure in H × R. Finally notice that Yn ↪→ X∗ for all n ∈ N.
Define for all t ∈ [0, T ] and n ∈ N

ûn(t) := j (un(t)) . (11.48)

Any absolutely continuous function on Y is absolutely continuous on X∗. Furthermore let ˙̂un
be the weak-star derivative of ûn which exists due to Theorem 4.18. Then ˙̂un(t) = j (u̇n(t))
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for almost every t ∈ [0, T ]. Furthermore the family λn = ˙̂un · L is uniformly bounded in
M(0, T,X∗). To see this let 0 ≤ r ≤ s ≤ t. Then

|λn ([r, s])|X∗ = sup
{
〈λn ([r, s]) , x〉X∗,X : |x| ≤ 1

}
. (11.49)

We then can estimate that for all x ∈ X with |x| ≤ 1 it holds

〈λn ([r, s]) , x〉X∗,X = 〈j (un(s))− j (un(r)) , x〉X∗,X

= 〈x, un(s)− un(r)〉Y∗,Y ≤
s∫
r

|u̇n(t)|Y dt

Applying (11.3) we hence know that for any closed set [r, s] ⊂ [0, T ] it holds

|λn ([r, s])|X∗ ≤ C
s∫
r

|u̇n(t)|Yn dt (11.50)

It is thus an immediate consequence of (11.45) that λn is uniformly bounded inM(0, T ;X∗).
Hence there exists a further not relabeled subsequence (nk)k∈N such that

λnk
∗
⇀ λ inM(0, T ;X∗) . (11.51)

Step 2 - lim inf-inequality for the dissipation potential. We are now going to show that

lim inf
n→∞

t∫
0

Ψn (u̇n(t)) dt ≥
t∫

0

Ψrel

(
˙̂uac(s)

)
ds+

t∫
0

Ψ∞rel

(
˙̂us(s)

)
d‖λs‖(s) (11.52)

We shall first pass to a non-relabeled subsequence such that the lim inf is indeed a limit. Notice
first that due to (11.44) the family

fn : t 7→ Ψn (u̇n(t)) (11.53)

is uniformly bounded in L1(0, T ). There exists a subsequence (nk)k∈N and a measure µ ∈
M(0, T ) such that

fn · L
∗
⇀ µ (11.54)

Hence there exist measures λac, λs ∈M(0, T ;X∗) and µac, µs, µ⊥ ∈M(0, T ) such that

‖λac‖ � L ∧ ‖λs‖ ⊥ L ∧ λ = λs + λac and (11.55)

µac � L ∧ µs � ‖λs‖ ∧ µ⊥ ⊥ L+ ‖λs‖ ∧ µ = µac + µs + µ⊥ (11.56)

For the sake of notational simplicity we shall simply write the index k instead of (nk). Define
as before Q(t0, ε) :=

(
t0 − ε

2 , t0 + ε
2

)
. For any countable family (xi)i∈N ⊂ X there exists set

T ⊂ [0, T ] of full measure such that for all t0 ∈ T and all i ∈ N it holds

lim
ε→0

〈λ (Q(t0, ε) ∩ [0, T ]) , xi〉X∗,X
L (Q(t0, ε))

=
〈

˙̂uac(t0), xi

〉
X∗,X

. (11.57)
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If one chooses (xi)i∈N to be strongly dense in X a simple limit argument shows that the above
equality holds for all x ∈ X . Moreover for almost every t ∈ [0, T ] it holds that

dµac
dL

(t0) = lim
ε→0

µ (Q(t0, ε) ∩ [0, T ])

L (Q(t0, ε) ∩ [0, T ])
<∞ . (11.58)

Now choose x ∈ X such that Ψ∗(x) < +∞. Then as a consequence of Proposition 11.13
there exists a strong recovery sequence (y′k) ⊂ Y∗ such that y′k → x and Ψ∗n (y′k) → Ψ∗(x).
Furthermore we can choose a subsequence εm such that εm → 0 and λ (∂Q(t0, εm) ∩ [0, T ]) =
µ (∂Q(t0, εm)) = 0. It then holds that

dµac
dL

(t0) = lim
m→∞

lim
k→∞

1

L (Q(t0, εm) ∩ [0, T ])

∫
Q(t0,εm)∩[0,T ]

Ψk(u̇k(t)) dt

≥ lim inf
m→∞

1

L (Q(t0, εm) ∩ [0, T ])
lim inf
k→∞

∫
Q(t0,εm)∩[0,T ]

〈
y′k, u̇k(t)

〉
Y∗,Y dt−Ψ∗k

(
y′k
)
· L (Q(t0, εm) ∩ [0, T ])

We then can write∫
Q(t0,εm)∩[0,T ]

〈
y′k, u̇k(t)

〉
Y∗,Y dt =

∫
Q(t0,εm)∩[0,T ]

〈x, u̇k(t)〉Y∗,Y dt

+

∫
Q(t0,εm)

〈
y′k − x, u̇n(t)

〉
Y∗,Y dt

For the first term we obtain∫
Q(t0,εm)∩[0,T ]

〈x, u̇k(t)〉Y∗,Y dt

=

∫
Q(t0,εm)∩[0,T ]

〈j (u̇k(t)) , x〉X∗,X dt→ 〈λ (Q (t0, εm) ∩ [0, T ]) , x〉X∗,X .

The second term can simply be estimated by∫
Q(t0,εm)∩[0,T ]

∣∣∣〈y′k − x, u̇k(t)〉Y∗,Y ∣∣∣ dt ≤
∣∣y′k − x∣∣Y∗ ‖u̇k(t)‖L1(0,T ;Y∗) → 0 . (11.59)

Letting m→∞ we finally deduce that

dµac
dL

(t0) ≥
〈

˙̂uac(t0), x
〉
X∗,X

−Ψ∗(x) (11.60)

and taking the supremum over all x ∈ X we obtain

dµac
dL

(t0) ≥ Ψrel

(
˙̂uac(t0)

)
. (11.61)
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Now let Ts ⊂ [0, T ] be the set of all t0 such that

lim
ε→0

µ (Q (t0, ε) ∩ [0, T ])

‖λs‖ (Q (t0, ε) ∩ [0, T ])
=

dµs
d‖λs‖

(t0) (11.62)

lim
ε→0

〈λ (Q (t0, ε) ∩ [0, T ]) , x〉X∗,X
‖λs‖ (Q (t0, ε) ∩ [0, T ])

=
〈

˙̂us(t0), x
〉
X∗,X

∀x ∈ X and (11.63)

lim
ε→0

L (Q (t0, ε) ∩ [0, T ])

‖λs‖ (Q (t0, ε) ∩ [0, T ])
= 0 . (11.64)

Then the set [0, T ]\Ts is a ‖λs‖-null set. Once again let us choose a sequence (εm)m∈N, εm → 0
such that λ (∂Q(t0, εm)) = µ (∂Q(t0, εm) ∩ [0, T ]) = 0. Choosing x ∈ X with Ψ∗(x) < +∞
and a corresponding strong recovery sequence (yk)k∈N we now may compute

dµs
dL

(t0) = lim
m→∞

lim
k→∞

1

‖λs‖ (Q(t0, εm))

∫
Q(t0,εm)∩[0,T ]

Ψk(u̇k(t)) dt

≥ lim inf
m→∞

lim inf
k→∞

(‖λs‖ (Q(t0, εm) ∩ [0, T ]))−1 · ∫
Q(t0,εm)∩[0,T ]

〈
y′k, u̇k(t)

〉
Y∗,Y dt− L (Q(t0, εm) ∩ [0, T ]) Ψ∗k

(
y′k
) .

Analogous to our prior calculations we obtain that∫
Q(t0,εm)∩[0,T ]

〈
y′k, u̇k(t)

〉
Y∗,Y dt→ 〈λ (Q (t0, εm) ∩ [0, T ]) , x〉X∗,X . (11.65)

Moreover as m→∞ we deduce that

lim inf
m→∞

〈λ (Q (t0, εm) ∩ [0, T ]) , x〉X∗,X − L (Q(t0, εm) ∩ [0, T ]) Ψ∗ (x)

‖λs‖ (Q(t0, εm) ∩ [0, T ])
=
〈

˙̂us(t0), x
〉
X∗,X

.

(11.66)
Hence taking the supremum over all x ∈ X we finally deduce that

dµs
dL

(t0) ≥ Ψ∞rel

(
˙̂us(t0)

)
. (11.67)

Inequality (11.52) now is a consequence of integration over [0, T ] and the fact that as Ψn ≥ 0
also µ⊥ ≥ 0.

Step 3 - lim inf-inequality for the Young measure It follows from the weak strong closedness
(11.E6) that

supp (σt) ⊂ {(ζ, p) : ζ ∈ Ft(u(t)), p ≤ Pt(u(t), ζ)} a.e. in [0, T ] . (11.68)

Moreover we obtain that for almost every t ∈ [0, T ] it holds that (t, u(t)) ∈ D(F ) and E(t) =
Et(u(t)). It remains to show that

lim inf
n→∞

t∫
0

Ψ∗n (−ξn(s)) ds ≥
t∫

0

∫
H×R

Ψ∗(−ζ) dσs(ζ, p) ds . (11.69)
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This is a consequence of Theorem 4.22, if we can show that for all families (h′n)n∈N ⊂ H∗ ∼= H ,
h′n ⇀ h′ it holds that

lim inf
n→∞

Ψ∗n(h′n) ≥ Ψ∗(h′) . (11.70)

To see this choose any h ∈ H . Then there exists a family (hn)n∈N ⊂ H , hn → h such that
(11.35) is satisfied. Then it holds that

lim inf
n→∞

Ψ∗n
(
h′n
)
≥ lim inf

n→∞

〈
h′n, hn

〉
−Ψn (hn) ≥

〈
h′, h

〉
Y∗,Y −Ψ(h) .

Taking the fact that H ↪→ Y dense and the fact that Ψ is continuous as it is defined everywhere
on Y we deduce that

∀h′ ∈ H∗ \ Y∗ : sup
h∈H

〈
h′, h

〉
Y∗,Y −Ψ(h) = +∞ .

On the other hand for all h′ ∈ Y∗ ⊂ H∗ it holds that

sup
h∈H

〈
h′, h

〉
−Ψ(h) = sup

y∈Y

〈
h′, y

〉
Y∗,Y −Ψ(y) = Ψ∗(h′) .

This implies (11.70).
Step 4 - Selection argument and conclusion of the proof. Finally we obtain from Proposition
11.19 that there exists a pair of functions (ξ, p) such that

Ψ∗ (ξ(t))− p(t) ≤
∫

H×R

Ψ∗(ζ)− p dσt(ζ, p)

Now combining all the above results and integrating and integrating over [0, t) we deduce that
for almost all t ∈ [0, T ] it holds

Et(u(t)) +
t∫

0

Ψrel

(
˙̂uac(τ)

)
dτ +

t∫
0

Ψ∞rel

(
˙̂us(τ)

)
d‖λs‖(τ) +

t∫
0

Ψ∗ (−ξ(τ)) dτ

≤ E0 (u(0)) +
t∫

0

Ps (u(s), ξ(s)) ds .

11.6. The case of rate-independent limits

We will finish this chapter with a few remarks concerning the rate independent case. Assume
that Ψ is a 1-homogeneous function. Then there exists a convex set K ⊂ Y such that Ψ = MK

and it holds that Ψ∗ = IK∗ . It follows from

T∫
0

Ψ∗ (−ξ(t)) dt =

T∫
0

IK∗ (−ξ(t)) dt < +∞

137



11. Approximation of dissipation potentials on non-reflexive Banach spaces

that −ξ(t) ∈ K∗ for almost every t ∈ [0, T ]. In the terminology of rate-independent processes
this means that the function u satisfies the local stability condition. Moreover also Ψrel is also
1-homogeneous and it holds Ψ∞rel = Ψrel. Then the limit inequality (11.36) reads

Et(u(t)) +
t∫

0

Ψrel

(
˙̂uac(τ)

)
dτ +

t∫
0

Ψrel

(
˙̂us(τ)

)
d‖λs‖(τ) +

t∫
0

IK∗ (−ξ(τ)) dτ

≤ E0 (u(0)) +
t∫

0

Pτ (u(τ), ξ(τ)) dτ .

In order to give context to this equation in the purview of solution concepts for rate independent
systems we need the following proposition.

Proposition 11.20. Let Y be Banach space and Ψ : Y → [0,+∞] be a proper, 1-homogeneous,
convex and lower semi continuous functional satisfying Assumption 11.16. Let X ⊂ Y∗ satisfy
the conditions of Proposition 11.14. Let Ψrel be the relaxation of Ψ to X∗ according to (11.21).
For a function u ∈ BV(0, T ;Y) define

DissΨ (u, [0, t)) :=

sup

{
n∑
i=1

Ψ (u(ti−)− u(ti−1+)) +
n∑
i=0

Ψ (u(ti+)− u(ti−)) : (ti)
n
i=0 ⊂ [0, t), ti−1 < ti

}
.

Then it holds that

DissΨ(u, [0, t)) =

∫
[0,t)

Ψrel

(
˙̂uac(τ)

)
dτ +

∫
[0,t)

Ψrel

(
˙̂us(τ)

)
d‖λs‖(τ) (11.71)

where λ, λs, λac and ˙̂uac, ˙̂us are defined as in the above proof.

We now can rewrite the limit equation in the rate-independent case as

Et(u(t)) + DissΨ(u, [0, t)) +

t∫
0

IK∗ (−ξ(τ)) dτ ≤ E0 (u(0)) +

t∫
0

Pτ (u(τ), ξ(τ)) dτ .

In the language of rate independent systems such a function pair is called a local solution to the
evolution equation (11.1), see e.g. [73]. It is one of the weakest notions of solutions for rate in-
dependent systems. Especially in general uniqueness cannot be expected [102]. Approximating
rate independent processes has been considered in a number of works, see e.g. [61, 72, 73, 70].
Whereas in these cases a more precise understanding of what happens at jump points has been
obtained the form of the approximation was limited to specific families of dissipation potentials.
The benefit of the above result is that the family of dissipation potentials is rather arbitrary. How-
ever one pays for this by loosing information on what happens when the solution jumps. One
could argue that the above theorem shows that the minimal requirement for a solution of a rate
independent system should be that it is a local solution.

As the final act of this chapter let us prove Proposition 11.20.
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Proof. Every u ∈ BV (0, T ;Y) admits left and right hand side limits at every t ∈ [0, T ]. For
convenience we set u(0−) := u(0) and u(T+) := u(T ). Therefore the above definition of DissΨ

is sensible. Moreover we define u+ : [0, T ] → Y by u+ : t 7→ u(t+) and u− : [0, T ] → Y by
u− : t 7→ u(t−). As Ψ is 1-homogeneous there exists a convex set K ⊂ Y such that Ψ = MK

and consequently Ψ∗ = IK∗ . Set K̂ = K ∩X . Then as a consequence of (11.21) we obtain that
Ψrel =

(
I
K̂

)∗. Moreover due to (11.26) it holds

DissΨ (u, [0, t]) = DissΨrel (j(u), [0, t]) .

Note that DissΨ is a left continuous function of bounded variation. Let µ be the Radon measure
induced by DissΨ. Notice that as DissΨ is monotone increasing µ ≥ 0. Moreover there exist
measures λac, λs ∈M(0, T ;X∗) and µac, µs, µ⊥ ∈M(0, T ) such that

‖λac‖ � L ∧ ‖λs‖ ⊥ L ∧ λ = λs + λac and

µac � L ∧ µs � ‖λs‖ ∧ µ⊥ ⊥ L+ ‖λs‖ ∧ µ = µac + µs + µ⊥

Notice that µ⊥ ≥ 0. Then for L-almost all t0 ∈ [0, T ] it holds〈
˙̂uac(t0), x

〉
X∗,X

= lim
ε→0

〈λ (Q(t0, ε)) , x〉X∗,X
L (Q(t0, ε))

and

dµac
dL

(t0) = lim
ε→0

µ (Q(t0, ε))

L (Q(t0, ε))
<∞ .

Without loss of generality we may assume that t0 ∈ (0, T ). Choose ε small enough such that
[t0 − ε/2, t0 + ε/2] ∈ [0, T ]. Then

dµac
dL

(t0) ≥ lim inf
ε→0

ε−1Ψ
(
u−(t0 + ε/2)− u+(t0 − ε/2)

)
≥ lim inf

ε→0
ε−1 〈λ (Q(t0, ε)) , x〉X∗,X =

〈
˙̂uac(t0), x

〉
X∗,X

.

Taking the sup over all x ∈ K̂ it holds

dµac
dL

(t0) ≥ Ψrel

(
˙̂uac(t0)

)
.

We proceed analogous for t ∈ supp (‖λs‖). It holds for ‖λs‖-almost every t ∈ [0, T ] that

lim
ε→0

µ (Q (t0, ε) ∩ [0, T ])

‖λs‖ (Q (t0, ε) ∩ [0, T ])
=

dµs
d‖λs‖

(t0)

lim
ε→0

〈λ (Q (t0, ε) ∩ [0, T ]) , x〉X∗,X
‖λs‖ (Q (t0, ε) ∩ [0, T ])

=
〈

˙̂us(t0), x
〉
X∗,X

∀x ∈ X .

However in this case we cannot simply assume that t0 ∈ [0, T ]. For t0 ∈ {0, T} a small
case distinction is necessary by considering either Ψ (u(0 + ε/2)− u(0)). Apart from that the
estimate works as above and we deduce that

dµs
d‖λs‖

(t0) ≥ Ψrel

(
˙̂us(t0)

)
.
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Integration over [0, t) we obtain that

DissΨ (u, [0, t)) ≥
∫

[0,t)

Ψrel

(
˙̂uac(τ)

)
dτ +

∫
[0,t)

Ψrel

(
˙̂us(τ)

)
d‖λs‖(τ) .

The other inequality is simple as it holds for all 0 ≤ s < t ≤ T that

Ψ (u(t−)− u(s+))

= sup
x∈K∗

〈λ((s, t)), x〉X∗,X

= sup
x∈K∗

 ∫
(s,t)

〈
˙̂uac(τ), x

〉
X∗,X

dτ +

∫
(s,t)

〈
˙̂us(τ), x

〉
X∗,X

d‖λs‖(τ)


≤

∫
(s,t)

sup
x∈K∗

〈
˙̂uac(τ), x

〉
X∗,X

dτ +

∫
(s,t)

sup
x∈K∗

〈
˙̂us(τ), x

〉
X∗,X

d‖λs‖(τ)

And a similar argument holds for Ψ(u(t+)−Ψ(u(t−)).
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